1 // SPDX-License-Identifier: GPL-2.0-only 2 /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support. 3 * 4 * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net> 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/of.h> 12 #include <linux/of_address.h> 13 #include <linux/platform_device.h> 14 #include <linux/cpumask.h> 15 #include <linux/slab.h> 16 #include <linux/interrupt.h> 17 #include <linux/crypto.h> 18 #include <crypto/md5.h> 19 #include <crypto/sha1.h> 20 #include <crypto/sha2.h> 21 #include <crypto/aes.h> 22 #include <crypto/internal/des.h> 23 #include <linux/mutex.h> 24 #include <linux/delay.h> 25 #include <linux/sched.h> 26 27 #include <crypto/internal/hash.h> 28 #include <crypto/internal/skcipher.h> 29 #include <crypto/scatterwalk.h> 30 #include <crypto/algapi.h> 31 32 #include <asm/hypervisor.h> 33 #include <asm/mdesc.h> 34 35 #include "n2_core.h" 36 37 #define DRV_MODULE_NAME "n2_crypto" 38 #define DRV_MODULE_VERSION "0.2" 39 #define DRV_MODULE_RELDATE "July 28, 2011" 40 41 static const char version[] = 42 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n"; 43 44 MODULE_AUTHOR("David S. Miller <davem@davemloft.net>"); 45 MODULE_DESCRIPTION("Niagara2 Crypto driver"); 46 MODULE_LICENSE("GPL"); 47 MODULE_VERSION(DRV_MODULE_VERSION); 48 49 #define N2_CRA_PRIORITY 200 50 51 static DEFINE_MUTEX(spu_lock); 52 53 struct spu_queue { 54 cpumask_t sharing; 55 unsigned long qhandle; 56 57 spinlock_t lock; 58 u8 q_type; 59 void *q; 60 unsigned long head; 61 unsigned long tail; 62 struct list_head jobs; 63 64 unsigned long devino; 65 66 char irq_name[32]; 67 unsigned int irq; 68 69 struct list_head list; 70 }; 71 72 struct spu_qreg { 73 struct spu_queue *queue; 74 unsigned long type; 75 }; 76 77 static struct spu_queue **cpu_to_cwq; 78 static struct spu_queue **cpu_to_mau; 79 80 static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off) 81 { 82 if (q->q_type == HV_NCS_QTYPE_MAU) { 83 off += MAU_ENTRY_SIZE; 84 if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES)) 85 off = 0; 86 } else { 87 off += CWQ_ENTRY_SIZE; 88 if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES)) 89 off = 0; 90 } 91 return off; 92 } 93 94 struct n2_request_common { 95 struct list_head entry; 96 unsigned int offset; 97 }; 98 #define OFFSET_NOT_RUNNING (~(unsigned int)0) 99 100 /* An async job request records the final tail value it used in 101 * n2_request_common->offset, test to see if that offset is in 102 * the range old_head, new_head, inclusive. 103 */ 104 static inline bool job_finished(struct spu_queue *q, unsigned int offset, 105 unsigned long old_head, unsigned long new_head) 106 { 107 if (old_head <= new_head) { 108 if (offset > old_head && offset <= new_head) 109 return true; 110 } else { 111 if (offset > old_head || offset <= new_head) 112 return true; 113 } 114 return false; 115 } 116 117 /* When the HEAD marker is unequal to the actual HEAD, we get 118 * a virtual device INO interrupt. We should process the 119 * completed CWQ entries and adjust the HEAD marker to clear 120 * the IRQ. 121 */ 122 static irqreturn_t cwq_intr(int irq, void *dev_id) 123 { 124 unsigned long off, new_head, hv_ret; 125 struct spu_queue *q = dev_id; 126 127 pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n", 128 smp_processor_id(), q->qhandle); 129 130 spin_lock(&q->lock); 131 132 hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head); 133 134 pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n", 135 smp_processor_id(), new_head, hv_ret); 136 137 for (off = q->head; off != new_head; off = spu_next_offset(q, off)) { 138 /* XXX ... XXX */ 139 } 140 141 hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head); 142 if (hv_ret == HV_EOK) 143 q->head = new_head; 144 145 spin_unlock(&q->lock); 146 147 return IRQ_HANDLED; 148 } 149 150 static irqreturn_t mau_intr(int irq, void *dev_id) 151 { 152 struct spu_queue *q = dev_id; 153 unsigned long head, hv_ret; 154 155 spin_lock(&q->lock); 156 157 pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n", 158 smp_processor_id(), q->qhandle); 159 160 hv_ret = sun4v_ncs_gethead(q->qhandle, &head); 161 162 pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n", 163 smp_processor_id(), head, hv_ret); 164 165 sun4v_ncs_sethead_marker(q->qhandle, head); 166 167 spin_unlock(&q->lock); 168 169 return IRQ_HANDLED; 170 } 171 172 static void *spu_queue_next(struct spu_queue *q, void *cur) 173 { 174 return q->q + spu_next_offset(q, cur - q->q); 175 } 176 177 static int spu_queue_num_free(struct spu_queue *q) 178 { 179 unsigned long head = q->head; 180 unsigned long tail = q->tail; 181 unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES); 182 unsigned long diff; 183 184 if (head > tail) 185 diff = head - tail; 186 else 187 diff = (end - tail) + head; 188 189 return (diff / CWQ_ENTRY_SIZE) - 1; 190 } 191 192 static void *spu_queue_alloc(struct spu_queue *q, int num_entries) 193 { 194 int avail = spu_queue_num_free(q); 195 196 if (avail >= num_entries) 197 return q->q + q->tail; 198 199 return NULL; 200 } 201 202 static unsigned long spu_queue_submit(struct spu_queue *q, void *last) 203 { 204 unsigned long hv_ret, new_tail; 205 206 new_tail = spu_next_offset(q, last - q->q); 207 208 hv_ret = sun4v_ncs_settail(q->qhandle, new_tail); 209 if (hv_ret == HV_EOK) 210 q->tail = new_tail; 211 return hv_ret; 212 } 213 214 static u64 control_word_base(unsigned int len, unsigned int hmac_key_len, 215 int enc_type, int auth_type, 216 unsigned int hash_len, 217 bool sfas, bool sob, bool eob, bool encrypt, 218 int opcode) 219 { 220 u64 word = (len - 1) & CONTROL_LEN; 221 222 word |= ((u64) opcode << CONTROL_OPCODE_SHIFT); 223 word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT); 224 word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT); 225 if (sfas) 226 word |= CONTROL_STORE_FINAL_AUTH_STATE; 227 if (sob) 228 word |= CONTROL_START_OF_BLOCK; 229 if (eob) 230 word |= CONTROL_END_OF_BLOCK; 231 if (encrypt) 232 word |= CONTROL_ENCRYPT; 233 if (hmac_key_len) 234 word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT; 235 if (hash_len) 236 word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT; 237 238 return word; 239 } 240 241 #if 0 242 static inline bool n2_should_run_async(struct spu_queue *qp, int this_len) 243 { 244 if (this_len >= 64 || 245 qp->head != qp->tail) 246 return true; 247 return false; 248 } 249 #endif 250 251 struct n2_ahash_alg { 252 struct list_head entry; 253 const u8 *hash_zero; 254 const u8 *hash_init; 255 u8 hw_op_hashsz; 256 u8 digest_size; 257 u8 auth_type; 258 u8 hmac_type; 259 struct ahash_alg alg; 260 }; 261 262 static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm) 263 { 264 struct crypto_alg *alg = tfm->__crt_alg; 265 struct ahash_alg *ahash_alg; 266 267 ahash_alg = container_of(alg, struct ahash_alg, halg.base); 268 269 return container_of(ahash_alg, struct n2_ahash_alg, alg); 270 } 271 272 struct n2_hmac_alg { 273 const char *child_alg; 274 struct n2_ahash_alg derived; 275 }; 276 277 static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm) 278 { 279 struct crypto_alg *alg = tfm->__crt_alg; 280 struct ahash_alg *ahash_alg; 281 282 ahash_alg = container_of(alg, struct ahash_alg, halg.base); 283 284 return container_of(ahash_alg, struct