xref: /linux/drivers/crypto/nx/nx-aes-xcbc.c (revision 0ff9848067b7b950a4ed70de7f5028600a2157e3)
1 /**
2  * AES XCBC routines supporting the Power 7+ Nest Accelerators driver
3  *
4  * Copyright (C) 2011-2012 International Business Machines Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 only.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18  *
19  * Author: Kent Yoder <yoder1@us.ibm.com>
20  */
21 
22 #include <crypto/internal/hash.h>
23 #include <crypto/aes.h>
24 #include <crypto/algapi.h>
25 #include <linux/module.h>
26 #include <linux/types.h>
27 #include <linux/crypto.h>
28 #include <asm/vio.h>
29 
30 #include "nx_csbcpb.h"
31 #include "nx.h"
32 
33 
34 struct xcbc_state {
35 	u8 state[AES_BLOCK_SIZE];
36 	unsigned int count;
37 	u8 buffer[AES_BLOCK_SIZE];
38 };
39 
40 static int nx_xcbc_set_key(struct crypto_shash *desc,
41 			   const u8            *in_key,
42 			   unsigned int         key_len)
43 {
44 	struct nx_crypto_ctx *nx_ctx = crypto_shash_ctx(desc);
45 	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
46 
47 	switch (key_len) {
48 	case AES_KEYSIZE_128:
49 		nx_ctx->ap = &nx_ctx->props[NX_PROPS_AES_128];
50 		break;
51 	default:
52 		return -EINVAL;
53 	}
54 
55 	memcpy(csbcpb->cpb.aes_xcbc.key, in_key, key_len);
56 
57 	return 0;
58 }
59 
60 /*
61  * Based on RFC 3566, for a zero-length message:
62  *
63  * n = 1
64  * K1 = E(K, 0x01010101010101010101010101010101)
65  * K3 = E(K, 0x03030303030303030303030303030303)
66  * E[0] = 0x00000000000000000000000000000000
67  * M[1] = 0x80000000000000000000000000000000 (0 length message with padding)
68  * E[1] = (K1, M[1] ^ E[0] ^ K3)
69  * Tag = M[1]
70  */
71 static int nx_xcbc_empty(struct shash_desc *desc, u8 *out)
72 {
73 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
74 	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
75 	struct nx_sg *in_sg, *out_sg;
76 	u8 keys[2][AES_BLOCK_SIZE];
77 	u8 key[32];
78 	int rc = 0;
79 	int len;
80 
81 	/* Change to ECB mode */
82 	csbcpb->cpb.hdr.mode = NX_MODE_AES_ECB;
83 	memcpy(key, csbcpb->cpb.aes_xcbc.key, AES_BLOCK_SIZE);
84 	memcpy(csbcpb->cpb.aes_ecb.key, key, AES_BLOCK_SIZE);
85 	NX_CPB_FDM(csbcpb) |= NX_FDM_ENDE_ENCRYPT;
86 
87 	/* K1 and K3 base patterns */
88 	memset(keys[0], 0x01, sizeof(keys[0]));
89 	memset(keys[1], 0x03, sizeof(keys[1]));
90 
91 	len = sizeof(keys);
92 	/* Generate K1 and K3 encrypting the patterns */
93 	in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) keys, &len,
94 				 nx_ctx->ap->sglen);
95 
96 	if (len != sizeof(keys))
97 		return -EINVAL;
98 
99 	out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *) keys, &len,
100 				  nx_ctx->ap->sglen);
101 
102 	if (len != sizeof(keys))
103 		return -EINVAL;
104 
105 	nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
106 	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
107 
108 	rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, 0);
109 	if (rc)
110 		goto out;
111 	atomic_inc(&(nx_ctx->stats->aes_ops));
112 
113 	/* XOr K3 with the padding for a 0 length message */
114 	keys[1][0] ^= 0x80;
115 
116 	len = sizeof(keys[1]);
117 
118 	/* Encrypt the final result */
119 	memcpy(csbcpb->cpb.aes_ecb.key, keys[0], AES_BLOCK_SIZE);
