xref: /linux/drivers/crypto/n2_core.c (revision 2b64b2ed277ff23e785fbdb65098ee7e1252d64f)
1 /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
2  *
3  * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/of.h>
11 #include <linux/of_device.h>
12 #include <linux/cpumask.h>
13 #include <linux/slab.h>
14 #include <linux/interrupt.h>
15 #include <linux/crypto.h>
16 #include <crypto/md5.h>
17 #include <crypto/sha.h>
18 #include <crypto/aes.h>
19 #include <crypto/des.h>
20 #include <linux/mutex.h>
21 #include <linux/delay.h>
22 #include <linux/sched.h>
23 
24 #include <crypto/internal/hash.h>
25 #include <crypto/scatterwalk.h>
26 #include <crypto/algapi.h>
27 
28 #include <asm/hypervisor.h>
29 #include <asm/mdesc.h>
30 
31 #include "n2_core.h"
32 
33 #define DRV_MODULE_NAME		"n2_crypto"
34 #define DRV_MODULE_VERSION	"0.2"
35 #define DRV_MODULE_RELDATE	"July 28, 2011"
36 
37 static const char version[] =
38 	DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
39 
40 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
41 MODULE_DESCRIPTION("Niagara2 Crypto driver");
42 MODULE_LICENSE("GPL");
43 MODULE_VERSION(DRV_MODULE_VERSION);
44 
45 #define N2_CRA_PRIORITY		200
46 
47 static DEFINE_MUTEX(spu_lock);
48 
49 struct spu_queue {
50 	cpumask_t		sharing;
51 	unsigned long		qhandle;
52 
53 	spinlock_t		lock;
54 	u8			q_type;
55 	void			*q;
56 	unsigned long		head;
57 	unsigned long		tail;
58 	struct list_head	jobs;
59 
60 	unsigned long		devino;
61 
62 	char			irq_name[32];
63 	unsigned int		irq;
64 
65 	struct list_head	list;
66 };
67 
68 struct spu_qreg {
69 	struct spu_queue	*queue;
70 	unsigned long		type;
71 };
72 
73 static struct spu_queue **cpu_to_cwq;
74 static struct spu_queue **cpu_to_mau;
75 
76 static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
77 {
78 	if (q->q_type == HV_NCS_QTYPE_MAU) {
79 		off += MAU_ENTRY_SIZE;
80 		if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
81 			off = 0;
82 	} else {
83 		off += CWQ_ENTRY_SIZE;
84 		if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
85 			off = 0;
86 	}
87 	return off;
88 }
89 
90 struct n2_request_common {
91 	struct list_head	entry;
92 	unsigned int		offset;
93 };
94 #define OFFSET_NOT_RUNNING	(~(unsigned int)0)
95 
96 /* An async job request records the final tail value it used in
97  * n2_request_common->offset, test to see if that offset is in
98  * the range old_head, new_head, inclusive.
99  */
100 static inline bool job_finished(struct spu_queue *q, unsigned int offset,
101 				unsigned long old_head, unsigned long new_head)
102 {
103 	if (old_head <= new_head) {
104 		if (offset > old_head && offset <= new_head)
105 			return true;
106 	} else {
107 		if (offset > old_head || offset <= new_head)
108 			return true;
109 	}
110 	return false;
111 }
112 
113 /* When the HEAD marker is unequal to the actual HEAD, we get
114  * a virtual device INO interrupt.  We should process the
115  * completed CWQ entries and adjust the HEAD marker to clear
116  * the IRQ.
117  */
118 static irqreturn_t cwq_intr(int irq, void *dev_id)
119 {
120 	unsigned long off, new_head, hv_ret;
121 	struct spu_queue *q = dev_id;
122 
123 	pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
124 	       smp_processor_id(), q->qhandle);
125 
126 	spin_lock(&q->lock);
127 
128 	hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
129 
130 	pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
131 	       smp_processor_id(), new_head, hv_ret);
132 
133 	for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
134 		/* XXX ... XXX */
135 	}
136 
137 	hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
138 	if (hv_ret == HV_EOK)
139 		q->head = new_head;
140 
141 	spin_unlock(&q->lock);
142 
143 	return IRQ_HANDLED;
144 }
145 
146 static irqreturn_t mau_intr(int irq, void *dev_id)
147 {
148 	struct spu_queue *q = dev_id;
149 	unsigned long head, hv_ret;
150 
151 	spin_lock(&q->lock);
152 
153 	pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
154 	       smp_processor_id(), q->qhandle);
155 
156 	hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
157 
158 	pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
159 	       smp_processor_id(), head, hv_ret);
160 
161 	sun4v_ncs_sethead_marker(q->qhandle, head);
162 
163 	spin_unlock(&q->lock);
164 
165 	return IRQ_HANDLED;
166 }
167 
168 static void *spu_queue_next(struct spu_queue *q, void *cur)
169 {
170 	return q->q + spu_next_offset(q, cur - q->q);
171 }
172 
173 static int spu_queue_num_free(struct spu_queue *q)
174 {
175 	unsigned long head = q->head;
176 	unsigned long tail = q->tail;
177 	unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
178 	unsigned long diff;
179 
180 	if (head > tail)
181 		diff = head - tail;
182 	else
183 		diff = (end - tail) + head;
184 
185 	return (diff / CWQ_ENTRY_SIZE) - 1;
186 }
187 
188 static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
189 {
190 	int avail = spu_queue_num_free(q);
191 
192 	if (avail >= num_entries)
193 		return q->q + q->tail;
194 
195 	return NULL;
196 }
197 
198 static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
199 {
200 	unsigned long hv_ret, new_tail;
201 
202 	new_tail = spu_next_offset(q, last - q->q);
203 
204 	hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
205 	if (hv_ret == HV_EOK)
206 		q->tail = new_tail;
207 	return hv_ret;
208 }
209 
210 static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
211 			     int enc_type, int auth_type,
212 			     unsigned int hash_len,
213 			     bool sfas, bool sob, bool eob, bool encrypt,
214 			     int opcode)
215 {
216 	u64 word = (len - 1) & CONTROL_LEN;
217 
218 	word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
219 	word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
220 	word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
221 	if (sfas)
222 		word |= CONTROL_STORE_FINAL_AUTH_STATE;
223 	if (sob)
224 		word |= CONTROL_START_OF_BLOCK;
225 	if (eob)
226 		word |= CONTROL_END_OF_BLOCK;
227 	if (encrypt)
228 		word |= CONTROL_ENCRYPT;
229 	if (hmac_key_len)
230 		word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
231 	if (hash_len)
232 		word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
233 
234 	return word;
235 }
236 
237 #if 0
238 static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
239 {
240 	if (this_len >= 64 ||
241 	    qp->head != qp->tail)
242 		return true;
243 	return false;
244 }
245 #endif
246 
247 struct n2_ahash_alg {
248 	struct list_head	entry;
249 	const u8		*hash_zero;
250 	const u32		*hash_init;
251 	u8			hw_op_hashsz;
252 	u8			digest_size;
253 	u8			auth_type;
254 	u8			hmac_type;
255 	struct ahash_alg	alg;
256 };
257 
258 static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
259 {
260 	struct crypto_alg *alg = tfm->__crt_alg;
261 	struct ahash_alg *ahash_alg;
262 
263 	ahash_alg = container_of(alg, struct ahash_alg, halg.base);
264 
265 	return container_of(ahash_alg, struct n2_ahash_alg, alg);
266 }
267 
268 struct n2_hmac_alg {
269 	const char		*child_alg;
270 	struct n2_ahash_alg	derived;
271 };
272 
273 static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
274 {
275 	struct crypto_alg *alg = tfm->__crt_alg;
276 	struct ahash_alg *ahash_alg;
277 
278 	ahash_alg = container_of(alg, struct ahash_alg, halg.base);
279 
280 	return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
281 }
282 
283 struct n2_hash_ctx {
284 	struct crypto_ahash		*fallback_tfm;
285 };
286 
287 #define N2_HASH_KEY_MAX			32 /* HW limit for all HMAC requests */
288 
289 struct n2_hmac_ctx {
290 	struct n2_hash_ctx		base;
291 
292 	struct crypto_shash		*child_shash;
293 
294 	int				hash_key_len;
295 	unsigned char			hash_key[N2_HASH_KEY_MAX];
296 };
297 
298 struct n2_hash_req_ctx {
299 	union {
300 		struct md5_state	md5;
301 		struct sha1_state	sha1;
302 		struct sha256_state	sha256;
303 	} u;
304 
305 	struct ahash_request		fallback_req;
306 };
307 
308 static int n2_hash_async_init(struct ahash_request *req)
309 {
310 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
311 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
312 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
313 
314 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
315 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
316 
317 	return crypto_ahash_init(&rctx->fallback_req);
318 }
319 
320 static int n2_hash_async_update(struct ahash_request *req)
321 {
322 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
323 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
324 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
325 
326 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
327 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
328 	rctx->fallback_req.nbytes = req->nbytes;
329 	rctx->fallback_req.src = req->src;
330 
331 	return crypto_ahash_update(&rctx->fallback_req);
332 }
333 
334 static int n2_hash_async_final(struct ahash_request *req)
335 {
336 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
337 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
338 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
339 
340 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
341 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
342 	rctx->fallback_req.result = req->result;
343 
344 	return crypto_ahash_final(&rctx->fallback_req);
345 }
346 
347 static int n2_hash_async_finup(struct ahash_request *req)
348 {
349 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
350 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
351 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
352 
353 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
354 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
355 	rctx->fallback_req.nbytes = req->nbytes;
356 	rctx->fallback_req.src = req->src;
357 	rctx->fallback_req.result = req->result;
358 
359 	return crypto_ahash_finup(&rctx->fallback_req);