n2_hmac_alg, derived.alg); 285 } 286 287 struct n2_hash_ctx { 288 struct crypto_ahash *fallback_tfm; 289 }; 290 291 #define N2_HASH_KEY_MAX 32 /* HW limit for all HMAC requests */ 292 293 struct n2_hmac_ctx { 294 struct n2_hash_ctx base; 295 296 struct crypto_shash *child_shash; 297 298 int hash_key_len; 299 unsigned char hash_key[N2_HASH_KEY_MAX]; 300 }; 301 302 struct n2_hash_req_ctx { 303 union { 304 struct md5_state md5; 305 struct sha1_state sha1; 306 struct sha256_state sha256; 307 } u; 308 309 struct ahash_request fallback_req; 310 }; 311 312 static int n2_hash_async_init(struct ahash_request *req) 313 { 314 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 315 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 316 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); 317 318 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); 319 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; 320 321 return crypto_ahash_init(&rctx->fallback_req); 322 } 323 324 static int n2_hash_async_update(struct ahash_request *req) 325 { 326 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 327 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 328 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); 329 330 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); 331 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; 332 rctx->fallback_req.nbytes = req->nbytes; 333 rctx->fallback_req.src = req->src; 334 335 return crypto_ahash_update(&rctx->fallback_req); 336 } 337 338 static int n2_hash_async_final(struct ahash_request *req) 339 { 340 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 341 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 342 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); 343 344 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); 345 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; 346 rctx->fallback_req.result = req->result; 347 348 return crypto_ahash_final(&rctx->fallback_req); 349 } 350 351 static int n2_hash_async_finup(struct ahash_request *req) 352 { 353 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 354 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 355 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); 356 357 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); 358 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; 359 rctx->fallback_req.nbytes = req->nbytes; 360 rctx->fallback_req.src = req->src; 361 rctx->fallback_req.result = req->result; 362 363 return crypto_ahash_finup(&rctx->fallback_req); 364 } 365 366 static int n2_hash_async_noimport(struct ahash_request *req, const void *in) 367 { 368 return -ENOSYS; 369 } 370 371 static int n2_hash_async_noexport(struct ahash_request *req, void *out) 372 { 373 return -ENOSYS; 374 } 375 376 static int n2_hash_cra_init(struct crypto_tfm *tfm) 377 { 378 const char *fallback_driver_name = crypto_tfm_alg_name(tfm); 379 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); 380 struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash); 381 struct crypto_ahash *fallback_tfm; 382 int err; 383 384 fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0, 385 CRYPTO_ALG_NEED_FALLBACK); 386 if (IS_ERR(fallback_tfm)) { 387 pr_warn("Fallback driver '%s' could not be loaded!\n", 388 fallback_driver_name); 389 err = PTR_ERR(fallback_tfm); 390 goto out; 391 } 392 393 crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) + 394 crypto_ahash_reqsize(fallback_tfm))); 395 396 ctx->fallback_tfm = fallback_tfm; 397 return 0; 398 399 out: 400 return err; 401 } 402 403 static void n2_hash_cra_exit(struct crypto_tfm *tfm) 404 { 405 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); 406 struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash); 407 408 crypto_free_ahash(ctx->fallback_tfm); 409 } 410 411 static int n2_hmac_cra_init(struct crypto_tfm *tfm) 412 { 413 const char *fallback_driver_name = crypto_tfm_alg_name(tfm); 414 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); 415 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash); 416 struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm); 417 struct crypto_ahash *fallback_tfm; 418 struct crypto_shash *child_shash; 419 int err; 420 421 fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0, 422 CRYPTO_ALG_NEED_FALLBACK); 423 if (IS_ERR(fallback_tfm)) { 424 pr_warn("Fallback driver '%s' could not be loaded!\n", 425 fallback_driver_name); 426 err = PTR_ERR(fallback_tfm); 427 goto out; 428 } 429 430 child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0); 431 if (IS_ERR(child_shash)) { 432 pr_warn("Child shash '%s' could not be loaded!\n", 433 n2alg->child_alg); 434 err = PTR_ERR(child_shash); 435 goto out_free_fallback; 436 } 437 438 crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) + 439 crypto_ahash_reqsize(fallback_tfm))); 440 441 ctx->child_shash = child_shash; 442 ctx->base.fallback_tfm = fallback_tfm; 443 return 0; 444 445 out_free_fallback: 446 crypto_free_ahash(fallback_tfm); 447 448 out: 449 return err; 450 } 451 452 static void n2_hmac_cra_exit(struct crypto_tfm *tfm) 453 { 454 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); 455 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash); 456 457 crypto_free_ahash(ctx->base.fallback_tfm); 458 crypto_free_shash(ctx->child_shash); 459 } 460 461 static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key, 462 unsigned int keylen) 463 { 464 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm); 465 struct crypto_shash *child_shash = ctx->child_shash; 466 struct crypto_ahash *fallback_tfm; 467 int err, bs, ds; 468 469 fallback_tfm = ctx->base.fallback_tfm; 470 err = crypto_ahash_setkey(fallback_tfm, key, keylen); 471 if (err) 472 return err; 473 474 bs = crypto_shash_blocksize(child_shash); 475 ds = crypto_shash_digestsize(child_shash); 476 BUG_ON(ds > N2_HASH_KEY_MAX); 477 if (keylen > bs) { 478 err = crypto_shash_tfm_digest(child_shash, key, keylen, 479 ctx->hash_key); 480 if (err) 481 return err; 482 keylen = ds; 483 } else if (keylen <= N2_HASH_KEY_MAX) 484 memcpy(ctx->hash_key, key, keylen); 485 486 ctx->hash_key_len = keylen; 487 488 return err; 489 } 490 491 static unsigned long wait_for_tail(struct spu_queue *qp) 492 { 493 unsigned long head, hv_ret; 494 495 do { 496 hv_ret = sun4v_ncs_gethead(qp->qhandle, &head); 497 if (hv_ret != HV_EOK) { 498 pr_err("Hypervisor error on gethead\n"); 499 break; 500 } 501 if (head == qp->tail) { 502 qp->head = head; 503 break; 504 } 505 } while (1); 506 return hv_ret; 507 } 508 509 static unsigned long submit_and_wait_for_tail(struct spu_queue *qp, 510 struct cwq_initial_entry *ent) 511 { 512 unsigned long hv_ret = spu_queue_submit(qp, ent); 513 514 if (hv_ret == HV_EOK) 515 hv_ret = wait_for_tail(qp); 516 517 return hv_ret; 518 } 519 520 static int n2_do_async_digest(struct ahash_request *req, 521 unsigned int auth_type, unsigned int digest_size, 522 unsigned int result_size, void *hash_loc, 523 unsigned long auth_key, unsigned int auth_key_len) 524 { 525 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 526 struct cwq_initial_entry *ent; 527 struct crypto_hash_walk walk; 528 struct spu_queue *qp; 529 unsigned long flags; 530 int err = -ENODEV; 531 int nbytes, cpu; 532 533 /* The total effective length of the operation may not 534 * exceed 2^16. 