120 	in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) keys[1], &len,
121 				 nx_ctx->ap->sglen);
122 
123 	if (len != sizeof(keys[1]))
124 		return -EINVAL;
125 
126 	len = AES_BLOCK_SIZE;
127 	out_sg = nx_build_sg_list(nx_ctx->out_sg, out, &len,
128 				  nx_ctx->ap->sglen);
129 
130 	if (len != AES_BLOCK_SIZE)
131 		return -EINVAL;
132 
133 	nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
134 	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
135 
136 	rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, 0);
137 	if (rc)
138 		goto out;
139 	atomic_inc(&(nx_ctx->stats->aes_ops));
140 
141 out:
142 	/* Restore XCBC mode */
143 	csbcpb->cpb.hdr.mode = NX_MODE_AES_XCBC_MAC;
144 	memcpy(csbcpb->cpb.aes_xcbc.key, key, AES_BLOCK_SIZE);
145 	NX_CPB_FDM(csbcpb) &= ~NX_FDM_ENDE_ENCRYPT;
146 
147 	return rc;
148 }
149 
150 static int nx_crypto_ctx_aes_xcbc_init2(struct crypto_tfm *tfm)
151 {
152 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm);
153 	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
154 	int err;
155 
156 	err = nx_crypto_ctx_aes_xcbc_init(tfm);
157 	if (err)
158 		return err;
159 
160 	nx_ctx_init(nx_ctx, HCOP_FC_AES);
161 
162 	NX_CPB_SET_KEY_SIZE(csbcpb, NX_KS_AES_128);
163 	csbcpb->cpb.hdr.mode = NX_MODE_AES_XCBC_MAC;
164 
165 	return 0;
166 }
167 
168 static int nx_xcbc_init(struct shash_desc *desc)
169 {
170 	struct xcbc_state *sctx = shash_desc_ctx(desc);
171 
172 	memset(sctx, 0, sizeof *sctx);
173 
174 	return 0;
175 }
176 
177 static int nx_xcbc_update(struct shash_desc *desc,
178 			  const u8          *data,
179 			  unsigned int       len)
180 {
181 	struct xcbc_state *sctx = shash_desc_ctx(desc);
182 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
183 	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
184 	struct nx_sg *in_sg;
185 	struct nx_sg *out_sg;
186 	u32 to_process = 0, leftover, total;
187 	unsigned int max_sg_len;
188 	unsigned long irq_flags;
189 	int rc = 0;
190 	int data_len;
191 
192 	spin_lock_irqsave(&nx_ctx->lock, irq_flags);
193 
194 
195 	total = sctx->count + len;
196 
197 	/* 2 cases for total data len:
198 	 *  1: <= AES_BLOCK_SIZE: copy into state, return 0
199 	 *  2: > AES_BLOCK_SIZE: process X blocks, copy in leftover
200 	 */
201 	if (total <= AES_BLOCK_SIZE) {
202 		memcpy(sctx->buffer + sctx->count, data, len);
203 		sctx->count += len;
204 		goto out;
205 	}
206 
207 	in_sg = nx_ctx->in_sg;
208 	max_sg_len = min_t(u64, nx_driver.of.max_sg_len/sizeof(struct nx_sg),
209 				nx_ctx->ap->sglen);
210 	max_sg_len = min_t(u64, max_sg_len,
211 				nx_ctx->ap->databytelen/NX_PAGE_SIZE);
212 
213 	data_len = AES_BLOCK_SIZE;
214 	out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state,
215 				  &len, nx_ctx->ap->sglen);
216 
217 	if (data_len != AES_BLOCK_SIZE) {
218 		rc = -EINVAL;
219 		goto out;
220 	}
221 
222 	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
223 
224 	do {
225 		to_process = total - to_process;
226 		to_process = to_process & ~(AES_BLOCK_SIZE - 1);
227 
228 		leftover = total - to_process;
229 
230 		/* the hardware will not accept a 0 byte operation for this
231 		 * algorithm and the operation MUST be finalized to be correct.
