xref: /linux/drivers/crypto/n2_core.c (revision a1944676767e855869b6af8e1c7e185372feaf31)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
3  *
4  * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/of.h>
12 #include <linux/of_address.h>
13 #include <linux/platform_device.h>
14 #include <linux/cpumask.h>
15 #include <linux/slab.h>
16 #include <linux/interrupt.h>
17 #include <linux/crypto.h>
18 #include <crypto/md5.h>
19 #include <crypto/sha1.h>
20 #include <crypto/sha2.h>
21 #include <crypto/aes.h>
22 #include <crypto/internal/des.h>
23 #include <linux/mutex.h>
24 #include <linux/delay.h>
25 #include <linux/sched.h>
26 
27 #include <crypto/internal/hash.h>
28 #include <crypto/internal/skcipher.h>
29 #include <crypto/scatterwalk.h>
30 #include <crypto/algapi.h>
31 
32 #include <asm/hypervisor.h>
33 #include <asm/mdesc.h>
34 
35 #include "n2_core.h"
36 
37 #define DRV_MODULE_NAME		"n2_crypto"
38 #define DRV_MODULE_VERSION	"0.2"
39 #define DRV_MODULE_RELDATE	"July 28, 2011"
40 
41 static const char version[] =
42 	DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
43 
44 MODULE_AUTHOR("David S. Miller <davem@davemloft.net>");
45 MODULE_DESCRIPTION("Niagara2 Crypto driver");
46 MODULE_LICENSE("GPL");
47 MODULE_VERSION(DRV_MODULE_VERSION);
48 
49 #define N2_CRA_PRIORITY		200
50 
51 static DEFINE_MUTEX(spu_lock);
52 
53 struct spu_queue {
54 	cpumask_t		sharing;
55 	unsigned long		qhandle;
56 
57 	spinlock_t		lock;
58 	u8			q_type;
59 	void			*q;
60 	unsigned long		head;
61 	unsigned long		tail;
62 	struct list_head	jobs;
63 
64 	unsigned long		devino;
65 
66 	char			irq_name[32];
67 	unsigned int		irq;
68 
69 	struct list_head	list;
70 };
71 
72 struct spu_qreg {
73 	struct spu_queue	*queue;
74 	unsigned long		type;
75 };
76 
77 static struct spu_queue **cpu_to_cwq;
78 static struct spu_queue **cpu_to_mau;
79 
80 static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
81 {
82 	if (q->q_type == HV_NCS_QTYPE_MAU) {
83 		off += MAU_ENTRY_SIZE;
84 		if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
85 			off = 0;
86 	} else {
87 		off += CWQ_ENTRY_SIZE;
88 		if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
89 			off = 0;
90 	}
91 	return off;
92 }
93 
94 struct n2_request_common {
95 	struct list_head	entry;
96 	unsigned int		offset;
97 };
98 #define OFFSET_NOT_RUNNING	(~(unsigned int)0)
99 
100 /* An async job request records the final tail value it used in
101  * n2_request_common->offset, test to see if that offset is in
102  * the range old_head, new_head, inclusive.
103  */
104 static inline bool job_finished(struct spu_queue *q, unsigned int offset,
105 				unsigned long old_head, unsigned long new_head)
106 {
107 	if (old_head <= new_head) {
108 		if (offset > old_head && offset <= new_head)
109 			return true;
110 	} else {
111 		if (offset > old_head || offset <= new_head)
112 			return true;
113 	}
114 	return false;
115 }
116 
117 /* When the HEAD marker is unequal to the actual HEAD, we get
118  * a virtual device INO interrupt.  We should process the
119  * completed CWQ entries and adjust the HEAD marker to clear
120  * the IRQ.
121  */
122 static irqreturn_t cwq_intr(int irq, void *dev_id)
123 {
124 	unsigned long off, new_head, hv_ret;
125 	struct spu_queue *q = dev_id;
126 
127 	pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
128 	       smp_processor_id(), q->qhandle);
129 
130 	spin_lock(&q->lock);
131 
132 	hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
133 
134 	pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
135 	       smp_processor_id(), new_head, hv_ret);
136 
137 	for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
138 		/* XXX ... XXX */
139 	}
140 
141 	hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
142 	if (hv_ret == HV_EOK)
143 		q->head = new_head;
144 
145 	spin_unlock(&q->lock);
146 
147 	return IRQ_HANDLED;
148 }
149 
150 static irqreturn_t mau_intr(int irq, void *dev_id)
151 {
152 	struct spu_queue *q = dev_id;
153 	unsigned long head, hv_ret;
154 
155 	spin_lock(&q->lock);
156 
157 	pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
158 	       smp_processor_id(), q->qhandle);
159 
160 	hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
161 
162 	pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
163 	       smp_processor_id(), head, hv_ret);
164 
165 	sun4v_ncs_sethead_marker(q->qhandle, head);
166 
167 	spin_unlock(&q->lock);
168 
169 	return IRQ_HANDLED;
170 }
171 
172 static void *spu_queue_next(struct spu_queue *q, void *cur)
173 {
174 	return q->q + spu_next_offset(q, cur - q->q);
175 }
176 
177 static int spu_queue_num_free(struct spu_queue *q)
178 {
179 	unsigned long head = q->head;
180 	unsigned long tail = q->tail;
181 	unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
182 	unsigned long diff;
183 
184 	if (head > tail)
185 		diff = head - tail;
186 	else
187 		diff = (end - tail) + head;
188 
189 	return (diff / CWQ_ENTRY_SIZE) - 1;
190 }
191 
192 static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
193 {
194 	int avail = spu_queue_num_free(q);
195 
196 	if (avail >= num_entries)
197 		return q->q + q->tail;
198 
199 	return NULL;
200 }
201 
202 static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
203 {
204 	unsigned long hv_ret, new_tail;
205 
206 	new_tail = spu_next_offset(q, last - q->q);
207 
208 	hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
209 	if (hv_ret == HV_EOK)
210 		q->tail = new_tail;
211 	return hv_ret;
212 }
213 
214 static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
215 			     int enc_type, int auth_type,
216 			     unsigned int hash_len,
217 			     bool sfas, bool sob, bool eob, bool encrypt,
218 			     int opcode)
219 {
220 	u64 word = (len - 1) & CONTROL_LEN;
221 
222 	word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
223 	word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
224 	word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
225 	if (sfas)
226 		word |= CONTROL_STORE_FINAL_AUTH_STATE;
227 	if (sob)
228 		word |= CONTROL_START_OF_BLOCK;
229 	if (eob)
230 		word |= CONTROL_END_OF_BLOCK;
231 	if (encrypt)
232 		word |= CONTROL_ENCRYPT;
233 	if (hmac_key_len)
234 		word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
235 	if (hash_len)
236 		word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
237 
238 	return word;
239 }
240 
241 #if 0
242 static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
243 {
244 	if (this_len >= 64 ||
245 	    qp->head != qp->tail)
246 		return true;
247 	return false;
248 }
249 #endif
250 
251 struct n2_ahash_alg {
252 	struct list_head	entry;
253 	const u8		*hash_zero;
254 	const u8		*hash_init;
255 	u8			hw_op_hashsz;
256 	u8			digest_size;
257 	u8			auth_type;
258 	u8			hmac_type;
259 	struct ahash_alg	alg;
260 };
261 
262 static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
263 {
264 	struct crypto_alg *alg = tfm->__crt_alg;
265 	struct ahash_alg *ahash_alg;
266 
267 	ahash_alg = container_of(alg, struct ahash_alg, halg.base);
268 
269 	return container_of(ahash_alg, struct n2_ahash_alg, alg);
270 }
271 
272 struct n2_hmac_alg {
273 	const char		*child_alg;
274 	struct n2_ahash_alg	derived;
275 };
276 
277 static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
278 {
279 	struct crypto_alg *alg = tfm->__crt_alg;
280 	struct ahash_alg *ahash_alg;
281 
282 	ahash_alg = container_of(alg, struct ahash_alg, halg.base);
283 
284 	return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
285 }
286 
287 struct n2_hash_ctx {
288 	struct crypto_ahash		*fallback_tfm;
289 };
290 
291 #define N2_HASH_KEY_MAX			32 /* HW limit for all HMAC requests */
292 
293 struct n2_hmac_ctx {
294 	struct n2_hash_ctx		base;
295 
296 	struct crypto_shash		*child_shash;
297 
298 	int				hash_key_len;
299 	unsigned char			hash_key[N2_HASH_KEY_MAX];
300 };
301 
302 struct n2_hash_req_ctx {
303 	union {
304 		struct md5_state	md5;
