xref: /linux/drivers/crypto/n2_core.c (revision c118478665f467e57d06b2354de65974b246b82b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
3  *
4  * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/of.h>
12 #include <linux/of_address.h>
13 #include <linux/platform_device.h>
14 #include <linux/cpumask.h>
15 #include <linux/slab.h>
16 #include <linux/interrupt.h>
17 #include <linux/crypto.h>
18 #include <crypto/md5.h>
19 #include <crypto/sha1.h>
20 #include <crypto/sha2.h>
21 #include <crypto/aes.h>
22 #include <crypto/internal/des.h>
23 #include <linux/mutex.h>
24 #include <linux/delay.h>
25 #include <linux/sched.h>
26 
27 #include <crypto/internal/hash.h>
28 #include <crypto/internal/skcipher.h>
29 #include <crypto/scatterwalk.h>
30 #include <crypto/algapi.h>
31 
32 #include <asm/hypervisor.h>
33 #include <asm/mdesc.h>
34 
35 #include "n2_core.h"
36 
37 #define DRV_MODULE_NAME		"n2_crypto"
38 #define DRV_MODULE_VERSION	"0.2"
39 #define DRV_MODULE_RELDATE	"July 28, 2011"
40 
41 static const char version[] =
42 	DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
43 
44 MODULE_AUTHOR("David S. Miller <davem@davemloft.net>");
45 MODULE_DESCRIPTION("Niagara2 Crypto driver");
46 MODULE_LICENSE("GPL");
47 MODULE_VERSION(DRV_MODULE_VERSION);
48 
49 #define N2_CRA_PRIORITY		200
50 
51 static DEFINE_MUTEX(spu_lock);
52 
53 struct spu_queue {
54 	cpumask_t		sharing;
55 	unsigned long		qhandle;
56 
57 	spinlock_t		lock;
58 	u8			q_type;
59 	void			*q;
60 	unsigned long		head;
61 	unsigned long		tail;
62 	struct list_head	jobs;
63 
64 	unsigned long		devino;
65 
66 	char			irq_name[32];
67 	unsigned int		irq;
68 
69 	struct list_head	list;
70 };
71 
72 struct spu_qreg {
73 	struct spu_queue	*queue;
74 	unsigned long		type;
75 };
76 
77 static struct spu_queue **cpu_to_cwq;
78 static struct spu_queue **cpu_to_mau;
79 
80 static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
81 {
82 	if (q->q_type == HV_NCS_QTYPE_MAU) {
83 		off += MAU_ENTRY_SIZE;
84 		if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
85 			off = 0;
86 	} else {
87 		off += CWQ_ENTRY_SIZE;
88 		if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
89 			off = 0;
90 	}
91 	return off;
92 }
93 
94 struct n2_request_common {
95 	struct list_head	entry;
96 	unsigned int		offset;
97 };
98 #define OFFSET_NOT_RUNNING	(~(unsigned int)0)
99 
100 /* An async job request records the final tail value it used in
101  * n2_request_common->offset, test to see if that offset is in
102  * the range old_head, new_head, inclusive.
103  */
104 static inline bool job_finished(struct spu_queue *q, unsigned int offset,
105 				unsigned long old_head, unsigned long new_head)
106 {
107 	if (old_head <= new_head) {
108 		if (offset > old_head && offset <= new_head)
109 			return true;
110 	} else {
111 		if (offset > old_head || offset <= new_head)
112 			return true;
113 	}
114 	return false;
115 }
116 
117 /* When the HEAD marker is unequal to the actual HEAD, we get
118  * a virtual device INO interrupt.  We should process the
119  * completed CWQ entries and adjust the HEAD marker to clear
120  * the IRQ.
121  */
122 static irqreturn_t cwq_intr(int irq, void *dev_id)
123 {
124 	unsigned long off, new_head, hv_ret;
125 	struct spu_queue *q = dev_id;
126 
127 	pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
128 	       smp_processor_id(), q->qhandle);
129 
130 	spin_lock(&q->lock);
131 
132 	hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
133 
134 	pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
135 	       smp_processor_id(), new_head, hv_ret);
136 
137 	for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
138 		/* XXX ... XXX */
139 	}
140 
141 	hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
142 	if (hv_ret == HV_EOK)
143 		q->head = new_head;
144 
145 	spin_unlock(&q->lock);
146 
147 	return IRQ_HANDLED;
148 }
149 
150 static irqreturn_t mau_intr(int irq, void *dev_id)
151 {
152 	struct spu_queue *q = dev_id;
153 	unsigned long head, hv_ret;
154 
155 	spin_lock(&q->lock);
156 
157 	pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
158 	       smp_processor_id(), q->qhandle);
159 
160 	hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
161 
162 	pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
163 	       smp_processor_id(), head, hv_ret);
164 
165 	sun4v_ncs_sethead_marker(q->qhandle, head);
166 
167 	spin_unlock(&q->lock);
168 
169 	return IRQ_HANDLED;
170 }
171 
172 static void *spu_queue_next(struct spu_queue *q, void *cur)
173 {
174 	return q->q + spu_next_offset(q, cur - q->q);
175 }
176 
177 static int spu_queue_num_free(struct spu_queue *q)
178 {
179 	unsigned long head = q->head;
180 	unsigned long tail = q->tail;
181 	unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
182 	unsigned long diff;
183 
184 	if (head > tail)
185 		diff = head - tail;
186 	else
187 		diff = (end - tail) + head;
188 
189 	return (diff / CWQ_ENTRY_SIZE) - 1;
190 }
191 
192 static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
193 {
194 	int avail = spu_queue_num_free(q);
195 
196 	if (avail >= num_entries)
197 		return q->q + q->tail;
198 
199 	return NULL;
200 }
201 
202 static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
203 {
204 	unsigned long hv_ret, new_tail;
205 
206 	new_tail = spu_next_offset(q, last - q->q);
207 
208 	hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
209 	if (hv_ret == HV_EOK)
210 		q->tail = new_tail;
211 	return hv_ret;
212 }
213 
214 static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
215 			     int enc_type, int auth_type,
216 			     unsigned int hash_len,
217 			     bool sfas, bool sob, bool eob, bool encrypt,
218 			     int opcode)
219 {
220 	u64 word = (len - 1) & CONTROL_LEN;
221 
222 	word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
223 	word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
224 	word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
225 	if (sfas)
226 		word |= CONTROL_STORE_FINAL_AUTH_STATE;
227 	if (sob)
228 		word |= CONTROL_START_OF_BLOCK;
229 	if (eob)
230 		word |= CONTROL_END_OF_BLOCK;
231 	if (encrypt)
232 		word |= CONTROL_ENCRYPT;
233 	if (hmac_key_len)
234 		word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
235 	if (hash_len)
236 		word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
237 
238 	return word;
239 }
240 
241 #if 0
242 static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
243 {
244 	if (this_len >= 64 ||
245 	    qp->head != qp->tail)
246 		return true;
247 	return false;
248 }
249 #endif
250 
251 struct n2_ahash_alg {
252 	struct list_head	entry;
253 	const u8		*hash_zero;
254 	const u8		*hash_init;
255 	u8			hw_op_hashsz;
256 	u8			digest_size;
257 	u8			auth_type;
258 	u8			hmac_type;
259 	struct ahash_alg	alg;
260 };
261 
262 static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
263 {
264 	struct crypto_alg *alg = tfm->__crt_alg;
265 	struct ahash_alg *ahash_alg;
266 
267 	ahash_alg = container_of(alg, struct ahash_alg, halg.base);
268 
269 	return container_of(ahash_alg, struct n2_ahash_alg, alg);
270 }
271 
272 struct n2_hmac_alg {
273 	const char		*child_alg;
274 	struct n2_ahash_alg	derived;
275 };
276 
277 static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
278 {
279 	struct crypto_alg *alg = tfm->__crt_alg;
280 	struct ahash_alg *ahash_alg;
281 
282 	ahash_alg = container_of(alg, struct ahash_alg, halg.base);
283 
284 	return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
285 }
286 
287 struct n2_hash_ctx {
288 	struct crypto_ahash		*fallback_tfm;
289 };
290 
291 #define N2_HASH_KEY_MAX			32 /* HW limit for all HMAC requests */
292 
293 struct n2_hmac_ctx {
294 	struct n2_hash_ctx		base;
295 
296 	struct crypto_shash		*child_shash;
297 
298 	int				hash_key_len;
299 	unsigned char			hash_key[N2_HASH_KEY_MAX];
300 };
301 
302 struct n2_hash_req_ctx {
303 	union {
304 		struct md5_state	md5;
