1 /** 2 * Routines supporting the Power 7+ Nest Accelerators driver 3 * 4 * Copyright (C) 2011-2012 International Business Machines Inc. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; version 2 only. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 18 * 19 * Author: Kent Yoder <yoder1@us.ibm.com> 20 */ 21 22 #include <crypto/internal/hash.h> 23 #include <crypto/hash.h> 24 #include <crypto/aes.h> 25 #include <crypto/sha.h> 26 #include <crypto/algapi.h> 27 #include <crypto/scatterwalk.h> 28 #include <linux/module.h> 29 #include <linux/moduleparam.h> 30 #include <linux/types.h> 31 #include <linux/mm.h> 32 #include <linux/crypto.h> 33 #include <linux/scatterlist.h> 34 #include <linux/device.h> 35 #include <linux/of.h> 36 #include <asm/pSeries_reconfig.h> 37 #include <asm/hvcall.h> 38 #include <asm/vio.h> 39 40 #include "nx_csbcpb.h" 41 #include "nx.h" 42 43 44 /** 45 * nx_hcall_sync - make an H_COP_OP hcall for the passed in op structure 46 * 47 * @nx_ctx: the crypto context handle 48 * @op: PFO operation struct to pass in 49 * @may_sleep: flag indicating the request can sleep 50 * 51 * Make the hcall, retrying while the hardware is busy. If we cannot yield 52 * the thread, limit the number of retries to 10 here. 53 */ 54 int nx_hcall_sync(struct nx_crypto_ctx *nx_ctx, 55 struct vio_pfo_op *op, 56 u32 may_sleep) 57 { 58 int rc, retries = 10; 59 struct vio_dev *viodev = nx_driver.viodev; 60 61 atomic_inc(&(nx_ctx->stats->sync_ops)); 62 63 do { 64 rc = vio_h_cop_sync(viodev, op); 65 } while ((rc == -EBUSY && !may_sleep && retries--) || 66 (rc == -EBUSY && may_sleep && cond_resched())); 67 68 if (rc) { 69 dev_dbg(&viodev->dev, "vio_h_cop_sync failed: rc: %d " 70 "hcall rc: %ld\n", rc, op->hcall_err); 71 atomic_inc(&(nx_ctx->stats->errors)); 72 atomic_set(&(nx_ctx->stats->last_error), op->hcall_err); 73 atomic_set(&(nx_ctx->stats->last_error_pid), current->pid); 74 } 75 76 return rc; 77 } 78 79 /** 80 * nx_build_sg_list - build an NX scatter list describing a single buffer 81 * 82 * @sg_head: pointer to the first scatter list element to build 83 * @start_addr: pointer to the linear buffer 84 * @len: length of the data at @start_addr 85 * @sgmax: the largest number of scatter list elements we're allowed to create 86 * 87 * This function will start writing nx_sg elements at @sg_head and keep 88 * writing them until all of the data from @start_addr is described or 89 * until sgmax elements have been written. Scatter list elements will be 90 * created such that none of the elements describes a buffer that crosses a 4K 91 * boundary. 92 */ 93 struct nx_sg *nx_build_sg_list(struct nx_sg *sg_head, 94 u8 *start_addr, 95 unsigned int len, 96 u32 sgmax) 97 { 98 unsigned int sg_len = 0; 99 struct nx_sg *sg; 100 u64 sg_addr = (u64)start_addr; 101 u64 end_addr; 102 103 /* determine the start and end for this address range - slightly 104 * different if this is in VMALLOC_REGION */ 105 if (is_vmalloc_addr(start_addr)) 106 sg_addr = page_to_phys(vmalloc_to_page(start_addr)) 107 + offset_in_page(sg_addr); 108 else 109 sg_addr = __pa(sg_addr); 110 111 end_addr = sg_addr + len; 112 113 /* each iteration will write one struct nx_sg element and add the 114 * length of data described by that element to sg_len. Once @len bytes 115 * have been described (or @sgmax elements have been written), the 116 * loop ends. min_t is used to ensure @end_addr falls on the same page 117 * as sg_addr, if not, we need to create