305 		struct sha1_state	sha1;
306 		struct sha256_state	sha256;
307 	} u;
308 
309 	struct ahash_request		fallback_req;
310 };
311 
312 static int n2_hash_async_init(struct ahash_request *req)
313 {
314 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
315 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
316 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
317 
318 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
319 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
320 
321 	return crypto_ahash_init(&rctx->fallback_req);
322 }
323 
324 static int n2_hash_async_update(struct ahash_request *req)
325 {
326 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
327 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
328 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
329 
330 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
331 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
332 	rctx->fallback_req.nbytes = req->nbytes;
333 	rctx->fallback_req.src = req->src;
334 
335 	return crypto_ahash_update(&rctx->fallback_req);
336 }
337 
338 static int n2_hash_async_final(struct ahash_request *req)
339 {
340 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
341 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
342 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
343 
344 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
345 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
346 	rctx->fallback_req.result = req->result;
347 
348 	return crypto_ahash_final(&rctx->fallback_req);
349 }
350 
351 static int n2_hash_async_finup(struct ahash_request *req)
352 {
353 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
354 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
355 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
356 
357 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
358 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
359 	rctx->fallback_req.nbytes = req->nbytes;
360 	rctx->fallback_req.src = req->src;
361 	rctx->fallback_req.result = req->result;
362 
363 	return crypto_ahash_finup(&rctx->fallback_req);
364 }
365 
366 static int n2_hash_async_noimport(struct ahash_request *req, const void *in)
367 {
368 	return -ENOSYS;
369 }
370 
371 static int n2_hash_async_noexport(struct ahash_request *req, void *out)
372 {
373 	return -ENOSYS;
374 }
375 
376 static int n2_hash_cra_init(struct crypto_tfm *tfm)
377 {
378 	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
379 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
380 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
381 	struct crypto_ahash *fallback_tfm;
382 	int err;
383 
384 	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
385 					  CRYPTO_ALG_NEED_FALLBACK);
386 	if (IS_ERR(fallback_tfm)) {
387 		pr_warn("Fallback driver '%s' could not be loaded!\n",
388 			fallback_driver_name);
389 		err = PTR_ERR(fallback_tfm);
390 		goto out;
391 	}
392 
393 	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
394 					 crypto_ahash_reqsize(fallback_tfm)));
395 
396 	ctx->fallback_tfm = fallback_tfm;
397 	return 0;
398 
399 out:
400 	return err;
401 }
402 
403 static void n2_hash_cra_exit(struct crypto_tfm *tfm)
404 {
405 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
406 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
407 
408 	crypto_free_ahash(ctx->fallback_tfm);
409 }
410 
411 static int n2_hmac_cra_init(struct crypto_tfm *tfm)
412 {
413 	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
414 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
415 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
416 	struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
417 	struct crypto_ahash *fallback_tfm;
418 	struct crypto_shash *child_shash;
419 	int err;
420 
421 	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
422 					  CRYPTO_ALG_NEED_FALLBACK);
423 	if (IS_ERR(fallback_tfm)) {
424 		pr_warn("Fallback driver '%s' could not be loaded!\n",
425 			fallback_driver_name);
426 		err = PTR_ERR(fallback_tfm);
427 		goto out;
428 	}
429 
430 	child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
431 	if (IS_ERR(child_shash)) {
432 		pr_warn("Child shash '%s' could not be loaded!\n",
433 			n2alg->child_alg);
434 		err = PTR_ERR(child_shash);
435 		goto out_free_fallback;
436 	}
437 
438 	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
439 					 crypto_ahash_reqsize(fallback_tfm)));
440 
441 	ctx->child_shash = child_shash;
442 	ctx->base.fallback_tfm = fallback_tfm;
443 	return 0;
444 
445 out_free_fallback:
446 	crypto_free_ahash(fallback_tfm);
447 
448 out:
449 	return err;
450 }
451 
452 static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
453 {
454 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
455 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
456 
457 	crypto_free_ahash(ctx->base.fallback_tfm);
458 	crypto_free_shash(ctx->child_shash);
459 }
460 
461 static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
462 				unsigned int keylen)
463 {
464 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
465 	struct crypto_shash *child_shash = ctx->child_shash;
466 	struct crypto_ahash *fallback_tfm;
467 	int err, bs, ds;
468 
469 	fallback_tfm = ctx->base.fallback_tfm;
470 	err = crypto_ahash_setkey(fallback_tfm, key, keylen);
471 	if (err)
472 		return err;
473 
474 	bs = crypto_shash_blocksize(child_shash);
475 	ds = crypto_shash_digestsize(child_shash);
476 	BUG_ON(ds > N2_HASH_KEY_MAX);
477 	if (keylen > bs) {
478 		err = crypto_shash_tfm_digest(child_shash, key, keylen,
479 					      ctx->hash_key);
480 		if (err)
481 			return err;
482 		keylen = ds;
483 	} else if (keylen <= N2_HASH_KEY_MAX)
484 		memcpy(ctx->hash_key, key, keylen);
485 
486 	ctx->hash_key_len = keylen;
487 
488 	return err;
489 }
490 
491 static unsigned long wait_for_tail(struct spu_queue *qp)
492 {
493 	unsigned long head, hv_ret;
494 
495 	do {
496 		hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
497 		if (hv_ret != HV_EOK) {
498 			pr_err("Hypervisor error on gethead\n");
499 			break;
500 		}
501 		if (head == qp->tail) {
502 			qp->head = head;
503 			break;
504 		}
505 	} while (1);
506 	return hv_ret;
507 }
508 
509 static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
510 					      struct cwq_initial_entry *ent)
511 {
512 	unsigned long hv_ret = spu_queue_submit(qp, ent);
513 
514 	if (hv_ret == HV_EOK)
515 		hv_ret = wait_for_tail(qp);
516 
517 	return hv_ret;
518 }
519 
520 static int n2_do_async_digest(struct ahash_request *req,
521 			      unsigned int auth_type, unsigned int digest_size,
522 			      unsigned int result_size, void *hash_loc,
523 			      unsigned long auth_key, unsigned int auth_key_len)
524 {
525 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
526 	struct cwq_initial_entry *ent;
527 	struct crypto_hash_walk walk;
528 	struct spu_queue *qp;
529 	unsigned long flags;
530 	int err = -ENODEV;
531 	int nbytes, cpu;
532 
533 	/* The total effective length of the operation may not
534 	 * exceed 2^16.
535 	 */
536 	if (unlikely(req->nbytes > (1 << 16))) {
537 		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
538 		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
539 
540 		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
541 		rctx->fallback_req.base.flags =
542 			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
543 		rctx->fallback_req.nbytes = req->nbytes;
544 		rctx->fallback_req.src = req->src;
545 		rctx->fallback_req.result = req->result;
546 
547 		return crypto_ahash_digest(&rctx->fallback_req);
548 	}
549 
550 	nbytes = crypto_hash_walk_first(req, &walk);
551 
552 	cpu = get_cpu();
553 	qp = cpu_to_cwq[cpu];
554 	if (!qp)
555 		goto out;
556 
557 	spin_lock_irqsave(&qp->lock, flags);
558 
559 	/* XXX can do better, improve this later by doing a by-hand scatterlist
560 	 * XXX walk, etc.
