xref: /linux/drivers/crypto/n2_core.c (revision b7019ac550eb3916f34d79db583e9b7ea2524afa)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
3  *
4  * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/of.h>
12 #include <linux/of_device.h>
13 #include <linux/cpumask.h>
14 #include <linux/slab.h>
15 #include <linux/interrupt.h>
16 #include <linux/crypto.h>
17 #include <crypto/md5.h>
18 #include <crypto/sha.h>
19 #include <crypto/aes.h>
20 #include <crypto/des.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/sched.h>
24 
25 #include <crypto/internal/hash.h>
26 #include <crypto/scatterwalk.h>
27 #include <crypto/algapi.h>
28 
29 #include <asm/hypervisor.h>
30 #include <asm/mdesc.h>
31 
32 #include "n2_core.h"
33 
34 #define DRV_MODULE_NAME		"n2_crypto"
35 #define DRV_MODULE_VERSION	"0.2"
36 #define DRV_MODULE_RELDATE	"July 28, 2011"
37 
38 static const char version[] =
39 	DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
40 
41 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
42 MODULE_DESCRIPTION("Niagara2 Crypto driver");
43 MODULE_LICENSE("GPL");
44 MODULE_VERSION(DRV_MODULE_VERSION);
45 
46 #define N2_CRA_PRIORITY		200
47 
48 static DEFINE_MUTEX(spu_lock);
49 
50 struct spu_queue {
51 	cpumask_t		sharing;
52 	unsigned long		qhandle;
53 
54 	spinlock_t		lock;
55 	u8			q_type;
56 	void			*q;
57 	unsigned long		head;
58 	unsigned long		tail;
59 	struct list_head	jobs;
60 
61 	unsigned long		devino;
62 
63 	char			irq_name[32];
64 	unsigned int		irq;
65 
66 	struct list_head	list;
67 };
68 
69 struct spu_qreg {
70 	struct spu_queue	*queue;
71 	unsigned long		type;
72 };
73 
74 static struct spu_queue **cpu_to_cwq;
75 static struct spu_queue **cpu_to_mau;
76 
77 static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
78 {
79 	if (q->q_type == HV_NCS_QTYPE_MAU) {
80 		off += MAU_ENTRY_SIZE;
81 		if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
82 			off = 0;
83 	} else {
84 		off += CWQ_ENTRY_SIZE;
85 		if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
86 			off = 0;
87 	}
88 	return off;
89 }
90 
91 struct n2_request_common {
92 	struct list_head	entry;
93 	unsigned int		offset;
94 };
95 #define OFFSET_NOT_RUNNING	(~(unsigned int)0)
96 
97 /* An async job request records the final tail value it used in
98  * n2_request_common->offset, test to see if that offset is in
99  * the range old_head, new_head, inclusive.
100  */
101 static inline bool job_finished(struct spu_queue *q, unsigned int offset,
102 				unsigned long old_head, unsigned long new_head)
103 {
104 	if (old_head <= new_head) {
105 		if (offset > old_head && offset <= new_head)
106 			return true;
107 	} else {
108 		if (offset > old_head || offset <= new_head)
109 			return true;
110 	}
111 	return false;
112 }
113 
114 /* When the HEAD marker is unequal to the actual HEAD, we get
115  * a virtual device INO interrupt.  We should process the
116  * completed CWQ entries and adjust the HEAD marker to clear
117  * the IRQ.
118  */
119 static irqreturn_t cwq_intr(int irq, void *dev_id)
120 {
121 	unsigned long off, new_head, hv_ret;
122 	struct spu_queue *q = dev_id;
123 
124 	pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
125 	       smp_processor_id(), q->qhandle);
126 
127 	spin_lock(&q->lock);
128 
129 	hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
130 
131 	pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
132 	       smp_processor_id(), new_head, hv_ret);
133 
134 	for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
135 		/* XXX ... XXX */
136 	}
137 
138 	hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
139 	if (hv_ret == HV_EOK)
140 		q->head = new_head;
141 
142 	spin_unlock(&q->lock);
143 
144 	return IRQ_HANDLED;
145 }
146 
147 static irqreturn_t mau_intr(int irq, void *dev_id)
148 {
149 	struct spu_queue *q = dev_id;
150 	unsigned long head, hv_ret;
151 
152 	spin_lock(&q->lock);
153 
154 	pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
155 	       smp_processor_id(), q->qhandle);
156 
157 	hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
158 
159 	pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
160 	       smp_processor_id(), head, hv_ret);
161 
162 	sun4v_ncs_sethead_marker(q->qhandle, head);
163 
164 	spin_unlock(&q->lock);
165 
166 	return IRQ_HANDLED;
167 }
168 
169 static void *spu_queue_next(struct spu_queue *q, void *cur)
170 {
171 	return q->q + spu_next_offset(q, cur - q->q);
172 }
173 
174 static int spu_queue_num_free(struct spu_queue *q)
175 {
176 	unsigned long head = q->head;
177 	unsigned long tail = q->tail;
178 	unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
179 	unsigned long diff;
180 
181 	if (head > tail)
182 		diff = head - tail;
183 	else
184 		diff = (end - tail) + head;
185 
186 	return (diff / CWQ_ENTRY_SIZE) - 1;
187 }
188 
189 static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
190 {
191 	int avail = spu_queue_num_free(q);
192 
193 	if (avail >= num_entries)
194 		return q->q + q->tail;
195 
196 	return NULL;
197 }
198 
199 static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
200 {
201 	unsigned long hv_ret, new_tail;
202 
203 	new_tail = spu_next_offset(q, last - q->q);
204 
205 	hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
206 	if (hv_ret == HV_EOK)
207 		q->tail = new_tail;
208 	return hv_ret;
209 }
210 
211 static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
212 			     int enc_type, int auth_type,
213 			     unsigned int hash_len,
214 			     bool sfas, bool sob, bool eob, bool encrypt,
215 			     int opcode)
216 {
217 	u64 word = (len - 1) & CONTROL_LEN;
218 
219 	word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
220 	word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
221 	word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
222 	if (sfas)
223 		word |= CONTROL_STORE_FINAL_AUTH_STATE;
224 	if (sob)
225 		word |= CONTROL_START_OF_BLOCK;
226 	if (eob)
227 		word |= CONTROL_END_OF_BLOCK;
228 	if (encrypt)
229 		word |= CONTROL_ENCRYPT;
230 	if (hmac_key_len)
231 		word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
232 	if (hash_len)
233 		word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
234 
235 	return word;
236 }
237 
238 #if 0
239 static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
240 {
241 	if (this_len >= 64 ||
242 	    qp->head != qp->tail)
243 		return true;
244 	return false;
245 }
246 #endif
247 
248 struct n2_ahash_alg {
249 	struct list_head	entry;
250 	const u8		*hash_zero;
251 	const u32		*hash_init;
252 	u8			hw_op_hashsz;
253 	u8			digest_size;
254 	u8			auth_type;
255 	u8			hmac_type;
256 	struct ahash_alg	alg;
257 };
258 
259 static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
260 {
261 	struct crypto_alg *alg = tfm->__crt_alg;
262 	struct ahash_alg *ahash_alg;
263 
264 	ahash_alg = container_of(alg, struct ahash_alg, halg.base);
265 
266 	return container_of(ahash_alg, struct n2_ahash_alg, alg);
267 }
268 
269 struct n2_hmac_alg {
270 	const char		*child_alg;
271 	struct n2_ahash_alg	derived;
272 };
273 
274 static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
275 {
276 	struct crypto_alg *alg = tfm->__crt_alg;
277 	struct ahash_alg *ahash_alg;
278 
279 	ahash_alg = container_of(alg, struct ahash_alg, halg.base);
280 
281 	return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
282 }
283 
284 struct n2_hash_ctx {
285 	struct crypto_ahash		*fallback_tfm;
286 };
287 
288 #define N2_HASH_KEY_MAX			32 /* HW limit for all HMAC requests */
289 
290 struct n2_hmac_ctx {
291 	struct n2_hash_ctx		base;
292 
293 	struct crypto_shash		*child_shash;
294 
295 	int				hash_key_len;
296 	unsigned char			hash_key[N2_HASH_KEY_MAX];
297 };
298 
299 struct n2_hash_req_ctx {
300 	union {
301 		struct md5_state	md5;
302 		struct sha1_state	sha1;
303 		struct sha256_state	sha256;
304 	} u;
305 
306 	struct ahash_request		fallback_req;
307 };
308 
309 static int n2_hash_async_init(struct ahash_request *req)
310 {
311 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
312 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
313 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
314 
315 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
316 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
317 
318 	return crypto_ahash_init(&rctx->fallback_req);
319 }
320 
321 static int n2_hash_async_update(struct ahash_request *req)
322 {
323 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
324 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
325 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
326 
327 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
328 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
329 	rctx->fallback_req.nbytes = req->nbytes;
330 	rctx->fallback_req.src = req->src;
331 
332 	return crypto_ahash_update(&rctx->fallback_req);
333 }
334 
335 static int n2_hash_async_final(struct ahash_request *req)
336 {
337 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
338 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
339 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
340 
341 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
342 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
343 	rctx->fallback_req.result = req->result;
344 
345 	return crypto_ahash_final(&rctx->fallback_req);
346 }
347 
348 static int n2_hash_async_finup(struct ahash_request *req)
349 {
350 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
351 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
352 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
353 
354 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
355 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
356 	rctx->fallback_req.nbytes = req->nbytes;
357 	rctx->fallback_req.src = req->src;
358 	rctx->fallback_req.result = req->result;
359 