305 		struct sha1_state	sha1;
306 		struct sha256_state	sha256;
307 	} u;
308 
309 	struct ahash_request		fallback_req;
310 };
311 
312 static int n2_hash_async_init(struct ahash_request *req)
313 {
314 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
315 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
316 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
317 
318 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
319 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
320 
321 	return crypto_ahash_init(&rctx->fallback_req);
322 }
323 
324 static int n2_hash_async_update(struct ahash_request *req)
325 {
326 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
327 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
328 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
329 
330 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
331 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
332 	rctx->fallback_req.nbytes = req->nbytes;
333 	rctx->fallback_req.src = req->src;
334 
335 	return crypto_ahash_update(&rctx->fallback_req);
336 }
337 
338 static int n2_hash_async_final(struct ahash_request *req)
339 {
340 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
341 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
342 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
343 
344 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
345 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
346 	rctx->fallback_req.result = req->result;
347 
348 	return crypto_ahash_final(&rctx->fallback_req);
349 }
350 
351 static int n2_hash_async_finup(struct ahash_request *req)
352 {
353 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
354 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
355 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
356 
357 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
358 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
359 	rctx->fallback_req.nbytes = req->nbytes;
360 	rctx->fallback_req.src = req->src;
361 	rctx->fallback_req.result = req->result;
362 
363 	return crypto_ahash_finup(&rctx->fallback_req);
364 }
365 
366 static int n2_hash_async_noimport(struct ahash_request *req, const void *in)
367 {
368 	return -ENOSYS;
369 }
370 
371 static int n2_hash_async_noexport(struct ahash_request *req, void *out)
372 {
373 	return -ENOSYS;
374 }
375 
376 static int n2_hash_cra_init(struct crypto_tfm *tfm)
377 {
378 	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
379 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
380 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
381 	struct crypto_ahash *fallback_tfm;
382 	int err;
383 
384 	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
385 					  CRYPTO_ALG_NEED_FALLBACK);
386 	if (IS_ERR(fallback_tfm)) {
387 		pr_warn("Fallback driver '%s' could not be loaded!\n",
388 			fallback_driver_name);
389 		err = PTR_ERR(fallback_tfm);
390 		goto out;
391 	}
392 
393 	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
394 					 crypto_ahash_reqsize(fallback_tfm)));
395 
396 	ctx->fallback_tfm = fallback_tfm;
397 	return 0;
398 
399 out:
400 	return err;
401 }
402 
403 static void n2_hash_cra_exit(struct crypto_tfm *tfm)
404 {
405 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
406 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
407 
408 	crypto_free_ahash(ctx->fallback_tfm);
409 }
410 
411 static int n2_hmac_cra_init(struct crypto_tfm *tfm)
412 {
413 	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
414 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
415 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
416 	struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
417 	struct crypto_ahash *fallback_tfm;
418 	struct crypto_shash *child_shash;
419 	int err;
420 
421 	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
422 					  CRYPTO_ALG_NEED_FALLBACK);
423 	if (IS_ERR(fallback_tfm)) {
424 		pr_warn("Fallback driver '%s' could not be loaded!\n",
425 			fallback_driver_name);
426 		err = PTR_ERR(fallback_tfm);
427 		goto out;
428 	}
429 
430 	child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
431 	if (IS_ERR(child_shash)) {
432 		pr_warn("Child shash '%s' could not be loaded!\n",
433 			n2alg->child_alg);
434 		err = PTR_ERR(child_shash);
435 		goto out_free_fallback;
436 	}
437 
438 	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
439 					 crypto_ahash_reqsize(fallback_tfm)));
440 
441 	ctx->child_shash = child_shash;
442 	ctx->base.fallback_tfm = fallback_tfm;
443 	return 0;
444 
445 out_free_fallback:
446 	crypto_free_ahash(fallback_tfm);
447 
448 out:
449 	return err;
450 }
451 
452 static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
453 {
454 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
455 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
456 
457 	crypto_free_ahash(ctx->base.fallback_tfm);
458 	crypto_free_shash(ctx->child_shash);
459 }
460 
461 static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
462 				unsigned int keylen)
463 {
464 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
465 	struct crypto_shash *child_shash = ctx->child_shash;
466 	struct crypto_ahash *fallback_tfm;
467 	int err, bs, ds;
468 
469 	fallback_tfm = ctx->base.fallback_tfm;
470 	err = crypto_ahash_setkey(fallback_tfm, key, keylen);
471 	if (err)
472 		return err;
473 
474 	bs = crypto_shash_blocksize(child_shash);
475 	ds = crypto_shash_digestsize(child_shash);
476 	BUG_ON(ds > N2_HASH_KEY_MAX);
477 	if (keylen > bs) {
478 		err = crypto_shash_tfm_digest(child_shash, key, keylen,
479 					      ctx->hash_key);
480 		if (err)
481 			return err;
482 		keylen = ds;
483 	} else if (keylen <= N2_HASH_KEY_MAX)
484 		memcpy(ctx->hash_key, key, keylen);
485 
486 	ctx->hash_key_len = keylen;
487 
488 	return err;
489 }
490 
491 static unsigned long wait_for_tail(struct spu_queue *qp)
492 {
493 	unsigned long head, hv_ret;
494 
495 	do {
496 		hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
497 		if (hv_ret != HV_EOK) {
498 			pr_err("Hypervisor error on gethead\n");
499 			break;
500 		}
501 		if (head == qp->tail) {
502 			qp->head = head;
503 			break;
504 		}
505 	} while (1);
506 	return hv_ret;
507 }
508 
509 static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
510 					      struct cwq_initial_entry *ent)
511 {
512 	unsigned long hv_ret = spu_queue_submit(qp, ent);
513 
514 	if (hv_ret == HV_EOK)
515 		hv_ret = wait_for_tail(qp);
516 
517 	return hv_ret;
518 }
519 
520 static int n2_do_async_digest(struct ahash_request *req,
521 			      unsigned int auth_type, unsigned int digest_size,
522 			      unsigned int result_size, void *hash_loc,
523 			      unsigned long auth_key, unsigned int auth_key_len)
524 {
525 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
526 	struct cwq_initial_entry *ent;
527 	struct crypto_hash_walk walk;
528 	struct spu_queue *qp;
529 	unsigned long flags;
530 	int err = -ENODEV;
531 	int nbytes, cpu;
532 
533 	/* The total effective length of the operation may not
534 	 * exceed 2^16.
535 	 */
536 	if (unlikely(req->nbytes > (1 << 16))) {
537 		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
538 		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
539 
540 		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
541 		rctx->fallback_req.base.flags =
542 			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
543 		rctx->fallback_req.nbytes = req->nbytes;
544 		rctx->fallback_req.src = req->src;
545 		rctx->fallback_req.result = req->result;
546 
547 		return crypto_ahash_digest(&rctx->fallback_req);
548 	}
549 
550 	nbytes = crypto_hash_walk_first(req, &walk);
551 
552 	cpu = get_cpu();
553 	qp = cpu_to_cwq[cpu];
554 	if (!qp)
555 		goto out;
556 
557 	spin_lock_irqsave(&qp->lock, flags);
558 
559 	/* XXX can do better, improve this later by doing a by-hand scatterlist
560 	 * XXX walk, etc.