232 		 * So if we happen to get an update that falls on a block sized
233 		 * boundary, we must save off the last block to finalize with
234 		 * later. */
235 		if (!leftover) {
236 			to_process -= AES_BLOCK_SIZE;
237 			leftover = AES_BLOCK_SIZE;
238 		}
239 
240 		if (sctx->count) {
241 			data_len = sctx->count;
242 			in_sg = nx_build_sg_list(nx_ctx->in_sg,
243 						(u8 *) sctx->buffer,
244 						&data_len,
245 						max_sg_len);
246 			if (data_len != sctx->count) {
247 				rc = -EINVAL;
248 				goto out;
249 			}
250 		}
251 
252 		data_len = to_process - sctx->count;
253 		in_sg = nx_build_sg_list(in_sg,
254 					(u8 *) data,
255 					&data_len,
256 					max_sg_len);
257 
258 		if (data_len != to_process - sctx->count) {
259 			rc = -EINVAL;
260 			goto out;
261 		}
262 
263 		nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) *
264 					sizeof(struct nx_sg);
265 
266 		/* we've hit the nx chip previously and we're updating again,
267 		 * so copy over the partial digest */
268 		if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
269 			memcpy(csbcpb->cpb.aes_xcbc.cv,
270 				csbcpb->cpb.aes_xcbc.out_cv_mac,
271 				AES_BLOCK_SIZE);
272 		}
273 
274 		NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
275 		if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
276 			rc = -EINVAL;
277 			goto out;
278 		}
279 
280 		rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, 0);
281 		if (rc)
282 			goto out;
283 
284 		atomic_inc(&(nx_ctx->stats->aes_ops));
285 
286 		/* everything after the first update is continuation */
287 		NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
288 
289 		total -= to_process;
290 		data += to_process - sctx->count;
291 		sctx->count = 0;
292 		in_sg = nx_ctx->in_sg;
293 	} while (leftover > AES_BLOCK_SIZE);
294 
295 	/* copy the leftover back into the state struct */
296 	memcpy(sctx->buffer, data, leftover);
297 	sctx->count = leftover;
298 
299 out:
300 	spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
301 	return rc;
302 }
303 
304 static int nx_xcbc_final(struct shash_desc *desc, u8 *out)
305 {
306 	struct xcbc_state *sctx = shash_desc_ctx(desc);
307 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
308 	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
309 	struct nx_sg *in_sg, *out_sg;
310 	unsigned long irq_flags;
311 	int rc = 0;
312 	int len;
313 
314 	spin_lock_irqsave(&nx_ctx->lock, irq_flags);
315 
316 	if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
317 		/* we've hit the nx chip previously, now we're finalizing,
318 		 * so copy over the partial digest */
319 		memcpy(csbcpb->cpb.aes_xcbc.cv,
320 		       csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
321 	} else if (sctx->count == 0) {
322 		/*
323 		 * we've never seen an update, so this is a 0 byte op. The
324 		 * hardware cannot handle a 0 byte op, so just ECB to
325 		 * generate the hash.
326 		 */
327 		rc = nx_xcbc_empty(desc, out);
328 		goto out;
329 	}
330 
331 	/* final is represented by continuing the operation and indicating that
332 	 * this is not an intermediate operation */
333 	NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
334 
335 	len = sctx->count;
336 	in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)sctx->buffer,
337 				 &len, nx_ctx->ap->sglen);
338 
339 	if (len != sctx->count) {
340 		rc = -EINVAL;
341 		goto out;
342 	}
343 
344 	len = AES_BLOCK_SIZE;
345 	out_sg = nx_build_sg_list(nx_ctx->out_sg, out, &len,
346 				  nx_ctx->ap->sglen);
347 
348 	if (len != AES_BLOCK_SIZE) {
349 		rc = -EINVAL;
350 		goto out;
351 	}
352 
353 	nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
354 	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
355 
356 	if (!nx_ctx->op.outlen) {
357 		rc = -EINVAL;
358 		goto out;
359 	}
360 
361 	rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, 0);
362 	if (rc)
363 		goto out;
364 
365 	atomic_inc(&(nx_ctx->stats->aes_ops));
366 
367 	memcpy(out, csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
368 out:
369 	spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
370 	return rc;
371 }
372 
373 struct shash_alg nx_shash_aes_xcbc_alg = {
374 	.digestsize = AES_BLOCK_SIZE,
375 	.init       = nx_xcbc_init,
376 	.update     = nx_xcbc_update,
377 	.final      = nx_xcbc_final,
378 	.setkey     = nx_xcbc_set_key,
379 	.descsize   = sizeof(struct xcbc_state),
380 	.statesize  = sizeof(struct xcbc_state),
381 	.base       = {
382 		.cra_name        = "xcbc(aes)",
383 		.cra_driver_name = "xcbc-aes-nx",
384 		.cra_priority    = 300,
385 		.cra_blocksize   = AES_BLOCK_SIZE,
386 		.cra_module      = THIS_MODULE,
387 		.cra_ctxsize     = sizeof(struct nx_crypto_ctx),
388 		.cra_init        = nx_crypto_ctx_aes_xcbc_init2,
389 		.cra_exit        = nx_crypto_ctx_exit,
390 	}
391 };
392