360 	return crypto_ahash_finup(&rctx->fallback_req);
361 }
362 
363 static int n2_hash_async_noimport(struct ahash_request *req, const void *in)
364 {
365 	return -ENOSYS;
366 }
367 
368 static int n2_hash_async_noexport(struct ahash_request *req, void *out)
369 {
370 	return -ENOSYS;
371 }
372 
373 static int n2_hash_cra_init(struct crypto_tfm *tfm)
374 {
375 	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
376 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
377 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
378 	struct crypto_ahash *fallback_tfm;
379 	int err;
380 
381 	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
382 					  CRYPTO_ALG_NEED_FALLBACK);
383 	if (IS_ERR(fallback_tfm)) {
384 		pr_warning("Fallback driver '%s' could not be loaded!\n",
385 			   fallback_driver_name);
386 		err = PTR_ERR(fallback_tfm);
387 		goto out;
388 	}
389 
390 	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
391 					 crypto_ahash_reqsize(fallback_tfm)));
392 
393 	ctx->fallback_tfm = fallback_tfm;
394 	return 0;
395 
396 out:
397 	return err;
398 }
399 
400 static void n2_hash_cra_exit(struct crypto_tfm *tfm)
401 {
402 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
403 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
404 
405 	crypto_free_ahash(ctx->fallback_tfm);
406 }
407 
408 static int n2_hmac_cra_init(struct crypto_tfm *tfm)
409 {
410 	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
411 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
412 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
413 	struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
414 	struct crypto_ahash *fallback_tfm;
415 	struct crypto_shash *child_shash;
416 	int err;
417 
418 	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
419 					  CRYPTO_ALG_NEED_FALLBACK);
420 	if (IS_ERR(fallback_tfm)) {
421 		pr_warning("Fallback driver '%s' could not be loaded!\n",
422 			   fallback_driver_name);
423 		err = PTR_ERR(fallback_tfm);
424 		goto out;
425 	}
426 
427 	child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
428 	if (IS_ERR(child_shash)) {
429 		pr_warning("Child shash '%s' could not be loaded!\n",
430 			   n2alg->child_alg);
431 		err = PTR_ERR(child_shash);
432 		goto out_free_fallback;
433 	}
434 
435 	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
436 					 crypto_ahash_reqsize(fallback_tfm)));
437 
438 	ctx->child_shash = child_shash;
439 	ctx->base.fallback_tfm = fallback_tfm;
440 	return 0;
441 
442 out_free_fallback:
443 	crypto_free_ahash(fallback_tfm);
444 
445 out:
446 	return err;
447 }
448 
449 static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
450 {
451 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
452 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
453 
454 	crypto_free_ahash(ctx->base.fallback_tfm);
455 	crypto_free_shash(ctx->child_shash);
456 }
457 
458 static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
459 				unsigned int keylen)
460 {
461 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
462 	struct crypto_shash *child_shash = ctx->child_shash;
463 	struct crypto_ahash *fallback_tfm;
464 	SHASH_DESC_ON_STACK(shash, child_shash);
465 	int err, bs, ds;
466 
467 	fallback_tfm = ctx->base.fallback_tfm;
468 	err = crypto_ahash_setkey(fallback_tfm, key, keylen);
469 	if (err)
470 		return err;
471 
472 	shash->tfm = child_shash;
473 
474 	bs = crypto_shash_blocksize(child_shash);
475 	ds = crypto_shash_digestsize(child_shash);
476 	BUG_ON(ds > N2_HASH_KEY_MAX);
477 	if (keylen > bs) {
478 		err = crypto_shash_digest(shash, key, keylen,
479 					  ctx->hash_key);
480 		if (err)
481 			return err;
482 		keylen = ds;
483 	} else if (keylen <= N2_HASH_KEY_MAX)
484 		memcpy(ctx->hash_key, key, keylen);
485 
486 	ctx->hash_key_len = keylen;
487 
488 	return err;
489 }
490 
491 static unsigned long wait_for_tail(struct spu_queue *qp)
492 {
493 	unsigned long head, hv_ret;
494 
495 	do {
496 		hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
497 		if (hv_ret != HV_EOK) {
498 			pr_err("Hypervisor error on gethead\n");
499 			break;
500 		}
501 		if (head == qp->tail) {
502 			qp->head = head;
503 			break;
504 		}
505 	} while (1);
506 	return hv_ret;
507 }
508 
509 static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
510 					      struct cwq_initial_entry *ent)
511 {
512 	unsigned long hv_ret = spu_queue_submit(qp, ent);
513 
514 	if (hv_ret == HV_EOK)
515 		hv_ret = wait_for_tail(qp);
516 
517 	return hv_ret;
518 }
519 
520 static int n2_do_async_digest(struct ahash_request *req,
521 			      unsigned int auth_type, unsigned int digest_size,
522 			      unsigned int result_size, void *hash_loc,
523 			      unsigned long auth_key, unsigned int auth_key_len)
524 {
525 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
526 	struct cwq_initial_entry *ent;
527 	struct crypto_hash_walk walk;
528 	struct spu_queue *qp;
529 	unsigned long flags;
530 	int err = -ENODEV;
531 	int nbytes, cpu;
532 
533 	/* The total effective length of the operation may not
534 	 * exceed 2^16.
535 	 */
536 	if (unlikely(req->nbytes > (1 << 16))) {
537 		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
538 		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
539 
540 		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
541 		rctx->fallback_req.base.flags =
542 			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
543 		rctx->fallback_req.nbytes = req->nbytes;
544 		rctx->fallback_req.src = req->src;
545 		rctx->fallback_req.result = req->result;
546 
547 		return crypto_ahash_digest(&rctx->fallback_req);
548 	}
549 
550 	nbytes = crypto_hash_walk_first(req, &walk);
551 
552 	cpu = get_cpu();
553 	qp = cpu_to_cwq[cpu];
554 	if (!qp)
555 		goto out;
556 
557 	spin_lock_irqsave(&qp->lock, flags);
558 
559 	/* XXX can do better, improve this later by doing a by-hand scatterlist
560 	 * XXX walk, etc.
561 	 */
562 	ent = qp->q + qp->tail;
563 
564 	ent->control = control_word_base(nbytes, auth_key_len, 0,
565 					 auth_type, digest_size,
566 					 false, true, false, false,
567 					 OPCODE_INPLACE_BIT |
568 					 OPCODE_AUTH_MAC);
569 	ent->src_addr = __pa(walk.data);
570 	ent->auth_key_addr = auth_key;
571 	ent->auth_iv_addr = __pa(hash_loc);
572 	ent->final_auth_state_addr = 0UL;
573 	ent->enc_key_addr = 0UL;
574 	ent->enc_iv_addr = 0UL;
575 	ent->dest_addr = __pa(hash_loc);
576 
577 	nbytes = crypto_hash_walk_done(&walk, 0);
578 	while (nbytes > 0) {
579 		ent = spu_queue_next(qp, ent);
580 
581 		ent->control = (nbytes - 1);
582 		ent->src_addr = __pa(walk.data);
583 		ent->auth_key_addr = 0UL;
584 		ent->auth_iv_addr = 0UL;
585 		ent->final_auth_state_addr = 0UL;
586 		ent->enc_key_addr = 0UL;
587 		ent->enc_iv_addr = 0UL;
588 		ent->dest_addr = 0UL;
589 
590 		nbytes = crypto_hash_walk_done(&walk, 0);
591 	}
592 	ent->control |= CONTROL_END_OF_BLOCK;
593 
594 	if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
595 		err = -EINVAL;
596 	else
597 		err = 0;
598 
599 	spin_unlock_irqrestore(&qp->lock, flags);
600 
601 	if (!err)
602 		memcpy(req->result, hash_loc, result_size);
603 out:
604 	put_cpu();
605 
606 	return err;
607 }
608 
609 static int n2_hash_async_digest(struct ahash_request *req)
610 {
611 	struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
612 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
613 	int ds;
614 
615 	ds = n2alg->digest_size;
616 	if (unlikely(req->nbytes == 0)) {
617 		memcpy(req->result, n2alg->hash_zero, ds);
618 		return 0;
619 	}
620 	memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
621 
622 	return n2_do_async_digest(req, n2alg->auth_type,
623 				  n2alg->hw_op_hashsz, ds,
624 				  &rctx->u, 0UL, 0);
625 }
626 
627 static int n2_hmac_async_digest(struct ahash_request *req)
628 {
629 	struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
630 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
631 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
632 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
633 	int ds;
634 
635 	ds = n2alg->derived.digest_size;
636 	if (unlikely(req->nbytes == 0) ||
637 	    unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
638 		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
639 		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
640 
641 		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
642 		rctx->fallback_req.base.flags =
643 			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
644 		rctx->fallback_req.nbytes = req->nbytes;
645 		rctx->fallback_req.src = req->src;
646 		rctx->fallback_req.result = req->result;
647 
648 		return crypto_ahash_digest(&rctx->fallback_req);
649 	}
650 	memcpy(&rctx->u, n2alg->derived.hash_init,
651 	       n2alg->derived.hw_op_hashsz);
652 
653 	return n2_do_async_digest(req, n2alg->derived.hmac_type,
654 				  n2alg->derived.hw_op_hashsz, ds,
655 				  &rctx->u,
656 				  __pa(&ctx->hash_key),
657 				  ctx->hash_key_len);
658 }
659 
660 struct n2_cipher_context {
661 	int			key_len;
662 	int			enc_type;
663 	union {
664 		u8		aes[AES_MAX_KEY_SIZE];
665 		u8		des[DES_KEY_SIZE];
666 		u8		des3[3 * DES_KEY_SIZE];
667 		u8		arc4[258]; /* S-box, X, Y */
668 	} key;
669 };
670 
671 #define N2_CHUNK_ARR_LEN	16
672 
673 struct n2_crypto_chunk {
674 	struct list_head	entry;
675 	unsigned long		iv_paddr : 44;
676 	unsigned long		arr_len : 20;
677 	unsigned long		dest_paddr;
678 	unsigned long		dest_final;
679 	struct {
680 		unsigned long	src_paddr : 44;
681 		unsigned long	src_len : 20;
682 	} arr[N2_CHUNK_ARR_LEN];
683 };
684 
685 struct n2_request_context {
686 	struct ablkcipher_walk	walk;
687 	struct list_head	chunk_list;
688 	struct n2_crypto_chunk	chunk;
689 	u8			temp_iv[16];
690 };
691 
692 /* The SPU allows some level of flexibility for partial cipher blocks
693  * being specified in a descriptor.
