xref: /linux/drivers/crypto/n2_core.c (revision ba2290b1b7505b28912092a0976e071a447ee18c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
3  *
4  * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/of.h>
12 #include <linux/of_device.h>
13 #include <linux/cpumask.h>
14 #include <linux/slab.h>
15 #include <linux/interrupt.h>
16 #include <linux/crypto.h>
17 #include <crypto/md5.h>
18 #include <crypto/sha.h>
19 #include <crypto/aes.h>
20 #include <crypto/internal/des.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/sched.h>
24 
25 #include <crypto/internal/hash.h>
26 #include <crypto/internal/skcipher.h>
27 #include <crypto/scatterwalk.h>
28 #include <crypto/algapi.h>
29 
30 #include <asm/hypervisor.h>
31 #include <asm/mdesc.h>
32 
33 #include "n2_core.h"
34 
35 #define DRV_MODULE_NAME		"n2_crypto"
36 #define DRV_MODULE_VERSION	"0.2"
37 #define DRV_MODULE_RELDATE	"July 28, 2011"
38 
39 static const char version[] =
40 	DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
41 
42 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
43 MODULE_DESCRIPTION("Niagara2 Crypto driver");
44 MODULE_LICENSE("GPL");
45 MODULE_VERSION(DRV_MODULE_VERSION);
46 
47 #define N2_CRA_PRIORITY		200
48 
49 static DEFINE_MUTEX(spu_lock);
50 
51 struct spu_queue {
52 	cpumask_t		sharing;
53 	unsigned long		qhandle;
54 
55 	spinlock_t		lock;
56 	u8			q_type;
57 	void			*q;
58 	unsigned long		head;
59 	unsigned long		tail;
60 	struct list_head	jobs;
61 
62 	unsigned long		devino;
63 
64 	char			irq_name[32];
65 	unsigned int		irq;
66 
67 	struct list_head	list;
68 };
69 
70 struct spu_qreg {
71 	struct spu_queue	*queue;
72 	unsigned long		type;
73 };
74 
75 static struct spu_queue **cpu_to_cwq;
76 static struct spu_queue **cpu_to_mau;
77 
78 static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
79 {
80 	if (q->q_type == HV_NCS_QTYPE_MAU) {
81 		off += MAU_ENTRY_SIZE;
82 		if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
83 			off = 0;
84 	} else {
85 		off += CWQ_ENTRY_SIZE;
86 		if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
87 			off = 0;
88 	}
89 	return off;
90 }
91 
92 struct n2_request_common {
93 	struct list_head	entry;
94 	unsigned int		offset;
95 };
96 #define OFFSET_NOT_RUNNING	(~(unsigned int)0)
97 
98 /* An async job request records the final tail value it used in
99  * n2_request_common->offset, test to see if that offset is in
100  * the range old_head, new_head, inclusive.
101  */
102 static inline bool job_finished(struct spu_queue *q, unsigned int offset,
103 				unsigned long old_head, unsigned long new_head)
104 {
105 	if (old_head <= new_head) {
106 		if (offset > old_head && offset <= new_head)
107 			return true;
108 	} else {
109 		if (offset > old_head || offset <= new_head)
110 			return true;
111 	}
112 	return false;
113 }
114 
115 /* When the HEAD marker is unequal to the actual HEAD, we get
116  * a virtual device INO interrupt.  We should process the
117  * completed CWQ entries and adjust the HEAD marker to clear
118  * the IRQ.
119  */
120 static irqreturn_t cwq_intr(int irq, void *dev_id)
121 {
122 	unsigned long off, new_head, hv_ret;
123 	struct spu_queue *q = dev_id;
124 
125 	pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
126 	       smp_processor_id(), q->qhandle);
127 
128 	spin_lock(&q->lock);
129 
130 	hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
131 
132 	pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
133 	       smp_processor_id(), new_head, hv_ret);
134 
135 	for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
136 		/* XXX ... XXX */
137 	}
138 
139 	hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
140 	if (hv_ret == HV_EOK)
141 		q->head = new_head;
142 
143 	spin_unlock(&q->lock);
144 
145 	return IRQ_HANDLED;
146 }
147 
148 static irqreturn_t mau_intr(int irq, void *dev_id)
149 {
150 	struct spu_queue *q = dev_id;
151 	unsigned long head, hv_ret;
152 
153 	spin_lock(&q->lock);
154 
155 	pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
156 	       smp_processor_id(), q->qhandle);
157 
158 	hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
159 
160 	pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
161 	       smp_processor_id(), head, hv_ret);
162 
163 	sun4v_ncs_sethead_marker(q->qhandle, head);
164 
165 	spin_unlock(&q->lock);
166 
167 	return IRQ_HANDLED;
168 }
169 
170 static void *spu_queue_next(struct spu_queue *q, void *cur)
171 {
172 	return q->q + spu_next_offset(q, cur - q->q);
173 }
174 
175 static int spu_queue_num_free(struct spu_queue *q)
176 {
177 	unsigned long head = q->head;
178 	unsigned long tail = q->tail;
179 	unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
180 	unsigned long diff;
181 
182 	if (head > tail)
183 		diff = head - tail;
184 	else
185 		diff = (end - tail) + head;
186 
187 	return (diff / CWQ_ENTRY_SIZE) - 1;
188 }
189 
190 static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
191 {
192 	int avail = spu_queue_num_free(q);
193 
194 	if (avail >= num_entries)
195 		return q->q + q->tail;
196 
197 	return NULL;
198 }
199 
200 static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
201 {
202 	unsigned long hv_ret, new_tail;
203 
204 	new_tail = spu_next_offset(q, last - q->q);
205 
206 	hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
207 	if (hv_ret == HV_EOK)
208 		q->tail = new_tail;
209 	return hv_ret;
210 }
211 
212 static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
213 			     int enc_type, int auth_type,
214 			     unsigned int hash_len,
215 			     bool sfas, bool sob, bool eob, bool encrypt,
216 			     int opcode)
217 {
218 	u64 word = (len - 1) & CONTROL_LEN;
219 
220 	word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
221 	word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
222 	word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
223 	if (sfas)
224 		word |= CONTROL_STORE_FINAL_AUTH_STATE;
225 	if (sob)
226 		word |= CONTROL_START_OF_BLOCK;
227 	if (eob)
228 		word |= CONTROL_END_OF_BLOCK;
229 	if (encrypt)
230 		word |= CONTROL_ENCRYPT;
231 	if (hmac_key_len)
232 		word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
233 	if (hash_len)
234 		word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
235 
236 	return word;
237 }
238 
239 #if 0
240 static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
241 {
242 	if (this_len >= 64 ||
243 	    qp->head != qp->tail)
244 		return true;
245 	return false;
246 }
247 #endif
248 
249 struct n2_ahash_alg {
250 	struct list_head	entry;
251 	const u8		*hash_zero;
252 	const u8		*hash_init;
253 	u8			hw_op_hashsz;
254 	u8			digest_size;
255 	u8			auth_type;
256 	u8			hmac_type;
257 	struct ahash_alg	alg;
258 };
259 
260 static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
261 {
262 	struct crypto_alg *alg = tfm->__crt_alg;
263 	struct ahash_alg *ahash_alg;
264 
265 	ahash_alg = container_of(alg, struct ahash_alg, halg.base);
266 
267 	return container_of(ahash_alg, struct n2_ahash_alg, alg);
268 }
269 
270 struct n2_hmac_alg {
271 	const char		*child_alg;
272 	struct n2_ahash_alg	derived;
273 };
274 
275 static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
276 {
277 	struct crypto_alg *alg = tfm->__crt_alg;
278 	struct ahash_alg *ahash_alg;
279 
280 	ahash_alg = container_of(alg, struct ahash_alg, halg.base);
281 
282 	return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
283 }
284 
285 struct n2_hash_ctx {
286 	struct crypto_ahash		*fallback_tfm;
287 };
288 
289 #define N2_HASH_KEY_MAX			32 /* HW limit for all HMAC requests */
290 
291 struct n2_hmac_ctx {
292 	struct n2_hash_ctx		base;
293 
294 	struct crypto_shash		*child_shash;
295 
296 	int				hash_key_len;
297 	unsigned char			hash_key[N2_HASH_KEY_MAX];
298 };
299 
300 struct n2_hash_req_ctx {
301 	union {
302 		struct md5_state	md5;
303 		struct sha1_state	sha1;