360 }
361 
362 static int n2_hash_async_noimport(struct ahash_request *req, const void *in)
363 {
364 	return -ENOSYS;
365 }
366 
367 static int n2_hash_async_noexport(struct ahash_request *req, void *out)
368 {
369 	return -ENOSYS;
370 }
371 
372 static int n2_hash_cra_init(struct crypto_tfm *tfm)
373 {
374 	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
375 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
376 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
377 	struct crypto_ahash *fallback_tfm;
378 	int err;
379 
380 	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
381 					  CRYPTO_ALG_NEED_FALLBACK);
382 	if (IS_ERR(fallback_tfm)) {
383 		pr_warning("Fallback driver '%s' could not be loaded!\n",
384 			   fallback_driver_name);
385 		err = PTR_ERR(fallback_tfm);
386 		goto out;
387 	}
388 
389 	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
390 					 crypto_ahash_reqsize(fallback_tfm)));
391 
392 	ctx->fallback_tfm = fallback_tfm;
393 	return 0;
394 
395 out:
396 	return err;
397 }
398 
399 static void n2_hash_cra_exit(struct crypto_tfm *tfm)
400 {
401 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
402 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
403 
404 	crypto_free_ahash(ctx->fallback_tfm);
405 }
406 
407 static int n2_hmac_cra_init(struct crypto_tfm *tfm)
408 {
409 	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
410 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
411 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
412 	struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
413 	struct crypto_ahash *fallback_tfm;
414 	struct crypto_shash *child_shash;
415 	int err;
416 
417 	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
418 					  CRYPTO_ALG_NEED_FALLBACK);
419 	if (IS_ERR(fallback_tfm)) {
420 		pr_warning("Fallback driver '%s' could not be loaded!\n",
421 			   fallback_driver_name);
422 		err = PTR_ERR(fallback_tfm);
423 		goto out;
424 	}
425 
426 	child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
427 	if (IS_ERR(child_shash)) {
428 		pr_warning("Child shash '%s' could not be loaded!\n",
429 			   n2alg->child_alg);
430 		err = PTR_ERR(child_shash);
431 		goto out_free_fallback;
432 	}
433 
434 	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
435 					 crypto_ahash_reqsize(fallback_tfm)));
436 
437 	ctx->child_shash = child_shash;
438 	ctx->base.fallback_tfm = fallback_tfm;
439 	return 0;
440 
441 out_free_fallback:
442 	crypto_free_ahash(fallback_tfm);
443 
444 out:
445 	return err;
446 }
447 
448 static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
449 {
450 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
451 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
452 
453 	crypto_free_ahash(ctx->base.fallback_tfm);
454 	crypto_free_shash(ctx->child_shash);
455 }
456 
457 static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
458 				unsigned int keylen)
459 {
460 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
461 	struct crypto_shash *child_shash = ctx->child_shash;
462 	struct crypto_ahash *fallback_tfm;
463 	SHASH_DESC_ON_STACK(shash, child_shash);
464 	int err, bs, ds;
465 
466 	fallback_tfm = ctx->base.fallback_tfm;
467 	err = crypto_ahash_setkey(fallback_tfm, key, keylen);
468 	if (err)
469 		return err;
470 
471 	shash->tfm = child_shash;
472 	shash->flags = crypto_ahash_get_flags(tfm) &
473 		CRYPTO_TFM_REQ_MAY_SLEEP;
474 
475 	bs = crypto_shash_blocksize(child_shash);
476 	ds = crypto_shash_digestsize(child_shash);
477 	BUG_ON(ds > N2_HASH_KEY_MAX);
478 	if (keylen > bs) {
479 		err = crypto_shash_digest(shash, key, keylen,
480 					  ctx->hash_key);
481 		if (err)
482 			return err;
483 		keylen = ds;
484 	} else if (keylen <= N2_HASH_KEY_MAX)
485 		memcpy(ctx->hash_key, key, keylen);
486 
487 	ctx->hash_key_len = keylen;
488 
489 	return err;
490 }
491 
492 static unsigned long wait_for_tail(struct spu_queue *qp)
493 {
494 	unsigned long head, hv_ret;
495 
496 	do {
497 		hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
498 		if (hv_ret != HV_EOK) {
499 			pr_err("Hypervisor error on gethead\n");
500 			break;
501 		}
502 		if (head == qp->tail) {
503 			qp->head = head;
504 			break;
505 		}
506 	} while (1);
507 	return hv_ret;
508 }
509 
510 static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
511 					      struct cwq_initial_entry *ent)
512 {
513 	unsigned long hv_ret = spu_queue_submit(qp, ent);
514 
515 	if (hv_ret == HV_EOK)
516 		hv_ret = wait_for_tail(qp);
517 
518 	return hv_ret;
519 }
520 
521 static int n2_do_async_digest(struct ahash_request *req,
522 			      unsigned int auth_type, unsigned int digest_size,
523 			      unsigned int result_size, void *hash_loc,
524 			      unsigned long auth_key, unsigned int auth_key_len)
525 {
526 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
527 	struct cwq_initial_entry *ent;
528 	struct crypto_hash_walk walk;
529 	struct spu_queue *qp;
530 	unsigned long flags;
531 	int err = -ENODEV;
532 	int nbytes, cpu;
533 
534 	/* The total effective length of the operation may not
535 	 * exceed 2^16.
536 	 */
537 	if (unlikely(req->nbytes > (1 << 16))) {
538 		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
539 		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
540 
541 		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
542 		rctx->fallback_req.base.flags =
543 			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
544 		rctx->fallback_req.nbytes = req->nbytes;
545 		rctx->fallback_req.src = req->src;
546 		rctx->fallback_req.result = req->result;
547 
548 		return crypto_ahash_digest(&rctx->fallback_req);
549 	}
550 
551 	nbytes = crypto_hash_walk_first(req, &walk);
552 
553 	cpu = get_cpu();
554 	qp = cpu_to_cwq[cpu];
555 	if (!qp)
556 		goto out;
557 
558 	spin_lock_irqsave(&qp->lock, flags);
559 
560 	/* XXX can do better, improve this later by doing a by-hand scatterlist
561 	 * XXX walk, etc.
562 	 */
563 	ent = qp->q + qp->tail;
564 
565 	ent->control = control_word_base(nbytes, auth_key_len, 0,
566 					 auth_type, digest_size,
567 					 false, true, false, false,
568 					 OPCODE_INPLACE_BIT |
569 					 OPCODE_AUTH_MAC);
570 	ent->src_addr = __pa(walk.data);
571 	ent->auth_key_addr = auth_key;
572 	ent->auth_iv_addr = __pa(hash_loc);
573 	ent->final_auth_state_addr = 0UL;
574 	ent->enc_key_addr = 0UL;
575 	ent->enc_iv_addr = 0UL;
576 	ent->dest_addr = __pa(hash_loc);
577 
578 	nbytes = crypto_hash_walk_done(&walk, 0);
579 	while (nbytes > 0) {
580 		ent = spu_queue_next(qp, ent);
581 
582 		ent->control = (nbytes - 1);
583 		ent->src_addr = __pa(walk.data);
584 		ent->auth_key_addr = 0UL;
585 		ent->auth_iv_addr = 0UL;
586 		ent->final_auth_state_addr = 0UL;
587 		ent->enc_key_addr = 0UL;
588 		ent->enc_iv_addr = 0UL;
589 		ent->dest_addr = 0UL;
590 
591 		nbytes = crypto_hash_walk_done(&walk, 0);
592 	}
593 	ent->control |= CONTROL_END_OF_BLOCK;
594 
595 	if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
596 		err = -EINVAL;
597 	else
598 		err = 0;
599 
600 	spin_unlock_irqrestore(&qp->lock, flags);
601 
602 	if (!err)
603 		memcpy(req->result, hash_loc, result_size);
604 out:
605 	put_cpu();
606 
607 	return err;
608 }
609 
610 static int n2_hash_async_digest(struct ahash_request *req)
611 {
612 	struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
613 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
614 	int ds;
615 
616 	ds = n2alg->digest_size;
617 	if (unlikely(req->nbytes == 0)) {
618 		memcpy(req->result, n2alg->hash_zero, ds);
619 		return 0;
620 	}
621 	memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
622 
623 	return n2_do_async_digest(req, n2alg->auth_type,
624 				  n2alg->hw_op_hashsz, ds,
625 				  &rctx->u, 0UL, 0);
626 }
627 
628 static int n2_hmac_async_digest(struct ahash_request *req)
629 {
630 	struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
631 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
632 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
633 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
634 	int ds;
635 
636 	ds = n2alg->derived.digest_size;
637 	if (unlikely(req->nbytes == 0) ||
638 	    unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
639 		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
640 		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
641 
642 		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
643 		rctx->fallback_req.base.flags =
644 			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
645 		rctx->fallback_req.nbytes = req->nbytes;
646 		rctx->fallback_req.src = req->src;
647 		rctx->fallback_req.result = req->result;
648 
649 		return crypto_ahash_digest(&rctx->fallback_req);
650 	}
651 	memcpy(&rctx->u, n2alg->derived.hash_init,
652 	       n2alg->derived.hw_op_hashsz);
653 
654 	return n2_do_async_digest(req, n2alg->derived.hmac_type,
655 				  n2alg->derived.hw_op_hashsz, ds,
656 				  &rctx->u,
657 				  __pa(&ctx->hash_key),
658 				  ctx->hash_key_len);
659 }
660 
661 struct n2_cipher_context {
662 	int			key_len;
663 	int			enc_type;
664 	union {
665 		u8		aes[AES_MAX_KEY_SIZE];
666 		u8		des[DES_KEY_SIZE];
667 		u8		des3[3 * DES_KEY_SIZE];
668 		u8		arc4[258]; /* S-box, X, Y */
669 	} key;
670 };
671 
672 #define N2_CHUNK_ARR_LEN	16
673 
674 struct n2_crypto_chunk {
675 	struct list_head	entry;
676 	unsigned long		iv_paddr : 44;
677 	unsigned long		arr_len : 20;
678 	unsigned long		dest_paddr;
679 	unsigned long		dest_final;
680 	struct {
681 		unsigned long	src_paddr : 44;
682 		unsigned long	src_len : 20;
683 	} arr[N2_CHUNK_ARR_LEN];
684 };
685 
686 struct n2_request_context {
687 	struct ablkcipher_walk	walk;
688 	struct list_head	chunk_list;
689 	struct n2_crypto_chunk	chunk;
690 	u8			temp_iv[16];
691 };
692 
693 /* The SPU allows some level of flexibility for partial cipher blocks
694  * being specified in a descriptor.
