1 // SPDX-License-Identifier: GPL-2.0-only 2 /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support. 3 * 4 * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net> 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/of.h> 12 #include <linux/of_device.h> 13 #include <linux/cpumask.h> 14 #include <linux/slab.h> 15 #include <linux/interrupt.h> 16 #include <linux/crypto.h> 17 #include <crypto/md5.h> 18 #include <crypto/sha.h> 19 #include <crypto/aes.h> 20 #include <crypto/internal/des.h> 21 #include <linux/mutex.h> 22 #include <linux/delay.h> 23 #include <linux/sched.h> 24 25 #include <crypto/internal/hash.h> 26 #include <crypto/internal/skcipher.h> 27 #include <crypto/scatterwalk.h> 28 #include <crypto/algapi.h> 29 30 #include <asm/hypervisor.h> 31 #include <asm/mdesc.h> 32 33 #include "n2_core.h" 34 35 #define DRV_MODULE_NAME "n2_crypto" 36 #define DRV_MODULE_VERSION "0.2" 37 #define DRV_MODULE_RELDATE "July 28, 2011" 38 39 static const char version[] = 40 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n"; 41 42 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)"); 43 MODULE_DESCRIPTION("Niagara2 Crypto driver"); 44 MODULE_LICENSE("GPL"); 45 MODULE_VERSION(DRV_MODULE_VERSION); 46 47 #define N2_CRA_PRIORITY 200 48 49 static DEFINE_MUTEX(spu_lock); 50 51 struct spu_queue { 52 cpumask_t sharing; 53 unsigned long qhandle; 54 55 spinlock_t lock; 56 u8 q_type; 57 void *q; 58 unsigned long head; 59 unsigned long tail; 60 struct list_head jobs; 61 62 unsigned long devino; 63 64 char irq_name[32]; 65 unsigned int irq; 66 67 struct list_head list; 68 }; 69 70 struct spu_qreg { 71 struct spu_queue *queue; 72 unsigned long type; 73 }; 74 75 static struct spu_queue **cpu_to_cwq; 76 static struct spu_queue **cpu_to_mau; 77 78 static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off) 79 { 80 if (q->q_type == HV_NCS_QTYPE_MAU) { 81 off += MAU_ENTRY_SIZE; 82 if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES)) 83 off = 0; 84 } else { 85 off += CWQ_ENTRY_SIZE; 86 if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES)) 87 off = 0; 88 } 89 return off; 90 } 91 92 struct n2_request_common { 93 struct list_head entry; 94 unsigned int offset; 95 }; 96 #define OFFSET_NOT_RUNNING (~(unsigned int)0) 97 98 /* An async job request records the final tail value it used in 99 * n2_request_common->offset, test to see if that offset is in 100 * the range old_head, new_head, inclusive. 101 */ 102 static inline bool job_finished(struct spu_queue *q, unsigned int offset, 103 unsigned long old_head, unsigned long new_head) 104 { 105 if (old_head <= new_head) { 106 if (offset > old_head && offset <= new_head) 107 return true; 108 } else { 109 if (offset > old_head || offset <= new_head) 110 return true; 111 } 112 return false; 113 } 114 115 /* When the HEAD marker is unequal to the actual HEAD, we get 116 * a virtual device INO interrupt. We should process the 117 * completed CWQ entries and adjust the HEAD marker to clear 118 * the IRQ. 119 */ 120 static irqreturn_t cwq_intr(int irq, void *dev_id) 121 { 122 unsigned long off, new_head, hv_ret; 123 struct spu_queue *q = dev_id; 124 125 pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n", 126 smp_processor_id(), q->qhandle); 127 128 spin_lock(&q->lock); 129 130 hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head); 131 132 pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n", 133 smp_processor_id(), new_head, hv_ret); 134 135 for (off = q->head; off != new_head; off = spu_next_offset(q, off)) { 136 /* XXX ... XXX */ 137 } 138 139 hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head); 140 if (hv_ret == HV_EOK) 141 q->head = new_head; 142 143 spin_unlock(&q->lock); 144 145 return IRQ_HANDLED; 146 } 147 148 static irqreturn_t mau_intr(int irq, void *dev_id) 149 { 150 struct spu_queue *q = dev_id; 151 unsigned long head, hv_ret; 152 153 spin_lock(&q->lock); 154 155 pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n", 156 smp_processor_id(), q->qhandle); 157 158 hv_ret = sun4v_ncs_gethead(q->qhandle, &head); 159 160 pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n", 161 smp_processor_id(), head, hv_ret); 162 163 sun4v_ncs_sethead_marker(q->qhandle, head); 164 165 spin_unlock(&q->lock); 166 167 return IRQ_HANDLED; 168 } 169 170 static void *spu_queue_next(struct spu_queue *q, void *cur) 171 { 172 return q->q + spu_next_offset(q, cur - q->q); 173 } 174 175 static int spu_queue_num_free(struct spu_queue *q) 176 { 177 unsigned long head = q->head; 178 unsigned long tail = q->tail; 179 unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES); 180 unsigned long diff; 181 182 if (head > tail) 183 diff = head - tail; 184 else 185 diff = (end - tail) + head; 186 187 return (diff / CWQ_ENTRY_SIZE) - 1; 188 } 189 190 static void *spu_queue_alloc(struct spu_queue *q, int num_entries) 191 { 192 int avail = spu_queue_num_free(q); 193 194 if (avail >= num_entries) 195 return q->q + q->tail; 196 197 return NULL; 198 } 199 200 static unsigned long spu_queue_submit(struct spu_queue *q, void *last) 201 { 202 unsigned long hv_ret, new_tail; 203 204 new_tail = spu_next_offset(q, last - q->q); 205 206 hv_ret = sun4v_ncs_settail(q->qhandle, new_tail); 207 if (hv_ret == HV_EOK) 208 q->tail = new_tail; 209 return hv_ret; 210 } 211 212 static u64 control_word_base(unsigned int len, unsigned int hmac_key_len, 213 int enc_type, int auth_type, 214 unsigned int hash_len, 215 bool sfas, bool sob, bool eob, bool encrypt, 216 int opcode) 217 { 218 u64 word = (len - 1) & CONTROL_LEN; 219 220 word |= ((u64) opcode << CONTROL_OPCODE_SHIFT); 221 word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT); 222 word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT); 223 if (sfas) 224 word |= CONTROL_STORE_FINAL_AUTH_STATE; 225 if (sob) 226 word |= CONTROL_START_OF_BLOCK; 227 if (eob) 228 word |= CONTROL_END_OF_BLOCK; 229 if (encrypt) 230 word |= CONTROL_ENCRYPT; 231 if (hmac_key_len) 232 word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT; 233 if (hash_len) 234 word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT; 235 236 return word; 237 } 238 239 #if 0 240 static inline bool n2_should_run_async(struct spu_queue *qp, int this_len) 241 { 242 if (this_len >= 64 || 243 qp->head != qp->tail) 244 return true; 245 return false; 246 } 247 #endif 248 249 struct n2_ahash_alg { 250 struct list_head entry; 251 const u8 *hash_zero; 252 const u32 *hash_init; 253 u8 hw_op_hashsz; 254 u8 digest_size; 255 u8 auth_type; 256 u8 hmac_type; 257 struct ahash_alg alg; 258 }; 259 260 static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm) 261 { 262 struct crypto_alg *alg = tfm->__crt_alg; 263 struct ahash_alg *ahash_alg; 264 265 ahash_alg = container_of(alg, struct ahash_alg, halg.base); 266 267 return container_of(ahash_alg, struct n2_ahash_alg, alg); 268 } 269 270 struct n2_hmac_alg { 271 const char *child_alg; 272 struct n2_ahash_alg derived; 273 }; 274 275 static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm) 276 { 277 struct crypto_alg *alg = tfm->__crt_alg; 278 struct ahash_alg *ahash_alg; 279 280 ahash_alg = container_of(alg, struct ahash_alg, halg.base); 281 282 return container_of(ahash_alg, struct n2_hmac_alg, derived.alg); 283 } 284 285 struct n2_hash_ctx { 286 struct crypto_ahash *fallback_tfm; 287 }; 288 289 #define N2_HASH_KEY_MAX 32 /* HW limit for all HMAC requests */ 290 291 struct n2_hmac_ctx { 292 struct n2_hash_ctx base; 293 294 struct crypto_shash *child_shash; 295 296 int hash_key_len; 297 unsigned char hash_key[N2_HASH_KEY_MAX]; 298 }; 299 300 struct n2_hash_req_ctx { 301 union { 302 struct md5_state md5; 303 struct sha1_state sha1; 304 struct sha256_state sha256; 305 } u; 306 307 struct ahash_request fallback_req; 308 }; 309 310 static int n2_hash_async_init(struct ahash_request *req) 311 { 312 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 313 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 314 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); 315 316 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); 317 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; 318 319 return crypto_ahash_init(&rctx->fallback_req); 320 } 321 322 static int n2_hash_async_update(struct ahash_request *req) 323 { 324 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 325 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 326 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); 327 328 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); 329 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; 330 rctx->fallback_req.nbytes = req->nbytes; 331 rctx->fallback_req.src = req->src; 332 333 return crypto_ahash_update(&rctx->fallback_req); 334 } 335 336 static int n2_hash_async_final(struct ahash_request *req) 337 { 338 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 339 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 340 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); 341 342 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); 343 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; 344 rctx->fallback_req.result = req->result; 345 346 return crypto_ahash_final(&rctx->fallback_req); 347 } 348 349 static int n2_hash_async_finup(struct ahash_request *req) 350 { 351 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 352 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 353 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); 354 355 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); 356 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; 357 rctx->fallback_req.nbytes = req->nbytes; 358 rctx->fallback_req.src = req->src; 359 rctx->fallback_req.result = req->result; 360 361 return crypto_ahash_finup(&rctx->fallback_req); 362 } 363 364 static int n2_hash_async_noimport(struct ahash_request *req, const void *in) 365 { 366 return -ENOSYS; 367 } 368 369 static int n2_hash_async_noexport(struct ahash_request *req, void *out) 370 { 371 return -ENOSYS; 372 } 373 374 static int n2_hash_cra_init(struct crypto_tfm *tfm) 375 { 376 const char *fallback_driver_name = crypto_tfm_alg_name(tfm); 377 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); 378 struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash); 379 struct crypto_ahash *fallback_tfm; 380 int err; 381 382 fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0, 383 CRYPTO_ALG_NEED_FALLBACK); 384 if (IS_ERR(fallback_tfm)) { 385 pr_warn("Fallback driver '%s' could not be loaded!\n", 386 fallback_driver_name); 387 err = PTR_ERR(fallback_tfm); 388 goto out; 389 } 390 391 crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) + 392 crypto_ahash_reqsize(fallback_tfm))); 393 394 ctx->fallback_tfm = fallback_tfm; 395 return 0; 396 397 out: 398 return err; 399 } 400 401 static void n2_hash_cra_exit(struct crypto_tfm *tfm) 402 { 403 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); 404 struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash); 405 406 crypto_free_ahash(ctx->fallback_tfm); 407 } 408 409 static int n2_hmac_cra_init(struct crypto_tfm *tfm) 410 { 411 const char *fallback_driver_name = crypto_tfm_alg_name(tfm); 412 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); 413 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash); 414 struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm); 415 struct crypto_ahash *fallback_tfm; 416 struct crypto_shash *child_shash; 417 int err; 418 419 fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0, 420 CRYPTO_ALG_NEED_FALLBACK); 421 if (IS_ERR(fallback_tfm)) { 422 pr_warn("Fallback driver '%s' could not be loaded!\n", 423 fallback_driver_name); 424 err = PTR_ERR(fallback_tfm); 425 goto out; 426 } 427 428 child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0); 429 if (IS_ERR(child_shash)) { 430 pr_warn("Child shash '%s' could not be loaded!\n", 431 n2alg->child_alg); 432 err = PTR_ERR(child_shash); 433 goto out_free_fallback; 434 } 435 436 crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) + 437 crypto_ahash_reqsize(fallback_tfm))); 438 439 ctx->child_shash = child_shash; 440 ctx->base.fallback_tfm = fallback_tfm; 441 return 0; 442 443 out_free_fallback: 444 crypto_free_ahash(fallback_tfm); 445 446 out: 447 return err; 448 } 449 450 static void n2_hmac_cra_exit(struct crypto_tfm *tfm) 451 { 452 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); 453 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash); 454 455 crypto_free_ahash(ctx->base.fallback_tfm); 456 crypto_free_shash(ctx->child_shash); 457 } 458 459 static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key, 460 unsigned int keylen) 461 { 462 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm); 463 struct crypto_shash *child_shash = ctx->child_shash; 464 struct crypto_ahash *fallback_tfm; 465 SHASH_DESC_ON_STACK(shash, child_shash); 466 int err, bs, ds; 467 468 fallback_tfm = ctx->base.fallback_tfm; 469 err = crypto_ahash_setkey(fallback_tfm, key, keylen); 470 if (err) 471 return err; 472 473 shash->tfm = child_shash; 474 475 bs = crypto_shash_blocksize(child_shash); 476 ds = crypto_shash_digestsize(child_shash); 477 BUG_ON(ds > N2_HASH_KEY_MAX); 478 if (keylen > bs) { 479 err = crypto_shash_digest(shash, key, keylen, 480 ctx->hash_key); 481 if (err) 482 return err; 483 keylen = ds; 484 } else if (keylen <= N2_HASH_KEY_MAX) 485 memcpy(ctx->hash_key, key, keylen); 486 487 ctx->hash_key_len = keylen; 488 489 return err; 490 } 491 492 static unsigned long wait_for_tail(struct spu_queue *qp) 493 { 494 unsigned long head, hv_ret; 495 496 do { 497 hv_ret = sun4v_ncs_gethead(qp->qhandle, &head); 498 if (hv_ret != HV_EOK) { 499 pr_err("Hypervisor error on gethead\n"); 500 break; 501 } 502 if (head == qp->tail) { 503 qp->head = head; 504 break; 505 } 506 } while (1); 507 return hv_ret; 508 } 509 510 static unsigned long submit_and_wait_for_tail(struct spu_queue *qp, 511 struct cwq_initial_entry *ent) 512 { 513 unsigned long hv_ret = spu_queue_submit(qp, ent); 514 515 if (hv_ret == HV_EOK) 516 hv_ret = wait_for_tail(qp); 517 518 return hv_ret; 519 } 520 521 static int n2_do_async_digest(struct ahash_request *req, 522 unsigned int auth_type, unsigned int digest_size, 523 unsigned int result_size, void *hash_loc, 524 unsigned long auth_key, unsigned int auth_key_len) 525 { 526 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 527 struct cwq_initial_entry *ent; 528 struct crypto_hash_walk walk; 529 struct spu_queue *qp; 530 unsigned long flags; 531 int err = -ENODEV; 532 int nbytes, cpu; 533 534 /* The total effective length of the operation may not 535 * exceed 2^16. 