xref: /linux/drivers/crypto/nx/nx-aes-ccm.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /**
2  * AES CCM routines supporting the Power 7+ Nest Accelerators driver
3  *
4  * Copyright (C) 2012 International Business Machines Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 only.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18  *
19  * Author: Kent Yoder <yoder1@us.ibm.com>
20  */
21 
22 #include <crypto/internal/aead.h>
23 #include <crypto/aes.h>
24 #include <crypto/algapi.h>
25 #include <crypto/scatterwalk.h>
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/crypto.h>
29 #include <asm/vio.h>
30 
31 #include "nx_csbcpb.h"
32 #include "nx.h"
33 
34 
35 static int ccm_aes_nx_set_key(struct crypto_aead *tfm,
36 			      const u8           *in_key,
37 			      unsigned int        key_len)
38 {
39 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&tfm->base);
40 	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
41 	struct nx_csbcpb *csbcpb_aead = nx_ctx->csbcpb_aead;
42 
43 	nx_ctx_init(nx_ctx, HCOP_FC_AES);
44 
45 	switch (key_len) {
46 	case AES_KEYSIZE_128:
47 		NX_CPB_SET_KEY_SIZE(csbcpb, NX_KS_AES_128);
48 		NX_CPB_SET_KEY_SIZE(csbcpb_aead, NX_KS_AES_128);
49 		nx_ctx->ap = &nx_ctx->props[NX_PROPS_AES_128];
50 		break;
51 	default:
52 		return -EINVAL;
53 	}
54 
55 	csbcpb->cpb.hdr.mode = NX_MODE_AES_CCM;
56 	memcpy(csbcpb->cpb.aes_ccm.key, in_key, key_len);
57 
58 	csbcpb_aead->cpb.hdr.mode = NX_MODE_AES_CCA;
59 	memcpy(csbcpb_aead->cpb.aes_cca.key, in_key, key_len);
60 
61 	return 0;
62 
63 }
64 
65 static int ccm4309_aes_nx_set_key(struct crypto_aead *tfm,
66 				  const u8           *in_key,
67 				  unsigned int        key_len)
68 {
69 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&tfm->base);
70 
71 	if (key_len < 3)
72 		return -EINVAL;
73 
74 	key_len -= 3;
75 
76 	memcpy(nx_ctx->priv.ccm.nonce, in_key + key_len, 3);
77 
78 	return ccm_aes_nx_set_key(tfm, in_key, key_len);
79 }
80 
81 static int ccm_aes_nx_setauthsize(struct crypto_aead *tfm,
82 				  unsigned int authsize)
83 {
84 	switch (authsize) {
85 	case 4:
86 	case 6:
87 	case 8:
88 	case 10:
89 	case 12:
90 	case 14:
91 	case 16:
92 		break;
93 	default:
94 		return -EINVAL;
95 	}
96 
97 	return 0;
98 }
99 
100 static int ccm4309_aes_nx_setauthsize(struct crypto_aead *tfm,
101 				      unsigned int authsize)
102 {
103 	switch (authsize) {
104 	case 8:
105 	case 12:
106 	case 16:
107 		break;
108 	default:
109 		return -EINVAL;
110 	}
111 
112 	return 0;
113 }
114 
115 /* taken from crypto/ccm.c */
116 static int set_msg_len(u8 *block, unsigned int msglen, int csize)
117 {
118 	__be32 data;
119 
120 	memset(block, 0, csize);
121 	block += csize;
122 
123 	if (csize >= 4)
124 		csize = 4;
125 	else if (msglen > (unsigned int)(1 << (8 * csize)))