561 	 */
562 	ent = qp->q + qp->tail;
563 
564 	ent->control = control_word_base(nbytes, auth_key_len, 0,
565 					 auth_type, digest_size,
566 					 false, true, false, false,
567 					 OPCODE_INPLACE_BIT |
568 					 OPCODE_AUTH_MAC);
569 	ent->src_addr = __pa(walk.data);
570 	ent->auth_key_addr = auth_key;
571 	ent->auth_iv_addr = __pa(hash_loc);
572 	ent->final_auth_state_addr = 0UL;
573 	ent->enc_key_addr = 0UL;
574 	ent->enc_iv_addr = 0UL;
575 	ent->dest_addr = __pa(hash_loc);
576 
577 	nbytes = crypto_hash_walk_done(&walk, 0);
578 	while (nbytes > 0) {
579 		ent = spu_queue_next(qp, ent);
580 
581 		ent->control = (nbytes - 1);
582 		ent->src_addr = __pa(walk.data);
583 		ent->auth_key_addr = 0UL;
584 		ent->auth_iv_addr = 0UL;
585 		ent->final_auth_state_addr = 0UL;
586 		ent->enc_key_addr = 0UL;
587 		ent->enc_iv_addr = 0UL;
588 		ent->dest_addr = 0UL;
589 
590 		nbytes = crypto_hash_walk_done(&walk, 0);
591 	}
592 	ent->control |= CONTROL_END_OF_BLOCK;
593 
594 	if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
595 		err = -EINVAL;
596 	else
597 		err = 0;
598 
599 	spin_unlock_irqrestore(&qp->lock, flags);
600 
601 	if (!err)
602 		memcpy(req->result, hash_loc, result_size);
603 out:
604 	put_cpu();
605 
606 	return err;
607 }
608 
609 static int n2_hash_async_digest(struct ahash_request *req)
610 {
611 	struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
612 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
613 	int ds;
614 
615 	ds = n2alg->digest_size;
616 	if (unlikely(req->nbytes == 0)) {
617 		memcpy(req->result, n2alg->hash_zero, ds);
618 		return 0;
619 	}
620 	memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
621 
622 	return n2_do_async_digest(req, n2alg->auth_type,
623 				  n2alg->hw_op_hashsz, ds,
624 				  &rctx->u, 0UL, 0);
625 }
626 
627 static int n2_hmac_async_digest(struct ahash_request *req)
628 {
629 	struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
630 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
631 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
632 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
633 	int ds;
634 
635 	ds = n2alg->derived.digest_size;
636 	if (unlikely(req->nbytes == 0) ||
637 	    unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
638 		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
639 		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
640 
641 		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
642 		rctx->fallback_req.base.flags =
643 			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
644 		rctx->fallback_req.nbytes = req->nbytes;
645 		rctx->fallback_req.src = req->src;
646 		rctx->fallback_req.result = req->result;
647 
648 		return crypto_ahash_digest(&rctx->fallback_req);
649 	}
650 	memcpy(&rctx->u, n2alg->derived.hash_init,
651 	       n2alg->derived.hw_op_hashsz);
652 
653 	return n2_do_async_digest(req, n2alg->derived.hmac_type,
654 				  n2alg->derived.hw_op_hashsz, ds,
655 				  &rctx->u,
656 				  __pa(&ctx->hash_key),
657 				  ctx->hash_key_len);
658 }
659 
660 struct n2_skcipher_context {
661 	int			key_len;
662 	int			enc_type;
663 	union {
664 		u8		aes[AES_MAX_KEY_SIZE];
665 		u8		des[DES_KEY_SIZE];
666 		u8		des3[3 * DES_KEY_SIZE];
667 	} key;
668 };
669 
670 #define N2_CHUNK_ARR_LEN	16
671 
672 struct n2_crypto_chunk {
673 	struct list_head	entry;
674 	unsigned long		iv_paddr : 44;
675 	unsigned long		arr_len : 20;
676 	unsigned long		dest_paddr;
677 	unsigned long		dest_final;
678 	struct {
679 		unsigned long	src_paddr : 44;
680 		unsigned long	src_len : 20;
681 	} arr[N2_CHUNK_ARR_LEN];
682 };
683 
684 struct n2_request_context {
685 	struct skcipher_walk	walk;
686 	struct list_head	chunk_list;
687 	struct n2_crypto_chunk	chunk;
688 	u8			temp_iv[16];
689 };
690 
691 /* The SPU allows some level of flexibility for partial cipher blocks
692  * being specified in a descriptor.
693  *
694  * It merely requires that every descriptor's length field is at least
695  * as large as the cipher block size.  This means that a cipher block
696  * can span at most 2 descriptors.  However, this does not allow a
697  * partial block to span into the final descriptor as that would
698  * violate the rule (since every descriptor's length must be at lest
699  * the block size).  So, for example, assuming an 8 byte block size:
700  *
701  *	0xe --> 0xa --> 0x8
702  *
703  * is a valid length sequence, whereas:
704  *
705  *	0xe --> 0xb --> 0x7
706  *
707  * is not a valid sequence.
708  */
709 
710 struct n2_skcipher_alg {
711 	struct list_head	entry;
712 	u8			enc_type;
713 	struct skcipher_alg	skcipher;
714 };
715 
716 static inline struct n2_skcipher_alg *n2_skcipher_alg(struct crypto_skcipher *tfm)
717 {
718 	struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
719 
720 	return container_of(alg, struct n2_skcipher_alg, skcipher);
721 }
722 
723 struct n2_skcipher_request_context {
724 	struct skcipher_walk	walk;
725 };
726 
727 static int n2_aes_setkey(struct crypto_skcipher *skcipher, const u8 *key,
728 			 unsigned int keylen)
729 {
730 	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
731 	struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
732 	struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
733 
734 	ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
735 
736 	switch (keylen) {
737 	case AES_KEYSIZE_128:
738 		ctx->enc_type |= ENC_TYPE_ALG_AES128;
739 		break;
740 	case AES_KEYSIZE_192:
741 		ctx->enc_type |= ENC_TYPE_ALG_AES192;
742 		break;
743 	case AES_KEYSIZE_256:
744 		ctx->enc_type |= ENC_TYPE_ALG_AES256;
745 		break;
746 	default:
747 		return -EINVAL;
748 	}
749 
750 	ctx->key_len = keylen;
751 	memcpy(ctx->key.aes, key, keylen);
752 	return 0;
753 }
754 
755 static int n2_des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
756 			 unsigned int keylen)
757 {
758 	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
759 	struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
760 	struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
761 	int err;
762 
763 	err = verify_skcipher_des_key(skcipher, key);
764 	if (err)
765 		return err;
766 
767 	ctx->enc_type = n2alg->enc_type;
768 
769 	ctx->key_len = keylen;
770 	memcpy(ctx->key.des, key, keylen);
771 	return 0;
772 }
773 
774 static int n2_3des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
775 			  unsigned int keylen)
776 {
777 	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
778 	struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
779 	struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
780 	int err;
781 
782 	err = verify_skcipher_des3_key(skcipher, key);
783 	if (err)
784 		return err;
785 
786 	ctx->enc_type = n2alg->enc_type;
787 
788 	ctx->key_len = keylen;
789 	memcpy(ctx->key.des3, key, keylen);
790 	return 0;
791 }
792 
793 static inline int skcipher_descriptor_len(int nbytes, unsigned int block_size)
794 {
795 	int this_len = nbytes;
796 
797 	this_len -= (nbytes & (block_size - 1));
