1 // SPDX-License-Identifier: GPL-2.0-only 2 /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support. 3 * 4 * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net> 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/of.h> 12 #include <linux/of_address.h> 13 #include <linux/platform_device.h> 14 #include <linux/cpumask.h> 15 #include <linux/slab.h> 16 #include <linux/interrupt.h> 17 #include <linux/crypto.h> 18 #include <crypto/md5.h> 19 #include <crypto/sha1.h> 20 #include <crypto/sha2.h> 21 #include <crypto/aes.h> 22 #include <crypto/internal/des.h> 23 #include <linux/mutex.h> 24 #include <linux/delay.h> 25 #include <linux/sched.h> 26 27 #include <crypto/internal/hash.h> 28 #include <crypto/internal/skcipher.h> 29 #include <crypto/scatterwalk.h> 30 #include <crypto/algapi.h> 31 32 #include <asm/hypervisor.h> 33 #include <asm/mdesc.h> 34 35 #include "n2_core.h" 36 37 #define DRV_MODULE_NAME "n2_crypto" 38 #define DRV_MODULE_VERSION "0.2" 39 #define DRV_MODULE_RELDATE "July 28, 2011" 40 41 static const char version[] = 42 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n"; 43 44 MODULE_AUTHOR("David S. Miller <davem@davemloft.net>"); 45 MODULE_DESCRIPTION("Niagara2 Crypto driver"); 46 MODULE_LICENSE("GPL"); 47 MODULE_VERSION(DRV_MODULE_VERSION); 48 49 #define N2_CRA_PRIORITY 200 50 51 static DEFINE_MUTEX(spu_lock); 52 53 struct spu_queue { 54 cpumask_t sharing; 55 unsigned long qhandle; 56 57 spinlock_t lock; 58 u8 q_type; 59 void *q; 60 unsigned long head; 61 unsigned long tail; 62 struct list_head jobs; 63 64 unsigned long devino; 65 66 char irq_name[32]; 67 unsigned int irq; 68 69 struct list_head list; 70 }; 71 72 struct spu_qreg { 73 struct spu_queue *queue; 74 unsigned long type; 75 }; 76 77 static struct spu_queue **cpu_to_cwq; 78 static struct spu_queue **cpu_to_mau; 79 80 static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off) 81 { 82 if (q->q_type == HV_NCS_QTYPE_MAU) { 83 off += MAU_ENTRY_SIZE; 84 if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES)) 85 off = 0; 86 } else { 87 off += CWQ_ENTRY_SIZE; 88 if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES)) 89 off = 0; 90 } 91 return off; 92 } 93 94 struct n2_request_common { 95 struct list_head entry; 96 unsigned int offset; 97 }; 98 #define OFFSET_NOT_RUNNING (~(unsigned int)0) 99 100 /* An async job request records the final tail value it used in 101 * n2_request_common->offset, test to see if that offset is in 102 * the range old_head, new_head, inclusive. 103 */ 104 static inline bool job_finished(struct spu_queue *q, unsigned int offset, 105 unsigned long old_head, unsigned long new_head) 106 { 107 if (old_head <= new_head) { 108 if (offset > old_head && offset <= new_head) 109 return true; 110 } else { 111 if (offset > old_head || offset <= new_head) 112 return true; 113 } 114 return false; 115 } 116 117 /* When the HEAD marker is unequal to the actual HEAD, we get 118 * a virtual device INO interrupt. We should process the 119 * completed CWQ entries and adjust the HEAD marker to clear 120 * the IRQ. 121 */ 122 static irqreturn_t cwq_intr(int irq, void *dev_id) 123 { 124 unsigned long off, new_head, hv_ret; 125 struct spu_queue *q = dev_id; 126 127 pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n", 128 smp_processor_id(), q->qhandle); 129 130 spin_lock(&q->lock); 131 132 hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head); 133 134 pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n", 135 smp_processor_id(), new_head, hv_ret); 136 137 for (off = q->head; off != new_head; off = spu_next_offset(q, off)) { 138 /* XXX ... XXX */ 139 } 140 141 hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head); 142 if (hv_ret == HV_EOK) 143 q->head = new_head; 144 145 spin_unlock(&q->lock); 146 147 return IRQ_HANDLED; 148 } 149 150 static irqreturn_t mau_intr(int irq, void *dev_id) 151 { 152 struct spu_queue *q = dev_id; 153 unsigned long head, hv_ret; 154 155 spin_lock(&q->lock); 156 157 pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n", 158 smp_processor_id(), q->qhandle); 159 160 hv_ret = sun4v_ncs_gethead(q->qhandle, &head); 161 162 pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n", 163 smp_processor_id(), head, hv_ret); 164 165 sun4v_ncs_sethead_marker(q->qhandle, head); 166 167 spin_unlock(&q->lock); 168 169 return IRQ_HANDLED; 170 } 171 172 static void *spu_queue_next(struct spu_queue *q, void *cur) 173 { 174 return q->q + spu_next_offset(q, cur - q->q); 175 } 176 177 static int spu_queue_num_free(struct spu_queue *q) 178 { 179 unsigned long head = q->head; 180 unsigned long tail = q->tail; 181 unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES); 182 unsigned long diff; 183 184 if (head > tail) 185 diff = head - tail; 186 else 187 diff = (end - tail) + head; 188 189 return (diff / CWQ_ENTRY_SIZE) - 1; 190 } 191 192 static void *spu_queue_alloc(struct spu_queue *q, int num_entries) 193 { 194 int avail = spu_queue_num_free(q); 195 196 if (avail >= num_entries) 197 return q->q + q->tail; 198 199 return NULL; 200 } 201 202 static unsigned long spu_queue_submit(struct spu_queue *q, void *last) 203 { 204 unsigned long hv_ret, new_tail; 205 206 new_tail = spu_next_offset(q, last - q->q); 207 208 hv_ret = sun4v_ncs_settail(q->qhandle, new_tail); 209 if (hv_ret == HV_EOK) 210 q->tail = new_tail; 211 return hv_ret; 212 } 213 214 static u64 control_word_base(unsigned int len, unsigned int hmac_key_len, 215 int enc_type, int auth_type, 216 unsigned int hash_len, 217 bool sfas, bool sob, bool eob, bool encrypt, 218 int opcode) 219 { 220 u64 word = (len - 1) & CONTROL_LEN; 221 222 word |= ((u64) opcode << CONTROL_OPCODE_SHIFT); 223 word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT); 224 word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT); 225 if (sfas) 226 word |= CONTROL_STORE_FINAL_AUTH_STATE; 227 if (sob) 228 word |= CONTROL_START_OF_BLOCK; 229 if (eob) 230 word |= CONTROL_END_OF_BLOCK; 231 if (encrypt) 232 word |= CONTROL_ENCRYPT; 233 if (hmac_key_len) 234 word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT; 235 if (hash_len) 236 word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT; 237 238 return word; 239 } 240 241 #if 0 242 static inline bool n2_should_run_async(struct spu_queue *qp, int this_len) 243 { 244 if (this_len >= 64 || 245 qp->head != qp->tail) 246 return true; 247 return false; 248 } 249 #endif 250 251 struct n2_ahash_alg { 252 struct list_head entry; 253 const u8 *hash_zero; 254 const u8 *hash_init; 255 u8 hw_op_hashsz; 256 u8 digest_size; 257 u8 auth_type; 258 u8 hmac_type; 259 struct ahash_alg alg; 260 }; 261 262 static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm) 263 { 264 struct crypto_alg *alg = tfm->__crt_alg; 265 struct ahash_alg *ahash_alg; 266 267 ahash_alg = container_of(alg, struct ahash_alg, halg.base); 268 269 return container_of(ahash_alg, struct n2_ahash_alg, alg); 270 } 271 272 struct n2_hmac_alg { 273 const char *child_alg; 274 struct n2_ahash_alg derived; 275 }; 276 277 static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm) 278 { 279 struct crypto_alg *alg = tfm->__crt_alg; 280 struct ahash_alg *ahash_alg; 281 282 ahash_alg = container_of(alg, struct ahash_alg, halg.base); 283 284 return container_of(ahash_alg, struct