694  *
695  * It merely requires that every descriptor's length field is at least
696  * as large as the cipher block size.  This means that a cipher block
697  * can span at most 2 descriptors.  However, this does not allow a
698  * partial block to span into the final descriptor as that would
699  * violate the rule (since every descriptor's length must be at lest
700  * the block size).  So, for example, assuming an 8 byte block size:
701  *
702  *	0xe --> 0xa --> 0x8
703  *
704  * is a valid length sequence, whereas:
705  *
706  *	0xe --> 0xb --> 0x7
707  *
708  * is not a valid sequence.
709  */
710 
711 struct n2_cipher_alg {
712 	struct list_head	entry;
713 	u8			enc_type;
714 	struct crypto_alg	alg;
715 };
716 
717 static inline struct n2_cipher_alg *n2_cipher_alg(struct crypto_tfm *tfm)
718 {
719 	struct crypto_alg *alg = tfm->__crt_alg;
720 
721 	return container_of(alg, struct n2_cipher_alg, alg);
722 }
723 
724 struct n2_cipher_request_context {
725 	struct ablkcipher_walk	walk;
726 };
727 
728 static int n2_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
729 			 unsigned int keylen)
730 {
731 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
732 	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
733 	struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
734 
735 	ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
736 
737 	switch (keylen) {
738 	case AES_KEYSIZE_128:
739 		ctx->enc_type |= ENC_TYPE_ALG_AES128;
740 		break;
741 	case AES_KEYSIZE_192:
742 		ctx->enc_type |= ENC_TYPE_ALG_AES192;
743 		break;
744 	case AES_KEYSIZE_256:
745 		ctx->enc_type |= ENC_TYPE_ALG_AES256;
746 		break;
747 	default:
748 		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
749 		return -EINVAL;
750 	}
751 
752 	ctx->key_len = keylen;
753 	memcpy(ctx->key.aes, key, keylen);
754 	return 0;
755 }
756 
757 static int n2_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
758 			 unsigned int keylen)
759 {
760 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
761 	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
762 	struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
763 	u32 tmp[DES_EXPKEY_WORDS];
764 	int err;
765 
766 	ctx->enc_type = n2alg->enc_type;
767 
768 	if (keylen != DES_KEY_SIZE) {
769 		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
770 		return -EINVAL;
771 	}
772 
773 	err = des_ekey(tmp, key);
774 	if (err == 0 && (tfm->crt_flags & CRYPTO_TFM_REQ_FORBID_WEAK_KEYS)) {
775 		tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
776 		return -EINVAL;
777 	}
778 
779 	ctx->key_len = keylen;
780 	memcpy(ctx->key.des, key, keylen);
781 	return 0;
782 }
783 
784 static int n2_3des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
785 			  unsigned int keylen)
786 {
787 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
788 	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
789 	struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
790 	u32 flags;
791 	int err;
792 
793 	flags = crypto_ablkcipher_get_flags(cipher);
794 	err = __des3_verify_key(&flags, key);
795 	if (unlikely(err)) {
796 		crypto_ablkcipher_set_flags(cipher, flags);
797 		return err;
798 	}
799 
800 	ctx->enc_type = n2alg->enc_type;
801 
802 	ctx->key_len = keylen;
803 	memcpy(ctx->key.des3, key, keylen);
804 	return 0;
805 }
806 
807 static int n2_arc4_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
808 			  unsigned int keylen)
809 {
810 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
811 	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
812 	struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
813 	u8 *s = ctx->key.arc4;
814 	u8 *x = s + 256;
815 	u8 *y = x + 1;
816 	int i, j, k;
817 
818 	ctx->enc_type = n2alg->enc_type;
819 
820 	j = k = 0;
821 	*x = 0;
822 	*y = 0;
823 	for (i = 0; i < 256; i++)
824 		s[i] = i;
825 	for (i = 0; i < 256; i++) {
826 		u8 a = s[i];
827 		j = (j + key[k] + a) & 0xff;
828 		s[i] = s[j];
829 		s[j] = a;
830 		if (++k >= keylen)
831 			k = 0;
832 	}
833 
834 	return 0;
835 }
836 
837 static inline int cipher_descriptor_len(int nbytes, unsigned int block_size)
838 {
839 	int this_len = nbytes;
840 
841 	this_len -= (nbytes & (block_size - 1));
842 	return this_len > (1 << 16) ? (1 << 16) : this_len;
843 }
844 
845 static int __n2_crypt_chunk(struct crypto_tfm *tfm, struct n2_crypto_chunk *cp,
846 			    struct spu_queue *qp, bool encrypt)
847 {
848 	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
849 	struct cwq_initial_entry *ent;
850 	bool in_place;
851 	int i;
852 
853 	ent = spu_queue_alloc(qp, cp->arr_len);
854 	if (!ent) {
855 		pr_info("queue_alloc() of %d fails\n",
856 			cp->arr_len);
857 		return -EBUSY;
858 	}
859 
860 	in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
861 
862 	ent->control = control_word_base(cp->arr[0].src_len,
863 					 0, ctx->enc_type, 0, 0,
864 					 false, true, false, encrypt,
865 					 OPCODE_ENCRYPT |
866 					 (in_place ? OPCODE_INPLACE_BIT : 0));
867 	ent->src_addr = cp->arr[0].src_paddr;
868 	ent->auth_key_addr = 0UL;
869 	ent->auth_iv_addr = 0UL;
870 	ent->final_auth_state_addr = 0UL;
871 	ent->enc_key_addr = __pa(&ctx->key);
872 	ent->enc_iv_addr = cp->iv_paddr;
873 	ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
874 
875 	for (i = 1; i < cp->arr_len; i++) {
876 		ent = spu_queue_next(qp, ent);
877 
878 		ent->control = cp->arr[i].src_len - 1;
879 		ent->src_addr = cp->arr[i].src_paddr;
880 		ent->auth_key_addr = 0UL;
881 		ent->auth_iv_addr = 0UL;
882 		ent->final_auth_state_addr = 0UL;
883 		ent->enc_key_addr = 0UL;
884 		ent->enc_iv_addr = 0UL;
885 		ent->dest_addr = 0UL;
886 	}
887 	ent->control |= CONTROL_END_OF_BLOCK;
888 
889 	return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
890 }
891 
892 static int n2_compute_chunks(struct ablkcipher_request *req)
893 {
894 	struct n2_request_context *rctx = ablkcipher_request_ctx(req);
895 	struct ablkcipher_walk *walk = &rctx->walk;
896 	struct n2_crypto_chunk *chunk;
897 	unsigned long dest_prev;
898 	unsigned int tot_len;
899 	bool prev_in_place;
900 	int err, nbytes;
901 
902 	ablkcipher_walk_init(walk, req->dst, req->src, req->nbytes);
903 	err = ablkcipher_walk_phys(req, walk);
904 	if (err)
905 		return err;
906 
907 	INIT_LIST_HEAD(&rctx->chunk_list);
908 
909 	chunk = &rctx->chunk;
910 	INIT_LIST_HEAD(&chunk->entry);
911 
912 	chunk->iv_paddr = 0UL;
913 	chunk->arr_len = 0;
914 	chunk->dest_paddr = 0UL;
915 
916 	prev_in_place = false;
917 	dest_prev = ~0UL;
918 	tot_len = 0;