304 		struct sha256_state	sha256;
305 	} u;
306 
307 	struct ahash_request		fallback_req;
308 };
309 
310 static int n2_hash_async_init(struct ahash_request *req)
311 {
312 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
313 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
314 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
315 
316 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
317 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
318 
319 	return crypto_ahash_init(&rctx->fallback_req);
320 }
321 
322 static int n2_hash_async_update(struct ahash_request *req)
323 {
324 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
325 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
326 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
327 
328 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
329 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
330 	rctx->fallback_req.nbytes = req->nbytes;
331 	rctx->fallback_req.src = req->src;
332 
333 	return crypto_ahash_update(&rctx->fallback_req);
334 }
335 
336 static int n2_hash_async_final(struct ahash_request *req)
337 {
338 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
339 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
340 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
341 
342 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
343 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
344 	rctx->fallback_req.result = req->result;
345 
346 	return crypto_ahash_final(&rctx->fallback_req);
347 }
348 
349 static int n2_hash_async_finup(struct ahash_request *req)
350 {
351 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
352 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
353 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
354 
355 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
356 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
357 	rctx->fallback_req.nbytes = req->nbytes;
358 	rctx->fallback_req.src = req->src;
359 	rctx->fallback_req.result = req->result;
360 
361 	return crypto_ahash_finup(&rctx->fallback_req);
362 }
363 
364 static int n2_hash_async_noimport(struct ahash_request *req, const void *in)
365 {
366 	return -ENOSYS;
367 }
368 
369 static int n2_hash_async_noexport(struct ahash_request *req, void *out)
370 {
371 	return -ENOSYS;
372 }
373 
374 static int n2_hash_cra_init(struct crypto_tfm *tfm)
375 {
376 	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
377 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
378 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
379 	struct crypto_ahash *fallback_tfm;
380 	int err;
381 
382 	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
383 					  CRYPTO_ALG_NEED_FALLBACK);
384 	if (IS_ERR(fallback_tfm)) {
385 		pr_warn("Fallback driver '%s' could not be loaded!\n",
386 			fallback_driver_name);
387 		err = PTR_ERR(fallback_tfm);
388 		goto out;
389 	}
390 
391 	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
392 					 crypto_ahash_reqsize(fallback_tfm)));
393 
394 	ctx->fallback_tfm = fallback_tfm;
395 	return 0;
396 
397 out:
398 	return err;
399 }
400 
401 static void n2_hash_cra_exit(struct crypto_tfm *tfm)
402 {
403 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
404 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
405 
406 	crypto_free_ahash(ctx->fallback_tfm);
407 }
408 
409 static int n2_hmac_cra_init(struct crypto_tfm *tfm)
410 {
411 	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
412 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
413 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
414 	struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
415 	struct crypto_ahash *fallback_tfm;
416 	struct crypto_shash *child_shash;
417 	int err;
418 
419 	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
420 					  CRYPTO_ALG_NEED_FALLBACK);
421 	if (IS_ERR(fallback_tfm)) {
422 		pr_warn("Fallback driver '%s' could not be loaded!\n",
423 			fallback_driver_name);
424 		err = PTR_ERR(fallback_tfm);
425 		goto out;
426 	}
427 
428 	child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
429 	if (IS_ERR(child_shash)) {
430 		pr_warn("Child shash '%s' could not be loaded!\n",
431 			n2alg->child_alg);
432 		err = PTR_ERR(child_shash);
433 		goto out_free_fallback;
434 	}
435 
436 	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
437 					 crypto_ahash_reqsize(fallback_tfm)));
438 
439 	ctx->child_shash = child_shash;
440 	ctx->base.fallback_tfm = fallback_tfm;
441 	return 0;
442 
443 out_free_fallback:
444 	crypto_free_ahash(fallback_tfm);
445 
446 out:
447 	return err;
448 }
449 
450 static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
451 {
452 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
453 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
454 
455 	crypto_free_ahash(ctx->base.fallback_tfm);
456 	crypto_free_shash(ctx->child_shash);
457 }
458 
459 static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
460 				unsigned int keylen)
461 {
462 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
463 	struct crypto_shash *child_shash = ctx->child_shash;
464 	struct crypto_ahash *fallback_tfm;
465 	int err, bs, ds;
466 
467 	fallback_tfm = ctx->base.fallback_tfm;
468 	err = crypto_ahash_setkey(fallback_tfm, key, keylen);
469 	if (err)
470 		return err;
471 
472 	bs = crypto_shash_blocksize(child_shash);
473 	ds = crypto_shash_digestsize(child_shash);
474 	BUG_ON(ds > N2_HASH_KEY_MAX);
475 	if (keylen > bs) {
476 		err = crypto_shash_tfm_digest(child_shash, key, keylen,
477 					      ctx->hash_key);
478 		if (err)
479 			return err;
480 		keylen = ds;
481 	} else if (keylen <= N2_HASH_KEY_MAX)
482 		memcpy(ctx->hash_key, key, keylen);
483 
484 	ctx->hash_key_len = keylen;
485 
486 	return err;
487 }
488 
489 static unsigned long wait_for_tail(struct spu_queue *qp)
490 {
491 	unsigned long head, hv_ret;
492 
493 	do {
494 		hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
495 		if (hv_ret != HV_EOK) {
496 			pr_err("Hypervisor error on gethead\n");
497 			break;
498 		}
499 		if (head == qp->tail) {
500 			qp->head = head;
501 			break;
502 		}
503 	} while (1);
504 	return hv_ret;
505 }
506 
507 static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
508 					      struct cwq_initial_entry *ent)
509 {
510 	unsigned long hv_ret = spu_queue_submit(qp, ent);
511 
512 	if (hv_ret == HV_EOK)
513 		hv_ret = wait_for_tail(qp);
514 
515 	return hv_ret;
516 }
517 
518 static int n2_do_async_digest(struct ahash_request *req,
519 			      unsigned int auth_type, unsigned int digest_size,
520 			      unsigned int result_size, void *hash_loc,
521 			      unsigned long auth_key, unsigned int auth_key_len)
522 {
523 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
524 	struct cwq_initial_entry *ent;
525 	struct crypto_hash_walk walk;
526 	struct spu_queue *qp;
527 	unsigned long flags;
528 	int err = -ENODEV;
529 	int nbytes, cpu;
530 
531 	/* The total effective length of the operation may not
532 	 * exceed 2^16.
533 	 */
534 	if (unlikely(req->nbytes > (1 << 16))) {
535 		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
536 		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
537 
538 		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
539 		rctx->fallback_req.base.flags =
540 			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
541 		rctx->fallback_req.nbytes = req->nbytes;
542 		rctx->fallback_req.src = req->src;
543 		rctx->fallback_req.result = req->result;
544 
545 		return crypto_ahash_digest(&rctx->fallback_req);
546 	}
547 
548 	nbytes = crypto_hash_walk_first(req, &walk);
549 
550 	cpu = get_cpu();
551 	qp = cpu_to_cwq[cpu];
552 	if (!qp)
553 		goto out;
554 
555 	spin_lock_irqsave(&qp->lock, flags);
556 
557 	/* XXX can do better, improve this later by doing a by-hand scatterlist
558 	 * XXX walk, etc.
