1 // SPDX-License-Identifier: GPL-2.0-only 2 /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support. 3 * 4 * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net> 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/of.h> 12 #include <linux/of_address.h> 13 #include <linux/platform_device.h> 14 #include <linux/cpumask.h> 15 #include <linux/slab.h> 16 #include <linux/interrupt.h> 17 #include <linux/crypto.h> 18 #include <crypto/md5.h> 19 #include <crypto/sha1.h> 20 #include <crypto/sha2.h> 21 #include <crypto/aes.h> 22 #include <crypto/internal/des.h> 23 #include <linux/mutex.h> 24 #include <linux/delay.h> 25 #include <linux/sched.h> 26 27 #include <crypto/internal/hash.h> 28 #include <crypto/internal/skcipher.h> 29 #include <crypto/scatterwalk.h> 30 #include <crypto/algapi.h> 31 32 #include <asm/hypervisor.h> 33 #include <asm/mdesc.h> 34 35 #include "n2_core.h" 36 37 #define DRV_MODULE_NAME "n2_crypto" 38 #define DRV_MODULE_VERSION "0.2" 39 #define DRV_MODULE_RELDATE "July 28, 2011" 40 41 static const char version[] = 42 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n"; 43 44 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)"); 45 MODULE_DESCRIPTION("Niagara2 Crypto driver"); 46 MODULE_LICENSE("GPL"); 47 MODULE_VERSION(DRV_MODULE_VERSION); 48 49 #define N2_CRA_PRIORITY 200 50 51 static DEFINE_MUTEX(spu_lock); 52 53 struct spu_queue { 54 cpumask_t sharing; 55 unsigned long qhandle; 56 57 spinlock_t lock; 58 u8 q_type; 59 void *q; 60 unsigned long head; 61 unsigned long tail; 62 struct list_head jobs; 63 64 unsigned long devino; 65 66 char irq_name[32]; 67 unsigned int irq; 68 69 struct list_head list; 70 }; 71 72 struct spu_qreg { 73 struct spu_queue *queue; 74 unsigned long type; 75 }; 76 77 static struct spu_queue **cpu_to_cwq; 78 static struct spu_queue **cpu_to_mau; 79 80 static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off) 81 { 82 if (q->q_type == HV_NCS_QTYPE_MAU) { 83 off += MAU_ENTRY_SIZE; 84 if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES)) 85 off = 0; 86 } else { 87 off += CWQ_ENTRY_SIZE; 88 if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES)) 89 off = 0; 90 } 91 return off; 92 } 93 94 struct n2_request_common { 95 struct list_head entry; 96 unsigned int offset; 97 }; 98 #define OFFSET_NOT_RUNNING (~(unsigned int)0) 99 100 /* An async job request records the final tail value it used in 101 * n2_request_common->offset, test to see if that offset is in 102 * the range old_head, new_head, inclusive. 103 */ 104 static inline bool job_finished(struct spu_queue *q, unsigned int offset, 105 unsigned long old_head, unsigned long new_head) 106 { 107 if (old_head <= new_head) { 108 if (offset > old_head && offset <= new_head) 109 return true; 110 } else { 111 if (offset > old_head || offset <= new_head) 112 return true; 113 } 114 return false; 115 } 116 117 /* When the HEAD marker is unequal to the actual HEAD, we get 118 * a virtual device INO interrupt. We should process the 119 * completed CWQ entries and adjust the HEAD marker to clear 120 * the IRQ. 121 */ 122 static irqreturn_t cwq_intr(int irq, void *dev_id) 123 { 124 unsigned long off, new_head, hv_ret; 125 struct spu_queue *q = dev_id; 126 127 pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n", 128 smp_processor_id(), q->qhandle); 129 130 spin_lock(&q->lock); 131 132 hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head); 133 134 pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n", 135 smp_processor_id(), new_head, hv_ret); 136 137 for (off = q->head; off != new_head; off = spu_next_offset(q, off)) { 138 /* XXX ... XXX */ 139 } 140 141 hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head); 142 if (hv_ret == HV_EOK) 143 q->head = new_head; 144 145 spin_unlock(&q->lock); 146 147 return IRQ_HANDLED; 148 } 149 150 static irqreturn_t mau_intr(int irq, void *dev_id) 151 { 152 struct spu_queue *q = dev_id; 153 unsigned long head, hv_ret; 154 155 spin_lock(&q->lock); 156 157 pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n", 158 smp_processor_id(), q->qhandle); 159 160 hv_ret = sun4v_ncs_gethead(q->qhandle, &head); 161 162 pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n", 163 smp_processor_id(), head, hv_ret); 164 165 sun4v_ncs_sethead_marker(q->qhandle, head); 166 167 spin_unlock(&q->lock); 168 169 return IRQ_HANDLED; 170 } 171 172 static void *spu_queue_next(struct spu_queue *q, void *cur) 173 { 174 return q->q + spu_next_offset(q, cur - q->q); 175 } 176 177 static int spu_queue_num_free(struct spu_queue *q) 178 { 179 unsigned long head = q->head; 180 unsigned long tail = q->tail; 181 unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES); 182 unsigned