695  *
696  * It merely requires that every descriptor's length field is at least
697  * as large as the cipher block size.  This means that a cipher block
698  * can span at most 2 descriptors.  However, this does not allow a
699  * partial block to span into the final descriptor as that would
700  * violate the rule (since every descriptor's length must be at lest
701  * the block size).  So, for example, assuming an 8 byte block size:
702  *
703  *	0xe --> 0xa --> 0x8
704  *
705  * is a valid length sequence, whereas:
706  *
707  *	0xe --> 0xb --> 0x7
708  *
709  * is not a valid sequence.
710  */
711 
712 struct n2_cipher_alg {
713 	struct list_head	entry;
714 	u8			enc_type;
715 	struct crypto_alg	alg;
716 };
717 
718 static inline struct n2_cipher_alg *n2_cipher_alg(struct crypto_tfm *tfm)
719 {
720 	struct crypto_alg *alg = tfm->__crt_alg;
721 
722 	return container_of(alg, struct n2_cipher_alg, alg);
723 }
724 
725 struct n2_cipher_request_context {
726 	struct ablkcipher_walk	walk;
727 };
728 
729 static int n2_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
730 			 unsigned int keylen)
731 {
732 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
733 	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
734 	struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
735 
736 	ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
737 
738 	switch (keylen) {
739 	case AES_KEYSIZE_128:
740 		ctx->enc_type |= ENC_TYPE_ALG_AES128;
741 		break;
742 	case AES_KEYSIZE_192:
743 		ctx->enc_type |= ENC_TYPE_ALG_AES192;
744 		break;
745 	case AES_KEYSIZE_256:
746 		ctx->enc_type |= ENC_TYPE_ALG_AES256;
747 		break;
748 	default:
749 		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
750 		return -EINVAL;
751 	}
752 
753 	ctx->key_len = keylen;
754 	memcpy(ctx->key.aes, key, keylen);
755 	return 0;
756 }
757 
758 static int n2_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
759 			 unsigned int keylen)
760 {
761 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
762 	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
763 	struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
764 	u32 tmp[DES_EXPKEY_WORDS];
765 	int err;
766 
767 	ctx->enc_type = n2alg->enc_type;
768 
769 	if (keylen != DES_KEY_SIZE) {
770 		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
771 		return -EINVAL;
772 	}
773 
774 	err = des_ekey(tmp, key);
775 	if (err == 0 && (tfm->crt_flags & CRYPTO_TFM_REQ_FORBID_WEAK_KEYS)) {
776 		tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
777 		return -EINVAL;
778 	}
779 
780 	ctx->key_len = keylen;
781 	memcpy(ctx->key.des, key, keylen);
782 	return 0;
783 }
784 
785 static int n2_3des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
786 			  unsigned int keylen)
787 {
788 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
789 	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
790 	struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
791 
792 	ctx->enc_type = n2alg->enc_type;
793 
794 	if (keylen != (3 * DES_KEY_SIZE)) {
795 		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
796 		return -EINVAL;
797 	}
798 	ctx->key_len = keylen;
799 	memcpy(ctx->key.des3, key, keylen);
800 	return 0;
801 }
802 
803 static int n2_arc4_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
804 			  unsigned int keylen)
805 {
806 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
807 	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
808 	struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
809 	u8 *s = ctx->key.arc4;
810 	u8 *x = s + 256;
811 	u8 *y = x + 1;
812 	int i, j, k;
813 
814 	ctx->enc_type = n2alg->enc_type;
815 
816 	j = k = 0;
817 	*x = 0;
818 	*y = 0;
819 	for (i = 0; i < 256; i++)
820 		s[i] = i;
821 	for (i = 0; i < 256; i++) {
822 		u8 a = s[i];
823 		j = (j + key[k] + a) & 0xff;
824 		s[i] = s[j];
825 		s[j] = a;
826 		if (++k >= keylen)
827 			k = 0;
828 	}
829 
830 	return 0;
831 }
832 
833 static inline int cipher_descriptor_len(int nbytes, unsigned int block_size)
834 {
835 	int this_len = nbytes;
836 
837 	this_len -= (nbytes & (block_size - 1));
838 	return this_len > (1 << 16) ? (1 << 16) : this_len;
839 }
840 
841 static int __n2_crypt_chunk(struct crypto_tfm *tfm, struct n2_crypto_chunk *cp,
842 			    struct spu_queue *qp, bool encrypt)
843 {
844 	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
845 	struct cwq_initial_entry *ent;
846 	bool in_place;
847 	int i;
848 
849 	ent = spu_queue_alloc(qp, cp->arr_len);
850 	if (!ent) {
851 		pr_info("queue_alloc() of %d fails\n",
852 			cp->arr_len);
853 		return -EBUSY;
854 	}
855 
856 	in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
857 
858 	ent->control = control_word_base(cp->arr[0].src_len,
859 					 0, ctx->enc_type, 0, 0,
860 					 false, true, false, encrypt,
861 					 OPCODE_ENCRYPT |
862 					 (in_place ? OPCODE_INPLACE_BIT : 0));
863 	ent->src_addr = cp->arr[0].src_paddr;
864 	ent->auth_key_addr = 0UL;
865 	ent->auth_iv_addr = 0UL;
866 	ent->final_auth_state_addr = 0UL;
867 	ent->enc_key_addr = __pa(&ctx->key);
868 	ent->enc_iv_addr = cp->iv_paddr;
869 	ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
870 
871 	for (i = 1; i < cp->arr_len; i++) {
872 		ent = spu_queue_next(qp, ent);
873 
874 		ent->control = cp->arr[i].src_len - 1;
875 		ent->src_addr = cp->arr[i].src_paddr;
876 		ent->auth_key_addr = 0UL;
877 		ent->auth_iv_addr = 0UL;
878 		ent->final_auth_state_addr = 0UL;
879 		ent->enc_key_addr = 0UL;
880 		ent->enc_iv_addr = 0UL;
881 		ent->dest_addr = 0UL;
882 	}
883 	ent->control |= CONTROL_END_OF_BLOCK;
884 
885 	return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
886 }
887 
888 static int n2_compute_chunks(struct ablkcipher_request *req)
889 {
890 	struct n2_request_context *rctx = ablkcipher_request_ctx(req);
891 	struct ablkcipher_walk *walk = &rctx->walk;
892 	struct n2_crypto_chunk *chunk;
893 	unsigned long dest_prev;
894 	unsigned int tot_len;
895 	bool prev_in_place;
896 	int err, nbytes;
897 
898 	ablkcipher_walk_init(walk, req->dst, req->src, req->nbytes);
899 	err = ablkcipher_walk_phys(req, walk);
900 	if (err)
901 		return err;
902 
903 	INIT_LIST_HEAD(&rctx->chunk_list);
904 
905 	chunk = &rctx->chunk;
906 	INIT_LIST_HEAD(&chunk->entry);
907 
908 	chunk->iv_paddr = 0UL;
909 	chunk->arr_len = 0;
910 	chunk->dest_paddr = 0UL;
911 
912 	prev_in_place = false;
913 	dest_prev = ~0UL;
914 	tot_len = 0;
915 
916 	while ((nbytes = walk->nbytes) != 0) {