919 
920 	while ((nbytes = walk->nbytes) != 0) {
921 		unsigned long dest_paddr, src_paddr;
922 		bool in_place;
923 		int this_len;
924 
925 		src_paddr = (page_to_phys(walk->src.page) +
926 			     walk->src.offset);
927 		dest_paddr = (page_to_phys(walk->dst.page) +
928 			      walk->dst.offset);
929 		in_place = (src_paddr == dest_paddr);
930 		this_len = cipher_descriptor_len(nbytes, walk->blocksize);
931 
932 		if (chunk->arr_len != 0) {
933 			if (in_place != prev_in_place ||
934 			    (!prev_in_place &&
935 			     dest_paddr != dest_prev) ||
936 			    chunk->arr_len == N2_CHUNK_ARR_LEN ||
937 			    tot_len + this_len > (1 << 16)) {
938 				chunk->dest_final = dest_prev;
939 				list_add_tail(&chunk->entry,
940 					      &rctx->chunk_list);
941 				chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
942 				if (!chunk) {
943 					err = -ENOMEM;
944 					break;
945 				}
946 				INIT_LIST_HEAD(&chunk->entry);
947 			}
948 		}
949 		if (chunk->arr_len == 0) {
950 			chunk->dest_paddr = dest_paddr;
951 			tot_len = 0;
952 		}
953 		chunk->arr[chunk->arr_len].src_paddr = src_paddr;
954 		chunk->arr[chunk->arr_len].src_len = this_len;
955 		chunk->arr_len++;
956 
957 		dest_prev = dest_paddr + this_len;
958 		prev_in_place = in_place;
959 		tot_len += this_len;
960 
961 		err = ablkcipher_walk_done(req, walk, nbytes - this_len);
962 		if (err)
963 			break;
964 	}
965 	if (!err && chunk->arr_len != 0) {
966 		chunk->dest_final = dest_prev;
967 		list_add_tail(&chunk->entry, &rctx->chunk_list);
968 	}
969 
970 	return err;
971 }
972 
973 static void n2_chunk_complete(struct ablkcipher_request *req, void *final_iv)
974 {
975 	struct n2_request_context *rctx = ablkcipher_request_ctx(req);
976 	struct n2_crypto_chunk *c, *tmp;
977 
978 	if (final_iv)
979 		memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
980 
981 	ablkcipher_walk_complete(&rctx->walk);
982 	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
983 		list_del(&c->entry);
984 		if (unlikely(c != &rctx->chunk))
985 			kfree(c);
986 	}
987 
988 }
989 
990 static int n2_do_ecb(struct ablkcipher_request *req, bool encrypt)
991 {
992 	struct n2_request_context *rctx = ablkcipher_request_ctx(req);
993 	struct crypto_tfm *tfm = req->base.tfm;
994 	int err = n2_compute_chunks(req);
995 	struct n2_crypto_chunk *c, *tmp;
996 	unsigned long flags, hv_ret;
997 	struct spu_queue *qp;
998 
999 	if (err)
1000 		return err;
1001 
1002 	qp = cpu_to_cwq[get_cpu()];
1003 	err = -ENODEV;
1004 	if (!qp)
1005 		goto out;
1006 
1007 	spin_lock_irqsave(&qp->lock, flags);
1008 
1009 	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
1010 		err = __n2_crypt_chunk(tfm, c, qp, encrypt);
1011 		if (err)
1012 			break;
1013 		list_del(&c->entry);
1014 		if (unlikely(c != &rctx->chunk))
1015 			kfree(c);
1016 	}
1017 	if (!err) {
1018 		hv_ret = wait_for_tail(qp);
1019 		if (hv_ret != HV_EOK)
1020 			err = -EINVAL;
1021 	}
1022 
1023 	spin_unlock_irqrestore(&qp->lock, flags);
1024 
1025 out:
1026 	put_cpu();
1027 
1028 	n2_chunk_complete(req, NULL);
1029 	return err;
1030 }
1031 
1032 static int n2_encrypt_ecb(struct ablkcipher_request *req)
1033 {
1034 	return n2_do_ecb(req, true);
1035 }
1036 
1037 static int n2_decrypt_ecb(struct ablkcipher_request *req)
1038 {
1039 	return n2_do_ecb(req, false);
1040 }
1041 
1042 static int n2_do_chaining(struct ablkcipher_request *req, bool encrypt)
1043 {
1044 	struct n2_request_context *rctx = ablkcipher_request_ctx(req);
1045 	struct crypto_tfm *tfm = req->base.tfm;
1046 	unsigned long flags, hv_ret, iv_paddr;
1047 	int err = n2_compute_chunks(req);
1048 	struct n2_crypto_chunk *c, *tmp;
1049 	struct spu_queue *qp;
1050 	void *final_iv_addr;
1051 
1052 	final_iv_addr = NULL;
1053 
1054 	if (err)
1055 		return err;
1056 
1057 	qp = cpu_to_cwq[get_cpu()];
1058 	err = -ENODEV;
1059 	if (!qp)
1060 		goto out;
1061 
1062 	spin_lock_irqsave(&qp->lock, flags);
1063 
1064 	if (encrypt) {
1065 		iv_paddr = __pa(rctx->walk.iv);
1066 		list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1067 					 entry) {
1068 			c->iv_paddr = iv_paddr;
1069 			err = __n2_crypt_chunk(tfm, c, qp, true);
1070 			if (err)
1071 				break;
1072 			iv_paddr = c->dest_final - rctx->walk.blocksize;
1073 			list_del(&c->entry);
1074 			if (unlikely(c != &rctx->chunk))
1075 				kfree(c);
1076 		}
1077 		final_iv_addr = __va(iv_paddr);
1078 	} else {
1079 		list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1080 						 entry) {
1081 			if (c == &rctx->chunk) {
1082 				iv_paddr = __pa(rctx->walk.iv);
1083 			} else {
1084 				iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1085 					    tmp->arr[tmp->arr_len-1].src_len -
1086 					    rctx->walk.blocksize);
1087 			}
1088 			if (!final_iv_addr) {
1089 				unsigned long pa;
1090 
1091 				pa = (c->arr[c->arr_len-1].src_paddr +
1092 				      c->arr[c->arr_len-1].src_len -
1093 				      rctx->walk.blocksize);
1094 				final_iv_addr = rctx->temp_iv;
1095 				memcpy(rctx->temp_iv, __va(pa),
1096 				       rctx->walk.blocksize);
1097 			}
1098 			c->iv_paddr = iv_paddr;
1099 			err = __n2_crypt_chunk(tfm, c, qp, false);
1100 			if (err)
1101 				break;
1102 			list_del(&c->entry);
1103 			if (unlikely(c != &rctx->chunk))
1104 				kfree(c);
1105 		}
1106 	}
1107 	if (!err) {
1108 		hv_ret = wait_for_tail(qp);
1109 		if (hv_ret != HV_EOK)
1110 			err = -EINVAL;
1111 	}
1112 
1113 	spin_unlock_irqrestore(&qp->lock, flags);
1114 
1115 out:
1116 	put_cpu();
1117 
1118 	n2_chunk_complete(req, err ? NULL : final_iv_addr);
1119 	return err;
1120 }
1121 
1122 static int n2_encrypt_chaining(struct ablkcipher_request *req)
1123 {
1124 	return n2_do_chaining(req, true);
1125 }
1126 
1127 static int n2_decrypt_chaining(struct ablkcipher_request *req)
1128 {
1129 	return n2_do_chaining(req, false);
1130 }
1131 
1132 struct n2_cipher_tmpl {
1133 	const char		*name;
1134 	const char		*drv_name;
1135 	u8			block_size;
1136 	u8			enc_type;
1137 	struct ablkcipher_alg	ablkcipher;
1138 };
1139 
1140 static const struct n2_cipher_tmpl cipher_tmpls[] = {
1141 	/* ARC4: only ECB is supported (chaining bits ignored) */
1142 	{	.name		= "ecb(arc4)",
1143 		.drv_name	= "ecb-arc4",
1144 		.block_size	= 1,
1145 		.enc_type	= (ENC_TYPE_ALG_RC4_STREAM |
1146 				   ENC_TYPE_CHAINING_ECB),
1147 		.ablkcipher	= {
1148 			.min_keysize	= 1,
1149 			.max_keysize	= 256,
1150 			.setkey		= n2_arc4_setkey,
1151 			.encrypt	= n2_encrypt_ecb,
1152 			.decrypt	= n2_decrypt_ecb,
1153 		},
