xref: /linux/drivers/crypto/nx/nx-aes-xcbc.c (revision 0ce92d548b44649a8de706f9bb9e74a4ed2f18a7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AES XCBC routines supporting the Power 7+ Nest Accelerators driver
4  *
5  * Copyright (C) 2011-2012 International Business Machines Inc.
6  *
7  * Author: Kent Yoder <yoder1@us.ibm.com>
8  */
9 
10 #include <crypto/aes.h>
11 #include <crypto/internal/hash.h>
12 #include <linux/atomic.h>
13 #include <linux/errno.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/string.h>
18 
19 #include "nx_csbcpb.h"
20 #include "nx.h"
21 
22 
23 struct xcbc_state {
24 	u8 state[AES_BLOCK_SIZE];
25 };
26 
27 static int nx_xcbc_set_key(struct crypto_shash *desc,
28 			   const u8            *in_key,
29 			   unsigned int         key_len)
30 {
31 	struct nx_crypto_ctx *nx_ctx = crypto_shash_ctx(desc);
32 	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
33 
34 	switch (key_len) {
35 	case AES_KEYSIZE_128:
36 		nx_ctx->ap = &nx_ctx->props[NX_PROPS_AES_128];
37 		break;
38 	default:
39 		return -EINVAL;
40 	}
41 
42 	memcpy(csbcpb->cpb.aes_xcbc.key, in_key, key_len);
43 
44 	return 0;
45 }
46 
47 /*
48  * Based on RFC 3566, for a zero-length message:
49  *
50  * n = 1
51  * K1 = E(K, 0x01010101010101010101010101010101)
52  * K3 = E(K, 0x03030303030303030303030303030303)
53  * E[0] = 0x00000000000000000000000000000000
54  * M[1] = 0x80000000000000000000000000000000 (0 length message with padding)
55  * E[1] = (K1, M[1] ^ E[0] ^ K3)
56  * Tag = M[1]
57  */
58 static int nx_xcbc_empty(struct shash_desc *desc, u8 *out)
59 {
60 	struct nx_crypto_ctx *nx_ctx = crypto_shash_ctx(desc->tfm);
61 	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
62 	struct nx_sg *in_sg, *out_sg;
63 	u8 keys[2][AES_BLOCK_SIZE];
64 	u8 key[32];
65 	int rc = 0;
66 	int len;
67 
68 	/* Change to ECB mode */
69 	csbcpb->cpb.hdr.mode = NX_MODE_AES_ECB;
70 	memcpy(key, csbcpb->cpb.aes_xcbc.key, AES_BLOCK_SIZE);
71 	memcpy(csbcpb->cpb.aes_ecb.key, key, AES_BLOCK_SIZE);
72 	NX_CPB_FDM(csbcpb) |= NX_FDM_ENDE_ENCRYPT;
73 
74 	/* K1 and K3 base patterns */
75 	memset(keys[0], 0x01, sizeof(keys[0]));
76 	memset(keys[1], 0x03, sizeof(keys[1]));
77 
78 	len = sizeof(keys);
79 	/* Generate K1 and K3 encrypting the patterns */
80 	in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) keys, &len,
81 				 nx_ctx->ap->sglen);
82 
83 	if (len != sizeof(keys))
84 		return -EINVAL;
85 
86 	out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *) keys, &len,
87 				  nx_ctx->ap->sglen);
88 
89 	if (len != sizeof(keys))
90 		return -EINVAL;
91 
92 	nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
93 	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
94 
95 	rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, 0);
96 	if (rc)
97 		goto out;
98 	atomic_inc(&(nx_ctx->stats->aes_ops));
99 
100 	/* XOr K3 with the padding for a 0 length message */
101 	keys[1][0] ^= 0x80;
102 
103 	len = sizeof(keys[1]);
104 
105 	/* Encrypt the final result */
106 	memcpy(csbcpb->cpb.aes_ecb.key, keys[0], AES_BLOCK_SIZE);
107 	in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) keys[1], &len,
108 				 nx_ctx->ap->sglen);
109 
110 	if (len != sizeof(keys[1]))
