xref: /linux/drivers/crypto/n2_core.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
2  *
3  * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/of.h>
11 #include <linux/of_device.h>
12 #include <linux/cpumask.h>
13 #include <linux/slab.h>
14 #include <linux/interrupt.h>
15 #include <linux/crypto.h>
16 #include <crypto/md5.h>
17 #include <crypto/sha.h>
18 #include <crypto/aes.h>
19 #include <crypto/des.h>
20 #include <linux/mutex.h>
21 #include <linux/delay.h>
22 #include <linux/sched.h>
23 
24 #include <crypto/internal/hash.h>
25 #include <crypto/scatterwalk.h>
26 #include <crypto/algapi.h>
27 
28 #include <asm/hypervisor.h>
29 #include <asm/mdesc.h>
30 
31 #include "n2_core.h"
32 
33 #define DRV_MODULE_NAME		"n2_crypto"
34 #define DRV_MODULE_VERSION	"0.2"
35 #define DRV_MODULE_RELDATE	"July 28, 2011"
36 
37 static const char version[] =
38 	DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
39 
40 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
41 MODULE_DESCRIPTION("Niagara2 Crypto driver");
42 MODULE_LICENSE("GPL");
43 MODULE_VERSION(DRV_MODULE_VERSION);
44 
45 #define N2_CRA_PRIORITY		200
46 
47 static DEFINE_MUTEX(spu_lock);
48 
49 struct spu_queue {
50 	cpumask_t		sharing;
51 	unsigned long		qhandle;
52 
53 	spinlock_t		lock;
54 	u8			q_type;
55 	void			*q;
56 	unsigned long		head;
57 	unsigned long		tail;
58 	struct list_head	jobs;
59 
60 	unsigned long		devino;
61 
62 	char			irq_name[32];
63 	unsigned int		irq;
64 
65 	struct list_head	list;
66 };
67 
68 static struct spu_queue **cpu_to_cwq;
69 static struct spu_queue **cpu_to_mau;
70 
71 static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
72 {
73 	if (q->q_type == HV_NCS_QTYPE_MAU) {
74 		off += MAU_ENTRY_SIZE;
75 		if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
76 			off = 0;
77 	} else {
78 		off += CWQ_ENTRY_SIZE;
79 		if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
80 			off = 0;
81 	}
82 	return off;
83 }
84 
85 struct n2_request_common {
86 	struct list_head	entry;
87 	unsigned int		offset;
88 };
89 #define OFFSET_NOT_RUNNING	(~(unsigned int)0)
90 
91 /* An async job request records the final tail value it used in
92  * n2_request_common->offset, test to see if that offset is in
93  * the range old_head, new_head, inclusive.
94  */
95 static inline bool job_finished(struct spu_queue *q, unsigned int offset,
96 				unsigned long old_head, unsigned long new_head)
97 {
98 	if (old_head <= new_head) {
99 		if (offset > old_head && offset <= new_head)
100 			return true;
101 	} else {
102 		if (offset > old_head || offset <= new_head)
103 			return true;
104 	}
105 	return false;
106 }
107 
108 /* When the HEAD marker is unequal to the actual HEAD, we get
109  * a virtual device INO interrupt.  We should process the
110  * completed CWQ entries and adjust the HEAD marker to clear
111  * the IRQ.
112  */
113 static irqreturn_t cwq_intr(int irq, void *dev_id)
114 {
115 	unsigned long off, new_head, hv_ret;
116 	struct spu_queue *q = dev_id;
117 
118 	pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
119 	       smp_processor_id(), q->qhandle);
120 
121 	spin_lock(&q->lock);
122 
123 	hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
124 
125 	pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
126 	       smp_processor_id(), new_head, hv_ret);
127 
128 	for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
129 		/* XXX ... XXX */
130 	}
131 
132 	hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
133 	if (hv_ret == HV_EOK)
134 		q->head = new_head;
135 
136 	spin_unlock(&q->lock);
137 
138 	return IRQ_HANDLED;
139 }
140 
141 static irqreturn_t mau_intr(int irq, void *dev_id)
142 {
143 	struct spu_queue *q = dev_id;
144 	unsigned long head, hv_ret;
145 
146 	spin_lock(&q->lock);
147 
148 	pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
149 	       smp_processor_id(), q->qhandle);
150 
151 	hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
152 
153 	pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
154 	       smp_processor_id(), head, hv_ret);
155 
156 	sun4v_ncs_sethead_marker(q->qhandle, head);
157 
158 	spin_unlock(&q->lock);
159 
160 	return IRQ_HANDLED;
161 }
162 
163 static void *spu_queue_next(struct spu_queue *q, void *cur)
164 {
165 	return q->q + spu_next_offset(q, cur - q->q);
166 }
167 
168 static int spu_queue_num_free(struct spu_queue *q)
169 {
170 	unsigned long head = q->head;
171 	unsigned long tail = q->tail;
172 	unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
173 	unsigned long diff;
174 
175 	if (head > tail)
176 		diff = head - tail;
177 	else
178 		diff = (end - tail) + head;
179 
180 	return (diff / CWQ_ENTRY_SIZE) - 1;
181 }
182 
183 static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
184 {
185 	int avail = spu_queue_num_free(q);
186 
187 	if (avail >= num_entries)
188 		return q->q + q->tail;
189 
190 	return NULL;
191 }
192 
193 static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
194 {
195 	unsigned long hv_ret, new_tail;
196 
197 	new_tail = spu_next_offset(q, last - q->q);
198 
199 	hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
200 	if (hv_ret == HV_EOK)
201 		q->tail = new_tail;
202 	return hv_ret;
203 }
204 
205 static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
206 			     int enc_type, int auth_type,
207 			     unsigned int hash_len,
208 			     bool sfas, bool sob, bool eob, bool encrypt,
209 			     int opcode)
210 {
211 	u64 word = (len - 1) & CONTROL_LEN;
212 
213 	word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
214 	word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
215 	word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
216 	if (sfas)
217 		word |= CONTROL_STORE_FINAL_AUTH_STATE;
218 	if (sob)
219 		word |= CONTROL_START_OF_BLOCK;
220 	if (eob)
221 		word |= CONTROL_END_OF_BLOCK;
222 	if (encrypt)
223 		word |= CONTROL_ENCRYPT;
224 	if (hmac_key_len)
225 		word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
226 	if (hash_len)
227 		word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
228 
229 	return word;
230 }
231 
232 #if 0
233 static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
234 {
235 	if (this_len >= 64 ||
236 	    qp->head != qp->tail)
237 		return true;
238 	return false;
239 }
240 #endif
241 
242 struct n2_ahash_alg {
243 	struct list_head	entry;
244 	const u8		*hash_zero;
245 	const u32		*hash_init;
246 	u8			hw_op_hashsz;
247 	u8			digest_size;
248 	u8			auth_type;
249 	u8			hmac_type;
250 	struct ahash_alg	alg;
251 };
252 
253 static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
254 {
255 	struct crypto_alg *alg = tfm->__crt_alg;
256 	struct ahash_alg *ahash_alg;
257 
258 	ahash_alg = container_of(alg, struct ahash_alg, halg.base);
259 
260 	return container_of(ahash_alg, struct n2_ahash_alg, alg);
261 }
262 
263 struct n2_hmac_alg {
264 	const char		*child_alg;
265 	struct n2_ahash_alg	derived;
266 };
267 
268 static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
269 {
270 	struct crypto_alg *alg = tfm->__crt_alg;
271 	struct ahash_alg *ahash_alg;
272 
273 	ahash_alg = container_of(alg, struct ahash_alg, halg.base);
274 
275 	return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
276 }
277 
278 struct n2_hash_ctx {
279 	struct crypto_ahash		*fallback_tfm;
280 };
281 
282 #define N2_HASH_KEY_MAX			32 /* HW limit for all HMAC requests */
283 
284 struct n2_hmac_ctx {
285 	struct n2_hash_ctx		base;
286 
287 	struct crypto_shash		*child_shash;
288 
289 	int				hash_key_len;
290 	unsigned char			hash_key[N2_HASH_KEY_MAX];
291 };
292 
293 struct n2_hash_req_ctx {
294 	union {
295 		struct md5_state	md5;
296 		struct sha1_state	sha1;
297 		struct sha256_state	sha256;
298 	} u;
299 
300 	struct ahash_request		fallback_req;
301 };
302 
303 static int n2_hash_async_init(struct ahash_request *req)
304 {
305 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
306 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
307 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
308 
309 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
310 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
311 
312 	return crypto_ahash_init(&rctx->fallback_req);
313 }
314 
315 static int n2_hash_async_update(struct ahash_request *req)
316 {
317 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
318 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
319 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
320 
321 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
322 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
323 	rctx->fallback_req.nbytes = req->nbytes;
324 	rctx->fallback_req.src = req->src;
325 
326 	return crypto_ahash_update(&rctx->fallback_req);
327 }
328 
329 static int n2_hash_async_final(struct ahash_request *req)
330 {
331 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
332 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
333 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
334 
335 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
336 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
337 	rctx->fallback_req.result = req->result;
338 
339 	return crypto_ahash_final(&rctx->fallback_req);
340 }
341 
342 static int n2_hash_async_finup(struct ahash_request *req)
343 {
344 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
345 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
346 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
347 
348 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
349 	rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
350 	rctx->fallback_req.nbytes = req->nbytes;
351 	rctx->fallback_req.src = req->src;
352 	rctx->fallback_req.result = req->result;
353 