561 	 */
562 	ent = qp->q + qp->tail;
563 
564 	ent->control = control_word_base(nbytes, auth_key_len, 0,
565 					 auth_type, digest_size,
566 					 false, true, false, false,
567 					 OPCODE_INPLACE_BIT |
568 					 OPCODE_AUTH_MAC);
569 	ent->src_addr = __pa(walk.data);
570 	ent->auth_key_addr = auth_key;
571 	ent->auth_iv_addr = __pa(hash_loc);
572 	ent->final_auth_state_addr = 0UL;
573 	ent->enc_key_addr = 0UL;
574 	ent->enc_iv_addr = 0UL;
575 	ent->dest_addr = __pa(hash_loc);
576 
577 	nbytes = crypto_hash_walk_done(&walk, 0);
578 	while (nbytes > 0) {
579 		ent = spu_queue_next(qp, ent);
580 
581 		ent->control = (nbytes - 1);
582 		ent->src_addr = __pa(walk.data);
583 		ent->auth_key_addr = 0UL;
584 		ent->auth_iv_addr = 0UL;
585 		ent->final_auth_state_addr = 0UL;
586 		ent->enc_key_addr = 0UL;
587 		ent->enc_iv_addr = 0UL;
588 		ent->dest_addr = 0UL;
589 
590 		nbytes = crypto_hash_walk_done(&walk, 0);
591 	}
592 	ent->control |= CONTROL_END_OF_BLOCK;
593 
594 	if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
595 		err = -EINVAL;
596 	else
597 		err = 0;
598 
599 	spin_unlock_irqrestore(&qp->lock, flags);
600 
601 	if (!err)
602 		memcpy(req->result, hash_loc, result_size);
603 out:
604 	put_cpu();
605 
606 	return err;
607 }
608 
609 static int n2_hash_async_digest(struct ahash_request *req)
610 {
611 	struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
612 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
613 	int ds;
614 
615 	ds = n2alg->digest_size;
616 	if (unlikely(req->nbytes == 0)) {
617 		memcpy(req->result, n2alg->hash_zero, ds);
618 		return 0;
619 	}
620 	memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
621 
622 	return n2_do_async_digest(req, n2alg->auth_type,
623 				  n2alg->hw_op_hashsz, ds,
624 				  &rctx->u, 0UL, 0);
625 }
626 
627 static int n2_hmac_async_digest(struct ahash_request *req)
628 {
629 	struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
630 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
631 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
632 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
633 	int ds;
634 
635 	ds = n2alg->derived.digest_size;
636 	if (unlikely(req->nbytes == 0) ||
637 	    unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
638 		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
639 		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
640 
641 		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
642 		rctx->fallback_req.base.flags =
643 			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
644 		rctx->fallback_req.nbytes = req->nbytes;
645 		rctx->fallback_req.src = req->src;
646 		rctx->fallback_req.result = req->result;
647 
648 		return crypto_ahash_digest(&rctx->fallback_req);
649 	}
650 	memcpy(&rctx->u, n2alg->derived.hash_init,
651 	       n2alg->derived.hw_op_hashsz);
652 
653 	return n2_do_async_digest(req, n2alg->derived.hmac_type,
654 				  n2alg->derived.hw_op_hashsz, ds,
655 				  &rctx->u,
656 				  __pa(&ctx->hash_key),
657 				  ctx->hash_key_len);
658 }
659 
660 struct n2_skcipher_context {
661 	int			key_len;
662 	int			enc_type;
663 	union {
664 		u8		aes[AES_MAX_KEY_SIZE];
665 		u8		des[DES_KEY_SIZE];
666 		u8		des3[3 * DES_KEY_SIZE];
667 	} key;
668 };
669 
670 #define N2_CHUNK_ARR_LEN	16
671 
672 struct n2_crypto_chunk {
673 	struct list_head	entry;
674 	unsigned long		iv_paddr : 44;
675 	unsigned long		arr_len : 20;
676 	unsigned long		dest_paddr;
677 	unsigned long		dest_final;
678 	struct {
679 		unsigned long	src_paddr : 44;
680 		unsigned long	src_len : 20;
681 	} arr[N2_CHUNK_ARR_LEN];
682 };
683 
684 struct n2_request_context {
685 	struct skcipher_walk	walk;
686 	struct list_head	chunk_list;
687 	struct n2_crypto_chunk	chunk;
688 	u8			temp_iv[16];
689 };
690 
691 /* The SPU allows some level of flexibility for partial cipher blocks
692  * being specified in a descriptor.
693  *
694  * It merely requires that every descriptor's length field is at least
695  * as large as the cipher block size.  This means that a cipher block
696  * can span at most 2 descriptors.  However, this does not allow a
697  * partial block to span into the final descriptor as that would
698  * violate the rule (since every descriptor's length must be at lest
699  * the block size).  So, for example, assuming an 8 byte block size:
700  *
701  *	0xe --> 0xa --> 0x8
702  *
703  * is a valid length sequence, whereas:
704  *
705  *	0xe --> 0xb --> 0x7
706  *
707  * is not a valid sequence.
708  */
709 
710 struct n2_skcipher_alg {
711 	struct list_head	entry;
712 	u8			enc_type;
713 	struct skcipher_alg	skcipher;
714 };
715 
716 static inline struct n2_skcipher_alg *n2_skcipher_alg(struct crypto_skcipher *tfm)
717 {
718 	struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
719 
720 	return container_of(alg, struct n2_skcipher_alg, skcipher);
721 }
722 
723 static int n2_aes_setkey(struct crypto_skcipher *skcipher, const u8 *key,
724 			 unsigned int keylen)
725 {
726 	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
727 	struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
728 	struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
729 
730 	ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
731 
732 	switch (keylen) {
733 	case AES_KEYSIZE_128:
734 		ctx->enc_type |= ENC_TYPE_ALG_AES128;
735 		break;
736 	case AES_KEYSIZE_192:
737 		ctx->enc_type |= ENC_TYPE_ALG_AES192;
738 		break;
739 	case AES_KEYSIZE_256:
740 		ctx->enc_type |= ENC_TYPE_ALG_AES256;
741 		break;
742 	default:
743 		return -EINVAL;
744 	}
745 
746 	ctx->key_len = keylen;
747 	memcpy(ctx->key.aes, key, keylen);
748 	return 0;
749 }
750 
751 static int n2_des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
752 			 unsigned int keylen)
753 {
754 	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
755 	struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
756 	struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
757 	int err;
758 
759 	err = verify_skcipher_des_key(skcipher, key);
760 	if (err)
761 		return err;
762 
763 	ctx->enc_type = n2alg->enc_type;
764 
765 	ctx->key_len = keylen;
766 	memcpy(ctx->key.des, key, keylen);
767 	return 0;
768 }
769 
770 static int n2_3des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
771 			  unsigned int keylen)
772 {
773 	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
774 	struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
775 	struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
776 	int err;
777 
778 	err = verify_skcipher_des3_key(skcipher, key);
779 	if (err)
780 		return err;
781 
782 	ctx->enc_type = n2alg->enc_type;
783 
784 	ctx->key_len = keylen;
785 	memcpy(ctx->key.des3, key, keylen);
786 	return 0;
787 }
788 
789 static inline int skcipher_descriptor_len(int nbytes, unsigned int block_size)
790 {
791 	int this_len = nbytes;
792 
793 	this_len -= (nbytes & (block_size - 1));
794 	return this_len > (1 << 16) ? (1 << 16) : this_len;