559 	 */
560 	ent = qp->q + qp->tail;
561 
562 	ent->control = control_word_base(nbytes, auth_key_len, 0,
563 					 auth_type, digest_size,
564 					 false, true, false, false,
565 					 OPCODE_INPLACE_BIT |
566 					 OPCODE_AUTH_MAC);
567 	ent->src_addr = __pa(walk.data);
568 	ent->auth_key_addr = auth_key;
569 	ent->auth_iv_addr = __pa(hash_loc);
570 	ent->final_auth_state_addr = 0UL;
571 	ent->enc_key_addr = 0UL;
572 	ent->enc_iv_addr = 0UL;
573 	ent->dest_addr = __pa(hash_loc);
574 
575 	nbytes = crypto_hash_walk_done(&walk, 0);
576 	while (nbytes > 0) {
577 		ent = spu_queue_next(qp, ent);
578 
579 		ent->control = (nbytes - 1);
580 		ent->src_addr = __pa(walk.data);
581 		ent->auth_key_addr = 0UL;
582 		ent->auth_iv_addr = 0UL;
583 		ent->final_auth_state_addr = 0UL;
584 		ent->enc_key_addr = 0UL;
585 		ent->enc_iv_addr = 0UL;
586 		ent->dest_addr = 0UL;
587 
588 		nbytes = crypto_hash_walk_done(&walk, 0);
589 	}
590 	ent->control |= CONTROL_END_OF_BLOCK;
591 
592 	if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
593 		err = -EINVAL;
594 	else
595 		err = 0;
596 
597 	spin_unlock_irqrestore(&qp->lock, flags);
598 
599 	if (!err)
600 		memcpy(req->result, hash_loc, result_size);
601 out:
602 	put_cpu();
603 
604 	return err;
605 }
606 
607 static int n2_hash_async_digest(struct ahash_request *req)
608 {
609 	struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
610 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
611 	int ds;
612 
613 	ds = n2alg->digest_size;
614 	if (unlikely(req->nbytes == 0)) {
615 		memcpy(req->result, n2alg->hash_zero, ds);
616 		return 0;
617 	}
618 	memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
619 
620 	return n2_do_async_digest(req, n2alg->auth_type,
621 				  n2alg->hw_op_hashsz, ds,
622 				  &rctx->u, 0UL, 0);
623 }
624 
625 static int n2_hmac_async_digest(struct ahash_request *req)
626 {
627 	struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
628 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
629 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
630 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
631 	int ds;
632 
633 	ds = n2alg->derived.digest_size;
634 	if (unlikely(req->nbytes == 0) ||
635 	    unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
636 		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
637 		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
638 
639 		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
640 		rctx->fallback_req.base.flags =
641 			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
642 		rctx->fallback_req.nbytes = req->nbytes;
643 		rctx->fallback_req.src = req->src;
644 		rctx->fallback_req.result = req->result;
645 
646 		return crypto_ahash_digest(&rctx->fallback_req);
647 	}
648 	memcpy(&rctx->u, n2alg->derived.hash_init,
649 	       n2alg->derived.hw_op_hashsz);
650 
651 	return n2_do_async_digest(req, n2alg->derived.hmac_type,
652 				  n2alg->derived.hw_op_hashsz, ds,
653 				  &rctx->u,
654 				  __pa(&ctx->hash_key),
655 				  ctx->hash_key_len);
656 }
657 
658 struct n2_skcipher_context {
659 	int			key_len;
660 	int			enc_type;
661 	union {
662 		u8		aes[AES_MAX_KEY_SIZE];
663 		u8		des[DES_KEY_SIZE];
664 		u8		des3[3 * DES_KEY_SIZE];
665 	} key;
666 };
667 
668 #define N2_CHUNK_ARR_LEN	16
669 
670 struct n2_crypto_chunk {
671 	struct list_head	entry;
672 	unsigned long		iv_paddr : 44;
673 	unsigned long		arr_len : 20;
674 	unsigned long		dest_paddr;
675 	unsigned long		dest_final;
676 	struct {
677 		unsigned long	src_paddr : 44;
678 		unsigned long	src_len : 20;
679 	} arr[N2_CHUNK_ARR_LEN];
680 };
681 
682 struct n2_request_context {
683 	struct skcipher_walk	walk;
684 	struct list_head	chunk_list;
685 	struct n2_crypto_chunk	chunk;
686 	u8			temp_iv[16];
687 };
688 
689 /* The SPU allows some level of flexibility for partial cipher blocks
690  * being specified in a descriptor.
691  *
692  * It merely requires that every descriptor's length field is at least
693  * as large as the cipher block size.  This means that a cipher block
694  * can span at most 2 descriptors.  However, this does not allow a
695  * partial block to span into the final descriptor as that would
696  * violate the rule (since every descriptor's length must be at lest
697  * the block size).  So, for example, assuming an 8 byte block size:
698  *
699  *	0xe --> 0xa --> 0x8
700  *
701  * is a valid length sequence, whereas:
702  *
703  *	0xe --> 0xb --> 0x7
704  *
705  * is not a valid sequence.
706  */
707 
708 struct n2_skcipher_alg {
709 	struct list_head	entry;
710 	u8			enc_type;
711 	struct skcipher_alg	skcipher;
712 };
713 
714 static inline struct n2_skcipher_alg *n2_skcipher_alg(struct crypto_skcipher *tfm)
715 {
716 	struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
717 
718 	return container_of(alg, struct n2_skcipher_alg, skcipher);
719 }
720 
721 struct n2_skcipher_request_context {
722 	struct skcipher_walk	walk;
723 };
724 
725 static int n2_aes_setkey(struct crypto_skcipher *skcipher, const u8 *key,
726 			 unsigned int keylen)
727 {
728 	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
729 	struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
730 	struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
731 
732 	ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
733 
734 	switch (keylen) {
735 	case AES_KEYSIZE_128:
736 		ctx->enc_type |= ENC_TYPE_ALG_AES128;
737 		break;
738 	case AES_KEYSIZE_192:
739 		ctx->enc_type |= ENC_TYPE_ALG_AES192;
740 		break;
741 	case AES_KEYSIZE_256:
742 		ctx->enc_type |= ENC_TYPE_ALG_AES256;
743 		break;
744 	default:
745 		return -EINVAL;
746 	}
747 
748 	ctx->key_len = keylen;
749 	memcpy(ctx->key.aes, key, keylen);
750 	return 0;
751 }
752 
753 static int n2_des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
754 			 unsigned int keylen)
755 {
756 	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
757 	struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
758 	struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
759 	int err;
760 
761 	err = verify_skcipher_des_key(skcipher, key);
762 	if (err)
763 		return err;
764 
765 	ctx->enc_type = n2alg->enc_type;
766 
767 	ctx->key_len = keylen;
768 	memcpy(ctx->key.des, key, keylen);
769 	return 0;
770 }
771 
772 static int n2_3des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
773 			  unsigned int keylen)
774 {
775 	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
776 	struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
777 	struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
778 	int err;
779 
780 	err = verify_skcipher_des3_key(skcipher, key);
781 	if (err)
782 		return err;
783 
784 	ctx->enc_type = n2alg->enc_type;
785 
786 	ctx->key_len = keylen;
787 	memcpy(ctx->key.des3, key, keylen);
788 	return 0;
789 }
790 
791 static inline int skcipher_descriptor_len(int nbytes, unsigned int block_size)
792 {
793 	int this_len = nbytes;
794 
795 	this_len -= (nbytes & (block_size - 1));
796 	return this_len > (1 << 16) ? (1 << 16) : this_len;
797 }
798 