another nx_sg element for the 118 * data on the next page */ 119 for (sg = sg_head; sg_len < len; sg++) { 120 sg->addr = sg_addr; 121 sg_addr = min_t(u64, NX_PAGE_NUM(sg_addr + NX_PAGE_SIZE), end_addr); 122 sg->len = sg_addr - sg->addr; 123 sg_len += sg->len; 124 125 if ((sg - sg_head) == sgmax) { 126 pr_err("nx: scatter/gather list overflow, pid: %d\n", 127 current->pid); 128 return NULL; 129 } 130 } 131 132 /* return the moved sg_head pointer */ 133 return sg; 134 } 135 136 /** 137 * nx_walk_and_build - walk a linux scatterlist and build an nx scatterlist 138 * 139 * @nx_dst: pointer to the first nx_sg element to write 140 * @sglen: max number of nx_sg entries we're allowed to write 141 * @sg_src: pointer to the source linux scatterlist to walk 142 * @start: number of bytes to fast-forward past at the beginning of @sg_src 143 * @src_len: number of bytes to walk in @sg_src 144 */ 145 struct nx_sg *nx_walk_and_build(struct nx_sg *nx_dst, 146 unsigned int sglen, 147 struct scatterlist *sg_src, 148 unsigned int start, 149 unsigned int src_len) 150 { 151 struct scatter_walk walk; 152 struct nx_sg *nx_sg = nx_dst; 153 unsigned int n, offset = 0, len = src_len; 154 char *dst; 155 156 /* we need to fast forward through @start bytes first */ 157 for (;;) { 158 scatterwalk_start(&walk, sg_src); 159 160 if (start < offset + sg_src->length) 161 break; 162 163 offset += sg_src->length; 164 sg_src = scatterwalk_sg_next(sg_src); 165 } 166 167 /* start - offset is the number of bytes to advance in the scatterlist 168 * element we're currently looking at */ 169 scatterwalk_advance(&walk, start - offset); 170 171 while (len && nx_sg) { 172 n = scatterwalk_clamp(&walk, len); 173 if (!n) { 174 scatterwalk_start(&walk, sg_next(walk.sg)); 175 n = scatterwalk_clamp(&walk, len); 176 } 177 dst = scatterwalk_map(&walk); 178 179 nx_sg = nx_build_sg_list(nx_sg, dst, n, sglen); 180 len -= n; 181 182 scatterwalk_unmap(dst); 183 scatterwalk_advance(&walk, n); 184 scatterwalk_done(&walk, SCATTERWALK_FROM_SG, len); 185 } 186 187 /* return the moved destination pointer */ 188 return nx_sg; 189 } 190 191 /** 192 * nx_build_sg_lists - walk the input scatterlists and build arrays of NX 193 * scatterlists based on them. 194 * 195 * @nx_ctx: NX crypto context for the lists we're building 196 * @desc: the block cipher descriptor for the operation 197 * @dst: destination scatterlist 198 * @src: source scatterlist 199 * @nbytes: length of data described in the scatterlists 200 * @iv: destination for the iv data, if the algorithm requires it 201 * 202 * This is common code shared by all the AES algorithms. It uses the block 203 * cipher walk routines to traverse input and output scatterlists, building 204 * corresponding NX scatterlists 205 */ 206 int nx_build_sg_lists(struct nx_crypto_ctx *nx_ctx, 207 struct blkcipher_desc *desc, 208 struct scatterlist *dst, 209 struct scatterlist *src, 210 unsigned int nbytes, 211 u8 *iv) 212 { 213 struct nx_sg *nx_insg = nx_ctx->in_sg; 214 struct nx_sg *nx_outsg = nx_ctx->out_sg; 215 struct blkcipher_walk walk; 216 int rc; 217 218 blkcipher_walk_init(&walk, dst, src, nbytes); 219 rc = blkcipher_walk_virt_block(desc, &walk, AES_BLOCK_SIZE); 220 if (rc) 221 goto out; 222 223 if (iv) 224 memcpy(iv, walk.iv, AES_BLOCK_SIZE); 225 226 while (walk.nbytes) { 227 nx_insg = nx_build_sg_list(nx_insg, walk.src.virt.addr, 228 walk.nbytes, nx_ctx->ap->sglen); 229 nx_outsg = nx_build_sg_list(nx_outsg, walk.dst.virt.addr, 