354 	return crypto_ahash_finup(&rctx->fallback_req);
355 }
356 
357 static int n2_hash_cra_init(struct crypto_tfm *tfm)
358 {
359 	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
360 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
361 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
362 	struct crypto_ahash *fallback_tfm;
363 	int err;
364 
365 	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
366 					  CRYPTO_ALG_NEED_FALLBACK);
367 	if (IS_ERR(fallback_tfm)) {
368 		pr_warning("Fallback driver '%s' could not be loaded!\n",
369 			   fallback_driver_name);
370 		err = PTR_ERR(fallback_tfm);
371 		goto out;
372 	}
373 
374 	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
375 					 crypto_ahash_reqsize(fallback_tfm)));
376 
377 	ctx->fallback_tfm = fallback_tfm;
378 	return 0;
379 
380 out:
381 	return err;
382 }
383 
384 static void n2_hash_cra_exit(struct crypto_tfm *tfm)
385 {
386 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
387 	struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
388 
389 	crypto_free_ahash(ctx->fallback_tfm);
390 }
391 
392 static int n2_hmac_cra_init(struct crypto_tfm *tfm)
393 {
394 	const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
395 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
396 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
397 	struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
398 	struct crypto_ahash *fallback_tfm;
399 	struct crypto_shash *child_shash;
400 	int err;
401 
402 	fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
403 					  CRYPTO_ALG_NEED_FALLBACK);
404 	if (IS_ERR(fallback_tfm)) {
405 		pr_warning("Fallback driver '%s' could not be loaded!\n",
406 			   fallback_driver_name);
407 		err = PTR_ERR(fallback_tfm);
408 		goto out;
409 	}
410 
411 	child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
412 	if (IS_ERR(child_shash)) {
413 		pr_warning("Child shash '%s' could not be loaded!\n",
414 			   n2alg->child_alg);
415 		err = PTR_ERR(child_shash);
416 		goto out_free_fallback;
417 	}
418 
419 	crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
420 					 crypto_ahash_reqsize(fallback_tfm)));
421 
422 	ctx->child_shash = child_shash;
423 	ctx->base.fallback_tfm = fallback_tfm;
424 	return 0;
425 
426 out_free_fallback:
427 	crypto_free_ahash(fallback_tfm);
428 
429 out:
430 	return err;
431 }
432 
433 static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
434 {
435 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
436 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
437 
438 	crypto_free_ahash(ctx->base.fallback_tfm);
439 	crypto_free_shash(ctx->child_shash);
440 }
441 
442 static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
443 				unsigned int keylen)
444 {
445 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
446 	struct crypto_shash *child_shash = ctx->child_shash;
447 	struct crypto_ahash *fallback_tfm;
448 	SHASH_DESC_ON_STACK(shash, child_shash);
449 	int err, bs, ds;
450 
451 	fallback_tfm = ctx->base.fallback_tfm;
452 	err = crypto_ahash_setkey(fallback_tfm, key, keylen);
453 	if (err)
454 		return err;
455 
456 	shash->tfm = child_shash;
457 	shash->flags = crypto_ahash_get_flags(tfm) &
458 		CRYPTO_TFM_REQ_MAY_SLEEP;
459 
460 	bs = crypto_shash_blocksize(child_shash);
461 	ds = crypto_shash_digestsize(child_shash);
462 	BUG_ON(ds > N2_HASH_KEY_MAX);
463 	if (keylen > bs) {
464 		err = crypto_shash_digest(shash, key, keylen,
465 					  ctx->hash_key);
466 		if (err)
467 			return err;
468 		keylen = ds;
469 	} else if (keylen <= N2_HASH_KEY_MAX)
470 		memcpy(ctx->hash_key, key, keylen);
471 
472 	ctx->hash_key_len = keylen;
473 
474 	return err;
475 }
476 
477 static unsigned long wait_for_tail(struct spu_queue *qp)
478 {
479 	unsigned long head, hv_ret;
480 
481 	do {
482 		hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
483 		if (hv_ret != HV_EOK) {
484 			pr_err("Hypervisor error on gethead\n");
485 			break;
486 		}
487 		if (head == qp->tail) {
488 			qp->head = head;
489 			break;
490 		}
491 	} while (1);
492 	return hv_ret;
493 }
494 
495 static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
496 					      struct cwq_initial_entry *ent)
497 {
498 	unsigned long hv_ret = spu_queue_submit(qp, ent);
499 
500 	if (hv_ret == HV_EOK)
501 		hv_ret = wait_for_tail(qp);
502 
503 	return hv_ret;
504 }
505 
506 static int n2_do_async_digest(struct ahash_request *req,
507 			      unsigned int auth_type, unsigned int digest_size,
508 			      unsigned int result_size, void *hash_loc,
509 			      unsigned long auth_key, unsigned int auth_key_len)
510 {
511 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
512 	struct cwq_initial_entry *ent;
513 	struct crypto_hash_walk walk;
514 	struct spu_queue *qp;
515 	unsigned long flags;
516 	int err = -ENODEV;
517 	int nbytes, cpu;
518 
519 	/* The total effective length of the operation may not
520 	 * exceed 2^16.
521 	 */
522 	if (unlikely(req->nbytes > (1 << 16))) {
523 		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
524 		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
525 
526 		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
527 		rctx->fallback_req.base.flags =
528 			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
529 		rctx->fallback_req.nbytes = req->nbytes;
530 		rctx->fallback_req.src = req->src;
531 		rctx->fallback_req.result = req->result;
532 
533 		return crypto_ahash_digest(&rctx->fallback_req);
534 	}
535 
536 	nbytes = crypto_hash_walk_first(req, &walk);
537 
538 	cpu = get_cpu();
539 	qp = cpu_to_cwq[cpu];
540 	if (!qp)
541 		goto out;
542 
543 	spin_lock_irqsave(&qp->lock, flags);
544 
545 	/* XXX can do better, improve this later by doing a by-hand scatterlist
546 	 * XXX walk, etc.
547 	 */
548 	ent = qp->q + qp->tail;
549 
550 	ent->control = control_word_base(nbytes, auth_key_len, 0,
551 					 auth_type, digest_size,
552 					 false, true, false, false,
553 					 OPCODE_INPLACE_BIT |
554 					 OPCODE_AUTH_MAC);
555 	ent->src_addr = __pa(walk.data);
556 	ent->auth_key_addr = auth_key;
557 	ent->auth_iv_addr = __pa(hash_loc);
558 	ent->final_auth_state_addr = 0UL;
559 	ent->enc_key_addr = 0UL;
560 	ent->enc_iv_addr = 0UL;
561 	ent->dest_addr = __pa(hash_loc);
562 
563 	nbytes = crypto_hash_walk_done(&walk, 0);
564 	while (nbytes > 0) {
565 		ent = spu_queue_next(qp, ent);
566 
567 		ent->control = (nbytes - 1);
568 		ent->src_addr = __pa(walk.data);
569 		ent->auth_key_addr = 0UL;
570 		ent->auth_iv_addr = 0UL;
571 		ent->final_auth_state_addr = 0UL;
572 		ent->enc_key_addr = 0UL;
573 		ent->enc_iv_addr = 0UL;
574 		ent->dest_addr = 0UL;
575 
576 		nbytes = crypto_hash_walk_done(&walk, 0);
577 	}
578 	ent->control |= CONTROL_END_OF_BLOCK;
579 
580 	if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
581 		err = -EINVAL;
582 	else
583 		err = 0;
584 
585 	spin_unlock_irqrestore(&qp->lock, flags);
586 
587 	if (!err)
588 		memcpy(req->result, hash_loc, result_size);
589 out:
590 	put_cpu();
591 
592 	return err;
593 }
594 
595 static int n2_hash_async_digest(struct ahash_request *req)
596 {
597 	struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
598 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
599 	int ds;
600 
601 	ds = n2alg->digest_size;
602 	if (unlikely(req->nbytes == 0)) {
603 		memcpy(req->result, n2alg->hash_zero, ds);
604 		return 0;
605 	}
606 	memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
607 
608 	return n2_do_async_digest(req, n2alg->auth_type,
609 				  n2alg->hw_op_hashsz, ds,
610 				  &rctx->u, 0UL, 0);
611 }
612 
613 static int n2_hmac_async_digest(struct ahash_request *req)
614 {
615 	struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
616 	struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
617 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
618 	struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
619 	int ds;
620 
621 	ds = n2alg->derived.digest_size;
622 	if (unlikely(req->nbytes == 0) ||
623 	    unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
624 		struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
625 		struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
626 
627 		ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
628 		rctx->fallback_req.base.flags =
629 			req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
630 		rctx->fallback_req.nbytes = req->nbytes;
631 		rctx->fallback_req.src = req->src;
632 		rctx->fallback_req.result = req->result;
633 
634 		return crypto_ahash_digest(&rctx->fallback_req);
635 	}
636 	memcpy(&rctx->u, n2alg->derived.hash_init,
637 	       n2alg->derived.hw_op_hashsz);
638 
639 	return n2_do_async_digest(req, n2alg->derived.hmac_type,
640 				  n2alg->derived.hw_op_hashsz, ds,
641 				  &rctx->u,
642 				  __pa(&ctx->hash_key),
643 				  ctx->hash_key_len);
644 }
645 
646 struct n2_cipher_context {
647 	int			key_len;
648 	int			enc_type;
649 	union {
650 		u8		aes[AES_MAX_KEY_SIZE];
651 		u8		des[DES_KEY_SIZE];
652 		u8		des3[3 * DES_KEY_SIZE];
653 		u8		arc4[258]; /* S-box, X, Y */
654 	} key;
655 };
656 
657 #define N2_CHUNK_ARR_LEN	16
658 
659 struct n2_crypto_chunk {
660 	struct list_head	entry;
661 	unsigned long		iv_paddr : 44;
662 	unsigned long		arr_len : 20;
663 	unsigned long		dest_paddr;
664 	unsigned long		dest_final;
665 	struct {
666 		unsigned long	src_paddr : 44;
667 		unsigned long	src_len : 20;
668 	} arr[N2_CHUNK_ARR_LEN];
669 };
670 
671 struct n2_request_context {
672 	struct ablkcipher_walk	walk;
673 	struct list_head	chunk_list;
674 	struct n2_crypto_chunk	chunk;
675 	u8			temp_iv[16];
676 };
677 
678 /* The SPU allows some level of flexibility for partial cipher blocks
679  * being specified in a descriptor.