126 		return -EOVERFLOW;
127 
128 	data = cpu_to_be32(msglen);
129 	memcpy(block - csize, (u8 *)&data + 4 - csize, csize);
130 
131 	return 0;
132 }
133 
134 /* taken from crypto/ccm.c */
135 static inline int crypto_ccm_check_iv(const u8 *iv)
136 {
137 	/* 2 <= L <= 8, so 1 <= L' <= 7. */
138 	if (1 > iv[0] || iv[0] > 7)
139 		return -EINVAL;
140 
141 	return 0;
142 }
143 
144 /* based on code from crypto/ccm.c */
145 static int generate_b0(u8 *iv, unsigned int assoclen, unsigned int authsize,
146 		       unsigned int cryptlen, u8 *b0)
147 {
148 	unsigned int l, lp, m = authsize;
149 	int rc;
150 
151 	memcpy(b0, iv, 16);
152 
153 	lp = b0[0];
154 	l = lp + 1;
155 
156 	/* set m, bits 3-5 */
157 	*b0 |= (8 * ((m - 2) / 2));
158 
159 	/* set adata, bit 6, if associated data is used */
160 	if (assoclen)
161 		*b0 |= 64;
162 
163 	rc = set_msg_len(b0 + 16 - l, cryptlen, l);
164 
165 	return rc;
166 }
167 
168 static int generate_pat(u8                   *iv,
169 			struct aead_request  *req,
170 			struct nx_crypto_ctx *nx_ctx,
171 			unsigned int          authsize,
172 			unsigned int          nbytes,
173 			unsigned int	      assoclen,
174 			u8                   *out)
175 {
176 	struct nx_sg *nx_insg = nx_ctx->in_sg;
177 	struct nx_sg *nx_outsg = nx_ctx->out_sg;
178 	unsigned int iauth_len = 0;
179 	u8 tmp[16], *b1 = NULL, *b0 = NULL, *result = NULL;
180 	int rc;
181 	unsigned int max_sg_len;
182 
183 	/* zero the ctr value */
184 	memset(iv + 15 - iv[0], 0, iv[0] + 1);
185 
186 	/* page 78 of nx_wb.pdf has,
187 	 * Note: RFC3610 allows the AAD data to be up to 2^64 -1 bytes
188 	 * in length. If a full message is used, the AES CCA implementation
189 	 * restricts the maximum AAD length to 2^32 -1 bytes.
190 	 * If partial messages are used, the implementation supports
191 	 * 2^64 -1 bytes maximum AAD length.
192 	 *
193 	 * However, in the cryptoapi's aead_request structure,
194 	 * assoclen is an unsigned int, thus it cannot hold a length
195 	 * value greater than 2^32 - 1.
196 	 * Thus the AAD is further constrained by this and is never
197 	 * greater than 2^32.
198 	 */
199 
200 	if (!assoclen) {
201 		b0 = nx_ctx->csbcpb->cpb.aes_ccm.in_pat_or_b0;
202 	} else if (assoclen <= 14) {
203 		/* if associated data is 14 bytes or less, we do 1 GCM
204 		 * operation on 2 AES blocks, B0 (stored in the csbcpb) and B1,
205 		 * which is fed in through the source buffers here */
206 		b0 = nx_ctx->csbcpb->cpb.aes_ccm.in_pat_or_b0;
207 		b1 = nx_ctx->priv.ccm.iauth_tag;
208 		iauth_len = assoclen;
209 	} else if (assoclen <= 65280) {
210 		/* if associated data is less than (2^16 - 2^8), we construct
211 		 * B1 differently and feed in the associated data to a CCA
212 		 * operation */
213 		b0 = nx_ctx->csbcpb_aead->cpb.aes_cca.b0;