798 	return this_len > (1 << 16) ? (1 << 16) : this_len;
799 }
800 
801 static int __n2_crypt_chunk(struct crypto_skcipher *skcipher,
802 			    struct n2_crypto_chunk *cp,
803 			    struct spu_queue *qp, bool encrypt)
804 {
805 	struct n2_skcipher_context *ctx = crypto_skcipher_ctx(skcipher);
806 	struct cwq_initial_entry *ent;
807 	bool in_place;
808 	int i;
809 
810 	ent = spu_queue_alloc(qp, cp->arr_len);
811 	if (!ent) {
812 		pr_info("queue_alloc() of %d fails\n",
813 			cp->arr_len);
814 		return -EBUSY;
815 	}
816 
817 	in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
818 
819 	ent->control = control_word_base(cp->arr[0].src_len,
820 					 0, ctx->enc_type, 0, 0,
821 					 false, true, false, encrypt,
822 					 OPCODE_ENCRYPT |
823 					 (in_place ? OPCODE_INPLACE_BIT : 0));
824 	ent->src_addr = cp->arr[0].src_paddr;
825 	ent->auth_key_addr = 0UL;
826 	ent->auth_iv_addr = 0UL;
827 	ent->final_auth_state_addr = 0UL;
828 	ent->enc_key_addr = __pa(&ctx->key);
829 	ent->enc_iv_addr = cp->iv_paddr;
830 	ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
831 
832 	for (i = 1; i < cp->arr_len; i++) {
833 		ent = spu_queue_next(qp, ent);
834 
835 		ent->control = cp->arr[i].src_len - 1;
836 		ent->src_addr = cp->arr[i].src_paddr;
837 		ent->auth_key_addr = 0UL;
838 		ent->auth_iv_addr = 0UL;
839 		ent->final_auth_state_addr = 0UL;
840 		ent->enc_key_addr = 0UL;
841 		ent->enc_iv_addr = 0UL;
842 		ent->dest_addr = 0UL;
843 	}
844 	ent->control |= CONTROL_END_OF_BLOCK;
845 
846 	return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
847 }
848 
849 static int n2_compute_chunks(struct skcipher_request *req)
850 {
851 	struct n2_request_context *rctx = skcipher_request_ctx(req);
852 	struct skcipher_walk *walk = &rctx->walk;
853 	struct n2_crypto_chunk *chunk;
854 	unsigned long dest_prev;
855 	unsigned int tot_len;
856 	bool prev_in_place;
857 	int err, nbytes;
858 
859 	err = skcipher_walk_async(walk, req);
860 	if (err)
861 		return err;
862 
863 	INIT_LIST_HEAD(&rctx->chunk_list);
864 
865 	chunk = &rctx->chunk;
866 	INIT_LIST_HEAD(&chunk->entry);
867 
868 	chunk->iv_paddr = 0UL;
869 	chunk->arr_len = 0;
870 	chunk->dest_paddr = 0UL;
871 
872 	prev_in_place = false;
873 	dest_prev = ~0UL;
874 	tot_len = 0;
875 
876 	while ((nbytes = walk->nbytes) != 0) {
877 		unsigned long dest_paddr, src_paddr;
878 		bool in_place;
879 		int this_len;
880 
881 		src_paddr = (page_to_phys(walk->src.phys.page) +
882 			     walk->src.phys.offset);
883 		dest_paddr = (page_to_phys(walk->dst.phys.page) +
884 			      walk->dst.phys.offset);
885 		in_place = (src_paddr == dest_paddr);
886 		this_len = skcipher_descriptor_len(nbytes, walk->blocksize);
887 
888 		if (chunk->arr_len != 0) {
889 			if (in_place != prev_in_place ||
890 			    (!prev_in_place &&
891 			     dest_paddr != dest_prev) ||
892 			    chunk->arr_len == N2_CHUNK_ARR_LEN ||
893 			    tot_len + this_len > (1 << 16)) {
894 				chunk->dest_final = dest_prev;
895 				list_add_tail(&chunk->entry,
896 					      &rctx->chunk_list);
897 				chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
898 				if (!chunk) {
899 					err = -ENOMEM;
900 					break;
901 				}
902 				INIT_LIST_HEAD(&chunk->entry);
903 			}
904 		}
905 		if (chunk->arr_len == 0) {
906 			chunk->dest_paddr = dest_paddr;
907 			tot_len = 0;
908 		}
909 		chunk->arr[chunk->arr_len].src_paddr = src_paddr;
910 		chunk->arr[chunk->arr_len].src_len = this_len;
911 		chunk->arr_len++;
912 
913 		dest_prev = dest_paddr + this_len;
914 		prev_in_place = in_place;
915 		tot_len += this_len;
916 
917 		err = skcipher_walk_done(walk, nbytes - this_len);
918 		if (err)
919 			break;
920 	}
921 	if (!err && chunk->arr_len != 0) {
922 		chunk->dest_final = dest_prev;
923 		list_add_tail(&chunk->entry, &rctx->chunk_list);
924 	}
925 
926 	return err;
927 }
928 
929 static void n2_chunk_complete(struct skcipher_request *req, void *final_iv)
930 {
931 	struct n2_request_context *rctx = skcipher_request_ctx(req);
932 	struct n2_crypto_chunk *c, *tmp;
933 
934 	if (final_iv)
935 		memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
936 
937 	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
938 		list_del(&c->entry);
939 		if (unlikely(c != &rctx->chunk))
940 			kfree(c);
941 	}
942 
943 }
944 
945 static int n2_do_ecb(struct skcipher_request *req, bool encrypt)
946 {
947 	struct n2_request_context *rctx = skcipher_request_ctx(req);
948 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
949 	int err = n2_compute_chunks(req);
950 	struct n2_crypto_chunk *c, *tmp;
951 	unsigned long flags, hv_ret;
952 	struct spu_queue *qp;
953 
954 	if (err)
955 		return err;
956 
957 	qp = cpu_to_cwq[get_cpu()];
958 	err = -ENODEV;
959 	if (!qp)
960 		goto out;
961 
962 	spin_lock_irqsave(&qp->lock, flags);
963 
964 	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
965 		err = __n2_crypt_chunk(tfm, c, qp, encrypt);
966 		if (err)
967 			break;
968 		list_del(&c->entry);
969 		if (unlikely(c != &rctx->chunk))
970 			kfree(c);
971 	}
972 	if (!err) {
973 		hv_ret = wait_for_tail(qp);
974 		if (hv_ret != HV_EOK)
975 			err = -EINVAL;
976 	}
977 
978 	spin_unlock_irqrestore(&qp->lock, flags);
979 
980 out:
981 	put_cpu();
982 
983 	n2_chunk_complete(req, NULL);
984 	return err;
985 }
986 
987 static int n2_encrypt_ecb(struct skcipher_request *req)
988 {
989 	return n2_do_ecb(req, true);
990 }
991 
992 static int n2_decrypt_ecb(struct skcipher_request *req)
993 {
994 	return n2_do_ecb(req, false);
995 }
996 
997 static int n2_do_chaining(struct skcipher_request *req, bool encrypt)
998 {
999 	struct n2_request_context *rctx = skcipher_request_ctx(req);
1000 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
1001 	unsigned long flags, hv_ret, iv_paddr;
1002 	int err = n2_compute_chunks(req);
1003 	struct n2_crypto_chunk *c, *tmp;
1004 	struct spu_queue *qp;
1005 	void *final_iv_addr;
1006 
1007 	final_iv_addr = NULL;
1008 
1009 	if (err)
1010 		return err;
1011 
1012 	qp = cpu_to_cwq[get_cpu()];
1013 	err = -ENODEV;
1014 	if (!qp)
1015 		goto out;
1016 
1017 	spin_lock_irqsave(&qp->lock, flags);
1018 
1019 	if (encrypt) {
1020 		iv_paddr = __pa(rctx->walk.iv);
1021 		list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1022 					 entry) {
1023 			c->iv_paddr = iv_paddr;
1024 			err = __n2_crypt_chunk(tfm, c, qp, true);
1025 			if (err)
1026 				break;
1027 			iv_paddr = c->dest_final - rctx->walk.blocksize;
1028 			list_del(&c->entry);
1029 			if (unlikely(c != &rctx->chunk))
1030 				kfree(c);
1031 		}
1032 		final_iv_addr = __va(iv_paddr);
1033 	} else {
1034 		list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1035 						 entry) {
1036 			if (c == &rctx->chunk) {
1037 				iv_paddr = __pa(rctx->walk.iv);
1038 			} else {
1039 				iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1040 					    tmp->arr[tmp->arr_len-1].src_len -
1041 					    rctx->walk.blocksize);
1042 			}
1043 			if (!final_iv_addr) {