long diff; 183 184 if (head > tail) 185 diff = head - tail; 186 else 187 diff = (end - tail) + head; 188 189 return (diff / CWQ_ENTRY_SIZE) - 1; 190 } 191 192 static void *spu_queue_alloc(struct spu_queue *q, int num_entries) 193 { 194 int avail = spu_queue_num_free(q); 195 196 if (avail >= num_entries) 197 return q->q + q->tail; 198 199 return NULL; 200 } 201 202 static unsigned long spu_queue_submit(struct spu_queue *q, void *last) 203 { 204 unsigned long hv_ret, new_tail; 205 206 new_tail = spu_next_offset(q, last - q->q); 207 208 hv_ret = sun4v_ncs_settail(q->qhandle, new_tail); 209 if (hv_ret == HV_EOK) 210 q->tail = new_tail; 211 return hv_ret; 212 } 213 214 static u64 control_word_base(unsigned int len, unsigned int hmac_key_len, 215 int enc_type, int auth_type, 216 unsigned int hash_len, 217 bool sfas, bool sob, bool eob, bool encrypt, 218 int opcode) 219 { 220 u64 word = (len - 1) & CONTROL_LEN; 221 222 word |= ((u64) opcode << CONTROL_OPCODE_SHIFT); 223 word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT); 224 word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT); 225 if (sfas) 226 word |= CONTROL_STORE_FINAL_AUTH_STATE; 227 if (sob) 228 word |= CONTROL_START_OF_BLOCK; 229 if (eob) 230 word |= CONTROL_END_OF_BLOCK; 231 if (encrypt) 232 word |= CONTROL_ENCRYPT; 233 if (hmac_key_len) 234 word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT; 235 if (hash_len) 236 word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT; 237 238 return word; 239 } 240 241 #if 0 242 static inline bool n2_should_run_async(struct spu_queue *qp, int this_len) 243 { 244 if (this_len >= 64 || 245 qp->head != qp->tail) 246 return true; 247 return false; 248 } 249 #endif 250 251 struct n2_ahash_alg { 252 struct list_head entry; 253 const u8 *hash_zero; 254 const u8 *hash_init; 255 u8 hw_op_hashsz; 256 u8 digest_size; 257 u8 auth_type; 258 u8 hmac_type; 259 struct ahash_alg alg; 260 }; 261 262 static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm) 263 { 264 struct crypto_alg *alg = tfm->__crt_alg; 265 struct ahash_alg *ahash_alg; 266 267 ahash_alg = container_of(alg, struct ahash_alg, halg.base); 268 269 return container_of(ahash_alg, struct n2_ahash_alg, alg); 270 } 271 272 struct n2_hmac_alg { 273 const char *child_alg; 274 struct n2_ahash_alg derived; 275 }; 276 277 static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm) 278 { 279 struct crypto_alg *alg = tfm->__crt_alg; 280 struct ahash_alg *ahash_alg; 281 282 ahash_alg = container_of(alg, struct ahash_alg, halg.base); 283 284 return container_of(ahash_alg, struct n2_hmac_alg, derived.alg); 285 } 286 287 struct n2_hash_ctx { 288 struct crypto_ahash *fallback_tfm; 289 }; 290 291 #define N2_HASH_KEY_MAX 32 /* HW limit for all HMAC requests */ 292 293 struct n2_hmac_ctx { 294 struct n2_hash_ctx base; 295 296 struct crypto_shash *child_shash; 297 298 int hash_key_len; 299 unsigned char hash_key[N2_HASH_KEY_MAX]; 300 }; 301 302 struct n2_hash_req_ctx { 303 union { 304 struct md5_state md5; 305 struct sha1_state sha1; 306 struct sha256_state sha256; 307 } u; 308 309 struct ahash_request fallback_req; 310 }; 311 312 static int n2_hash_async_init(struct ahash_request *req) 313 { 314 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 315 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 316 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); 317 318 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); 319 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; 320 321 return crypto_ahash_init(&rctx->fallback_req); 322 } 323 324 static int n2_hash_async_update(struct ahash_request *req) 325 { 326 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 327 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 328 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); 329 330 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); 331 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; 332 rctx->fallback_req.nbytes = req->nbytes; 333 rctx->fallback_req.src = req->src; 334 335 return crypto_ahash_update(&rctx->fallback_req); 336 } 337 338 static int n2_hash_async_final(struct ahash_request *req) 339 { 340 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 341 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 342 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); 343 344 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); 345 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; 346 rctx->fallback_req.result = req->result; 347 348 return crypto_ahash_final(&rctx->fallback_req); 349 } 350 351 static int n2_hash_async_finup(struct ahash_request *req) 352 { 353 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 