536 */ 537 if (unlikely(req->nbytes > (1 << 16))) { 538 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 539 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); 540 541 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); 542 rctx->fallback_req.base.flags = 543 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; 544 rctx->fallback_req.nbytes = req->nbytes; 545 rctx->fallback_req.src = req->src; 546 rctx->fallback_req.result = req->result; 547 548 return crypto_ahash_digest(&rctx->fallback_req); 549 } 550 551 nbytes = crypto_hash_walk_first(req, &walk); 552 553 cpu = get_cpu(); 554 qp = cpu_to_cwq[cpu]; 555 if (!qp) 556 goto out; 557 558 spin_lock_irqsave(&qp->lock, flags); 559 560 /* XXX can do better, improve this later by doing a by-hand scatterlist 561 * XXX walk, etc. 562 */ 563 ent = qp->q + qp->tail; 564 565 ent->control = control_word_base(nbytes, auth_key_len, 0, 566 auth_type, digest_size, 567 false, true, false, false, 568 OPCODE_INPLACE_BIT | 569 OPCODE_AUTH_MAC); 570 ent->src_addr = __pa(walk.data); 571 ent->auth_key_addr = auth_key; 572 ent->auth_iv_addr = __pa(hash_loc); 573 ent->final_auth_state_addr = 0UL; 574 ent->enc_key_addr = 0UL; 575 ent->enc_iv_addr = 0UL; 576 ent->dest_addr = __pa(hash_loc); 577 578 nbytes = crypto_hash_walk_done(&walk, 0); 579 while (nbytes > 0) { 580 ent = spu_queue_next(qp, ent); 581 582 ent->control = (nbytes - 1); 583 ent->src_addr = __pa(walk.data); 584 ent->auth_key_addr = 0UL; 585 ent->auth_iv_addr = 0UL; 586 ent->final_auth_state_addr = 0UL; 587 ent->enc_key_addr = 0UL; 588 ent->enc_iv_addr = 0UL; 589 ent->dest_addr = 0UL; 590 591 nbytes = crypto_hash_walk_done(&walk, 0); 592 } 593 ent->control |= CONTROL_END_OF_BLOCK; 594 595 if (submit_and_wait_for_tail(qp, ent) != HV_EOK) 596 err = -EINVAL; 597 else 598 err = 0; 599 600 spin_unlock_irqrestore(&qp->lock, flags); 601 602 if (!err) 603 memcpy(req->result, hash_loc, result_size); 604 out: 605 put_cpu(); 606 607 return err; 608 } 609 610 static int n2_hash_async_digest(struct ahash_request *req) 611 { 612 struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm); 613 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 614 int ds; 615 616 ds = n2alg->digest_size; 617 if (unlikely(req->nbytes == 0)) { 618 memcpy(req->result, n2alg->hash_zero, ds); 619 return 0; 620 } 621 memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz); 622 623 return n2_do_async_digest(req, n2alg->auth_type, 624 n2alg->hw_op_hashsz, ds, 625 &rctx->u, 0UL, 0); 626 } 627 628 static int n2_hmac_async_digest(struct ahash_request *req) 629 { 630 struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm); 631 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 632 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 633 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm); 634 int ds; 635 636 ds = n2alg->derived.digest_size; 637 if (unlikely(req->nbytes == 0) || 638 unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) { 639 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 640 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); 641 642 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); 643 rctx->fallback_req.base.flags = 644 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; 645 rctx->fallback_req.nbytes = req->nbytes; 646 rctx->fallback_req.src = req->src; 647 rctx->fallback_req.result = req->result; 648 649 return crypto_ahash_digest(&rctx->fallback_req); 650 } 651 memcpy(&rctx->u, n2alg->derived.hash_init, 652 n2alg->derived.hw_op_hashsz); 653 654 return n2_do_async_digest(req, n2alg->derived.hmac_type, 655 n2alg->derived.hw_op_hashsz, ds, 656 &rctx->u, 657 __pa(&ctx->hash_key), 658 ctx->hash_key_len); 659 } 660 661 struct n2_skcipher_context { 662 int key_len; 663 int enc_type; 664 union { 665 u8 aes[AES_MAX_KEY_SIZE]; 666 u8 des[DES_KEY_SIZE]; 667 u8 des3[3 * DES_KEY_SIZE]; 668 u8 arc4[258]; /* S-box, X, Y */ 669 } key; 670 }; 671 672 #define N2_CHUNK_ARR_LEN 16 673 674 struct n2_crypto_chunk { 675 struct list_head entry; 676 unsigned long iv_paddr : 44; 677 unsigned long arr_len : 20; 678 unsigned long dest_paddr; 679 unsigned long dest_final; 680 struct { 681 unsigned long src_paddr : 44; 682 unsigned long src_len : 20; 683 } arr[N2_CHUNK_ARR_LEN]; 684 }; 685 686 struct n2_request_context { 687 struct skcipher_walk walk; 688 struct list_head chunk_list; 689 struct n2_crypto_chunk chunk; 690 u8 temp_iv[16]; 691 }; 692 693 /* The SPU allows some level of flexibility for partial cipher blocks 694 * being specified in a descriptor. 695 * 696 * It merely requires that every descriptor's length field is at least 697 * as large as the cipher block size. This means that a cipher block 698 * can span at most 2 descriptors. However, this does not allow a 699 * partial block to span into the final descriptor as that would 700 * violate the rule (since every descriptor's length must be at lest 701 * the block size). So, for example, assuming an 8 byte block size: 702 * 703 * 0xe --> 0xa --> 0x8 704 * 705 * is a valid length sequence, whereas: 706 * 707 * 0xe --> 0xb --> 0x7 708 * 709 * is not a valid sequence. 710 */ 711 712 struct n2_skcipher_alg { 713 struct list_head entry; 714 u8 enc_type; 715 struct skcipher_alg skcipher; 716 }; 717 718 static inline struct n2_skcipher_alg *n2_skcipher_alg(struct crypto_skcipher *tfm) 719 { 720 struct skcipher_alg *alg = crypto_skcipher_alg(tfm); 721 722 return container_of(alg, struct n2_skcipher_alg, skcipher); 723 } 724 725 struct n2_skcipher_request_context { 726 struct skcipher_walk walk; 727 }; 728 729 static int n2_aes_setkey(struct crypto_skcipher *skcipher, const u8 *key, 730 unsigned int keylen) 731 { 732 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher); 733 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm); 734 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher); 735 736 ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK); 737 738 switch (keylen) { 739 case AES_KEYSIZE_128: 740 ctx->enc_type |= ENC_TYPE_ALG_AES128; 741 break; 742 case AES_KEYSIZE_192: 743 ctx->enc_type |= ENC_TYPE_ALG_AES192; 744 break; 745 case AES_KEYSIZE_256: 746 ctx->enc_type |= ENC_TYPE_ALG_AES256; 747 break; 748 default: 749 crypto_skcipher_set_flags(skcipher, CRYPTO_TFM_RES_BAD_KEY_LEN); 750 return -EINVAL; 751 } 752 753 ctx->key_len = keylen; 754 memcpy(ctx->key.aes, key, keylen); 755 return 0; 756 } 757 758 static int n2_des_setkey(struct crypto_skcipher *skcipher, const u8 *key, 759 unsigned int keylen) 760 { 761 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher); 762 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm); 763 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher); 764 int err; 765 766 err = verify_skcipher_des_key(skcipher, key); 767 if (err) 768 return err; 769 770 ctx->enc_type = n2alg->enc_type; 771 772 ctx->key_len = keylen; 773 memcpy(ctx->key.des, key, keylen); 774 return 0; 775 } 776 777 static int n2_3des_setkey(struct crypto_skcipher *skcipher, const u8 *key, 778 unsigned int keylen) 779 { 780 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher); 781 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm); 782 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher); 783 int err; 784 785 err = verify_skcipher_des3_key(skcipher, key); 786 if (err) 787 return err; 788 789 ctx->enc_type = n2alg->enc_type; 790 791 ctx->key_len = keylen; 792 memcpy(ctx->key.des3, key, keylen); 793 return 0; 794 } 795 796 static int n2_arc4_setkey(struct crypto_skcipher *skcipher, const u8 *key, 797 unsigned int keylen) 798 { 799 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher); 800 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm); 801 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher); 802 u8 *s = ctx->key.arc4; 803 u8 *x = s + 256; 804 u8 *y = x + 1; 805 