795 }
796 
797 static int __n2_crypt_chunk(struct crypto_skcipher *skcipher,
798 			    struct n2_crypto_chunk *cp,
799 			    struct spu_queue *qp, bool encrypt)
800 {
801 	struct n2_skcipher_context *ctx = crypto_skcipher_ctx(skcipher);
802 	struct cwq_initial_entry *ent;
803 	bool in_place;
804 	int i;
805 
806 	ent = spu_queue_alloc(qp, cp->arr_len);
807 	if (!ent) {
808 		pr_info("queue_alloc() of %d fails\n",
809 			cp->arr_len);
810 		return -EBUSY;
811 	}
812 
813 	in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
814 
815 	ent->control = control_word_base(cp->arr[0].src_len,
816 					 0, ctx->enc_type, 0, 0,
817 					 false, true, false, encrypt,
818 					 OPCODE_ENCRYPT |
819 					 (in_place ? OPCODE_INPLACE_BIT : 0));
820 	ent->src_addr = cp->arr[0].src_paddr;
821 	ent->auth_key_addr = 0UL;
822 	ent->auth_iv_addr = 0UL;
823 	ent->final_auth_state_addr = 0UL;
824 	ent->enc_key_addr = __pa(&ctx->key);
825 	ent->enc_iv_addr = cp->iv_paddr;
826 	ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
827 
828 	for (i = 1; i < cp->arr_len; i++) {
829 		ent = spu_queue_next(qp, ent);
830 
831 		ent->control = cp->arr[i].src_len - 1;
832 		ent->src_addr = cp->arr[i].src_paddr;
833 		ent->auth_key_addr = 0UL;
834 		ent->auth_iv_addr = 0UL;
835 		ent->final_auth_state_addr = 0UL;
836 		ent->enc_key_addr = 0UL;
837 		ent->enc_iv_addr = 0UL;
838 		ent->dest_addr = 0UL;
839 	}
840 	ent->control |= CONTROL_END_OF_BLOCK;
841 
842 	return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
843 }
844 
845 static int n2_compute_chunks(struct skcipher_request *req)
846 {
847 	struct n2_request_context *rctx = skcipher_request_ctx(req);
848 	struct skcipher_walk *walk = &rctx->walk;
849 	struct n2_crypto_chunk *chunk;
850 	unsigned long dest_prev;
851 	unsigned int tot_len;
852 	bool prev_in_place;
853 	int err, nbytes;
854 
855 	err = skcipher_walk_async(walk, req);
856 	if (err)
857 		return err;
858 
859 	INIT_LIST_HEAD(&rctx->chunk_list);
860 
861 	chunk = &rctx->chunk;
862 	INIT_LIST_HEAD(&chunk->entry);
863 
864 	chunk->iv_paddr = 0UL;
865 	chunk->arr_len = 0;
866 	chunk->dest_paddr = 0UL;
867 
868 	prev_in_place = false;
869 	dest_prev = ~0UL;
870 	tot_len = 0;
871 
872 	while ((nbytes = walk->nbytes) != 0) {
873 		unsigned long dest_paddr, src_paddr;
874 		bool in_place;
875 		int this_len;
876 
877 		src_paddr = (page_to_phys(walk->src.phys.page) +
878 			     walk->src.phys.offset);
879 		dest_paddr = (page_to_phys(walk->dst.phys.page) +
880 			      walk->dst.phys.offset);
881 		in_place = (src_paddr == dest_paddr);
882 		this_len = skcipher_descriptor_len(nbytes, walk->blocksize);
883 
884 		if (chunk->arr_len != 0) {
885 			if (in_place != prev_in_place ||
886 			    (!prev_in_place &&
887 			     dest_paddr != dest_prev) ||
888 			    chunk->arr_len == N2_CHUNK_ARR_LEN ||
889 			    tot_len + this_len > (1 << 16)) {
890 				chunk->dest_final = dest_prev;
891 				list_add_tail(&chunk->entry,
892 					      &rctx->chunk_list);
893 				chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
894 				if (!chunk) {
895 					err = -ENOMEM;
896 					break;
897 				}
898 				INIT_LIST_HEAD(&chunk->entry);
899 			}
900 		}
901 		if (chunk->arr_len == 0) {
902 			chunk->dest_paddr = dest_paddr;
903 			tot_len = 0;
904 		}
905 		chunk->arr[chunk->arr_len].src_paddr = src_paddr;
906 		chunk->arr[chunk->arr_len].src_len = this_len;
907 		chunk->arr_len++;
908 
909 		dest_prev = dest_paddr + this_len;
910 		prev_in_place = in_place;
911 		tot_len += this_len;
912 
913 		err = skcipher_walk_done(walk, nbytes - this_len);
914 		if (err)
915 			break;
916 	}
917 	if (!err && chunk->arr_len != 0) {
918 		chunk->dest_final = dest_prev;
919 		list_add_tail(&chunk->entry, &rctx->chunk_list);
920 	}
921 
922 	return err;
923 }
924 
925 static void n2_chunk_complete(struct skcipher_request *req, void *final_iv)
926 {
927 	struct n2_request_context *rctx = skcipher_request_ctx(req);
928 	struct n2_crypto_chunk *c, *tmp;
929 
930 	if (final_iv)
931 		memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
932 
933 	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
934 		list_del(&c->entry);
935 		if (unlikely(c != &rctx->chunk))
936 			kfree(c);
937 	}
938 
939 }
940 
941 static int n2_do_ecb(struct skcipher_request *req, bool encrypt)
942 {
943 	struct n2_request_context *rctx = skcipher_request_ctx(req);
944 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
945 	int err = n2_compute_chunks(req);
946 	struct n2_crypto_chunk *c, *tmp;
947 	unsigned long flags, hv_ret;
948 	struct spu_queue *qp;
949 
950 	if (err)
951 		return err;
952 
953 	qp = cpu_to_cwq[get_cpu()];
954 	err = -ENODEV;
955 	if (!qp)
956 		goto out;
957 
958 	spin_lock_irqsave(&qp->lock, flags);
959 
960 	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
961 		err = __n2_crypt_chunk(tfm, c, qp, encrypt);
962 		if (err)
963 			break;
964 		list_del(&c->entry);
965 		if (unlikely(c != &rctx->chunk))
966 			kfree(c);
967 	}
968 	if (!err) {
969 		hv_ret = wait_for_tail(qp);
970 		if (hv_ret != HV_EOK)
971 			err = -EINVAL;
972 	}
973 
974 	spin_unlock_irqrestore(&qp->lock, flags);
975 
976 out:
977 	put_cpu();
978 
979 	n2_chunk_complete(req, NULL);
980 	return err;
981 }
982 
983 static int n2_encrypt_ecb(struct skcipher_request *req)
984 {
985 	return n2_do_ecb(req, true);
986 }
987 
988 static int n2_decrypt_ecb(struct skcipher_request *req)
989 {
990 	return n2_do_ecb(req, false);
991 }
992 
993 static int n2_do_chaining(struct skcipher_request *req, bool encrypt)
994 {
995 	struct n2_request_context *rctx = skcipher_request_ctx(req);
996 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
997 	unsigned long flags, hv_ret, iv_paddr;
998 	int err = n2_compute_chunks(req);
999 	struct n2_crypto_chunk *c, *tmp;
1000 	struct spu_queue *qp;
1001 	void *final_iv_addr;
1002 
1003 	final_iv_addr = NULL;
1004 
1005 	if (err)
1006 		return err;
1007 
1008 	qp = cpu_to_cwq[get_cpu()];
1009 	err = -ENODEV;
1010 	if (!qp)
1011 		goto out;
1012 
1013 	spin_lock_irqsave(&qp->lock, flags);
1014 
1015 	if (encrypt) {
1016 		iv_paddr = __pa(rctx->walk.iv);
1017 		list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1018 					 entry) {
1019 			c->iv_paddr = iv_paddr;
1020 			err = __n2_crypt_chunk(tfm, c, qp, true);
1021 			if (err)
1022 				break;
1023 			iv_paddr = c->dest_final - rctx->walk.blocksize;
1024 			list_del(&c->entry);
1025 			if (unlikely(c != &rctx->chunk))
1026 				kfree(c);
1027 		}
1028 		final_iv_addr = __va(iv_paddr);
1029 	} else {
1030 		list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1031 						 entry) {
1032 			if (c == &rctx->chunk) {
1033 				iv_paddr = __pa(rctx->walk.iv);
1034 			} else {
1035 				iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1036 					    tmp->arr[tmp->arr_len-1].src_len -
1037 					    rctx->walk.blocksize);
1038 			}
1039 			if (!final_iv_addr) {
1040 				unsigned long pa;
1041 