799 static int __n2_crypt_chunk(struct crypto_skcipher *skcipher,
800 			    struct n2_crypto_chunk *cp,
801 			    struct spu_queue *qp, bool encrypt)
802 {
803 	struct n2_skcipher_context *ctx = crypto_skcipher_ctx(skcipher);
804 	struct cwq_initial_entry *ent;
805 	bool in_place;
806 	int i;
807 
808 	ent = spu_queue_alloc(qp, cp->arr_len);
809 	if (!ent) {
810 		pr_info("queue_alloc() of %d fails\n",
811 			cp->arr_len);
812 		return -EBUSY;
813 	}
814 
815 	in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
816 
817 	ent->control = control_word_base(cp->arr[0].src_len,
818 					 0, ctx->enc_type, 0, 0,
819 					 false, true, false, encrypt,
820 					 OPCODE_ENCRYPT |
821 					 (in_place ? OPCODE_INPLACE_BIT : 0));
822 	ent->src_addr = cp->arr[0].src_paddr;
823 	ent->auth_key_addr = 0UL;
824 	ent->auth_iv_addr = 0UL;
825 	ent->final_auth_state_addr = 0UL;
826 	ent->enc_key_addr = __pa(&ctx->key);
827 	ent->enc_iv_addr = cp->iv_paddr;
828 	ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
829 
830 	for (i = 1; i < cp->arr_len; i++) {
831 		ent = spu_queue_next(qp, ent);
832 
833 		ent->control = cp->arr[i].src_len - 1;
834 		ent->src_addr = cp->arr[i].src_paddr;
835 		ent->auth_key_addr = 0UL;
836 		ent->auth_iv_addr = 0UL;
837 		ent->final_auth_state_addr = 0UL;
838 		ent->enc_key_addr = 0UL;
839 		ent->enc_iv_addr = 0UL;
840 		ent->dest_addr = 0UL;
841 	}
842 	ent->control |= CONTROL_END_OF_BLOCK;
843 
844 	return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
845 }
846 
847 static int n2_compute_chunks(struct skcipher_request *req)
848 {
849 	struct n2_request_context *rctx = skcipher_request_ctx(req);
850 	struct skcipher_walk *walk = &rctx->walk;
851 	struct n2_crypto_chunk *chunk;
852 	unsigned long dest_prev;
853 	unsigned int tot_len;
854 	bool prev_in_place;
855 	int err, nbytes;
856 
857 	err = skcipher_walk_async(walk, req);
858 	if (err)
859 		return err;
860 
861 	INIT_LIST_HEAD(&rctx->chunk_list);
862 
863 	chunk = &rctx->chunk;
864 	INIT_LIST_HEAD(&chunk->entry);
865 
866 	chunk->iv_paddr = 0UL;
867 	chunk->arr_len = 0;
868 	chunk->dest_paddr = 0UL;
869 
870 	prev_in_place = false;
871 	dest_prev = ~0UL;
872 	tot_len = 0;
873 
874 	while ((nbytes = walk->nbytes) != 0) {
875 		unsigned long dest_paddr, src_paddr;
876 		bool in_place;
877 		int this_len;
878 
879 		src_paddr = (page_to_phys(walk->src.phys.page) +
880 			     walk->src.phys.offset);
881 		dest_paddr = (page_to_phys(walk->dst.phys.page) +
882 			      walk->dst.phys.offset);
883 		in_place = (src_paddr == dest_paddr);
884 		this_len = skcipher_descriptor_len(nbytes, walk->blocksize);
885 
886 		if (chunk->arr_len != 0) {
887 			if (in_place != prev_in_place ||
888 			    (!prev_in_place &&
889 			     dest_paddr != dest_prev) ||
890 			    chunk->arr_len == N2_CHUNK_ARR_LEN ||
891 			    tot_len + this_len > (1 << 16)) {
892 				chunk->dest_final = dest_prev;
893 				list_add_tail(&chunk->entry,
894 					      &rctx->chunk_list);
895 				chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
896 				if (!chunk) {
897 					err = -ENOMEM;
898 					break;
899 				}
900 				INIT_LIST_HEAD(&chunk->entry);
901 			}
902 		}
903 		if (chunk->arr_len == 0) {
904 			chunk->dest_paddr = dest_paddr;
905 			tot_len = 0;
906 		}
907 		chunk->arr[chunk->arr_len].src_paddr = src_paddr;
908 		chunk->arr[chunk->arr_len].src_len = this_len;
909 		chunk->arr_len++;
910 
911 		dest_prev = dest_paddr + this_len;
912 		prev_in_place = in_place;
913 		tot_len += this_len;
914 
915 		err = skcipher_walk_done(walk, nbytes - this_len);
916 		if (err)
917 			break;
918 	}
919 	if (!err && chunk->arr_len != 0) {
920 		chunk->dest_final = dest_prev;
921 		list_add_tail(&chunk->entry, &rctx->chunk_list);
922 	}
923 
924 	return err;
925 }
926 
927 static void n2_chunk_complete(struct skcipher_request *req, void *final_iv)
928 {
929 	struct n2_request_context *rctx = skcipher_request_ctx(req);
930 	struct n2_crypto_chunk *c, *tmp;
931 
932 	if (final_iv)
933 		memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
934 
935 	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
936 		list_del(&c->entry);
937 		if (unlikely(c != &rctx->chunk))
938 			kfree(c);
939 	}
940 
941 }
942 
943 static int n2_do_ecb(struct skcipher_request *req, bool encrypt)
944 {
945 	struct n2_request_context *rctx = skcipher_request_ctx(req);
946 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
947 	int err = n2_compute_chunks(req);
948 	struct n2_crypto_chunk *c, *tmp;
949 	unsigned long flags, hv_ret;
950 	struct spu_queue *qp;
951 
952 	if (err)
953 		return err;
954 
955 	qp = cpu_to_cwq[get_cpu()];
956 	err = -ENODEV;
957 	if (!qp)
958 		goto out;
959 
960 	spin_lock_irqsave(&qp->lock, flags);
961 
962 	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
963 		err = __n2_crypt_chunk(tfm, c, qp, encrypt);
964 		if (err)
965 			break;
966 		list_del(&c->entry);
967 		if (unlikely(c != &rctx->chunk))
968 			kfree(c);
969 	}
970 	if (!err) {
971 		hv_ret = wait_for_tail(qp);
972 		if (hv_ret != HV_EOK)
973 			err = -EINVAL;
974 	}
975 
976 	spin_unlock_irqrestore(&qp->lock, flags);
977 
978 out:
979 	put_cpu();
980 
981 	n2_chunk_complete(req, NULL);
982 	return err;
983 }
984 
985 static int n2_encrypt_ecb(struct skcipher_request *req)
986 {
987 	return n2_do_ecb(req, true);
988 }
989 
990 static int n2_decrypt_ecb(struct skcipher_request *req)
991 {
992 	return n2_do_ecb(req, false);
993 }
994 
995 static int n2_do_chaining(struct skcipher_request *req, bool encrypt)
996 {
997 	struct n2_request_context *rctx = skcipher_request_ctx(req);
998 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
999 	unsigned long flags, hv_ret, iv_paddr;
1000 	int err = n2_compute_chunks(req);
1001 	struct n2_crypto_chunk *c, *tmp;
1002 	struct spu_queue *qp;
1003 	void *final_iv_addr;
1004 
1005 	final_iv_addr = NULL;
1006 
1007 	if (err)
1008 		return err;
1009 
1010 	qp = cpu_to_cwq[get_cpu()];
1011 	err = -ENODEV;
1012 	if (!qp)
1013 		goto out;
1014 
1015 	spin_lock_irqsave(&qp->lock, flags);
1016 
1017 	if (encrypt) {
1018 		iv_paddr = __pa(rctx->walk.iv);
1019 		list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1020 					 entry) {
1021 			c->iv_paddr = iv_paddr;
1022 			err = __n2_crypt_chunk(tfm, c, qp, true);
1023 			if (err)
1024 				break;
1025 			iv_paddr = c->dest_final - rctx->walk.blocksize;
1026 			list_del(&c->entry);
1027 			if (unlikely(c != &rctx->chunk))
1028 				kfree(c);
1029 		}
1030 		final_iv_addr = __va(iv_paddr);
1031 	} else {
1032 		list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1033 						 entry) {
1034 			if (c == &rctx->chunk) {
1035 				iv_paddr = __pa(rctx->walk.iv);
1036 			} else {
1037 				iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1038 					    tmp->arr[tmp->arr_len-1].src_len -
1039 					    rctx->walk.blocksize);
1040 			}
1041 			if (!final_iv_addr) {
1042 				unsigned long pa;
1043 
1044 				pa = (c->arr[c->arr_len-1].src_paddr +
1045 				      c->arr[c->arr_len-1].src_len -
1046 				      rctx->walk.blocksize);
1047 				final_iv_addr = rctx->temp_iv;