int i, j, k; 806 807 ctx->enc_type = n2alg->enc_type; 808 809 j = k = 0; 810 *x = 0; 811 *y = 0; 812 for (i = 0; i < 256; i++) 813 s[i] = i; 814 for (i = 0; i < 256; i++) { 815 u8 a = s[i]; 816 j = (j + key[k] + a) & 0xff; 817 s[i] = s[j]; 818 s[j] = a; 819 if (++k >= keylen) 820 k = 0; 821 } 822 823 return 0; 824 } 825 826 static inline int skcipher_descriptor_len(int nbytes, unsigned int block_size) 827 { 828 int this_len = nbytes; 829 830 this_len -= (nbytes & (block_size - 1)); 831 return this_len > (1 << 16) ? (1 << 16) : this_len; 832 } 833 834 static int __n2_crypt_chunk(struct crypto_skcipher *skcipher, 835 struct n2_crypto_chunk *cp, 836 struct spu_queue *qp, bool encrypt) 837 { 838 struct n2_skcipher_context *ctx = crypto_skcipher_ctx(skcipher); 839 struct cwq_initial_entry *ent; 840 bool in_place; 841 int i; 842 843 ent = spu_queue_alloc(qp, cp->arr_len); 844 if (!ent) { 845 pr_info("queue_alloc() of %d fails\n", 846 cp->arr_len); 847 return -EBUSY; 848 } 849 850 in_place = (cp->dest_paddr == cp->arr[0].src_paddr); 851 852 ent->control = control_word_base(cp->arr[0].src_len, 853 0, ctx->enc_type, 0, 0, 854 false, true, false, encrypt, 855 OPCODE_ENCRYPT | 856 (in_place ? OPCODE_INPLACE_BIT : 0)); 857 ent->src_addr = cp->arr[0].src_paddr; 858 ent->auth_key_addr = 0UL; 859 ent->auth_iv_addr = 0UL; 860 ent->final_auth_state_addr = 0UL; 861 ent->enc_key_addr = __pa(&ctx->key); 862 ent->enc_iv_addr = cp->iv_paddr; 863 ent->dest_addr = (in_place ? 0UL : cp->dest_paddr); 864 865 for (i = 1; i < cp->arr_len; i++) { 866 ent = spu_queue_next(qp, ent); 867 868 ent->control = cp->arr[i].src_len - 1; 869 ent->src_addr = cp->arr[i].src_paddr; 870 ent->auth_key_addr = 0UL; 871 ent->auth_iv_addr = 0UL; 872 ent->final_auth_state_addr = 0UL; 873 ent->enc_key_addr = 0UL; 874 ent->enc_iv_addr = 0UL; 875 ent->dest_addr = 0UL; 876 } 877 ent->control |= CONTROL_END_OF_BLOCK; 878 879 return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0; 880 } 881 882 static int n2_compute_chunks(struct skcipher_request *req) 883 { 884 struct n2_request_context *rctx = skcipher_request_ctx(req); 885 struct skcipher_walk *walk = &rctx->walk; 886 struct n2_crypto_chunk *chunk; 887 unsigned long dest_prev; 888 unsigned int tot_len; 889 bool prev_in_place; 890 int err, nbytes; 891 892 err = skcipher_walk_async(walk, req); 893 if (err) 894 return err; 895 896 INIT_LIST_HEAD(&rctx->chunk_list); 897 898 chunk = &rctx->chunk; 899 INIT_LIST_HEAD(&chunk->entry); 900 901 chunk->iv_paddr = 0UL; 902 chunk->arr_len = 0; 903 chunk->dest_paddr = 0UL; 904 905 prev_in_place = false; 906 dest_prev = ~0UL; 907 tot_len = 0; 908 909 while ((nbytes = walk->nbytes) != 0) { 910 unsigned long dest_paddr, src_paddr; 911 bool in_place; 912 int this_len; 913 914 src_paddr = (page_to_phys(walk->src.phys.page) + 915 walk->src.phys.offset); 916 dest_paddr = (page_to_phys(walk->dst.phys.page) + 917 walk->dst.phys.offset); 918 in_place = (src_paddr == dest_paddr); 919 this_len = skcipher_descriptor_len(nbytes, walk->blocksize); 920 921 if (chunk->arr_len != 0) { 922 if (in_place != prev_in_place || 923 (!prev_in_place && 924 dest_paddr != dest_prev) || 925 chunk->arr_len == N2_CHUNK_ARR_LEN || 926 tot_len + this_len > (1 << 16)) { 927 chunk->dest_final = dest_prev; 928 list_add_tail(&chunk->entry, 929 &rctx->chunk_list); 930 chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC); 931 if (!chunk) { 932 err = -ENOMEM; 933 break; 934 } 935 INIT_LIST_HEAD(&chunk->entry); 936 } 937 } 938 if (chunk->arr_len == 0) { 939 chunk->dest_paddr = dest_paddr; 940 tot_len = 0; 941 } 942 chunk->arr[chunk->arr_len].src_paddr = src_paddr; 943 chunk->arr[chunk->arr_len].src_len = this_len; 944 chunk->arr_len++; 945 946 dest_prev = dest_paddr + this_len; 947 prev_in_place = in_place; 948 tot_len += this_len; 949 950 err = skcipher_walk_done(walk, nbytes - this_len); 951 if (err) 952 break; 953 } 954 if (!err && chunk->arr_len != 0) { 955 chunk->dest_final = dest_prev; 956 list_add_tail(&chunk->entry, &rctx->chunk_list); 957 } 958 959 return err; 960 } 961 962 static void n2_chunk_complete(struct skcipher_request *req, void *final_iv) 963 { 964 struct n2_request_context *rctx = skcipher_request_ctx(req); 965 struct n2_crypto_chunk *c, *tmp; 966 967 if (final_iv) 968 memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize); 969 970 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) { 971 list_del(&c->entry); 972 if (unlikely(c != &rctx->chunk)) 973 kfree(c); 974 } 975 976 } 977 978 static int n2_do_ecb(struct skcipher_request *req, bool encrypt) 979 { 980 struct n2_request_context *rctx = skcipher_request_ctx(req); 981 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 982 int err = n2_compute_chunks(req); 983 struct n2_crypto_chunk *c, *tmp; 984 unsigned long flags, hv_ret; 985 struct spu_queue *qp; 986 987 if (err) 988 return err; 989 990 qp = cpu_to_cwq[get_cpu()]; 991 err = -ENODEV; 992 if (!qp) 993 goto out; 994 995 spin_lock_irqsave(&qp->lock, flags); 996 997 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) { 998 err = __n2_crypt_chunk(tfm, c, qp, encrypt); 999 if (err) 1000 break; 1001 list_del(&c->entry); 1002 if (unlikely(c != &rctx->chunk)) 1003 kfree(c); 1004 } 1005 if (!err) { 1006 hv_ret = wait_for_tail(qp); 1007 if (hv_ret != HV_EOK) 1008 err = -EINVAL; 1009 } 1010 1011 spin_unlock_irqrestore(&qp->lock, flags); 1012 1013 out: 1014 put_cpu(); 1015 1016 n2_chunk_complete(req, NULL); 1017 return err; 1018 } 1019 1020 static int n2_encrypt_ecb(struct skcipher_request *req) 1021 { 1022 return n2_do_ecb(req, true); 1023 } 1024 1025 static int n2_decrypt_ecb(struct skcipher_request *req) 1026 { 1027 return n2_do_ecb(req, false); 1028 } 1029 1030 static int n2_do_chaining(struct skcipher_request *req, bool encrypt) 1031 { 1032 struct n2_request_context *rctx = skcipher_request_ctx(req); 1033 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 1034 unsigned long flags, hv_ret, iv_paddr; 1035 int err = n2_compute_chunks(req); 1036 struct n2_crypto_chunk *c, *tmp; 1037 struct spu_queue *qp; 1038 void *final_iv_addr; 1039 1040 final_iv_addr = NULL; 1041 1042 if (err) 1043 return err; 1044 1045 qp = cpu_to_cwq[get_cpu()]; 1046 err = -ENODEV; 1047 if (!qp) 1048 goto out; 1049 1050 spin_lock_irqsave(&qp->lock, flags); 1051 1052 if (encrypt) { 1053 iv_paddr = __pa(rctx->walk.iv); 1054 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, 1055 entry) { 1056 c->iv_paddr = iv_paddr; 1057 err = __n2_crypt_chunk(tfm, c, qp, true); 1058 if (err) 1059 break; 1060 iv_paddr = c->dest_final - rctx->walk.blocksize; 1061 list_del(&c->entry); 1062 if (unlikely(c != &rctx->chunk)) 1063 kfree(c); 1064 } 1065 final_iv_addr = __va(iv_paddr); 1066 } else { 1067 list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list, 1068 entry) { 1069 if (c == &rctx->chunk) { 1070 iv_paddr = __pa(rctx->walk.iv); 1071 } else { 1072 iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr + 1073 tmp->arr[tmp->arr_len-1].src_len - 1074 rctx->walk.blocksize); 1075 } 1076 if (!final_iv_addr) { 1077 unsigned long pa; 1078 1079 pa = (c->arr[c->arr_len-1].src_paddr + 1080 c->arr[c->arr_len-1].src_len - 1081 rctx->walk.blocksize); 1082 final_iv_addr = rctx->temp_iv; 1083 memcpy(rctx->temp_iv, __va(pa), 1084 rctx->walk.blocksize); 1085 } 1086 c->iv_paddr = iv_paddr; 1087 err = __n2_crypt_chunk(tfm, c, qp, false); 1088 if (err) 1089 break; 1090 list_del(&c->entry); 1091 if (unlikely(c != &rctx->chunk)) 1092 