1042 				pa = (c->arr[c->arr_len-1].src_paddr +
1043 				      c->arr[c->arr_len-1].src_len -
1044 				      rctx->walk.blocksize);
1045 				final_iv_addr = rctx->temp_iv;
1046 				memcpy(rctx->temp_iv, __va(pa),
1047 				       rctx->walk.blocksize);
1048 			}
1049 			c->iv_paddr = iv_paddr;
1050 			err = __n2_crypt_chunk(tfm, c, qp, false);
1051 			if (err)
1052 				break;
1053 			list_del(&c->entry);
1054 			if (unlikely(c != &rctx->chunk))
1055 				kfree(c);
1056 		}
1057 	}
1058 	if (!err) {
1059 		hv_ret = wait_for_tail(qp);
1060 		if (hv_ret != HV_EOK)
1061 			err = -EINVAL;
1062 	}
1063 
1064 	spin_unlock_irqrestore(&qp->lock, flags);
1065 
1066 out:
1067 	put_cpu();
1068 
1069 	n2_chunk_complete(req, err ? NULL : final_iv_addr);
1070 	return err;
1071 }
1072 
1073 static int n2_encrypt_chaining(struct skcipher_request *req)
1074 {
1075 	return n2_do_chaining(req, true);
1076 }
1077 
1078 static int n2_decrypt_chaining(struct skcipher_request *req)
1079 {
1080 	return n2_do_chaining(req, false);
1081 }
1082 
1083 struct n2_skcipher_tmpl {
1084 	const char		*name;
1085 	const char		*drv_name;
1086 	u8			block_size;
1087 	u8			enc_type;
1088 	struct skcipher_alg	skcipher;
1089 };
1090 
1091 static const struct n2_skcipher_tmpl skcipher_tmpls[] = {
1092 	/* DES: ECB CBC and CFB are supported */
1093 	{	.name		= "ecb(des)",
1094 		.drv_name	= "ecb-des",
1095 		.block_size	= DES_BLOCK_SIZE,
1096 		.enc_type	= (ENC_TYPE_ALG_DES |
1097 				   ENC_TYPE_CHAINING_ECB),
1098 		.skcipher	= {
1099 			.min_keysize	= DES_KEY_SIZE,
1100 			.max_keysize	= DES_KEY_SIZE,
1101 			.setkey		= n2_des_setkey,
1102 			.encrypt	= n2_encrypt_ecb,
1103 			.decrypt	= n2_decrypt_ecb,
1104 		},
1105 	},
1106 	{	.name		= "cbc(des)",
1107 		.drv_name	= "cbc-des",
1108 		.block_size	= DES_BLOCK_SIZE,
1109 		.enc_type	= (ENC_TYPE_ALG_DES |
1110 				   ENC_TYPE_CHAINING_CBC),
1111 		.skcipher	= {
1112 			.ivsize		= DES_BLOCK_SIZE,
1113 			.min_keysize	= DES_KEY_SIZE,
1114 			.max_keysize	= DES_KEY_SIZE,
1115 			.setkey		= n2_des_setkey,
1116 			.encrypt	= n2_encrypt_chaining,
1117 			.decrypt	= n2_decrypt_chaining,
1118 		},
1119 	},
1120 
1121 	/* 3DES: ECB CBC and CFB are supported */
1122 	{	.name		= "ecb(des3_ede)",
1123 		.drv_name	= "ecb-3des",
1124 		.block_size	= DES_BLOCK_SIZE,
1125 		.enc_type	= (ENC_TYPE_ALG_3DES |
1126 				   ENC_TYPE_CHAINING_ECB),
1127 		.skcipher	= {
1128 			.min_keysize	= 3 * DES_KEY_SIZE,
1129 			.max_keysize	= 3 * DES_KEY_SIZE,
1130 			.setkey		= n2_3des_setkey,
1131 			.encrypt	= n2_encrypt_ecb,
1132 			.decrypt	= n2_decrypt_ecb,
1133 		},
1134 	},
1135 	{	.name		= "cbc(des3_ede)",
1136 		.drv_name	= "cbc-3des",
1137 		.block_size	= DES_BLOCK_SIZE,
1138 		.enc_type	= (ENC_TYPE_ALG_3DES |
1139 				   ENC_TYPE_CHAINING_CBC),
1140 		.skcipher	= {
1141 			.ivsize		= DES_BLOCK_SIZE,
1142 			.min_keysize	= 3 * DES_KEY_SIZE,
1143 			.max_keysize	= 3 * DES_KEY_SIZE,
1144 			.setkey		= n2_3des_setkey,
1145 			.encrypt	= n2_encrypt_chaining,
1146 			.decrypt	= n2_decrypt_chaining,
1147 		},
1148 	},
1149 
1150 	/* AES: ECB CBC and CTR are supported */
1151 	{	.name		= "ecb(aes)",
1152 		.drv_name	= "ecb-aes",
1153 		.block_size	= AES_BLOCK_SIZE,
1154 		.enc_type	= (ENC_TYPE_ALG_AES128 |
1155 				   ENC_TYPE_CHAINING_ECB),
1156 		.skcipher	= {
1157 			.min_keysize	= AES_MIN_KEY_SIZE,
1158 			.max_keysize	= AES_MAX_KEY_SIZE,
1159 			.setkey		= n2_aes_setkey,
1160 			.encrypt	= n2_encrypt_ecb,
1161 			.decrypt	= n2_decrypt_ecb,
1162 		},
1163 	},
1164 	{	.name		= "cbc(aes)",
1165 		.drv_name	= "cbc-aes",
1166 		.block_size	= AES_BLOCK_SIZE,
1167 		.enc_type	= (ENC_TYPE_ALG_AES128 |
1168 				   ENC_TYPE_CHAINING_CBC),
1169 		.skcipher	= {
1170 			.ivsize		= AES_BLOCK_SIZE,
1171 			.min_keysize	= AES_MIN_KEY_SIZE,
1172 			.max_keysize	= AES_MAX_KEY_SIZE,
1173 			.setkey		= n2_aes_setkey,
1174 			.encrypt	= n2_encrypt_chaining,
1175 			.decrypt	= n2_decrypt_chaining,
1176 		},
1177 	},
1178 	{	.name		= "ctr(aes)",
1179 		.drv_name	= "ctr-aes",
1180 		.block_size	= AES_BLOCK_SIZE,
1181 		.enc_type	= (ENC_TYPE_ALG_AES128 |
1182 				   ENC_TYPE_CHAINING_COUNTER),
1183 		.skcipher	= {
1184 			.ivsize		= AES_BLOCK_SIZE,
1185 			.min_keysize	= AES_MIN_KEY_SIZE,
1186 			.max_keysize	= AES_MAX_KEY_SIZE,
1187 			.setkey		= n2_aes_setkey,
1188 			.encrypt	= n2_encrypt_chaining,
1189 			.decrypt	= n2_encrypt_chaining,
1190 		},
1191 	},
1192 
1193 };
1194 #define NUM_CIPHER_TMPLS ARRAY_SIZE(skcipher_tmpls)
1195 
1196 static LIST_HEAD(skcipher_algs);
1197 
1198 struct n2_hash_tmpl {
1199 	const char	*name;
1200 	const u8	*hash_zero;
1201 	const u8	*hash_init;
1202 	u8		hw_op_hashsz;
1203 	u8		digest_size;
1204 	u8		statesize;
1205 	u8		block_size;
1206 	u8		auth_type;
1207 	u8		hmac_type;
1208 };
1209 
1210 static const __le32 n2_md5_init[MD5_HASH_WORDS] = {
1211 	cpu_to_le32(MD5_H0),
1212 	cpu_to_le32(MD5_H1),
1213 	cpu_to_le32(MD5_H2),
1214 	cpu_to_le32(MD5_H3),
1215 };
1216 static const u32 n2_sha1_init[SHA1_DIGEST_SIZE / 4] = {
1217 	SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1218 };
1219 static const u32 n2_sha256_init[SHA256_DIGEST_SIZE / 4] = {
1220 	SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1221 	SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1222 };
1223 static const u32 n2_sha224_init[SHA256_DIGEST_SIZE / 4] = {
1224 	SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1225 	SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1226 };
1227 
1228 static const struct n2_hash_tmpl hash_tmpls[] = {
1229 	{ .name		= "md5",
1230 	  .hash_zero	= md5_zero_message_hash,
1231 	  .hash_init	= (u8 *)n2_md5_init,
1232 	  .auth_type	= AUTH_TYPE_MD5,
1233 	  .hmac_type	= AUTH_TYPE_HMAC_MD5,
1234 	  .hw_op_hashsz	= MD5_DIGEST_SIZE,
1235 	  .digest_size	= MD5_DIGEST_SIZE,
1236 	  .statesize	= sizeof(struct md5_state),
1237 	  .block_size	= MD5_HMAC_BLOCK_SIZE },
1238 	{ .name		= "sha1",
1239 	  .hash_zero	= sha1_zero_message_hash,
1240 	  .hash_init	= (u8 *)n2_sha1_init,
1241 	  .auth_type	= AUTH_TYPE_SHA1,
1242 	  .hmac_type	= AUTH_TYPE_HMAC_SHA1,
1243 	  .hw_op_hashsz	= SHA1_DIGEST_SIZE,
1244 	  .digest_size	= SHA1_DIGEST_SIZE,
1245 	  .statesize	= sizeof(struct sha1_state),
1246 	  .block_size	= SHA1_BLOCK_SIZE },
1247 	{ .name		= "sha256",
1248 	  .hash_zero	= sha256_zero_message_hash,
1249 	  .hash_init	= (u8 *)n2_sha256_init,
1250 	  .auth_type	= AUTH_TYPE_SHA256,
1251 	  .hmac_type	= AUTH_TYPE_HMAC_SHA256,
1252 	  .hw_op_hashsz	= SHA256_DIGEST_SIZE,
1253 	  .digest_size	= SHA256_DIGEST_SIZE,
1254 	  .statesize	= sizeof(struct sha256_state),
1255 	  .block_size	= SHA256_BLOCK_SIZE },
1256 	{ .name		= "sha224",
1257 	  .hash_zero	= sha224_zero_message_hash,
1258 	  .hash_init	= (u8 *)n2_sha224_init,
1259 	  .auth_type	= AUTH_TYPE_SHA256,
1260 	  .hmac_type	= AUTH_TYPE_RESERVED,
1261 	  .hw_op_hashsz	= SHA256_DIGEST_SIZE,
1262 	  .digest_size	= SHA224_DIGEST_SIZE,
1263 	  .statesize	= sizeof(struct sha256_state),