1048 				memcpy(rctx->temp_iv, __va(pa),
1049 				       rctx->walk.blocksize);
1050 			}
1051 			c->iv_paddr = iv_paddr;
1052 			err = __n2_crypt_chunk(tfm, c, qp, false);
1053 			if (err)
1054 				break;
1055 			list_del(&c->entry);
1056 			if (unlikely(c != &rctx->chunk))
1057 				kfree(c);
1058 		}
1059 	}
1060 	if (!err) {
1061 		hv_ret = wait_for_tail(qp);
1062 		if (hv_ret != HV_EOK)
1063 			err = -EINVAL;
1064 	}
1065 
1066 	spin_unlock_irqrestore(&qp->lock, flags);
1067 
1068 out:
1069 	put_cpu();
1070 
1071 	n2_chunk_complete(req, err ? NULL : final_iv_addr);
1072 	return err;
1073 }
1074 
1075 static int n2_encrypt_chaining(struct skcipher_request *req)
1076 {
1077 	return n2_do_chaining(req, true);
1078 }
1079 
1080 static int n2_decrypt_chaining(struct skcipher_request *req)
1081 {
1082 	return n2_do_chaining(req, false);
1083 }
1084 
1085 struct n2_skcipher_tmpl {
1086 	const char		*name;
1087 	const char		*drv_name;
1088 	u8			block_size;
1089 	u8			enc_type;
1090 	struct skcipher_alg	skcipher;
1091 };
1092 
1093 static const struct n2_skcipher_tmpl skcipher_tmpls[] = {
1094 	/* DES: ECB CBC and CFB are supported */
1095 	{	.name		= "ecb(des)",
1096 		.drv_name	= "ecb-des",
1097 		.block_size	= DES_BLOCK_SIZE,
1098 		.enc_type	= (ENC_TYPE_ALG_DES |
1099 				   ENC_TYPE_CHAINING_ECB),
1100 		.skcipher	= {
1101 			.min_keysize	= DES_KEY_SIZE,
1102 			.max_keysize	= DES_KEY_SIZE,
1103 			.setkey		= n2_des_setkey,
1104 			.encrypt	= n2_encrypt_ecb,
1105 			.decrypt	= n2_decrypt_ecb,
1106 		},
1107 	},
1108 	{	.name		= "cbc(des)",
1109 		.drv_name	= "cbc-des",
1110 		.block_size	= DES_BLOCK_SIZE,
1111 		.enc_type	= (ENC_TYPE_ALG_DES |
1112 				   ENC_TYPE_CHAINING_CBC),
1113 		.skcipher	= {
1114 			.ivsize		= DES_BLOCK_SIZE,
1115 			.min_keysize	= DES_KEY_SIZE,
1116 			.max_keysize	= DES_KEY_SIZE,
1117 			.setkey		= n2_des_setkey,
1118 			.encrypt	= n2_encrypt_chaining,
1119 			.decrypt	= n2_decrypt_chaining,
1120 		},
1121 	},
1122 	{	.name		= "cfb(des)",
1123 		.drv_name	= "cfb-des",
1124 		.block_size	= DES_BLOCK_SIZE,
1125 		.enc_type	= (ENC_TYPE_ALG_DES |
1126 				   ENC_TYPE_CHAINING_CFB),
1127 		.skcipher	= {
1128 			.min_keysize	= DES_KEY_SIZE,
1129 			.max_keysize	= DES_KEY_SIZE,
1130 			.setkey		= n2_des_setkey,
1131 			.encrypt	= n2_encrypt_chaining,
1132 			.decrypt	= n2_decrypt_chaining,
1133 		},
1134 	},
1135 
1136 	/* 3DES: ECB CBC and CFB are supported */
1137 	{	.name		= "ecb(des3_ede)",
1138 		.drv_name	= "ecb-3des",
1139 		.block_size	= DES_BLOCK_SIZE,
1140 		.enc_type	= (ENC_TYPE_ALG_3DES |
1141 				   ENC_TYPE_CHAINING_ECB),
1142 		.skcipher	= {
1143 			.min_keysize	= 3 * DES_KEY_SIZE,
1144 			.max_keysize	= 3 * DES_KEY_SIZE,
1145 			.setkey		= n2_3des_setkey,
1146 			.encrypt	= n2_encrypt_ecb,
1147 			.decrypt	= n2_decrypt_ecb,
1148 		},
1149 	},
1150 	{	.name		= "cbc(des3_ede)",
1151 		.drv_name	= "cbc-3des",
1152 		.block_size	= DES_BLOCK_SIZE,
1153 		.enc_type	= (ENC_TYPE_ALG_3DES |
1154 				   ENC_TYPE_CHAINING_CBC),
1155 		.skcipher	= {
1156 			.ivsize		= DES_BLOCK_SIZE,
1157 			.min_keysize	= 3 * DES_KEY_SIZE,
1158 			.max_keysize	= 3 * DES_KEY_SIZE,
1159 			.setkey		= n2_3des_setkey,
1160 			.encrypt	= n2_encrypt_chaining,
1161 			.decrypt	= n2_decrypt_chaining,
1162 		},
1163 	},
1164 	{	.name		= "cfb(des3_ede)",
1165 		.drv_name	= "cfb-3des",
1166 		.block_size	= DES_BLOCK_SIZE,
1167 		.enc_type	= (ENC_TYPE_ALG_3DES |
1168 				   ENC_TYPE_CHAINING_CFB),
1169 		.skcipher	= {
1170 			.min_keysize	= 3 * DES_KEY_SIZE,
1171 			.max_keysize	= 3 * DES_KEY_SIZE,
1172 			.setkey		= n2_3des_setkey,
1173 			.encrypt	= n2_encrypt_chaining,
1174 			.decrypt	= n2_decrypt_chaining,
1175 		},
1176 	},
1177 	/* AES: ECB CBC and CTR are supported */
1178 	{	.name		= "ecb(aes)",
1179 		.drv_name	= "ecb-aes",
1180 		.block_size	= AES_BLOCK_SIZE,
1181 		.enc_type	= (ENC_TYPE_ALG_AES128 |
1182 				   ENC_TYPE_CHAINING_ECB),
1183 		.skcipher	= {
1184 			.min_keysize	= AES_MIN_KEY_SIZE,
1185 			.max_keysize	= AES_MAX_KEY_SIZE,
1186 			.setkey		= n2_aes_setkey,
1187 			.encrypt	= n2_encrypt_ecb,
1188 			.decrypt	= n2_decrypt_ecb,
1189 		},
1190 	},
1191 	{	.name		= "cbc(aes)",
1192 		.drv_name	= "cbc-aes",
1193 		.block_size	= AES_BLOCK_SIZE,
1194 		.enc_type	= (ENC_TYPE_ALG_AES128 |
1195 				   ENC_TYPE_CHAINING_CBC),
1196 		.skcipher	= {
1197 			.ivsize		= AES_BLOCK_SIZE,
1198 			.min_keysize	= AES_MIN_KEY_SIZE,
1199 			.max_keysize	= AES_MAX_KEY_SIZE,
1200 			.setkey		= n2_aes_setkey,
1201 			.encrypt	= n2_encrypt_chaining,
1202 			.decrypt	= n2_decrypt_chaining,
1203 		},
1204 	},
1205 	{	.name		= "ctr(aes)",
1206 		.drv_name	= "ctr-aes",
1207 		.block_size	= AES_BLOCK_SIZE,
1208 		.enc_type	= (ENC_TYPE_ALG_AES128 |
1209 				   ENC_TYPE_CHAINING_COUNTER),
1210 		.skcipher	= {
1211 			.ivsize		= AES_BLOCK_SIZE,
1212 			.min_keysize	= AES_MIN_KEY_SIZE,
1213 			.max_keysize	= AES_MAX_KEY_SIZE,
1214 			.setkey		= n2_aes_setkey,
1215 			.encrypt	= n2_encrypt_chaining,
1216 			.decrypt	= n2_encrypt_chaining,
1217 		},
1218 	},
1219 
1220 };
1221 #define NUM_CIPHER_TMPLS ARRAY_SIZE(skcipher_tmpls)
1222 
1223 static LIST_HEAD(skcipher_algs);
1224 
1225 struct n2_hash_tmpl {
1226 	const char	*name;
1227 	const u8	*hash_zero;
1228 	const u8	*hash_init;
1229 	u8		hw_op_hashsz;
1230 	u8		digest_size;
1231 	u8		block_size;
1232 	u8		auth_type;
1233 	u8		hmac_type;
1234 };
1235 
1236 static const __le32 n2_md5_init[MD5_HASH_WORDS] = {
1237 	cpu_to_le32(MD5_H0),
1238 	cpu_to_le32(MD5_H1),
1239 	cpu_to_le32(MD5_H2),
1240 	cpu_to_le32(MD5_H3),
1241 };
1242 static const u32 n2_sha1_init[SHA1_DIGEST_SIZE / 4] = {
1243 	SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1244 };
1245 static const u32 n2_sha256_init[SHA256_DIGEST_SIZE / 4] = {
1246 	SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1247 	SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1248 };
1249 static const u32 n2_sha224_init[SHA256_DIGEST_SIZE / 4] = {
1250 	SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1251 	SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1252 };
1253 
1254 static const struct n2_hash_tmpl hash_tmpls[] = {
1255 	{ .name		= "md5",
1256 	  .hash_zero	= md5_zero_message_hash,
1257 	  .hash_init	= (u8 *)n2_md5_init,
1258 	  .auth_type	= AUTH_TYPE_MD5,
1259 	  .hmac_type	= AUTH_TYPE_HMAC_MD5,
1260 	  .hw_op_hashsz	= MD5_DIGEST_SIZE,
1261 	  .digest_size	= MD5_DIGEST_SIZE,
1262 	  .block_size	= MD5_HMAC_BLOCK_SIZE },
1263 	{ .name		= "sha1",
1264 	  .hash_zero	= sha1_zero_message_hash,
1265 	  .hash_init	= (u8 *)n2_sha1_init,
1266 	  .auth_type	= AUTH_TYPE_SHA1,
1267 	  .hmac_type	= AUTH_TYPE_HMAC_SHA1,
1268 	  .hw_op_hashsz	= SHA1_DIGEST_SIZE,
1269 	  .digest_size	= SHA1_DIGEST_SIZE,
1270 	  .block_size	= SHA1_BLOCK_SIZE },
1271 	{ .name		= "sha256",
1272 	  .hash_zero	= sha256_zero_message_hash,
1273 	  .hash_init	= (u8 *)n2_sha256_init,
1274 	  .auth_type	= AUTH_TYPE_SHA256,
1275 	  .hmac_type	= AUTH_TYPE_HMAC_SHA256,
1276 	  .hw_op_hashsz	= SHA256_DIGEST_SIZE,
1277 	  .digest_size	= SHA256_DIGEST_SIZE,