1154 	},
1155 
1156 	/* DES: ECB CBC and CFB are supported */
1157 	{	.name		= "ecb(des)",
1158 		.drv_name	= "ecb-des",
1159 		.block_size	= DES_BLOCK_SIZE,
1160 		.enc_type	= (ENC_TYPE_ALG_DES |
1161 				   ENC_TYPE_CHAINING_ECB),
1162 		.ablkcipher	= {
1163 			.min_keysize	= DES_KEY_SIZE,
1164 			.max_keysize	= DES_KEY_SIZE,
1165 			.setkey		= n2_des_setkey,
1166 			.encrypt	= n2_encrypt_ecb,
1167 			.decrypt	= n2_decrypt_ecb,
1168 		},
1169 	},
1170 	{	.name		= "cbc(des)",
1171 		.drv_name	= "cbc-des",
1172 		.block_size	= DES_BLOCK_SIZE,
1173 		.enc_type	= (ENC_TYPE_ALG_DES |
1174 				   ENC_TYPE_CHAINING_CBC),
1175 		.ablkcipher	= {
1176 			.ivsize		= DES_BLOCK_SIZE,
1177 			.min_keysize	= DES_KEY_SIZE,
1178 			.max_keysize	= DES_KEY_SIZE,
1179 			.setkey		= n2_des_setkey,
1180 			.encrypt	= n2_encrypt_chaining,
1181 			.decrypt	= n2_decrypt_chaining,
1182 		},
1183 	},
1184 	{	.name		= "cfb(des)",
1185 		.drv_name	= "cfb-des",
1186 		.block_size	= DES_BLOCK_SIZE,
1187 		.enc_type	= (ENC_TYPE_ALG_DES |
1188 				   ENC_TYPE_CHAINING_CFB),
1189 		.ablkcipher	= {
1190 			.min_keysize	= DES_KEY_SIZE,
1191 			.max_keysize	= DES_KEY_SIZE,
1192 			.setkey		= n2_des_setkey,
1193 			.encrypt	= n2_encrypt_chaining,
1194 			.decrypt	= n2_decrypt_chaining,
1195 		},
1196 	},
1197 
1198 	/* 3DES: ECB CBC and CFB are supported */
1199 	{	.name		= "ecb(des3_ede)",
1200 		.drv_name	= "ecb-3des",
1201 		.block_size	= DES_BLOCK_SIZE,
1202 		.enc_type	= (ENC_TYPE_ALG_3DES |
1203 				   ENC_TYPE_CHAINING_ECB),
1204 		.ablkcipher	= {
1205 			.min_keysize	= 3 * DES_KEY_SIZE,
1206 			.max_keysize	= 3 * DES_KEY_SIZE,
1207 			.setkey		= n2_3des_setkey,
1208 			.encrypt	= n2_encrypt_ecb,
1209 			.decrypt	= n2_decrypt_ecb,
1210 		},
1211 	},
1212 	{	.name		= "cbc(des3_ede)",
1213 		.drv_name	= "cbc-3des",
1214 		.block_size	= DES_BLOCK_SIZE,
1215 		.enc_type	= (ENC_TYPE_ALG_3DES |
1216 				   ENC_TYPE_CHAINING_CBC),
1217 		.ablkcipher	= {
1218 			.ivsize		= DES_BLOCK_SIZE,
1219 			.min_keysize	= 3 * DES_KEY_SIZE,
1220 			.max_keysize	= 3 * DES_KEY_SIZE,
1221 			.setkey		= n2_3des_setkey,
1222 			.encrypt	= n2_encrypt_chaining,
1223 			.decrypt	= n2_decrypt_chaining,
1224 		},
1225 	},
1226 	{	.name		= "cfb(des3_ede)",
1227 		.drv_name	= "cfb-3des",
1228 		.block_size	= DES_BLOCK_SIZE,
1229 		.enc_type	= (ENC_TYPE_ALG_3DES |
1230 				   ENC_TYPE_CHAINING_CFB),
1231 		.ablkcipher	= {
1232 			.min_keysize	= 3 * DES_KEY_SIZE,
1233 			.max_keysize	= 3 * DES_KEY_SIZE,
1234 			.setkey		= n2_3des_setkey,
1235 			.encrypt	= n2_encrypt_chaining,
1236 			.decrypt	= n2_decrypt_chaining,
1237 		},
1238 	},
1239 	/* AES: ECB CBC and CTR are supported */
1240 	{	.name		= "ecb(aes)",
1241 		.drv_name	= "ecb-aes",
1242 		.block_size	= AES_BLOCK_SIZE,
1243 		.enc_type	= (ENC_TYPE_ALG_AES128 |
1244 				   ENC_TYPE_CHAINING_ECB),
1245 		.ablkcipher	= {
1246 			.min_keysize	= AES_MIN_KEY_SIZE,
1247 			.max_keysize	= AES_MAX_KEY_SIZE,
1248 			.setkey		= n2_aes_setkey,
1249 			.encrypt	= n2_encrypt_ecb,
1250 			.decrypt	= n2_decrypt_ecb,
1251 		},
1252 	},
1253 	{	.name		= "cbc(aes)",
1254 		.drv_name	= "cbc-aes",
1255 		.block_size	= AES_BLOCK_SIZE,
1256 		.enc_type	= (ENC_TYPE_ALG_AES128 |
1257 				   ENC_TYPE_CHAINING_CBC),
1258 		.ablkcipher	= {
1259 			.ivsize		= AES_BLOCK_SIZE,
1260 			.min_keysize	= AES_MIN_KEY_SIZE,
1261 			.max_keysize	= AES_MAX_KEY_SIZE,
1262 			.setkey		= n2_aes_setkey,
1263 			.encrypt	= n2_encrypt_chaining,
1264 			.decrypt	= n2_decrypt_chaining,
1265 		},
1266 	},
1267 	{	.name		= "ctr(aes)",
1268 		.drv_name	= "ctr-aes",
1269 		.block_size	= AES_BLOCK_SIZE,
1270 		.enc_type	= (ENC_TYPE_ALG_AES128 |
1271 				   ENC_TYPE_CHAINING_COUNTER),
1272 		.ablkcipher	= {
1273 			.ivsize		= AES_BLOCK_SIZE,
1274 			.min_keysize	= AES_MIN_KEY_SIZE,
1275 			.max_keysize	= AES_MAX_KEY_SIZE,
1276 			.setkey		= n2_aes_setkey,
1277 			.encrypt	= n2_encrypt_chaining,
1278 			.decrypt	= n2_encrypt_chaining,
1279 		},
1280 	},
1281 
1282 };
1283 #define NUM_CIPHER_TMPLS ARRAY_SIZE(cipher_tmpls)
1284 
1285 static LIST_HEAD(cipher_algs);
1286 
1287 struct n2_hash_tmpl {
1288 	const char	*name;
1289 	const u8	*hash_zero;
1290 	const u32	*hash_init;
1291 	u8		hw_op_hashsz;
1292 	u8		digest_size;
1293 	u8		block_size;
1294 	u8		auth_type;
1295 	u8		hmac_type;
1296 };
1297 
1298 static const u32 md5_init[MD5_HASH_WORDS] = {
1299 	cpu_to_le32(MD5_H0),
1300 	cpu_to_le32(MD5_H1),
1301 	cpu_to_le32(MD5_H2),
1302 	cpu_to_le32(MD5_H3),
1303 };
1304 static const u32 sha1_init[SHA1_DIGEST_SIZE / 4] = {
1305 	SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1306 };
1307 static const u32 sha256_init[SHA256_DIGEST_SIZE / 4] = {
1308 	SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1309 	SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1310 };
1311 static const u32 sha224_init[SHA256_DIGEST_SIZE / 4] = {
1312 	SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1313 	SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1314 };
1315 
1316 static const struct n2_hash_tmpl hash_tmpls[] = {
1317 	{ .name		= "md5",
1318 	  .hash_zero	= md5_zero_message_hash,
1319 	  .hash_init	= md5_init,
1320 	  .auth_type	= AUTH_TYPE_MD5,
1321 	  .hmac_type	= AUTH_TYPE_HMAC_MD5,
1322 	  .hw_op_hashsz	= MD5_DIGEST_SIZE,
1323 	  .digest_size	= MD5_DIGEST_SIZE,
1324 	  .block_size	= MD5_HMAC_BLOCK_SIZE },
1325 	{ .name		= "sha1",
1326 	  .hash_zero	= sha1_zero_message_hash,
1327 	  .hash_init	= sha1_init,
1328 	  .auth_type	= AUTH_TYPE_SHA1,
1329 	  .hmac_type	= AUTH_TYPE_HMAC_SHA1,
1330 	  .hw_op_hashsz	= SHA1_DIGEST_SIZE,
1331 	  .digest_size	= SHA1_DIGEST_SIZE,
1332 	  .block_size	= SHA1_BLOCK_SIZE },
1333 	{ .name		= "sha256",
1334 	  .hash_zero	= sha256_zero_message_hash,
1335 	  .hash_init	= sha256_init,
1336 	  .auth_type	= AUTH_TYPE_SHA256,
1337 	  .hmac_type	= AUTH_TYPE_HMAC_SHA256,
1338 	  .hw_op_hashsz	= SHA256_DIGEST_SIZE,
1339 	  .digest_size	= SHA256_DIGEST_SIZE,
1340 	  .block_size	= SHA256_BLOCK_SIZE },
1341 	{ .name		= "sha224",
1342 	  .hash_zero	= sha224_zero_message_hash,
1343 	  .hash_init	= sha224_init,
1344 	  .auth_type	= AUTH_TYPE_SHA256,
1345 	  .hmac_type	= AUTH_TYPE_RESERVED,
1346 	  .hw_op_hashsz	= SHA256_DIGEST_SIZE,
1347 	  .digest_size	= SHA224_DIGEST_SIZE,
1348 	  .block_size	= SHA224_BLOCK_SIZE },
1349 };
1350 #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1351 
1352 static LIST_HEAD(ahash_algs);
1353 static LIST_HEAD(hmac_algs);
1354 
1355 static int algs_registered;
1356 