535 */ 536 if (unlikely(req->nbytes > (1 << 16))) { 537 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 538 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); 539 540 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); 541 rctx->fallback_req.base.flags = 542 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; 543 rctx->fallback_req.nbytes = req->nbytes; 544 rctx->fallback_req.src = req->src; 545 rctx->fallback_req.result = req->result; 546 547 return crypto_ahash_digest(&rctx->fallback_req); 548 } 549 550 nbytes = crypto_hash_walk_first(req, &walk); 551 552 cpu = get_cpu(); 553 qp = cpu_to_cwq[cpu]; 554 if (!qp) 555 goto out; 556 557 spin_lock_irqsave(&qp->lock, flags); 558 559 /* XXX can do better, improve this later by doing a by-hand scatterlist 560 * XXX walk, etc. 561 */ 562 ent = qp->q + qp->tail; 563 564 ent->control = control_word_base(nbytes, auth_key_len, 0, 565 auth_type, digest_size, 566 false, true, false, false, 567 OPCODE_INPLACE_BIT | 568 OPCODE_AUTH_MAC); 569 ent->src_addr = __pa(walk.data); 570 ent->auth_key_addr = auth_key; 571 ent->auth_iv_addr = __pa(hash_loc); 572 ent->final_auth_state_addr = 0UL; 573 ent->enc_key_addr = 0UL; 574 ent->enc_iv_addr = 0UL; 575 ent->dest_addr = __pa(hash_loc); 576 577 nbytes = crypto_hash_walk_done(&walk, 0); 578 while (nbytes > 0) { 579 ent = spu_queue_next(qp, ent); 580 581 ent->control = (nbytes - 1); 582 ent->src_addr = __pa(walk.data); 583 ent->auth_key_addr = 0UL; 584 ent->auth_iv_addr = 0UL; 585 ent->final_auth_state_addr = 0UL; 586 ent->enc_key_addr = 0UL; 587 ent->enc_iv_addr = 0UL; 588 ent->dest_addr = 0UL; 589 590 nbytes = crypto_hash_walk_done(&walk, 0); 591 } 592 ent->control |= CONTROL_END_OF_BLOCK; 593 594 if (submit_and_wait_for_tail(qp, ent) != HV_EOK) 595 err = -EINVAL; 596 else 597 err = 0; 598 599 spin_unlock_irqrestore(&qp->lock, flags); 600 601 if (!err) 602 memcpy(req->result, hash_loc, result_size); 603 out: 604 put_cpu(); 605 606 return err; 607 } 608 609 static int n2_hash_async_digest(struct ahash_request *req) 610 { 611 struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm); 612 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 613 int ds; 614 615 ds = n2alg->digest_size; 616 if (unlikely(req->nbytes == 0)) { 617 memcpy(req->result, n2alg->hash_zero, ds); 618 return 0; 619 } 620 memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz); 621 622 return n2_do_async_digest(req, n2alg->auth_type, 623 n2alg->hw_op_hashsz, ds, 624 &rctx->u, 0UL, 0); 625 } 626 627 static int n2_hmac_async_digest(struct ahash_request *req) 628 { 629 struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm); 630 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 631 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 632 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm); 633 int ds; 634 635 ds = n2alg->derived.digest_size; 636 if (unlikely(req->nbytes == 0) || 637 unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) { 638 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 639 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); 640 641 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); 642 rctx->fallback_req.base.flags = 643 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; 644 rctx->fallback_req.nbytes = req->nbytes; 645 rctx->fallback_req.src = req->src; 646 rctx->fallback_req.result = req->result; 647 648 return crypto_ahash_digest(&rctx->fallback_req); 649 } 650 memcpy(&rctx->u, n2alg->derived.hash_init, 651 n2alg->derived.hw_op_hashsz); 652 653 return n2_do_async_digest(req, n2alg->derived.hmac_type, 654 n2alg->derived.hw_op_hashsz, ds, 655 &rctx->u, 656 __pa(&ctx->hash_key), 657 ctx->hash_key_len); 658 } 659 660 struct n2_skcipher_context { 661 int key_len; 662 int enc_type; 663 union { 664 u8 aes[AES_MAX_KEY_SIZE]; 665 u8 des[DES_KEY_SIZE]; 666 u8 des3[3 * DES_KEY_SIZE]; 667 } key; 668 }; 669 670 #define N2_CHUNK_ARR_LEN 16 671 672 struct n2_crypto_chunk { 673 struct list_head entry; 674 unsigned long iv_paddr : 44; 675 unsigned long arr_len : 20; 676 unsigned long dest_paddr; 677 unsigned long dest_final; 678 struct { 679 unsigned long src_paddr : 44; 680 unsigned long src_len : 20; 681 } arr[N2_CHUNK_ARR_LEN]; 682 }; 683 684 struct n2_request_context { 685 struct skcipher_walk walk; 686 struct list_head chunk_list; 687 struct n2_crypto_chunk chunk; 688 u8 temp_iv[16]; 689 }; 690 691 /* The SPU allows some level of flexibility for partial cipher blocks 692 * being specified in a descriptor. 693 * 694 * It merely requires that every descriptor's length field is at least 695 * as large as the cipher block size. This means that a cipher block 696 * can span at most 2 descriptors. However, this does not allow a 697 * partial block to span into the final descriptor as that would 698 * violate the rule (since every descriptor's length must be at lest 699 * the block size). So, for example, assuming an 8 byte block size: 700 * 701 * 0xe --> 0xa --> 0x8 702 * 703 * is a valid length sequence, whereas: 704 * 705 * 0xe --> 0xb --> 0x7 706 * 707 * is not a valid sequence. 708 */ 709 710 struct n2_skcipher_alg { 711 struct list_head entry; 712 u8 enc_type; 713 struct skcipher_alg skcipher; 714 }; 715 716 static inline struct n2_skcipher_alg *n2_skcipher_alg(struct crypto_skcipher *tfm) 717 { 718 struct skcipher_alg *alg = crypto_skcipher_alg(tfm); 719 720 return container_of(alg, struct n2_skcipher_alg, skcipher); 721 } 722 723 struct n2_skcipher_request_context { 724 struct skcipher_walk walk; 725 }; 726 727 static int n2_aes_setkey(struct crypto_skcipher *skcipher, const u8 *key, 728 unsigned int keylen) 729 { 730 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher); 731 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm); 732 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher); 733 734 ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK); 735 736 switch (keylen) { 737 case AES_KEYSIZE_128: 738 ctx->enc_type |= ENC_TYPE_ALG_AES128; 739 break; 740 case AES_KEYSIZE_192: 741 ctx->enc_type |= ENC_TYPE_ALG_AES192; 742 break; 743 case AES_KEYSIZE_256: 744 ctx->enc_type |= ENC_TYPE_ALG_AES256; 745 break; 746 default: 747 return -EINVAL; 748 } 749 750 ctx->key_len = keylen; 751 memcpy(ctx->key.aes, key, keylen); 752 return 0; 753 } 754 755 static int n2_des_setkey(struct crypto_skcipher *skcipher, const u8 *key, 756 unsigned int keylen) 757 { 758 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher); 759 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm); 760 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher); 761 int err; 762 763 err = verify_skcipher_des_key(skcipher, key); 764 if (err) 765 return err; 766 767 ctx->enc_type = n2alg->enc_type; 768 769 ctx->key_len = keylen; 770 memcpy(ctx->key.des, key, keylen); 771 return 0; 772 } 773 774 static int n2_3des_setkey(struct crypto_skcipher *skcipher, const u8 *key, 775 unsigned int keylen) 776 { 777 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher); 778 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm); 779 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher); 780 int err; 781 782 err = verify_skcipher_des3_key(skcipher, key); 783 if (err) 784 return err; 785 786 ctx->enc_type = n2alg->enc_type; 787 788 ctx->key_len = keylen; 789 memcpy(ctx->key.des3, key, keylen); 790 return 0; 791 } 792 793 static inline int skcipher_descriptor_len(int nbytes, unsigned int block_size) 794 { 795 int this_len = nbytes; 796 797 this_len -= (nbytes & (block_size - 1)); 798 return this_len > (1 << 16) ? (1 << 16) : this_len; 799 } 800 801 static int __n2_crypt_chunk(struct crypto_skcipher *skcipher, 802 struct n2_crypto_chunk *cp, 803 struct spu_queue *qp, bool encrypt) 804 { 805 struct n2_skcipher_context *ctx = crypto_skcipher_ctx(skcipher); 806 struct cwq_initial_entry *ent; 807 bool in_place; 808 int i; 809 810 ent = spu_queue_alloc(qp, cp->arr_len); 811 if (!ent) { 812 pr_info("queue_alloc() of %d fails\n", 813 cp->arr_len); 814 return -EBUSY; 815 } 816 817 in_place = (cp->dest_paddr == cp->arr[0].src_paddr); 818 819 ent->control = control_word_base(cp->arr[0].src_len, 820 0, ctx->enc_type, 0, 0, 821 false, true, false, encrypt, 822 OPCODE_ENCRYPT | 823 (in_place ? OPCODE_INPLACE_BIT : 0)); 824 ent->src_addr = cp->arr[0].src_paddr; 825 ent->auth_key_addr = 0UL; 826 ent->auth_iv_addr = 0UL; 827 ent->final_auth_state_addr = 0UL; 828 ent->enc_key_addr = __pa(&ctx->key); 829 ent->enc_iv_addr = cp->iv_paddr; 830 ent->dest_addr = (in_place ? 0UL : cp->dest_paddr); 831 832 for (i = 1; i < cp->arr_len; i++) { 833 ent = spu_queue_next(qp, ent); 834 835 ent->control = cp->arr[i].src_len - 1; 836 ent->src_addr = cp->arr[i].src_paddr; 837 ent->auth_key_addr = 0UL; 838 ent->auth_iv_addr = 0UL; 839 ent->final_auth_state_addr = 0UL; 840 ent->enc_key_addr = 0UL; 841 ent->enc_iv_addr = 0UL; 842 ent->dest_addr = 0UL; 843 } 844 ent->control |= CONTROL_END_OF_BLOCK; 845 846 return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0; 847 } 848 849 static int n2_compute_chunks(struct skcipher_request *req) 850 { 851 struct n2_request_context *rctx = skcipher_request_ctx(req); 852 struct skcipher_walk *walk = &rctx->walk; 853 struct n2_crypto_chunk *chunk; 854 unsigned long dest_prev; 855 unsigned int tot_len; 856 bool prev_in_place; 857 int err, nbytes; 858 859 err = skcipher_walk_async(walk, req); 860 if (err) 861 return err; 862 863 INIT_LIST_HEAD(&rctx->chunk_list); 864 865 chunk = &rctx->chunk; 866 INIT_LIST_HEAD(&chunk->entry); 867 868 chunk->iv_paddr = 0UL; 869 chunk->arr_len = 0; 870 chunk->dest_paddr = 0UL; 871 872 prev_in_place = false; 873 dest_prev = ~0UL; 874 tot_len = 0; 875 876 while ((nbytes = walk->nbytes) != 0) { 877 unsigned long dest_paddr, src_paddr; 878 bool in_place; 879 int this_len; 880 881 src_paddr = (page_to_phys(walk->src.phys.page) + 882 walk->src.phys.offset); 883 dest_paddr = (page_to_phys(walk->dst.phys.page) + 884 walk->dst.phys.offset); 885 in_place = (src_paddr == dest_paddr); 886 this_len = skcipher_descriptor_len(nbytes, walk->blocksize); 887 888 if (chunk->arr_len != 0) { 889 if (in_place != prev_in_place || 890 (!prev_in_place && 891 dest_paddr != dest_prev) || 892 chunk->arr_len == N2_CHUNK_ARR_LEN || 893 tot_len + this_len > (1 << 16)) { 894 chunk->dest_final = dest_prev; 895 list_add_tail(&chunk->entry, 896 &rctx->chunk_list); 897 chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC); 898 if (!chunk) { 899 err = -ENOMEM; 900 break; 901 } 902 INIT_LIST_HEAD(&chunk->entry); 903 } 904 } 905 if (chunk->arr_len == 0) { 906 chunk->dest_paddr = dest_paddr; 907 tot_len = 0; 908 } 909 chunk->arr[chunk->arr_len].src_paddr = src_paddr; 910 chunk->arr[chunk->arr_len].src_len = this_len; 911 chunk->arr_len++; 912 913 dest_prev = dest_paddr + this_len; 914 prev_in_place = in_place; 915 tot_len += this_len; 916 917 err = skcipher_walk_done(walk, nbytes - this_len); 918 if (err) 919 break; 920 } 921 if (!err && chunk->arr_len != 0) { 922 chunk->dest_final = dest_prev; 923 list_add_tail(&chunk->entry, &rctx->chunk_list); 924 } 925 926 return err; 927 } 928 929 static void n2_chunk_complete(struct skcipher_request *req, void *final_iv) 930 { 931 struct n2_request_context *rctx = skcipher_request_ctx(req); 932 struct n2_crypto_chunk *c, *tmp; 933 934 if (final_iv) 935 memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize); 936 937 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) { 938 list_del(&c->entry); 939 if (unlikely(c != &rctx->chunk)) 940 kfree(c); 941 } 942 943 } 944 945 static int n2_do_ecb(struct skcipher_request *req, bool encrypt) 946 { 947 struct n2_request_context *rctx = skcipher_request_ctx(req); 948 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 949 int err = n2_compute_chunks(req); 950 struct n2_crypto_chunk *c, *tmp; 951 unsigned long flags, hv_ret; 952 struct spu_queue *qp; 953 954 if (err) 955 return err; 956 957 qp = cpu_to_cwq[get_cpu()]; 958 err = -ENODEV; 959 if (!qp) 960 goto out; 961 962 spin_lock_irqsave(&qp->lock, flags); 963 964 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) { 965 err = __n2_crypt_chunk(tfm, c, qp, encrypt); 966 if (err) 967 break; 968 list_del(&c->entry); 969 if (unlikely(c != &rctx->chunk)) 970 kfree(c); 971 } 972 if (!err) { 973 hv_ret = wait_for_tail(qp); 974 if (hv_ret != HV_EOK) 975 err = -EINVAL; 976 } 977 978 spin_unlock_irqrestore(&qp->lock, flags); 979 980 out: 981 put_cpu(); 982 983 n2_chunk_complete(req, NULL); 984 return err; 985 } 986 987 static int n2_encrypt_ecb(struct skcipher_request *req) 988 { 989 return n2_do_ecb(req, true); 990 } 991 992 static int n2_decrypt_ecb(struct skcipher_request *req) 993 { 994 return n2_do_ecb(req, false); 995 } 996 997 static int n2_do_chaining(struct skcipher_request *req, bool encrypt) 998 { 999 struct n2_request_context *rctx = skcipher_request_ctx(req); 1000 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 1001 unsigned long flags, hv_ret, iv_paddr; 1002 int err = n2_compute_chunks(req); 1003 struct n2_crypto_chunk *c, *tmp; 1004 struct spu_queue *qp; 1005 void *final_iv_addr; 1006 1007 final_iv_addr = NULL; 1008 1009 if (err) 1010 return err; 1011 1012 qp = cpu_to_cwq[get_cpu()]; 1013 err = -ENODEV; 1014 if (!qp) 1015 goto out; 1016 1017 spin_lock_irqsave(&qp->lock, flags); 1018 1019 if (encrypt) { 1020 iv_paddr = __pa(rctx->walk.iv); 1021 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, 1022 entry) { 1023 c->iv_paddr = iv_paddr; 1024 err = __n2_crypt_chunk(tfm, c, qp, true); 1025 if (err) 1026 break; 1027 iv_paddr = c->dest_final - rctx->walk.blocksize; 1028 list_del(&c->entry); 1029 if (unlikely(c != &rctx->chunk)) 1030 kfree(c); 1031 } 1032 final_iv_addr = __va(iv_paddr); 1033 } else { 1034 list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list, 1035 entry) { 1036 if (c == &rctx->chunk) { 1037 iv_paddr = __pa(rctx->walk.iv); 1038 } else { 1039 iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr + 1040 tmp->arr[tmp->arr_len-1].src_len - 1041 rctx->walk.blocksize); 1042 } 1043 if (!final_iv_addr) { 1044 unsigned long pa; 1045 1046 pa = (c->arr[c->arr_len-1].src_paddr + 1047 c->arr[c->arr_len-1].src_len - 1048 rctx->walk.blocksize); 1049 final_iv_addr = rctx->temp_iv; 1050 memcpy(rctx->temp_iv, __va(pa), 1051 rctx->walk.blocksize); 1052 } 1053 c->iv_paddr = iv_paddr; 1054 err = __n2_crypt_chunk(tfm, c, qp, false); 1055 if (err) 1056 break; 1057 list_del(&c->entry); 1058 if (unlikely(c != &rctx->chunk)) 1059 kfree(c); 1060 } 1061 } 1062 if (!err) { 1063 