1044 				unsigned long pa;
1045 
1046 				pa = (c->arr[c->arr_len-1].src_paddr +
1047 				      c->arr[c->arr_len-1].src_len -
1048 				      rctx->walk.blocksize);
1049 				final_iv_addr = rctx->temp_iv;
1050 				memcpy(rctx->temp_iv, __va(pa),
1051 				       rctx->walk.blocksize);
1052 			}
1053 			c->iv_paddr = iv_paddr;
1054 			err = __n2_crypt_chunk(tfm, c, qp, false);
1055 			if (err)
1056 				break;
1057 			list_del(&c->entry);
1058 			if (unlikely(c != &rctx->chunk))
1059 				kfree(c);
1060 		}
1061 	}
1062 	if (!err) {
1063 		hv_ret = wait_for_tail(qp);
1064 		if (hv_ret != HV_EOK)
1065 			err = -EINVAL;
1066 	}
1067 
1068 	spin_unlock_irqrestore(&qp->lock, flags);
1069 
1070 out:
1071 	put_cpu();
1072 
1073 	n2_chunk_complete(req, err ? NULL : final_iv_addr);
1074 	return err;
1075 }
1076 
1077 static int n2_encrypt_chaining(struct skcipher_request *req)
1078 {
1079 	return n2_do_chaining(req, true);
1080 }
1081 
1082 static int n2_decrypt_chaining(struct skcipher_request *req)
1083 {
1084 	return n2_do_chaining(req, false);
1085 }
1086 
1087 struct n2_skcipher_tmpl {
1088 	const char		*name;
1089 	const char		*drv_name;
1090 	u8			block_size;
1091 	u8			enc_type;
1092 	struct skcipher_alg	skcipher;
1093 };
1094 
1095 static const struct n2_skcipher_tmpl skcipher_tmpls[] = {
1096 	/* DES: ECB CBC and CFB are supported */
1097 	{	.name		= "ecb(des)",
1098 		.drv_name	= "ecb-des",
1099 		.block_size	= DES_BLOCK_SIZE,
1100 		.enc_type	= (ENC_TYPE_ALG_DES |
1101 				   ENC_TYPE_CHAINING_ECB),
1102 		.skcipher	= {
1103 			.min_keysize	= DES_KEY_SIZE,
1104 			.max_keysize	= DES_KEY_SIZE,
1105 			.setkey		= n2_des_setkey,
1106 			.encrypt	= n2_encrypt_ecb,
1107 			.decrypt	= n2_decrypt_ecb,
1108 		},
1109 	},
1110 	{	.name		= "cbc(des)",
1111 		.drv_name	= "cbc-des",
1112 		.block_size	= DES_BLOCK_SIZE,
1113 		.enc_type	= (ENC_TYPE_ALG_DES |
1114 				   ENC_TYPE_CHAINING_CBC),
1115 		.skcipher	= {
1116 			.ivsize		= DES_BLOCK_SIZE,
1117 			.min_keysize	= DES_KEY_SIZE,
1118 			.max_keysize	= DES_KEY_SIZE,
1119 			.setkey		= n2_des_setkey,
1120 			.encrypt	= n2_encrypt_chaining,
1121 			.decrypt	= n2_decrypt_chaining,
1122 		},
1123 	},
1124 
1125 	/* 3DES: ECB CBC and CFB are supported */
1126 	{	.name		= "ecb(des3_ede)",
1127 		.drv_name	= "ecb-3des",
1128 		.block_size	= DES_BLOCK_SIZE,
1129 		.enc_type	= (ENC_TYPE_ALG_3DES |
1130 				   ENC_TYPE_CHAINING_ECB),
1131 		.skcipher	= {
1132 			.min_keysize	= 3 * DES_KEY_SIZE,
1133 			.max_keysize	= 3 * DES_KEY_SIZE,
1134 			.setkey		= n2_3des_setkey,
1135 			.encrypt	= n2_encrypt_ecb,
1136 			.decrypt	= n2_decrypt_ecb,
1137 		},
1138 	},
1139 	{	.name		= "cbc(des3_ede)",
1140 		.drv_name	= "cbc-3des",
1141 		.block_size	= DES_BLOCK_SIZE,
1142 		.enc_type	= (ENC_TYPE_ALG_3DES |
1143 				   ENC_TYPE_CHAINING_CBC),
1144 		.skcipher	= {
1145 			.ivsize		= DES_BLOCK_SIZE,
1146 			.min_keysize	= 3 * DES_KEY_SIZE,
1147 			.max_keysize	= 3 * DES_KEY_SIZE,
1148 			.setkey		= n2_3des_setkey,
1149 			.encrypt	= n2_encrypt_chaining,
1150 			.decrypt	= n2_decrypt_chaining,
1151 		},
1152 	},
1153 
1154 	/* AES: ECB CBC and CTR are supported */
1155 	{	.name		= "ecb(aes)",
1156 		.drv_name	= "ecb-aes",
1157 		.block_size	= AES_BLOCK_SIZE,
1158 		.enc_type	= (ENC_TYPE_ALG_AES128 |
1159 				   ENC_TYPE_CHAINING_ECB),
1160 		.skcipher	= {
1161 			.min_keysize	= AES_MIN_KEY_SIZE,
1162 			.max_keysize	= AES_MAX_KEY_SIZE,
1163 			.setkey		= n2_aes_setkey,
1164 			.encrypt	= n2_encrypt_ecb,
1165 			.decrypt	= n2_decrypt_ecb,
1166 		},
1167 	},
1168 	{	.name		= "cbc(aes)",
1169 		.drv_name	= "cbc-aes",
1170 		.block_size	= AES_BLOCK_SIZE,
1171 		.enc_type	= (ENC_TYPE_ALG_AES128 |
1172 				   ENC_TYPE_CHAINING_CBC),
1173 		.skcipher	= {
1174 			.ivsize		= AES_BLOCK_SIZE,
1175 			.min_keysize	= AES_MIN_KEY_SIZE,
1176 			.max_keysize	= AES_MAX_KEY_SIZE,
1177 			.setkey		= n2_aes_setkey,
1178 			.encrypt	= n2_encrypt_chaining,
1179 			.decrypt	= n2_decrypt_chaining,
1180 		},
1181 	},
1182 	{	.name		= "ctr(aes)",
1183 		.drv_name	= "ctr-aes",
1184 		.block_size	= AES_BLOCK_SIZE,
1185 		.enc_type	= (ENC_TYPE_ALG_AES128 |
1186 				   ENC_TYPE_CHAINING_COUNTER),
1187 		.skcipher	= {
1188 			.ivsize		= AES_BLOCK_SIZE,
1189 			.min_keysize	= AES_MIN_KEY_SIZE,
1190 			.max_keysize	= AES_MAX_KEY_SIZE,
1191 			.setkey		= n2_aes_setkey,
1192 			.encrypt	= n2_encrypt_chaining,
1193 			.decrypt	= n2_encrypt_chaining,
1194 		},
1195 	},
1196 
1197 };
1198 #define NUM_CIPHER_TMPLS ARRAY_SIZE(skcipher_tmpls)
1199 
1200 static LIST_HEAD(skcipher_algs);
1201 
1202 struct n2_hash_tmpl {
1203 	const char	*name;
1204 	const u8	*hash_zero;
1205 	const u8	*hash_init;
1206 	u8		hw_op_hashsz;
1207 	u8		digest_size;
1208 	u8		statesize;
1209 	u8		block_size;
1210 	u8		auth_type;
1211 	u8		hmac_type;
1212 };
1213 
1214 static const __le32 n2_md5_init[MD5_HASH_WORDS] = {
1215 	cpu_to_le32(MD5_H0),
1216 	cpu_to_le32(MD5_H1),
1217 	cpu_to_le32(MD5_H2),
1218 	cpu_to_le32(MD5_H3),
1219 };
1220 static const u32 n2_sha1_init[SHA1_DIGEST_SIZE / 4] = {
1221 	SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1222 };
1223 static const u32 n2_sha256_init[SHA256_DIGEST_SIZE / 4] = {
1224 	SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1225 	SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1226 };
1227 static const u32 n2_sha224_init[SHA256_DIGEST_SIZE / 4] = {
1228 	SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1229 	SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1230 };
1231 
1232 static const struct n2_hash_tmpl hash_tmpls[] = {
1233 	{ .name		= "md5",
1234 	  .hash_zero	= md5_zero_message_hash,
1235 	  .hash_init	= (u8 *)n2_md5_init,
1236 	  .auth_type	= AUTH_TYPE_MD5,
1237 	  .hmac_type	= AUTH_TYPE_HMAC_MD5,
1238 	  .hw_op_hashsz	= MD5_DIGEST_SIZE,
1239 	  .digest_size	= MD5_DIGEST_SIZE,
1240 	  .statesize	= sizeof(struct md5_state),
1241 	  .block_size	= MD5_HMAC_BLOCK_SIZE },
1242 	{ .name		= "sha1",
1243 	  .hash_zero	= sha1_zero_message_hash,
1244 	  .hash_init	= (u8 *)n2_sha1_init,
1245 	  .auth_type	= AUTH_TYPE_SHA1,
1246 	  .hmac_type	= AUTH_TYPE_HMAC_SHA1,
1247 	  .hw_op_hashsz	= SHA1_DIGEST_SIZE,
1248 	  .digest_size	= SHA1_DIGEST_SIZE,
1249 	  .statesize	= sizeof(struct sha1_state),
1250 	  .block_size	= SHA1_BLOCK_SIZE },
1251 	{ .name		= "sha256",
1252 	  .hash_zero	= sha256_zero_message_hash,
1253 	  .hash_init	= (u8 *)n2_sha256_init,
1254 	  .auth_type	= AUTH_TYPE_SHA256,
1255 	  .hmac_type	= AUTH_TYPE_HMAC_SHA256,
1256 	  .hw_op_hashsz	= SHA256_DIGEST_SIZE,
1257 	  .digest_size	= SHA256_DIGEST_SIZE,
1258 	  .statesize	= sizeof(struct sha256_state),
1259 	  .block_size	= SHA256_BLOCK_SIZE },
1260 	{ .name		= "sha224",
1261 	  .hash_zero	= sha224_zero_message_hash,
1262 	  .hash_init	= (u8 *)n2_sha224_init,
1263 	  .auth_type	= AUTH_TYPE_SHA256,
1264 	  .hmac_type	= AUTH_TYPE_RESERVED,
1265 	  .hw_op_hashsz	= SHA256_DIGEST_SIZE,
1266 	  .digest_size	= SHA224_DIGEST_SIZE,
1267 	  .statesize	= sizeof(struct sha256_state),