680  *
681  * It merely requires that every descriptor's length field is at least
682  * as large as the cipher block size.  This means that a cipher block
683  * can span at most 2 descriptors.  However, this does not allow a
684  * partial block to span into the final descriptor as that would
685  * violate the rule (since every descriptor's length must be at lest
686  * the block size).  So, for example, assuming an 8 byte block size:
687  *
688  *	0xe --> 0xa --> 0x8
689  *
690  * is a valid length sequence, whereas:
691  *
692  *	0xe --> 0xb --> 0x7
693  *
694  * is not a valid sequence.
695  */
696 
697 struct n2_cipher_alg {
698 	struct list_head	entry;
699 	u8			enc_type;
700 	struct crypto_alg	alg;
701 };
702 
703 static inline struct n2_cipher_alg *n2_cipher_alg(struct crypto_tfm *tfm)
704 {
705 	struct crypto_alg *alg = tfm->__crt_alg;
706 
707 	return container_of(alg, struct n2_cipher_alg, alg);
708 }
709 
710 struct n2_cipher_request_context {
711 	struct ablkcipher_walk	walk;
712 };
713 
714 static int n2_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
715 			 unsigned int keylen)
716 {
717 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
718 	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
719 	struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
720 
721 	ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
722 
723 	switch (keylen) {
724 	case AES_KEYSIZE_128:
725 		ctx->enc_type |= ENC_TYPE_ALG_AES128;
726 		break;
727 	case AES_KEYSIZE_192:
728 		ctx->enc_type |= ENC_TYPE_ALG_AES192;
729 		break;
730 	case AES_KEYSIZE_256:
731 		ctx->enc_type |= ENC_TYPE_ALG_AES256;
732 		break;
733 	default:
734 		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
735 		return -EINVAL;
736 	}
737 
738 	ctx->key_len = keylen;
739 	memcpy(ctx->key.aes, key, keylen);
740 	return 0;
741 }
742 
743 static int n2_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
744 			 unsigned int keylen)
745 {
746 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
747 	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
748 	struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
749 	u32 tmp[DES_EXPKEY_WORDS];
750 	int err;
751 
752 	ctx->enc_type = n2alg->enc_type;
753 
754 	if (keylen != DES_KEY_SIZE) {
755 		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
756 		return -EINVAL;
757 	}
758 
759 	err = des_ekey(tmp, key);
760 	if (err == 0 && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
761 		tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
762 		return -EINVAL;
763 	}
764 
765 	ctx->key_len = keylen;
766 	memcpy(ctx->key.des, key, keylen);
767 	return 0;
768 }
769 
770 static int n2_3des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
771 			  unsigned int keylen)
772 {
773 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
774 	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
775 	struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
776 
777 	ctx->enc_type = n2alg->enc_type;
778 
779 	if (keylen != (3 * DES_KEY_SIZE)) {
780 		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
781 		return -EINVAL;
782 	}
783 	ctx->key_len = keylen;
784 	memcpy(ctx->key.des3, key, keylen);
785 	return 0;
786 }
787 
788 static int n2_arc4_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
789 			  unsigned int keylen)
790 {
791 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
792 	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
793 	struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
794 	u8 *s = ctx->key.arc4;
795 	u8 *x = s + 256;
796 	u8 *y = x + 1;
797 	int i, j, k;
798 
799 	ctx->enc_type = n2alg->enc_type;
800 
801 	j = k = 0;
802 	*x = 0;
803 	*y = 0;
804 	for (i = 0; i < 256; i++)
805 		s[i] = i;
806 	for (i = 0; i < 256; i++) {
807 		u8 a = s[i];
808 		j = (j + key[k] + a) & 0xff;
809 		s[i] = s[j];
810 		s[j] = a;
811 		if (++k >= keylen)
812 			k = 0;
813 	}
814 
815 	return 0;
816 }
817 
818 static inline int cipher_descriptor_len(int nbytes, unsigned int block_size)
819 {
820 	int this_len = nbytes;
821 
822 	this_len -= (nbytes & (block_size - 1));
823 	return this_len > (1 << 16) ? (1 << 16) : this_len;
824 }
825 
826 static int __n2_crypt_chunk(struct crypto_tfm *tfm, struct n2_crypto_chunk *cp,
827 			    struct spu_queue *qp, bool encrypt)
828 {
829 	struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
830 	struct cwq_initial_entry *ent;
831 	bool in_place;
832 	int i;
833 
834 	ent = spu_queue_alloc(qp, cp->arr_len);
835 	if (!ent) {
836 		pr_info("queue_alloc() of %d fails\n",
837 			cp->arr_len);
838 		return -EBUSY;
839 	}
840 
841 	in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
842 
843 	ent->control = control_word_base(cp->arr[0].src_len,
844 					 0, ctx->enc_type, 0, 0,
845 					 false, true, false, encrypt,
846 					 OPCODE_ENCRYPT |
847 					 (in_place ? OPCODE_INPLACE_BIT : 0));
848 	ent->src_addr = cp->arr[0].src_paddr;
849 	ent->auth_key_addr = 0UL;
850 	ent->auth_iv_addr = 0UL;
851 	ent->final_auth_state_addr = 0UL;
852 	ent->enc_key_addr = __pa(&ctx->key);
853 	ent->enc_iv_addr = cp->iv_paddr;
854 	ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
855 
856 	for (i = 1; i < cp->arr_len; i++) {
857 		ent = spu_queue_next(qp, ent);
858 
859 		ent->control = cp->arr[i].src_len - 1;
860 		ent->src_addr = cp->arr[i].src_paddr;
861 		ent->auth_key_addr = 0UL;
862 		ent->auth_iv_addr = 0UL;
863 		ent->final_auth_state_addr = 0UL;
864 		ent->enc_key_addr = 0UL;
865 		ent->enc_iv_addr = 0UL;
866 		ent->dest_addr = 0UL;
867 	}
868 	ent->control |= CONTROL_END_OF_BLOCK;
869 
870 	return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
871 }
872 
873 static int n2_compute_chunks(struct ablkcipher_request *req)
874 {
875 	struct n2_request_context *rctx = ablkcipher_request_ctx(req);
876 	struct ablkcipher_walk *walk = &rctx->walk;
877 	struct n2_crypto_chunk *chunk;
878 	unsigned long dest_prev;
879 	unsigned int tot_len;
880 	bool prev_in_place;
881 	int err, nbytes;
882 
883 	ablkcipher_walk_init(walk, req->dst, req->src, req->nbytes);
884 	err = ablkcipher_walk_phys(req, walk);
885 	if (err)
886 		return err;
887 
888 	INIT_LIST_HEAD(&rctx->chunk_list);
889 
890 	chunk = &rctx->chunk;
891 	INIT_LIST_HEAD(&chunk->entry);
892 
893 	chunk->iv_paddr = 0UL;
894 	chunk->arr_len = 0;
895 	chunk->dest_paddr = 0UL;
896 
897 	prev_in_place = false;
898 	dest_prev = ~0UL;
899 	tot_len = 0;
900 
901 	while ((nbytes = walk->nbytes) != 0) {
902 		unsigned long dest_paddr, src_paddr;
903 		bool in_place;
904 		int this_len;
905 
906 		src_paddr = (page_to_phys(walk->src.page) +
907 			     walk->src.offset);
908 		dest_paddr = (page_to_phys(walk->dst.page) +
909 			      walk->dst.offset);
910 		in_place = (src_paddr == dest_paddr);
911 		this_len = cipher_descriptor_len(nbytes, walk->blocksize);
912 
913 		if (chunk->arr_len != 0) {
914 			if (in_place != prev_in_place ||
915 			    (!prev_in_place &&
916 			     dest_paddr != dest_prev) ||
917 			    chunk->arr_len == N2_CHUNK_ARR_LEN ||
918 			    tot_len + this_len > (1 << 16)) {
919 				chunk->dest_final = dest_prev;
920 				list_add_tail(&chunk->entry,
921 					      &rctx->chunk_list);
922 				chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
923 				if (!chunk) {
924 					err = -ENOMEM;
925 					break;
926 				}
927 				INIT_LIST_HEAD(&chunk->entry);
928 			}
929 		}
930 		if (chunk->arr_len == 0) {
931 			chunk->dest_paddr = dest_paddr;
932 			tot_len = 0;
933 		}
934 		chunk->arr[chunk->arr_len].src_paddr = src_paddr;
935 		chunk->arr[chunk->arr_len].src_len = this_len;