354 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 355 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); 356 357 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); 358 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; 359 rctx->fallback_req.nbytes = req->nbytes; 360 rctx->fallback_req.src = req->src; 361 rctx->fallback_req.result = req->result; 362 363 return crypto_ahash_finup(&rctx->fallback_req); 364 } 365 366 static int n2_hash_async_noimport(struct ahash_request *req, const void *in) 367 { 368 return -ENOSYS; 369 } 370 371 static int n2_hash_async_noexport(struct ahash_request *req, void *out) 372 { 373 return -ENOSYS; 374 } 375 376 static int n2_hash_cra_init(struct crypto_tfm *tfm) 377 { 378 const char *fallback_driver_name = crypto_tfm_alg_name(tfm); 379 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); 380 struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash); 381 struct crypto_ahash *fallback_tfm; 382 int err; 383 384 fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0, 385 CRYPTO_ALG_NEED_FALLBACK); 386 if (IS_ERR(fallback_tfm)) { 387 pr_warn("Fallback driver '%s' could not be loaded!\n", 388 fallback_driver_name); 389 err = PTR_ERR(fallback_tfm); 390 goto out; 391 } 392 393 crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) + 394 crypto_ahash_reqsize(fallback_tfm))); 395 396 ctx->fallback_tfm = fallback_tfm; 397 return 0; 398 399 out: 400 return err; 401 } 402 403 static void n2_hash_cra_exit(struct crypto_tfm *tfm) 404 { 405 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); 406 struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash); 407 408 crypto_free_ahash(ctx->fallback_tfm); 409 } 410 411 static int n2_hmac_cra_init(struct crypto_tfm *tfm) 412 { 413 const char *fallback_driver_name = crypto_tfm_alg_name(tfm); 414 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); 415 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash); 416 struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm); 417 struct crypto_ahash *fallback_tfm; 418 struct crypto_shash *child_shash; 419 int err; 420 421 fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0, 422 CRYPTO_ALG_NEED_FALLBACK); 423 if (IS_ERR(fallback_tfm)) { 424 pr_warn("Fallback driver '%s' could not be loaded!\n", 425 fallback_driver_name); 426 err = PTR_ERR(fallback_tfm); 427 goto out; 428 } 429 430 child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0); 431 if (IS_ERR(child_shash)) { 432 pr_warn("Child shash '%s' could not be loaded!\n", 433 n2alg->child_alg); 434 err = PTR_ERR(child_shash); 435 goto out_free_fallback; 436 } 437 438 crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) + 439 crypto_ahash_reqsize(fallback_tfm))); 440 441 ctx->child_shash = child_shash; 442 ctx->base.fallback_tfm = fallback_tfm; 443 return 0; 444 445 out_free_fallback: 446 crypto_free_ahash(fallback_tfm); 447 448 out: 449 return err; 450 } 451 452 static void n2_hmac_cra_exit(struct crypto_tfm *tfm) 453 { 454 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); 455 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash); 456 457 crypto_free_ahash(ctx->base.fallback_tfm); 458 crypto_free_shash(ctx->child_shash); 459 } 460 461 static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key, 462 unsigned int keylen) 463 { 464 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm); 465 struct crypto_shash *child_shash = ctx->child_shash; 466 struct crypto_ahash *fallback_tfm; 467 int err, bs, ds; 468 469 fallback_tfm = ctx->base.fallback_tfm; 470 err = crypto_ahash_setkey(fallback_tfm, key, keylen); 471 if (err) 472 return err; 473 474 bs = crypto_shash_blocksize(child_shash); 475 ds = crypto_shash_digestsize(child_shash); 476 BUG_ON(ds > N2_HASH_KEY_MAX); 477 if (keylen > bs) { 478 err = crypto_shash_tfm_digest(child_shash, key, keylen, 479 ctx->hash_key); 480 if (err) 481 return err; 482 keylen = ds; 483 } else if (keylen <= N2_HASH_KEY_MAX) 484 memcpy(ctx->hash_key, key, keylen); 485 486 ctx->hash_key_len = keylen; 487 488 return err; 489 } 490 491 static unsigned long wait_for_tail(struct spu_queue *qp) 492 { 493 unsigned long head, hv_ret; 494 495 do { 496 hv_ret = sun4v_ncs_gethead(qp->qhandle, &head); 497 if (hv_ret != HV_EOK) { 498 pr_err("Hypervisor error on gethead\n"); 499 break; 500 } 501 if (head == qp->tail) { 502 qp->head = head; 503 break; 504 } 505 } while (1); 506 return hv_ret; 507 } 508 509 static unsigned long submit_and_wait_for_tail(struct spu_queue *qp, 510 struct cwq_initial_entry *ent) 511 { 512 unsigned long hv_ret = spu_queue_submit(qp, ent); 513 514 if (hv_ret == HV_EOK) 515 hv_ret = wait_for_tail(qp); 516 517 return hv_ret; 518 } 519 520 static int n2_do_async_digest(struct ahash_request *req, 521 unsigned int auth_type, unsigned int digest_size, 522 unsigned int result_size, void *hash_loc, 523 unsigned long auth_key, unsigned int auth_key_len) 524 { 525 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 526 struct cwq_initial_entry *ent; 527 struct crypto_hash_walk walk; 528 struct spu_queue *qp; 529 unsigned long flags; 530 int err = -ENODEV; 531 int nbytes, cpu; 532 533 /* The total effective length of the operation may not 534 * exceed 2^16. 