1268 	  .block_size	= SHA224_BLOCK_SIZE },
1269 };
1270 #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1271 
1272 static LIST_HEAD(ahash_algs);
1273 static LIST_HEAD(hmac_algs);
1274 
1275 static int algs_registered;
1276 
1277 static void __n2_unregister_algs(void)
1278 {
1279 	struct n2_skcipher_alg *skcipher, *skcipher_tmp;
1280 	struct n2_ahash_alg *alg, *alg_tmp;
1281 	struct n2_hmac_alg *hmac, *hmac_tmp;
1282 
1283 	list_for_each_entry_safe(skcipher, skcipher_tmp, &skcipher_algs, entry) {
1284 		crypto_unregister_skcipher(&skcipher->skcipher);
1285 		list_del(&skcipher->entry);
1286 		kfree(skcipher);
1287 	}
1288 	list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1289 		crypto_unregister_ahash(&hmac->derived.alg);
1290 		list_del(&hmac->derived.entry);
1291 		kfree(hmac);
1292 	}
1293 	list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1294 		crypto_unregister_ahash(&alg->alg);
1295 		list_del(&alg->entry);
1296 		kfree(alg);
1297 	}
1298 }
1299 
1300 static int n2_skcipher_init_tfm(struct crypto_skcipher *tfm)
1301 {
1302 	crypto_skcipher_set_reqsize(tfm, sizeof(struct n2_request_context));
1303 	return 0;
1304 }
1305 
1306 static int __n2_register_one_skcipher(const struct n2_skcipher_tmpl *tmpl)
1307 {
1308 	struct n2_skcipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1309 	struct skcipher_alg *alg;
1310 	int err;
1311 
1312 	if (!p)
1313 		return -ENOMEM;
1314 
1315 	alg = &p->skcipher;
1316 	*alg = tmpl->skcipher;
1317 
1318 	snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1319 	snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1320 	alg->base.cra_priority = N2_CRA_PRIORITY;
1321 	alg->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC |
1322 			      CRYPTO_ALG_ALLOCATES_MEMORY;
1323 	alg->base.cra_blocksize = tmpl->block_size;
1324 	p->enc_type = tmpl->enc_type;
1325 	alg->base.cra_ctxsize = sizeof(struct n2_skcipher_context);
1326 	alg->base.cra_module = THIS_MODULE;
1327 	alg->init = n2_skcipher_init_tfm;
1328 
1329 	list_add(&p->entry, &skcipher_algs);
1330 	err = crypto_register_skcipher(alg);
1331 	if (err) {
1332 		pr_err("%s alg registration failed\n", alg->base.cra_name);
1333 		list_del(&p->entry);
1334 		kfree(p);
1335 	} else {
1336 		pr_info("%s alg registered\n", alg->base.cra_name);
1337 	}
1338 	return err;
1339 }
1340 
1341 static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1342 {
1343 	struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1344 	struct ahash_alg *ahash;
1345 	struct crypto_alg *base;
1346 	int err;
1347 
1348 	if (!p)
1349 		return -ENOMEM;
1350 
1351 	p->child_alg = n2ahash->alg.halg.base.cra_name;
1352 	memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1353 	INIT_LIST_HEAD(&p->derived.entry);
1354 
1355 	ahash = &p->derived.alg;
1356 	ahash->digest = n2_hmac_async_digest;
1357 	ahash->setkey = n2_hmac_async_setkey;
1358 
1359 	base = &ahash->halg.base;
1360 	if (snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)",
1361 		     p->child_alg) >= CRYPTO_MAX_ALG_NAME)
1362 		goto out_free_p;
1363 	if (snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2",
1364 		     p->child_alg) >= CRYPTO_MAX_ALG_NAME)
1365 		goto out_free_p;
1366 
1367 	base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1368 	base->cra_init = n2_hmac_cra_init;
1369 	base->cra_exit = n2_hmac_cra_exit;
1370 
1371 	list_add(&p->derived.entry, &hmac_algs);
1372 	err = crypto_register_ahash(ahash);
1373 	if (err) {
1374 		pr_err("%s alg registration failed\n", base->cra_name);
1375 		list_del(&p->derived.entry);
1376 out_free_p:
1377 		kfree(p);
1378 	} else {
1379 		pr_info("%s alg registered\n", base->cra_name);
1380 	}
1381 	return err;
1382 }
1383 
1384 static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1385 {
1386 	struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1387 	struct hash_alg_common *halg;
1388 	struct crypto_alg *base;
1389 	struct ahash_alg *ahash;
1390 	int err;
1391 
1392 	if (!p)
1393 		return -ENOMEM;
1394 
1395 	p->hash_zero = tmpl->hash_zero;
1396 	p->hash_init = tmpl->hash_init;
1397 	p->auth_type = tmpl->auth_type;
1398 	p->hmac_type = tmpl->hmac_type;
1399 	p->hw_op_hashsz = tmpl->hw_op_hashsz;
1400 	p->digest_size = tmpl->digest_size;
1401 
1402 	ahash = &p->alg;
1403 	ahash->init = n2_hash_async_init;
1404 	ahash->update = n2_hash_async_update;
1405 	ahash->final = n2_hash_async_final;
1406 	ahash->finup = n2_hash_async_finup;
1407 	ahash->digest = n2_hash_async_digest;
1408 	ahash->export = n2_hash_async_noexport;
1409 	ahash->import = n2_hash_async_noimport;
1410 
1411 	halg = &ahash->halg;
1412 	halg->digestsize = tmpl->digest_size;
1413 	halg->statesize = tmpl->statesize;
1414 
1415 	base = &halg->base;
1416 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1417 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1418 	base->cra_priority = N2_CRA_PRIORITY;
1419 	base->cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1420 			  CRYPTO_ALG_NEED_FALLBACK;
1421 	base->cra_blocksize = tmpl->block_size;
1422 	base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1423 	base->cra_module = THIS_MODULE;
1424 	base->cra_init = n2_hash_cra_init;
1425 	base->cra_exit = n2_hash_cra_exit;
1426 
1427 	list_add(&p->entry, &ahash_algs);
1428 	err = crypto_register_ahash(ahash);
1429 	if (err) {
1430 		pr_err("%s alg registration failed\n", base->cra_name);
1431 		list_del(&p->entry);
1432 		kfree(p);
1433 	} else {
1434 		pr_info("%s alg registered\n", base->cra_name);
1435 	}
1436 	if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1437 		err = __n2_register_one_hmac(p);
1438 	return err;
1439 }
1440 
1441 static int n2_register_algs(void)
1442 {
1443 	int i, err = 0;
1444 
1445 	mutex_lock(&spu_lock);
1446 	if (algs_registered++)
1447 		goto out;
1448 
1449 	for (i = 0; i < NUM_HASH_TMPLS; i++) {
1450 		err = __n2_register_one_ahash(&hash_tmpls[i]);
1451 		if (err) {
1452 			__n2_unregister_algs();
1453 			goto out;
1454 		}
1455 	}
1456 	for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1457 		err = __n2_register_one_skcipher(&skcipher_tmpls[i]);
1458 		if (err) {
1459 			__n2_unregister_algs();
1460 			goto out;
1461 		}
1462 	}
1463 
1464 out:
1465 	mutex_unlock(&spu_lock);
1466 	return err;
1467 }
1468 
1469 static void n2_unregister_algs(void)
1470 {
1471 	mutex_lock(&spu_lock);
1472 	if (!--algs_registered)
1473 		__n2_unregister_algs();
1474 	mutex_unlock(&spu_lock);
1475 }
1476 
1477 /* To map CWQ queues to interrupt sources, the hypervisor API provides
1478  * a devino.  This isn't very useful to us because all of the
1479  * interrupts listed in the device_node have been translated to
1480  * Linux virtual IRQ cookie numbers.
1481  *
1482  * So we have to back-translate, going through the 'intr' and 'ino'
1483  * property tables of the n2cp MDESC node, matching it with the OF
1484  * 'interrupts' property entries, in order to figure out which
1485  * devino goes to which already-translated IRQ.