917 		unsigned long dest_paddr, src_paddr;
918 		bool in_place;
919 		int this_len;
920 
921 		src_paddr = (page_to_phys(walk->src.page) +
922 			     walk->src.offset);
923 		dest_paddr = (page_to_phys(walk->dst.page) +
924 			      walk->dst.offset);
925 		in_place = (src_paddr == dest_paddr);
926 		this_len = cipher_descriptor_len(nbytes, walk->blocksize);
927 
928 		if (chunk->arr_len != 0) {
929 			if (in_place != prev_in_place ||
930 			    (!prev_in_place &&
931 			     dest_paddr != dest_prev) ||
932 			    chunk->arr_len == N2_CHUNK_ARR_LEN ||
933 			    tot_len + this_len > (1 << 16)) {
934 				chunk->dest_final = dest_prev;
935 				list_add_tail(&chunk->entry,
936 					      &rctx->chunk_list);
937 				chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
938 				if (!chunk) {
939 					err = -ENOMEM;
940 					break;
941 				}
942 				INIT_LIST_HEAD(&chunk->entry);
943 			}
944 		}
945 		if (chunk->arr_len == 0) {
946 			chunk->dest_paddr = dest_paddr;
947 			tot_len = 0;
948 		}
949 		chunk->arr[chunk->arr_len].src_paddr = src_paddr;
950 		chunk->arr[chunk->arr_len].src_len = this_len;
951 		chunk->arr_len++;
952 
953 		dest_prev = dest_paddr + this_len;
954 		prev_in_place = in_place;
955 		tot_len += this_len;
956 
957 		err = ablkcipher_walk_done(req, walk, nbytes - this_len);
958 		if (err)
959 			break;
960 	}
961 	if (!err && chunk->arr_len != 0) {
962 		chunk->dest_final = dest_prev;
963 		list_add_tail(&chunk->entry, &rctx->chunk_list);
964 	}
965 
966 	return err;
967 }
968 
969 static void n2_chunk_complete(struct ablkcipher_request *req, void *final_iv)
970 {
971 	struct n2_request_context *rctx = ablkcipher_request_ctx(req);
972 	struct n2_crypto_chunk *c, *tmp;
973 
974 	if (final_iv)
975 		memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
976 
977 	ablkcipher_walk_complete(&rctx->walk);
978 	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
979 		list_del(&c->entry);
980 		if (unlikely(c != &rctx->chunk))
981 			kfree(c);
982 	}
983 
984 }
985 
986 static int n2_do_ecb(struct ablkcipher_request *req, bool encrypt)
987 {
988 	struct n2_request_context *rctx = ablkcipher_request_ctx(req);
989 	struct crypto_tfm *tfm = req->base.tfm;
990 	int err = n2_compute_chunks(req);
991 	struct n2_crypto_chunk *c, *tmp;
992 	unsigned long flags, hv_ret;
993 	struct spu_queue *qp;
994 
995 	if (err)
996 		return err;
997 
998 	qp = cpu_to_cwq[get_cpu()];
999 	err = -ENODEV;
1000 	if (!qp)
1001 		goto out;
1002 
1003 	spin_lock_irqsave(&qp->lock, flags);
1004 
1005 	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
1006 		err = __n2_crypt_chunk(tfm, c, qp, encrypt);
1007 		if (err)
1008 			break;
1009 		list_del(&c->entry);
1010 		if (unlikely(c != &rctx->chunk))
1011 			kfree(c);
1012 	}
1013 	if (!err) {
1014 		hv_ret = wait_for_tail(qp);
1015 		if (hv_ret != HV_EOK)
1016 			err = -EINVAL;
1017 	}
1018 
1019 	spin_unlock_irqrestore(&qp->lock, flags);
1020 
1021 out:
1022 	put_cpu();
1023 
1024 	n2_chunk_complete(req, NULL);
1025 	return err;
1026 }
1027 
1028 static int n2_encrypt_ecb(struct ablkcipher_request *req)
1029 {
1030 	return n2_do_ecb(req, true);
1031 }
1032 
1033 static int n2_decrypt_ecb(struct ablkcipher_request *req)
1034 {
1035 	return n2_do_ecb(req, false);
1036 }
1037 
1038 static int n2_do_chaining(struct ablkcipher_request *req, bool encrypt)
1039 {
1040 	struct n2_request_context *rctx = ablkcipher_request_ctx(req);
1041 	struct crypto_tfm *tfm = req->base.tfm;
1042 	unsigned long flags, hv_ret, iv_paddr;
1043 	int err = n2_compute_chunks(req);
1044 	struct n2_crypto_chunk *c, *tmp;
1045 	struct spu_queue *qp;
1046 	void *final_iv_addr;
1047 
1048 	final_iv_addr = NULL;
1049 
1050 	if (err)
1051 		return err;
1052 
1053 	qp = cpu_to_cwq[get_cpu()];
1054 	err = -ENODEV;
1055 	if (!qp)
1056 		goto out;
1057 
1058 	spin_lock_irqsave(&qp->lock, flags);
1059 
1060 	if (encrypt) {
1061 		iv_paddr = __pa(rctx->walk.iv);
1062 		list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1063 					 entry) {
1064 			c->iv_paddr = iv_paddr;
1065 			err = __n2_crypt_chunk(tfm, c, qp, true);
1066 			if (err)
1067 				break;
1068 			iv_paddr = c->dest_final - rctx->walk.blocksize;
1069 			list_del(&c->entry);
1070 			if (unlikely(c != &rctx->chunk))
1071 				kfree(c);
1072 		}
1073 		final_iv_addr = __va(iv_paddr);
1074 	} else {
1075 		list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1076 						 entry) {
1077 			if (c == &rctx->chunk) {
1078 				iv_paddr = __pa(rctx->walk.iv);
1079 			} else {
1080 				iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1081 					    tmp->arr[tmp->arr_len-1].src_len -
1082 					    rctx->walk.blocksize);
1083 			}
1084 			if (!final_iv_addr) {
1085 				unsigned long pa;
1086 
1087 				pa = (c->arr[c->arr_len-1].src_paddr +
1088 				      c->arr[c->arr_len-1].src_len -
1089 				      rctx->walk.blocksize);
1090 				final_iv_addr = rctx->temp_iv;
1091 				memcpy(rctx->temp_iv, __va(pa),
1092 				       rctx->walk.blocksize);
1093 			}
1094 			c->iv_paddr = iv_paddr;
1095 			err = __n2_crypt_chunk(tfm, c, qp, false);
1096 			if (err)
1097 				break;
1098 			list_del(&c->entry);
1099 			if (unlikely(c != &rctx->chunk))
1100 				kfree(c);
1101 		}
1102 	}
1103 	if (!err) {
1104 		hv_ret = wait_for_tail(qp);
1105 		if (hv_ret != HV_EOK)
1106 			err = -EINVAL;
1107 	}
1108 
1109 	spin_unlock_irqrestore(&qp->lock, flags);
1110 
1111 out:
1112 	put_cpu();
1113 
1114 	n2_chunk_complete(req, err ? NULL : final_iv_addr);
1115 	return err;
1116 }
1117 
1118 static int n2_encrypt_chaining(struct ablkcipher_request *req)
1119 {
1120 	return n2_do_chaining(req, true);
1121 }
1122 
1123 static int n2_decrypt_chaining(struct ablkcipher_request *req)
1124 {
1125 	return n2_do_chaining(req, false);
1126 }
1127 
1128 struct n2_cipher_tmpl {
1129 	const char		*name;
1130 	const char		*drv_name;
1131 	u8			block_size;
1132 	u8			enc_type;
1133 	struct ablkcipher_alg	ablkcipher;
1134 };
1135 
1136 static const struct n2_cipher_tmpl cipher_tmpls[] = {
1137 	/* ARC4: only ECB is supported (chaining bits ignored) */
1138 	{	.name		= "ecb(arc4)",
1139 		.drv_name	= "ecb-arc4",
1140 		.block_size	= 1,
1141 		.enc_type	= (ENC_TYPE_ALG_RC4_STREAM |
1142 				   ENC_TYPE_CHAINING_ECB),
1143 		.ablkcipher	= {
1144 			.min_keysize	= 1,
1145 			.max_keysize	= 256,
1146 			.setkey		= n2_arc4_setkey,
1147 			.encrypt	= n2_encrypt_ecb,
1148 			.decrypt	= n2_decrypt_ecb,
1149 		},
1150 	},
1151 
1152 	/* DES: ECB CBC and CFB are supported */