936 		chunk->arr_len++;
937 
938 		dest_prev = dest_paddr + this_len;
939 		prev_in_place = in_place;
940 		tot_len += this_len;
941 
942 		err = ablkcipher_walk_done(req, walk, nbytes - this_len);
943 		if (err)
944 			break;
945 	}
946 	if (!err && chunk->arr_len != 0) {
947 		chunk->dest_final = dest_prev;
948 		list_add_tail(&chunk->entry, &rctx->chunk_list);
949 	}
950 
951 	return err;
952 }
953 
954 static void n2_chunk_complete(struct ablkcipher_request *req, void *final_iv)
955 {
956 	struct n2_request_context *rctx = ablkcipher_request_ctx(req);
957 	struct n2_crypto_chunk *c, *tmp;
958 
959 	if (final_iv)
960 		memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
961 
962 	ablkcipher_walk_complete(&rctx->walk);
963 	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
964 		list_del(&c->entry);
965 		if (unlikely(c != &rctx->chunk))
966 			kfree(c);
967 	}
968 
969 }
970 
971 static int n2_do_ecb(struct ablkcipher_request *req, bool encrypt)
972 {
973 	struct n2_request_context *rctx = ablkcipher_request_ctx(req);
974 	struct crypto_tfm *tfm = req->base.tfm;
975 	int err = n2_compute_chunks(req);
976 	struct n2_crypto_chunk *c, *tmp;
977 	unsigned long flags, hv_ret;
978 	struct spu_queue *qp;
979 
980 	if (err)
981 		return err;
982 
983 	qp = cpu_to_cwq[get_cpu()];
984 	err = -ENODEV;
985 	if (!qp)
986 		goto out;
987 
988 	spin_lock_irqsave(&qp->lock, flags);
989 
990 	list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
991 		err = __n2_crypt_chunk(tfm, c, qp, encrypt);
992 		if (err)
993 			break;
994 		list_del(&c->entry);
995 		if (unlikely(c != &rctx->chunk))
996 			kfree(c);
997 	}
998 	if (!err) {
999 		hv_ret = wait_for_tail(qp);
1000 		if (hv_ret != HV_EOK)
1001 			err = -EINVAL;
1002 	}
1003 
1004 	spin_unlock_irqrestore(&qp->lock, flags);
1005 
1006 out:
1007 	put_cpu();
1008 
1009 	n2_chunk_complete(req, NULL);
1010 	return err;
1011 }
1012 
1013 static int n2_encrypt_ecb(struct ablkcipher_request *req)
1014 {
1015 	return n2_do_ecb(req, true);
1016 }
1017 
1018 static int n2_decrypt_ecb(struct ablkcipher_request *req)
1019 {
1020 	return n2_do_ecb(req, false);
1021 }
1022 
1023 static int n2_do_chaining(struct ablkcipher_request *req, bool encrypt)
1024 {
1025 	struct n2_request_context *rctx = ablkcipher_request_ctx(req);
1026 	struct crypto_tfm *tfm = req->base.tfm;
1027 	unsigned long flags, hv_ret, iv_paddr;
1028 	int err = n2_compute_chunks(req);
1029 	struct n2_crypto_chunk *c, *tmp;
1030 	struct spu_queue *qp;
1031 	void *final_iv_addr;
1032 
1033 	final_iv_addr = NULL;
1034 
1035 	if (err)
1036 		return err;
1037 
1038 	qp = cpu_to_cwq[get_cpu()];
1039 	err = -ENODEV;
1040 	if (!qp)
1041 		goto out;
1042 
1043 	spin_lock_irqsave(&qp->lock, flags);
1044 
1045 	if (encrypt) {
1046 		iv_paddr = __pa(rctx->walk.iv);
1047 		list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1048 					 entry) {
1049 			c->iv_paddr = iv_paddr;
1050 			err = __n2_crypt_chunk(tfm, c, qp, true);
1051 			if (err)
1052 				break;
1053 			iv_paddr = c->dest_final - rctx->walk.blocksize;
1054 			list_del(&c->entry);
1055 			if (unlikely(c != &rctx->chunk))
1056 				kfree(c);
1057 		}
1058 		final_iv_addr = __va(iv_paddr);
1059 	} else {
1060 		list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1061 						 entry) {
1062 			if (c == &rctx->chunk) {
1063 				iv_paddr = __pa(rctx->walk.iv);
1064 			} else {
1065 				iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1066 					    tmp->arr[tmp->arr_len-1].src_len -
1067 					    rctx->walk.blocksize);
1068 			}
1069 			if (!final_iv_addr) {
1070 				unsigned long pa;
1071 
1072 				pa = (c->arr[c->arr_len-1].src_paddr +
1073 				      c->arr[c->arr_len-1].src_len -
1074 				      rctx->walk.blocksize);
1075 				final_iv_addr = rctx->temp_iv;
1076 				memcpy(rctx->temp_iv, __va(pa),
1077 				       rctx->walk.blocksize);
1078 			}
1079 			c->iv_paddr = iv_paddr;
1080 			err = __n2_crypt_chunk(tfm, c, qp, false);
1081 			if (err)
1082 				break;
1083 			list_del(&c->entry);
1084 			if (unlikely(c != &rctx->chunk))
1085 				kfree(c);
1086 		}
1087 	}
1088 	if (!err) {
1089 		hv_ret = wait_for_tail(qp);
1090 		if (hv_ret != HV_EOK)
1091 			err = -EINVAL;
1092 	}
1093 
1094 	spin_unlock_irqrestore(&qp->lock, flags);
1095 
1096 out:
1097 	put_cpu();
1098 
1099 	n2_chunk_complete(req, err ? NULL : final_iv_addr);
1100 	return err;
1101 }
1102 
1103 static int n2_encrypt_chaining(struct ablkcipher_request *req)
1104 {
1105 	return n2_do_chaining(req, true);
1106 }
1107 
1108 static int n2_decrypt_chaining(struct ablkcipher_request *req)
1109 {
1110 	return n2_do_chaining(req, false);
1111 }
1112 
1113 struct n2_cipher_tmpl {
1114 	const char		*name;
1115 	const char		*drv_name;
1116 	u8			block_size;
1117 	u8			enc_type;
1118 	struct ablkcipher_alg	ablkcipher;
1119 };
1120 
1121 static const struct n2_cipher_tmpl cipher_tmpls[] = {
1122 	/* ARC4: only ECB is supported (chaining bits ignored) */
1123 	{	.name		= "ecb(arc4)",
1124 		.drv_name	= "ecb-arc4",
1125 		.block_size	= 1,
1126 		.enc_type	= (ENC_TYPE_ALG_RC4_STREAM |
1127 				   ENC_TYPE_CHAINING_ECB),
1128 		.ablkcipher	= {
1129 			.min_keysize	= 1,
1130 			.max_keysize	= 256,
1131 			.setkey		= n2_arc4_setkey,
1132 			.encrypt	= n2_encrypt_ecb,
1133 			.decrypt	= n2_decrypt_ecb,
1134 		},
1135 	},
1136 
1137 	/* DES: ECB CBC and CFB are supported */
1138 	{	.name		= "ecb(des)",
1139 		.drv_name	= "ecb-des",
1140 		.block_size	= DES_BLOCK_SIZE,
1141 		.enc_type	= (ENC_TYPE_ALG_DES |
1142 				   ENC_TYPE_CHAINING_ECB),
1143 		.ablkcipher	= {
1144 			.min_keysize	= DES_KEY_SIZE,
1145 			.max_keysize	= DES_KEY_SIZE,
1146 			.setkey		= n2_des_setkey,
1147 			.encrypt	= n2_encrypt_ecb,
1148 			.decrypt	= n2_decrypt_ecb,
1149 		},
1150 	},
1151 	{	.name		= "cbc(des)",
1152 		.drv_name	= "cbc-des",
1153 		.block_size	= DES_BLOCK_SIZE,
1154 		.enc_type	= (ENC_TYPE_ALG_DES |
1155 				   ENC_TYPE_CHAINING_CBC),
1156 		.ablkcipher	= {
1157 			.ivsize		= DES_BLOCK_SIZE,
1158 			.min_keysize	= DES_KEY_SIZE,
1159 			.max_keysize	= DES_KEY_SIZE,
1160 			.setkey		= n2_des_setkey,
1161 			.encrypt	= n2_encrypt_chaining,
1162 			.decrypt	= n2_decrypt_chaining,
1163 		},
1164 	},
1165 	{	.name		= "cfb(des)",
1166 		.drv_name	= "cfb-des",
1167 		.block_size	= DES_BLOCK_SIZE,
1168 		.enc_type	= (ENC_TYPE_ALG_DES |
1169 				   ENC_TYPE_CHAINING_CFB),
1170 		.ablkcipher	= {
1171 			.min_keysize	= DES_KEY_SIZE,
1172 			.max_keysize	= DES_KEY_SIZE,
1173 			.setkey		= n2_des_setkey,
1174 			.encrypt	= n2_encrypt_chaining,
1175 			.decrypt	= n2_decrypt_chaining,
1176 		},
1177 	},
1178 
1179 	/* 3DES: ECB CBC and CFB are supported */
1180 	{	.name		= "ecb(des3_ede)",
1181 		.drv_name	= "ecb-3des",
1182 		.block_size	= DES_BLOCK_SIZE,
1183 		.enc_type	= (ENC_TYPE_ALG_3DES |
1184 				   ENC_TYPE_CHAINING_ECB),
1185 		.ablkcipher	= {
1186 			.min_keysize	= 3 * DES_KEY_SIZE,
1187 			.max_keysize	= 3 * DES_KEY_SIZE,
1188 			.setkey		= n2_3des_setkey,
1189 			.encrypt	= n2_encrypt_ecb,
1190 			.decrypt	= n2_decrypt_ecb,
1191 		},
1192 	},
1193 	{	.name		= "cbc(des3_ede)",
1194 		.drv_name	= "cbc-3des",
1195 		.block_size	= DES_BLOCK_SIZE,
1196 		.enc_type	= (ENC_TYPE_ALG_3DES |
1197 				   ENC_TYPE_CHAINING_CBC),
1198 		.ablkcipher	= {
1199 			.ivsize		= DES_BLOCK_SIZE,
1200 			.min_keysize	= 3 * DES_KEY_SIZE,
1201 			.max_keysize	= 3 * DES_KEY_SIZE,
1202 			.setkey		= n2_3des_setkey,
1203 			.encrypt	= n2_encrypt_chaining,
1204 			.decrypt	= n2_decrypt_chaining,
1205 		},
1206 	},
1207 	{	.name		= "cfb(des3_ede)",
1208 		.drv_name	= "cfb-3des",