111 		return -EINVAL;
112 
113 	len = AES_BLOCK_SIZE;
114 	out_sg = nx_build_sg_list(nx_ctx->out_sg, out, &len,
115 				  nx_ctx->ap->sglen);
116 
117 	if (len != AES_BLOCK_SIZE)
118 		return -EINVAL;
119 
120 	nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
121 	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
122 
123 	rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, 0);
124 	if (rc)
125 		goto out;
126 	atomic_inc(&(nx_ctx->stats->aes_ops));
127 
128 out:
129 	/* Restore XCBC mode */
130 	csbcpb->cpb.hdr.mode = NX_MODE_AES_XCBC_MAC;
131 	memcpy(csbcpb->cpb.aes_xcbc.key, key, AES_BLOCK_SIZE);
132 	NX_CPB_FDM(csbcpb) &= ~NX_FDM_ENDE_ENCRYPT;
133 
134 	return rc;
135 }
136 
137 static int nx_crypto_ctx_aes_xcbc_init2(struct crypto_shash *tfm)
138 {
139 	struct nx_crypto_ctx *nx_ctx = crypto_shash_ctx(tfm);
140 	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
141 	int err;
142 
143 	err = nx_crypto_ctx_aes_xcbc_init(tfm);
144 	if (err)
145 		return err;
146 
147 	nx_ctx_init(nx_ctx, HCOP_FC_AES);
148 
149 	NX_CPB_SET_KEY_SIZE(csbcpb, NX_KS_AES_128);
150 	csbcpb->cpb.hdr.mode = NX_MODE_AES_XCBC_MAC;
151 
152 	return 0;
153 }
154 
155 static int nx_xcbc_init(struct shash_desc *desc)
156 {
157 	struct xcbc_state *sctx = shash_desc_ctx(desc);
158 
159 	memset(sctx, 0, sizeof *sctx);
160 
161 	return 0;
162 }
163 
164 static int nx_xcbc_update(struct shash_desc *desc,
165 			  const u8          *data,
166 			  unsigned int       len)
167 {
168 	struct nx_crypto_ctx *nx_ctx = crypto_shash_ctx(desc->tfm);
169 	struct xcbc_state *sctx = shash_desc_ctx(desc);
170 	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
171 	struct nx_sg *in_sg;
172 	struct nx_sg *out_sg;
173 	unsigned int max_sg_len;
174 	unsigned long irq_flags;
175 	u32 to_process, total;
176 	int rc = 0;
177 	int data_len;
178 
179 	spin_lock_irqsave(&nx_ctx->lock, irq_flags);
180 
181 	memcpy(csbcpb->cpb.aes_xcbc.out_cv_mac, sctx->state, AES_BLOCK_SIZE);
182 	NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
183 	NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
184 
185 	total = len;
186 
187 	in_sg = nx_ctx->in_sg;
188 	max_sg_len = min_t(u64, nx_driver.of.max_sg_len/sizeof(struct nx_sg),
189 				nx_ctx->ap->sglen);
190 	max_sg_len = min_t(u64, max_sg_len,
191 				nx_ctx->ap->databytelen/NX_PAGE_SIZE);
192 
193 	data_len = AES_BLOCK_SIZE;
194 	out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state,
195 				  &data_len, nx_ctx->ap->sglen);
196 
197 	if (data_len != AES_BLOCK_SIZE) {
198 		rc = -EINVAL;
199 		goto out;
200 	}
201 
202 	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
203 
204 	do {
205 		to_process = total & ~(AES_BLOCK_SIZE - 1);
206 
207 		in_sg = nx_build_sg_list(in_sg,
208 					(u8 *) data,
209 					&to_process,
210 					max_sg_len);
211 
212 		nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) *
213 					sizeof(struct nx_sg);
214 
215 		/* we've hit the nx chip previously and we're updating again,
216 		 * so copy over the partial digest */
217 		memcpy(csbcpb->cpb.aes_xcbc.cv,
218 		       csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
219 
220 		if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
221 			rc = -EINVAL;