1153 	{	.name		= "ecb(des)",
1154 		.drv_name	= "ecb-des",
1155 		.block_size	= DES_BLOCK_SIZE,
1156 		.enc_type	= (ENC_TYPE_ALG_DES |
1157 				   ENC_TYPE_CHAINING_ECB),
1158 		.ablkcipher	= {
1159 			.min_keysize	= DES_KEY_SIZE,
1160 			.max_keysize	= DES_KEY_SIZE,
1161 			.setkey		= n2_des_setkey,
1162 			.encrypt	= n2_encrypt_ecb,
1163 			.decrypt	= n2_decrypt_ecb,
1164 		},
1165 	},
1166 	{	.name		= "cbc(des)",
1167 		.drv_name	= "cbc-des",
1168 		.block_size	= DES_BLOCK_SIZE,
1169 		.enc_type	= (ENC_TYPE_ALG_DES |
1170 				   ENC_TYPE_CHAINING_CBC),
1171 		.ablkcipher	= {
1172 			.ivsize		= DES_BLOCK_SIZE,
1173 			.min_keysize	= DES_KEY_SIZE,
1174 			.max_keysize	= DES_KEY_SIZE,
1175 			.setkey		= n2_des_setkey,
1176 			.encrypt	= n2_encrypt_chaining,
1177 			.decrypt	= n2_decrypt_chaining,
1178 		},
1179 	},
1180 	{	.name		= "cfb(des)",
1181 		.drv_name	= "cfb-des",
1182 		.block_size	= DES_BLOCK_SIZE,
1183 		.enc_type	= (ENC_TYPE_ALG_DES |
1184 				   ENC_TYPE_CHAINING_CFB),
1185 		.ablkcipher	= {
1186 			.min_keysize	= DES_KEY_SIZE,
1187 			.max_keysize	= DES_KEY_SIZE,
1188 			.setkey		= n2_des_setkey,
1189 			.encrypt	= n2_encrypt_chaining,
1190 			.decrypt	= n2_decrypt_chaining,
1191 		},
1192 	},
1193 
1194 	/* 3DES: ECB CBC and CFB are supported */
1195 	{	.name		= "ecb(des3_ede)",
1196 		.drv_name	= "ecb-3des",
1197 		.block_size	= DES_BLOCK_SIZE,
1198 		.enc_type	= (ENC_TYPE_ALG_3DES |
1199 				   ENC_TYPE_CHAINING_ECB),
1200 		.ablkcipher	= {
1201 			.min_keysize	= 3 * DES_KEY_SIZE,
1202 			.max_keysize	= 3 * DES_KEY_SIZE,
1203 			.setkey		= n2_3des_setkey,
1204 			.encrypt	= n2_encrypt_ecb,
1205 			.decrypt	= n2_decrypt_ecb,
1206 		},
1207 	},
1208 	{	.name		= "cbc(des3_ede)",
1209 		.drv_name	= "cbc-3des",
1210 		.block_size	= DES_BLOCK_SIZE,
1211 		.enc_type	= (ENC_TYPE_ALG_3DES |
1212 				   ENC_TYPE_CHAINING_CBC),
1213 		.ablkcipher	= {
1214 			.ivsize		= DES_BLOCK_SIZE,
1215 			.min_keysize	= 3 * DES_KEY_SIZE,
1216 			.max_keysize	= 3 * DES_KEY_SIZE,
1217 			.setkey		= n2_3des_setkey,
1218 			.encrypt	= n2_encrypt_chaining,
1219 			.decrypt	= n2_decrypt_chaining,
1220 		},
1221 	},
1222 	{	.name		= "cfb(des3_ede)",
1223 		.drv_name	= "cfb-3des",
1224 		.block_size	= DES_BLOCK_SIZE,
1225 		.enc_type	= (ENC_TYPE_ALG_3DES |
1226 				   ENC_TYPE_CHAINING_CFB),
1227 		.ablkcipher	= {
1228 			.min_keysize	= 3 * DES_KEY_SIZE,
1229 			.max_keysize	= 3 * DES_KEY_SIZE,
1230 			.setkey		= n2_3des_setkey,
1231 			.encrypt	= n2_encrypt_chaining,
1232 			.decrypt	= n2_decrypt_chaining,
1233 		},
1234 	},
1235 	/* AES: ECB CBC and CTR are supported */
1236 	{	.name		= "ecb(aes)",
1237 		.drv_name	= "ecb-aes",
1238 		.block_size	= AES_BLOCK_SIZE,
1239 		.enc_type	= (ENC_TYPE_ALG_AES128 |
1240 				   ENC_TYPE_CHAINING_ECB),
1241 		.ablkcipher	= {
1242 			.min_keysize	= AES_MIN_KEY_SIZE,
1243 			.max_keysize	= AES_MAX_KEY_SIZE,
1244 			.setkey		= n2_aes_setkey,
1245 			.encrypt	= n2_encrypt_ecb,
1246 			.decrypt	= n2_decrypt_ecb,
1247 		},
1248 	},
1249 	{	.name		= "cbc(aes)",
1250 		.drv_name	= "cbc-aes",
1251 		.block_size	= AES_BLOCK_SIZE,
1252 		.enc_type	= (ENC_TYPE_ALG_AES128 |
1253 				   ENC_TYPE_CHAINING_CBC),
1254 		.ablkcipher	= {
1255 			.ivsize		= AES_BLOCK_SIZE,
1256 			.min_keysize	= AES_MIN_KEY_SIZE,
1257 			.max_keysize	= AES_MAX_KEY_SIZE,
1258 			.setkey		= n2_aes_setkey,
1259 			.encrypt	= n2_encrypt_chaining,
1260 			.decrypt	= n2_decrypt_chaining,
1261 		},
1262 	},
1263 	{	.name		= "ctr(aes)",
1264 		.drv_name	= "ctr-aes",
1265 		.block_size	= AES_BLOCK_SIZE,
1266 		.enc_type	= (ENC_TYPE_ALG_AES128 |
1267 				   ENC_TYPE_CHAINING_COUNTER),
1268 		.ablkcipher	= {
1269 			.ivsize		= AES_BLOCK_SIZE,
1270 			.min_keysize	= AES_MIN_KEY_SIZE,
1271 			.max_keysize	= AES_MAX_KEY_SIZE,
1272 			.setkey		= n2_aes_setkey,
1273 			.encrypt	= n2_encrypt_chaining,
1274 			.decrypt	= n2_encrypt_chaining,
1275 		},
1276 	},
1277 
1278 };
1279 #define NUM_CIPHER_TMPLS ARRAY_SIZE(cipher_tmpls)
1280 
1281 static LIST_HEAD(cipher_algs);
1282 
1283 struct n2_hash_tmpl {
1284 	const char	*name;
1285 	const u8	*hash_zero;
1286 	const u32	*hash_init;
1287 	u8		hw_op_hashsz;
1288 	u8		digest_size;
1289 	u8		block_size;
1290 	u8		auth_type;
1291 	u8		hmac_type;
1292 };
1293 
1294 static const u32 md5_init[MD5_HASH_WORDS] = {
1295 	cpu_to_le32(MD5_H0),
1296 	cpu_to_le32(MD5_H1),
1297 	cpu_to_le32(MD5_H2),
1298 	cpu_to_le32(MD5_H3),
1299 };
1300 static const u32 sha1_init[SHA1_DIGEST_SIZE / 4] = {
1301 	SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1302 };
1303 static const u32 sha256_init[SHA256_DIGEST_SIZE / 4] = {
1304 	SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1305 	SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1306 };
1307 static const u32 sha224_init[SHA256_DIGEST_SIZE / 4] = {
1308 	SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1309 	SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1310 };
1311 
1312 static const struct n2_hash_tmpl hash_tmpls[] = {
1313 	{ .name		= "md5",
1314 	  .hash_zero	= md5_zero_message_hash,
1315 	  .hash_init	= md5_init,
1316 	  .auth_type	= AUTH_TYPE_MD5,
1317 	  .hmac_type	= AUTH_TYPE_HMAC_MD5,
1318 	  .hw_op_hashsz	= MD5_DIGEST_SIZE,
1319 	  .digest_size	= MD5_DIGEST_SIZE,
1320 	  .block_size	= MD5_HMAC_BLOCK_SIZE },
1321 	{ .name		= "sha1",
1322 	  .hash_zero	= sha1_zero_message_hash,
1323 	  .hash_init	= sha1_init,
1324 	  .auth_type	= AUTH_TYPE_SHA1,
1325 	  .hmac_type	= AUTH_TYPE_HMAC_SHA1,
1326 	  .hw_op_hashsz	= SHA1_DIGEST_SIZE,
1327 	  .digest_size	= SHA1_DIGEST_SIZE,
1328 	  .block_size	= SHA1_BLOCK_SIZE },
1329 	{ .name		= "sha256",
1330 	  .hash_zero	= sha256_zero_message_hash,
1331 	  .hash_init	= sha256_init,
1332 	  .auth_type	= AUTH_TYPE_SHA256,
1333 	  .hmac_type	= AUTH_TYPE_HMAC_SHA256,
1334 	  .hw_op_hashsz	= SHA256_DIGEST_SIZE,
1335 	  .digest_size	= SHA256_DIGEST_SIZE,
1336 	  .block_size	= SHA256_BLOCK_SIZE },
1337 	{ .name		= "sha224",
1338 	  .hash_zero	= sha224_zero_message_hash,
1339 	  .hash_init	= sha224_init,
1340 	  .auth_type	= AUTH_TYPE_SHA256,
1341 	  .hmac_type	= AUTH_TYPE_RESERVED,
1342 	  .hw_op_hashsz	= SHA256_DIGEST_SIZE,
1343 	  .digest_size	= SHA224_DIGEST_SIZE,
1344 	  .block_size	= SHA224_BLOCK_SIZE },
1345 };
1346 #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1347 
1348 static LIST_HEAD(ahash_algs);
1349 static LIST_HEAD(hmac_algs);
1350 
1351 static int algs_registered;
1352 
1353 static void __n2_unregister_algs(void)