1209 		.block_size	= DES_BLOCK_SIZE,
1210 		.enc_type	= (ENC_TYPE_ALG_3DES |
1211 				   ENC_TYPE_CHAINING_CFB),
1212 		.ablkcipher	= {
1213 			.min_keysize	= 3 * DES_KEY_SIZE,
1214 			.max_keysize	= 3 * DES_KEY_SIZE,
1215 			.setkey		= n2_3des_setkey,
1216 			.encrypt	= n2_encrypt_chaining,
1217 			.decrypt	= n2_decrypt_chaining,
1218 		},
1219 	},
1220 	/* AES: ECB CBC and CTR are supported */
1221 	{	.name		= "ecb(aes)",
1222 		.drv_name	= "ecb-aes",
1223 		.block_size	= AES_BLOCK_SIZE,
1224 		.enc_type	= (ENC_TYPE_ALG_AES128 |
1225 				   ENC_TYPE_CHAINING_ECB),
1226 		.ablkcipher	= {
1227 			.min_keysize	= AES_MIN_KEY_SIZE,
1228 			.max_keysize	= AES_MAX_KEY_SIZE,
1229 			.setkey		= n2_aes_setkey,
1230 			.encrypt	= n2_encrypt_ecb,
1231 			.decrypt	= n2_decrypt_ecb,
1232 		},
1233 	},
1234 	{	.name		= "cbc(aes)",
1235 		.drv_name	= "cbc-aes",
1236 		.block_size	= AES_BLOCK_SIZE,
1237 		.enc_type	= (ENC_TYPE_ALG_AES128 |
1238 				   ENC_TYPE_CHAINING_CBC),
1239 		.ablkcipher	= {
1240 			.ivsize		= AES_BLOCK_SIZE,
1241 			.min_keysize	= AES_MIN_KEY_SIZE,
1242 			.max_keysize	= AES_MAX_KEY_SIZE,
1243 			.setkey		= n2_aes_setkey,
1244 			.encrypt	= n2_encrypt_chaining,
1245 			.decrypt	= n2_decrypt_chaining,
1246 		},
1247 	},
1248 	{	.name		= "ctr(aes)",
1249 		.drv_name	= "ctr-aes",
1250 		.block_size	= AES_BLOCK_SIZE,
1251 		.enc_type	= (ENC_TYPE_ALG_AES128 |
1252 				   ENC_TYPE_CHAINING_COUNTER),
1253 		.ablkcipher	= {
1254 			.ivsize		= AES_BLOCK_SIZE,
1255 			.min_keysize	= AES_MIN_KEY_SIZE,
1256 			.max_keysize	= AES_MAX_KEY_SIZE,
1257 			.setkey		= n2_aes_setkey,
1258 			.encrypt	= n2_encrypt_chaining,
1259 			.decrypt	= n2_encrypt_chaining,
1260 		},
1261 	},
1262 
1263 };
1264 #define NUM_CIPHER_TMPLS ARRAY_SIZE(cipher_tmpls)
1265 
1266 static LIST_HEAD(cipher_algs);
1267 
1268 struct n2_hash_tmpl {
1269 	const char	*name;
1270 	const u8	*hash_zero;
1271 	const u32	*hash_init;
1272 	u8		hw_op_hashsz;
1273 	u8		digest_size;
1274 	u8		block_size;
1275 	u8		auth_type;
1276 	u8		hmac_type;
1277 };
1278 
1279 static const u32 md5_init[MD5_HASH_WORDS] = {
1280 	cpu_to_le32(MD5_H0),
1281 	cpu_to_le32(MD5_H1),
1282 	cpu_to_le32(MD5_H2),
1283 	cpu_to_le32(MD5_H3),
1284 };
1285 static const u32 sha1_init[SHA1_DIGEST_SIZE / 4] = {
1286 	SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1287 };
1288 static const u32 sha256_init[SHA256_DIGEST_SIZE / 4] = {
1289 	SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1290 	SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1291 };
1292 static const u32 sha224_init[SHA256_DIGEST_SIZE / 4] = {
1293 	SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1294 	SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1295 };
1296 
1297 static const struct n2_hash_tmpl hash_tmpls[] = {
1298 	{ .name		= "md5",
1299 	  .hash_zero	= md5_zero_message_hash,
1300 	  .hash_init	= md5_init,
1301 	  .auth_type	= AUTH_TYPE_MD5,
1302 	  .hmac_type	= AUTH_TYPE_HMAC_MD5,
1303 	  .hw_op_hashsz	= MD5_DIGEST_SIZE,
1304 	  .digest_size	= MD5_DIGEST_SIZE,
1305 	  .block_size	= MD5_HMAC_BLOCK_SIZE },
1306 	{ .name		= "sha1",
1307 	  .hash_zero	= sha1_zero_message_hash,
1308 	  .hash_init	= sha1_init,
1309 	  .auth_type	= AUTH_TYPE_SHA1,
1310 	  .hmac_type	= AUTH_TYPE_HMAC_SHA1,
1311 	  .hw_op_hashsz	= SHA1_DIGEST_SIZE,
1312 	  .digest_size	= SHA1_DIGEST_SIZE,
1313 	  .block_size	= SHA1_BLOCK_SIZE },
1314 	{ .name		= "sha256",
1315 	  .hash_zero	= sha256_zero_message_hash,
1316 	  .hash_init	= sha256_init,
1317 	  .auth_type	= AUTH_TYPE_SHA256,
1318 	  .hmac_type	= AUTH_TYPE_HMAC_SHA256,
1319 	  .hw_op_hashsz	= SHA256_DIGEST_SIZE,
1320 	  .digest_size	= SHA256_DIGEST_SIZE,
1321 	  .block_size	= SHA256_BLOCK_SIZE },
1322 	{ .name		= "sha224",
1323 	  .hash_zero	= sha224_zero_message_hash,
1324 	  .hash_init	= sha224_init,
1325 	  .auth_type	= AUTH_TYPE_SHA256,
1326 	  .hmac_type	= AUTH_TYPE_RESERVED,
1327 	  .hw_op_hashsz	= SHA256_DIGEST_SIZE,
1328 	  .digest_size	= SHA224_DIGEST_SIZE,
1329 	  .block_size	= SHA224_BLOCK_SIZE },
1330 };
1331 #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1332 
1333 static LIST_HEAD(ahash_algs);
1334 static LIST_HEAD(hmac_algs);
1335 
1336 static int algs_registered;
1337 
1338 static void __n2_unregister_algs(void)
1339 {
1340 	struct n2_cipher_alg *cipher, *cipher_tmp;
1341 	struct n2_ahash_alg *alg, *alg_tmp;
1342 	struct n2_hmac_alg *hmac, *hmac_tmp;
1343 
1344 	list_for_each_entry_safe(cipher, cipher_tmp, &cipher_algs, entry) {
1345 		crypto_unregister_alg(&cipher->alg);
1346 		list_del(&cipher->entry);
1347 		kfree(cipher);
1348 	}
1349 	list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1350 		crypto_unregister_ahash(&hmac->derived.alg);
1351 		list_del(&hmac->derived.entry);
1352 		kfree(hmac);
1353 	}
1354 	list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1355 		crypto_unregister_ahash(&alg->alg);
1356 		list_del(&alg->entry);
1357 		kfree(alg);
1358 	}
1359 }
1360 
1361 static int n2_cipher_cra_init(struct crypto_tfm *tfm)
1362 {
1363 	tfm->crt_ablkcipher.reqsize = sizeof(struct n2_request_context);
1364 	return 0;
1365 }
1366 
1367 static int __n2_register_one_cipher(const struct n2_cipher_tmpl *tmpl)
1368 {
1369 	struct n2_cipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1370 	struct crypto_alg *alg;
1371 	int err;
1372 
1373 	if (!p)
1374 		return -ENOMEM;
1375 
1376 	alg = &p->alg;
1377 
1378 	snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1379 	snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1380 	alg->cra_priority = N2_CRA_PRIORITY;
1381 	alg->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1382 			 CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
1383 	alg->cra_blocksize = tmpl->block_size;
1384 	p->enc_type = tmpl->enc_type;
1385 	alg->cra_ctxsize = sizeof(struct n2_cipher_context);
1386 	alg->cra_type = &crypto_ablkcipher_type;
1387 	alg->cra_u.ablkcipher = tmpl->ablkcipher;
1388 	alg->cra_init = n2_cipher_cra_init;
1389 	alg->cra_module = THIS_MODULE;
1390 
1391 	list_add(&p->entry, &cipher_algs);
1392 	err = crypto_register_alg(alg);
1393 	if (err) {
1394 		pr_err("%s alg registration failed\n", alg->cra_name);
1395 		list_del(&p->entry);
1396 		kfree(p);
1397 	} else {
1398 		pr_info("%s alg registered\n", alg->cra_name);
1399 	}
1400 	return err;
1401 }
1402 
1403 static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1404 {
1405 	struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1406 	struct ahash_alg *ahash;
1407 	struct crypto_alg *base;
1408 	int err;
1409 
1410 	if (!p)
1411 		return -ENOMEM;
1412 
1413 	p->child_alg = n2ahash->alg.halg.base.cra_name;
1414 	memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1415 	INIT_LIST_HEAD(&p->derived.entry);
1416 
1417 	ahash = &p->derived.alg;
1418 	ahash->digest = n2_hmac_async_digest;
1419 	ahash->setkey = n2_hmac_async_setkey;
1420 
1421 	base = &ahash->halg.base;
1422 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
1423 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
1424 
1425 	base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1426 	base->cra_init = n2_hmac_cra_init;
1427 	base->cra_exit = n2_hmac_cra_exit;
1428 
1429 	list_add(&p->derived.entry, &hmac_algs);
1430 	err = crypto_register_ahash(ahash);
1431 	if (err) {
1432 		pr_err("%s alg registration failed\n", base->cra_name);
1433 		list_del(&p->derived.entry);
1434 		kfree(p);
1435 	} else {
1436 		pr_info("%s alg registered\n", base->cra_name);
1437 	}
1438 	return err;
1439 }
1440 
1441 static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1442 {