n2_hmac_alg, derived.alg); 285 } 286 287 struct n2_hash_ctx { 288 struct crypto_ahash *fallback_tfm; 289 }; 290 291 #define N2_HASH_KEY_MAX 32 /* HW limit for all HMAC requests */ 292 293 struct n2_hmac_ctx { 294 struct n2_hash_ctx base; 295 296 struct crypto_shash *child_shash; 297 298 int hash_key_len; 299 unsigned char hash_key[N2_HASH_KEY_MAX]; 300 }; 301 302 struct n2_hash_req_ctx { 303 union { 304 struct md5_state md5; 305 struct sha1_state sha1; 306 struct sha256_state sha256; 307 } u; 308 309 struct ahash_request fallback_req; 310 }; 311 312 static int n2_hash_async_init(struct ahash_request *req) 313 { 314 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 315 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 316 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); 317 318 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); 319 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; 320 321 return crypto_ahash_init(&rctx->fallback_req); 322 } 323 324 static int n2_hash_async_update(struct ahash_request *req) 325 { 326 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 327 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 328 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); 329 330 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); 331 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; 332 rctx->fallback_req.nbytes = req->nbytes; 333 rctx->fallback_req.src = req->src; 334 335 return crypto_ahash_update(&rctx->fallback_req); 336 } 337 338 static int n2_hash_async_final(struct ahash_request *req) 339 { 340 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 341 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 342 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); 343 344 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); 345 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; 346 rctx->fallback_req.result = req->result; 347 348 return crypto_ahash_final(&rctx->fallback_req); 349 } 350 351 static int n2_hash_async_finup(struct ahash_request *req) 352 { 353 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 354 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 355 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); 356 357 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); 358 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; 359 rctx->fallback_req.nbytes = req->nbytes; 360 rctx->fallback_req.src = req->src; 361 rctx->fallback_req.result = req->result; 362 363 return crypto_ahash_finup(&rctx->fallback_req); 364 } 365 366 static int n2_hash_async_noimport(struct ahash_request *req, const void *in) 367 { 368 return -ENOSYS; 369 } 370 371 static int n2_hash_async_noexport(struct ahash_request *req, void *out) 372 { 373 return -ENOSYS; 374 } 375 376 static int n2_hash_cra_init(struct crypto_tfm *tfm) 377 { 378 const char *fallback_driver_name = crypto_tfm_alg_name(tfm); 379 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); 380 struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash); 381 struct crypto_ahash *fallback_tfm; 382 int err; 383 384 fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0, 385 CRYPTO_ALG_NEED_FALLBACK); 386 if (IS_ERR(fallback_tfm)) { 387 pr_warn("Fallback driver '%s' could not be loaded!\n", 388 fallback_driver_name); 389 err = PTR_ERR(fallback_tfm); 390 goto out; 391 } 392 393 crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) + 394 crypto_ahash_reqsize(fallback_tfm))); 395 396 ctx->fallback_tfm = fallback_tfm; 397 return 0; 398 399 out: 400 return err; 401 } 402 403 static void n2_hash_cra_exit(struct crypto_tfm *tfm) 404 { 405 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); 406 struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash); 407 408 crypto_free_ahash(ctx->fallback_tfm); 409 } 410 411 static int n2_hmac_cra_init(struct crypto_tfm *tfm) 412 { 413 const char *fallback_driver_name = crypto_tfm_alg_name(tfm); 414 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); 415 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash); 416 struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm); 417 struct crypto_ahash *fallback_tfm; 418 struct crypto_shash *child_shash; 419 int err; 420 421 fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0, 422 CRYPTO_ALG_NEED_FALLBACK); 423 if (IS_ERR(fallback_tfm)) { 424 pr_warn("Fallback driver '%s' could not be loaded!\n", 425 fallback_driver_name); 426 err = PTR_ERR(fallback_tfm); 427 goto out; 428 } 429 430 child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0); 431 if (IS_ERR(child_shash)) { 432 pr_warn("Child shash '%s' could not be loaded!\n", 433 n2alg->child_alg); 434 err = PTR_ERR(child_shash); 435 goto out_free_fallback; 436 } 437 438 crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) + 439 crypto_ahash_reqsize(fallback_tfm))); 440 441 ctx->child_shash = child_shash; 442 ctx->base.fallback_tfm = fallback_tfm; 443 return 0; 444 445 out_free_fallback: 446 crypto_free_ahash(fallback_tfm); 447 448 out: 449 return err; 450 } 451 452 static void n2_hmac_cra_exit(struct crypto_tfm *tfm) 453 { 454 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); 455 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash); 456 457 crypto_free_ahash(ctx->base.fallback_tfm); 458 crypto_free_shash(ctx->child_shash); 459 } 460 461 static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key, 462 unsigned int keylen) 463 { 464 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm); 465 struct crypto_shash *child_shash = ctx->child_shash; 466 struct crypto_ahash *fallback_tfm; 467 int err, bs, ds; 468 469 fallback_tfm = ctx->base.fallback_tfm; 470 err = crypto_ahash_setkey(fallback_tfm, key, keylen); 471 if (err) 472 return err; 473 474 bs = crypto_shash_blocksize(child_shash); 475 ds = crypto_shash_digestsize(child_shash); 476 BUG_ON(ds > N2_HASH_KEY_MAX); 477 if (keylen > bs) { 478 err = crypto_shash_tfm_digest(child_shash, key, keylen, 479 ctx->hash_key); 480 if (err) 481 return err; 482 keylen = ds; 483 } else if (keylen <= N2_HASH_KEY_MAX) 484 memcpy(ctx->hash_key, key, keylen); 485 486 ctx->hash_key_len = keylen; 487 488 return err; 489 } 490 491 static unsigned long wait_for_tail(struct spu_queue *qp) 492 { 493 unsigned long head, hv_ret; 494 495 do { 496 hv_ret = sun4v_ncs_gethead(qp->qhandle, &head); 497 if (hv_ret != HV_EOK) { 498 pr_err("Hypervisor error on gethead\n"); 499 break; 500 } 501 if (head == qp->tail) { 502 qp->head = head; 503 break; 504 } 505 } while (1); 506 return hv_ret; 507 } 508 509 static unsigned long submit_and_wait_for_tail(struct spu_queue *qp, 510 struct cwq_initial_entry *ent) 511 { 512 unsigned long hv_ret = spu_queue_submit(qp, ent); 513 514 if (hv_ret == HV_EOK) 515 hv_ret = wait_for_tail(qp); 516 517 return hv_ret; 518 } 519 520 static int n2_do_async_digest(struct ahash_request *req, 521 unsigned int auth_type, unsigned int digest_size, 522 unsigned int result_size, void *hash_loc, 523 unsigned long auth_key, unsigned int auth_key_len) 524 { 525 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 526 struct cwq_initial_entry *ent; 527 struct crypto_hash_walk walk; 528 struct spu_queue *qp; 529 unsigned long flags; 530 int err = -ENODEV; 531 int nbytes, cpu; 532 533 /* The total effective length of the operation may not 534 * exceed 2^16. 