230 walk.nbytes, nx_ctx->ap->sglen); 231 232 rc = blkcipher_walk_done(desc, &walk, 0); 233 if (rc) 234 break; 235 } 236 237 if (walk.nbytes) { 238 nx_insg = nx_build_sg_list(nx_insg, walk.src.virt.addr, 239 walk.nbytes, nx_ctx->ap->sglen); 240 nx_outsg = nx_build_sg_list(nx_outsg, walk.dst.virt.addr, 241 walk.nbytes, nx_ctx->ap->sglen); 242 243 rc = 0; 244 } 245 246 /* these lengths should be negative, which will indicate to phyp that 247 * the input and output parameters are scatterlists, not linear 248 * buffers */ 249 nx_ctx->op.inlen = (nx_ctx->in_sg - nx_insg) * sizeof(struct nx_sg); 250 nx_ctx->op.outlen = (nx_ctx->out_sg - nx_outsg) * sizeof(struct nx_sg); 251 out: 252 return rc; 253 } 254 255 /** 256 * nx_ctx_init - initialize an nx_ctx's vio_pfo_op struct 257 * 258 * @nx_ctx: the nx context to initialize 259 * @function: the function code for the op 260 */ 261 void nx_ctx_init(struct nx_crypto_ctx *nx_ctx, unsigned int function) 262 { 263 memset(nx_ctx->kmem, 0, nx_ctx->kmem_len); 264 nx_ctx->csbcpb->csb.valid |= NX_CSB_VALID_BIT; 265 266 nx_ctx->op.flags = function; 267 nx_ctx->op.csbcpb = __pa(nx_ctx->csbcpb); 268 nx_ctx->op.in = __pa(nx_ctx->in_sg); 269 nx_ctx->op.out = __pa(nx_ctx->out_sg); 270 271 if (nx_ctx->csbcpb_aead) { 272 nx_ctx->csbcpb_aead->csb.valid |= NX_CSB_VALID_BIT; 273 274 nx_ctx->op_aead.flags = function; 275 nx_ctx->op_aead.csbcpb = __pa(nx_ctx->csbcpb_aead); 276 nx_ctx->op_aead.in = __pa(nx_ctx->in_sg); 277 nx_ctx->op_aead.out = __pa(nx_ctx->out_sg); 278 } 279 } 280 281 static void nx_of_update_status(struct device *dev, 282 struct property *p, 283 struct nx_of *props) 284 { 285 if (!strncmp(p->value, "okay", p->length)) { 286 props->status = NX_WAITING; 287 props->flags |= NX_OF_FLAG_STATUS_SET; 288 } else { 289 dev_info(dev, "%s: status '%s' is not 'okay'\n", __func__, 290 (char *)p->value); 291 } 292 } 293 294 static void nx_of_update_sglen(struct device *dev, 295 struct property *p, 296 struct nx_of *props) 297 { 298 if (p->length != sizeof(props->max_sg_len)) { 299 dev_err(dev, "%s: unexpected format for " 300 "ibm,max-sg-len property\n", __func__); 301 dev_dbg(dev, "%s: ibm,max-sg-len is %d bytes " 302 "long, expected %zd bytes\n", __func__, 303 p->length, sizeof(props->max_sg_len)); 304 return; 305 } 306 307 props->max_sg_len = *(u32 *)p->value; 308 props->flags |= NX_OF_FLAG_MAXSGLEN_SET; 309 } 310 311 static void nx_of_update_msc(struct device *dev, 312 struct property *p, 313 struct nx_of *props) 314 { 315 struct msc_triplet *trip; 316 struct max_sync_cop *msc; 317 unsigned int bytes_so_far, i, lenp; 318 319 msc = (struct max_sync_cop *)p->value; 320 lenp = p->length; 321 322 /* You can't tell if the data read in for this property is sane by its 323 * size alone. This is because there are sizes embedded in the data 324 * structure. The best we can do is check lengths as we parse and bail 325 * as soon as a length error is detected. */ 326 bytes_so_far = 0; 327 328 while ((bytes_so_far + sizeof(struct max_sync_cop)) <= lenp) { 329 bytes_so_far += sizeof(struct max_sync_cop); 330 331 trip = msc->trip; 332 333 for (i = 0; 334 ((bytes_so_far + sizeof(struct msc_triplet)) <= lenp) && 335 i < msc->triplets; 336 i++) { 337 if (msc->fc > NX_MAX_FC || msc->mode > NX_MAX_MODE) { 338 dev_err(dev, "unknown function code/mode " 339 "combo: %d/%d (ignored)\n", msc->fc, 340 msc->mode); 341 goto next_loop; 342 } 343 344 switch (trip->keybitlen) { 345 case 128: 346 case 160: 347 props->ap[msc->fc][msc->mode][0].databytelen = 348 trip->databytelen; 349 props->ap[msc->fc][msc->mode][0].sglen = 350 trip->sglen; 351 break; 352 case 192: 353 props->ap[msc->fc][msc->mode][1].databytelen = 354 trip->databytelen; 355 props->ap[msc->fc][msc->mode][1].sglen = 356 trip->sglen; 357 break; 358 case 256: 359 if (msc->fc == NX_FC_AES) { 360 props->ap[msc->fc][msc->mode][2]. 