kfree(c); 1093 } 1094 } 1095 if (!err) { 1096 hv_ret = wait_for_tail(qp); 1097 if (hv_ret != HV_EOK) 1098 err = -EINVAL; 1099 } 1100 1101 spin_unlock_irqrestore(&qp->lock, flags); 1102 1103 out: 1104 put_cpu(); 1105 1106 n2_chunk_complete(req, err ? NULL : final_iv_addr); 1107 return err; 1108 } 1109 1110 static int n2_encrypt_chaining(struct skcipher_request *req) 1111 { 1112 return n2_do_chaining(req, true); 1113 } 1114 1115 static int n2_decrypt_chaining(struct skcipher_request *req) 1116 { 1117 return n2_do_chaining(req, false); 1118 } 1119 1120 struct n2_skcipher_tmpl { 1121 const char *name; 1122 const char *drv_name; 1123 u8 block_size; 1124 u8 enc_type; 1125 struct skcipher_alg skcipher; 1126 }; 1127 1128 static const struct n2_skcipher_tmpl skcipher_tmpls[] = { 1129 /* ARC4: only ECB is supported (chaining bits ignored) */ 1130 { .name = "ecb(arc4)", 1131 .drv_name = "ecb-arc4", 1132 .block_size = 1, 1133 .enc_type = (ENC_TYPE_ALG_RC4_STREAM | 1134 ENC_TYPE_CHAINING_ECB), 1135 .skcipher = { 1136 .min_keysize = 1, 1137 .max_keysize = 256, 1138 .setkey = n2_arc4_setkey, 1139 .encrypt = n2_encrypt_ecb, 1140 .decrypt = n2_decrypt_ecb, 1141 }, 1142 }, 1143 1144 /* DES: ECB CBC and CFB are supported */ 1145 { .name = "ecb(des)", 1146 .drv_name = "ecb-des", 1147 .block_size = DES_BLOCK_SIZE, 1148 .enc_type = (ENC_TYPE_ALG_DES | 1149 ENC_TYPE_CHAINING_ECB), 1150 .skcipher = { 1151 .min_keysize = DES_KEY_SIZE, 1152 .max_keysize = DES_KEY_SIZE, 1153 .setkey = n2_des_setkey, 1154 .encrypt = n2_encrypt_ecb, 1155 .decrypt = n2_decrypt_ecb, 1156 }, 1157 }, 1158 { .name = "cbc(des)", 1159 .drv_name = "cbc-des", 1160 .block_size = DES_BLOCK_SIZE, 1161 .enc_type = (ENC_TYPE_ALG_DES | 1162 ENC_TYPE_CHAINING_CBC), 1163 .skcipher = { 1164 .ivsize = DES_BLOCK_SIZE, 1165 .min_keysize = DES_KEY_SIZE, 1166 .max_keysize = DES_KEY_SIZE, 1167 .setkey = n2_des_setkey, 1168 .encrypt = n2_encrypt_chaining, 1169 .decrypt = n2_decrypt_chaining, 1170 }, 1171 }, 1172 { .name = "cfb(des)", 1173 .drv_name = "cfb-des", 1174 .block_size = DES_BLOCK_SIZE, 1175 .enc_type = (ENC_TYPE_ALG_DES | 1176 ENC_TYPE_CHAINING_CFB), 1177 .skcipher = { 1178 .min_keysize = DES_KEY_SIZE, 1179 .max_keysize = DES_KEY_SIZE, 1180 .setkey = n2_des_setkey, 1181 .encrypt = n2_encrypt_chaining, 1182 .decrypt = n2_decrypt_chaining, 1183 }, 1184 }, 1185 1186 /* 3DES: ECB CBC and CFB are supported */ 1187 { .name = "ecb(des3_ede)", 1188 .drv_name = "ecb-3des", 1189 .block_size = DES_BLOCK_SIZE, 1190 .enc_type = (ENC_TYPE_ALG_3DES | 1191 ENC_TYPE_CHAINING_ECB), 1192 .skcipher = { 1193 .min_keysize = 3 * DES_KEY_SIZE, 1194 .max_keysize = 3 * DES_KEY_SIZE, 1195 .setkey = n2_3des_setkey, 1196 .encrypt = n2_encrypt_ecb, 1197 .decrypt = n2_decrypt_ecb, 1198 }, 1199 }, 1200 { .name = "cbc(des3_ede)", 1201 .drv_name = "cbc-3des", 1202 .block_size = DES_BLOCK_SIZE, 1203 .enc_type = (ENC_TYPE_ALG_3DES | 1204 ENC_TYPE_CHAINING_CBC), 1205 .skcipher = { 1206 .ivsize = DES_BLOCK_SIZE, 1207 .min_keysize = 3 * DES_KEY_SIZE, 1208 .max_keysize = 3 * DES_KEY_SIZE, 1209 .setkey = n2_3des_setkey, 1210 .encrypt = n2_encrypt_chaining, 1211 .decrypt = n2_decrypt_chaining, 1212 }, 1213 }, 1214 { .name = "cfb(des3_ede)", 1215 .drv_name = "cfb-3des", 1216 .block_size = DES_BLOCK_SIZE, 1217 .enc_type = (ENC_TYPE_ALG_3DES | 1218 ENC_TYPE_CHAINING_CFB), 1219 .skcipher = { 1220 .min_keysize = 3 * DES_KEY_SIZE, 1221 .max_keysize = 3 * DES_KEY_SIZE, 1222 .setkey = n2_3des_setkey, 1223 .encrypt = n2_encrypt_chaining, 1224 .decrypt = n2_decrypt_chaining, 1225 }, 1226 }, 1227 /* AES: ECB CBC and CTR are supported */ 1228 { .name = "ecb(aes)", 1229 .drv_name = "ecb-aes", 1230 .block_size = AES_BLOCK_SIZE, 1231 .enc_type = (ENC_TYPE_ALG_AES128 | 1232 ENC_TYPE_CHAINING_ECB), 1233 .skcipher = { 1234 .min_keysize = AES_MIN_KEY_SIZE, 1235 .max_keysize = AES_MAX_KEY_SIZE, 1236 .setkey = n2_aes_setkey, 1237 .encrypt = n2_encrypt_ecb, 1238 .decrypt = n2_decrypt_ecb, 1239 }, 1240 }, 1241 { .name = "cbc(aes)", 1242 .drv_name = "cbc-aes", 1243 .block_size = AES_BLOCK_SIZE, 1244 .enc_type = (ENC_TYPE_ALG_AES128 | 1245 ENC_TYPE_CHAINING_CBC), 1246 .skcipher = { 1247 .ivsize = AES_BLOCK_SIZE, 1248 .min_keysize = AES_MIN_KEY_SIZE, 1249 .max_keysize = AES_MAX_KEY_SIZE, 1250 .setkey = n2_aes_setkey, 1251 .encrypt = n2_encrypt_chaining, 1252 .decrypt = n2_decrypt_chaining, 1253 }, 1254 }, 1255 { .name = "ctr(aes)", 1256 .drv_name = "ctr-aes", 1257 .block_size = AES_BLOCK_SIZE, 1258 .enc_type = (ENC_TYPE_ALG_AES128 | 1259 ENC_TYPE_CHAINING_COUNTER), 1260 .skcipher = { 1261 .ivsize = AES_BLOCK_SIZE, 1262 .min_keysize = AES_MIN_KEY_SIZE, 1263 .max_keysize = AES_MAX_KEY_SIZE, 1264 .setkey = n2_aes_setkey, 1265 .encrypt = n2_encrypt_chaining, 1266 .decrypt = n2_encrypt_chaining, 1267 }, 1268 }, 1269 1270 }; 1271 #define NUM_CIPHER_TMPLS ARRAY_SIZE(skcipher_tmpls) 1272 1273 static LIST_HEAD(skcipher_algs); 1274 1275 struct n2_hash_tmpl { 1276 const char *name; 1277 const u8 *hash_zero; 1278 const u32 *hash_init; 1279 u8 hw_op_hashsz; 1280 u8 digest_size; 1281 u8 block_size; 1282 u8 auth_type; 1283 u8 hmac_type; 1284 }; 1285 1286 static const u32 n2_md5_init[MD5_HASH_WORDS] = { 1287 cpu_to_le32(MD5_H0), 1288 cpu_to_le32(MD5_H1), 1289 cpu_to_le32(MD5_H2), 1290 cpu_to_le32(MD5_H3), 1291 }; 1292 static const u32 n2_sha1_init[SHA1_DIGEST_SIZE / 4] = { 1293 SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4, 1294 }; 1295 static const u32 n2_sha256_init[SHA256_DIGEST_SIZE / 4] = { 1296 SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3, 1297 SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7, 1298 }; 1299 static const u32 n2_sha224_init[SHA256_DIGEST_SIZE / 4] = { 1300 SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3, 1301 SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7, 1302 }; 1303 1304 static const struct n2_hash_tmpl hash_tmpls[] = { 1305 { .name = "md5", 1306 .hash_zero = md5_zero_message_hash, 1307 .hash_init = n2_md5_init, 1308 .auth_type = AUTH_TYPE_MD5, 1309 .hmac_type = AUTH_TYPE_HMAC_MD5, 1310 .hw_op_hashsz = MD5_DIGEST_SIZE, 1311 .digest_size = MD5_DIGEST_SIZE, 1312 .block_size = MD5_HMAC_BLOCK_SIZE }, 1313 { .name = "sha1", 1314 .hash_zero = sha1_zero_message_hash, 1315 .hash_init = n2_sha1_init, 1316 .auth_type = AUTH_TYPE_SHA1, 1317 .hmac_type = AUTH_TYPE_HMAC_SHA1, 1318 .hw_op_hashsz = SHA1_DIGEST_SIZE, 1319 .digest_size = SHA1_DIGEST_SIZE, 1320 .block_size = SHA1_BLOCK_SIZE }, 1321 { .name = "sha256", 1322 .hash_zero = sha256_zero_message_hash, 1323 .hash_init = n2_sha256_init, 1324 .auth_type = AUTH_TYPE_SHA256, 1325 .hmac_type = AUTH_TYPE_HMAC_SHA256, 1326 .hw_op_hashsz = SHA256_DIGEST_SIZE, 1327 .digest_size = SHA256_DIGEST_SIZE, 1328 .block_size = SHA256_BLOCK_SIZE }, 1329 { .name = "sha224", 1330 .hash_zero = sha224_zero_message_hash, 1331 .hash_init = n2_sha224_init, 1332 .auth_type = AUTH_TYPE_SHA256, 1333 .hmac_type = AUTH_TYPE_RESERVED, 1334 .hw_op_hashsz = SHA256_DIGEST_SIZE, 1335 .digest_size = SHA224_DIGEST_SIZE, 1336 .block_size = SHA224_BLOCK_SIZE }, 1337 }; 1338 #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls) 1339 1340 static LIST_HEAD(ahash_algs); 1341 static LIST_HEAD(hmac_algs); 1342 1343 static int algs_registered; 1344 1345 static void __n2_unregister_algs(void) 1346 { 1347 struct n2_skcipher_alg *skcipher, *skcipher_tmp; 1348 struct n2_ahash_alg *alg, *alg_tmp; 1349 struct n2_hmac_alg *hmac, *hmac_tmp; 1350 1351 list_for_each_entry_safe(skcipher, skcipher_tmp, &skcipher_algs, entry) { 