535 */ 536 if (unlikely(req->nbytes > (1 << 16))) { 537 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 538 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); 539 540 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); 541 rctx->fallback_req.base.flags = 542 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; 543 rctx->fallback_req.nbytes = req->nbytes; 544 rctx->fallback_req.src = req->src; 545 rctx->fallback_req.result = req->result; 546 547 return crypto_ahash_digest(&rctx->fallback_req); 548 } 549 550 nbytes = crypto_hash_walk_first(req, &walk); 551 552 cpu = get_cpu(); 553 qp = cpu_to_cwq[cpu]; 554 if (!qp) 555 goto out; 556 557 spin_lock_irqsave(&qp->lock, flags); 558 559 /* XXX can do better, improve this later by doing a by-hand scatterlist 560 * XXX walk, etc. 561 */ 562 ent = qp->q + qp->tail; 563 564 ent->control = control_word_base(nbytes, auth_key_len, 0, 565 auth_type, digest_size, 566 false, true, false, false, 567 OPCODE_INPLACE_BIT | 568 OPCODE_AUTH_MAC); 569 ent->src_addr = __pa(walk.data); 570 ent->auth_key_addr = auth_key; 571 ent->auth_iv_addr = __pa(hash_loc); 572 ent->final_auth_state_addr = 0UL; 573 ent->enc_key_addr = 0UL; 574 ent->enc_iv_addr = 0UL; 575 ent->dest_addr = __pa(hash_loc); 576 577 nbytes = crypto_hash_walk_done(&walk, 0); 578 while (nbytes > 0) { 579 ent = spu_queue_next(qp, ent); 580 581 ent->control = (nbytes - 1); 582 ent->src_addr = __pa(walk.data); 583 ent->auth_key_addr = 0UL; 584 ent->auth_iv_addr = 0UL; 585 ent->final_auth_state_addr = 0UL; 586 ent->enc_key_addr = 0UL; 587 ent->enc_iv_addr = 0UL; 588 ent->dest_addr = 0UL; 589 590 nbytes = crypto_hash_walk_done(&walk, 0); 591 } 592 ent->control |= CONTROL_END_OF_BLOCK; 593 594 if (submit_and_wait_for_tail(qp, ent) != HV_EOK) 595 err = -EINVAL; 596 else 597 err = 0; 598 599 spin_unlock_irqrestore(&qp->lock, flags); 600 601 if (!err) 602 memcpy(req->result, hash_loc, result_size); 603 out: 604 put_cpu(); 605 606 return err; 607 } 608 609 static int n2_hash_async_digest(struct ahash_request *req) 610 { 611 struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm); 612 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 613 int ds; 614 615 ds = n2alg->digest_size; 616 if (unlikely(req->nbytes == 0)) { 617 memcpy(req->result, n2alg->hash_zero, ds); 618 return 0; 619 } 620 memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz); 621 622 return n2_do_async_digest(req, n2alg->auth_type, 623 n2alg->hw_op_hashsz, ds, 624 &rctx->u, 0UL, 0); 625 } 626 627 static int n2_hmac_async_digest(struct ahash_request *req) 628 { 629 struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm); 630 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 631 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 632 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm); 633 int ds; 634 635 ds = n2alg->derived.digest_size; 636 if (unlikely(req->nbytes == 0) || 637 unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) { 638 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 639 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); 640 641 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); 642 rctx->fallback_req.base.flags = 643 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; 644 rctx->fallback_req.nbytes = req->nbytes; 645 rctx->fallback_req.src = req->src; 646 rctx->fallback_req.result = req->result; 647 648 return crypto_ahash_digest(&rctx->fallback_req); 649 } 650 memcpy(&rctx->u, n2alg->derived.hash_init, 651 n2alg->derived.hw_op_hashsz); 652 653 return n2_do_async_digest(req, n2alg->derived.hmac_type, 654 n2alg->derived.hw_op_hashsz, ds, 655 &rctx->u, 656 __pa(&ctx->hash_key), 657 ctx->hash_key_len); 658 } 659 660 struct n2_skcipher_context { 661 int key_len; 662 int enc_type; 663 union { 664 u8 aes[AES_MAX_KEY_SIZE]; 665 u8 des[DES_KEY_SIZE]; 666 u8 des3[3 * DES_KEY_SIZE]; 667 } key; 668 }; 669 670 #define N2_CHUNK_ARR_LEN 16 671 672 struct n2_crypto_chunk { 673 struct list_head entry; 674 unsigned long iv_paddr : 44; 675 unsigned long arr_len : 20; 676 unsigned long dest_paddr; 677 unsigned long dest_final; 678 struct { 679 unsigned long src_paddr : 44; 680 unsigned long src_len : 20; 681 } arr[N2_CHUNK_ARR_LEN]; 682 }; 683 684 struct n2_request_context { 685 struct skcipher_walk walk; 686 struct list_head chunk_list; 687 struct n2_crypto_chunk chunk; 688 u8 temp_iv[16]; 689 }; 690 691 /* The SPU allows some level of flexibility for partial cipher blocks 692 * being specified in a descriptor. 693 * 694 * It merely requires that every descriptor's length field is at least 695 * as large as the cipher block size. This means that a cipher block 696 * can span at most 2 descriptors. However, this does not allow a 697 * partial block to span into the final descriptor as that would 698 * violate the rule (since every descriptor's length must be at lest 699 * the block size). So, for example, assuming an 8 byte block size: 700 * 701 * 0xe --> 0xa --> 0x8 702 * 703 * is a valid length sequence, whereas: 704 * 705 * 0xe --> 0xb --> 0x7 706 * 707 * is not a valid sequence. 708 */ 709 710 struct n2_skcipher_alg { 711 struct list_head entry; 712 u8 enc_type; 713 struct skcipher_alg skcipher; 714 }; 715 716 static inline struct n2_skcipher_alg *n2_skcipher_alg(struct crypto_skcipher *tfm) 717 { 718 struct skcipher_alg *alg = crypto_skcipher_alg(tfm); 719 720 return container_of(alg, struct n2_skcipher_alg, skcipher); 721 } 722 723 static int n2_aes_setkey(struct crypto_skcipher *skcipher, const u8 *key, 724 unsigned int keylen) 725 { 726 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher); 727 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm); 728 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher); 729 730 ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK); 731 732 switch (keylen) { 733 case AES_KEYSIZE_128: 734 ctx->enc_type |= ENC_TYPE_ALG_AES128; 735 break; 736 case AES_KEYSIZE_192: 737 ctx->enc_type |= ENC_TYPE_ALG_AES192; 738 break; 739 case AES_KEYSIZE_256: 740 ctx->enc_type |= ENC_TYPE_ALG_AES256; 741 break; 742 default: 743 return -EINVAL; 744 } 745 746 ctx->key_len = keylen; 747 memcpy(ctx->key.aes, key, keylen); 748 return 0; 749 } 750 751 static int n2_des_setkey(struct crypto_skcipher *skcipher, const u8 *key, 752 unsigned int keylen) 753 { 754 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher); 755 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm); 756 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher); 757 int err; 758 759 err = verify_skcipher_des_key(skcipher, key); 760 if (err) 761 return err; 762 763 ctx->enc_type = n2alg->enc_type; 764 765 ctx->key_len = keylen; 766 memcpy(ctx->key.des, key, keylen); 767 return 0; 768 } 769 770 static int n2_3des_setkey(struct crypto_skcipher *skcipher, const u8 *key, 771 unsigned int keylen) 772 { 773 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher); 774 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm); 775 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher); 776 int err; 777 778 err = verify_skcipher_des3_key(skcipher, key); 779 if (err) 780 return err; 781 782 ctx->enc_type = n2alg->enc_type; 783 784 ctx->key_len = keylen; 