1357 static void __n2_unregister_algs(void)
1358 {
1359 	struct n2_cipher_alg *cipher, *cipher_tmp;
1360 	struct n2_ahash_alg *alg, *alg_tmp;
1361 	struct n2_hmac_alg *hmac, *hmac_tmp;
1362 
1363 	list_for_each_entry_safe(cipher, cipher_tmp, &cipher_algs, entry) {
1364 		crypto_unregister_alg(&cipher->alg);
1365 		list_del(&cipher->entry);
1366 		kfree(cipher);
1367 	}
1368 	list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1369 		crypto_unregister_ahash(&hmac->derived.alg);
1370 		list_del(&hmac->derived.entry);
1371 		kfree(hmac);
1372 	}
1373 	list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1374 		crypto_unregister_ahash(&alg->alg);
1375 		list_del(&alg->entry);
1376 		kfree(alg);
1377 	}
1378 }
1379 
1380 static int n2_cipher_cra_init(struct crypto_tfm *tfm)
1381 {
1382 	tfm->crt_ablkcipher.reqsize = sizeof(struct n2_request_context);
1383 	return 0;
1384 }
1385 
1386 static int __n2_register_one_cipher(const struct n2_cipher_tmpl *tmpl)
1387 {
1388 	struct n2_cipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1389 	struct crypto_alg *alg;
1390 	int err;
1391 
1392 	if (!p)
1393 		return -ENOMEM;
1394 
1395 	alg = &p->alg;
1396 
1397 	snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1398 	snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1399 	alg->cra_priority = N2_CRA_PRIORITY;
1400 	alg->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1401 			 CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
1402 	alg->cra_blocksize = tmpl->block_size;
1403 	p->enc_type = tmpl->enc_type;
1404 	alg->cra_ctxsize = sizeof(struct n2_cipher_context);
1405 	alg->cra_type = &crypto_ablkcipher_type;
1406 	alg->cra_u.ablkcipher = tmpl->ablkcipher;
1407 	alg->cra_init = n2_cipher_cra_init;
1408 	alg->cra_module = THIS_MODULE;
1409 
1410 	list_add(&p->entry, &cipher_algs);
1411 	err = crypto_register_alg(alg);
1412 	if (err) {
1413 		pr_err("%s alg registration failed\n", alg->cra_name);
1414 		list_del(&p->entry);
1415 		kfree(p);
1416 	} else {
1417 		pr_info("%s alg registered\n", alg->cra_name);
1418 	}
1419 	return err;
1420 }
1421 
1422 static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1423 {
1424 	struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1425 	struct ahash_alg *ahash;
1426 	struct crypto_alg *base;
1427 	int err;
1428 
1429 	if (!p)
1430 		return -ENOMEM;
1431 
1432 	p->child_alg = n2ahash->alg.halg.base.cra_name;
1433 	memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1434 	INIT_LIST_HEAD(&p->derived.entry);
1435 
1436 	ahash = &p->derived.alg;
1437 	ahash->digest = n2_hmac_async_digest;
1438 	ahash->setkey = n2_hmac_async_setkey;
1439 
1440 	base = &ahash->halg.base;
1441 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
1442 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
1443 
1444 	base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1445 	base->cra_init = n2_hmac_cra_init;
1446 	base->cra_exit = n2_hmac_cra_exit;
1447 
1448 	list_add(&p->derived.entry, &hmac_algs);
1449 	err = crypto_register_ahash(ahash);
1450 	if (err) {
1451 		pr_err("%s alg registration failed\n", base->cra_name);
1452 		list_del(&p->derived.entry);
1453 		kfree(p);
1454 	} else {
1455 		pr_info("%s alg registered\n", base->cra_name);
1456 	}
1457 	return err;
1458 }
1459 
1460 static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1461 {
1462 	struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1463 	struct hash_alg_common *halg;
1464 	struct crypto_alg *base;
1465 	struct ahash_alg *ahash;
1466 	int err;
1467 
1468 	if (!p)
1469 		return -ENOMEM;
1470 
1471 	p->hash_zero = tmpl->hash_zero;
1472 	p->hash_init = tmpl->hash_init;
1473 	p->auth_type = tmpl->auth_type;
1474 	p->hmac_type = tmpl->hmac_type;
1475 	p->hw_op_hashsz = tmpl->hw_op_hashsz;
1476 	p->digest_size = tmpl->digest_size;
1477 
1478 	ahash = &p->alg;
1479 	ahash->init = n2_hash_async_init;
1480 	ahash->update = n2_hash_async_update;
1481 	ahash->final = n2_hash_async_final;
1482 	ahash->finup = n2_hash_async_finup;
1483 	ahash->digest = n2_hash_async_digest;
1484 	ahash->export = n2_hash_async_noexport;
1485 	ahash->import = n2_hash_async_noimport;
1486 
1487 	halg = &ahash->halg;
1488 	halg->digestsize = tmpl->digest_size;
1489 
1490 	base = &halg->base;
1491 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1492 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1493 	base->cra_priority = N2_CRA_PRIORITY;
1494 	base->cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1495 			  CRYPTO_ALG_NEED_FALLBACK;
1496 	base->cra_blocksize = tmpl->block_size;
1497 	base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1498 	base->cra_module = THIS_MODULE;
1499 	base->cra_init = n2_hash_cra_init;
1500 	base->cra_exit = n2_hash_cra_exit;
1501 
1502 	list_add(&p->entry, &ahash_algs);
1503 	err = crypto_register_ahash(ahash);
1504 	if (err) {
1505 		pr_err("%s alg registration failed\n", base->cra_name);
1506 		list_del(&p->entry);
1507 		kfree(p);
1508 	} else {
1509 		pr_info("%s alg registered\n", base->cra_name);
1510 	}
1511 	if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1512 		err = __n2_register_one_hmac(p);
1513 	return err;
1514 }
1515 
1516 static int n2_register_algs(void)
1517 {
1518 	int i, err = 0;
1519 
1520 	mutex_lock(&spu_lock);
1521 	if (algs_registered++)
1522 		goto out;
1523 
1524 	for (i = 0; i < NUM_HASH_TMPLS; i++) {
1525 		err = __n2_register_one_ahash(&hash_tmpls[i]);
1526 		if (err) {
1527 			__n2_unregister_algs();
1528 			goto out;
1529 		}
1530 	}
1531 	for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1532 		err = __n2_register_one_cipher(&cipher_tmpls[i]);
1533 		if (err) {
1534 			__n2_unregister_algs();
1535 			goto out;
1536 		}
1537 	}
1538 
1539 out:
1540 	mutex_unlock(&spu_lock);
1541 	return err;
1542 }
1543 
1544 static void n2_unregister_algs(void)
1545 {
1546 	mutex_lock(&spu_lock);
1547 	if (!--algs_registered)
1548 		__n2_unregister_algs();
1549 	mutex_unlock(&spu_lock);
1550 }
1551 
1552 /* To map CWQ queues to interrupt sources, the hypervisor API provides
1553  * a devino.  This isn't very useful to us because all of the
1554  * interrupts listed in the device_node have been translated to
1555  * Linux virtual IRQ cookie numbers.
1556  *
1557  * So we have to back-translate, going through the 'intr' and 'ino'
1558  * property tables of the n2cp MDESC node, matching it with the OF
1559  * 'interrupts' property entries, in order to to figure out which
1560  * devino goes to which already-translated IRQ.