214 		b1 = nx_ctx->csbcpb_aead->cpb.aes_cca.b1;
215 		iauth_len = 14;
216 	} else {
217 		b0 = nx_ctx->csbcpb_aead->cpb.aes_cca.b0;
218 		b1 = nx_ctx->csbcpb_aead->cpb.aes_cca.b1;
219 		iauth_len = 10;
220 	}
221 
222 	/* generate B0 */
223 	rc = generate_b0(iv, assoclen, authsize, nbytes, b0);
224 	if (rc)
225 		return rc;
226 
227 	/* generate B1:
228 	 * add control info for associated data
229 	 * RFC 3610 and NIST Special Publication 800-38C
230 	 */
231 	if (b1) {
232 		memset(b1, 0, 16);
233 		if (assoclen <= 65280) {
234 			*(u16 *)b1 = assoclen;
235 			scatterwalk_map_and_copy(b1 + 2, req->src, 0,
236 					 iauth_len, SCATTERWALK_FROM_SG);
237 		} else {
238 			*(u16 *)b1 = (u16)(0xfffe);
239 			*(u32 *)&b1[2] = assoclen;
240 			scatterwalk_map_and_copy(b1 + 6, req->src, 0,
241 					 iauth_len, SCATTERWALK_FROM_SG);
242 		}
243 	}
244 
245 	/* now copy any remaining AAD to scatterlist and call nx... */
246 	if (!assoclen) {
247 		return rc;
248 	} else if (assoclen <= 14) {
249 		unsigned int len = 16;
250 
251 		nx_insg = nx_build_sg_list(nx_insg, b1, &len, nx_ctx->ap->sglen);
252 
253 		if (len != 16)
254 			return -EINVAL;
255 
256 		nx_outsg = nx_build_sg_list(nx_outsg, tmp, &len,
257 					    nx_ctx->ap->sglen);
258 
259 		if (len != 16)
260 			return -EINVAL;
261 
262 		/* inlen should be negative, indicating to phyp that its a
263 		 * pointer to an sg list */
264 		nx_ctx->op.inlen = (nx_ctx->in_sg - nx_insg) *
265 					sizeof(struct nx_sg);
266 		nx_ctx->op.outlen = (nx_ctx->out_sg - nx_outsg) *
267 					sizeof(struct nx_sg);
268 
269 		NX_CPB_FDM(nx_ctx->csbcpb) |= NX_FDM_ENDE_ENCRYPT;
270 		NX_CPB_FDM(nx_ctx->csbcpb) |= NX_FDM_INTERMEDIATE;
271 
272 		result = nx_ctx->csbcpb->cpb.aes_ccm.out_pat_or_mac;
273 
274 		rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
275 				   req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP);
276 		if (rc)
277 			return rc;
278 
279 		atomic_inc(&(nx_ctx->stats->aes_ops));
280 		atomic64_add(assoclen, &nx_ctx->stats->aes_bytes);
281 
282 	} else {
283 		unsigned int processed = 0, to_process;
284 
285 		processed += iauth_len;
286 
287 		/* page_limit: number of sg entries that fit on one page */
288 		max_sg_len = min_t(u64, nx_ctx->ap->sglen,
289 				nx_driver.of.max_sg_len/sizeof(struct nx_sg));
290 		max_sg_len = min_t(u64, max_sg_len,
291 				nx_ctx->ap->databytelen/NX_PAGE_SIZE);
292 
293 		do {
294 			to_process = min_t(u32, assoclen - processed,
295 					   nx_ctx->ap->databytelen);
296 
297 			nx_insg = nx_walk_and_build(nx_ctx->in_sg,
298 						    nx_ctx->ap->sglen,
299 						    req->src, processed,
300 						    &to_process);
301 
302 			if ((to_process + processed) < assoclen) {
303 				NX_CPB_FDM(nx_ctx->csbcpb_aead) |=
304 					NX_FDM_INTERMEDIATE;
305 			} else {