hv_ret = wait_for_tail(qp); 1064 if (hv_ret != HV_EOK) 1065 err = -EINVAL; 1066 } 1067 1068 spin_unlock_irqrestore(&qp->lock, flags); 1069 1070 out: 1071 put_cpu(); 1072 1073 n2_chunk_complete(req, err ? NULL : final_iv_addr); 1074 return err; 1075 } 1076 1077 static int n2_encrypt_chaining(struct skcipher_request *req) 1078 { 1079 return n2_do_chaining(req, true); 1080 } 1081 1082 static int n2_decrypt_chaining(struct skcipher_request *req) 1083 { 1084 return n2_do_chaining(req, false); 1085 } 1086 1087 struct n2_skcipher_tmpl { 1088 const char *name; 1089 const char *drv_name; 1090 u8 block_size; 1091 u8 enc_type; 1092 struct skcipher_alg skcipher; 1093 }; 1094 1095 static const struct n2_skcipher_tmpl skcipher_tmpls[] = { 1096 /* DES: ECB CBC and CFB are supported */ 1097 { .name = "ecb(des)", 1098 .drv_name = "ecb-des", 1099 .block_size = DES_BLOCK_SIZE, 1100 .enc_type = (ENC_TYPE_ALG_DES | 1101 ENC_TYPE_CHAINING_ECB), 1102 .skcipher = { 1103 .min_keysize = DES_KEY_SIZE, 1104 .max_keysize = DES_KEY_SIZE, 1105 .setkey = n2_des_setkey, 1106 .encrypt = n2_encrypt_ecb, 1107 .decrypt = n2_decrypt_ecb, 1108 }, 1109 }, 1110 { .name = "cbc(des)", 1111 .drv_name = "cbc-des", 1112 .block_size = DES_BLOCK_SIZE, 1113 .enc_type = (ENC_TYPE_ALG_DES | 1114 ENC_TYPE_CHAINING_CBC), 1115 .skcipher = { 1116 .ivsize = DES_BLOCK_SIZE, 1117 .min_keysize = DES_KEY_SIZE, 1118 .max_keysize = DES_KEY_SIZE, 1119 .setkey = n2_des_setkey, 1120 .encrypt = n2_encrypt_chaining, 1121 .decrypt = n2_decrypt_chaining, 1122 }, 1123 }, 1124 1125 /* 3DES: ECB CBC and CFB are supported */ 1126 { .name = "ecb(des3_ede)", 1127 .drv_name = "ecb-3des", 1128 .block_size = DES_BLOCK_SIZE, 1129 .enc_type = (ENC_TYPE_ALG_3DES | 1130 ENC_TYPE_CHAINING_ECB), 1131 .skcipher = { 1132 .min_keysize = 3 * DES_KEY_SIZE, 1133 .max_keysize = 3 * DES_KEY_SIZE, 1134 .setkey = n2_3des_setkey, 1135 .encrypt = n2_encrypt_ecb, 1136 .decrypt = n2_decrypt_ecb, 1137 }, 1138 }, 1139 { .name = "cbc(des3_ede)", 1140 .drv_name = "cbc-3des", 1141 .block_size = DES_BLOCK_SIZE, 1142 .enc_type = (ENC_TYPE_ALG_3DES | 1143 ENC_TYPE_CHAINING_CBC), 1144 .skcipher = { 1145 .ivsize = DES_BLOCK_SIZE, 1146 .min_keysize = 3 * DES_KEY_SIZE, 1147 .max_keysize = 3 * DES_KEY_SIZE, 1148 .setkey = n2_3des_setkey, 1149 .encrypt = n2_encrypt_chaining, 1150 .decrypt = n2_decrypt_chaining, 1151 }, 1152 }, 1153 1154 /* AES: ECB CBC and CTR are supported */ 1155 { .name = "ecb(aes)", 1156 .drv_name = "ecb-aes", 1157 .block_size = AES_BLOCK_SIZE, 1158 .enc_type = (ENC_TYPE_ALG_AES128 | 1159 ENC_TYPE_CHAINING_ECB), 1160 .skcipher = { 1161 .min_keysize = AES_MIN_KEY_SIZE, 1162 .max_keysize = AES_MAX_KEY_SIZE, 1163 .setkey = n2_aes_setkey, 1164 .encrypt = n2_encrypt_ecb, 1165 .decrypt = n2_decrypt_ecb, 1166 }, 1167 }, 1168 { .name = "cbc(aes)", 1169 .drv_name = "cbc-aes", 1170 .block_size = AES_BLOCK_SIZE, 1171 .enc_type = (ENC_TYPE_ALG_AES128 | 1172 ENC_TYPE_CHAINING_CBC), 1173 .skcipher = { 1174 .ivsize = AES_BLOCK_SIZE, 1175 .min_keysize = AES_MIN_KEY_SIZE, 1176 .max_keysize = AES_MAX_KEY_SIZE, 1177 .setkey = n2_aes_setkey, 1178 .encrypt = n2_encrypt_chaining, 1179 .decrypt = n2_decrypt_chaining, 1180 }, 1181 }, 1182 { .name = "ctr(aes)", 1183 .drv_name = "ctr-aes", 1184 .block_size = AES_BLOCK_SIZE, 1185 .enc_type = (ENC_TYPE_ALG_AES128 | 1186 ENC_TYPE_CHAINING_COUNTER), 1187 .skcipher = { 1188 .ivsize = AES_BLOCK_SIZE, 1189 .min_keysize = AES_MIN_KEY_SIZE, 1190 .max_keysize = AES_MAX_KEY_SIZE, 1191 .setkey = n2_aes_setkey, 1192 .encrypt = n2_encrypt_chaining, 1193 .decrypt = n2_encrypt_chaining, 1194 }, 1195 }, 1196 1197 }; 1198 #define NUM_CIPHER_TMPLS ARRAY_SIZE(skcipher_tmpls) 1199 1200 static LIST_HEAD(skcipher_algs); 1201 1202 struct n2_hash_tmpl { 1203 const char *name; 1204 const u8 *hash_zero; 1205 const u8 *hash_init; 1206 u8 hw_op_hashsz; 1207 u8 digest_size; 1208 u8 statesize; 1209 u8 block_size; 1210 u8 auth_type; 1211 u8 hmac_type; 1212 }; 1213 1214 static const __le32 n2_md5_init[MD5_HASH_WORDS] = { 1215 cpu_to_le32(MD5_H0), 1216 cpu_to_le32(MD5_H1), 1217 cpu_to_le32(MD5_H2), 1218 cpu_to_le32(MD5_H3), 1219 }; 1220 static const u32 n2_sha1_init[SHA1_DIGEST_SIZE / 4] = { 1221 SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4, 1222 }; 1223 static const u32 n2_sha256_init[SHA256_DIGEST_SIZE / 4] = { 1224 SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3, 1225 SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7, 1226 }; 1227 static const u32 n2_sha224_init[SHA256_DIGEST_SIZE / 4] = { 1228 SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3, 1229 SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7, 1230 }; 1231 1232 static const struct n2_hash_tmpl hash_tmpls[] = { 1233 { .name = "md5", 1234 .hash_zero = md5_zero_message_hash, 1235 .hash_init = (u8 *)n2_md5_init, 1236 .auth_type = AUTH_TYPE_MD5, 1237 .hmac_type = AUTH_TYPE_HMAC_MD5, 1238 .hw_op_hashsz = MD5_DIGEST_SIZE, 1239 .digest_size = MD5_DIGEST_SIZE, 1240 .statesize = sizeof(struct md5_state), 1241 .block_size = MD5_HMAC_BLOCK_SIZE }, 1242 { .name = "sha1", 1243 .hash_zero = sha1_zero_message_hash, 1244 .hash_init = (u8 *)n2_sha1_init, 1245 .auth_type = AUTH_TYPE_SHA1, 1246 .hmac_type = AUTH_TYPE_HMAC_SHA1, 1247 .hw_op_hashsz = SHA1_DIGEST_SIZE, 1248 .digest_size = SHA1_DIGEST_SIZE, 1249 .statesize = sizeof(struct sha1_state), 1250 .block_size = SHA1_BLOCK_SIZE }, 1251 { .name = "sha256", 1252 .hash_zero = sha256_zero_message_hash, 1253 .hash_init = (u8 *)n2_sha256_init, 1254 .auth_type = AUTH_TYPE_SHA256, 1255 .hmac_type = AUTH_TYPE_HMAC_SHA256, 1256 .hw_op_hashsz = SHA256_DIGEST_SIZE, 1257 .digest_size = SHA256_DIGEST_SIZE, 1258 .statesize = sizeof(struct sha256_state), 1259 .block_size = SHA256_BLOCK_SIZE }, 1260 { .name = "sha224", 1261 .hash_zero = sha224_zero_message_hash, 1262 .hash_init = (u8 *)n2_sha224_init, 1263 .auth_type = AUTH_TYPE_SHA256, 1264 .hmac_type = AUTH_TYPE_RESERVED, 1265 .hw_op_hashsz = SHA256_DIGEST_SIZE, 1266 .digest_size = SHA224_DIGEST_SIZE, 1267 .statesize = sizeof(struct sha256_state), 1268 .block_size = SHA224_BLOCK_SIZE }, 1269 }; 1270 #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls) 1271 1272 static LIST_HEAD(ahash_algs); 1273 static LIST_HEAD(hmac_algs); 1274 1275 static int algs_registered; 1276 1277 static void __n2_unregister_algs(void) 1278 { 1279 struct n2_skcipher_alg *skcipher, *skcipher_tmp; 1280 struct n2_ahash_alg *alg, *alg_tmp; 1281 struct n2_hmac_alg *hmac, *hmac_tmp; 1282 1283 list_for_each_entry_safe(skcipher, skcipher_tmp, &skcipher_algs, entry) { 1284 crypto_unregister_skcipher(&skcipher->skcipher); 1285 list_del(&skcipher->entry); 1286 kfree(skcipher); 1287 } 1288 list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) { 1289 crypto_unregister_ahash(&hmac->derived.alg); 1290 list_del(&hmac->derived.entry); 1291 kfree(hmac); 1292 } 1293 list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) { 1294 crypto_unregister_ahash(&alg->alg); 1295 list_del(&alg->entry); 1296 kfree(alg); 1297 } 1298 } 1299 1300 static int n2_skcipher_init_tfm(struct crypto_skcipher *tfm) 1301 { 1302 crypto_skcipher_set_reqsize(tfm, sizeof(struct n2_request_context)); 1303 return 0; 1304 } 1305 1306 static int __n2_register_one_skcipher(const struct n2_skcipher_tmpl *tmpl) 1307 { 1308 