1486  */
1487 static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1488 			     unsigned long dev_ino)
1489 {
1490 	const unsigned int *dev_intrs;
1491 	unsigned int intr;
1492 	int i;
1493 
1494 	for (i = 0; i < ip->num_intrs; i++) {
1495 		if (ip->ino_table[i].ino == dev_ino)
1496 			break;
1497 	}
1498 	if (i == ip->num_intrs)
1499 		return -ENODEV;
1500 
1501 	intr = ip->ino_table[i].intr;
1502 
1503 	dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1504 	if (!dev_intrs)
1505 		return -ENODEV;
1506 
1507 	for (i = 0; i < dev->archdata.num_irqs; i++) {
1508 		if (dev_intrs[i] == intr)
1509 			return i;
1510 	}
1511 
1512 	return -ENODEV;
1513 }
1514 
1515 static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1516 		       const char *irq_name, struct spu_queue *p,
1517 		       irq_handler_t handler)
1518 {
1519 	unsigned long herr;
1520 	int index;
1521 
1522 	herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1523 	if (herr)
1524 		return -EINVAL;
1525 
1526 	index = find_devino_index(dev, ip, p->devino);
1527 	if (index < 0)
1528 		return index;
1529 
1530 	p->irq = dev->archdata.irqs[index];
1531 
1532 	sprintf(p->irq_name, "%s-%d", irq_name, index);
1533 
1534 	return request_irq(p->irq, handler, 0, p->irq_name, p);
1535 }
1536 
1537 static struct kmem_cache *queue_cache[2];
1538 
1539 static void *new_queue(unsigned long q_type)
1540 {
1541 	return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1542 }
1543 
1544 static void free_queue(void *p, unsigned long q_type)
1545 {
1546 	kmem_cache_free(queue_cache[q_type - 1], p);
1547 }
1548 
1549 static int queue_cache_init(void)
1550 {
1551 	if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1552 		queue_cache[HV_NCS_QTYPE_MAU - 1] =
1553 			kmem_cache_create("mau_queue",
1554 					  (MAU_NUM_ENTRIES *
1555 					   MAU_ENTRY_SIZE),
1556 					  MAU_ENTRY_SIZE, 0, NULL);
1557 	if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1558 		return -ENOMEM;
1559 
1560 	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1561 		queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1562 			kmem_cache_create("cwq_queue",
1563 					  (CWQ_NUM_ENTRIES *
1564 					   CWQ_ENTRY_SIZE),
1565 					  CWQ_ENTRY_SIZE, 0, NULL);
1566 	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1567 		kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1568 		queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1569 		return -ENOMEM;
1570 	}
1571 	return 0;
1572 }
1573 
1574 static void queue_cache_destroy(void)
1575 {
1576 	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1577 	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
1578 	queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1579 	queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL;
1580 }
1581 
1582 static long spu_queue_register_workfn(void *arg)
1583 {
1584 	struct spu_qreg *qr = arg;
1585 	struct spu_queue *p = qr->queue;
1586 	unsigned long q_type = qr->type;
1587 	unsigned long hv_ret;
1588 
1589 	hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1590 				 CWQ_NUM_ENTRIES, &p->qhandle);
1591 	if (!hv_ret)
1592 		sun4v_ncs_sethead_marker(p->qhandle, 0);
1593 
1594 	return hv_ret ? -EINVAL : 0;
1595 }
1596 
1597 static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1598 {
1599 	int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
1600 	struct spu_qreg qr = { .queue = p, .type = q_type };
1601 
1602 	return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
1603 }
1604 
1605 static int spu_queue_setup(struct spu_queue *p)
1606 {
1607 	int err;
1608 
1609 	p->q = new_queue(p->q_type);
1610 	if (!p->q)
1611 		return -ENOMEM;
1612 
1613 	err = spu_queue_register(p, p->q_type);
1614 	if (err) {
1615 		free_queue(p->q, p->q_type);
1616 		p->q = NULL;
1617 	}
1618 
1619 	return err;
1620 }
1621 
1622 static void spu_queue_destroy(struct spu_queue *p)
1623 {
1624 	unsigned long hv_ret;
1625 
1626 	if (!p->q)
1627 		return;
1628 
1629 	hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1630 
1631 	if (!hv_ret)
1632 		free_queue(p->q, p->q_type);
1633 }
1634 
1635 static void spu_list_destroy(struct list_head *list)
1636 {
1637 	struct spu_queue *p, *n;
1638 
1639 	list_for_each_entry_safe(p, n, list, list) {
1640 		int i;
1641 
1642 		for (i = 0; i < NR_CPUS; i++) {
1643 			if (cpu_to_cwq[i] == p)
1644 				cpu_to_cwq[i] = NULL;
1645 		}
1646 
1647 		if (p->irq) {
1648 			free_irq(p->irq, p);
1649 			p->irq = 0;
1650 		}
1651 		spu_queue_destroy(p);
1652 		list_del(&p->list);
1653 		kfree(p);
1654 	}
1655 }
1656 
1657 /* Walk the backward arcs of a CWQ 'exec-unit' node,
1658  * gathering cpu membership information.
1659  */
1660 static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1661 			       struct platform_device *dev,
1662 			       u64 node, struct spu_queue *p,
1663 			       struct spu_queue **table)
1664 {
1665 	u64 arc;
1666 
1667 	mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1668 		u64 tgt = mdesc_arc_target(mdesc, arc);
1669 		const char *name = mdesc_node_name(mdesc, tgt);
1670 		const u64 *id;
1671 
1672 		if (strcmp(name, "cpu"))
1673 			continue;
1674 		id = mdesc_get_property(mdesc, tgt, "id", NULL);
1675 		if (table[*id] != NULL) {
1676 			dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n",
1677 				dev->dev.of_node);
1678 			return -EINVAL;
1679 		}
1680 		cpumask_set_cpu(*id, &p->sharing);
1681 		table[*id] = p;
1682 	}
1683 	return 0;
1684 }
1685 
1686 /* Process an 'exec-unit' MDESC node of type 'cwq'.  */
1687 static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1688 			    struct platform_device *dev, struct mdesc_handle *mdesc,
1689 			    u64 node, const char *iname, unsigned long q_type,
1690 			    irq_handler_t handler, struct spu_queue **table)
1691 {
1692 	struct spu_queue *p;
1693 	int err;
1694 
1695 	p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1696 	if (!p) {
1697 		dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n",
1698 			dev->dev.of_node);
1699 		return -ENOMEM;
1700 	}
1701 
1702 	cpumask_clear(&p->sharing);
1703 	spin_lock_init(&p->lock);
1704 	p->q_type = q_type;
1705 	INIT_LIST_HEAD(&p->jobs);
1706 	list_add(&p->list, list);
1707 
1708 	err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1709 	if (err)
1710 		return err;
1711 
1712 	err = spu_queue_setup(p);
1713 	if (err)
1714 		return err;
1715 
1716 	return spu_map_ino(dev, ip, iname, p, handler);
1717 }
1718 
1719 static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1720 			  struct spu_mdesc_info *ip, struct list_head *list,
1721 			  const char *exec_name, unsigned long q_type,
1722 			  irq_handler_t handler, struct spu_queue **table)
1723 {
1724 	int err = 0;
1725 	u64 node;
1726 
1727 	mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1728 		const char *type;
1729 
1730 		type = mdesc_get_property(mdesc, node, "type", NULL);
1731 		if (!type || strcmp(type, exec_name))
1732 			continue;
1733 
1734 		err = handle_exec_unit(ip, list, dev, mdesc, node,
1735 				       exec_name, q_type, handler, table);
1736 		if (err) {
1737 			spu_list_destroy(list);
1738 			break;
1739 		}
1740 	}
1741 
1742 	return err;
1743 }
1744 
1745 static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
1746 			 struct spu_mdesc_info *ip)
1747 {
1748 	const u64 *ino;
1749 	int ino_len;
1750 	int i;
1751 
1752 	ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1753 	if (!ino) {
1754 		printk("NO 'ino'\n");
1755 		return -ENODEV;
1756 	}
1757 
1758 	ip->num_intrs = ino_len / sizeof(u64);
1759 	ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1760 				 ip->num_intrs),
1761 				GFP_KERNEL);
1762 	if (!ip->ino_table)
1763 		return -ENOMEM;
1764 
1765 	for (i = 0; i < ip->num_intrs; i++) {
1766 		struct ino_blob *b = &ip->ino_table[i];
1767 		b->intr = i + 1;
1768 		b->ino = ino[i];
1769 	}
1770 
1771 	return 0;
1772 }
1773 
1774 static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1775 				struct platform_device *dev,
1776 				struct spu_mdesc_info *ip,
1777 				const char *node_name)
1778 {
1779 	u64 node, reg;
1780 
1781 	if (of_property_read_reg(dev->dev.of_node, 0, &reg, NULL) < 0)
1782 		return -ENODEV;
1783 
1784 	mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1785 		const char *name;
1786 		const u64 *chdl;
1787 
1788 		name = mdesc_get_property(mdesc, node, "name", NULL);
1789 		if (!name || strcmp(name, node_name))
1790 			continue;
1791 		chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1792 		if (!chdl || (*chdl != reg))
1793 			continue;
1794 		ip->cfg_handle = *chdl;