361 databytelen = trip->databytelen; 362 props->ap[msc->fc][msc->mode][2].sglen = 363 trip->sglen; 364 } else if (msc->fc == NX_FC_AES_HMAC || 365 msc->fc == NX_FC_SHA) { 366 props->ap[msc->fc][msc->mode][1]. 367 databytelen = trip->databytelen; 368 props->ap[msc->fc][msc->mode][1].sglen = 369 trip->sglen; 370 } else { 371 dev_warn(dev, "unknown function " 372 "code/key bit len combo" 373 ": (%u/256)\n", msc->fc); 374 } 375 break; 376 case 512: 377 props->ap[msc->fc][msc->mode][2].databytelen = 378 trip->databytelen; 379 props->ap[msc->fc][msc->mode][2].sglen = 380 trip->sglen; 381 break; 382 default: 383 dev_warn(dev, "unknown function code/key bit " 384 "len combo: (%u/%u)\n", msc->fc, 385 trip->keybitlen); 386 break; 387 } 388 next_loop: 389 bytes_so_far += sizeof(struct msc_triplet); 390 trip++; 391 } 392 393 msc = (struct max_sync_cop *)trip; 394 } 395 396 props->flags |= NX_OF_FLAG_MAXSYNCCOP_SET; 397 } 398 399 /** 400 * nx_of_init - read openFirmware values from the device tree 401 * 402 * @dev: device handle 403 * @props: pointer to struct to hold the properties values 404 * 405 * Called once at driver probe time, this function will read out the 406 * openFirmware properties we use at runtime. If all the OF properties are 407 * acceptable, when we exit this function props->flags will indicate that 408 * we're ready to register our crypto algorithms. 409 */ 410 static void nx_of_init(struct device *dev, struct nx_of *props) 411 { 412 struct device_node *base_node = dev->of_node; 413 struct property *p; 414 415 p = of_find_property(base_node, "status", NULL); 416 if (!p) 417 dev_info(dev, "%s: property 'status' not found\n", __func__); 418 else 419 nx_of_update_status(dev, p, props); 420 421 p = of_find_property(base_node, "ibm,max-sg-len", NULL); 422 if (!p) 423 dev_info(dev, "%s: property 'ibm,max-sg-len' not found\n", 424 __func__); 425 else 426 nx_of_update_sglen(dev, p, props); 427 428 p = of_find_property(base_node, "ibm,max-sync-cop", NULL); 429 if (!p) 430 dev_info(dev, "%s: property 'ibm,max-sync-cop' not found\n", 431 __func__); 432 else 433 nx_of_update_msc(dev, p, props); 434 } 435 436 /** 437 * nx_register_algs - register algorithms with the crypto API 438 * 439 * Called from nx_probe() 440 * 441 * If all OF properties are in an acceptable state, the driver flags will 442 * indicate that we're ready and we'll create our debugfs files and register 443 * out crypto algorithms. 444 */ 445 static int nx_register_algs(void) 446 { 447 int rc = -1; 448 449 if (nx_driver.of.flags != NX_OF_FLAG_MASK_READY) 450 goto out; 451 452 memset(&nx_driver.stats, 0, sizeof(struct nx_stats)); 453 454 rc = NX_DEBUGFS_INIT(&nx_driver); 455 if (rc) 456 goto out; 457 458 rc = crypto_register_alg(&nx_ecb_aes_alg); 459 if (rc) 460 goto out; 461 462 rc = crypto_register_alg(&nx_cbc_aes_alg); 463 if (rc) 464 goto out_unreg_ecb; 465 466 rc = crypto_register_alg(&nx_ctr_aes_alg); 467 if (rc) 468 goto out_unreg_cbc; 469 470 rc = crypto_register_alg(&nx_ctr3686_aes_alg); 471 if (rc) 472 goto out_unreg_ctr; 473 