785 memcpy(ctx->key.des3, key, keylen); 786 return 0; 787 } 788 789 static inline int skcipher_descriptor_len(int nbytes, unsigned int block_size) 790 { 791 int this_len = nbytes; 792 793 this_len -= (nbytes & (block_size - 1)); 794 return this_len > (1 << 16) ? (1 << 16) : this_len; 795 } 796 797 static int __n2_crypt_chunk(struct crypto_skcipher *skcipher, 798 struct n2_crypto_chunk *cp, 799 struct spu_queue *qp, bool encrypt) 800 { 801 struct n2_skcipher_context *ctx = crypto_skcipher_ctx(skcipher); 802 struct cwq_initial_entry *ent; 803 bool in_place; 804 int i; 805 806 ent = spu_queue_alloc(qp, cp->arr_len); 807 if (!ent) { 808 pr_info("queue_alloc() of %d fails\n", 809 cp->arr_len); 810 return -EBUSY; 811 } 812 813 in_place = (cp->dest_paddr == cp->arr[0].src_paddr); 814 815 ent->control = control_word_base(cp->arr[0].src_len, 816 0, ctx->enc_type, 0, 0, 817 false, true, false, encrypt, 818 OPCODE_ENCRYPT | 819 (in_place ? OPCODE_INPLACE_BIT : 0)); 820 ent->src_addr = cp->arr[0].src_paddr; 821 ent->auth_key_addr = 0UL; 822 ent->auth_iv_addr = 0UL; 823 ent->final_auth_state_addr = 0UL; 824 ent->enc_key_addr = __pa(&ctx->key); 825 ent->enc_iv_addr = cp->iv_paddr; 826 ent->dest_addr = (in_place ? 0UL : cp->dest_paddr); 827 828 for (i = 1; i < cp->arr_len; i++) { 829 ent = spu_queue_next(qp, ent); 830 831 ent->control = cp->arr[i].src_len - 1; 832 ent->src_addr = cp->arr[i].src_paddr; 833 ent->auth_key_addr = 0UL; 834 ent->auth_iv_addr = 0UL; 835 ent->final_auth_state_addr = 0UL; 836 ent->enc_key_addr = 0UL; 837 ent->enc_iv_addr = 0UL; 838 ent->dest_addr = 0UL; 839 } 840 ent->control |= CONTROL_END_OF_BLOCK; 841 842 return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0; 843 } 844 845 static int n2_compute_chunks(struct skcipher_request *req) 846 { 847 struct n2_request_context *rctx = skcipher_request_ctx(req); 848 struct skcipher_walk *walk = &rctx->walk; 849 struct n2_crypto_chunk *chunk; 850 unsigned long dest_prev; 851 unsigned int tot_len; 852 bool prev_in_place; 853 int err, nbytes; 854 855 err = skcipher_walk_async(walk, req); 856 if (err) 857 return err; 858 859 INIT_LIST_HEAD(&rctx->chunk_list); 860 861 chunk = &rctx->chunk; 862 INIT_LIST_HEAD(&chunk->entry); 863 864 chunk->iv_paddr = 0UL; 865 chunk->arr_len = 0; 866 chunk->dest_paddr = 0UL; 867 868 prev_in_place = false; 869 dest_prev = ~0UL; 870 tot_len = 0; 871 872 while ((nbytes = walk->nbytes) != 0) { 873 unsigned long dest_paddr, src_paddr; 874 bool in_place; 875 int this_len; 876 877 src_paddr = (page_to_phys(walk->src.phys.page) + 878 walk->src.phys.offset); 879 dest_paddr = (page_to_phys(walk->dst.phys.page) + 880 walk->dst.phys.offset); 881 in_place = (src_paddr == dest_paddr); 882 this_len = skcipher_descriptor_len(nbytes, walk->blocksize); 883 884 if (chunk->arr_len != 0) { 885 if (in_place != prev_in_place || 886 (!prev_in_place && 887 dest_paddr != dest_prev) || 888 chunk->arr_len == N2_CHUNK_ARR_LEN || 889 tot_len + this_len > (1 << 16)) { 890 chunk->dest_final = dest_prev; 891 list_add_tail(&chunk->entry, 892 &rctx->chunk_list); 893 chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC); 894 if (!chunk) { 895 err = -ENOMEM; 896 break; 897 } 898 INIT_LIST_HEAD(&chunk->entry); 899 } 900 } 901 if (chunk->arr_len == 0) { 902 chunk->dest_paddr = dest_paddr; 903 tot_len = 0; 904 } 905 chunk->arr[chunk->arr_len].src_paddr = src_paddr; 906 chunk->arr[chunk->arr_len].src_len = this_len; 907 chunk->arr_len++; 908 909 dest_prev = dest_paddr + this_len; 910 prev_in_place = in_place; 911 tot_len += this_len; 912 913 err = skcipher_walk_done(walk, nbytes - this_len); 914 if (err) 915 break; 916 } 917 if (!err && chunk->arr_len != 0) { 918 chunk->dest_final = dest_prev; 919 list_add_tail(&chunk->entry, &rctx->chunk_list); 920 } 921 922 return err; 923 } 924 925 static void n2_chunk_complete(struct skcipher_request *req, void *final_iv) 926 { 927 struct n2_request_context *rctx = skcipher_request_ctx(req); 928 struct n2_crypto_chunk *c, *tmp; 929 930 if (final_iv) 931 memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize); 932 933 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) { 934 list_del(&c->entry); 935 if (unlikely(c != &rctx->chunk)) 936 kfree(c); 937 } 938 939 } 940 941 static int n2_do_ecb(struct skcipher_request *req, bool encrypt) 942 { 943 struct n2_request_context *rctx = skcipher_request_ctx(req); 944 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 945 int err = n2_compute_chunks(req); 946 struct n2_crypto_chunk *c, *tmp; 947 unsigned long flags, hv_ret; 948 struct spu_queue *qp; 949 950 if (err) 951 return err; 952 953 qp = cpu_to_cwq[get_cpu()]; 954 err = -ENODEV; 955 if (!qp) 956 goto out; 957 958 spin_lock_irqsave(&qp->lock, flags); 959 960 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) { 961 err = __n2_crypt_chunk(tfm, c, qp, encrypt); 962 if (err) 963 break; 964 list_del(&c->entry); 965 if (unlikely(c != &rctx->chunk)) 966 kfree(c); 967 } 968 if (!err) { 969 hv_ret = wait_for_tail(qp); 970 if (hv_ret != HV_EOK) 971 err = -EINVAL; 972 } 973 974 spin_unlock_irqrestore(&qp->lock, flags); 975 976 out: 977 put_cpu(); 978 979 n2_chunk_complete(req, NULL); 980 return err; 981 } 982 983 static int n2_encrypt_ecb(struct skcipher_request *req) 984 { 985 return n2_do_ecb(req, true); 986 } 987 988 static int n2_decrypt_ecb(struct skcipher_request *req) 989 { 990 return n2_do_ecb(req, false); 991 } 992 993 static int n2_do_chaining(struct skcipher_request *req, bool encrypt) 994 { 995 struct n2_request_context *rctx = skcipher_request_ctx(req); 996 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 997 unsigned long flags, hv_ret, iv_paddr; 998 int err = n2_compute_chunks(req); 999 struct n2_crypto_chunk *c, *tmp; 1000 struct spu_queue *qp; 1001 void *final_iv_addr; 1002 1003 final_iv_addr = NULL; 1004 1005 if (err) 1006 return err; 1007 1008 qp = cpu_to_cwq[get_cpu()]; 1009 err = -ENODEV; 1010 if (!qp) 1011 goto out; 1012 1013 spin_lock_irqsave(&qp->lock, flags); 1014 1015 if (encrypt) { 1016 iv_paddr = __pa(rctx->walk.iv); 1017 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, 1018 entry) { 1019 c->iv_paddr = iv_paddr; 1020 err = __n2_crypt_chunk(tfm, c, qp, true); 1021 if (err) 1022 break; 1023 iv_paddr = c->dest_final - rctx->walk.blocksize; 1024 list_del(&c->entry); 1025 if (unlikely(c != &rctx->chunk)) 1026 kfree(c); 1027 } 1028 final_iv_addr = __va(iv_paddr); 1029 } else { 1030 list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list, 1031 entry) { 1032 if (c == &rctx->chunk) { 1033 iv_paddr = __pa(rctx->walk.iv); 1034 } else { 1035 iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr + 1036 tmp->arr[tmp->arr_len-1].src_len - 1037 rctx->walk.blocksize); 1038 } 1039 if (!final_iv_addr) { 1040 unsigned long pa; 1041 1042 pa = (c->arr[c->arr_len-1].src_paddr + 1043 c->arr[c->arr_len-1].src_len - 1044 rctx->walk.blocksize); 1045 final_iv_addr = rctx->temp_iv; 1046 memcpy(rctx->temp_iv, __va(pa), 1047 rctx->walk.blocksize); 1048 } 1049 c->iv_paddr = iv_paddr; 1050 err = __n2_crypt_chunk(tfm, c, qp, false); 1051 if (err) 1052 break; 1053 list_del(&c->entry); 1054 if (unlikely(c != &rctx->chunk)) 1055 kfree(c); 1056 } 1057 } 1058 if (!err) { 1059 hv_ret = wait_for_tail(qp); 1060 if (hv_ret != HV_EOK) 1061 err = -EINVAL; 1062 } 1063 1064 spin_unlock_irqrestore(&qp->lock, flags); 1065 1066 out: 1067 put_cpu(); 1068 1069 n2_chunk_complete(req, err ? NULL : final_iv_addr); 1070 return err; 1071 } 1072 1073 static int n2_encrypt_chaining(struct skcipher_request *req) 1074 { 1075 return n2_do_chaining(req, true); 1076 } 1077 1078 static int n2_decrypt_chaining(struct skcipher_request *req) 1079 { 1080 return n2_do_chaining(req, false); 1081 } 1082 1083 struct n2_skcipher_tmpl { 1084 const char *name; 1085 const char *drv_name; 1086 u8 block_size; 1087 u8 enc_type; 1088 struct skcipher_alg skcipher; 1089 }; 1090 1091 static const struct n2_skcipher_tmpl skcipher_tmpls[] = { 1092 /* DES: ECB CBC and CFB are supported */ 1093 { .name = "ecb(des)", 1094 .drv_name = "ecb-des", 1095 .block_size = DES_BLOCK_SIZE, 1096 .enc_type = (ENC_TYPE_ALG_DES | 1097 ENC_TYPE_CHAINING_ECB), 1098 .skcipher = { 1099 .min_keysize = DES_KEY_SIZE, 1100 .max_keysize = DES_KEY_SIZE, 1101 .setkey = n2_des_setkey, 1102 .encrypt = n2_encrypt_ecb, 1103 .decrypt = n2_decrypt_ecb, 1104 }, 1105 }, 1106 { .name = "cbc(des)", 1107 .drv_name = "cbc-des", 1108 .block_size = DES_BLOCK_SIZE, 1109 .enc_type = (ENC_TYPE_ALG_DES | 1110 ENC_TYPE_CHAINING_CBC), 1111 .skcipher = { 1112 .ivsize = DES_BLOCK_SIZE, 1113 .min_keysize = DES_KEY_SIZE, 1114 .max_keysize = DES_KEY_SIZE, 1115 .setkey = n2_des_setkey, 1116 .encrypt = n2_encrypt_chaining, 1117 .decrypt = n2_decrypt_chaining, 1118 }, 1119 }, 1120 1121 /* 3DES: ECB CBC and CFB are supported */ 1122 { .name = "ecb(des3_ede)", 1123 .drv_name = "ecb-3des", 1124 .block_size = DES_BLOCK_SIZE, 1125 .enc_type = (ENC_TYPE_ALG_3DES | 1126 ENC_TYPE_CHAINING_ECB), 1127 .skcipher = { 1128 .min_keysize = 3 * DES_KEY_SIZE, 1129 .max_keysize = 3 * DES_KEY_SIZE, 1130 .setkey = n2_3des_setkey, 1131 .encrypt = n2_encrypt_ecb, 1132 .decrypt = n2_decrypt_ecb, 1133 }, 1134 }, 1135 { .name = "cbc(des3_ede)", 1136 .drv_name = "cbc-3des", 1137 .block_size = DES_BLOCK_SIZE, 1138 .enc_type = (ENC_TYPE_ALG_3DES | 1139 ENC_TYPE_CHAINING_CBC), 1140 .skcipher = { 1141 .ivsize = DES_BLOCK_SIZE, 1142 .min_keysize = 3 * DES_KEY_SIZE, 1143 .max_keysize = 3 * DES_KEY_SIZE, 1144 .setkey = n2_3des_setkey, 1145 .encrypt = n2_encrypt_chaining, 1146 .decrypt = n2_decrypt_chaining, 1147 }, 1148 }, 1149 1150 /* AES: ECB CBC and CTR are supported */ 1151 { .name = "ecb(aes)", 1152 .drv_name = "ecb-aes", 1153 .block_size = AES_BLOCK_SIZE, 1154 .enc_type = (ENC_TYPE_ALG_AES128 | 1155 ENC_TYPE_CHAINING_ECB), 1156 .skcipher = { 1157 .min_keysize = AES_MIN_KEY_SIZE, 1158 .max_keysize = AES_MAX_KEY_SIZE, 1159 .setkey = n2_aes_setkey, 1160 .encrypt = n2_encrypt_ecb, 1161 .decrypt = n2_decrypt_ecb, 1162 }, 1163 }, 1164 { .name = "cbc(aes)", 1165 .drv_name = "cbc-aes", 1166 .block_size = AES_BLOCK_SIZE, 1167 .enc_type = (ENC_TYPE_ALG_AES128 | 1168 ENC_TYPE_CHAINING_CBC), 1169 .skcipher = { 1170 .ivsize = AES_BLOCK_SIZE, 1171 .min_keysize = AES_MIN_KEY_SIZE, 1172 .max_keysize = AES_MAX_KEY_SIZE, 1173 .setkey = n2_aes_setkey, 1174 .encrypt = n2_encrypt_chaining, 1175 .decrypt = n2_decrypt_chaining, 1176 }, 1177 }, 1178 { .name = "ctr(aes)", 1179 .drv_name = "ctr-aes", 1180 .block_size = AES_BLOCK_SIZE, 1181 .enc_type = (ENC_TYPE_ALG_AES128 | 1182 ENC_TYPE_CHAINING_COUNTER), 1183 .skcipher = { 1184 .ivsize = AES_BLOCK_SIZE, 1185 .min_keysize = AES_MIN_KEY_SIZE, 1186 .max_keysize = AES_MAX_KEY_SIZE, 1187 .setkey = n2_aes_setkey, 1188 .encrypt = n2_encrypt_chaining, 1189 .decrypt = n2_encrypt_chaining, 1190 }, 1191 }, 1192 1193 }; 1194 #define NUM_CIPHER_TMPLS ARRAY_SIZE(skcipher_tmpls) 1195 1196 static LIST_HEAD(skcipher_algs); 1197 1198 struct n2_hash_tmpl { 1199 const char *name; 1200 const u8 *hash_zero; 1201 const u8 *hash_init; 1202 u8 hw_op_hashsz; 1203 u8 digest_size; 1204 u8 statesize; 1205 u8 block_size; 1206 u8 auth_type; 1207 u8 hmac_type; 1208 }; 1209 1210 static const __le32 n2_md5_init[MD5_HASH_WORDS] = { 1211 cpu_to_le32(MD5_H0), 1212 cpu_to_le32(MD5_H1), 1213 cpu_to_le32(MD5_H2), 1214 cpu_to_le32(MD5_H3), 1215 }; 1216 static const u32 n2_sha1_init[SHA1_DIGEST_SIZE / 4] = { 1217 SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4, 1218 }; 1219 static const u32 n2_sha256_init[SHA256_DIGEST_SIZE / 4] = { 1220 SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3, 1221 SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7, 1222 }; 1223 static const u32 n2_sha224_init[SHA256_DIGEST_SIZE / 4] = { 1224 SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3, 1225 SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7, 1226 }; 1227 1228 static const struct n2_hash_tmpl hash_tmpls[] = { 1229 { .name = "md5", 1230 .hash_zero = md5_zero_message_hash, 1231 .hash_init = (u8 *)n2_md5_init, 1232 .auth_type = AUTH_TYPE_MD5, 1233 .hmac_type = AUTH_TYPE_HMAC_MD5, 1234 .hw_op_hashsz = MD5_DIGEST_SIZE, 1235 .digest_size = MD5_DIGEST_SIZE, 1236 .statesize = sizeof(struct md5_state), 1237 .block_size = MD5_HMAC_BLOCK_SIZE }, 1238 { .name = "sha1", 1239 .hash_zero = sha1_zero_message_hash, 1240 .hash_init = (u8 *)n2_sha1_init, 1241 .auth_type = AUTH_TYPE_SHA1, 1242 .hmac_type = AUTH_TYPE_HMAC_SHA1, 1243 .hw_op_hashsz = SHA1_DIGEST_SIZE, 1244 .digest_size = SHA1_DIGEST_SIZE, 1245 .statesize = sizeof(struct sha1_state), 1246 .block_size = SHA1_BLOCK_SIZE }, 1247 { .name = "sha256", 1248 .hash_zero = sha256_zero_message_hash, 1249 .hash_init = (u8 *)n2_sha256_init, 1250 .auth_type = AUTH_TYPE_SHA256, 1251 .hmac_type = AUTH_TYPE_HMAC_SHA256, 1252 .hw_op_hashsz = SHA256_DIGEST_SIZE, 1253 .digest_size = SHA256_DIGEST_SIZE, 1254 .statesize = sizeof(struct sha256_state), 1255 .block_size = SHA256_BLOCK_SIZE }, 1256 { .name = "sha224", 1257 .hash_zero = sha224_zero_message_hash, 1258 .hash_init = (u8 *)n2_sha224_init, 1259 .auth_type = AUTH_TYPE_SHA256, 1260 .hmac_type = AUTH_TYPE_RESERVED, 1261 .hw_op_hashsz = SHA256_DIGEST_SIZE, 1262 .digest_size = SHA224_DIGEST_SIZE, 1263 .statesize = sizeof(struct sha256_state), 1264 .block_size = SHA224_BLOCK_SIZE }, 1265 }; 1266 #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls) 1267 1268 static LIST_HEAD(ahash_algs); 1269 static LIST_HEAD(hmac_algs); 1270 1271 static int algs_registered; 1272 1273 static void __n2_unregister_algs(void) 1274 { 1275 struct n2_skcipher_alg *skcipher, *skcipher_tmp; 1276 struct n2_ahash_alg *alg, *alg_tmp; 1277 struct n2_hmac_alg *hmac, *hmac_tmp; 1278 1279 list_for_each_entry_safe(skcipher, skcipher_tmp, &skcipher_algs, entry) { 1280 crypto_unregister_skcipher(&skcipher->skcipher); 1281 list_del(&skcipher->entry); 1282 kfree(skcipher); 1283 } 1284 list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) { 1285 crypto_unregister_ahash(&hmac->derived.alg); 1286 list_del(&hmac->derived.entry); 1287 kfree(hmac); 1288 } 1289 list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) { 1290 crypto_unregister_ahash(&alg->alg); 1291 list_del(&alg->entry); 1292 kfree(alg); 1293 } 1294 } 1295 1296 static int n2_skcipher_init_tfm(struct crypto_skcipher *tfm) 1297 { 1298 crypto_skcipher_set_reqsize(tfm, sizeof(struct n2_request_context)); 1299 return 0; 1300 } 1301 1302 static int __n2_register_one_skcipher(const struct n2_skcipher_tmpl *tmpl) 1303 { 1304 struct