1278 	  .block_size	= SHA256_BLOCK_SIZE },
1279 	{ .name		= "sha224",
1280 	  .hash_zero	= sha224_zero_message_hash,
1281 	  .hash_init	= (u8 *)n2_sha224_init,
1282 	  .auth_type	= AUTH_TYPE_SHA256,
1283 	  .hmac_type	= AUTH_TYPE_RESERVED,
1284 	  .hw_op_hashsz	= SHA256_DIGEST_SIZE,
1285 	  .digest_size	= SHA224_DIGEST_SIZE,
1286 	  .block_size	= SHA224_BLOCK_SIZE },
1287 };
1288 #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1289 
1290 static LIST_HEAD(ahash_algs);
1291 static LIST_HEAD(hmac_algs);
1292 
1293 static int algs_registered;
1294 
1295 static void __n2_unregister_algs(void)
1296 {
1297 	struct n2_skcipher_alg *skcipher, *skcipher_tmp;
1298 	struct n2_ahash_alg *alg, *alg_tmp;
1299 	struct n2_hmac_alg *hmac, *hmac_tmp;
1300 
1301 	list_for_each_entry_safe(skcipher, skcipher_tmp, &skcipher_algs, entry) {
1302 		crypto_unregister_skcipher(&skcipher->skcipher);
1303 		list_del(&skcipher->entry);
1304 		kfree(skcipher);
1305 	}
1306 	list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1307 		crypto_unregister_ahash(&hmac->derived.alg);
1308 		list_del(&hmac->derived.entry);
1309 		kfree(hmac);
1310 	}
1311 	list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1312 		crypto_unregister_ahash(&alg->alg);
1313 		list_del(&alg->entry);
1314 		kfree(alg);
1315 	}
1316 }
1317 
1318 static int n2_skcipher_init_tfm(struct crypto_skcipher *tfm)
1319 {
1320 	crypto_skcipher_set_reqsize(tfm, sizeof(struct n2_request_context));
1321 	return 0;
1322 }
1323 
1324 static int __n2_register_one_skcipher(const struct n2_skcipher_tmpl *tmpl)
1325 {
1326 	struct n2_skcipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1327 	struct skcipher_alg *alg;
1328 	int err;
1329 
1330 	if (!p)
1331 		return -ENOMEM;
1332 
1333 	alg = &p->skcipher;
1334 	*alg = tmpl->skcipher;
1335 
1336 	snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1337 	snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1338 	alg->base.cra_priority = N2_CRA_PRIORITY;
1339 	alg->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC |
1340 			      CRYPTO_ALG_ALLOCATES_MEMORY;
1341 	alg->base.cra_blocksize = tmpl->block_size;
1342 	p->enc_type = tmpl->enc_type;
1343 	alg->base.cra_ctxsize = sizeof(struct n2_skcipher_context);
1344 	alg->base.cra_module = THIS_MODULE;
1345 	alg->init = n2_skcipher_init_tfm;
1346 
1347 	list_add(&p->entry, &skcipher_algs);
1348 	err = crypto_register_skcipher(alg);
1349 	if (err) {
1350 		pr_err("%s alg registration failed\n", alg->base.cra_name);
1351 		list_del(&p->entry);
1352 		kfree(p);
1353 	} else {
1354 		pr_info("%s alg registered\n", alg->base.cra_name);
1355 	}
1356 	return err;
1357 }
1358 
1359 static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1360 {
1361 	struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1362 	struct ahash_alg *ahash;
1363 	struct crypto_alg *base;
1364 	int err;
1365 
1366 	if (!p)
1367 		return -ENOMEM;
1368 
1369 	p->child_alg = n2ahash->alg.halg.base.cra_name;
1370 	memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1371 	INIT_LIST_HEAD(&p->derived.entry);
1372 
1373 	ahash = &p->derived.alg;
1374 	ahash->digest = n2_hmac_async_digest;
1375 	ahash->setkey = n2_hmac_async_setkey;
1376 
1377 	base = &ahash->halg.base;
1378 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
1379 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
1380 
1381 	base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1382 	base->cra_init = n2_hmac_cra_init;
1383 	base->cra_exit = n2_hmac_cra_exit;
1384 
1385 	list_add(&p->derived.entry, &hmac_algs);
1386 	err = crypto_register_ahash(ahash);
1387 	if (err) {
1388 		pr_err("%s alg registration failed\n", base->cra_name);
1389 		list_del(&p->derived.entry);
1390 		kfree(p);
1391 	} else {
1392 		pr_info("%s alg registered\n", base->cra_name);
1393 	}
1394 	return err;
1395 }
1396 
1397 static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1398 {
1399 	struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1400 	struct hash_alg_common *halg;
1401 	struct crypto_alg *base;
1402 	struct ahash_alg *ahash;
1403 	int err;
1404 
1405 	if (!p)
1406 		return -ENOMEM;
1407 
1408 	p->hash_zero = tmpl->hash_zero;
1409 	p->hash_init = tmpl->hash_init;
1410 	p->auth_type = tmpl->auth_type;
1411 	p->hmac_type = tmpl->hmac_type;
1412 	p->hw_op_hashsz = tmpl->hw_op_hashsz;
1413 	p->digest_size = tmpl->digest_size;
1414 
1415 	ahash = &p->alg;
1416 	ahash->init = n2_hash_async_init;
1417 	ahash->update = n2_hash_async_update;
1418 	ahash->final = n2_hash_async_final;
1419 	ahash->finup = n2_hash_async_finup;
1420 	ahash->digest = n2_hash_async_digest;
1421 	ahash->export = n2_hash_async_noexport;
1422 	ahash->import = n2_hash_async_noimport;
1423 
1424 	halg = &ahash->halg;
1425 	halg->digestsize = tmpl->digest_size;
1426 
1427 	base = &halg->base;
1428 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1429 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1430 	base->cra_priority = N2_CRA_PRIORITY;
1431 	base->cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1432 			  CRYPTO_ALG_NEED_FALLBACK;
1433 	base->cra_blocksize = tmpl->block_size;
1434 	base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1435 	base->cra_module = THIS_MODULE;
1436 	base->cra_init = n2_hash_cra_init;
1437 	base->cra_exit = n2_hash_cra_exit;
1438 
1439 	list_add(&p->entry, &ahash_algs);
1440 	err = crypto_register_ahash(ahash);
1441 	if (err) {
1442 		pr_err("%s alg registration failed\n", base->cra_name);
1443 		list_del(&p->entry);
1444 		kfree(p);
1445 	} else {
1446 		pr_info("%s alg registered\n", base->cra_name);
1447 	}
1448 	if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1449 		err = __n2_register_one_hmac(p);
1450 	return err;
1451 }
1452 
1453 static int n2_register_algs(void)
1454 {
1455 	int i, err = 0;
1456 
1457 	mutex_lock(&spu_lock);
1458 	if (algs_registered++)
1459 		goto out;
1460 
1461 	for (i = 0; i < NUM_HASH_TMPLS; i++) {
1462 		err = __n2_register_one_ahash(&hash_tmpls[i]);
1463 		if (err) {
1464 			__n2_unregister_algs();
1465 			goto out;
1466 		}
1467 	}
1468 	for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1469 		err = __n2_register_one_skcipher(&skcipher_tmpls[i]);
1470 		if (err) {
1471 			__n2_unregister_algs();
1472 			goto out;
1473 		}
1474 	}
1475 
1476 out:
1477 	mutex_unlock(&spu_lock);
1478 	return err;
1479 }
1480 
1481 static void n2_unregister_algs(void)
1482 {
1483 	mutex_lock(&spu_lock);
1484 	if (!--algs_registered)
1485 		__n2_unregister_algs();
1486 	mutex_unlock(&spu_lock);
1487 }
1488 
1489 /* To map CWQ queues to interrupt sources, the hypervisor API provides
1490  * a devino.  This isn't very useful to us because all of the
1491  * interrupts listed in the device_node have been translated to
1492  * Linux virtual IRQ cookie numbers.
1493  *
1494  * So we have to back-translate, going through the 'intr' and 'ino'
1495  * property tables of the n2cp MDESC node, matching it with the OF
1496  * 'interrupts' property entries, in order to to figure out which
1497  * devino goes to which already-translated IRQ.