struct n2_skcipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL); 1309 struct skcipher_alg *alg; 1310 int err; 1311 1312 if (!p) 1313 return -ENOMEM; 1314 1315 alg = &p->skcipher; 1316 *alg = tmpl->skcipher; 1317 1318 snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name); 1319 snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name); 1320 alg->base.cra_priority = N2_CRA_PRIORITY; 1321 alg->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC | 1322 CRYPTO_ALG_ALLOCATES_MEMORY; 1323 alg->base.cra_blocksize = tmpl->block_size; 1324 p->enc_type = tmpl->enc_type; 1325 alg->base.cra_ctxsize = sizeof(struct n2_skcipher_context); 1326 alg->base.cra_module = THIS_MODULE; 1327 alg->init = n2_skcipher_init_tfm; 1328 1329 list_add(&p->entry, &skcipher_algs); 1330 err = crypto_register_skcipher(alg); 1331 if (err) { 1332 pr_err("%s alg registration failed\n", alg->base.cra_name); 1333 list_del(&p->entry); 1334 kfree(p); 1335 } else { 1336 pr_info("%s alg registered\n", alg->base.cra_name); 1337 } 1338 return err; 1339 } 1340 1341 static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash) 1342 { 1343 struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL); 1344 struct ahash_alg *ahash; 1345 struct crypto_alg *base; 1346 int err; 1347 1348 if (!p) 1349 return -ENOMEM; 1350 1351 p->child_alg = n2ahash->alg.halg.base.cra_name; 1352 memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg)); 1353 INIT_LIST_HEAD(&p->derived.entry); 1354 1355 ahash = &p->derived.alg; 1356 ahash->digest = n2_hmac_async_digest; 1357 ahash->setkey = n2_hmac_async_setkey; 1358 1359 base = &ahash->halg.base; 1360 if (snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", 1361 p->child_alg) >= CRYPTO_MAX_ALG_NAME) 1362 goto out_free_p; 1363 if (snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", 1364 p->child_alg) >= CRYPTO_MAX_ALG_NAME) 1365 goto out_free_p; 1366 1367 base->cra_ctxsize = sizeof(struct n2_hmac_ctx); 1368 base->cra_init = n2_hmac_cra_init; 1369 base->cra_exit = n2_hmac_cra_exit; 1370 1371 list_add(&p->derived.entry, &hmac_algs); 1372 err = crypto_register_ahash(ahash); 1373 if (err) { 1374 pr_err("%s alg registration failed\n", base->cra_name); 1375 list_del(&p->derived.entry); 1376 out_free_p: 1377 kfree(p); 1378 } else { 1379 pr_info("%s alg registered\n", base->cra_name); 1380 } 1381 return err; 1382 } 1383 1384 static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl) 1385 { 1386 struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL); 1387 struct hash_alg_common *halg; 1388 struct crypto_alg *base; 1389 struct ahash_alg *ahash; 1390 int err; 1391 1392 if (!p) 1393 return -ENOMEM; 1394 1395 p->hash_zero = tmpl->hash_zero; 1396 p->hash_init = tmpl->hash_init; 1397 p->auth_type = tmpl->auth_type; 1398 p->hmac_type = tmpl->hmac_type; 1399 p->hw_op_hashsz = tmpl->hw_op_hashsz; 1400 p->digest_size = tmpl->digest_size; 1401 1402 ahash = &p->alg; 1403 ahash->init = n2_hash_async_init; 1404 ahash->update = n2_hash_async_update; 1405 ahash->final = n2_hash_async_final; 1406 ahash->finup = n2_hash_async_finup; 1407 ahash->digest = n2_hash_async_digest; 1408 ahash->export = n2_hash_async_noexport; 1409 ahash->import = n2_hash_async_noimport; 1410 1411 halg = &ahash->halg; 1412 halg->digestsize = tmpl->digest_size; 1413 halg->statesize = tmpl->statesize; 1414 1415 base = &halg->base; 1416 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name); 1417 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name); 1418 base->cra_priority = N2_CRA_PRIORITY; 1419 base->cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | 1420 CRYPTO_ALG_NEED_FALLBACK; 1421 base->cra_blocksize = tmpl->block_size; 1422 base->cra_ctxsize = sizeof(struct n2_hash_ctx); 1423 base->cra_module = THIS_MODULE; 1424 base->cra_init = n2_hash_cra_init; 1425 base->cra_exit = n2_hash_cra_exit; 1426 1427 list_add(&p->entry, &ahash_algs); 1428 err = crypto_register_ahash(ahash); 1429 if (err) { 1430 pr_err("%s alg registration failed\n", base->cra_name); 1431 list_del(&p->entry); 1432 kfree(p); 1433 } else { 1434 pr_info("%s alg registered\n", base->cra_name); 1435 } 1436 if (!err && p->hmac_type != AUTH_TYPE_RESERVED) 1437 err = __n2_register_one_hmac(p); 1438 return err; 1439 } 1440 1441 static int n2_register_algs(void) 1442 { 1443 int i, err = 0; 1444 1445 mutex_lock(&spu_lock); 1446 if (algs_registered++) 1447 goto out; 1448 1449 for (i = 0; i < NUM_HASH_TMPLS; i++) { 1450 err = __n2_register_one_ahash(&hash_tmpls[i]); 1451 if (err) { 1452 __n2_unregister_algs(); 1453 goto out; 1454 } 1455 } 1456 for (i = 0; i < NUM_CIPHER_TMPLS; i++) { 1457 err = __n2_register_one_skcipher(&skcipher_tmpls[i]); 1458 if (err) { 1459 __n2_unregister_algs(); 1460 goto out; 1461 } 1462 } 1463 1464 out: 1465 mutex_unlock(&spu_lock); 1466 return err; 1467 } 1468 1469 static void n2_unregister_algs(void) 1470 { 1471 mutex_lock(&spu_lock); 1472 if (!--algs_registered) 1473 __n2_unregister_algs(); 1474 mutex_unlock(&spu_lock); 1475 } 1476 1477 /* To map CWQ queues to interrupt sources, the hypervisor API provides 1478 * a devino. This isn't very useful to us because all of the 1479 * interrupts listed in the device_node have been translated to 1480 * Linux virtual IRQ cookie numbers. 1481 * 1482 * So we have to back-translate, going through the 'intr' and 'ino' 1483 * property tables of the n2cp MDESC node, matching it with the OF 1484 * 'interrupts' property entries, in order to figure out which 1485 * devino goes to which already-translated IRQ. 1486 */ 1487 static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip, 1488 unsigned long dev_ino) 1489 { 1490 const unsigned int *dev_intrs; 1491 unsigned int intr; 1492 int i; 1493 1494 for (i = 0; i < ip->num_intrs; i++) { 1495 if (ip->ino_table[i].ino == dev_ino) 1496 break; 1497 } 1498 if (i == ip->num_intrs) 1499 return -ENODEV; 1500 1501 intr = ip->ino_table[i].intr; 1502 1503 dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL); 1504 if (!dev_intrs) 1505 return -ENODEV; 1506 1507 for (i = 0; i < dev->archdata.num_irqs; i++) { 1508 if (dev_intrs[i] == intr) 1509 return i; 1510 } 1511 1512 return -ENODEV; 1513 } 1514 1515 static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip, 1516 const char *irq_name, struct spu_queue *p, 1517 irq_handler_t handler) 1518 { 1519 unsigned long herr; 1520 int index; 1521 1522 herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino); 1523 if (herr) 1524 return -EINVAL; 1525 1526 index = find_devino_index(dev, ip, p->devino); 1527 if (index < 0) 1528 return index; 1529 1530 p->irq = dev->archdata.irqs[index]; 1531 1532 sprintf(p->irq_name, "%s-%d", irq_name, index); 1533 1534 return request_irq(p->irq, handler, 0, p->irq_name, p); 1535 } 1536 1537 static struct kmem_cache *queue_cache[2]; 1538 1539 static void *new_queue(unsigned long q_type) 1540 { 1541 return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL); 1542 } 1543 1544 static void free_queue(void *p, unsigned long q_type) 1545 { 1546 kmem_cache_free(queue_cache[q_type - 1], p); 1547 } 1548 1549 static int queue_cache_init(void) 1550 { 1551 if (!queue_cache[HV_NCS_QTYPE_MAU - 1]) 1552 queue_cache[HV_NCS_QTYPE_MAU - 1] = 1553 kmem_cache_create("mau_queue", 1554 (MAU_NUM_ENTRIES * 1555 MAU_ENTRY_SIZE), 1556 