1443 	struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1444 	struct hash_alg_common *halg;
1445 	struct crypto_alg *base;
1446 	struct ahash_alg *ahash;
1447 	int err;
1448 
1449 	if (!p)
1450 		return -ENOMEM;
1451 
1452 	p->hash_zero = tmpl->hash_zero;
1453 	p->hash_init = tmpl->hash_init;
1454 	p->auth_type = tmpl->auth_type;
1455 	p->hmac_type = tmpl->hmac_type;
1456 	p->hw_op_hashsz = tmpl->hw_op_hashsz;
1457 	p->digest_size = tmpl->digest_size;
1458 
1459 	ahash = &p->alg;
1460 	ahash->init = n2_hash_async_init;
1461 	ahash->update = n2_hash_async_update;
1462 	ahash->final = n2_hash_async_final;
1463 	ahash->finup = n2_hash_async_finup;
1464 	ahash->digest = n2_hash_async_digest;
1465 
1466 	halg = &ahash->halg;
1467 	halg->digestsize = tmpl->digest_size;
1468 
1469 	base = &halg->base;
1470 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1471 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1472 	base->cra_priority = N2_CRA_PRIORITY;
1473 	base->cra_flags = CRYPTO_ALG_TYPE_AHASH |
1474 			  CRYPTO_ALG_KERN_DRIVER_ONLY |
1475 			  CRYPTO_ALG_NEED_FALLBACK;
1476 	base->cra_blocksize = tmpl->block_size;
1477 	base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1478 	base->cra_module = THIS_MODULE;
1479 	base->cra_init = n2_hash_cra_init;
1480 	base->cra_exit = n2_hash_cra_exit;
1481 
1482 	list_add(&p->entry, &ahash_algs);
1483 	err = crypto_register_ahash(ahash);
1484 	if (err) {
1485 		pr_err("%s alg registration failed\n", base->cra_name);
1486 		list_del(&p->entry);
1487 		kfree(p);
1488 	} else {
1489 		pr_info("%s alg registered\n", base->cra_name);
1490 	}
1491 	if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1492 		err = __n2_register_one_hmac(p);
1493 	return err;
1494 }
1495 
1496 static int n2_register_algs(void)
1497 {
1498 	int i, err = 0;
1499 
1500 	mutex_lock(&spu_lock);
1501 	if (algs_registered++)
1502 		goto out;
1503 
1504 	for (i = 0; i < NUM_HASH_TMPLS; i++) {
1505 		err = __n2_register_one_ahash(&hash_tmpls[i]);
1506 		if (err) {
1507 			__n2_unregister_algs();
1508 			goto out;
1509 		}
1510 	}
1511 	for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1512 		err = __n2_register_one_cipher(&cipher_tmpls[i]);
1513 		if (err) {
1514 			__n2_unregister_algs();
1515 			goto out;
1516 		}
1517 	}
1518 
1519 out:
1520 	mutex_unlock(&spu_lock);
1521 	return err;
1522 }
1523 
1524 static void n2_unregister_algs(void)
1525 {
1526 	mutex_lock(&spu_lock);
1527 	if (!--algs_registered)
1528 		__n2_unregister_algs();
1529 	mutex_unlock(&spu_lock);
1530 }
1531 
1532 /* To map CWQ queues to interrupt sources, the hypervisor API provides
1533  * a devino.  This isn't very useful to us because all of the
1534  * interrupts listed in the device_node have been translated to
1535  * Linux virtual IRQ cookie numbers.
1536  *
1537  * So we have to back-translate, going through the 'intr' and 'ino'
1538  * property tables of the n2cp MDESC node, matching it with the OF
1539  * 'interrupts' property entries, in order to to figure out which
1540  * devino goes to which already-translated IRQ.
1541  */
1542 static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1543 			     unsigned long dev_ino)
1544 {
1545 	const unsigned int *dev_intrs;
1546 	unsigned int intr;
1547 	int i;
1548 
1549 	for (i = 0; i < ip->num_intrs; i++) {
1550 		if (ip->ino_table[i].ino == dev_ino)
1551 			break;
1552 	}
1553 	if (i == ip->num_intrs)
1554 		return -ENODEV;
1555 
1556 	intr = ip->ino_table[i].intr;
1557 
1558 	dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1559 	if (!dev_intrs)
1560 		return -ENODEV;
1561 
1562 	for (i = 0; i < dev->archdata.num_irqs; i++) {
1563 		if (dev_intrs[i] == intr)
1564 			return i;
1565 	}
1566 
1567 	return -ENODEV;
1568 }
1569 
1570 static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1571 		       const char *irq_name, struct spu_queue *p,
1572 		       irq_handler_t handler)
1573 {
1574 	unsigned long herr;
1575 	int index;
1576 
1577 	herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1578 	if (herr)
1579 		return -EINVAL;
1580 
1581 	index = find_devino_index(dev, ip, p->devino);
1582 	if (index < 0)
1583 		return index;
1584 
1585 	p->irq = dev->archdata.irqs[index];
1586 
1587 	sprintf(p->irq_name, "%s-%d", irq_name, index);
1588 
1589 	return request_irq(p->irq, handler, 0, p->irq_name, p);
1590 }
1591 
1592 static struct kmem_cache *queue_cache[2];
1593 
1594 static void *new_queue(unsigned long q_type)
1595 {
1596 	return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1597 }
1598 
1599 static void free_queue(void *p, unsigned long q_type)
1600 {
1601 	kmem_cache_free(queue_cache[q_type - 1], p);
1602 }
1603 
1604 static int queue_cache_init(void)
1605 {
1606 	if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1607 		queue_cache[HV_NCS_QTYPE_MAU - 1] =
1608 			kmem_cache_create("mau_queue",
1609 					  (MAU_NUM_ENTRIES *
1610 					   MAU_ENTRY_SIZE),
1611 					  MAU_ENTRY_SIZE, 0, NULL);
1612 	if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1613 		return -ENOMEM;
1614 
1615 	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1616 		queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1617 			kmem_cache_create("cwq_queue",
1618 					  (CWQ_NUM_ENTRIES *
1619 					   CWQ_ENTRY_SIZE),
1620 					  CWQ_ENTRY_SIZE, 0, NULL);
1621 	if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1622 		kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1623 		return -ENOMEM;
1624 	}
1625 	return 0;
1626 }
1627 
1628 static void queue_cache_destroy(void)
1629 {
1630 	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1631 	kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
1632 }
1633 
1634 static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1635 {
1636 	cpumask_var_t old_allowed;
1637 	unsigned long hv_ret;
1638 
1639 	if (cpumask_empty(&p->sharing))
1640 		return -EINVAL;
1641 
1642 	if (!alloc_cpumask_var(&old_allowed, GFP_KERNEL))
1643 		return -ENOMEM;
1644 
1645 	cpumask_copy(old_allowed, &current->cpus_allowed);
1646 
1647 	set_cpus_allowed_ptr(current, &p->sharing);
1648 
1649 	hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1650 				 CWQ_NUM_ENTRIES, &p->qhandle);
1651 	if (!hv_ret)
1652 		sun4v_ncs_sethead_marker(p->qhandle, 0);
1653 
1654 	set_cpus_allowed_ptr(current, old_allowed);
1655 
1656 	free_cpumask_var(old_allowed);
1657 
1658 	return (hv_ret ? -EINVAL : 0);
1659 }
1660 
1661 static int spu_queue_setup(struct spu_queue *p)
1662 {
1663 	int err;
1664 
1665 	p->q = new_queue(p->q_type);
1666 	if (!p->q)
1667 		return -ENOMEM;
1668 
1669 	err = spu_queue_register(p, p->q_type);
1670 	if (err) {
1671 		free_queue(p->q, p->q_type);
1672 		p->q = NULL;
1673 	}
1674 
1675 	return err;
1676 }
1677 
1678 static void spu_queue_destroy(struct spu_queue *p)
1679 {
1680 	unsigned long hv_ret;
1681 
1682 	if (!p->q)
1683 		return;
1684 
1685 	hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1686 
1687 	if (!hv_ret)
1688 		free_queue(p->q, p->q_type);
1689 }
1690 
1691 static void spu_list_destroy(struct list_head *list)
1692 {
1693 	struct spu_queue *p, *n;
1694 
1695 	list_for_each_entry_safe(p, n, list, list) {
1696 		int i;
1697 
1698 		for (i = 0; i < NR_CPUS; i++) {
1699 			if (cpu_to_cwq[i] == p)
1700 				cpu_to_cwq[i] = NULL;
1701 		}
1702 
1703 		if (p->irq) {
1704 			free_irq(p->irq, p);
1705 			p->irq = 0;
1706 		}
1707 		spu_queue_destroy(p);
1708 		list_del(&p->list);
1709 		kfree(p);
1710 	}
1711 }
1712 
1713 /* Walk the backward arcs of a CWQ 'exec-unit' node,
1714  * gathering cpu membership information.