474 rc = crypto_register_alg(&nx_gcm_aes_alg); 475 if (rc) 476 goto out_unreg_ctr3686; 477 478 rc = crypto_register_alg(&nx_gcm4106_aes_alg); 479 if (rc) 480 goto out_unreg_gcm; 481 482 rc = crypto_register_alg(&nx_ccm_aes_alg); 483 if (rc) 484 goto out_unreg_gcm4106; 485 486 rc = crypto_register_alg(&nx_ccm4309_aes_alg); 487 if (rc) 488 goto out_unreg_ccm; 489 490 rc = crypto_register_shash(&nx_shash_sha256_alg); 491 if (rc) 492 goto out_unreg_ccm4309; 493 494 rc = crypto_register_shash(&nx_shash_sha512_alg); 495 if (rc) 496 goto out_unreg_s256; 497 498 rc = crypto_register_shash(&nx_shash_aes_xcbc_alg); 499 if (rc) 500 goto out_unreg_s512; 501 502 nx_driver.of.status = NX_OKAY; 503 504 goto out; 505 506 out_unreg_s512: 507 crypto_unregister_shash(&nx_shash_sha512_alg); 508 out_unreg_s256: 509 crypto_unregister_shash(&nx_shash_sha256_alg); 510 out_unreg_ccm4309: 511 crypto_unregister_alg(&nx_ccm4309_aes_alg); 512 out_unreg_ccm: 513 crypto_unregister_alg(&nx_ccm_aes_alg); 514 out_unreg_gcm4106: 515 crypto_unregister_alg(&nx_gcm4106_aes_alg); 516 out_unreg_gcm: 517 crypto_unregister_alg(&nx_gcm_aes_alg); 518 out_unreg_ctr3686: 519 crypto_unregister_alg(&nx_ctr3686_aes_alg); 520 out_unreg_ctr: 521 crypto_unregister_alg(&nx_ctr_aes_alg); 522 out_unreg_cbc: 523 crypto_unregister_alg(&nx_cbc_aes_alg); 524 out_unreg_ecb: 525 crypto_unregister_alg(&nx_ecb_aes_alg); 526 out: 527 return rc; 528 } 529 530 /** 531 * nx_crypto_ctx_init - create and initialize a crypto api context 532 * 533 * @nx_ctx: the crypto api context 534 * @fc: function code for the context 535 * @mode: the function code specific mode for this context 536 */ 537 static int nx_crypto_ctx_init(struct nx_crypto_ctx *nx_ctx, u32 fc, u32 mode) 538 { 539 if (nx_driver.of.status != NX_OKAY) { 540 pr_err("Attempt to initialize NX crypto context while device " 541 "is not available!\n"); 542 return -ENODEV; 543 } 544 545 /* we need an extra page for csbcpb_aead for these modes */ 546 if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM) 547 nx_ctx->kmem_len = (4 * NX_PAGE_SIZE) + 548 sizeof(struct nx_csbcpb); 549 else 550 nx_ctx->kmem_len = (3 * NX_PAGE_SIZE) + 551 sizeof(struct nx_csbcpb); 552 553 nx_ctx->kmem = kmalloc(nx_ctx->kmem_len, GFP_KERNEL); 554 if (!nx_ctx->kmem) 555 return -ENOMEM; 556 557 /* the csbcpb and scatterlists must be 4K aligned pages */ 558 nx_ctx->csbcpb = (struct nx_csbcpb *)(round_up((u64)nx_ctx->kmem, 559 (u64)NX_PAGE_SIZE)); 560 nx_ctx->in_sg = (struct nx_sg *)((u8 *)nx_ctx->csbcpb + NX_PAGE_SIZE); 561 nx_ctx->out_sg = (struct nx_sg *)((u8 *)nx_ctx->in_sg + NX_PAGE_SIZE); 562 563 if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM) 564 nx_ctx->csbcpb_aead = 565 (struct nx_csbcpb *)((u8 *)nx_ctx->out_sg + 566 NX_PAGE_SIZE); 567 568 /* give each context a pointer to global stats and their OF 569 * properties */ 570 nx_ctx->stats = &nx_driver.stats; 571 memcpy(nx_ctx->props, nx_driver.of.ap[fc][mode], 572 sizeof(struct alg_props) * 3); 573 574 return 0; 575 } 576 577 /* entry points from the crypto tfm initializers */ 578 int nx_crypto_ctx_aes_ccm_init(struct crypto_tfm *tfm) 579 { 580 return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES, 581 NX_MODE_AES_CCM); 582 } 583 584 int nx_crypto_ctx_aes_gcm_init(struct crypto_tfm *tfm) 585 { 586 return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES, 587 NX_MODE_AES_GCM); 588 } 589 590 int nx_crypto_ctx_aes_ctr_init(struct crypto_tfm *tfm) 591 { 592 