MAU_ENTRY_SIZE, 0, NULL); 1557 if (!queue_cache[HV_NCS_QTYPE_MAU - 1]) 1558 return -ENOMEM; 1559 1560 if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) 1561 queue_cache[HV_NCS_QTYPE_CWQ - 1] = 1562 kmem_cache_create("cwq_queue", 1563 (CWQ_NUM_ENTRIES * 1564 CWQ_ENTRY_SIZE), 1565 CWQ_ENTRY_SIZE, 0, NULL); 1566 if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) { 1567 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]); 1568 queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL; 1569 return -ENOMEM; 1570 } 1571 return 0; 1572 } 1573 1574 static void queue_cache_destroy(void) 1575 { 1576 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]); 1577 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]); 1578 queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL; 1579 queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL; 1580 } 1581 1582 static long spu_queue_register_workfn(void *arg) 1583 { 1584 struct spu_qreg *qr = arg; 1585 struct spu_queue *p = qr->queue; 1586 unsigned long q_type = qr->type; 1587 unsigned long hv_ret; 1588 1589 hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q), 1590 CWQ_NUM_ENTRIES, &p->qhandle); 1591 if (!hv_ret) 1592 sun4v_ncs_sethead_marker(p->qhandle, 0); 1593 1594 return hv_ret ? -EINVAL : 0; 1595 } 1596 1597 static int spu_queue_register(struct spu_queue *p, unsigned long q_type) 1598 { 1599 int cpu = cpumask_any_and(&p->sharing, cpu_online_mask); 1600 struct spu_qreg qr = { .queue = p, .type = q_type }; 1601 1602 return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr); 1603 } 1604 1605 static int spu_queue_setup(struct spu_queue *p) 1606 { 1607 int err; 1608 1609 p->q = new_queue(p->q_type); 1610 if (!p->q) 1611 return -ENOMEM; 1612 1613 err = spu_queue_register(p, p->q_type); 1614 if (err) { 1615 free_queue(p->q, p->q_type); 1616 p->q = NULL; 1617 } 1618 1619 return err; 1620 } 1621 1622 static void spu_queue_destroy(struct spu_queue *p) 1623 { 1624 unsigned long hv_ret; 1625 1626 if (!p->q) 1627 return; 1628 1629 hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle); 1630 1631 if (!hv_ret) 1632 free_queue(p->q, p->q_type); 1633 } 1634 1635 static void spu_list_destroy(struct list_head *list) 1636 { 1637 struct spu_queue *p, *n; 1638 1639 list_for_each_entry_safe(p, n, list, list) { 1640 int i; 1641 1642 for (i = 0; i < NR_CPUS; i++) { 1643 if (cpu_to_cwq[i] == p) 1644 cpu_to_cwq[i] = NULL; 1645 } 1646 1647 if (p->irq) { 1648 free_irq(p->irq, p); 1649 p->irq = 0; 1650 } 1651 spu_queue_destroy(p); 1652 list_del(&p->list); 1653 kfree(p); 1654 } 1655 } 1656 1657 /* Walk the backward arcs of a CWQ 'exec-unit' node, 1658 * gathering cpu membership information. 1659 */ 1660 static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc, 1661 struct platform_device *dev, 1662 u64 node, struct spu_queue *p, 1663 struct spu_queue **table) 1664 { 1665 u64 arc; 1666 1667 mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) { 1668 u64 tgt = mdesc_arc_target(mdesc, arc); 1669 const char *name = mdesc_node_name(mdesc, tgt); 1670 const u64 *id; 1671 1672 if (strcmp(name, "cpu")) 1673 continue; 1674 id = mdesc_get_property(mdesc, tgt, "id", NULL); 1675 if (table[*id] != NULL) { 1676 dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n", 1677 dev->dev.of_node); 1678 return -EINVAL; 1679 } 1680 cpumask_set_cpu(*id, &p->sharing); 1681 table[*id] = p; 1682 } 1683 return 0; 1684 } 1685 1686 /* Process an 'exec-unit' MDESC node of type 'cwq'. */ 1687 static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list, 1688 struct platform_device *dev, struct mdesc_handle *mdesc, 1689 u64 node, const char *iname, unsigned long q_type, 1690 irq_handler_t handler, struct spu_queue **table) 1691 { 1692 struct spu_queue *p; 1693 int err; 1694 1695 p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL); 1696 if (!p) { 1697 dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n", 1698 dev->dev.of_node); 1699 return -ENOMEM; 1700 } 1701 1702 cpumask_clear(&p->sharing); 1703 spin_lock_init(&p->lock); 1704 p->q_type = q_type; 1705 INIT_LIST_HEAD(&p->jobs); 1706 list_add(&p->list, list); 1707 1708 err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table); 1709 if (err) 1710 return err; 1711 1712 err = spu_queue_setup(p); 1713 if (err) 1714 return err; 1715 1716 return spu_map_ino(dev, ip, iname, p, handler); 1717 } 1718 1719 static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev, 1720 struct spu_mdesc_info *ip, struct list_head *list, 1721 const char *exec_name, unsigned long q_type, 1722 irq_handler_t handler, struct spu_queue **table) 1723 { 1724 int err = 0; 1725 u64 node; 1726 1727 mdesc_for_each_node_by_name(mdesc, node, "exec-unit") { 1728 const char *type; 1729 1730 type = mdesc_get_property(mdesc, node, "type", NULL); 1731 if (!type || strcmp(type, exec_name)) 1732 continue; 1733 1734 err = handle_exec_unit(ip, list, dev, mdesc, node, 1735 exec_name, q_type, handler, table); 1736 if (err) { 1737 spu_list_destroy(list); 1738 break; 1739 } 1740 } 1741 1742 return err; 1743 } 1744 1745 static int get_irq_props(struct mdesc_handle *mdesc, u64 node, 1746 struct spu_mdesc_info *ip) 1747 { 1748 const u64 *ino; 1749 int ino_len; 1750 int i; 1751 1752 ino = mdesc_get_property(mdesc, node, "ino", &ino_len); 1753 if (!ino) { 1754 printk("NO 'ino'\n"); 1755 return -ENODEV; 1756 } 1757 1758 ip->num_intrs = ino_len / sizeof(u64); 1759 ip->ino_table = kzalloc((sizeof(struct ino_blob) * 1760 ip->num_intrs), 1761 GFP_KERNEL); 1762 if (!ip->ino_table) 1763 return -ENOMEM; 1764 1765 for (i = 0; i < ip->num_intrs; i++) { 1766 struct ino_blob *b = &ip->ino_table[i]; 1767 b->intr = i + 1; 1768 b->ino = ino[i]; 1769 } 1770 1771 return 0; 1772 } 1773 1774 static int grab_mdesc_irq_props(struct mdesc_handle *mdesc, 1775 struct platform_device *dev, 1776 struct spu_mdesc_info *ip, 1777 const char *node_name) 1778 { 1779 u64 node, reg; 1780 1781 if (of_property_read_reg(dev->dev.of_node, 0, ®, NULL) < 0) 1782 return -ENODEV; 1783 1784 mdesc_for_each_node_by_name(mdesc, node, "virtual-device") { 1785 const char *name; 1786 const u64 *chdl; 1787 1788 name = mdesc_get_property(mdesc, node, "name", NULL); 1789 if (!name || strcmp(name, node_name)) 1790 continue; 1791 chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL); 1792 if (!chdl || (*chdl != reg)) 1793 continue; 1794 ip->cfg_handle = *chdl; 1795 return get_irq_props(mdesc, node, ip); 1796 } 1797 1798 return -ENODEV; 1799 } 1800 1801 static unsigned long n2_spu_hvapi_major; 1802 static unsigned long n2_spu_hvapi_minor; 1803 1804 static int n2_spu_hvapi_register(void) 1805 { 1806 int err; 1807 1808 n2_spu_hvapi_major = 2; 1809 n2_spu_hvapi_minor = 0; 1810 1811 err = sun4v_hvapi_register(HV_GRP_NCS, 1812 n2_spu_hvapi_major, 1813 &n2_spu_hvapi_minor); 1814 1815 if (!err) 1816 pr_info("Registered NCS HVAPI version %lu.