1354 {
1355 	struct n2_cipher_alg *cipher, *cipher_tmp;
1356 	struct n2_ahash_alg *alg, *alg_tmp;
1357 	struct n2_hmac_alg *hmac, *hmac_tmp;
1358 
1359 	list_for_each_entry_safe(cipher, cipher_tmp, &cipher_algs, entry) {
1360 		crypto_unregister_alg(&cipher->alg);
1361 		list_del(&cipher->entry);
1362 		kfree(cipher);
1363 	}
1364 	list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1365 		crypto_unregister_ahash(&hmac->derived.alg);
1366 		list_del(&hmac->derived.entry);
1367 		kfree(hmac);
1368 	}
1369 	list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1370 		crypto_unregister_ahash(&alg->alg);
1371 		list_del(&alg->entry);
1372 		kfree(alg);
1373 	}
1374 }
1375 
1376 static int n2_cipher_cra_init(struct crypto_tfm *tfm)
1377 {
1378 	tfm->crt_ablkcipher.reqsize = sizeof(struct n2_request_context);
1379 	return 0;
1380 }
1381 
1382 static int __n2_register_one_cipher(const struct n2_cipher_tmpl *tmpl)
1383 {
1384 	struct n2_cipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1385 	struct crypto_alg *alg;
1386 	int err;
1387 
1388 	if (!p)
1389 		return -ENOMEM;
1390 
1391 	alg = &p->alg;
1392 
1393 	snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1394 	snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1395 	alg->cra_priority = N2_CRA_PRIORITY;
1396 	alg->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1397 			 CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
1398 	alg->cra_blocksize = tmpl->block_size;
1399 	p->enc_type = tmpl->enc_type;
1400 	alg->cra_ctxsize = sizeof(struct n2_cipher_context);
1401 	alg->cra_type = &crypto_ablkcipher_type;
1402 	alg->cra_u.ablkcipher = tmpl->ablkcipher;
1403 	alg->cra_init = n2_cipher_cra_init;
1404 	alg->cra_module = THIS_MODULE;
1405 
1406 	list_add(&p->entry, &cipher_algs);
1407 	err = crypto_register_alg(alg);
1408 	if (err) {
1409 		pr_err("%s alg registration failed\n", alg->cra_name);
1410 		list_del(&p->entry);
1411 		kfree(p);
1412 	} else {
1413 		pr_info("%s alg registered\n", alg->cra_name);
1414 	}
1415 	return err;
1416 }
1417 
1418 static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1419 {
1420 	struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1421 	struct ahash_alg *ahash;
1422 	struct crypto_alg *base;
1423 	int err;
1424 
1425 	if (!p)
1426 		return -ENOMEM;
1427 
1428 	p->child_alg = n2ahash->alg.halg.base.cra_name;
1429 	memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1430 	INIT_LIST_HEAD(&p->derived.entry);
1431 
1432 	ahash = &p->derived.alg;
1433 	ahash->digest = n2_hmac_async_digest;
1434 	ahash->setkey = n2_hmac_async_setkey;
1435 
1436 	base = &ahash->halg.base;
1437 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
1438 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
1439 
1440 	base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1441 	base->cra_init = n2_hmac_cra_init;
1442 	base->cra_exit = n2_hmac_cra_exit;
1443 
1444 	list_add(&p->derived.entry, &hmac_algs);
1445 	err = crypto_register_ahash(ahash);
1446 	if (err) {
1447 		pr_err("%s alg registration failed\n", base->cra_name);
1448 		list_del(&p->derived.entry);
1449 		kfree(p);
1450 	} else {
1451 		pr_info("%s alg registered\n", base->cra_name);
1452 	}
1453 	return err;
1454 }
1455 
1456 static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1457 {
1458 	struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1459 	struct hash_alg_common *halg;
1460 	struct crypto_alg *base;
1461 	struct ahash_alg *ahash;
1462 	int err;
1463 
1464 	if (!p)
1465 		return -ENOMEM;
1466 
1467 	p->hash_zero = tmpl->hash_zero;
1468 	p->hash_init = tmpl->hash_init;
1469 	p->auth_type = tmpl->auth_type;
1470 	p->hmac_type = tmpl->hmac_type;
1471 	p->hw_op_hashsz = tmpl->hw_op_hashsz;
1472 	p->digest_size = tmpl->digest_size;
1473 
1474 	ahash = &p->alg;
1475 	ahash->init = n2_hash_async_init;
1476 	ahash->update = n2_hash_async_update;
1477 	ahash->final = n2_hash_async_final;
1478 	ahash->finup = n2_hash_async_finup;
1479 	ahash->digest = n2_hash_async_digest;
1480 	ahash->export = n2_hash_async_noexport;
1481 	ahash->import = n2_hash_async_noimport;
1482 
1483 	halg = &ahash->halg;
1484 	halg->digestsize = tmpl->digest_size;
1485 
1486 	base = &halg->base;
1487 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1488 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1489 	base->cra_priority = N2_CRA_PRIORITY;
1490 	base->cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1491 			  CRYPTO_ALG_NEED_FALLBACK;
1492 	base->cra_blocksize = tmpl->block_size;
1493 	base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1494 	base->cra_module = THIS_MODULE;
1495 	base->cra_init = n2_hash_cra_init;
1496 	base->cra_exit = n2_hash_cra_exit;
1497 
1498 	list_add(&p->entry, &ahash_algs);
1499 	err = crypto_register_ahash(ahash);
1500 	if (err) {
1501 		pr_err("%s alg registration failed\n", base->cra_name);
1502 		list_del(&p->entry);
1503 		kfree(p);
1504 	} else {
1505 		pr_info("%s alg registered\n", base->cra_name);
1506 	}
1507 	if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1508 		err = __n2_register_one_hmac(p);
1509 	return err;
1510 }
1511 
1512 static int n2_register_algs(void)
1513 {
1514 	int i, err = 0;
1515 
1516 	mutex_lock(&spu_lock);
1517 	if (algs_registered++)
1518 		goto out;
1519 
1520 	for (i = 0; i < NUM_HASH_TMPLS; i++) {
1521 		err = __n2_register_one_ahash(&hash_tmpls[i]);
1522 		if (err) {
1523 			__n2_unregister_algs();
1524 			goto out;
1525 		}
1526 	}
1527 	for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1528 		err = __n2_register_one_cipher(&cipher_tmpls[i]);
1529 		if (err) {
1530 			__n2_unregister_algs();
1531 			goto out;
1532 		}
1533 	}
1534 
1535 out:
1536 	mutex_unlock(&spu_lock);
1537 	return err;
1538 }
1539 
1540 static void n2_unregister_algs(void)
1541 {
1542 	mutex_lock(&spu_lock);
1543 	if (!--algs_registered)
1544 		__n2_unregister_algs();
1545 	mutex_unlock(&spu_lock);
1546 }
1547 
1548 /* To map CWQ queues to interrupt sources, the hypervisor API provides
1549  * a devino.  This isn't very useful to us because all of the
1550  * interrupts listed in the device_node have been translated to
1551  * Linux virtual IRQ cookie numbers.
1552  *
1553  * So we have to back-translate, going through the 'intr' and 'ino'
1554  * property tables of the n2cp MDESC node, matching it with the OF
1555  * 'interrupts' property entries, in order to to figure out which
1556  * devino goes to which already-translated IRQ.