1498  */
1499 static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1500 			     unsigned long dev_ino)
1501 {
1502 	const unsigned int *dev_intrs;
1503 	unsigned int intr;
1504 	int i;
1505 
1506 	for (i = 0; i < ip->num_intrs; i++) {
1507 		if (ip->ino_table[i].ino == dev_ino)
1508 			break;
1509 	}
1510 	if (i == ip->num_intrs)
1511 		return -ENODEV;
1512 
1513 	intr = ip->ino_table[i].intr;
1514 
1515 	dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1516 	if (!dev_intrs)
1517 		return -ENODEV;
1518 
1519 	for (i = 0; i < dev->archdata.num_irqs; i++) {
1520 		if (dev_intrs[i] == intr)
1521 			return i;
1522 	}
1523 
1524 	return -ENODEV;
1525 }
1526 
1527 static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1528 		       const char *irq_name, struct spu_queue *p,
1529 		       irq_handler_t handler)
1530 {
1531 	unsigned long herr;
1532 	int index;
1533 
1534 	herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1535 	if (herr)
1536 		return -EINVAL;
1537 
1538 	index = find_devino_index(dev, ip, p->devino);
1539 	if (index < 0)
1540 		return index;
1541 
1542 	p->irq = dev->archdata.irqs[index];
1543 
1544 	sprintf(p->irq_name, "%s-%d", irq_name, index);
1545 
1546 	return request_irq(p->irq, handler, 0, p->irq_name, p);
1547 }
1548 
1549 static struct kmem_cache *queue_cache[2];
1550 
1551 static void *new_queue(unsigned long q_type)
1552 {
1553 	return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1554 }
1555 
1556 static void free_queue(void *p, unsigned long q_type)
1557 {
1558 	kmem_cache_free(queue_cache[q_type - 1], p);
1559 }
1560 
1561 static int queue_cache_init(void)
1562 {
1563 	if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1564 		queue_cache[HV_NCS_QTYPE_MAU - 1] =
1565 			kmem_cache_create("mau_queue",
1566 					  (MAU_NUM_ENTRIES *
1567 					   MAU_ENTRY_SIZE),
1568 					  MAU_ENTRY_SIZE, 0, NULL);
1569 	if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1570 		return -ENOMEM;
1571 
1572 	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1573 		queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1574 			kmem_cache_create("cwq_queue",
1575 					  (CWQ_NUM_ENTRIES *
1576 					   CWQ_ENTRY_SIZE),
1577 					  CWQ_ENTRY_SIZE, 0, NULL);
1578 	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1579 		kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1580 		queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1581 		return -ENOMEM;
1582 	}
1583 	return 0;
1584 }
1585 
1586 static void queue_cache_destroy(void)
1587 {
1588 	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1589 	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
1590 	queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1591 	queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL;
1592 }
1593 
1594 static long spu_queue_register_workfn(void *arg)
1595 {
1596 	struct spu_qreg *qr = arg;
1597 	struct spu_queue *p = qr->queue;
1598 	unsigned long q_type = qr->type;
1599 	unsigned long hv_ret;
1600 
1601 	hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1602 				 CWQ_NUM_ENTRIES, &p->qhandle);
1603 	if (!hv_ret)
1604 		sun4v_ncs_sethead_marker(p->qhandle, 0);
1605 
1606 	return hv_ret ? -EINVAL : 0;
1607 }
1608 
1609 static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1610 {
1611 	int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
1612 	struct spu_qreg qr = { .queue = p, .type = q_type };
1613 
1614 	return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
1615 }
1616 
1617 static int spu_queue_setup(struct spu_queue *p)
1618 {
1619 	int err;
1620 
1621 	p->q = new_queue(p->q_type);
1622 	if (!p->q)
1623 		return -ENOMEM;
1624 
1625 	err = spu_queue_register(p, p->q_type);
1626 	if (err) {
1627 		free_queue(p->q, p->q_type);
1628 		p->q = NULL;
1629 	}
1630 
1631 	return err;
1632 }
1633 
1634 static void spu_queue_destroy(struct spu_queue *p)
1635 {
1636 	unsigned long hv_ret;
1637 
1638 	if (!p->q)
1639 		return;
1640 
1641 	hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1642 
1643 	if (!hv_ret)
1644 		free_queue(p->q, p->q_type);
1645 }
1646 
1647 static void spu_list_destroy(struct list_head *list)
1648 {
1649 	struct spu_queue *p, *n;
1650 
1651 	list_for_each_entry_safe(p, n, list, list) {
1652 		int i;
1653 
1654 		for (i = 0; i < NR_CPUS; i++) {
1655 			if (cpu_to_cwq[i] == p)
1656 				cpu_to_cwq[i] = NULL;
1657 		}
1658 
1659 		if (p->irq) {
1660 			free_irq(p->irq, p);
1661 			p->irq = 0;
1662 		}
1663 		spu_queue_destroy(p);
1664 		list_del(&p->list);
1665 		kfree(p);
1666 	}
1667 }
1668 
1669 /* Walk the backward arcs of a CWQ 'exec-unit' node,
1670  * gathering cpu membership information.
1671  */
1672 static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1673 			       struct platform_device *dev,
1674 			       u64 node, struct spu_queue *p,
1675 			       struct spu_queue **table)
1676 {
1677 	u64 arc;
1678 
1679 	mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1680 		u64 tgt = mdesc_arc_target(mdesc, arc);
1681 		const char *name = mdesc_node_name(mdesc, tgt);
1682 		const u64 *id;
1683 
1684 		if (strcmp(name, "cpu"))
1685 			continue;
1686 		id = mdesc_get_property(mdesc, tgt, "id", NULL);
1687 		if (table[*id] != NULL) {
1688 			dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n",
1689 				dev->dev.of_node);
1690 			return -EINVAL;
1691 		}
1692 		cpumask_set_cpu(*id, &p->sharing);
1693 		table[*id] = p;
1694 	}
1695 	return 0;
1696 }
1697 
1698 /* Process an 'exec-unit' MDESC node of type 'cwq'.  */
1699 static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1700 			    struct platform_device *dev, struct mdesc_handle *mdesc,
1701 			    u64 node, const char *iname, unsigned long q_type,
1702 			    irq_handler_t handler, struct spu_queue **table)
1703 {
1704 	struct spu_queue *p;
1705 	int err;
1706 
1707 	p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1708 	if (!p) {
1709 		dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n",
1710 			dev->dev.of_node);
1711 		return -ENOMEM;
1712 	}
1713 
1714 	cpumask_clear(&p->sharing);
1715 	spin_lock_init(&p->lock);
1716 	p->q_type = q_type;
1717 	INIT_LIST_HEAD(&p->jobs);
1718 	list_add(&p->list, list);
1719 
1720 	err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1721 	if (err)
1722 		return err;
1723 
1724 	err = spu_queue_setup(p);
1725 	if (err)
1726 		return err;
1727 
1728 	return spu_map_ino(dev, ip, iname, p, handler);
1729 }
1730 
1731 static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1732 			  struct spu_mdesc_info *ip, struct list_head *list,
1733 			  const char *exec_name, unsigned long q_type,
1734 			  irq_handler_t handler, struct spu_queue **table)
1735 {
1736 	int err = 0;
1737 	u64 node;
1738 
1739 	mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1740 		const char *type;
1741 
1742 		type = mdesc_get_property(mdesc, node, "type", NULL);
1743 		if (!type || strcmp(type, exec_name))
1744 			continue;
1745 
1746 		err = handle_exec_unit(ip, list, dev, mdesc, node,
1747 				       exec_name, q_type, handler, table);
1748 		if (err) {
1749 			spu_list_destroy(list);
1750 			break;
1751 		}
1752 	}
1753 
1754 	return err;
1755 }
1756 
1757 static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
1758 			 struct spu_mdesc_info *ip)
1759 {
1760 	const u64 *ino;
1761 	int ino_len;
1762 	int i;
1763 
1764 	ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1765 	if (!ino) {
1766 		printk("NO 'ino'\n");
1767 		return -ENODEV;
1768 	}
1769 
1770 	ip->num_intrs = ino_len / sizeof(u64);
1771 	ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1772 				 ip->num_intrs),
1773 				GFP_KERNEL);
1774 	if (!ip->ino_table)
1775 		return -ENOMEM;
1776 
1777 	for (i = 0; i < ip->num_intrs; i++) {
1778 		struct ino_blob *b = &ip->ino_table[i];
1779 		b->intr = i + 1;
1780 		b->ino = ino[i];
1781 	}
1782 
1783 	return 0;
1784 }
1785 
1786 static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1787 				struct platform_device *dev,
1788 				struct spu_mdesc_info *ip,
1789 				const char *node_name)
1790 {
1791 	const unsigned int *reg;
1792 	u64 node;
1793 
1794 	reg = of_get_property(dev->dev.of_node, "reg", NULL);
1795 	if (!reg)
1796 		return -ENODEV;
1797 
1798 	mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1799 		const char *name;
1800 		const u64 *chdl;
1801 
1802 		name = mdesc_get_property(mdesc, node, "name", NULL);
1803 		if (!name || strcmp(name, node_name))
1804 			continue;
1805 		chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1806 		if (!chdl || (*chdl != *reg))
1807 			continue;
1808 		ip->cfg_handle = *chdl;