1264 	  .block_size	= SHA224_BLOCK_SIZE },
1265 };
1266 #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1267 
1268 static LIST_HEAD(ahash_algs);
1269 static LIST_HEAD(hmac_algs);
1270 
1271 static int algs_registered;
1272 
1273 static void __n2_unregister_algs(void)
1274 {
1275 	struct n2_skcipher_alg *skcipher, *skcipher_tmp;
1276 	struct n2_ahash_alg *alg, *alg_tmp;
1277 	struct n2_hmac_alg *hmac, *hmac_tmp;
1278 
1279 	list_for_each_entry_safe(skcipher, skcipher_tmp, &skcipher_algs, entry) {
1280 		crypto_unregister_skcipher(&skcipher->skcipher);
1281 		list_del(&skcipher->entry);
1282 		kfree(skcipher);
1283 	}
1284 	list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1285 		crypto_unregister_ahash(&hmac->derived.alg);
1286 		list_del(&hmac->derived.entry);
1287 		kfree(hmac);
1288 	}
1289 	list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1290 		crypto_unregister_ahash(&alg->alg);
1291 		list_del(&alg->entry);
1292 		kfree(alg);
1293 	}
1294 }
1295 
1296 static int n2_skcipher_init_tfm(struct crypto_skcipher *tfm)
1297 {
1298 	crypto_skcipher_set_reqsize(tfm, sizeof(struct n2_request_context));
1299 	return 0;
1300 }
1301 
1302 static int __n2_register_one_skcipher(const struct n2_skcipher_tmpl *tmpl)
1303 {
1304 	struct n2_skcipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1305 	struct skcipher_alg *alg;
1306 	int err;
1307 
1308 	if (!p)
1309 		return -ENOMEM;
1310 
1311 	alg = &p->skcipher;
1312 	*alg = tmpl->skcipher;
1313 
1314 	snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1315 	snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1316 	alg->base.cra_priority = N2_CRA_PRIORITY;
1317 	alg->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC |
1318 			      CRYPTO_ALG_ALLOCATES_MEMORY;
1319 	alg->base.cra_blocksize = tmpl->block_size;
1320 	p->enc_type = tmpl->enc_type;
1321 	alg->base.cra_ctxsize = sizeof(struct n2_skcipher_context);
1322 	alg->base.cra_module = THIS_MODULE;
1323 	alg->init = n2_skcipher_init_tfm;
1324 
1325 	list_add(&p->entry, &skcipher_algs);
1326 	err = crypto_register_skcipher(alg);
1327 	if (err) {
1328 		pr_err("%s alg registration failed\n", alg->base.cra_name);
1329 		list_del(&p->entry);
1330 		kfree(p);
1331 	} else {
1332 		pr_info("%s alg registered\n", alg->base.cra_name);
1333 	}
1334 	return err;
1335 }
1336 
1337 static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1338 {
1339 	struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1340 	struct ahash_alg *ahash;
1341 	struct crypto_alg *base;
1342 	int err;
1343 
1344 	if (!p)
1345 		return -ENOMEM;
1346 
1347 	p->child_alg = n2ahash->alg.halg.base.cra_name;
1348 	memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1349 	INIT_LIST_HEAD(&p->derived.entry);
1350 
1351 	ahash = &p->derived.alg;
1352 	ahash->digest = n2_hmac_async_digest;
1353 	ahash->setkey = n2_hmac_async_setkey;
1354 
1355 	base = &ahash->halg.base;
1356 	if (snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)",
1357 		     p->child_alg) >= CRYPTO_MAX_ALG_NAME)
1358 		goto out_free_p;
1359 	if (snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2",
1360 		     p->child_alg) >= CRYPTO_MAX_ALG_NAME)
1361 		goto out_free_p;
1362 
1363 	base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1364 	base->cra_init = n2_hmac_cra_init;
1365 	base->cra_exit = n2_hmac_cra_exit;
1366 
1367 	list_add(&p->derived.entry, &hmac_algs);
1368 	err = crypto_register_ahash(ahash);
1369 	if (err) {
1370 		pr_err("%s alg registration failed\n", base->cra_name);
1371 		list_del(&p->derived.entry);
1372 out_free_p:
1373 		kfree(p);
1374 	} else {
1375 		pr_info("%s alg registered\n", base->cra_name);
1376 	}
1377 	return err;
1378 }
1379 
1380 static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1381 {
1382 	struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1383 	struct hash_alg_common *halg;
1384 	struct crypto_alg *base;
1385 	struct ahash_alg *ahash;
1386 	int err;
1387 
1388 	if (!p)
1389 		return -ENOMEM;
1390 
1391 	p->hash_zero = tmpl->hash_zero;
1392 	p->hash_init = tmpl->hash_init;
1393 	p->auth_type = tmpl->auth_type;
1394 	p->hmac_type = tmpl->hmac_type;
1395 	p->hw_op_hashsz = tmpl->hw_op_hashsz;
1396 	p->digest_size = tmpl->digest_size;
1397 
1398 	ahash = &p->alg;
1399 	ahash->init = n2_hash_async_init;
1400 	ahash->update = n2_hash_async_update;
1401 	ahash->final = n2_hash_async_final;
1402 	ahash->finup = n2_hash_async_finup;
1403 	ahash->digest = n2_hash_async_digest;
1404 	ahash->export = n2_hash_async_noexport;
1405 	ahash->import = n2_hash_async_noimport;
1406 
1407 	halg = &ahash->halg;
1408 	halg->digestsize = tmpl->digest_size;
1409 	halg->statesize = tmpl->statesize;
1410 
1411 	base = &halg->base;
1412 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1413 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1414 	base->cra_priority = N2_CRA_PRIORITY;
1415 	base->cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1416 			  CRYPTO_ALG_NEED_FALLBACK;
1417 	base->cra_blocksize = tmpl->block_size;
1418 	base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1419 	base->cra_module = THIS_MODULE;
1420 	base->cra_init = n2_hash_cra_init;
1421 	base->cra_exit = n2_hash_cra_exit;
1422 
1423 	list_add(&p->entry, &ahash_algs);
1424 	err = crypto_register_ahash(ahash);
1425 	if (err) {
1426 		pr_err("%s alg registration failed\n", base->cra_name);
1427 		list_del(&p->entry);
1428 		kfree(p);
1429 	} else {
1430 		pr_info("%s alg registered\n", base->cra_name);
1431 	}
1432 	if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1433 		err = __n2_register_one_hmac(p);
1434 	return err;
1435 }
1436 
1437 static int n2_register_algs(void)
1438 {
1439 	int i, err = 0;
1440 
1441 	mutex_lock(&spu_lock);
1442 	if (algs_registered++)
1443 		goto out;
1444 
1445 	for (i = 0; i < NUM_HASH_TMPLS; i++) {
1446 		err = __n2_register_one_ahash(&hash_tmpls[i]);
1447 		if (err) {
1448 			__n2_unregister_algs();
1449 			goto out;
1450 		}
1451 	}
1452 	for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1453 		err = __n2_register_one_skcipher(&skcipher_tmpls[i]);
1454 		if (err) {
1455 			__n2_unregister_algs();
1456 			goto out;
1457 		}
1458 	}
1459 
1460 out:
1461 	mutex_unlock(&spu_lock);
1462 	return err;
1463 }
1464 
1465 static void n2_unregister_algs(void)
1466 {
1467 	mutex_lock(&spu_lock);
1468 	if (!--algs_registered)
1469 		__n2_unregister_algs();
1470 	mutex_unlock(&spu_lock);
1471 }
1472 
1473 /* To map CWQ queues to interrupt sources, the hypervisor API provides
1474  * a devino.  This isn't very useful to us because all of the
1475  * interrupts listed in the device_node have been translated to
1476  * Linux virtual IRQ cookie numbers.
1477  *
1478  * So we have to back-translate, going through the 'intr' and 'ino'
1479  * property tables of the n2cp MDESC node, matching it with the OF
1480  * 'interrupts' property entries, in order to figure out which
1481  * devino goes to which already-translated IRQ.