535 */ 536 if (unlikely(req->nbytes > (1 << 16))) { 537 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 538 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); 539 540 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); 541 rctx->fallback_req.base.flags = 542 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; 543 rctx->fallback_req.nbytes = req->nbytes; 544 rctx->fallback_req.src = req->src; 545 rctx->fallback_req.result = req->result; 546 547 return crypto_ahash_digest(&rctx->fallback_req); 548 } 549 550 nbytes = crypto_hash_walk_first(req, &walk); 551 552 cpu = get_cpu(); 553 qp = cpu_to_cwq[cpu]; 554 if (!qp) 555 goto out; 556 557 spin_lock_irqsave(&qp->lock, flags); 558 559 /* XXX can do better, improve this later by doing a by-hand scatterlist 560 * XXX walk, etc. 561 */ 562 ent = qp->q + qp->tail; 563 564 ent->control = control_word_base(nbytes, auth_key_len, 0, 565 auth_type, digest_size, 566 false, true, false, false, 567 OPCODE_INPLACE_BIT | 568 OPCODE_AUTH_MAC); 569 ent->src_addr = __pa(walk.data); 570 ent->auth_key_addr = auth_key; 571 ent->auth_iv_addr = __pa(hash_loc); 572 ent->final_auth_state_addr = 0UL; 573 ent->enc_key_addr = 0UL; 574 ent->enc_iv_addr = 0UL; 575 ent->dest_addr = __pa(hash_loc); 576 577 nbytes = crypto_hash_walk_done(&walk, 0); 578 while (nbytes > 0) { 579 ent = spu_queue_next(qp, ent); 580 581 ent->control = (nbytes - 1); 582 ent->src_addr = __pa(walk.data); 583 ent->auth_key_addr = 0UL; 584 ent->auth_iv_addr = 0UL; 585 ent->final_auth_state_addr = 0UL; 586 ent->enc_key_addr = 0UL; 587 ent->enc_iv_addr = 0UL; 588 ent->dest_addr = 0UL; 589 590 nbytes = crypto_hash_walk_done(&walk, 0); 591 } 592 ent->control |= CONTROL_END_OF_BLOCK; 593 594 if (submit_and_wait_for_tail(qp, ent) != HV_EOK) 595 err = -EINVAL; 596 else 597 err = 0; 598 599 spin_unlock_irqrestore(&qp->lock, flags); 600 601 if (!err) 602 memcpy(req->result, hash_loc, result_size); 603 out: 604 put_cpu(); 605 606 return err; 607 } 608 609 static int n2_hash_async_digest(struct ahash_request *req) 610 { 611 struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm); 612 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 613 int ds; 614 615 ds = n2alg->digest_size; 616 if (unlikely(req->nbytes == 0)) { 617 memcpy(req->result, n2alg->hash_zero, ds); 618 return 0; 619 } 620 memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz); 621 622 return n2_do_async_digest(req, n2alg->auth_type, 623 n2alg->hw_op_hashsz, ds, 624 &rctx->u, 0UL, 0); 625 } 626 627 static int n2_hmac_async_digest(struct ahash_request *req) 628 { 629 struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm); 630 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 631 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 632 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm); 633 int ds; 634 635 ds = n2alg->derived.digest_size; 636 if (unlikely(req->nbytes == 0) || 637 unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) { 638 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req); 639 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm); 640 641 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm); 642 rctx->fallback_req.base.flags = 643 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; 644 rctx->fallback_req.nbytes = req->nbytes; 645 rctx->fallback_req.src = req->src; 646 rctx->fallback_req.result = req->result; 647 648 return crypto_ahash_digest(&rctx->fallback_req); 649 } 650 memcpy(&rctx->u, n2alg->derived.hash_init, 651 n2alg->derived.hw_op_hashsz); 652 653 return n2_do_async_digest(req, n2alg->derived.hmac_type, 654 n2alg->derived.hw_op_hashsz, ds, 655 &rctx->u, 656 __pa(&ctx->hash_key), 657 ctx->hash_key_len); 658 } 659 660 struct n2_skcipher_context { 661 int key_len; 662 int enc_type; 663 union { 664 u8 aes[AES_MAX_KEY_SIZE]; 665 u8 des[DES_KEY_SIZE]; 666 u8 des3[3 * DES_KEY_SIZE]; 667 } key; 668 }; 669 670 #define N2_CHUNK_ARR_LEN 16 671 672 struct n2_crypto_chunk { 673 struct list_head entry; 674 unsigned long iv_paddr : 44; 675 unsigned long arr_len : 20; 676 unsigned long dest_paddr; 677 unsigned long dest_final; 678 struct { 679 unsigned long src_paddr : 44; 680 unsigned long src_len : 20; 681 } arr[N2_CHUNK_ARR_LEN]; 682 }; 683 684 struct n2_request_context { 685 struct skcipher_walk walk; 686 struct list_head chunk_list; 687 struct n2_crypto_chunk chunk; 688 u8 temp_iv[16]; 689 }; 690 691 /* The SPU allows some level of flexibility for partial cipher blocks 692 * being specified in a descriptor. 