306 				NX_CPB_FDM(nx_ctx->csbcpb_aead) &=
307 					~NX_FDM_INTERMEDIATE;
308 			}
309 
310 
311 			nx_ctx->op_aead.inlen = (nx_ctx->in_sg - nx_insg) *
312 						sizeof(struct nx_sg);
313 
314 			result = nx_ctx->csbcpb_aead->cpb.aes_cca.out_pat_or_b0;
315 
316 			rc = nx_hcall_sync(nx_ctx, &nx_ctx->op_aead,
317 				   req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP);
318 			if (rc)
319 				return rc;
320 
321 			memcpy(nx_ctx->csbcpb_aead->cpb.aes_cca.b0,
322 				nx_ctx->csbcpb_aead->cpb.aes_cca.out_pat_or_b0,
323 				AES_BLOCK_SIZE);
324 
325 			NX_CPB_FDM(nx_ctx->csbcpb_aead) |= NX_FDM_CONTINUATION;
326 
327 			atomic_inc(&(nx_ctx->stats->aes_ops));
328 			atomic64_add(assoclen, &nx_ctx->stats->aes_bytes);
329 
330 			processed += to_process;
331 		} while (processed < assoclen);
332 
333 		result = nx_ctx->csbcpb_aead->cpb.aes_cca.out_pat_or_b0;
334 	}
335 
336 	memcpy(out, result, AES_BLOCK_SIZE);
337 
338 	return rc;
339 }
340 
341 static int ccm_nx_decrypt(struct aead_request   *req,
342 			  struct blkcipher_desc *desc,
343 			  unsigned int assoclen)
344 {
345 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(req->base.tfm);
346 	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
347 	unsigned int nbytes = req->cryptlen;
348 	unsigned int authsize = crypto_aead_authsize(crypto_aead_reqtfm(req));
349 	struct nx_ccm_priv *priv = &nx_ctx->priv.ccm;
350 	unsigned long irq_flags;
351 	unsigned int processed = 0, to_process;
352 	int rc = -1;
353 
354 	spin_lock_irqsave(&nx_ctx->lock, irq_flags);
355 
356 	nbytes -= authsize;
357 
358 	/* copy out the auth tag to compare with later */
359 	scatterwalk_map_and_copy(priv->oauth_tag,
360 				 req->src, nbytes + req->assoclen, authsize,
361 				 SCATTERWALK_FROM_SG);
362 
363 	rc = generate_pat(desc->info, req, nx_ctx, authsize, nbytes, assoclen,
364 			  csbcpb->cpb.aes_ccm.in_pat_or_b0);
365 	if (rc)
366 		goto out;
367 
368 	do {
369 
370 		/* to_process: the AES_BLOCK_SIZE data chunk to process in this
371 		 * update. This value is bound by sg list limits.
372 		 */
373 		to_process = nbytes - processed;
374 
375 		if ((to_process + processed) < nbytes)
376 			NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
377 		else
378 			NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
379 
380 		NX_CPB_FDM(nx_ctx->csbcpb) &= ~NX_FDM_ENDE_ENCRYPT;
381 
382 		rc = nx_build_sg_lists(nx_ctx, desc, req->dst, req->src,
383 				       &to_process, processed + req->assoclen,
384 				       csbcpb->cpb.aes_ccm.iv_or_ctr);
385 		if (rc)
386 			goto out;
387 
388 		rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
389 			   req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP);
390 		if (rc)
391 			goto out;
392 
393 		/* for partial completion, copy following for next
394 		 * entry into loop...