1482  */
1483 static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1484 			     unsigned long dev_ino)
1485 {
1486 	const unsigned int *dev_intrs;
1487 	unsigned int intr;
1488 	int i;
1489 
1490 	for (i = 0; i < ip->num_intrs; i++) {
1491 		if (ip->ino_table[i].ino == dev_ino)
1492 			break;
1493 	}
1494 	if (i == ip->num_intrs)
1495 		return -ENODEV;
1496 
1497 	intr = ip->ino_table[i].intr;
1498 
1499 	dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1500 	if (!dev_intrs)
1501 		return -ENODEV;
1502 
1503 	for (i = 0; i < dev->archdata.num_irqs; i++) {
1504 		if (dev_intrs[i] == intr)
1505 			return i;
1506 	}
1507 
1508 	return -ENODEV;
1509 }
1510 
1511 static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1512 		       const char *irq_name, struct spu_queue *p,
1513 		       irq_handler_t handler)
1514 {
1515 	unsigned long herr;
1516 	int index;
1517 
1518 	herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1519 	if (herr)
1520 		return -EINVAL;
1521 
1522 	index = find_devino_index(dev, ip, p->devino);
1523 	if (index < 0)
1524 		return index;
1525 
1526 	p->irq = dev->archdata.irqs[index];
1527 
1528 	sprintf(p->irq_name, "%s-%d", irq_name, index);
1529 
1530 	return request_irq(p->irq, handler, 0, p->irq_name, p);
1531 }
1532 
1533 static struct kmem_cache *queue_cache[2];
1534 
1535 static void *new_queue(unsigned long q_type)
1536 {
1537 	return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1538 }
1539 
1540 static void free_queue(void *p, unsigned long q_type)
1541 {
1542 	kmem_cache_free(queue_cache[q_type - 1], p);
1543 }
1544 
1545 static int queue_cache_init(void)
1546 {
1547 	if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1548 		queue_cache[HV_NCS_QTYPE_MAU - 1] =
1549 			kmem_cache_create("mau_queue",
1550 					  (MAU_NUM_ENTRIES *
1551 					   MAU_ENTRY_SIZE),
1552 					  MAU_ENTRY_SIZE, 0, NULL);
1553 	if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1554 		return -ENOMEM;
1555 
1556 	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1557 		queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1558 			kmem_cache_create("cwq_queue",
1559 					  (CWQ_NUM_ENTRIES *
1560 					   CWQ_ENTRY_SIZE),
1561 					  CWQ_ENTRY_SIZE, 0, NULL);
1562 	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1563 		kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1564 		queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1565 		return -ENOMEM;
1566 	}
1567 	return 0;
1568 }
1569 
1570 static void queue_cache_destroy(void)
1571 {
1572 	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1573 	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
1574 	queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1575 	queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL;
1576 }
1577 
1578 static long spu_queue_register_workfn(void *arg)
1579 {
1580 	struct spu_qreg *qr = arg;
1581 	struct spu_queue *p = qr->queue;
1582 	unsigned long q_type = qr->type;
1583 	unsigned long hv_ret;
1584 
1585 	hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1586 				 CWQ_NUM_ENTRIES, &p->qhandle);
1587 	if (!hv_ret)
1588 		sun4v_ncs_sethead_marker(p->qhandle, 0);
1589 
1590 	return hv_ret ? -EINVAL : 0;
1591 }
1592 
1593 static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1594 {
1595 	int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
1596 	struct spu_qreg qr = { .queue = p, .type = q_type };
1597 
1598 	return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
1599 }
1600 
1601 static int spu_queue_setup(struct spu_queue *p)
1602 {
1603 	int err;
1604 
1605 	p->q = new_queue(p->q_type);
1606 	if (!p->q)
1607 		return -ENOMEM;
1608 
1609 	err = spu_queue_register(p, p->q_type);
1610 	if (err) {
1611 		free_queue(p->q, p->q_type);
1612 		p->q = NULL;
1613 	}
1614 
1615 	return err;
1616 }
1617 
1618 static void spu_queue_destroy(struct spu_queue *p)
1619 {
1620 	unsigned long hv_ret;
1621 
1622 	if (!p->q)
1623 		return;
1624 
1625 	hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1626 
1627 	if (!hv_ret)
1628 		free_queue(p->q, p->q_type);
1629 }
1630 
1631 static void spu_list_destroy(struct list_head *list)
1632 {
1633 	struct spu_queue *p, *n;
1634 
1635 	list_for_each_entry_safe(p, n, list, list) {
1636 		int i;
1637 
1638 		for (i = 0; i < NR_CPUS; i++) {
1639 			if (cpu_to_cwq[i] == p)
1640 				cpu_to_cwq[i] = NULL;
1641 		}
1642 
1643 		if (p->irq) {
1644 			free_irq(p->irq, p);
1645 			p->irq = 0;
1646 		}
1647 		spu_queue_destroy(p);
1648 		list_del(&p->list);
1649 		kfree(p);
1650 	}
1651 }
1652 
1653 /* Walk the backward arcs of a CWQ 'exec-unit' node,
1654  * gathering cpu membership information.
1655  */
1656 static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1657 			       struct platform_device *dev,
1658 			       u64 node, struct spu_queue *p,
1659 			       struct spu_queue **table)
1660 {
1661 	u64 arc;
1662 
1663 	mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1664 		u64 tgt = mdesc_arc_target(mdesc, arc);
1665 		const char *name = mdesc_node_name(mdesc, tgt);
1666 		const u64 *id;
1667 
1668 		if (strcmp(name, "cpu"))
1669 			continue;
1670 		id = mdesc_get_property(mdesc, tgt, "id", NULL);
1671 		if (table[*id] != NULL) {
1672 			dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n",
1673 				dev->dev.of_node);
1674 			return -EINVAL;
1675 		}
1676 		cpumask_set_cpu(*id, &p->sharing);
1677 		table[*id] = p;
1678 	}
1679 	return 0;
1680 }
1681 
1682 /* Process an 'exec-unit' MDESC node of type 'cwq'.  */
1683 static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1684 			    struct platform_device *dev, struct mdesc_handle *mdesc,
1685 			    u64 node, const char *iname, unsigned long q_type,
1686 			    irq_handler_t handler, struct spu_queue **table)
1687 {
1688 	struct spu_queue *p;
1689 	int err;
1690 
1691 	p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1692 	if (!p) {
1693 		dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n",
1694 			dev->dev.of_node);
1695 		return -ENOMEM;
1696 	}
1697 
1698 	cpumask_clear(&p->sharing);
1699 	spin_lock_init(&p->lock);
1700 	p->q_type = q_type;
1701 	INIT_LIST_HEAD(&p->jobs);
1702 	list_add(&p->list, list);
1703 
1704 	err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1705 	if (err)
1706 		return err;
1707 
1708 	err = spu_queue_setup(p);
1709 	if (err)
1710 		return err;
1711 
1712 	return spu_map_ino(dev, ip, iname, p, handler);
1713 }
1714 
1715 static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1716 			  struct spu_mdesc_info *ip, struct list_head *list,
1717 			  const char *exec_name, unsigned long q_type,
1718 			  irq_handler_t handler, struct spu_queue **table)
1719 {
1720 	int err = 0;
1721 	u64 node;
1722 
1723 	mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1724 		const char *type;
1725 
1726 		type = mdesc_get_property(mdesc, node, "type", NULL);
1727 		if (!type || strcmp(type, exec_name))
1728 			continue;
1729 
1730 		err = handle_exec_unit(ip, list, dev, mdesc, node,
1731 				       exec_name, q_type, handler, table);
1732 		if (err) {
1733 			spu_list_destroy(list);
1734 			break;
1735 		}
1736 	}
1737 
1738 	return err;
1739 }
1740 
1741 static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
1742 			 struct spu_mdesc_info *ip)
1743 {
1744 	const u64 *ino;
1745 	int ino_len;
1746 	int i;
1747 
1748 	ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1749 	if (!ino) {
1750 		printk("NO 'ino'\n");
1751 		return -ENODEV;
1752 	}
1753 
1754 	ip->num_intrs = ino_len / sizeof(u64);
1755 	ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1756 				 ip->num_intrs),
1757 				GFP_KERNEL);
1758 	if (!ip->ino_table)
1759 		return -ENOMEM;
1760 
1761 	for (i = 0; i < ip->num_intrs; i++) {
1762 		struct ino_blob *b = &ip->ino_table[i];
1763 		b->intr = i + 1;
1764 		b->ino = ino[i];
1765 	}
1766 
1767 	return 0;
1768 }
1769 
1770 static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1771 				struct platform_device *dev,
1772 				struct spu_mdesc_info *ip,
1773 				const char *node_name)
1774 {
1775 	u64 node, reg;
1776 
1777 	if (of_property_read_reg(dev->dev.of_node, 0, &reg, NULL) < 0)
1778 		return -ENODEV;
1779 
1780 	mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1781 		const char *name;
1782 		const u64 *chdl;
1783 
1784 		name = mdesc_get_property(mdesc, node, "name", NULL);
1785 		if (!name || strcmp(name, node_name))
1786 			continue;
1787 		chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1788 		if (!chdl || (*chdl != reg))
1789 			continue;
1790 		ip->cfg_handle = *chdl;