1557  */
1558 static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1559 			     unsigned long dev_ino)
1560 {
1561 	const unsigned int *dev_intrs;
1562 	unsigned int intr;
1563 	int i;
1564 
1565 	for (i = 0; i < ip->num_intrs; i++) {
1566 		if (ip->ino_table[i].ino == dev_ino)
1567 			break;
1568 	}
1569 	if (i == ip->num_intrs)
1570 		return -ENODEV;
1571 
1572 	intr = ip->ino_table[i].intr;
1573 
1574 	dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1575 	if (!dev_intrs)
1576 		return -ENODEV;
1577 
1578 	for (i = 0; i < dev->archdata.num_irqs; i++) {
1579 		if (dev_intrs[i] == intr)
1580 			return i;
1581 	}
1582 
1583 	return -ENODEV;
1584 }
1585 
1586 static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1587 		       const char *irq_name, struct spu_queue *p,
1588 		       irq_handler_t handler)
1589 {
1590 	unsigned long herr;
1591 	int index;
1592 
1593 	herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1594 	if (herr)
1595 		return -EINVAL;
1596 
1597 	index = find_devino_index(dev, ip, p->devino);
1598 	if (index < 0)
1599 		return index;
1600 
1601 	p->irq = dev->archdata.irqs[index];
1602 
1603 	sprintf(p->irq_name, "%s-%d", irq_name, index);
1604 
1605 	return request_irq(p->irq, handler, 0, p->irq_name, p);
1606 }
1607 
1608 static struct kmem_cache *queue_cache[2];
1609 
1610 static void *new_queue(unsigned long q_type)
1611 {
1612 	return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1613 }
1614 
1615 static void free_queue(void *p, unsigned long q_type)
1616 {
1617 	kmem_cache_free(queue_cache[q_type - 1], p);
1618 }
1619 
1620 static int queue_cache_init(void)
1621 {
1622 	if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1623 		queue_cache[HV_NCS_QTYPE_MAU - 1] =
1624 			kmem_cache_create("mau_queue",
1625 					  (MAU_NUM_ENTRIES *
1626 					   MAU_ENTRY_SIZE),
1627 					  MAU_ENTRY_SIZE, 0, NULL);
1628 	if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1629 		return -ENOMEM;
1630 
1631 	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1632 		queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1633 			kmem_cache_create("cwq_queue",
1634 					  (CWQ_NUM_ENTRIES *
1635 					   CWQ_ENTRY_SIZE),
1636 					  CWQ_ENTRY_SIZE, 0, NULL);
1637 	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1638 		kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1639 		queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1640 		return -ENOMEM;
1641 	}
1642 	return 0;
1643 }
1644 
1645 static void queue_cache_destroy(void)
1646 {
1647 	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1648 	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
1649 	queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1650 	queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL;
1651 }
1652 
1653 static long spu_queue_register_workfn(void *arg)
1654 {
1655 	struct spu_qreg *qr = arg;
1656 	struct spu_queue *p = qr->queue;
1657 	unsigned long q_type = qr->type;
1658 	unsigned long hv_ret;
1659 
1660 	hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1661 				 CWQ_NUM_ENTRIES, &p->qhandle);
1662 	if (!hv_ret)
1663 		sun4v_ncs_sethead_marker(p->qhandle, 0);
1664 
1665 	return hv_ret ? -EINVAL : 0;
1666 }
1667 
1668 static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1669 {
1670 	int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
1671 	struct spu_qreg qr = { .queue = p, .type = q_type };
1672 
1673 	return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
1674 }
1675 
1676 static int spu_queue_setup(struct spu_queue *p)
1677 {
1678 	int err;
1679 
1680 	p->q = new_queue(p->q_type);
1681 	if (!p->q)
1682 		return -ENOMEM;
1683 
1684 	err = spu_queue_register(p, p->q_type);
1685 	if (err) {
1686 		free_queue(p->q, p->q_type);
1687 		p->q = NULL;
1688 	}
1689 
1690 	return err;
1691 }
1692 
1693 static void spu_queue_destroy(struct spu_queue *p)
1694 {
1695 	unsigned long hv_ret;
1696 
1697 	if (!p->q)
1698 		return;
1699 
1700 	hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1701 
1702 	if (!hv_ret)
1703 		free_queue(p->q, p->q_type);
1704 }
1705 
1706 static void spu_list_destroy(struct list_head *list)
1707 {
1708 	struct spu_queue *p, *n;
1709 
1710 	list_for_each_entry_safe(p, n, list, list) {
1711 		int i;
1712 
1713 		for (i = 0; i < NR_CPUS; i++) {
1714 			if (cpu_to_cwq[i] == p)
1715 				cpu_to_cwq[i] = NULL;
1716 		}
1717 
1718 		if (p->irq) {
1719 			free_irq(p->irq, p);
1720 			p->irq = 0;
1721 		}
1722 		spu_queue_destroy(p);
1723 		list_del(&p->list);
1724 		kfree(p);
1725 	}
1726 }
1727 
1728 /* Walk the backward arcs of a CWQ 'exec-unit' node,
1729  * gathering cpu membership information.
1730  */
1731 static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1732 			       struct platform_device *dev,
1733 			       u64 node, struct spu_queue *p,
1734 			       struct spu_queue **table)
1735 {
1736 	u64 arc;
1737 
1738 	mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1739 		u64 tgt = mdesc_arc_target(mdesc, arc);
1740 		const char *name = mdesc_node_name(mdesc, tgt);
1741 		const u64 *id;
1742 
1743 		if (strcmp(name, "cpu"))
1744 			continue;
1745 		id = mdesc_get_property(mdesc, tgt, "id", NULL);
1746 		if (table[*id] != NULL) {
1747 			dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n",
1748 				dev->dev.of_node);
1749 			return -EINVAL;
1750 		}
1751 		cpumask_set_cpu(*id, &p->sharing);
1752 		table[*id] = p;
1753 	}
1754 	return 0;
1755 }
1756 
1757 /* Process an 'exec-unit' MDESC node of type 'cwq'.  */
1758 static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1759 			    struct platform_device *dev, struct mdesc_handle *mdesc,
1760 			    u64 node, const char *iname, unsigned long q_type,
1761 			    irq_handler_t handler, struct spu_queue **table)
1762 {
1763 	struct spu_queue *p;
1764 	int err;
1765 
1766 	p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1767 	if (!p) {
1768 		dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n",
1769 			dev->dev.of_node);
1770 		return -ENOMEM;
1771 	}
1772 
1773 	cpumask_clear(&p->sharing);
1774 	spin_lock_init(&p->lock);
1775 	p->q_type = q_type;
1776 	INIT_LIST_HEAD(&p->jobs);
1777 	list_add(&p->list, list);
1778 
1779 	err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1780 	if (err)
1781 		return err;
1782 
1783 	err = spu_queue_setup(p);
1784 	if (err)
1785 		return err;
1786 
1787 	return spu_map_ino(dev, ip, iname, p, handler);
1788 }
1789 
1790 static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1791 			  struct spu_mdesc_info *ip, struct list_head *list,
1792 			  const char *exec_name, unsigned long q_type,
1793 			  irq_handler_t handler, struct spu_queue **table)
1794 {
1795 	int err = 0;
1796 	u64 node;
1797 
1798 	mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1799 		const char *type;
1800 
1801 		type = mdesc_get_property(mdesc, node, "type", NULL);
1802 		if (!type || strcmp(type, exec_name))
1803 			continue;
1804 
1805 		err = handle_exec_unit(ip, list, dev, mdesc, node,
1806 				       exec_name, q_type, handler, table);
1807 		if (err) {
1808 			spu_list_destroy(list);
1809 			break;
1810 		}
1811 	}
1812 
1813 	return err;
1814 }
1815 
1816 static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
1817 			 struct spu_mdesc_info *ip)
1818 {
1819 	const u64 *ino;
1820 	int ino_len;
1821 	int i;
1822 
1823 	ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1824 	if (!ino) {
1825 		printk("NO 'ino'\n");
1826 		return -ENODEV;
1827 	}
1828 
1829 	ip->num_intrs = ino_len / sizeof(u64);
1830 	ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1831 				 ip->num_intrs),
1832 				GFP_KERNEL);
1833 	if (!ip->ino_table)
1834 		return -ENOMEM;
1835 
1836 	for (i = 0; i < ip->num_intrs; i++) {
1837 		struct ino_blob *b = &ip->ino_table[i];
1838 		b->intr = i + 1;
1839 		b->ino = ino[i];
1840 	}
1841 
1842 	return 0;
1843 }
1844 
1845 static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1846 				struct platform_device *dev,
1847 				struct spu_mdesc_info *ip,
1848 				const char *node_name)
1849 {
1850 	const unsigned int *reg;
1851 	u64 node;
1852 
1853 	reg = of_get_property(dev->dev.of_node, "reg", NULL);
1854 	if (!reg)
1855 		return -ENODEV;
1856 
1857 	mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1858 		const char *name;
1859 		const u64 *chdl;
1860 
1861 		name = mdesc_get_property(mdesc, node, "name", NULL);
1862 		if (!name || strcmp(name, node_name))
1863 			continue;
1864 		chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1865 		if (!chdl || (*chdl != *reg))
1866 			continue;
1867 		ip->cfg_handle = *chdl;