395 		 */
396 		memcpy(desc->info, csbcpb->cpb.aes_ccm.out_ctr, AES_BLOCK_SIZE);
397 		memcpy(csbcpb->cpb.aes_ccm.in_pat_or_b0,
398 			csbcpb->cpb.aes_ccm.out_pat_or_mac, AES_BLOCK_SIZE);
399 		memcpy(csbcpb->cpb.aes_ccm.in_s0,
400 			csbcpb->cpb.aes_ccm.out_s0, AES_BLOCK_SIZE);
401 
402 		NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
403 
404 		/* update stats */
405 		atomic_inc(&(nx_ctx->stats->aes_ops));
406 		atomic64_add(csbcpb->csb.processed_byte_count,
407 			     &(nx_ctx->stats->aes_bytes));
408 
409 		processed += to_process;
410 	} while (processed < nbytes);
411 
412 	rc = crypto_memneq(csbcpb->cpb.aes_ccm.out_pat_or_mac, priv->oauth_tag,
413 		    authsize) ? -EBADMSG : 0;
414 out:
415 	spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
416 	return rc;
417 }
418 
419 static int ccm_nx_encrypt(struct aead_request   *req,
420 			  struct blkcipher_desc *desc,
421 			  unsigned int assoclen)
422 {
423 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(req->base.tfm);
424 	struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
425 	unsigned int nbytes = req->cryptlen;
426 	unsigned int authsize = crypto_aead_authsize(crypto_aead_reqtfm(req));
427 	unsigned long irq_flags;
428 	unsigned int processed = 0, to_process;
429 	int rc = -1;
430 
431 	spin_lock_irqsave(&nx_ctx->lock, irq_flags);
432 
433 	rc = generate_pat(desc->info, req, nx_ctx, authsize, nbytes, assoclen,
434 			  csbcpb->cpb.aes_ccm.in_pat_or_b0);
435 	if (rc)
436 		goto out;
437 
438 	do {
439 		/* to process: the AES_BLOCK_SIZE data chunk to process in this
440 		 * update. This value is bound by sg list limits.
441 		 */
442 		to_process = nbytes - processed;
443 
444 		if ((to_process + processed) < nbytes)
445 			NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
446 		else
447 			NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
448 
449 		NX_CPB_FDM(csbcpb) |= NX_FDM_ENDE_ENCRYPT;
450 
451 		rc = nx_build_sg_lists(nx_ctx, desc, req->dst, req->src,
452 				       &to_process, processed + req->assoclen,
453 				       csbcpb->cpb.aes_ccm.iv_or_ctr);
454 		if (rc)
455 			goto out;
456 
457 		rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
458 				   req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP);
459 		if (rc)
460 			goto out;
461 
462 		/* for partial completion, copy following for next
463 		 * entry into loop...
464 		 */
465 		memcpy(desc->info, csbcpb->cpb.aes_ccm.out_ctr, AES_BLOCK_SIZE);
466 		memcpy(csbcpb->cpb.aes_ccm.in_pat_or_b0,
467 			csbcpb->cpb.aes_ccm.out_pat_or_mac, AES_BLOCK_SIZE);
468 		memcpy(csbcpb->cpb.aes_ccm.in_s0,
469 			csbcpb->cpb.aes_ccm.out_s0, AES_BLOCK_SIZE);
470 
471 		NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
472 
473 		/* update stats */
474 		atomic_inc(&(nx_ctx->stats->aes_ops));
475 		atomic64_add(csbcpb->csb.processed_byte_count,
476 			     &(nx_ctx->stats->aes_bytes));
477 
478 		processed += to_process;
479 
480 	} while (processed < nbytes);
481 
482 	/* copy out the auth tag */
483 	scatterwalk_map_and_copy(csbcpb->cpb.aes_ccm.out_pat_or_mac,
484 				 req->dst, nbytes + req->assoclen, authsize,
485 				 SCATTERWALK_TO_SG);
486 
487 out:
488 	spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
489 	return rc;