1791 		return get_irq_props(mdesc, node, ip);
1792 	}
1793 
1794 	return -ENODEV;
1795 }
1796 
1797 static unsigned long n2_spu_hvapi_major;
1798 static unsigned long n2_spu_hvapi_minor;
1799 
1800 static int n2_spu_hvapi_register(void)
1801 {
1802 	int err;
1803 
1804 	n2_spu_hvapi_major = 2;
1805 	n2_spu_hvapi_minor = 0;
1806 
1807 	err = sun4v_hvapi_register(HV_GRP_NCS,
1808 				   n2_spu_hvapi_major,
1809 				   &n2_spu_hvapi_minor);
1810 
1811 	if (!err)
1812 		pr_info("Registered NCS HVAPI version %lu.%lu\n",
1813 			n2_spu_hvapi_major,
1814 			n2_spu_hvapi_minor);
1815 
1816 	return err;
1817 }
1818 
1819 static void n2_spu_hvapi_unregister(void)
1820 {
1821 	sun4v_hvapi_unregister(HV_GRP_NCS);
1822 }
1823 
1824 static int global_ref;
1825 
1826 static int grab_global_resources(void)
1827 {
1828 	int err = 0;
1829 
1830 	mutex_lock(&spu_lock);
1831 
1832 	if (global_ref++)
1833 		goto out;
1834 
1835 	err = n2_spu_hvapi_register();
1836 	if (err)
1837 		goto out;
1838 
1839 	err = queue_cache_init();
1840 	if (err)
1841 		goto out_hvapi_release;
1842 
1843 	err = -ENOMEM;
1844 	cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1845 			     GFP_KERNEL);
1846 	if (!cpu_to_cwq)
1847 		goto out_queue_cache_destroy;
1848 
1849 	cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1850 			     GFP_KERNEL);
1851 	if (!cpu_to_mau)
1852 		goto out_free_cwq_table;
1853 
1854 	err = 0;
1855 
1856 out:
1857 	if (err)
1858 		global_ref--;
1859 	mutex_unlock(&spu_lock);
1860 	return err;
1861 
1862 out_free_cwq_table:
1863 	kfree(cpu_to_cwq);
1864 	cpu_to_cwq = NULL;
1865 
1866 out_queue_cache_destroy:
1867 	queue_cache_destroy();
1868 
1869 out_hvapi_release:
1870 	n2_spu_hvapi_unregister();
1871 	goto out;
1872 }
1873 
1874 static void release_global_resources(void)
1875 {
1876 	mutex_lock(&spu_lock);
1877 	if (!--global_ref) {
1878 		kfree(cpu_to_cwq);
1879 		cpu_to_cwq = NULL;
1880 
1881 		kfree(cpu_to_mau);
1882 		cpu_to_mau = NULL;
1883 
1884 		queue_cache_destroy();
1885 		n2_spu_hvapi_unregister();
1886 	}
1887 	mutex_unlock(&spu_lock);
1888 }
1889 
1890 static struct n2_crypto *alloc_n2cp(void)
1891 {
1892 	struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1893 
1894 	if (np)
1895 		INIT_LIST_HEAD(&np->cwq_list);
1896 
1897 	return np;
1898 }
1899 
1900 static void free_n2cp(struct n2_crypto *np)
1901 {
1902 	kfree(np->cwq_info.ino_table);
1903 	np->cwq_info.ino_table = NULL;
1904 
1905 	kfree(np);
1906 }
1907 
1908 static void n2_spu_driver_version(void)
1909 {
1910 	static int n2_spu_version_printed;
1911 
1912 	if (n2_spu_version_printed++ == 0)
1913 		pr_info("%s", version);
1914 }
1915 
1916 static int n2_crypto_probe(struct platform_device *dev)
1917 {
1918 	struct mdesc_handle *mdesc;
1919 	struct n2_crypto *np;
1920 	int err;
1921 
1922 	n2_spu_driver_version();
1923 
1924 	pr_info("Found N2CP at %pOF\n", dev->dev.of_node);
1925 
1926 	np = alloc_n2cp();
1927 	if (!np) {
1928 		dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n",
1929 			dev->dev.of_node);
1930 		return -ENOMEM;
1931 	}
1932 
1933 	err = grab_global_resources();
1934 	if (err) {
1935 		dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
1936 			dev->dev.of_node);
1937 		goto out_free_n2cp;
1938 	}
1939 
1940 	mdesc = mdesc_grab();
1941 
1942 	if (!mdesc) {
1943 		dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
1944 			dev->dev.of_node);
1945 		err = -ENODEV;
1946 		goto out_free_global;
1947 	}
1948 	err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
1949 	if (err) {
1950 		dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
1951 			dev->dev.of_node);
1952 		mdesc_release(mdesc);
1953 		goto out_free_global;
1954 	}
1955 
1956 	err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
1957 			     "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
1958 			     cpu_to_cwq);
1959 	mdesc_release(mdesc);
1960 
1961 	if (err) {
1962 		dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n",
1963 			dev->dev.of_node);
1964 		goto out_free_global;
1965 	}
1966 
1967 	err = n2_register_algs();
1968 	if (err) {
1969 		dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n",
1970 			dev->dev.of_node);
1971 		goto out_free_spu_list;
1972 	}
1973 
1974 	dev_set_drvdata(&dev->dev, np);
1975 
1976 	return 0;
1977 
1978 out_free_spu_list:
1979 	spu_list_destroy(&np->cwq_list);
1980 
1981 out_free_global:
1982 	release_global_resources();
1983 
1984 out_free_n2cp:
1985 	free_n2cp(np);
1986 
1987 	return err;
1988 }
1989 
1990 static void n2_crypto_remove(struct platform_device *dev)
1991 {
1992 	struct n2_crypto *np = dev_get_drvdata(&dev->dev);
1993 
1994 	n2_unregister_algs();
1995 
1996 	spu_list_destroy(&np->cwq_list);
1997 
1998 	release_global_resources();
1999 
2000 	free_n2cp(np);
2001 }
2002 
2003 static struct n2_mau *alloc_ncp(void)
2004 {
2005 	struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2006 
2007 	if (mp)
2008 		INIT_LIST_HEAD(&mp->mau_list);
2009 
2010 	return mp;
2011 }
2012 
2013 static void free_ncp(struct n2_mau *mp)
2014 {
2015 	kfree(mp->mau_info.ino_table);
2016 	mp->mau_info.ino_table = NULL;
2017 
2018 	kfree(mp);
2019 }
2020 
2021 static int n2_mau_probe(struct platform_device *dev)
2022 {
2023 	struct mdesc_handle *mdesc;
2024 	struct n2_mau *mp;
2025 	int err;
2026 
2027 	n2_spu_driver_version();
2028 
2029 	pr_info("Found NCP at %pOF\n", dev->dev.of_node);
2030 
2031 	mp = alloc_ncp();
2032 	if (!mp) {
2033 		dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n",
2034 			dev->dev.of_node);
2035 		return -ENOMEM;
2036 	}
2037 
2038 	err = grab_global_resources();
2039 	if (err) {
2040 		dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2041 			dev->dev.of_node);
2042 		goto out_free_ncp;
2043 	}
2044 
2045 	mdesc = mdesc_grab();
2046 
2047 	if (!mdesc) {
2048 		dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2049 			dev->dev.of_node);
2050 		err = -ENODEV;
2051 		goto out_free_global;
2052 	}
2053 
2054 	err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2055 	if (err) {
2056 		dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2057 			dev->dev.of_node);
2058 		mdesc_release(mdesc);
2059 		goto out_free_global;
2060 	}
2061 
2062 	err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2063 			     "mau", HV_NCS_QTYPE_MAU, mau_intr,
2064 			     cpu_to_mau);
2065 	mdesc_release(mdesc);
2066 
2067 	if (err) {
2068 		dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n",
2069 			dev->dev.of_node);
2070 		goto out_free_global;
2071 	}
2072 
2073 	dev_set_drvdata(&dev->dev, mp);
2074 
2075 	return 0;
2076 
2077 out_free_global:
2078 	release_global_resources();
2079 
2080 out_free_ncp:
2081 	free_ncp(mp);
2082 
2083 	return err;
2084 }
2085 
2086 static void n2_mau_remove(struct platform_device *dev)
2087 {
2088 	struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2089 
2090 	spu_list_destroy(&mp->mau_list);
2091 
2092 	release_global_resources();
2093 
2094 	free_ncp(mp);
2095 }
2096 
2097 static const struct of_device_id n2_crypto_match[] = {
2098 	{
2099 		.name = "n2cp",
2100 		.compatible = "SUNW,n2-cwq",
2101 	},
2102 	{
2103 		.name = "n2cp",
2104 		.compatible = "SUNW,vf-cwq",
2105 	},
2106 	{
2107 		.name = "n2cp",
2108 		.compatible = "SUNW,kt-cwq",
2109 	},
2110 	{},
2111 };
2112 
2113 MODULE_DEVICE_TABLE(of, n2_crypto_match);
2114 
2115 static struct platform_driver n2_crypto_driver = {
2116 	.driver = {
2117 		.name		=	"n2cp",
2118 		.of_match_table	=	n2_crypto_match,
2119 	},
2120 	.probe		=	n2_crypto_probe,
2121 	.remove_new	=	n2_crypto_remove,
2122 };
2123 
2124 static const struct of_device_id n2_mau_match[] = {
2125 	{
2126 		.name = "ncp",
2127 		.compatible = "SUNW,n2-mau",
2128 	},
2129 	{
2130 		.name = "ncp",
2131 		.compatible = "SUNW,vf-mau",
2132 	},
2133 	{
2134 		.name = "ncp",
2135 		.compatible = "SUNW,kt-mau",
2136 	},
2137 	{},
2138 };
2139 
2140 MODULE_DEVICE_TABLE(of, n2_mau_match);
2141 
2142 static struct platform_driver n2_mau_driver = {
2143 	.driver = {
2144 		.name		=	"ncp",
2145 		.of_match_table	=	n2_mau_match,
2146 	},
2147 	.probe		=	n2_mau_probe,
2148 	.remove_new	=	n2_mau_remove,
2149 };
2150 
2151 static struct platform_driver * const drivers[] = {
2152 	&n2_crypto_driver,
2153 	&n2_mau_driver,
2154 };
2155 
2156 static int __init n2_init(void)
2157 {
2158 	return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2159 }
2160 
2161 static void __exit n2_exit(void)
2162 {
2163 	platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2164 }
2165 
2166 module_init(n2_init);
2167 module_exit(n2_exit);
2168