n2_skcipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL); 1305 struct skcipher_alg *alg; 1306 int err; 1307 1308 if (!p) 1309 return -ENOMEM; 1310 1311 alg = &p->skcipher; 1312 *alg = tmpl->skcipher; 1313 1314 snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name); 1315 snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name); 1316 alg->base.cra_priority = N2_CRA_PRIORITY; 1317 alg->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC | 1318 CRYPTO_ALG_ALLOCATES_MEMORY; 1319 alg->base.cra_blocksize = tmpl->block_size; 1320 p->enc_type = tmpl->enc_type; 1321 alg->base.cra_ctxsize = sizeof(struct n2_skcipher_context); 1322 alg->base.cra_module = THIS_MODULE; 1323 alg->init = n2_skcipher_init_tfm; 1324 1325 list_add(&p->entry, &skcipher_algs); 1326 err = crypto_register_skcipher(alg); 1327 if (err) { 1328 pr_err("%s alg registration failed\n", alg->base.cra_name); 1329 list_del(&p->entry); 1330 kfree(p); 1331 } else { 1332 pr_info("%s alg registered\n", alg->base.cra_name); 1333 } 1334 return err; 1335 } 1336 1337 static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash) 1338 { 1339 struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL); 1340 struct ahash_alg *ahash; 1341 struct crypto_alg *base; 1342 int err; 1343 1344 if (!p) 1345 return -ENOMEM; 1346 1347 p->child_alg = n2ahash->alg.halg.base.cra_name; 1348 memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg)); 1349 INIT_LIST_HEAD(&p->derived.entry); 1350 1351 ahash = &p->derived.alg; 1352 ahash->digest = n2_hmac_async_digest; 1353 ahash->setkey = n2_hmac_async_setkey; 1354 1355 base = &ahash->halg.base; 1356 if (snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", 1357 p->child_alg) >= CRYPTO_MAX_ALG_NAME) 1358 goto out_free_p; 1359 if (snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", 1360 p->child_alg) >= CRYPTO_MAX_ALG_NAME) 1361 goto out_free_p; 1362 1363 base->cra_ctxsize = sizeof(struct n2_hmac_ctx); 1364 base->cra_init = n2_hmac_cra_init; 1365 base->cra_exit = n2_hmac_cra_exit; 1366 1367 list_add(&p->derived.entry, &hmac_algs); 1368 err = crypto_register_ahash(ahash); 1369 if (err) { 1370 pr_err("%s alg registration failed\n", base->cra_name); 1371 list_del(&p->derived.entry); 1372 out_free_p: 1373 kfree(p); 1374 } else { 1375 pr_info("%s alg registered\n", base->cra_name); 1376 } 1377 return err; 1378 } 1379 1380 static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl) 1381 { 1382 struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL); 1383 struct hash_alg_common *halg; 1384 struct crypto_alg *base; 1385 struct ahash_alg *ahash; 1386 int err; 1387 1388 if (!p) 1389 return -ENOMEM; 1390 1391 p->hash_zero = tmpl->hash_zero; 1392 p->hash_init = tmpl->hash_init; 1393 p->auth_type = tmpl->auth_type; 1394 p->hmac_type = tmpl->hmac_type; 1395 p->hw_op_hashsz = tmpl->hw_op_hashsz; 1396 p->digest_size = tmpl->digest_size; 1397 1398 ahash = &p->alg; 1399 ahash->init = n2_hash_async_init; 1400 ahash->update = n2_hash_async_update; 1401 ahash->final = n2_hash_async_final; 1402 ahash->finup = n2_hash_async_finup; 1403 ahash->digest = n2_hash_async_digest; 1404 ahash->export = n2_hash_async_noexport; 1405 ahash->import = n2_hash_async_noimport; 1406 1407 halg = &ahash->halg; 1408 halg->digestsize = tmpl->digest_size; 1409 halg->statesize = tmpl->statesize; 1410 1411 base = &halg->base; 1412 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name); 1413 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name); 1414 base->cra_priority = N2_CRA_PRIORITY; 1415 base->cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | 1416 CRYPTO_ALG_NEED_FALLBACK; 1417 base->cra_blocksize = tmpl->block_size; 1418 base->cra_ctxsize = sizeof(struct n2_hash_ctx); 1419 base->cra_module = THIS_MODULE; 1420 base->cra_init = n2_hash_cra_init; 1421 base->cra_exit = n2_hash_cra_exit; 1422 1423 list_add(&p->entry, &ahash_algs); 1424 err = crypto_register_ahash(ahash); 1425 if (err) { 1426 pr_err("%s alg registration failed\n", base->cra_name); 1427 list_del(&p->entry); 1428 kfree(p); 1429 } else { 1430 pr_info("%s alg registered\n", base->cra_name); 1431 } 1432 if (!err && p->hmac_type != AUTH_TYPE_RESERVED) 1433 err = __n2_register_one_hmac(p); 1434 return err; 1435 } 1436 1437 static int n2_register_algs(void) 1438 { 1439 int i, err = 0; 1440 1441 mutex_lock(&spu_lock); 1442 if (algs_registered++) 1443 goto out; 1444 1445 for (i = 0; i < NUM_HASH_TMPLS; i++) { 1446 err = __n2_register_one_ahash(&hash_tmpls[i]); 1447 if (err) { 1448 __n2_unregister_algs(); 1449 goto out; 1450 } 1451 } 1452 for (i = 0; i < NUM_CIPHER_TMPLS; i++) { 1453 err = __n2_register_one_skcipher(&skcipher_tmpls[i]); 1454 if (err) { 1455 __n2_unregister_algs(); 1456 goto out; 1457 } 1458 } 1459 1460 out: 1461 mutex_unlock(&spu_lock); 1462 return err; 1463 } 1464 1465 static void n2_unregister_algs(void) 1466 { 1467 mutex_lock(&spu_lock); 1468 if (!--algs_registered) 1469 __n2_unregister_algs(); 1470 mutex_unlock(&spu_lock); 1471 } 1472 1473 /* To map CWQ queues to interrupt sources, the hypervisor API provides 1474 * a devino. This isn't very useful to us because all of the 1475 * interrupts listed in the device_node have been translated to 1476 * Linux virtual IRQ cookie numbers. 1477 * 1478 * So we have to back-translate, going through the 'intr' and 'ino' 1479 * property tables of the n2cp MDESC node, matching it with the OF 1480 * 'interrupts' property entries, in order to figure out which 1481 * devino goes to which already-translated IRQ. 1482 */ 1483 static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip, 1484 unsigned long dev_ino) 1485 { 1486 const unsigned int *dev_intrs; 1487 unsigned int intr; 1488 int i; 1489 1490 for (i = 0; i < ip->num_intrs; i++) { 1491 if (ip->ino_table[i].ino == dev_ino) 1492 break; 1493 } 1494 if (i == ip->num_intrs) 1495 return -ENODEV; 1496 1497 intr = ip->ino_table[i].intr; 1498 1499 dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL); 1500 if (!dev_intrs) 1501 return -ENODEV; 1502 1503 for (i = 0; i < dev->archdata.num_irqs; i++) { 1504 if (dev_intrs[i] == intr) 1505 return i; 1506 } 1507 1508 return -ENODEV; 1509 } 1510 1511 static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip, 1512 const char *irq_name, struct spu_queue *p, 1513 irq_handler_t handler) 1514 { 1515 unsigned long herr; 1516 int index; 1517 1518 herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino); 1519 if (herr) 1520 return -EINVAL; 1521 1522 index = find_devino_index(dev, ip, p->devino); 1523 if (index < 0) 1524 return index; 1525 1526 p->irq = dev->archdata.irqs[index]; 1527 1528 sprintf(p->irq_name, "%s-%d", irq_name, index); 1529 1530 return request_irq(p->irq, handler, 0, p->irq_name, p); 1531 } 1532 1533 static struct kmem_cache *queue_cache[2]; 1534 1535 static void *new_queue(unsigned long q_type) 1536 { 1537 return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL); 1538 } 1539 1540 static void free_queue(void *p, unsigned long q_type) 1541 { 1542 kmem_cache_free(queue_cache[q_type - 1], p); 1543 } 1544 1545 static int queue_cache_init(void) 1546 { 1547 if (!queue_cache[HV_NCS_QTYPE_MAU - 1]) 1548 queue_cache[HV_NCS_QTYPE_MAU - 1] = 1549 kmem_cache_create("mau_queue", 1550 (MAU_NUM_ENTRIES * 1551 MAU_ENTRY_SIZE), 1552 MAU_ENTRY_SIZE, 