1561  */
1562 static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1563 			     unsigned long dev_ino)
1564 {
1565 	const unsigned int *dev_intrs;
1566 	unsigned int intr;
1567 	int i;
1568 
1569 	for (i = 0; i < ip->num_intrs; i++) {
1570 		if (ip->ino_table[i].ino == dev_ino)
1571 			break;
1572 	}
1573 	if (i == ip->num_intrs)
1574 		return -ENODEV;
1575 
1576 	intr = ip->ino_table[i].intr;
1577 
1578 	dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1579 	if (!dev_intrs)
1580 		return -ENODEV;
1581 
1582 	for (i = 0; i < dev->archdata.num_irqs; i++) {
1583 		if (dev_intrs[i] == intr)
1584 			return i;
1585 	}
1586 
1587 	return -ENODEV;
1588 }
1589 
1590 static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1591 		       const char *irq_name, struct spu_queue *p,
1592 		       irq_handler_t handler)
1593 {
1594 	unsigned long herr;
1595 	int index;
1596 
1597 	herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1598 	if (herr)
1599 		return -EINVAL;
1600 
1601 	index = find_devino_index(dev, ip, p->devino);
1602 	if (index < 0)
1603 		return index;
1604 
1605 	p->irq = dev->archdata.irqs[index];
1606 
1607 	sprintf(p->irq_name, "%s-%d", irq_name, index);
1608 
1609 	return request_irq(p->irq, handler, 0, p->irq_name, p);
1610 }
1611 
1612 static struct kmem_cache *queue_cache[2];
1613 
1614 static void *new_queue(unsigned long q_type)
1615 {
1616 	return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1617 }
1618 
1619 static void free_queue(void *p, unsigned long q_type)
1620 {
1621 	kmem_cache_free(queue_cache[q_type - 1], p);
1622 }
1623 
1624 static int queue_cache_init(void)
1625 {
1626 	if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1627 		queue_cache[HV_NCS_QTYPE_MAU - 1] =
1628 			kmem_cache_create("mau_queue",
1629 					  (MAU_NUM_ENTRIES *
1630 					   MAU_ENTRY_SIZE),
1631 					  MAU_ENTRY_SIZE, 0, NULL);
1632 	if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1633 		return -ENOMEM;
1634 
1635 	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1636 		queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1637 			kmem_cache_create("cwq_queue",
1638 					  (CWQ_NUM_ENTRIES *
1639 					   CWQ_ENTRY_SIZE),
1640 					  CWQ_ENTRY_SIZE, 0, NULL);
1641 	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1642 		kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1643 		queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1644 		return -ENOMEM;
1645 	}
1646 	return 0;
1647 }
1648 
1649 static void queue_cache_destroy(void)
1650 {
1651 	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1652 	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
1653 	queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1654 	queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL;
1655 }
1656 
1657 static long spu_queue_register_workfn(void *arg)
1658 {
1659 	struct spu_qreg *qr = arg;
1660 	struct spu_queue *p = qr->queue;
1661 	unsigned long q_type = qr->type;
1662 	unsigned long hv_ret;
1663 
1664 	hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1665 				 CWQ_NUM_ENTRIES, &p->qhandle);
1666 	if (!hv_ret)
1667 		sun4v_ncs_sethead_marker(p->qhandle, 0);
1668 
1669 	return hv_ret ? -EINVAL : 0;
1670 }
1671 
1672 static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1673 {
1674 	int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
1675 	struct spu_qreg qr = { .queue = p, .type = q_type };
1676 
1677 	return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
1678 }
1679 
1680 static int spu_queue_setup(struct spu_queue *p)
1681 {
1682 	int err;
1683 
1684 	p->q = new_queue(p->q_type);
1685 	if (!p->q)
1686 		return -ENOMEM;
1687 
1688 	err = spu_queue_register(p, p->q_type);
1689 	if (err) {
1690 		free_queue(p->q, p->q_type);
1691 		p->q = NULL;
1692 	}
1693 
1694 	return err;
1695 }
1696 
1697 static void spu_queue_destroy(struct spu_queue *p)
1698 {
1699 	unsigned long hv_ret;
1700 
1701 	if (!p->q)
1702 		return;
1703 
1704 	hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1705 
1706 	if (!hv_ret)
1707 		free_queue(p->q, p->q_type);
1708 }
1709 
1710 static void spu_list_destroy(struct list_head *list)
1711 {
1712 	struct spu_queue *p, *n;
1713 
1714 	list_for_each_entry_safe(p, n, list, list) {
1715 		int i;
1716 
1717 		for (i = 0; i < NR_CPUS; i++) {
1718 			if (cpu_to_cwq[i] == p)
1719 				cpu_to_cwq[i] = NULL;
1720 		}
1721 
1722 		if (p->irq) {
1723 			free_irq(p->irq, p);
1724 			p->irq = 0;
1725 		}
1726 		spu_queue_destroy(p);
1727 		list_del(&p->list);
1728 		kfree(p);
1729 	}
1730 }
1731 
1732 /* Walk the backward arcs of a CWQ 'exec-unit' node,
1733  * gathering cpu membership information.
1734  */
1735 static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1736 			       struct platform_device *dev,
1737 			       u64 node, struct spu_queue *p,
1738 			       struct spu_queue **table)
1739 {
1740 	u64 arc;
1741 
1742 	mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1743 		u64 tgt = mdesc_arc_target(mdesc, arc);
1744 		const char *name = mdesc_node_name(mdesc, tgt);
1745 		const u64 *id;
1746 
1747 		if (strcmp(name, "cpu"))
1748 			continue;
1749 		id = mdesc_get_property(mdesc, tgt, "id", NULL);
1750 		if (table[*id] != NULL) {
1751 			dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n",
1752 				dev->dev.of_node);
1753 			return -EINVAL;
1754 		}
1755 		cpumask_set_cpu(*id, &p->sharing);
1756 		table[*id] = p;
1757 	}
1758 	return 0;
1759 }
1760 
1761 /* Process an 'exec-unit' MDESC node of type 'cwq'.  */
1762 static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1763 			    struct platform_device *dev, struct mdesc_handle *mdesc,
1764 			    u64 node, const char *iname, unsigned long q_type,
1765 			    irq_handler_t handler, struct spu_queue **table)
1766 {
1767 	struct spu_queue *p;
1768 	int err;
1769 
1770 	p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1771 	if (!p) {
1772 		dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n",
1773 			dev->dev.of_node);
1774 		return -ENOMEM;
1775 	}
1776 
1777 	cpumask_clear(&p->sharing);
1778 	spin_lock_init(&p->lock);
1779 	p->q_type = q_type;
1780 	INIT_LIST_HEAD(&p->jobs);
1781 	list_add(&p->list, list);
1782 
1783 	err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1784 	if (err)
1785 		return err;
1786 
1787 	err = spu_queue_setup(p);
1788 	if (err)
1789 		return err;
1790 
1791 	return spu_map_ino(dev, ip, iname, p, handler);
1792 }
1793 
1794 static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1795 			  struct spu_mdesc_info *ip, struct list_head *list,
1796 			  const char *exec_name, unsigned long q_type,
1797 			  irq_handler_t handler, struct spu_queue **table)
1798 {
1799 	int err = 0;
1800 	u64 node;
1801 
1802 	mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1803 		const char *type;
1804 
1805 		type = mdesc_get_property(mdesc, node, "type", NULL);
1806 		if (!type || strcmp(type, exec_name))
1807 			continue;
1808 
1809 		err = handle_exec_unit(ip, list, dev, mdesc, node,
1810 				       exec_name, q_type, handler, table);
1811 		if (err) {
1812 			spu_list_destroy(list);
1813 			break;
1814 		}
1815 	}
1816 
1817 	return err;
1818 }
1819 
1820 static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
1821 			 struct spu_mdesc_info *ip)
1822 {
1823 	const u64 *ino;
1824 	int ino_len;
1825 	int i;
1826 
1827 	ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1828 	if (!ino) {
1829 		printk("NO 'ino'\n");
1830 		return -ENODEV;
1831 	}
1832 
1833 	ip->num_intrs = ino_len / sizeof(u64);
1834 	ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1835 				 ip->num_intrs),
1836 				GFP_KERNEL);
1837 	if (!ip->ino_table)
1838 		return -ENOMEM;
1839 
1840 	for (i = 0; i < ip->num_intrs; i++) {
1841 		struct ino_blob *b = &ip->ino_table[i];
1842 		b->intr = i + 1;
1843 		b->ino = ino[i];
1844 	}
1845 
1846 	return 0;
1847 }
1848 
1849 static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1850 				struct platform_device *dev,
1851 				struct spu_mdesc_info *ip,
1852 				const char *node_name)
1853 {
1854 	const unsigned int *reg;
1855 	u64 node;
1856 
1857 	reg = of_get_property(dev->dev.of_node, "reg", NULL);
1858 	if (!reg)
1859 		return -ENODEV;
1860 
1861 	mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1862 		const char *name;
1863 		const u64 *chdl;
1864 
1865 		name = mdesc_get_property(mdesc, node, "name", NULL);
1866 		if (!name || strcmp(name, node_name))
1867 			continue;
1868 		chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1869 		if (!chdl || (*chdl != *reg))
1870 			continue;
1871 		ip->cfg_handle = *chdl;