1352 crypto_unregister_skcipher(&skcipher->skcipher); 1353 list_del(&skcipher->entry); 1354 kfree(skcipher); 1355 } 1356 list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) { 1357 crypto_unregister_ahash(&hmac->derived.alg); 1358 list_del(&hmac->derived.entry); 1359 kfree(hmac); 1360 } 1361 list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) { 1362 crypto_unregister_ahash(&alg->alg); 1363 list_del(&alg->entry); 1364 kfree(alg); 1365 } 1366 } 1367 1368 static int n2_skcipher_init_tfm(struct crypto_skcipher *tfm) 1369 { 1370 crypto_skcipher_set_reqsize(tfm, sizeof(struct n2_request_context)); 1371 return 0; 1372 } 1373 1374 static int __n2_register_one_skcipher(const struct n2_skcipher_tmpl *tmpl) 1375 { 1376 struct n2_skcipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL); 1377 struct skcipher_alg *alg; 1378 int err; 1379 1380 if (!p) 1381 return -ENOMEM; 1382 1383 alg = &p->skcipher; 1384 *alg = tmpl->skcipher; 1385 1386 snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name); 1387 snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name); 1388 alg->base.cra_priority = N2_CRA_PRIORITY; 1389 alg->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC; 1390 alg->base.cra_blocksize = tmpl->block_size; 1391 p->enc_type = tmpl->enc_type; 1392 alg->base.cra_ctxsize = sizeof(struct n2_skcipher_context); 1393 alg->base.cra_module = THIS_MODULE; 1394 alg->init = n2_skcipher_init_tfm; 1395 1396 list_add(&p->entry, &skcipher_algs); 1397 err = crypto_register_skcipher(alg); 1398 if (err) { 1399 pr_err("%s alg registration failed\n", alg->base.cra_name); 1400 list_del(&p->entry); 1401 kfree(p); 1402 } else { 1403 pr_info("%s alg registered\n", alg->base.cra_name); 1404 } 1405 return err; 1406 } 1407 1408 static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash) 1409 { 1410 struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL); 1411 struct ahash_alg *ahash; 1412 struct crypto_alg *base; 1413 int err; 1414 1415 if (!p) 1416 return -ENOMEM; 1417 1418 p->child_alg = n2ahash->alg.halg.base.cra_name; 1419 memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg)); 1420 INIT_LIST_HEAD(&p->derived.entry); 1421 1422 ahash = &p->derived.alg; 1423 ahash->digest = n2_hmac_async_digest; 1424 ahash->setkey = n2_hmac_async_setkey; 1425 1426 base = &ahash->halg.base; 1427 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg); 1428 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg); 1429 1430 base->cra_ctxsize = sizeof(struct n2_hmac_ctx); 1431 base->cra_init = n2_hmac_cra_init; 1432 base->cra_exit = n2_hmac_cra_exit; 1433 1434 list_add(&p->derived.entry, &hmac_algs); 1435 err = crypto_register_ahash(ahash); 1436 if (err) { 1437 pr_err("%s alg registration failed\n", base->cra_name); 1438 list_del(&p->derived.entry); 1439 kfree(p); 1440 } else { 1441 pr_info("%s alg registered\n", base->cra_name); 1442 } 1443 return err; 1444 } 1445 1446 static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl) 1447 { 1448 struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL); 1449 struct hash_alg_common *halg; 1450 struct crypto_alg *base; 1451 struct ahash_alg *ahash; 1452 int err; 1453 1454 if (!p) 1455 return -ENOMEM; 1456 1457 p->hash_zero = tmpl->hash_zero; 1458 p->hash_init = tmpl->hash_init; 1459 p->auth_type = tmpl->auth_type; 1460 p->hmac_type = tmpl->hmac_type; 1461 p->hw_op_hashsz = tmpl->hw_op_hashsz; 1462 p->digest_size = tmpl->digest_size; 1463 1464 ahash = &p->alg; 1465 ahash->init = n2_hash_async_init; 1466 ahash->update = n2_hash_async_update; 1467 ahash->final = n2_hash_async_final; 1468 ahash->finup = n2_hash_async_finup; 1469 ahash->digest = n2_hash_async_digest; 1470 ahash->export = n2_hash_async_noexport; 1471 ahash->import = n2_hash_async_noimport; 1472 1473 halg = &ahash->halg; 1474 halg->digestsize = tmpl->digest_size; 1475 1476 base = &halg->base; 1477 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name); 1478 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name); 1479 base->cra_priority = N2_CRA_PRIORITY; 1480 base->cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | 1481 CRYPTO_ALG_NEED_FALLBACK; 1482 base->cra_blocksize = tmpl->block_size; 1483 base->cra_ctxsize = sizeof(struct n2_hash_ctx); 1484 base->cra_module = THIS_MODULE; 1485 base->cra_init = n2_hash_cra_init; 1486 base->cra_exit = n2_hash_cra_exit; 1487 1488 list_add(&p->entry, &ahash_algs); 1489 err = crypto_register_ahash(ahash); 1490 if (err) { 1491 pr_err("%s alg registration failed\n", base->cra_name); 1492 list_del(&p->entry); 1493 kfree(p); 1494 } else { 1495 pr_info("%s alg registered\n", base->cra_name); 1496 } 1497 if (!err && p->hmac_type != AUTH_TYPE_RESERVED) 1498 err = __n2_register_one_hmac(p); 1499 return err; 1500 } 1501 1502 static int n2_register_algs(void) 1503 { 1504 int i, err = 0; 1505 1506 mutex_lock(&spu_lock); 1507 if (algs_registered++) 1508 goto out; 1509 1510 for (i = 0; i < NUM_HASH_TMPLS; i++) { 1511 err = __n2_register_one_ahash(&hash_tmpls[i]); 1512 if (err) { 1513 __n2_unregister_algs(); 1514 goto out; 1515 } 1516 } 1517 for (i = 0; i < NUM_CIPHER_TMPLS; i++) { 1518 err = __n2_register_one_skcipher(&skcipher_tmpls[i]); 1519 if (err) { 1520 __n2_unregister_algs(); 1521 goto out; 1522 } 1523 } 1524 1525 out: 1526 mutex_unlock(&spu_lock); 1527 return err; 1528 } 1529 1530 static void n2_unregister_algs(void) 1531 { 1532 mutex_lock(&spu_lock); 1533 if (!--algs_registered) 1534 __n2_unregister_algs(); 1535 mutex_unlock(&spu_lock); 1536 } 1537 1538 /* To map CWQ queues to interrupt sources, the hypervisor API provides 1539 * a devino. This isn't very useful to us because all of the 1540 * interrupts listed in the device_node have been translated to 1541 * Linux virtual IRQ cookie numbers. 1542 * 1543 * So we have to back-translate, going through the 'intr' and 'ino' 1544 * property tables of the n2cp MDESC node, matching it with the OF 1545 * 'interrupts' property entries, in order to to figure out which 1546 * devino goes to which already-translated IRQ. 1547 */ 1548 static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip, 1549 unsigned long dev_ino) 1550 { 1551 const unsigned int *dev_intrs; 1552 unsigned int intr; 1553 int i; 1554 1555 for (i = 0; i < ip->num_intrs; i++) { 1556 if (ip->ino_table[i].ino == dev_ino) 1557 break; 1558 } 1559 if (i == ip->num_intrs) 1560 return -ENODEV; 1561 1562 intr = ip->ino_table[i].intr; 1563 1564 dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL); 1565 if (!dev_intrs) 1566 return -ENODEV; 1567 1568 for (i = 0; i < dev->archdata.num_irqs; i++) { 1569 if (dev_intrs[i] == intr) 1570 return i; 1571 } 1572 1573 return -ENODEV; 1574 } 1575 1576 static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip, 1577 const char *irq_name, struct spu_queue *p, 1578 irq_handler_t handler) 1579 { 1580 unsigned long herr; 1581 int index; 1582 1583 herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino); 1584 if (herr) 1585 return -EINVAL; 1586 1587 index = find_devino_index(dev, ip, p->devino); 1588 if (index < 0) 1589 return index; 1590 1591 p->irq = dev->archdata.irqs[index]; 1592 1593 sprintf(p->irq_name, "%s-%d", irq_name, index); 1594 1595 return request_irq(p->irq, handler, 0, p->irq_name, p); 1596 } 1597 1598 static struct kmem_cache *queue_cache[2]; 1599 1600 static void *new_queue(unsigned long q_type) 1601 { 1602 return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL); 1603 } 1604 1605 static void