693 * 694 * It merely requires that every descriptor's length field is at least 695 * as large as the cipher block size. This means that a cipher block 696 * can span at most 2 descriptors. However, this does not allow a 697 * partial block to span into the final descriptor as that would 698 * violate the rule (since every descriptor's length must be at lest 699 * the block size). So, for example, assuming an 8 byte block size: 700 * 701 * 0xe --> 0xa --> 0x8 702 * 703 * is a valid length sequence, whereas: 704 * 705 * 0xe --> 0xb --> 0x7 706 * 707 * is not a valid sequence. 708 */ 709 710 struct n2_skcipher_alg { 711 struct list_head entry; 712 u8 enc_type; 713 struct skcipher_alg skcipher; 714 }; 715 716 static inline struct n2_skcipher_alg *n2_skcipher_alg(struct crypto_skcipher *tfm) 717 { 718 struct skcipher_alg *alg = crypto_skcipher_alg(tfm); 719 720 return container_of(alg, struct n2_skcipher_alg, skcipher); 721 } 722 723 struct n2_skcipher_request_context { 724 struct skcipher_walk walk; 725 }; 726 727 static int n2_aes_setkey(struct crypto_skcipher *skcipher, const u8 *key, 728 unsigned int keylen) 729 { 730 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher); 731 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm); 732 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher); 733 734 ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK); 735 736 switch (keylen) { 737 case AES_KEYSIZE_128: 738 ctx->enc_type |= ENC_TYPE_ALG_AES128; 739 break; 740 case AES_KEYSIZE_192: 741 ctx->enc_type |= ENC_TYPE_ALG_AES192; 742 break; 743 case AES_KEYSIZE_256: 744 ctx->enc_type |= ENC_TYPE_ALG_AES256; 745 break; 746 default: 747 return -EINVAL; 748 } 749 750 ctx->key_len = keylen; 751 memcpy(ctx->key.aes, key, keylen); 752 return 0; 753 } 754 755 static int n2_des_setkey(struct crypto_skcipher *skcipher, const u8 *key, 756 unsigned int keylen) 757 { 758 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher); 759 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm); 760 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher); 761 int err; 762 763 err = verify_skcipher_des_key(skcipher, key); 764 if (err) 765 return err; 766 767 ctx->enc_type = n2alg->enc_type; 768 769 ctx->key_len = keylen; 770 memcpy(ctx->key.des, key, keylen); 771 return 0; 772 } 773 774 static int n2_3des_setkey(struct crypto_skcipher *skcipher, const u8 *key, 775 unsigned int keylen) 776 { 777 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher); 778 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm); 779 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher); 780 int err; 781 782 err = verify_skcipher_des3_key(skcipher, key); 783 if (err) 784 return err; 785 786 ctx->enc_type = n2alg->enc_type; 787 788 ctx->key_len = keylen; 789 memcpy(ctx->key.des3, key, keylen); 790 return 0; 791 } 792 793 static inline int skcipher_descriptor_len(int nbytes, unsigned int block_size) 794 { 795 int this_len = nbytes; 796 797 this_len -= (nbytes & (block_size - 1)); 798 return this_len > (1 << 16) ? (1 << 16) : this_len; 799 } 800 801 static int __n2_crypt_chunk(struct crypto_skcipher *skcipher, 802 struct n2_crypto_chunk *cp, 803 struct spu_queue *qp, bool encrypt) 804 { 805 struct n2_skcipher_context *ctx = crypto_skcipher_ctx(skcipher); 806 struct cwq_initial_entry *ent; 807 bool in_place; 808 int i; 809 810 ent = spu_queue_alloc(qp, cp->arr_len); 811 if (!ent) { 812 pr_info("queue_alloc() of %d fails\n", 813 cp->arr_len); 814 return -EBUSY; 815 } 816 817 in_place = (cp->dest_paddr == cp->arr[0].src_paddr); 818 819 ent->control = control_word_base(cp->arr[0].src_len, 820 0, ctx->enc_type, 0, 0, 821 false, true, false, encrypt, 822 OPCODE_ENCRYPT | 823 (in_place ? OPCODE_INPLACE_BIT : 0)); 824 ent->src_addr = cp->arr[0].src_paddr; 825 ent->auth_key_addr = 0UL; 826 ent->auth_iv_addr = 0UL; 827 ent->final_auth_state_addr = 0UL; 828 ent->enc_key_addr = __pa(&ctx->key); 829 ent->enc_iv_addr = cp->iv_paddr; 830 ent->dest_addr = (in_place ? 