0, NULL); 1553 if (!queue_cache[HV_NCS_QTYPE_MAU - 1]) 1554 return -ENOMEM; 1555 1556 if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) 1557 queue_cache[HV_NCS_QTYPE_CWQ - 1] = 1558 kmem_cache_create("cwq_queue", 1559 (CWQ_NUM_ENTRIES * 1560 CWQ_ENTRY_SIZE), 1561 CWQ_ENTRY_SIZE, 0, NULL); 1562 if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) { 1563 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]); 1564 queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL; 1565 return -ENOMEM; 1566 } 1567 return 0; 1568 } 1569 1570 static void queue_cache_destroy(void) 1571 { 1572 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]); 1573 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]); 1574 queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL; 1575 queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL; 1576 } 1577 1578 static long spu_queue_register_workfn(void *arg) 1579 { 1580 struct spu_qreg *qr = arg; 1581 struct spu_queue *p = qr->queue; 1582 unsigned long q_type = qr->type; 1583 unsigned long hv_ret; 1584 1585 hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q), 1586 CWQ_NUM_ENTRIES, &p->qhandle); 1587 if (!hv_ret) 1588 sun4v_ncs_sethead_marker(p->qhandle, 0); 1589 1590 return hv_ret ? -EINVAL : 0; 1591 } 1592 1593 static int spu_queue_register(struct spu_queue *p, unsigned long q_type) 1594 { 1595 int cpu = cpumask_any_and(&p->sharing, cpu_online_mask); 1596 struct spu_qreg qr = { .queue = p, .type = q_type }; 1597 1598 return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr); 1599 } 1600 1601 static int spu_queue_setup(struct spu_queue *p) 1602 { 1603 int err; 1604 1605 p->q = new_queue(p->q_type); 1606 if (!p->q) 1607 return -ENOMEM; 1608 1609 err = spu_queue_register(p, p->q_type); 1610 if (err) { 1611 free_queue(p->q, p->q_type); 1612 p->q = NULL; 1613 } 1614 1615 return err; 1616 } 1617 1618 static void spu_queue_destroy(struct spu_queue *p) 1619 { 1620 unsigned long hv_ret; 1621 1622 if (!p->q) 1623 return; 1624 1625 hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle); 1626 1627 if (!hv_ret) 1628 free_queue(p->q, p->q_type); 1629 } 1630 1631 static void spu_list_destroy(struct list_head *list) 1632 { 1633 struct spu_queue *p, *n; 1634 1635 list_for_each_entry_safe(p, n, list, list) { 1636 int i; 1637 1638 for (i = 0; i < NR_CPUS; i++) { 1639 if (cpu_to_cwq[i] == p) 1640 cpu_to_cwq[i] = NULL; 1641 } 1642 1643 if (p->irq) { 1644 free_irq(p->irq, p); 1645 p->irq = 0; 1646 } 1647 spu_queue_destroy(p); 1648 list_del(&p->list); 1649 kfree(p); 1650 } 1651 } 1652 1653 /* Walk the backward arcs of a CWQ 'exec-unit' node, 1654 * gathering cpu membership information. 1655 */ 1656 static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc, 1657 struct platform_device *dev, 1658 u64 node, struct spu_queue *p, 1659 struct spu_queue **table) 1660 { 1661 u64 arc; 1662 1663 mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) { 1664 u64 tgt = mdesc_arc_target(mdesc, arc); 1665 const char *name = mdesc_node_name(mdesc, tgt); 1666 const u64 *id; 1667 1668 if (strcmp(name, "cpu")) 1669 continue; 1670 id = mdesc_get_property(mdesc, tgt, "id", NULL); 1671 if (table[*id] != NULL) { 1672 dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n", 1673 dev->dev.of_node); 1674 return -EINVAL; 1675 } 1676 cpumask_set_cpu(*id, &p->sharing); 1677 table[*id] = p; 1678 } 1679 return 0; 1680 } 1681 1682 /* Process an 'exec-unit' MDESC node of type 'cwq'. */ 1683 static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list, 1684 struct platform_device *dev, struct mdesc_handle *mdesc, 1685 u64 node, const char *iname, unsigned long q_type, 1686 irq_handler_t handler, struct spu_queue **table) 1687 { 1688 struct spu_queue *p; 1689 int err; 1690 1691 p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL); 1692 if (!p) { 1693 dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n", 1694 dev->dev.of_node); 1695 return -ENOMEM; 1696 } 1697 1698 cpumask_clear(&p->sharing); 1699 spin_lock_init(&p->lock); 1700 p->q_type = q_type; 1701 INIT_LIST_HEAD(&p->jobs); 1702 list_add(&p->list, list); 1703 1704 err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table); 1705 if (err) 1706 return err; 1707 1708 err = spu_queue_setup(p); 1709 if (err) 1710 return err; 1711 1712 return spu_map_ino(dev, ip, iname, p, handler); 1713 } 1714 1715 static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev, 1716 struct spu_mdesc_info *ip, struct list_head *list, 1717 const char *exec_name, unsigned long q_type, 1718 irq_handler_t handler, struct spu_queue **table) 1719 { 1720 int err = 0; 1721 u64 node; 1722 1723 mdesc_for_each_node_by_name(mdesc, node, "exec-unit") { 1724 const char *type; 1725 1726 type = mdesc_get_property(mdesc, node, "type", NULL); 1727 if (!type || strcmp(type, exec_name)) 1728 continue; 1729 1730 err = handle_exec_unit(ip, list, dev, mdesc, node, 1731 exec_name, q_type, handler, table); 1732 if (err) { 1733 spu_list_destroy(list); 1734 break; 1735 } 1736 } 1737 1738 return err; 1739 } 1740 1741 static int get_irq_props(struct mdesc_handle *mdesc, u64 node, 1742 struct spu_mdesc_info *ip) 1743 { 1744 const u64 *ino; 1745 int ino_len; 1746 int i; 1747 1748 ino = mdesc_get_property(mdesc, node, "ino", &ino_len); 1749 if (!ino) { 1750 printk("NO 'ino'\n"); 1751 return -ENODEV; 1752 } 1753 1754 ip->num_intrs = ino_len / sizeof(u64); 1755 ip->ino_table = kzalloc((sizeof(struct ino_blob) * 1756 ip->num_intrs), 1757 GFP_KERNEL); 1758 if (!ip->ino_table) 1759 return -ENOMEM; 1760 1761 for (i = 0; i < ip->num_intrs; i++) { 1762 struct ino_blob *b = &ip->ino_table[i]; 1763 b->intr = i + 1; 1764 b->ino = ino[i]; 1765 } 1766 1767 return 0; 1768 } 1769 1770 static int grab_mdesc_irq_props(struct mdesc_handle *mdesc, 1771 struct platform_device *dev, 1772 struct spu_mdesc_info *ip, 1773 const char *node_name) 1774 { 1775 u64 node, reg; 1776 1777 if (of_property_read_reg(dev->dev.of_node, 0, ®, NULL) < 0) 1778 return -ENODEV; 1779 1780 mdesc_for_each_node_by_name(mdesc, node, "virtual-device") { 1781 const char *name; 1782 const u64 *chdl; 1783 1784 name = mdesc_get_property(mdesc, node, "name", NULL); 1785 if (!name || strcmp(name, node_name)) 1786 continue; 1787 chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL); 1788 if (!chdl || (*chdl != reg)) 1789 continue; 1790 ip->cfg_handle = *chdl; 1791 return get_irq_props(mdesc, node, ip); 1792 } 1793 1794 return -ENODEV; 1795 } 1796 1797 static unsigned long n2_spu_hvapi_major; 1798 static unsigned long n2_spu_hvapi_minor; 1799 1800 static int n2_spu_hvapi_register(void) 1801 { 1802 int err; 1803 1804 n2_spu_hvapi_major = 2; 1805 n2_spu_hvapi_minor = 0; 1806 1807 err = sun4v_hvapi_register(HV_GRP_NCS, 1808 n2_spu_hvapi_major, 1809 &n2_spu_hvapi_minor); 1810 1811 if (!err) 1812 pr_info("Registered NCS HVAPI version %lu.