1795 		return get_irq_props(mdesc, node, ip);
1796 	}
1797 
1798 	return -ENODEV;
1799 }
1800 
1801 static unsigned long n2_spu_hvapi_major;
1802 static unsigned long n2_spu_hvapi_minor;
1803 
1804 static int n2_spu_hvapi_register(void)
1805 {
1806 	int err;
1807 
1808 	n2_spu_hvapi_major = 2;
1809 	n2_spu_hvapi_minor = 0;
1810 
1811 	err = sun4v_hvapi_register(HV_GRP_NCS,
1812 				   n2_spu_hvapi_major,
1813 				   &n2_spu_hvapi_minor);
1814 
1815 	if (!err)
1816 		pr_info("Registered NCS HVAPI version %lu.%lu\n",
1817 			n2_spu_hvapi_major,
1818 			n2_spu_hvapi_minor);
1819 
1820 	return err;
1821 }
1822 
1823 static void n2_spu_hvapi_unregister(void)
1824 {
1825 	sun4v_hvapi_unregister(HV_GRP_NCS);
1826 }
1827 
1828 static int global_ref;
1829 
1830 static int grab_global_resources(void)
1831 {
1832 	int err = 0;
1833 
1834 	mutex_lock(&spu_lock);
1835 
1836 	if (global_ref++)
1837 		goto out;
1838 
1839 	err = n2_spu_hvapi_register();
1840 	if (err)
1841 		goto out;
1842 
1843 	err = queue_cache_init();
1844 	if (err)
1845 		goto out_hvapi_release;
1846 
1847 	err = -ENOMEM;
1848 	cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1849 			     GFP_KERNEL);
1850 	if (!cpu_to_cwq)
1851 		goto out_queue_cache_destroy;
1852 
1853 	cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1854 			     GFP_KERNEL);
1855 	if (!cpu_to_mau)
1856 		goto out_free_cwq_table;
1857 
1858 	err = 0;
1859 
1860 out:
1861 	if (err)
1862 		global_ref--;
1863 	mutex_unlock(&spu_lock);
1864 	return err;
1865 
1866 out_free_cwq_table:
1867 	kfree(cpu_to_cwq);
1868 	cpu_to_cwq = NULL;
1869 
1870 out_queue_cache_destroy:
1871 	queue_cache_destroy();
1872 
1873 out_hvapi_release:
1874 	n2_spu_hvapi_unregister();
1875 	goto out;
1876 }
1877 
1878 static void release_global_resources(void)
1879 {
1880 	mutex_lock(&spu_lock);
1881 	if (!--global_ref) {
1882 		kfree(cpu_to_cwq);
1883 		cpu_to_cwq = NULL;
1884 
1885 		kfree(cpu_to_mau);
1886 		cpu_to_mau = NULL;
1887 
1888 		queue_cache_destroy();
1889 		n2_spu_hvapi_unregister();
1890 	}
1891 	mutex_unlock(&spu_lock);
1892 }
1893 
1894 static struct n2_crypto *alloc_n2cp(void)
1895 {
1896 	struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1897 
1898 	if (np)
1899 		INIT_LIST_HEAD(&np->cwq_list);
1900 
1901 	return np;
1902 }
1903 
1904 static void free_n2cp(struct n2_crypto *np)
1905 {
1906 	kfree(np->cwq_info.ino_table);
1907 	np->cwq_info.ino_table = NULL;
1908 
1909 	kfree(np);
1910 }
1911 
1912 static void n2_spu_driver_version(void)
1913 {
1914 	static int n2_spu_version_printed;
1915 
1916 	if (n2_spu_version_printed++ == 0)
1917 		pr_info("%s", version);
1918 }
1919 
1920 static int n2_crypto_probe(struct platform_device *dev)
1921 {
1922 	struct mdesc_handle *mdesc;
1923 	struct n2_crypto *np;
1924 	int err;
1925 
1926 	n2_spu_driver_version();
1927 
1928 	pr_info("Found N2CP at %pOF\n", dev->dev.of_node);
1929 
1930 	np = alloc_n2cp();
1931 	if (!np) {
1932 		dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n",
1933 			dev->dev.of_node);
1934 		return -ENOMEM;
1935 	}
1936 
1937 	err = grab_global_resources();
1938 	if (err) {
1939 		dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
1940 			dev->dev.of_node);
1941 		goto out_free_n2cp;
1942 	}
1943 
1944 	mdesc = mdesc_grab();
1945 
1946 	if (!mdesc) {
1947 		dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
1948 			dev->dev.of_node);
1949 		err = -ENODEV;
1950 		goto out_free_global;
1951 	}
1952 	err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
1953 	if (err) {
1954 		dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
1955 			dev->dev.of_node);
1956 		mdesc_release(mdesc);
1957 		goto out_free_global;
1958 	}
1959 
1960 	err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
1961 			     "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
1962 			     cpu_to_cwq);
1963 	mdesc_release(mdesc);
1964 
1965 	if (err) {
1966 		dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n",
1967 			dev->dev.of_node);
1968 		goto out_free_global;
1969 	}
1970 
1971 	err = n2_register_algs();
1972 	if (err) {
1973 		dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n",
1974 			dev->dev.of_node);
1975 		goto out_free_spu_list;
1976 	}
1977 
1978 	dev_set_drvdata(&dev->dev, np);
1979 
1980 	return 0;
1981 
1982 out_free_spu_list:
1983 	spu_list_destroy(&np->cwq_list);
1984 
1985 out_free_global:
1986 	release_global_resources();
1987 
1988 out_free_n2cp:
1989 	free_n2cp(np);
1990 
1991 	return err;
1992 }
1993 
1994 static void n2_crypto_remove(struct platform_device *dev)
1995 {
1996 	struct n2_crypto *np = dev_get_drvdata(&dev->dev);
1997 
1998 	n2_unregister_algs();
1999 
2000 	spu_list_destroy(&np->cwq_list);
2001 
2002 	release_global_resources();
2003 
2004 	free_n2cp(np);
2005 }
2006 
2007 static struct n2_mau *alloc_ncp(void)
2008 {
2009 	struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2010 
2011 	if (mp)
2012 		INIT_LIST_HEAD(&mp->mau_list);
2013 
2014 	return mp;
2015 }
2016 
2017 static void free_ncp(struct n2_mau *mp)
2018 {
2019 	kfree(mp->mau_info.ino_table);
2020 	mp->mau_info.ino_table = NULL;
2021 
2022 	kfree(mp);
2023 }
2024 
2025 static int n2_mau_probe(struct platform_device *dev)
2026 {
2027 	struct mdesc_handle *mdesc;
2028 	struct n2_mau *mp;
2029 	int err;
2030 
2031 	n2_spu_driver_version();
2032 
2033 	pr_info("Found NCP at %pOF\n", dev->dev.of_node);
2034 
2035 	mp = alloc_ncp();
2036 	if (!mp) {
2037 		dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n",
2038 			dev->dev.of_node);
2039 		return -ENOMEM;
2040 	}
2041 
2042 	err = grab_global_resources();
2043 	if (err) {
2044 		dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2045 			dev->dev.of_node);
2046 		goto out_free_ncp;
2047 	}
2048 
2049 	mdesc = mdesc_grab();
2050 
2051 	if (!mdesc) {
2052 		dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2053 			dev->dev.of_node);
2054 		err = -ENODEV;
2055 		goto out_free_global;
2056 	}
2057 
2058 	err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2059 	if (err) {
2060 		dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2061 			dev->dev.of_node);
2062 		mdesc_release(mdesc);
2063 		goto out_free_global;
2064 	}
2065 
2066 	err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2067 			     "mau", HV_NCS_QTYPE_MAU, mau_intr,
2068 			     cpu_to_mau);
2069 	mdesc_release(mdesc);
2070 
2071 	if (err) {
2072 		dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n",
2073 			dev->dev.of_node);
2074 		goto out_free_global;
2075 	}
2076 
2077 	dev_set_drvdata(&dev->dev, mp);
2078 
2079 	return 0;
2080 
2081 out_free_global:
2082 	release_global_resources();
2083 
2084 out_free_ncp:
2085 	free_ncp(mp);
2086 
2087 	return err;
2088 }
2089 
2090 static void n2_mau_remove(struct platform_device *dev)
2091 {
2092 	struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2093 
2094 	spu_list_destroy(&mp->mau_list);
2095 
2096 	release_global_resources();
2097 
2098 	free_ncp(mp);
2099 }
2100 
2101 static const struct of_device_id n2_crypto_match[] = {
2102 	{
2103 		.name = "n2cp",
2104 		.compatible = "SUNW,n2-cwq",
2105 	},
2106 	{
2107 		.name = "n2cp",
2108 		.compatible = "SUNW,vf-cwq",
2109 	},
2110 	{
2111 		.name = "n2cp",
2112 		.compatible = "SUNW,kt-cwq",
2113 	},
2114 	{},
2115 };
2116 
2117 MODULE_DEVICE_TABLE(of, n2_crypto_match);
2118 
2119 static struct platform_driver n2_crypto_driver = {
2120 	.driver = {
2121 		.name		=	"n2cp",
2122 		.of_match_table	=	n2_crypto_match,
2123 	},
2124 	.probe		=	n2_crypto_probe,
2125 	.remove_new	=	n2_crypto_remove,
2126 };
2127 
2128 static const struct of_device_id n2_mau_match[] = {
2129 	{
2130 		.name = "ncp",
2131 		.compatible = "SUNW,n2-mau",
2132 	},
2133 	{
2134 		.name = "ncp",
2135 		.compatible = "SUNW,vf-mau",
2136 	},
2137 	{
2138 		.name = "ncp",
2139 		.compatible = "SUNW,kt-mau",
2140 	},
2141 	{},
2142 };
2143 
2144 MODULE_DEVICE_TABLE(of, n2_mau_match);
2145 
2146 static struct platform_driver n2_mau_driver = {
2147 	.driver = {
2148 		.name		=	"ncp",
2149 		.of_match_table	=	n2_mau_match,
2150 	},
2151 	.probe		=	n2_mau_probe,
2152 	.remove_new	=	n2_mau_remove,
2153 };
2154 
2155 static struct platform_driver * const drivers[] = {
2156 	&n2_crypto_driver,
2157 	&n2_mau_driver,
2158 };
2159 
2160 static int __init n2_init(void)
2161 {
2162 	return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2163 }
2164 
2165 static void __exit n2_exit(void)
2166 {
2167 	platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2168 }
2169 
2170 module_init(n2_init);
2171 module_exit(n2_exit);
2172