0UL : cp->dest_paddr); 831 832 for (i = 1; i < cp->arr_len; i++) { 833 ent = spu_queue_next(qp, ent); 834 835 ent->control = cp->arr[i].src_len - 1; 836 ent->src_addr = cp->arr[i].src_paddr; 837 ent->auth_key_addr = 0UL; 838 ent->auth_iv_addr = 0UL; 839 ent->final_auth_state_addr = 0UL; 840 ent->enc_key_addr = 0UL; 841 ent->enc_iv_addr = 0UL; 842 ent->dest_addr = 0UL; 843 } 844 ent->control |= CONTROL_END_OF_BLOCK; 845 846 return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0; 847 } 848 849 static int n2_compute_chunks(struct skcipher_request *req) 850 { 851 struct n2_request_context *rctx = skcipher_request_ctx(req); 852 struct skcipher_walk *walk = &rctx->walk; 853 struct n2_crypto_chunk *chunk; 854 unsigned long dest_prev; 855 unsigned int tot_len; 856 bool prev_in_place; 857 int err, nbytes; 858 859 err = skcipher_walk_async(walk, req); 860 if (err) 861 return err; 862 863 INIT_LIST_HEAD(&rctx->chunk_list); 864 865 chunk = &rctx->chunk; 866 INIT_LIST_HEAD(&chunk->entry); 867 868 chunk->iv_paddr = 0UL; 869 chunk->arr_len = 0; 870 chunk->dest_paddr = 0UL; 871 872 prev_in_place = false; 873 dest_prev = ~0UL; 874 tot_len = 0; 875 876 while ((nbytes = walk->nbytes) != 0) { 877 unsigned long dest_paddr, src_paddr; 878 bool in_place; 879 int this_len; 880 881 src_paddr = (page_to_phys(walk->src.phys.page) + 882 walk->src.phys.offset); 883 dest_paddr = (page_to_phys(walk->dst.phys.page) + 884 walk->dst.phys.offset); 885 in_place = (src_paddr == dest_paddr); 886 this_len = skcipher_descriptor_len(nbytes, walk->blocksize); 887 888 if (chunk->arr_len != 0) { 889 if (in_place != prev_in_place || 890 (!prev_in_place && 891 dest_paddr != dest_prev) || 892 chunk->arr_len == N2_CHUNK_ARR_LEN || 893 tot_len + this_len > (1 << 16)) { 894 chunk->dest_final = dest_prev; 895 list_add_tail(&chunk->entry, 896 &rctx->chunk_list); 897 chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC); 898 if (!chunk) { 899 err = -ENOMEM; 900 break; 901 } 902 INIT_LIST_HEAD(&chunk->entry); 903 } 904 } 905 if (chunk->arr_len == 0) { 906 chunk->dest_paddr = dest_paddr; 907 tot_len = 0; 908 } 909 chunk->arr[chunk->arr_len].src_paddr = src_paddr; 910 chunk->arr[chunk->arr_len].src_len = this_len; 911 chunk->arr_len++; 912 913 dest_prev = dest_paddr + this_len; 914 prev_in_place = in_place; 915 tot_len += this_len; 916 917 err = skcipher_walk_done(walk, nbytes - this_len); 918 if (err) 919 break; 920 } 921 if (!err && chunk->arr_len != 0) { 922 chunk->dest_final = dest_prev; 923 list_add_tail(&chunk->entry, &rctx->chunk_list); 924 } 925 926 return err; 927 } 928 929 static void n2_chunk_complete(struct skcipher_request *req, void *final_iv) 930 { 931 struct n2_request_context *rctx = skcipher_request_ctx(req); 932 struct n2_crypto_chunk *c, *tmp; 933 934 if (final_iv) 935 memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize); 936 937 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) { 938 list_del(&c->entry); 939 if (unlikely(c != &rctx->chunk)) 940 kfree(c); 941 } 942 943 } 944 945 static int n2_do_ecb(struct skcipher_request *req, bool encrypt) 946 { 947 struct n2_request_context *rctx = skcipher_request_ctx(req); 948 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 949 int err = n2_compute_chunks(req); 950 struct n2_crypto_chunk *c, *tmp; 951 unsigned long flags, hv_ret; 952 struct spu_queue *qp; 953 954 if (err) 955 return err; 956 957 qp = cpu_to_cwq[get_cpu()]; 958 err = -ENODEV; 959 if (!qp) 960 goto out; 961 962 spin_lock_irqsave(&qp->lock, flags); 963 964 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) { 965 err = __n2_crypt_chunk(tfm, c, qp, encrypt); 966 if (err) 967 break; 968 list_del(&c->entry); 969 if (unlikely(c != &rctx->chunk)) 970 kfree(c); 971 } 972 if (!err) { 973 hv_ret = wait_for_tail(qp); 974 if (hv_ret != HV_EOK) 975 err = -EINVAL; 976 } 977 978 spin_unlock_irqrestore(&qp->lock, flags); 979 980 out: 981 put_cpu(); 982 983 n2_chunk_complete(req, NULL); 984 return err; 985 } 986 987 static int n2_encrypt_ecb(struct skcipher_request *req) 988 { 989 return n2_do_ecb(req, true); 990 } 991 992 static int n2_decrypt_ecb(struct skcipher_request *req) 993 { 994 return n2_do_ecb(req, false); 995 } 996 997 static int n2_do_chaining(struct skcipher_request *req, bool encrypt) 998 { 999 struct n2_request_context *rctx = skcipher_request_ctx(req); 1000 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 1001 unsigned long flags, hv_ret, iv_paddr; 1002 int err = n2_compute_chunks(req); 1003 struct n2_crypto_chunk *c, *tmp; 1004 struct spu_queue *qp; 1005 void *final_iv_addr; 1006 1007 final_iv_addr = NULL; 1008 1009 if (err) 1010 return err; 1011 1012 qp = cpu_to_cwq[get_cpu()]; 1013 err = -ENODEV; 1014 if (!qp) 1015 goto out; 1016 1017 spin_lock_irqsave(&qp->lock, flags); 1018 1019 if (encrypt) { 1020 iv_paddr = __pa(rctx->walk.iv); 1021 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, 1022 entry) { 1023 c->iv_paddr = iv_paddr; 1024 err = __n2_crypt_chunk(tfm, c, qp, true); 1025 if (err) 1026 break; 1027 