1715  */
1716 static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1717 			       struct platform_device *dev,
1718 			       u64 node, struct spu_queue *p,
1719 			       struct spu_queue **table)
1720 {
1721 	u64 arc;
1722 
1723 	mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1724 		u64 tgt = mdesc_arc_target(mdesc, arc);
1725 		const char *name = mdesc_node_name(mdesc, tgt);
1726 		const u64 *id;
1727 
1728 		if (strcmp(name, "cpu"))
1729 			continue;
1730 		id = mdesc_get_property(mdesc, tgt, "id", NULL);
1731 		if (table[*id] != NULL) {
1732 			dev_err(&dev->dev, "%s: SPU cpu slot already set.\n",
1733 				dev->dev.of_node->full_name);
1734 			return -EINVAL;
1735 		}
1736 		cpumask_set_cpu(*id, &p->sharing);
1737 		table[*id] = p;
1738 	}
1739 	return 0;
1740 }
1741 
1742 /* Process an 'exec-unit' MDESC node of type 'cwq'.  */
1743 static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1744 			    struct platform_device *dev, struct mdesc_handle *mdesc,
1745 			    u64 node, const char *iname, unsigned long q_type,
1746 			    irq_handler_t handler, struct spu_queue **table)
1747 {
1748 	struct spu_queue *p;
1749 	int err;
1750 
1751 	p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1752 	if (!p) {
1753 		dev_err(&dev->dev, "%s: Could not allocate SPU queue.\n",
1754 			dev->dev.of_node->full_name);
1755 		return -ENOMEM;
1756 	}
1757 
1758 	cpumask_clear(&p->sharing);
1759 	spin_lock_init(&p->lock);
1760 	p->q_type = q_type;
1761 	INIT_LIST_HEAD(&p->jobs);
1762 	list_add(&p->list, list);
1763 
1764 	err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1765 	if (err)
1766 		return err;
1767 
1768 	err = spu_queue_setup(p);
1769 	if (err)
1770 		return err;
1771 
1772 	return spu_map_ino(dev, ip, iname, p, handler);
1773 }
1774 
1775 static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1776 			  struct spu_mdesc_info *ip, struct list_head *list,
1777 			  const char *exec_name, unsigned long q_type,
1778 			  irq_handler_t handler, struct spu_queue **table)
1779 {
1780 	int err = 0;
1781 	u64 node;
1782 
1783 	mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1784 		const char *type;
1785 
1786 		type = mdesc_get_property(mdesc, node, "type", NULL);
1787 		if (!type || strcmp(type, exec_name))
1788 			continue;
1789 
1790 		err = handle_exec_unit(ip, list, dev, mdesc, node,
1791 				       exec_name, q_type, handler, table);
1792 		if (err) {
1793 			spu_list_destroy(list);
1794 			break;
1795 		}
1796 	}
1797 
1798 	return err;
1799 }
1800 
1801 static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
1802 			 struct spu_mdesc_info *ip)
1803 {
1804 	const u64 *ino;
1805 	int ino_len;
1806 	int i;
1807 
1808 	ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1809 	if (!ino) {
1810 		printk("NO 'ino'\n");
1811 		return -ENODEV;
1812 	}
1813 
1814 	ip->num_intrs = ino_len / sizeof(u64);
1815 	ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1816 				 ip->num_intrs),
1817 				GFP_KERNEL);
1818 	if (!ip->ino_table)
1819 		return -ENOMEM;
1820 
1821 	for (i = 0; i < ip->num_intrs; i++) {
1822 		struct ino_blob *b = &ip->ino_table[i];
1823 		b->intr = i + 1;
1824 		b->ino = ino[i];
1825 	}
1826 
1827 	return 0;
1828 }
1829 
1830 static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1831 				struct platform_device *dev,
1832 				struct spu_mdesc_info *ip,
1833 				const char *node_name)
1834 {
1835 	const unsigned int *reg;
1836 	u64 node;
1837 
1838 	reg = of_get_property(dev->dev.of_node, "reg", NULL);
1839 	if (!reg)
1840 		return -ENODEV;
1841 
1842 	mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1843 		const char *name;
1844 		const u64 *chdl;
1845 
1846 		name = mdesc_get_property(mdesc, node, "name", NULL);
1847 		if (!name || strcmp(name, node_name))
1848 			continue;
1849 		chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1850 		if (!chdl || (*chdl != *reg))
1851 			continue;
1852 		ip->cfg_handle = *chdl;
1853 		return get_irq_props(mdesc, node, ip);
1854 	}
1855 
1856 	return -ENODEV;
1857 }
1858 
1859 static unsigned long n2_spu_hvapi_major;
1860 static unsigned long n2_spu_hvapi_minor;
1861 
1862 static int n2_spu_hvapi_register(void)
1863 {
1864 	int err;
1865 
1866 	n2_spu_hvapi_major = 2;
1867 	n2_spu_hvapi_minor = 0;
1868 
1869 	err = sun4v_hvapi_register(HV_GRP_NCS,
1870 				   n2_spu_hvapi_major,
1871 				   &n2_spu_hvapi_minor);
1872 
1873 	if (!err)
1874 		pr_info("Registered NCS HVAPI version %lu.%lu\n",
1875 			n2_spu_hvapi_major,
1876 			n2_spu_hvapi_minor);
1877 
1878 	return err;
1879 }
1880 
1881 static void n2_spu_hvapi_unregister(void)
1882 {
1883 	sun4v_hvapi_unregister(HV_GRP_NCS);
1884 }
1885 
1886 static int global_ref;
1887 
1888 static int grab_global_resources(void)
1889 {
1890 	int err = 0;
1891 
1892 	mutex_lock(&spu_lock);
1893 
1894 	if (global_ref++)
1895 		goto out;
1896 
1897 	err = n2_spu_hvapi_register();
1898 	if (err)
1899 		goto out;
1900 
1901 	err = queue_cache_init();
1902 	if (err)
1903 		goto out_hvapi_release;
1904 
1905 	err = -ENOMEM;
1906 	cpu_to_cwq = kzalloc(sizeof(struct spu_queue *) * NR_CPUS,
1907 			     GFP_KERNEL);
1908 	if (!cpu_to_cwq)
1909 		goto out_queue_cache_destroy;
1910 
1911 	cpu_to_mau = kzalloc(sizeof(struct spu_queue *) * NR_CPUS,
1912 			     GFP_KERNEL);
1913 	if (!cpu_to_mau)
1914 		goto out_free_cwq_table;
1915 
1916 	err = 0;
1917 
1918 out:
1919 	if (err)
1920 		global_ref--;
1921 	mutex_unlock(&spu_lock);
1922 	return err;
1923 
1924 out_free_cwq_table:
1925 	kfree(cpu_to_cwq);
1926 	cpu_to_cwq = NULL;
1927 
1928 out_queue_cache_destroy:
1929 	queue_cache_destroy();
1930 
1931 out_hvapi_release:
1932 	n2_spu_hvapi_unregister();
1933 	goto out;
1934 }
1935 
1936 static void release_global_resources(void)
1937 {
1938 	mutex_lock(&spu_lock);
1939 	if (!--global_ref) {
1940 		kfree(cpu_to_cwq);
1941 		cpu_to_cwq = NULL;
1942 
1943 		kfree(cpu_to_mau);
1944 		cpu_to_mau = NULL;
1945 
1946 		queue_cache_destroy();
1947 		n2_spu_hvapi_unregister();
1948 	}
1949 	mutex_unlock(&spu_lock);
1950 }
1951 
1952 static struct n2_crypto *alloc_n2cp(void)
1953 {
1954 	struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1955 
1956 	if (np)
1957 		INIT_LIST_HEAD(&np->cwq_list);
1958 
1959 	return np;
1960 }
1961 
1962 static void free_n2cp(struct n2_crypto *np)
1963 {
1964 	if (np->cwq_info.ino_table) {