1868 		return get_irq_props(mdesc, node, ip);
1869 	}
1870 
1871 	return -ENODEV;
1872 }
1873 
1874 static unsigned long n2_spu_hvapi_major;
1875 static unsigned long n2_spu_hvapi_minor;
1876 
1877 static int n2_spu_hvapi_register(void)
1878 {
1879 	int err;
1880 
1881 	n2_spu_hvapi_major = 2;
1882 	n2_spu_hvapi_minor = 0;
1883 
1884 	err = sun4v_hvapi_register(HV_GRP_NCS,
1885 				   n2_spu_hvapi_major,
1886 				   &n2_spu_hvapi_minor);
1887 
1888 	if (!err)
1889 		pr_info("Registered NCS HVAPI version %lu.%lu\n",
1890 			n2_spu_hvapi_major,
1891 			n2_spu_hvapi_minor);
1892 
1893 	return err;
1894 }
1895 
1896 static void n2_spu_hvapi_unregister(void)
1897 {
1898 	sun4v_hvapi_unregister(HV_GRP_NCS);
1899 }
1900 
1901 static int global_ref;
1902 
1903 static int grab_global_resources(void)
1904 {
1905 	int err = 0;
1906 
1907 	mutex_lock(&spu_lock);
1908 
1909 	if (global_ref++)
1910 		goto out;
1911 
1912 	err = n2_spu_hvapi_register();
1913 	if (err)
1914 		goto out;
1915 
1916 	err = queue_cache_init();
1917 	if (err)
1918 		goto out_hvapi_release;
1919 
1920 	err = -ENOMEM;
1921 	cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1922 			     GFP_KERNEL);
1923 	if (!cpu_to_cwq)
1924 		goto out_queue_cache_destroy;
1925 
1926 	cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1927 			     GFP_KERNEL);
1928 	if (!cpu_to_mau)
1929 		goto out_free_cwq_table;
1930 
1931 	err = 0;
1932 
1933 out:
1934 	if (err)
1935 		global_ref--;
1936 	mutex_unlock(&spu_lock);
1937 	return err;
1938 
1939 out_free_cwq_table:
1940 	kfree(cpu_to_cwq);
1941 	cpu_to_cwq = NULL;
1942 
1943 out_queue_cache_destroy:
1944 	queue_cache_destroy();
1945 
1946 out_hvapi_release:
1947 	n2_spu_hvapi_unregister();
1948 	goto out;
1949 }
1950 
1951 static void release_global_resources(void)
1952 {
1953 	mutex_lock(&spu_lock);
1954 	if (!--global_ref) {
1955 		kfree(cpu_to_cwq);
1956 		cpu_to_cwq = NULL;
1957 
1958 		kfree(cpu_to_mau);
1959 		cpu_to_mau = NULL;
1960 
1961 		queue_cache_destroy();
1962 		n2_spu_hvapi_unregister();
1963 	}
1964 	mutex_unlock(&spu_lock);
1965 }
1966 
1967 static struct n2_crypto *alloc_n2cp(void)
1968 {
1969 	struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1970 
1971 	if (np)
1972 		INIT_LIST_HEAD(&np->cwq_list);
1973 
1974 	return np;
1975 }
1976 
1977 static void free_n2cp(struct n2_crypto *np)
1978 {
1979 	kfree(np->cwq_info.ino_table);
1980 	np->cwq_info.ino_table = NULL;
1981 
1982 	kfree(np);
1983 }
1984 
1985 static void n2_spu_driver_version(void)
1986 {
1987 	static int n2_spu_version_printed;
1988 
1989 	if (n2_spu_version_printed++ == 0)
1990 		pr_info("%s", version);
1991 }
1992 
1993 static int n2_crypto_probe(struct platform_device *dev)
1994 {
1995 	struct mdesc_handle *mdesc;
1996 	struct n2_crypto *np;
1997 	int err;
1998 
1999 	n2_spu_driver_version();
2000 
2001 	pr_info("Found N2CP at %pOF\n", dev->dev.of_node);
2002 
2003 	np = alloc_n2cp();
2004 	if (!np) {
2005 		dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n",
2006 			dev->dev.of_node);
2007 		return -ENOMEM;
2008 	}
2009 
2010 	err = grab_global_resources();
2011 	if (err) {
2012 		dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2013 			dev->dev.of_node);
2014 		goto out_free_n2cp;
2015 	}
2016 
2017 	mdesc = mdesc_grab();
2018 
2019 	if (!mdesc) {
2020 		dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2021 			dev->dev.of_node);
2022 		err = -ENODEV;
2023 		goto out_free_global;
2024 	}
2025 	err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
2026 	if (err) {
2027 		dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2028 			dev->dev.of_node);
2029 		mdesc_release(mdesc);
2030 		goto out_free_global;
2031 	}
2032 
2033 	err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
2034 			     "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
2035 			     cpu_to_cwq);
2036 	mdesc_release(mdesc);
2037 
2038 	if (err) {
2039 		dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n",
2040 			dev->dev.of_node);
2041 		goto out_free_global;
2042 	}
2043 
2044 	err = n2_register_algs();
2045 	if (err) {
2046 		dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n",
2047 			dev->dev.of_node);
2048 		goto out_free_spu_list;
2049 	}
2050 
2051 	dev_set_drvdata(&dev->dev, np);
2052 
2053 	return 0;
2054 
2055 out_free_spu_list:
2056 	spu_list_destroy(&np->cwq_list);
2057 
2058 out_free_global:
2059 	release_global_resources();
2060 
2061 out_free_n2cp:
2062 	free_n2cp(np);
2063 
2064 	return err;
2065 }
2066 
2067 static int n2_crypto_remove(struct platform_device *dev)
2068 {
2069 	struct n2_crypto *np = dev_get_drvdata(&dev->dev);
2070 
2071 	n2_unregister_algs();
2072 
2073 	spu_list_destroy(&np->cwq_list);
2074 
2075 	release_global_resources();
2076 
2077 	free_n2cp(np);
2078 
2079 	return 0;
2080 }
2081 
2082 static struct n2_mau *alloc_ncp(void)
2083 {
2084 	struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2085 
2086 	if (mp)
2087 		INIT_LIST_HEAD(&mp->mau_list);
2088 
2089 	return mp;
2090 }
2091 
2092 static void free_ncp(struct n2_mau *mp)
2093 {
2094 	kfree(mp->mau_info.ino_table);
2095 	mp->mau_info.ino_table = NULL;
2096 
2097 	kfree(mp);
2098 }
2099 
2100 static int n2_mau_probe(struct platform_device *dev)
2101 {
2102 	struct mdesc_handle *mdesc;
2103 	struct n2_mau *mp;
2104 	int err;
2105 
2106 	n2_spu_driver_version();
2107 
2108 	pr_info("Found NCP at %pOF\n", dev->dev.of_node);
2109 
2110 	mp = alloc_ncp();
2111 	if (!mp) {
2112 		dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n",
2113 			dev->dev.of_node);
2114 		return -ENOMEM;
2115 	}
2116 
2117 	err = grab_global_resources();
2118 	if (err) {
2119 		dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2120 			dev->dev.of_node);
2121 		goto out_free_ncp;
2122 	}
2123 
2124 	mdesc = mdesc_grab();
2125 
2126 	if (!mdesc) {
2127 		dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2128 			dev->dev.of_node);
2129 		err = -ENODEV;
2130 		goto out_free_global;
2131 	}
2132 
2133 	err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2134 	if (err) {
2135 		dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2136 			dev->dev.of_node);
2137 		mdesc_release(mdesc);
2138 		goto out_free_global;
2139 	}
2140 
2141 	err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2142 			     "mau", HV_NCS_QTYPE_MAU, mau_intr,
2143 			     cpu_to_mau);
2144 	mdesc_release(mdesc);
2145 
2146 	if (err) {
2147 		dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n",
2148 			dev->dev.of_node);
2149 		goto out_free_global;
2150 	}
2151 
2152 	dev_set_drvdata(&dev->dev, mp);
2153 
2154 	return 0;
2155 
2156 out_free_global:
2157 	release_global_resources();
2158 
2159 out_free_ncp:
2160 	free_ncp(mp);
2161 
2162 	return err;
2163 }
2164 
2165 static int n2_mau_remove(struct platform_device *dev)
2166 {
2167 	struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2168 
2169 	spu_list_destroy(&mp->mau_list);
2170 
2171 	release_global_resources();
2172 
2173 	free_ncp(mp);
2174 
2175 	return 0;
2176 }
2177 
2178 static const struct of_device_id n2_crypto_match[] = {
2179 	{
2180 		.name = "n2cp",
2181 		.compatible = "SUNW,n2-cwq",
2182 	},
2183 	{
2184 		.name = "n2cp",
2185 		.compatible = "SUNW,vf-cwq",
2186 	},
2187 	{
2188 		.name = "n2cp",
2189 		.compatible = "SUNW,kt-cwq",
2190 	},
2191 	{},
2192 };
2193 
2194 MODULE_DEVICE_TABLE(of, n2_crypto_match);
2195 
2196 static struct platform_driver n2_crypto_driver = {
2197 	.driver = {
2198 		.name		=	"n2cp",
2199 		.of_match_table	=	n2_crypto_match,
2200 	},
2201 	.probe		=	n2_crypto_probe,
2202 	.remove		=	n2_crypto_remove,
2203 };
2204 
2205 static const struct of_device_id n2_mau_match[] = {
2206 	{
2207 		.name = "ncp",
2208 		.compatible = "SUNW,n2-mau",
2209 	},
2210 	{
2211 		.name = "ncp",
2212 		.compatible = "SUNW,vf-mau",
2213 	},
2214 	{
2215 		.name = "ncp",
2216 		.compatible = "SUNW,kt-mau",
2217 	},
2218 	{},
2219 };
2220 
2221 MODULE_DEVICE_TABLE(of, n2_mau_match);
2222 
2223 static struct platform_driver n2_mau_driver = {
2224 	.driver = {
2225 		.name		=	"ncp",
2226 		.of_match_table	=	n2_mau_match,
2227 	},
2228 	.probe		=	n2_mau_probe,
2229 	.remove		=	n2_mau_remove,
2230 };
2231 
2232 static struct platform_driver * const drivers[] = {
2233 	&n2_crypto_driver,
2234 	&n2_mau_driver,
2235 };
2236 
2237 static int __init n2_init(void)
2238 {
2239 	return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2240 }
2241 
2242 static void __exit n2_exit(void)
2243 {
2244 	platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2245 }
2246 
2247 module_init(n2_init);
2248 module_exit(n2_exit);
2249