free_queue(void *p, unsigned long q_type) 1606 { 1607 kmem_cache_free(queue_cache[q_type - 1], p); 1608 } 1609 1610 static int queue_cache_init(void) 1611 { 1612 if (!queue_cache[HV_NCS_QTYPE_MAU - 1]) 1613 queue_cache[HV_NCS_QTYPE_MAU - 1] = 1614 kmem_cache_create("mau_queue", 1615 (MAU_NUM_ENTRIES * 1616 MAU_ENTRY_SIZE), 1617 MAU_ENTRY_SIZE, 0, NULL); 1618 if (!queue_cache[HV_NCS_QTYPE_MAU - 1]) 1619 return -ENOMEM; 1620 1621 if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) 1622 queue_cache[HV_NCS_QTYPE_CWQ - 1] = 1623 kmem_cache_create("cwq_queue", 1624 (CWQ_NUM_ENTRIES * 1625 CWQ_ENTRY_SIZE), 1626 CWQ_ENTRY_SIZE, 0, NULL); 1627 if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) { 1628 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]); 1629 queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL; 1630 return -ENOMEM; 1631 } 1632 return 0; 1633 } 1634 1635 static void queue_cache_destroy(void) 1636 { 1637 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]); 1638 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]); 1639 queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL; 1640 queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL; 1641 } 1642 1643 static long spu_queue_register_workfn(void *arg) 1644 { 1645 struct spu_qreg *qr = arg; 1646 struct spu_queue *p = qr->queue; 1647 unsigned long q_type = qr->type; 1648 unsigned long hv_ret; 1649 1650 hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q), 1651 CWQ_NUM_ENTRIES, &p->qhandle); 1652 if (!hv_ret) 1653 sun4v_ncs_sethead_marker(p->qhandle, 0); 1654 1655 return hv_ret ? -EINVAL : 0; 1656 } 1657 1658 static int spu_queue_register(struct spu_queue *p, unsigned long q_type) 1659 { 1660 int cpu = cpumask_any_and(&p->sharing, cpu_online_mask); 1661 struct spu_qreg qr = { .queue = p, .type = q_type }; 1662 1663 return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr); 1664 } 1665 1666 static int spu_queue_setup(struct spu_queue *p) 1667 { 1668 int err; 1669 1670 p->q = new_queue(p->q_type); 1671 if (!p->q) 1672 return -ENOMEM; 1673 1674 err = spu_queue_register(p, p->q_type); 1675 if (err) { 1676 free_queue(p->q, p->q_type); 1677 p->q = NULL; 1678 } 1679 1680 return err; 1681 } 1682 1683 static void spu_queue_destroy(struct spu_queue *p) 1684 { 1685 unsigned long hv_ret; 1686 1687 if (!p->q) 1688 return; 1689 1690 hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle); 1691 1692 if (!hv_ret) 1693 free_queue(p->q, p->q_type); 1694 } 1695 1696 static void spu_list_destroy(struct list_head *list) 1697 { 1698 struct spu_queue *p, *n; 1699 1700 list_for_each_entry_safe(p, n, list, list) { 1701 int i; 1702 1703 for (i = 0; i < NR_CPUS; i++) { 1704 if (cpu_to_cwq[i] == p) 1705 cpu_to_cwq[i] = NULL; 1706 } 1707 1708 if (p->irq) { 1709 free_irq(p->irq, p); 1710 p->irq = 0; 1711 } 1712 spu_queue_destroy(p); 1713 list_del(&p->list); 1714 kfree(p); 1715 } 1716 } 1717 1718 /* Walk the backward arcs of a CWQ 'exec-unit' node, 1719 * gathering cpu membership information. 1720 */ 1721 static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc, 1722 struct platform_device *dev, 1723 u64 node, struct spu_queue *p, 1724 struct spu_queue **table) 1725 { 1726 u64 arc; 1727 1728 mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) { 1729 u64 tgt = mdesc_arc_target(mdesc, arc); 1730 const char *name = mdesc_node_name(mdesc, tgt); 1731 const u64 *id; 1732 1733 if (strcmp(name, "cpu")) 1734 continue; 1735 id = mdesc_get_property(mdesc, tgt, "id", NULL); 1736 if (table[*id] != NULL) { 1737 dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n", 1738 dev->dev.of_node); 1739 return -EINVAL; 1740 } 1741 cpumask_set_cpu(*id, &p->sharing); 1742 table[*id] = p; 1743 } 1744 return 0; 1745 } 1746 1747 /* Process an 'exec-unit' MDESC node of type 'cwq'. */ 1748 static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list, 1749 struct platform_device *dev, struct mdesc_handle *mdesc, 1750 u64 node, const char *iname, unsigned long q_type, 1751 irq_handler_t handler, struct spu_queue **table) 1752 { 1753 struct spu_queue *p; 1754 int err; 1755 1756 p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL); 1757 if (!p) { 1758 dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n", 1759 dev->dev.of_node); 1760 return -ENOMEM; 1761 } 1762 1763 cpumask_clear(&p->sharing); 1764 spin_lock_init(&p->lock); 1765 p->q_type = q_type; 1766 INIT_LIST_HEAD(&p->jobs); 1767 list_add(&p->list, list); 1768 1769 err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table); 1770 if (err) 1771 return err; 1772 1773 err = spu_queue_setup(p); 1774 if (err) 1775 return err; 1776 1777 return spu_map_ino(dev, ip, iname, p, handler); 1778 } 1779 1780 static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev, 1781 struct spu_mdesc_info *ip, struct list_head *list, 1782 const char *exec_name, unsigned long q_type, 1783 irq_handler_t handler, struct spu_queue **table) 1784 { 1785 int err = 0; 1786 u64 node; 1787 1788 mdesc_for_each_node_by_name(mdesc, node, "exec-unit") { 1789 const char *type; 1790 1791 type = mdesc_get_property(mdesc, node, "type", NULL); 1792 if (!type || strcmp(type, exec_name)) 1793 continue; 1794 1795 err = handle_exec_unit(ip, list, dev, mdesc, node, 1796 exec_name, q_type, handler, table); 1797 if (err) { 1798 spu_list_destroy(list); 1799 break; 1800 } 1801 } 1802 1803 return err; 1804 } 1805 1806 static int get_irq_props(struct mdesc_handle *mdesc, u64 node, 1807 struct spu_mdesc_info *ip) 1808 { 1809 const u64 *ino; 1810 int ino_len; 1811 int i; 1812 1813 ino = mdesc_get_property(mdesc, node, "ino", &ino_len); 1814 if (!ino) { 1815 printk("NO 'ino'\n"); 1816 return -ENODEV; 1817 } 1818 1819 ip->num_intrs = ino_len / sizeof(u64); 1820 ip->ino_table = kzalloc((sizeof(struct ino_blob) * 1821 ip->num_intrs), 1822 GFP_KERNEL); 1823 if (!ip->ino_table) 1824 return -ENOMEM; 1825 1826 for (i = 0; i < ip->num_intrs; i++) { 1827 struct ino_blob *b = &ip->ino_table[i]; 1828 b->intr = i + 1; 1829 b->ino = ino[i]; 1830 } 1831 1832 return 0; 1833 } 1834 1835 static int grab_mdesc_irq_props(struct mdesc_handle *mdesc, 1836 struct platform_device *dev, 1837 struct spu_mdesc_info *ip, 1838 const char *node_name) 1839 { 1840 const unsigned int *reg; 1841 u64 node; 1842 1843 reg = of_get_property(dev->dev.of_node, "reg", NULL); 1844 if (!reg) 1845 return -ENODEV; 1846 1847 mdesc_for_each_node_by_name(mdesc, node, "virtual-device") { 1848 const char *name; 1849 const u64 *chdl; 1850 1851 name = mdesc_get_property(mdesc, node, "name", NULL); 1852 if (!name || strcmp(name, node_name)) 1853 continue; 1854 chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL); 1855 if (!chdl || (*chdl != *reg)) 1856 continue; 1857 ip->cfg_handle = *chdl; 1858 return get_irq_props(mdesc, node, ip); 1859 } 1860 1861 return -ENODEV; 1862 } 1863 1864 static unsigned long n2_spu_hvapi_major; 1865 static unsigned long n2_spu_hvapi_minor; 1866 1867 static int n2_spu_hvapi_register(void) 1868 { 1869 int err; 1870 1871 n2_spu_hvapi_major = 2; 1872 n2_spu_hvapi_minor = 0; 1873 1874 err = sun4v_hvapi_register(HV_GRP_NCS, 1875 n2_spu_hvapi_major, 1876 &n2_spu_hvapi_minor); 1877 1878 if (!err) 1879 pr_info("Registered NCS HVAPI version %lu.