1965 		kfree(np->cwq_info.ino_table);
1966 		np->cwq_info.ino_table = NULL;
1967 	}
1968 
1969 	kfree(np);
1970 }
1971 
1972 static void n2_spu_driver_version(void)
1973 {
1974 	static int n2_spu_version_printed;
1975 
1976 	if (n2_spu_version_printed++ == 0)
1977 		pr_info("%s", version);
1978 }
1979 
1980 static int n2_crypto_probe(struct platform_device *dev)
1981 {
1982 	struct mdesc_handle *mdesc;
1983 	const char *full_name;
1984 	struct n2_crypto *np;
1985 	int err;
1986 
1987 	n2_spu_driver_version();
1988 
1989 	full_name = dev->dev.of_node->full_name;
1990 	pr_info("Found N2CP at %s\n", full_name);
1991 
1992 	np = alloc_n2cp();
1993 	if (!np) {
1994 		dev_err(&dev->dev, "%s: Unable to allocate n2cp.\n",
1995 			full_name);
1996 		return -ENOMEM;
1997 	}
1998 
1999 	err = grab_global_resources();
2000 	if (err) {
2001 		dev_err(&dev->dev, "%s: Unable to grab "
2002 			"global resources.\n", full_name);
2003 		goto out_free_n2cp;
2004 	}
2005 
2006 	mdesc = mdesc_grab();
2007 
2008 	if (!mdesc) {
2009 		dev_err(&dev->dev, "%s: Unable to grab MDESC.\n",
2010 			full_name);
2011 		err = -ENODEV;
2012 		goto out_free_global;
2013 	}
2014 	err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
2015 	if (err) {
2016 		dev_err(&dev->dev, "%s: Unable to grab IRQ props.\n",
2017 			full_name);
2018 		mdesc_release(mdesc);
2019 		goto out_free_global;
2020 	}
2021 
2022 	err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
2023 			     "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
2024 			     cpu_to_cwq);
2025 	mdesc_release(mdesc);
2026 
2027 	if (err) {
2028 		dev_err(&dev->dev, "%s: CWQ MDESC scan failed.\n",
2029 			full_name);
2030 		goto out_free_global;
2031 	}
2032 
2033 	err = n2_register_algs();
2034 	if (err) {
2035 		dev_err(&dev->dev, "%s: Unable to register algorithms.\n",
2036 			full_name);
2037 		goto out_free_spu_list;
2038 	}
2039 
2040 	dev_set_drvdata(&dev->dev, np);
2041 
2042 	return 0;
2043 
2044 out_free_spu_list:
2045 	spu_list_destroy(&np->cwq_list);
2046 
2047 out_free_global:
2048 	release_global_resources();
2049 
2050 out_free_n2cp:
2051 	free_n2cp(np);
2052 
2053 	return err;
2054 }
2055 
2056 static int n2_crypto_remove(struct platform_device *dev)
2057 {
2058 	struct n2_crypto *np = dev_get_drvdata(&dev->dev);
2059 
2060 	n2_unregister_algs();
2061 
2062 	spu_list_destroy(&np->cwq_list);
2063 
2064 	release_global_resources();
2065 
2066 	free_n2cp(np);
2067 
2068 	return 0;
2069 }
2070 
2071 static struct n2_mau *alloc_ncp(void)
2072 {
2073 	struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2074 
2075 	if (mp)
2076 		INIT_LIST_HEAD(&mp->mau_list);
2077 
2078 	return mp;
2079 }
2080 
2081 static void free_ncp(struct n2_mau *mp)
2082 {
2083 	if (mp->mau_info.ino_table) {
2084 		kfree(mp->mau_info.ino_table);
2085 		mp->mau_info.ino_table = NULL;
2086 	}
2087 
2088 	kfree(mp);
2089 }
2090 
2091 static int n2_mau_probe(struct platform_device *dev)
2092 {
2093 	struct mdesc_handle *mdesc;
2094 	const char *full_name;
2095 	struct n2_mau *mp;
2096 	int err;
2097 
2098 	n2_spu_driver_version();
2099 
2100 	full_name = dev->dev.of_node->full_name;
2101 	pr_info("Found NCP at %s\n", full_name);
2102 
2103 	mp = alloc_ncp();
2104 	if (!mp) {
2105 		dev_err(&dev->dev, "%s: Unable to allocate ncp.\n",
2106 			full_name);
2107 		return -ENOMEM;
2108 	}
2109 
2110 	err = grab_global_resources();
2111 	if (err) {
2112 		dev_err(&dev->dev, "%s: Unable to grab "
2113 			"global resources.\n", full_name);
2114 		goto out_free_ncp;
2115 	}
2116 
2117 	mdesc = mdesc_grab();
2118 
2119 	if (!mdesc) {
2120 		dev_err(&dev->dev, "%s: Unable to grab MDESC.\n",
2121 			full_name);
2122 		err = -ENODEV;
2123 		goto out_free_global;
2124 	}
2125 
2126 	err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2127 	if (err) {
2128 		dev_err(&dev->dev, "%s: Unable to grab IRQ props.\n",
2129 			full_name);
2130 		mdesc_release(mdesc);
2131 		goto out_free_global;
2132 	}
2133 
2134 	err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2135 			     "mau", HV_NCS_QTYPE_MAU, mau_intr,
2136 			     cpu_to_mau);
2137 	mdesc_release(mdesc);
2138 
2139 	if (err) {
2140 		dev_err(&dev->dev, "%s: MAU MDESC scan failed.\n",
2141 			full_name);
2142 		goto out_free_global;
2143 	}
2144 
2145 	dev_set_drvdata(&dev->dev, mp);
2146 
2147 	return 0;
2148 
2149 out_free_global:
2150 	release_global_resources();
2151 
2152 out_free_ncp:
2153 	free_ncp(mp);
2154 
2155 	return err;
2156 }
2157 
2158 static int n2_mau_remove(struct platform_device *dev)
2159 {
2160 	struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2161 
2162 	spu_list_destroy(&mp->mau_list);
2163 
2164 	release_global_resources();
2165 
2166 	free_ncp(mp);
2167 
2168 	return 0;
2169 }
2170 
2171 static struct of_device_id n2_crypto_match[] = {
2172 	{
2173 		.name = "n2cp",
2174 		.compatible = "SUNW,n2-cwq",
2175 	},
2176 	{
2177 		.name = "n2cp",
2178 		.compatible = "SUNW,vf-cwq",
2179 	},
2180 	{
2181 		.name = "n2cp",
2182 		.compatible = "SUNW,kt-cwq",
2183 	},
2184 	{},
2185 };
2186 
2187 MODULE_DEVICE_TABLE(of, n2_crypto_match);
2188 
2189 static struct platform_driver n2_crypto_driver = {
2190 	.driver = {
2191 		.name		=	"n2cp",
2192 		.of_match_table	=	n2_crypto_match,
2193 	},
2194 	.probe		=	n2_crypto_probe,
2195 	.remove		=	n2_crypto_remove,
2196 };
2197 
2198 static struct of_device_id n2_mau_match[] = {
2199 	{
2200 		.name = "ncp",
2201 		.compatible = "SUNW,n2-mau",
2202 	},
2203 	{
2204 		.name = "ncp",
2205 		.compatible = "SUNW,vf-mau",
2206 	},
2207 	{
2208 		.name = "ncp",
2209 		.compatible = "SUNW,kt-mau",
2210 	},
2211 	{},
2212 };
2213 
2214 MODULE_DEVICE_TABLE(of, n2_mau_match);
2215 
2216 static struct platform_driver n2_mau_driver = {
2217 	.driver = {
2218 		.name		=	"ncp",
2219 		.of_match_table	=	n2_mau_match,
2220 	},
2221 	.probe		=	n2_mau_probe,
2222 	.remove		=	n2_mau_remove,
2223 };
2224 
2225 static struct platform_driver * const drivers[] = {
2226 	&n2_crypto_driver,
2227 	&n2_mau_driver,
2228 };
2229 
2230 static int __init n2_init(void)
2231 {
2232 	return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2233 }
2234 
2235 static void __exit n2_exit(void)
2236 {
2237 	platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2238 }
2239 
2240 module_init(n2_init);
2241 module_exit(n2_exit);
2242