490 }
491 
492 static int ccm4309_aes_nx_encrypt(struct aead_request *req)
493 {
494 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(req->base.tfm);
495 	struct nx_gcm_rctx *rctx = aead_request_ctx(req);
496 	struct blkcipher_desc desc;
497 	u8 *iv = rctx->iv;
498 
499 	iv[0] = 3;
500 	memcpy(iv + 1, nx_ctx->priv.ccm.nonce, 3);
501 	memcpy(iv + 4, req->iv, 8);
502 
503 	desc.info = iv;
504 
505 	return ccm_nx_encrypt(req, &desc, req->assoclen - 8);
506 }
507 
508 static int ccm_aes_nx_encrypt(struct aead_request *req)
509 {
510 	struct blkcipher_desc desc;
511 	int rc;
512 
513 	desc.info = req->iv;
514 
515 	rc = crypto_ccm_check_iv(desc.info);
516 	if (rc)
517 		return rc;
518 
519 	return ccm_nx_encrypt(req, &desc, req->assoclen);
520 }
521 
522 static int ccm4309_aes_nx_decrypt(struct aead_request *req)
523 {
524 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(req->base.tfm);
525 	struct nx_gcm_rctx *rctx = aead_request_ctx(req);
526 	struct blkcipher_desc desc;
527 	u8 *iv = rctx->iv;
528 
529 	iv[0] = 3;
530 	memcpy(iv + 1, nx_ctx->priv.ccm.nonce, 3);
531 	memcpy(iv + 4, req->iv, 8);
532 
533 	desc.info = iv;
534 
535 	return ccm_nx_decrypt(req, &desc, req->assoclen - 8);
536 }
537 
538 static int ccm_aes_nx_decrypt(struct aead_request *req)
539 {
540 	struct blkcipher_desc desc;
541 	int rc;
542 
543 	desc.info = req->iv;
544 
545 	rc = crypto_ccm_check_iv(desc.info);
546 	if (rc)
547 		return rc;
548 
549 	return ccm_nx_decrypt(req, &desc, req->assoclen);
550 }
551 
552 /* tell the block cipher walk routines that this is a stream cipher by
553  * setting cra_blocksize to 1. Even using blkcipher_walk_virt_block
554  * during encrypt/decrypt doesn't solve this problem, because it calls
555  * blkcipher_walk_done under the covers, which doesn't use walk->blocksize,
556  * but instead uses this tfm->blocksize. */
557 struct aead_alg nx_ccm_aes_alg = {
558 	.base = {
559 		.cra_name        = "ccm(aes)",
560 		.cra_driver_name = "ccm-aes-nx",
561 		.cra_priority    = 300,
562 		.cra_flags       = CRYPTO_ALG_NEED_FALLBACK,
563 		.cra_blocksize   = 1,
564 		.cra_ctxsize     = sizeof(struct nx_crypto_ctx),
565 		.cra_module      = THIS_MODULE,
566 	},
567 	.init        = nx_crypto_ctx_aes_ccm_init,
568 	.exit        = nx_crypto_ctx_aead_exit,
569 	.ivsize      = AES_BLOCK_SIZE,
570 	.maxauthsize = AES_BLOCK_SIZE,
571 	.setkey      = ccm_aes_nx_set_key,
572 	.setauthsize = ccm_aes_nx_setauthsize,
573 	.encrypt     = ccm_aes_nx_encrypt,
574 	.decrypt     = ccm_aes_nx_decrypt,
575 };
576 
577 struct aead_alg nx_ccm4309_aes_alg = {
578 	.base = {
579 		.cra_name        = "rfc4309(ccm(aes))",
580 		.cra_driver_name = "rfc4309-ccm-aes-nx",
581 		.cra_priority    = 300,
582 		.cra_flags       = CRYPTO_ALG_NEED_FALLBACK,
583 		.cra_blocksize   = 1,
584 		.cra_ctxsize     = sizeof(struct nx_crypto_ctx),
585 		.cra_module      = THIS_MODULE,
586 	},
587 	.init        = nx_crypto_ctx_aes_ccm_init,
588 	.exit        = nx_crypto_ctx_aead_exit,
589 	.ivsize      = 8,
590 	.maxauthsize = AES_BLOCK_SIZE,
591 	.setkey      = ccm4309_aes_nx_set_key,
592 	.setauthsize = ccm4309_aes_nx_setauthsize,
593 	.encrypt     = ccm4309_aes_nx_encrypt,
594 	.decrypt     = ccm4309_aes_nx_decrypt,
595 };
596