%lu\n", 1817 n2_spu_hvapi_major, 1818 n2_spu_hvapi_minor); 1819 1820 return err; 1821 } 1822 1823 static void n2_spu_hvapi_unregister(void) 1824 { 1825 sun4v_hvapi_unregister(HV_GRP_NCS); 1826 } 1827 1828 static int global_ref; 1829 1830 static int grab_global_resources(void) 1831 { 1832 int err = 0; 1833 1834 mutex_lock(&spu_lock); 1835 1836 if (global_ref++) 1837 goto out; 1838 1839 err = n2_spu_hvapi_register(); 1840 if (err) 1841 goto out; 1842 1843 err = queue_cache_init(); 1844 if (err) 1845 goto out_hvapi_release; 1846 1847 err = -ENOMEM; 1848 cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *), 1849 GFP_KERNEL); 1850 if (!cpu_to_cwq) 1851 goto out_queue_cache_destroy; 1852 1853 cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *), 1854 GFP_KERNEL); 1855 if (!cpu_to_mau) 1856 goto out_free_cwq_table; 1857 1858 err = 0; 1859 1860 out: 1861 if (err) 1862 global_ref--; 1863 mutex_unlock(&spu_lock); 1864 return err; 1865 1866 out_free_cwq_table: 1867 kfree(cpu_to_cwq); 1868 cpu_to_cwq = NULL; 1869 1870 out_queue_cache_destroy: 1871 queue_cache_destroy(); 1872 1873 out_hvapi_release: 1874 n2_spu_hvapi_unregister(); 1875 goto out; 1876 } 1877 1878 static void release_global_resources(void) 1879 { 1880 mutex_lock(&spu_lock); 1881 if (!--global_ref) { 1882 kfree(cpu_to_cwq); 1883 cpu_to_cwq = NULL; 1884 1885 kfree(cpu_to_mau); 1886 cpu_to_mau = NULL; 1887 1888 queue_cache_destroy(); 1889 n2_spu_hvapi_unregister(); 1890 } 1891 mutex_unlock(&spu_lock); 1892 } 1893 1894 static struct n2_crypto *alloc_n2cp(void) 1895 { 1896 struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL); 1897 1898 if (np) 1899 INIT_LIST_HEAD(&np->cwq_list); 1900 1901 return np; 1902 } 1903 1904 static void free_n2cp(struct n2_crypto *np) 1905 { 1906 kfree(np->cwq_info.ino_table); 1907 np->cwq_info.ino_table = NULL; 1908 1909 kfree(np); 1910 } 1911 1912 static void n2_spu_driver_version(void) 1913 { 1914 static int n2_spu_version_printed; 1915 1916 if (n2_spu_version_printed++ == 0) 1917 pr_info("%s", version); 1918 } 1919 1920 static int n2_crypto_probe(struct platform_device *dev) 1921 { 1922 struct mdesc_handle *mdesc; 1923 struct n2_crypto *np; 1924 int err; 1925 1926 n2_spu_driver_version(); 1927 1928 pr_info("Found N2CP at %pOF\n", dev->dev.of_node); 1929 1930 np = alloc_n2cp(); 1931 if (!np) { 1932 dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n", 1933 dev->dev.of_node); 1934 return -ENOMEM; 1935 } 1936 1937 err = grab_global_resources(); 1938 if (err) { 1939 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n", 1940 dev->dev.of_node); 1941 goto out_free_n2cp; 1942 } 1943 1944 mdesc = mdesc_grab(); 1945 1946 if (!mdesc) { 1947 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n", 1948 dev->dev.of_node); 1949 err = -ENODEV; 1950 goto out_free_global; 1951 } 1952 err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp"); 1953 if (err) { 1954 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n", 1955 dev->dev.of_node); 1956 mdesc_release(mdesc); 1957 goto out_free_global; 1958 } 1959 1960 err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list, 1961 "cwq", HV_NCS_QTYPE_CWQ, cwq_intr, 1962 cpu_to_cwq); 1963 mdesc_release(mdesc); 1964 1965 if (err) { 1966 dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n", 1967 dev->dev.of_node); 1968 goto out_free_global; 1969 } 1970 1971 err = n2_register_algs(); 1972 if (err) { 1973 dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n", 1974 dev->dev.of_node); 1975 goto out_free_spu_list; 1976 } 1977 1978 dev_set_drvdata(&dev->dev, np); 1979 1980 return 0; 1981 1982 out_free_spu_list: 1983 spu_list_destroy(&np->cwq_list); 1984 1985 out_free_global: 1986 release_global_resources(); 1987 1988 out_free_n2cp: 1989 free_n2cp(np); 1990 1991 return err; 1992 } 1993 1994 static void n2_crypto_remove(struct platform_device *dev) 1995 { 1996 struct n2_crypto *np = dev_get_drvdata(&dev->dev); 1997 1998 n2_unregister_algs(); 1999 2000 spu_list_destroy(&np->cwq_list); 2001 2002 release_global_resources(); 2003 2004 free_n2cp(np); 2005 } 2006 2007 static struct n2_mau *alloc_ncp(void) 2008 { 2009 struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL); 2010 2011 if (mp) 2012 INIT_LIST_HEAD(&mp->mau_list); 2013 2014 return mp; 2015 } 2016 2017 static void free_ncp(struct n2_mau *mp) 2018 { 2019 kfree(mp->mau_info.ino_table); 2020 mp->mau_info.ino_table = NULL; 2021 2022 kfree(mp); 2023 } 2024 2025 static int n2_mau_probe(struct platform_device *dev) 2026 { 2027 struct mdesc_handle *mdesc; 2028 struct n2_mau *mp; 2029 int err; 2030 2031 n2_spu_driver_version(); 2032 2033 pr_info("Found NCP at %pOF\n", dev->dev.of_node); 2034 2035 mp = alloc_ncp(); 2036 if (!mp) { 2037 dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n", 2038 dev->dev.of_node); 2039 return -ENOMEM; 2040 } 2041 2042 err = grab_global_resources(); 2043 if (err) { 2044 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n", 2045 dev->dev.of_node); 2046 goto out_free_ncp; 2047 } 2048 2049 mdesc = mdesc_grab(); 2050 2051 if (!mdesc) { 2052 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n", 2053 dev->dev.of_node); 2054 err = -ENODEV; 2055 goto out_free_global; 2056 } 2057 2058 err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp"); 2059 if (err) { 2060 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n", 2061 dev->dev.of_node); 2062 mdesc_release(mdesc); 2063 goto out_free_global; 2064 } 2065 2066 err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list, 2067 "mau", HV_NCS_QTYPE_MAU, mau_intr, 2068 cpu_to_mau); 2069 mdesc_release(mdesc); 2070 2071 if (err) { 2072 dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n", 2073 dev->dev.of_node); 2074 goto out_free_global; 2075 } 2076 2077 dev_set_drvdata(&dev->dev, mp); 2078 2079 return 0; 2080 2081 out_free_global: 2082 release_global_resources(); 2083 2084 out_free_ncp: 2085 free_ncp(mp); 2086 2087 return err; 2088 } 2089 2090 static void n2_mau_remove(struct platform_device *dev) 2091 { 2092 struct n2_mau *mp = dev_get_drvdata(&dev->dev); 2093 2094 spu_list_destroy(&mp->mau_list); 2095 2096 release_global_resources(); 2097 2098 free_ncp(mp); 2099 } 2100 2101 static const struct of_device_id n2_crypto_match[] = { 2102 { 2103 .name = "n2cp", 2104 .compatible = "SUNW,n2-cwq", 2105 }, 2106 { 2107 .name = "n2cp", 2108 .compatible = "SUNW,vf-cwq", 2109 }, 2110 { 2111 .name = "n2cp", 2112 .compatible = "SUNW,kt-cwq", 2113 }, 2114 {}, 2115 }; 2116 2117 MODULE_DEVICE_TABLE(of, n2_crypto_match); 2118 2119 static struct platform_driver n2_crypto_driver = { 2120 .driver = { 2121 .name = "n2cp", 2122 .of_match_table = n2_crypto_match, 2123 }, 2124 .probe = n2_crypto_probe, 2125 .remove_new = n2_crypto_remove, 2126 }; 2127 2128 static const struct of_device_id n2_mau_match[] = { 2129 { 2130 .name = "ncp", 2131 .compatible = "SUNW,n2-mau", 2132 }, 2133 { 2134 .name = "ncp", 2135 .compatible = "SUNW,vf-mau", 2136 }, 2137 { 2138 .name = "ncp", 2139 .compatible = "SUNW,kt-mau", 2140 }, 2141 {}, 2142 }; 2143 2144 MODULE_DEVICE_TABLE(of, n2_mau_match); 2145 2146 static struct platform_driver n2_mau_driver = { 2147 .driver = { 2148 .name = "ncp", 2149 .of_match_table = n2_mau_match, 2150 }, 2151 .probe = n2_mau_probe, 2152 .remove_new = n2_mau_remove, 2153 }; 2154 2155 static struct platform_driver * const drivers[] = { 2156 &n2_crypto_driver, 2157 &n2_mau_driver, 2158 }; 2159 2160 static int __init n2_init(void) 2161 { 2162 return platform_register_drivers(drivers, ARRAY_SIZE(drivers)); 2163 } 2164 2165 static void __exit n2_exit(void) 2166 { 2167 platform_unregister_drivers(drivers, ARRAY_SIZE(drivers)); 2168 } 2169 2170 module_init(n2_init); 2171 module_exit(n2_exit); 2172