1809 		return get_irq_props(mdesc, node, ip);
1810 	}
1811 
1812 	return -ENODEV;
1813 }
1814 
1815 static unsigned long n2_spu_hvapi_major;
1816 static unsigned long n2_spu_hvapi_minor;
1817 
1818 static int n2_spu_hvapi_register(void)
1819 {
1820 	int err;
1821 
1822 	n2_spu_hvapi_major = 2;
1823 	n2_spu_hvapi_minor = 0;
1824 
1825 	err = sun4v_hvapi_register(HV_GRP_NCS,
1826 				   n2_spu_hvapi_major,
1827 				   &n2_spu_hvapi_minor);
1828 
1829 	if (!err)
1830 		pr_info("Registered NCS HVAPI version %lu.%lu\n",
1831 			n2_spu_hvapi_major,
1832 			n2_spu_hvapi_minor);
1833 
1834 	return err;
1835 }
1836 
1837 static void n2_spu_hvapi_unregister(void)
1838 {
1839 	sun4v_hvapi_unregister(HV_GRP_NCS);
1840 }
1841 
1842 static int global_ref;
1843 
1844 static int grab_global_resources(void)
1845 {
1846 	int err = 0;
1847 
1848 	mutex_lock(&spu_lock);
1849 
1850 	if (global_ref++)
1851 		goto out;
1852 
1853 	err = n2_spu_hvapi_register();
1854 	if (err)
1855 		goto out;
1856 
1857 	err = queue_cache_init();
1858 	if (err)
1859 		goto out_hvapi_release;
1860 
1861 	err = -ENOMEM;
1862 	cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1863 			     GFP_KERNEL);
1864 	if (!cpu_to_cwq)
1865 		goto out_queue_cache_destroy;
1866 
1867 	cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1868 			     GFP_KERNEL);
1869 	if (!cpu_to_mau)
1870 		goto out_free_cwq_table;
1871 
1872 	err = 0;
1873 
1874 out:
1875 	if (err)
1876 		global_ref--;
1877 	mutex_unlock(&spu_lock);
1878 	return err;
1879 
1880 out_free_cwq_table:
1881 	kfree(cpu_to_cwq);
1882 	cpu_to_cwq = NULL;
1883 
1884 out_queue_cache_destroy:
1885 	queue_cache_destroy();
1886 
1887 out_hvapi_release:
1888 	n2_spu_hvapi_unregister();
1889 	goto out;
1890 }
1891 
1892 static void release_global_resources(void)
1893 {
1894 	mutex_lock(&spu_lock);
1895 	if (!--global_ref) {
1896 		kfree(cpu_to_cwq);
1897 		cpu_to_cwq = NULL;
1898 
1899 		kfree(cpu_to_mau);
1900 		cpu_to_mau = NULL;
1901 
1902 		queue_cache_destroy();
1903 		n2_spu_hvapi_unregister();
1904 	}
1905 	mutex_unlock(&spu_lock);
1906 }
1907 
1908 static struct n2_crypto *alloc_n2cp(void)
1909 {
1910 	struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1911 
1912 	if (np)
1913 		INIT_LIST_HEAD(&np->cwq_list);
1914 
1915 	return np;
1916 }
1917 
1918 static void free_n2cp(struct n2_crypto *np)
1919 {
1920 	kfree(np->cwq_info.ino_table);
1921 	np->cwq_info.ino_table = NULL;
1922 
1923 	kfree(np);
1924 }
1925 
1926 static void n2_spu_driver_version(void)
1927 {
1928 	static int n2_spu_version_printed;
1929 
1930 	if (n2_spu_version_printed++ == 0)
1931 		pr_info("%s", version);
1932 }
1933 
1934 static int n2_crypto_probe(struct platform_device *dev)
1935 {
1936 	struct mdesc_handle *mdesc;
1937 	struct n2_crypto *np;
1938 	int err;
1939 
1940 	n2_spu_driver_version();
1941 
1942 	pr_info("Found N2CP at %pOF\n", dev->dev.of_node);
1943 
1944 	np = alloc_n2cp();
1945 	if (!np) {
1946 		dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n",
1947 			dev->dev.of_node);
1948 		return -ENOMEM;
1949 	}
1950 
1951 	err = grab_global_resources();
1952 	if (err) {
1953 		dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
1954 			dev->dev.of_node);
1955 		goto out_free_n2cp;
1956 	}
1957 
1958 	mdesc = mdesc_grab();
1959 
1960 	if (!mdesc) {
1961 		dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
1962 			dev->dev.of_node);
1963 		err = -ENODEV;
1964 		goto out_free_global;
1965 	}
1966 	err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
1967 	if (err) {
1968 		dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
1969 			dev->dev.of_node);
1970 		mdesc_release(mdesc);
1971 		goto out_free_global;
1972 	}
1973 
1974 	err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
1975 			     "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
1976 			     cpu_to_cwq);
1977 	mdesc_release(mdesc);
1978 
1979 	if (err) {
1980 		dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n",
1981 			dev->dev.of_node);
1982 		goto out_free_global;
1983 	}
1984 
1985 	err = n2_register_algs();
1986 	if (err) {
1987 		dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n",
1988 			dev->dev.of_node);
1989 		goto out_free_spu_list;
1990 	}
1991 
1992 	dev_set_drvdata(&dev->dev, np);
1993 
1994 	return 0;
1995 
1996 out_free_spu_list:
1997 	spu_list_destroy(&np->cwq_list);
1998 
1999 out_free_global:
2000 	release_global_resources();
2001 
2002 out_free_n2cp:
2003 	free_n2cp(np);
2004 
2005 	return err;
2006 }
2007 
2008 static int n2_crypto_remove(struct platform_device *dev)
2009 {
2010 	struct n2_crypto *np = dev_get_drvdata(&dev->dev);
2011 
2012 	n2_unregister_algs();
2013 
2014 	spu_list_destroy(&np->cwq_list);
2015 
2016 	release_global_resources();
2017 
2018 	free_n2cp(np);
2019 
2020 	return 0;
2021 }
2022 
2023 static struct n2_mau *alloc_ncp(void)
2024 {
2025 	struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2026 
2027 	if (mp)
2028 		INIT_LIST_HEAD(&mp->mau_list);
2029 
2030 	return mp;
2031 }
2032 
2033 static void free_ncp(struct n2_mau *mp)
2034 {
2035 	kfree(mp->mau_info.ino_table);
2036 	mp->mau_info.ino_table = NULL;
2037 
2038 	kfree(mp);
2039 }
2040 
2041 static int n2_mau_probe(struct platform_device *dev)
2042 {
2043 	struct mdesc_handle *mdesc;
2044 	struct n2_mau *mp;
2045 	int err;
2046 
2047 	n2_spu_driver_version();
2048 
2049 	pr_info("Found NCP at %pOF\n", dev->dev.of_node);
2050 
2051 	mp = alloc_ncp();
2052 	if (!mp) {
2053 		dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n",
2054 			dev->dev.of_node);
2055 		return -ENOMEM;
2056 	}
2057 
2058 	err = grab_global_resources();
2059 	if (err) {
2060 		dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2061 			dev->dev.of_node);
2062 		goto out_free_ncp;
2063 	}
2064 
2065 	mdesc = mdesc_grab();
2066 
2067 	if (!mdesc) {
2068 		dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2069 			dev->dev.of_node);
2070 		err = -ENODEV;
2071 		goto out_free_global;
2072 	}
2073 
2074 	err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2075 	if (err) {
2076 		dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2077 			dev->dev.of_node);
2078 		mdesc_release(mdesc);
2079 		goto out_free_global;
2080 	}
2081 
2082 	err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2083 			     "mau", HV_NCS_QTYPE_MAU, mau_intr,
2084 			     cpu_to_mau);
2085 	mdesc_release(mdesc);
2086 
2087 	if (err) {
2088 		dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n",
2089 			dev->dev.of_node);
2090 		goto out_free_global;
2091 	}
2092 
2093 	dev_set_drvdata(&dev->dev, mp);
2094 
2095 	return 0;
2096 
2097 out_free_global:
2098 	release_global_resources();
2099 
2100 out_free_ncp:
2101 	free_ncp(mp);
2102 
2103 	return err;
2104 }
2105 
2106 static int n2_mau_remove(struct platform_device *dev)
2107 {
2108 	struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2109 
2110 	spu_list_destroy(&mp->mau_list);
2111 
2112 	release_global_resources();
2113 
2114 	free_ncp(mp);
2115 
2116 	return 0;
2117 }
2118 
2119 static const struct of_device_id n2_crypto_match[] = {
2120 	{
2121 		.name = "n2cp",
2122 		.compatible = "SUNW,n2-cwq",
2123 	},
2124 	{
2125 		.name = "n2cp",
2126 		.compatible = "SUNW,vf-cwq",
2127 	},
2128 	{
2129 		.name = "n2cp",
2130 		.compatible = "SUNW,kt-cwq",
2131 	},
2132 	{},
2133 };
2134 
2135 MODULE_DEVICE_TABLE(of, n2_crypto_match);
2136 
2137 static struct platform_driver n2_crypto_driver = {
2138 	.driver = {
2139 		.name		=	"n2cp",
2140 		.of_match_table	=	n2_crypto_match,
2141 	},
2142 	.probe		=	n2_crypto_probe,
2143 	.remove		=	n2_crypto_remove,
2144 };
2145 
2146 static const struct of_device_id n2_mau_match[] = {
2147 	{
2148 		.name = "ncp",
2149 		.compatible = "SUNW,n2-mau",
2150 	},
2151 	{
2152 		.name = "ncp",
2153 		.compatible = "SUNW,vf-mau",
2154 	},
2155 	{
2156 		.name = "ncp",
2157 		.compatible = "SUNW,kt-mau",
2158 	},
2159 	{},
2160 };
2161 
2162 MODULE_DEVICE_TABLE(of, n2_mau_match);
2163 
2164 static struct platform_driver n2_mau_driver = {
2165 	.driver = {
2166 		.name		=	"ncp",
2167 		.of_match_table	=	n2_mau_match,
2168 	},
2169 	.probe		=	n2_mau_probe,
2170 	.remove		=	n2_mau_remove,
2171 };
2172 
2173 static struct platform_driver * const drivers[] = {
2174 	&n2_crypto_driver,
2175 	&n2_mau_driver,
2176 };
2177 
2178 static int __init n2_init(void)
2179 {
2180 	return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2181 }
2182 
2183 static void __exit n2_exit(void)
2184 {
2185 	platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2186 }
2187 
2188 module_init(n2_init);
2189 module_exit(n2_exit);
2190