222 			goto out;
223 		}
224 
225 		rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, 0);
226 		if (rc)
227 			goto out;
228 
229 		atomic_inc(&(nx_ctx->stats->aes_ops));
230 
231 		total -= to_process;
232 		data += to_process;
233 		in_sg = nx_ctx->in_sg;
234 	} while (total >= AES_BLOCK_SIZE);
235 
236 	rc = total;
237 	memcpy(sctx->state, csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
238 
239 out:
240 	spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
241 	return rc;
242 }
243 
244 static int nx_xcbc_finup(struct shash_desc *desc, const u8 *src,
245 			 unsigned int nbytes, u8 *out)
246 {
247 	struct nx_crypto_ctx *nx_ctx = crypto_shash_ctx(desc->tfm);
248 	struct xcbc_state *sctx = shash_desc_ctx(desc);
249 	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
250 	struct nx_sg *in_sg, *out_sg;
251 	unsigned long irq_flags;
252 	int rc = 0;
253 	int len;
254 
255 	spin_lock_irqsave(&nx_ctx->lock, irq_flags);
256 
257 	if (nbytes) {
258 		/* non-zero final, so copy over the partial digest */
259 		memcpy(csbcpb->cpb.aes_xcbc.cv, sctx->state, AES_BLOCK_SIZE);
260 	} else {
261 		/*
262 		 * we've never seen an update, so this is a 0 byte op. The
263 		 * hardware cannot handle a 0 byte op, so just ECB to
264 		 * generate the hash.
265 		 */
266 		rc = nx_xcbc_empty(desc, out);
267 		goto out;
268 	}
269 
270 	/* final is represented by continuing the operation and indicating that
271 	 * this is not an intermediate operation */
272 	NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
273 
274 	len = nbytes;
275 	in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)src, &len,
276 				 nx_ctx->ap->sglen);
277 
278 	if (len != nbytes) {
279 		rc = -EINVAL;
280 		goto out;
281 	}
282 
283 	len = AES_BLOCK_SIZE;
284 	out_sg = nx_build_sg_list(nx_ctx->out_sg, out, &len,
285 				  nx_ctx->ap->sglen);
286 
287 	if (len != AES_BLOCK_SIZE) {
288 		rc = -EINVAL;
289 		goto out;
290 	}
291 
292 	nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
293 	nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
294 
295 	if (!nx_ctx->op.outlen) {
296 		rc = -EINVAL;
297 		goto out;
298 	}
299 
300 	rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, 0);
301 	if (rc)
302 		goto out;
303 
304 	atomic_inc(&(nx_ctx->stats->aes_ops));
305 
306 	memcpy(out, csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
307 out:
308 	spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
309 	return rc;
310 }
311 
312 struct shash_alg nx_shash_aes_xcbc_alg = {
313 	.digestsize = AES_BLOCK_SIZE,
314 	.init       = nx_xcbc_init,
315 	.update     = nx_xcbc_update,
316 	.finup      = nx_xcbc_finup,
317 	.setkey     = nx_xcbc_set_key,
318 	.descsize   = sizeof(struct xcbc_state),
319 	.init_tfm   = nx_crypto_ctx_aes_xcbc_init2,
320 	.exit_tfm   = nx_crypto_ctx_shash_exit,
321 	.base       = {
322 		.cra_name        = "xcbc(aes)",
323 		.cra_driver_name = "xcbc-aes-nx",
324 		.cra_priority    = 300,
325 		.cra_flags	 = CRYPTO_AHASH_ALG_BLOCK_ONLY |
326 				   CRYPTO_AHASH_ALG_FINAL_NONZERO,
327 		.cra_blocksize   = AES_BLOCK_SIZE,
328 		.cra_module      = THIS_MODULE,
329 		.cra_ctxsize     = sizeof(struct nx_crypto_ctx),
330 	}
331 };
332