return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES, 593 NX_MODE_AES_CTR); 594 } 595 596 int nx_crypto_ctx_aes_cbc_init(struct crypto_tfm *tfm) 597 { 598 return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES, 599 NX_MODE_AES_CBC); 600 } 601 602 int nx_crypto_ctx_aes_ecb_init(struct crypto_tfm *tfm) 603 { 604 return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES, 605 NX_MODE_AES_ECB); 606 } 607 608 int nx_crypto_ctx_sha_init(struct crypto_tfm *tfm) 609 { 610 return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_SHA, NX_MODE_SHA); 611 } 612 613 int nx_crypto_ctx_aes_xcbc_init(struct crypto_tfm *tfm) 614 { 615 return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES, 616 NX_MODE_AES_XCBC_MAC); 617 } 618 619 /** 620 * nx_crypto_ctx_exit - destroy a crypto api context 621 * 622 * @tfm: the crypto transform pointer for the context 623 * 624 * As crypto API contexts are destroyed, this exit hook is called to free the 625 * memory associated with it. 626 */ 627 void nx_crypto_ctx_exit(struct crypto_tfm *tfm) 628 { 629 struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm); 630 631 kzfree(nx_ctx->kmem); 632 nx_ctx->csbcpb = NULL; 633 nx_ctx->csbcpb_aead = NULL; 634 nx_ctx->in_sg = NULL; 635 nx_ctx->out_sg = NULL; 636 } 637 638 static int __devinit nx_probe(struct vio_dev *viodev, 639 const struct vio_device_id *id) 640 { 641 dev_dbg(&viodev->dev, "driver probed: %s resource id: 0x%x\n", 642 viodev->name, viodev->resource_id); 643 644 if (nx_driver.viodev) { 645 dev_err(&viodev->dev, "%s: Attempt to register more than one " 646 "instance of the hardware\n", __func__); 647 return -EINVAL; 648 } 649 650 nx_driver.viodev = viodev; 651 652 nx_of_init(&viodev->dev, &nx_driver.of); 653 654 return nx_register_algs(); 655 } 656 657 static int __devexit nx_remove(struct vio_dev *viodev) 658 { 659 dev_dbg(&viodev->dev, "entering nx_remove for UA 0x%x\n", 660 viodev->unit_address); 661 662 if (nx_driver.of.status == NX_OKAY) { 663 NX_DEBUGFS_FINI(&nx_driver); 664 665 crypto_unregister_alg(&nx_ccm_aes_alg); 666 crypto_unregister_alg(&nx_ccm4309_aes_alg); 667 crypto_unregister_alg(&nx_gcm_aes_alg); 668 crypto_unregister_alg(&nx_gcm4106_aes_alg); 669 crypto_unregister_alg(&nx_ctr_aes_alg); 670 crypto_unregister_alg(&nx_ctr3686_aes_alg); 671 crypto_unregister_alg(&nx_cbc_aes_alg); 672 crypto_unregister_alg(&nx_ecb_aes_alg); 673 crypto_unregister_shash(&nx_shash_sha256_alg); 674 crypto_unregister_shash(&nx_shash_sha512_alg); 675 crypto_unregister_shash(&nx_shash_aes_xcbc_alg); 676 } 677 678 return 0; 679 } 680 681 682 /* module wide initialization/cleanup */ 683 static int __init nx_init(void) 684 { 685 return vio_register_driver(&nx_driver.viodriver); 686 } 687 688 static void __exit nx_fini(void) 689 { 690 vio_unregister_driver(&nx_driver.viodriver); 691 } 692 693 static struct vio_device_id nx_crypto_driver_ids[] __devinitdata = { 694 { "ibm,sym-encryption-v1", "ibm,sym-encryption" }, 695 { "", "" } 696 }; 697 MODULE_DEVICE_TABLE(vio, nx_crypto_driver_ids); 698 699 /* driver state structure */ 700 struct nx_crypto_driver nx_driver = { 701 .viodriver = { 702 .id_table = nx_crypto_driver_ids, 703 .probe = nx_probe, 704 .remove = nx_remove, 705 .name = NX_NAME, 706 }, 707 }; 708 709 module_init(nx_init); 710 module_exit(nx_fini); 711 712 MODULE_AUTHOR("Kent Yoder <yoder1@us.ibm.com>"); 713 MODULE_DESCRIPTION(NX_STRING); 714 MODULE_LICENSE("GPL"); 715 MODULE_VERSION(NX_VERSION); 716