1872 		return get_irq_props(mdesc, node, ip);
1873 	}
1874 
1875 	return -ENODEV;
1876 }
1877 
1878 static unsigned long n2_spu_hvapi_major;
1879 static unsigned long n2_spu_hvapi_minor;
1880 
1881 static int n2_spu_hvapi_register(void)
1882 {
1883 	int err;
1884 
1885 	n2_spu_hvapi_major = 2;
1886 	n2_spu_hvapi_minor = 0;
1887 
1888 	err = sun4v_hvapi_register(HV_GRP_NCS,
1889 				   n2_spu_hvapi_major,
1890 				   &n2_spu_hvapi_minor);
1891 
1892 	if (!err)
1893 		pr_info("Registered NCS HVAPI version %lu.%lu\n",
1894 			n2_spu_hvapi_major,
1895 			n2_spu_hvapi_minor);
1896 
1897 	return err;
1898 }
1899 
1900 static void n2_spu_hvapi_unregister(void)
1901 {
1902 	sun4v_hvapi_unregister(HV_GRP_NCS);
1903 }
1904 
1905 static int global_ref;
1906 
1907 static int grab_global_resources(void)
1908 {
1909 	int err = 0;
1910 
1911 	mutex_lock(&spu_lock);
1912 
1913 	if (global_ref++)
1914 		goto out;
1915 
1916 	err = n2_spu_hvapi_register();
1917 	if (err)
1918 		goto out;
1919 
1920 	err = queue_cache_init();
1921 	if (err)
1922 		goto out_hvapi_release;
1923 
1924 	err = -ENOMEM;
1925 	cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1926 			     GFP_KERNEL);
1927 	if (!cpu_to_cwq)
1928 		goto out_queue_cache_destroy;
1929 
1930 	cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1931 			     GFP_KERNEL);
1932 	if (!cpu_to_mau)
1933 		goto out_free_cwq_table;
1934 
1935 	err = 0;
1936 
1937 out:
1938 	if (err)
1939 		global_ref--;
1940 	mutex_unlock(&spu_lock);
1941 	return err;
1942 
1943 out_free_cwq_table:
1944 	kfree(cpu_to_cwq);
1945 	cpu_to_cwq = NULL;
1946 
1947 out_queue_cache_destroy:
1948 	queue_cache_destroy();
1949 
1950 out_hvapi_release:
1951 	n2_spu_hvapi_unregister();
1952 	goto out;
1953 }
1954 
1955 static void release_global_resources(void)
1956 {
1957 	mutex_lock(&spu_lock);
1958 	if (!--global_ref) {
1959 		kfree(cpu_to_cwq);
1960 		cpu_to_cwq = NULL;
1961 
1962 		kfree(cpu_to_mau);
1963 		cpu_to_mau = NULL;
1964 
1965 		queue_cache_destroy();
1966 		n2_spu_hvapi_unregister();
1967 	}
1968 	mutex_unlock(&spu_lock);
1969 }
1970 
1971 static struct n2_crypto *alloc_n2cp(void)
1972 {
1973 	struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1974 
1975 	if (np)
1976 		INIT_LIST_HEAD(&np->cwq_list);
1977 
1978 	return np;
1979 }
1980 
1981 static void free_n2cp(struct n2_crypto *np)
1982 {
1983 	kfree(np->cwq_info.ino_table);
1984 	np->cwq_info.ino_table = NULL;
1985 
1986 	kfree(np);
1987 }
1988 
1989 static void n2_spu_driver_version(void)
1990 {
1991 	static int n2_spu_version_printed;
1992 
1993 	if (n2_spu_version_printed++ == 0)
1994 		pr_info("%s", version);
1995 }
1996 
1997 static int n2_crypto_probe(struct platform_device *dev)
1998 {
1999 	struct mdesc_handle *mdesc;
2000 	struct n2_crypto *np;
2001 	int err;
2002 
2003 	n2_spu_driver_version();
2004 
2005 	pr_info("Found N2CP at %pOF\n", dev->dev.of_node);
2006 
2007 	np = alloc_n2cp();
2008 	if (!np) {
2009 		dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n",
2010 			dev->dev.of_node);
2011 		return -ENOMEM;
2012 	}
2013 
2014 	err = grab_global_resources();
2015 	if (err) {
2016 		dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2017 			dev->dev.of_node);
2018 		goto out_free_n2cp;
2019 	}
2020 
2021 	mdesc = mdesc_grab();
2022 
2023 	if (!mdesc) {
2024 		dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2025 			dev->dev.of_node);
2026 		err = -ENODEV;
2027 		goto out_free_global;
2028 	}
2029 	err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
2030 	if (err) {
2031 		dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2032 			dev->dev.of_node);
2033 		mdesc_release(mdesc);
2034 		goto out_free_global;
2035 	}
2036 
2037 	err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
2038 			     "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
2039 			     cpu_to_cwq);
2040 	mdesc_release(mdesc);
2041 
2042 	if (err) {
2043 		dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n",
2044 			dev->dev.of_node);
2045 		goto out_free_global;
2046 	}
2047 
2048 	err = n2_register_algs();
2049 	if (err) {
2050 		dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n",
2051 			dev->dev.of_node);
2052 		goto out_free_spu_list;
2053 	}
2054 
2055 	dev_set_drvdata(&dev->dev, np);
2056 
2057 	return 0;
2058 
2059 out_free_spu_list:
2060 	spu_list_destroy(&np->cwq_list);
2061 
2062 out_free_global:
2063 	release_global_resources();
2064 
2065 out_free_n2cp:
2066 	free_n2cp(np);
2067 
2068 	return err;
2069 }
2070 
2071 static int n2_crypto_remove(struct platform_device *dev)
2072 {
2073 	struct n2_crypto *np = dev_get_drvdata(&dev->dev);
2074 
2075 	n2_unregister_algs();
2076 
2077 	spu_list_destroy(&np->cwq_list);
2078 
2079 	release_global_resources();
2080 
2081 	free_n2cp(np);
2082 
2083 	return 0;
2084 }
2085 
2086 static struct n2_mau *alloc_ncp(void)
2087 {
2088 	struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2089 
2090 	if (mp)
2091 		INIT_LIST_HEAD(&mp->mau_list);
2092 
2093 	return mp;
2094 }
2095 
2096 static void free_ncp(struct n2_mau *mp)
2097 {
2098 	kfree(mp->mau_info.ino_table);
2099 	mp->mau_info.ino_table = NULL;
2100 
2101 	kfree(mp);
2102 }
2103 
2104 static int n2_mau_probe(struct platform_device *dev)
2105 {
2106 	struct mdesc_handle *mdesc;
2107 	struct n2_mau *mp;
2108 	int err;
2109 
2110 	n2_spu_driver_version();
2111 
2112 	pr_info("Found NCP at %pOF\n", dev->dev.of_node);
2113 
2114 	mp = alloc_ncp();
2115 	if (!mp) {
2116 		dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n",
2117 			dev->dev.of_node);
2118 		return -ENOMEM;
2119 	}
2120 
2121 	err = grab_global_resources();
2122 	if (err) {
2123 		dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2124 			dev->dev.of_node);
2125 		goto out_free_ncp;
2126 	}
2127 
2128 	mdesc = mdesc_grab();
2129 
2130 	if (!mdesc) {
2131 		dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2132 			dev->dev.of_node);
2133 		err = -ENODEV;
2134 		goto out_free_global;
2135 	}
2136 
2137 	err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2138 	if (err) {
2139 		dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2140 			dev->dev.of_node);
2141 		mdesc_release(mdesc);
2142 		goto out_free_global;
2143 	}
2144 
2145 	err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2146 			     "mau", HV_NCS_QTYPE_MAU, mau_intr,
2147 			     cpu_to_mau);
2148 	mdesc_release(mdesc);
2149 
2150 	if (err) {
2151 		dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n",
2152 			dev->dev.of_node);
2153 		goto out_free_global;
2154 	}
2155 
2156 	dev_set_drvdata(&dev->dev, mp);
2157 
2158 	return 0;
2159 
2160 out_free_global:
2161 	release_global_resources();
2162 
2163 out_free_ncp:
2164 	free_ncp(mp);
2165 
2166 	return err;
2167 }
2168 
2169 static int n2_mau_remove(struct platform_device *dev)
2170 {
2171 	struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2172 
2173 	spu_list_destroy(&mp->mau_list);
2174 
2175 	release_global_resources();
2176 
2177 	free_ncp(mp);
2178 
2179 	return 0;
2180 }
2181 
2182 static const struct of_device_id n2_crypto_match[] = {
2183 	{
2184 		.name = "n2cp",
2185 		.compatible = "SUNW,n2-cwq",
2186 	},
2187 	{
2188 		.name = "n2cp",
2189 		.compatible = "SUNW,vf-cwq",
2190 	},
2191 	{
2192 		.name = "n2cp",
2193 		.compatible = "SUNW,kt-cwq",
2194 	},
2195 	{},
2196 };
2197 
2198 MODULE_DEVICE_TABLE(of, n2_crypto_match);
2199 
2200 static struct platform_driver n2_crypto_driver = {
2201 	.driver = {
2202 		.name		=	"n2cp",
2203 		.of_match_table	=	n2_crypto_match,
2204 	},
2205 	.probe		=	n2_crypto_probe,
2206 	.remove		=	n2_crypto_remove,
2207 };
2208 
2209 static const struct of_device_id n2_mau_match[] = {
2210 	{
2211 		.name = "ncp",
2212 		.compatible = "SUNW,n2-mau",
2213 	},
2214 	{
2215 		.name = "ncp",
2216 		.compatible = "SUNW,vf-mau",
2217 	},
2218 	{
2219 		.name = "ncp",
2220 		.compatible = "SUNW,kt-mau",
2221 	},
2222 	{},
2223 };
2224 
2225 MODULE_DEVICE_TABLE(of, n2_mau_match);
2226 
2227 static struct platform_driver n2_mau_driver = {
2228 	.driver = {
2229 		.name		=	"ncp",
2230 		.of_match_table	=	n2_mau_match,
2231 	},
2232 	.probe		=	n2_mau_probe,
2233 	.remove		=	n2_mau_remove,
2234 };
2235 
2236 static struct platform_driver * const drivers[] = {
2237 	&n2_crypto_driver,
2238 	&n2_mau_driver,
2239 };
2240 
2241 static int __init n2_init(void)
2242 {
2243 	return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2244 }
2245 
2246 static void __exit n2_exit(void)
2247 {
2248 	platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2249 }
2250 
2251 module_init(n2_init);
2252 module_exit(n2_exit);
2253