%lu\n", 1880 n2_spu_hvapi_major, 1881 n2_spu_hvapi_minor); 1882 1883 return err; 1884 } 1885 1886 static void n2_spu_hvapi_unregister(void) 1887 { 1888 sun4v_hvapi_unregister(HV_GRP_NCS); 1889 } 1890 1891 static int global_ref; 1892 1893 static int grab_global_resources(void) 1894 { 1895 int err = 0; 1896 1897 mutex_lock(&spu_lock); 1898 1899 if (global_ref++) 1900 goto out; 1901 1902 err = n2_spu_hvapi_register(); 1903 if (err) 1904 goto out; 1905 1906 err = queue_cache_init(); 1907 if (err) 1908 goto out_hvapi_release; 1909 1910 err = -ENOMEM; 1911 cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *), 1912 GFP_KERNEL); 1913 if (!cpu_to_cwq) 1914 goto out_queue_cache_destroy; 1915 1916 cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *), 1917 GFP_KERNEL); 1918 if (!cpu_to_mau) 1919 goto out_free_cwq_table; 1920 1921 err = 0; 1922 1923 out: 1924 if (err) 1925 global_ref--; 1926 mutex_unlock(&spu_lock); 1927 return err; 1928 1929 out_free_cwq_table: 1930 kfree(cpu_to_cwq); 1931 cpu_to_cwq = NULL; 1932 1933 out_queue_cache_destroy: 1934 queue_cache_destroy(); 1935 1936 out_hvapi_release: 1937 n2_spu_hvapi_unregister(); 1938 goto out; 1939 } 1940 1941 static void release_global_resources(void) 1942 { 1943 mutex_lock(&spu_lock); 1944 if (!--global_ref) { 1945 kfree(cpu_to_cwq); 1946 cpu_to_cwq = NULL; 1947 1948 kfree(cpu_to_mau); 1949 cpu_to_mau = NULL; 1950 1951 queue_cache_destroy(); 1952 n2_spu_hvapi_unregister(); 1953 } 1954 mutex_unlock(&spu_lock); 1955 } 1956 1957 static struct n2_crypto *alloc_n2cp(void) 1958 { 1959 struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL); 1960 1961 if (np) 1962 INIT_LIST_HEAD(&np->cwq_list); 1963 1964 return np; 1965 } 1966 1967 static void free_n2cp(struct n2_crypto *np) 1968 { 1969 kfree(np->cwq_info.ino_table); 1970 np->cwq_info.ino_table = NULL; 1971 1972 kfree(np); 1973 } 1974 1975 static void n2_spu_driver_version(void) 1976 { 1977 static int n2_spu_version_printed; 1978 1979 if (n2_spu_version_printed++ == 0) 1980 pr_info("%s", version); 1981 } 1982 1983 static int n2_crypto_probe(struct platform_device *dev) 1984 { 1985 struct mdesc_handle *mdesc; 1986 struct n2_crypto *np; 1987 int err; 1988 1989 n2_spu_driver_version(); 1990 1991 pr_info("Found N2CP at %pOF\n", dev->dev.of_node); 1992 1993 np = alloc_n2cp(); 1994 if (!np) { 1995 dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n", 1996 dev->dev.of_node); 1997 return -ENOMEM; 1998 } 1999 2000 err = grab_global_resources(); 2001 if (err) { 2002 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n", 2003 dev->dev.of_node); 2004 goto out_free_n2cp; 2005 } 2006 2007 mdesc = mdesc_grab(); 2008 2009 if (!mdesc) { 2010 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n", 2011 dev->dev.of_node); 2012 err = -ENODEV; 2013 goto out_free_global; 2014 } 2015 err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp"); 2016 if (err) { 2017 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n", 2018 dev->dev.of_node); 2019 mdesc_release(mdesc); 2020 goto out_free_global; 2021 } 2022 2023 err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list, 2024 "cwq", HV_NCS_QTYPE_CWQ, cwq_intr, 2025 cpu_to_cwq); 2026 mdesc_release(mdesc); 2027 2028 if (err) { 2029 dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n", 2030 dev->dev.of_node); 2031 goto out_free_global; 2032 } 2033 2034 err = n2_register_algs(); 2035 if (err) { 2036 dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n", 2037 dev->dev.of_node); 2038 goto out_free_spu_list; 2039 } 2040 2041 dev_set_drvdata(&dev->dev, np); 2042 2043 return 0; 2044 2045 out_free_spu_list: 2046 spu_list_destroy(&np->cwq_list); 2047 2048 out_free_global: 2049 release_global_resources(); 2050 2051 out_free_n2cp: 2052 free_n2cp(np); 2053 2054 return err; 2055 } 2056 2057 static int n2_crypto_remove(struct platform_device *dev) 2058 { 2059 struct n2_crypto *np = dev_get_drvdata(&dev->dev); 2060 2061 n2_unregister_algs(); 2062 2063 spu_list_destroy(&np->cwq_list); 2064 2065 release_global_resources(); 2066 2067 free_n2cp(np); 2068 2069 return 0; 2070 } 2071 2072 static struct n2_mau *alloc_ncp(void) 2073 { 2074 struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL); 2075 2076 if (mp) 2077 INIT_LIST_HEAD(&mp->mau_list); 2078 2079 return mp; 2080 } 2081 2082 static void free_ncp(struct n2_mau *mp) 2083 { 2084 kfree(mp->mau_info.ino_table); 2085 mp->mau_info.ino_table = NULL; 2086 2087 kfree(mp); 2088 } 2089 2090 static int n2_mau_probe(struct platform_device *dev) 2091 { 2092 struct mdesc_handle *mdesc; 2093 struct n2_mau *mp; 2094 int err; 2095 2096 n2_spu_driver_version(); 2097 2098 pr_info("Found NCP at %pOF\n", dev->dev.of_node); 2099 2100 mp = alloc_ncp(); 2101 if (!mp) { 2102 dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n", 2103 dev->dev.of_node); 2104 return -ENOMEM; 2105 } 2106 2107 err = grab_global_resources(); 2108 if (err) { 2109 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n", 2110 dev->dev.of_node); 2111 goto out_free_ncp; 2112 } 2113 2114 mdesc = mdesc_grab(); 2115 2116 if (!mdesc) { 2117 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n", 2118 dev->dev.of_node); 2119 err = -ENODEV; 2120 goto out_free_global; 2121 } 2122 2123 err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp"); 2124 if (err) { 2125 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n", 2126 dev->dev.of_node); 2127 mdesc_release(mdesc); 2128 goto out_free_global; 2129 } 2130 2131 err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list, 2132 "mau", HV_NCS_QTYPE_MAU, mau_intr, 2133 cpu_to_mau); 2134 mdesc_release(mdesc); 2135 2136 if (err) { 2137 dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n", 2138 dev->dev.of_node); 2139 goto out_free_global; 2140 } 2141 2142 dev_set_drvdata(&dev->dev, mp); 2143 2144 return 0; 2145 2146 out_free_global: 2147 release_global_resources(); 2148 2149 out_free_ncp: 2150 free_ncp(mp); 2151 2152 return err; 2153 } 2154 2155 static int n2_mau_remove(struct platform_device *dev) 2156 { 2157 struct n2_mau *mp = dev_get_drvdata(&dev->dev); 2158 2159 spu_list_destroy(&mp->mau_list); 2160 2161 release_global_resources(); 2162 2163 free_ncp(mp); 2164 2165 return 0; 2166 } 2167 2168 static const struct of_device_id n2_crypto_match[] = { 2169 { 2170 .name = "n2cp", 2171 .compatible = "SUNW,n2-cwq", 2172 }, 2173 { 2174 .name = "n2cp", 2175 .compatible = "SUNW,vf-cwq", 2176 }, 2177 { 2178 .name = "n2cp", 2179 .compatible = "SUNW,kt-cwq", 2180 }, 2181 {}, 2182 }; 2183 2184 MODULE_DEVICE_TABLE(of, n2_crypto_match); 2185 2186 static struct platform_driver n2_crypto_driver = { 2187 .driver = { 2188 .name = "n2cp", 2189 .of_match_table = n2_crypto_match, 2190 }, 2191 .probe = n2_crypto_probe, 2192 .remove = n2_crypto_remove, 2193 }; 2194 2195 static const struct of_device_id n2_mau_match[] = { 2196 { 2197 .name = "ncp", 2198 .compatible = "SUNW,n2-mau", 2199 }, 2200 { 2201 .name = "ncp", 2202 .compatible = "SUNW,vf-mau", 2203 }, 2204 { 2205 .name = "ncp", 2206 .compatible = "SUNW,kt-mau", 2207 }, 2208 {}, 2209 }; 2210 2211 MODULE_DEVICE_TABLE(of, n2_mau_match); 2212 2213 static struct platform_driver n2_mau_driver = { 2214 .driver = { 2215 .name = "ncp", 2216 .of_match_table = n2_mau_match, 2217 }, 2218 .probe = n2_mau_probe, 2219 .remove = n2_mau_remove, 2220 }; 2221 2222 static struct platform_driver * const drivers[] = { 2223 &n2_crypto_driver, 2224 &n2_mau_driver, 2225 }; 2226 2227 static int __init n2_init(void) 2228 { 2229 return platform_register_drivers(drivers, ARRAY_SIZE(drivers)); 2230 } 2231 2232 static void __exit n2_exit(void) 2233 { 2234 platform_unregister_drivers(drivers, ARRAY_SIZE(drivers)); 2235 } 2236 2237 module_init(n2_init); 2238 module_exit(n2_exit); 2239