%lu\n", 1813 n2_spu_hvapi_major, 1814 n2_spu_hvapi_minor); 1815 1816 return err; 1817 } 1818 1819 static void n2_spu_hvapi_unregister(void) 1820 { 1821 sun4v_hvapi_unregister(HV_GRP_NCS); 1822 } 1823 1824 static int global_ref; 1825 1826 static int grab_global_resources(void) 1827 { 1828 int err = 0; 1829 1830 mutex_lock(&spu_lock); 1831 1832 if (global_ref++) 1833 goto out; 1834 1835 err = n2_spu_hvapi_register(); 1836 if (err) 1837 goto out; 1838 1839 err = queue_cache_init(); 1840 if (err) 1841 goto out_hvapi_release; 1842 1843 err = -ENOMEM; 1844 cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *), 1845 GFP_KERNEL); 1846 if (!cpu_to_cwq) 1847 goto out_queue_cache_destroy; 1848 1849 cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *), 1850 GFP_KERNEL); 1851 if (!cpu_to_mau) 1852 goto out_free_cwq_table; 1853 1854 err = 0; 1855 1856 out: 1857 if (err) 1858 global_ref--; 1859 mutex_unlock(&spu_lock); 1860 return err; 1861 1862 out_free_cwq_table: 1863 kfree(cpu_to_cwq); 1864 cpu_to_cwq = NULL; 1865 1866 out_queue_cache_destroy: 1867 queue_cache_destroy(); 1868 1869 out_hvapi_release: 1870 n2_spu_hvapi_unregister(); 1871 goto out; 1872 } 1873 1874 static void release_global_resources(void) 1875 { 1876 mutex_lock(&spu_lock); 1877 if (!--global_ref) { 1878 kfree(cpu_to_cwq); 1879 cpu_to_cwq = NULL; 1880 1881 kfree(cpu_to_mau); 1882 cpu_to_mau = NULL; 1883 1884 queue_cache_destroy(); 1885 n2_spu_hvapi_unregister(); 1886 } 1887 mutex_unlock(&spu_lock); 1888 } 1889 1890 static struct n2_crypto *alloc_n2cp(void) 1891 { 1892 struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL); 1893 1894 if (np) 1895 INIT_LIST_HEAD(&np->cwq_list); 1896 1897 return np; 1898 } 1899 1900 static void free_n2cp(struct n2_crypto *np) 1901 { 1902 kfree(np->cwq_info.ino_table); 1903 np->cwq_info.ino_table = NULL; 1904 1905 kfree(np); 1906 } 1907 1908 static void n2_spu_driver_version(void) 1909 { 1910 static int n2_spu_version_printed; 1911 1912 if (n2_spu_version_printed++ == 0) 1913 pr_info("%s", version); 1914 } 1915 1916 static int n2_crypto_probe(struct platform_device *dev) 1917 { 1918 struct mdesc_handle *mdesc; 1919 struct n2_crypto *np; 1920 int err; 1921 1922 n2_spu_driver_version(); 1923 1924 pr_info("Found N2CP at %pOF\n", dev->dev.of_node); 1925 1926 np = alloc_n2cp(); 1927 if (!np) { 1928 dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n", 1929 dev->dev.of_node); 1930 return -ENOMEM; 1931 } 1932 1933 err = grab_global_resources(); 1934 if (err) { 1935 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n", 1936 dev->dev.of_node); 1937 goto out_free_n2cp; 1938 } 1939 1940 mdesc = mdesc_grab(); 1941 1942 if (!mdesc) { 1943 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n", 1944 dev->dev.of_node); 1945 err = -ENODEV; 1946 goto out_free_global; 1947 } 1948 err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp"); 1949 if (err) { 1950 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n", 1951 dev->dev.of_node); 1952 mdesc_release(mdesc); 1953 goto out_free_global; 1954 } 1955 1956 err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list, 1957 "cwq", HV_NCS_QTYPE_CWQ, cwq_intr, 1958 cpu_to_cwq); 1959 mdesc_release(mdesc); 1960 1961 if (err) { 1962 dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n", 1963 dev->dev.of_node); 1964 goto out_free_global; 1965 } 1966 1967 err = n2_register_algs(); 1968 if (err) { 1969 dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n", 1970 dev->dev.of_node); 1971 goto out_free_spu_list; 1972 } 1973 1974 dev_set_drvdata(&dev->dev, np); 1975 1976 return 0; 1977 1978 out_free_spu_list: 1979 spu_list_destroy(&np->cwq_list); 1980 1981 out_free_global: 1982 release_global_resources(); 1983 1984 out_free_n2cp: 1985 free_n2cp(np); 1986 1987 return err; 1988 } 1989 1990 static void n2_crypto_remove(struct platform_device *dev) 1991 { 1992 struct n2_crypto *np = dev_get_drvdata(&dev->dev); 1993 1994 n2_unregister_algs(); 1995 1996 spu_list_destroy(&np->cwq_list); 1997 1998 release_global_resources(); 1999 2000 free_n2cp(np); 2001 } 2002 2003 static struct n2_mau *alloc_ncp(void) 2004 { 2005 struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL); 2006 2007 if (mp) 2008 INIT_LIST_HEAD(&mp->mau_list); 2009 2010 return mp; 2011 } 2012 2013 static void free_ncp(struct n2_mau *mp) 2014 { 2015 kfree(mp->mau_info.ino_table); 2016 mp->mau_info.ino_table = NULL; 2017 2018 kfree(mp); 2019 } 2020 2021 static int n2_mau_probe(struct platform_device *dev) 2022 { 2023 struct mdesc_handle *mdesc; 2024 struct n2_mau *mp; 2025 int err; 2026 2027 n2_spu_driver_version(); 2028 2029 pr_info("Found NCP at %pOF\n", dev->dev.of_node); 2030 2031 mp = alloc_ncp(); 2032 if (!mp) { 2033 dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n", 2034 dev->dev.of_node); 2035 return -ENOMEM; 2036 } 2037 2038 err = grab_global_resources(); 2039 if (err) { 2040 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n", 2041 dev->dev.of_node); 2042 goto out_free_ncp; 2043 } 2044 2045 mdesc = mdesc_grab(); 2046 2047 if (!mdesc) { 2048 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n", 2049 dev->dev.of_node); 2050 err = -ENODEV; 2051 goto out_free_global; 2052 } 2053 2054 err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp"); 2055 if (err) { 2056 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n", 2057 dev->dev.of_node); 2058 mdesc_release(mdesc); 2059 goto out_free_global; 2060 } 2061 2062 err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list, 2063 "mau", HV_NCS_QTYPE_MAU, mau_intr, 2064 cpu_to_mau); 2065 mdesc_release(mdesc); 2066 2067 if (err) { 2068 dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n", 2069 dev->dev.of_node); 2070 goto out_free_global; 2071 } 2072 2073 dev_set_drvdata(&dev->dev, mp); 2074 2075 return 0; 2076 2077 out_free_global: 2078 release_global_resources(); 2079 2080 out_free_ncp: 2081 free_ncp(mp); 2082 2083 return err; 2084 } 2085 2086 static void n2_mau_remove(struct platform_device *dev) 2087 { 2088 struct n2_mau *mp = dev_get_drvdata(&dev->dev); 2089 2090 spu_list_destroy(&mp->mau_list); 2091 2092 release_global_resources(); 2093 2094 free_ncp(mp); 2095 } 2096 2097 static const struct of_device_id n2_crypto_match[] = { 2098 { 2099 .name = "n2cp", 2100 .compatible = "SUNW,n2-cwq", 2101 }, 2102 { 2103 .name = "n2cp", 2104 .compatible = "SUNW,vf-cwq", 2105 }, 2106 { 2107 .name = "n2cp", 2108 .compatible = "SUNW,kt-cwq", 2109 }, 2110 {}, 2111 }; 2112 2113 MODULE_DEVICE_TABLE(of, n2_crypto_match); 2114 2115 static struct platform_driver n2_crypto_driver = { 2116 .driver = { 2117 .name = "n2cp", 2118 .of_match_table = n2_crypto_match, 2119 }, 2120 .probe = n2_crypto_probe, 2121 .remove_new = n2_crypto_remove, 2122 }; 2123 2124 static const struct of_device_id n2_mau_match[] = { 2125 { 2126 .name = "ncp", 2127 .compatible = "SUNW,n2-mau", 2128 }, 2129 { 2130 .name = "ncp", 2131 .compatible = "SUNW,vf-mau", 2132 }, 2133 { 2134 .name = "ncp", 2135 .compatible = "SUNW,kt-mau", 2136 }, 2137 {}, 2138 }; 2139 2140 MODULE_DEVICE_TABLE(of, n2_mau_match); 2141 2142 static struct platform_driver n2_mau_driver = { 2143 .driver = { 2144 .name = "ncp", 2145 .of_match_table = n2_mau_match, 2146 }, 2147 .probe = n2_mau_probe, 2148 .remove_new = n2_mau_remove, 2149 }; 2150 2151 static struct platform_driver * const drivers[] = { 2152 &n2_crypto_driver, 2153 &n2_mau_driver, 2154 }; 2155 2156 static int __init n2_init(void) 2157 { 2158 return platform_register_drivers(drivers, ARRAY_SIZE(drivers)); 2159 } 2160 2161 static void __exit n2_exit(void) 2162 { 2163 platform_unregister_drivers(drivers, ARRAY_SIZE(drivers)); 2164 } 2165 2166 module_init(n2_init); 2167 module_exit(n2_exit); 2168