iv_paddr = c->dest_final - rctx->walk.blocksize; 1028 list_del(&c->entry); 1029 if (unlikely(c != &rctx->chunk)) 1030 kfree(c); 1031 } 1032 final_iv_addr = __va(iv_paddr); 1033 } else { 1034 list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list, 1035 entry) { 1036 if (c == &rctx->chunk) { 1037 iv_paddr = __pa(rctx->walk.iv); 1038 } else { 1039 iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr + 1040 tmp->arr[tmp->arr_len-1].src_len - 1041 rctx->walk.blocksize); 1042 } 1043 if (!final_iv_addr) { 1044 unsigned long pa; 1045 1046 pa = (c->arr[c->arr_len-1].src_paddr + 1047 c->arr[c->arr_len-1].src_len - 1048 rctx->walk.blocksize); 1049 final_iv_addr = rctx->temp_iv; 1050 memcpy(rctx->temp_iv, __va(pa), 1051 rctx->walk.blocksize); 1052 } 1053 c->iv_paddr = iv_paddr; 1054 err = __n2_crypt_chunk(tfm, c, qp, false); 1055 if (err) 1056 break; 1057 list_del(&c->entry); 1058 if (unlikely(c != &rctx->chunk)) 1059 kfree(c); 1060 } 1061 } 1062 if (!err) { 1063 hv_ret = wait_for_tail(qp); 1064 if (hv_ret != HV_EOK) 1065 err = -EINVAL; 1066 } 1067 1068 spin_unlock_irqrestore(&qp->lock, flags); 1069 1070 out: 1071 put_cpu(); 1072 1073 n2_chunk_complete(req, err ? NULL : final_iv_addr); 1074 return err; 1075 } 1076 1077 static int n2_encrypt_chaining(struct skcipher_request *req) 1078 { 1079 return n2_do_chaining(req, true); 1080 } 1081 1082 static int n2_decrypt_chaining(struct skcipher_request *req) 1083 { 1084 return n2_do_chaining(req, false); 1085 } 1086 1087 struct n2_skcipher_tmpl { 1088 const char *name; 1089 const char *drv_name; 1090 u8 block_size; 1091 u8 enc_type; 1092 struct skcipher_alg skcipher; 1093 }; 1094 1095 static const struct n2_skcipher_tmpl skcipher_tmpls[] = { 1096 /* DES: ECB CBC and CFB are supported */ 1097 { .name = "ecb(des)", 1098 .drv_name = "ecb-des", 1099 .block_size = DES_BLOCK_SIZE, 1100 .enc_type = (ENC_TYPE_ALG_DES | 1101 ENC_TYPE_CHAINING_ECB), 1102 .skcipher = { 1103 .min_keysize = DES_KEY_SIZE, 1104 .max_keysize = DES_KEY_SIZE, 1105 .setkey = n2_des_setkey, 1106 .encrypt = n2_encrypt_ecb, 1107 .decrypt = n2_decrypt_ecb, 1108 }, 1109 }, 1110 { .name = "cbc(des)", 1111 .drv_name = "cbc-des", 1112 .block_size = DES_BLOCK_SIZE, 1113 .enc_type = (ENC_TYPE_ALG_DES | 1114 ENC_TYPE_CHAINING_CBC), 1115 .skcipher = { 1116 .ivsize = DES_BLOCK_SIZE, 1117 .min_keysize = DES_KEY_SIZE, 1118 .max_keysize = DES_KEY_SIZE, 1119 .setkey = n2_des_setkey, 1120 .encrypt = n2_encrypt_chaining, 1121 .decrypt = n2_decrypt_chaining, 1122 }, 1123 }, 1124 { .name = "cfb(des)", 1125 .drv_name = "cfb-des", 1126 .block_size = DES_BLOCK_SIZE, 1127 .enc_type = (ENC_TYPE_ALG_DES | 1128 ENC_TYPE_CHAINING_CFB), 1129 .skcipher = { 1130 .min_keysize = DES_KEY_SIZE, 1131 .max_keysize = DES_KEY_SIZE, 1132 .setkey = n2_des_setkey, 1133 .encrypt = n2_encrypt_chaining, 1134 .decrypt = n2_decrypt_chaining, 1135 }, 1136 }, 1137 1138 /* 3DES: ECB CBC and CFB are supported */ 1139 { .name = "ecb(des3_ede)", 1140 .drv_name = "ecb-3des", 1141 .block_size = DES_BLOCK_SIZE, 1142 .enc_type = (ENC_TYPE_ALG_3DES | 1143 ENC_TYPE_CHAINING_ECB), 1144 .skcipher = { 1145 .min_keysize = 3 * DES_KEY_SIZE, 1146 .max_keysize = 3 * DES_KEY_SIZE, 1147 .setkey = n2_3des_setkey, 1148 .encrypt = n2_encrypt_ecb, 1149 .decrypt = n2_decrypt_ecb, 1150 }, 1151 }, 1152 { .name = "cbc(des3_ede)", 1153 .drv_name = "cbc-3des", 1154 .block_size = DES_BLOCK_SIZE, 1155 .enc_type = (ENC_TYPE_ALG_3DES | 1156 ENC_TYPE_CHAINING_CBC), 1157 .skcipher = { 1158 .ivsize = DES_BLOCK_SIZE, 1159 .min_keysize = 3 * DES_KEY_SIZE, 1160 .max_keysize = 3 * DES_KEY_SIZE, 1161 .setkey = n2_3des_setkey, 1162 .encrypt = n2_encrypt_chaining, 1163 .decrypt = n2_decrypt_chaining, 1164 }, 1165 }, 1166 { .name = "cfb(des3_ede)", 1167 .drv_name = "cfb-3des", 1168 .block_size = DES_BLOCK_SIZE, 1169 .enc_type = (ENC_TYPE_ALG_3DES | 1170 ENC_TYPE_CHAINING_CFB), 1171 .skcipher = { 1172 .min_keysize = 3 * DES_KEY_SIZE, 1173 .max_keysize = 3 * DES_KEY_SIZE, 1174 .setkey = n2_3des_setkey, 1175 .encrypt = n2_encrypt_chaining, 1176 .decrypt = n2_decrypt_chaining, 1177 }, 1178 }, 1179 /* AES: ECB CBC and CTR are supported */ 1180 { .name = "ecb(aes)", 1181 .drv_name = "ecb-aes", 1182 .block_size = AES_BLOCK_SIZE, 1183 .enc_type = (ENC_TYPE_ALG_AES128 | 1184 ENC_TYPE_CHAINING_ECB), 1185 .skcipher = { 1186 .min_keysize = AES_MIN_KEY_SIZE, 1187 .max_keysize = AES_MAX_KEY_SIZE, 1188 .setkey = n2_aes_setkey, 1189 .encrypt = n2_encrypt_ecb, 1190 .decrypt = n2_decrypt_ecb, 1191 }, 1192 }, 1193 { .name = "cbc(aes)", 1194 .drv_name = "cbc-aes", 1195 .block_size = AES_BLOCK_SIZE, 1196 .enc_type = (ENC_TYPE_ALG_AES128 | 1197 ENC_TYPE_CHAINING_CBC), 1198 .skcipher = { 1199 .ivsize = AES_BLOCK_SIZE, 1200 .min_keysize = AES_MIN_KEY_SIZE, 1201 .max_keysize = AES_MAX_KEY_SIZE, 1202 .setkey = n2_aes_setkey, 1203 .encrypt = n2_encrypt_chaining, 1204 .decrypt = n2_decrypt_chaining, 1205 }, 1206 }, 1207 { .name = "ctr(aes)", 1208 .drv_name = "ctr-aes", 1209 .block_size = AES_BLOCK_SIZE, 1210 .enc_type = (ENC_TYPE_ALG_AES128 | 1211 ENC_TYPE_CHAINING_COUNTER), 1212 .skcipher = { 1213 .ivsize = AES_BLOCK_SIZE, 1214 .min_keysize = AES_MIN_KEY_SIZE, 1215 .max_keysize = AES_MAX_KEY_SIZE, 1216 .setkey = n2_aes_setkey, 1217 .encrypt = n2_encrypt_chaining, 1218 .decrypt = n2_encrypt_chaining, 1219 }, 1220 }, 1221 1222 }; 1223 #define NUM_CIPHER_TMPLS ARRAY_SIZE(skcipher_tmpls) 1224 1225 static LIST_HEAD(skcipher_algs); 1226 1227 struct n2_hash_tmpl { 1228 const char *name; 1229 const u8 *hash_zero; 1230 const u8 *hash_init; 1231 u8 hw_op_hashsz; 1232 u8 digest_size; 1233 u8 statesize; 1234 u8 block_size; 1235 u8 auth_type; 1236 u8 hmac_type; 1237 }; 1238 1239 static const __le32 n2_md5_init[MD5_HASH_WORDS] = { 1240 cpu_to_le32(MD5_H0), 1241 cpu_to_le32(MD5_H1), 1242 cpu_to_le32(MD5_H2), 1243 cpu_to_le32(MD5_H3), 1244 }; 1245 static const u32 n2_sha1_init[SHA1_DIGEST_SIZE / 4] = { 1246 SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4, 1247 }; 1248 static const u32 n2_sha256_init[SHA256_DIGEST_SIZE / 4] = { 1249 SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3, 1250 SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7, 1251 }; 1252 static const u32 n2_sha224_init[SHA256_DIGEST_SIZE / 4] = { 1253 SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3, 1254 SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7, 1255 }; 1256 1257 static const struct n2_hash_tmpl hash_tmpls[] = { 1258 { .name = "md5", 1259 .hash_zero = md5_zero_message_hash, 1260 .hash_init = (u8 *)n2_md5_init, 1261 .auth_type = AUTH_TYPE_MD5, 1262 .hmac_type = AUTH_TYPE_HMAC_MD5, 1263 .hw_op_hashsz = MD5_DIGEST_SIZE, 1264 .digest_size = MD5_DIGEST_SIZE, 1265 .statesize = sizeof(struct md5_state), 1266 .block_size = MD5_HMAC_BLOCK_SIZE }, 1267 { .name = "sha1", 1268 .hash_zero = sha1_zero_message_hash, 1269 .hash_init = (u8 *)n2_sha1_init, 1270 .auth_type = AUTH_TYPE_SHA1, 1271 .hmac_type = AUTH_TYPE_HMAC_SHA1, 1272 .hw_op_hashsz = SHA1_DIGEST_SIZE, 1273 .digest_size = SHA1_DIGEST_SIZE, 1274 .statesize = sizeof(struct sha1_state), 1275 .block_size = SHA1_BLOCK_SIZE }, 1276 { .name = "sha256", 1277 .hash_zero = sha256_zero_message_hash, 1278 .hash_init = (u8 *)n2_sha256_init, 1279 .auth_type = AUTH_TYPE_SHA256, 1280 .hmac_type = AUTH_TYPE_HMAC_SHA256, 1281 .hw_op_hashsz = SHA256_DIGEST_SIZE, 1282 .digest_size = SHA256_DIGEST_SIZE, 1283 .statesize = sizeof(struct sha256_state), 1284 .block_size = SHA256_BLOCK_SIZE }, 1285 { .name = "sha224", 1286 .hash_zero = sha224_zero_message_hash, 1287 .hash_init = (u8 *)n2_sha224_init, 1288 .auth_type = AUTH_TYPE_SHA256, 1289 .hmac_type = AUTH_TYPE_RESERVED, 1290 .hw_op_hashsz = SHA256_DIGEST_SIZE, 1291 .digest_size = SHA224_DIGEST_SIZE, 1292 .statesize = sizeof(struct sha256_state), 1293 .block_size = SHA224_BLOCK_SIZE }, 1294 }; 1295 #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls) 1296 1297 static LIST_HEAD(ahash_algs); 1298 static LIST_HEAD(hmac_algs); 1299 1300 static int algs_registered; 1301 1302 static void __n2_unregister_algs(void) 1303 { 1304 struct n2_skcipher_alg *skcipher, *skcipher_tmp; 1305 struct n2_ahash_alg *alg, *alg_tmp; 1306 struct n2_hmac_alg *hmac, *hmac_tmp; 1307 1308 list_for_each_entry_safe(skcipher, skcipher_tmp, &skcipher_algs, entry) { 1309 crypto_unregister_skcipher(&skcipher->skcipher); 1310 list_del(&skcipher->entry); 1311 kfree(skcipher); 1312 } 1313 list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) { 1314 crypto_unregister_ahash(&hmac->derived.alg); 1315 list_del(&hmac->derived.entry); 1316 kfree(hmac); 1317 } 1318 list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) { 1319 crypto_unregister_ahash(&alg->alg); 1320 list_del(&alg->entry); 1321 kfree(alg); 1322 } 1323 } 1324 1325 static int n2_skcipher_init_tfm(struct crypto_skcipher *tfm) 1326 { 1327 crypto_skcipher_set_reqsize(tfm, sizeof(struct n2_request_context)); 1328 return 0; 1329 } 1330 1331 static int __n2_register_one_skcipher(const struct n2_skcipher_tmpl *tmpl) 1332 { 1333 struct n2_skcipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL); 1334 struct skcipher_alg *alg; 1335 int err; 1336 1337 if (!p) 1338 return -ENOMEM; 1339 1340 alg = &p->skcipher; 1341 *alg = tmpl->skcipher; 1342 1343 snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name); 1344 snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name); 1345 alg->base.cra_priority = N2_CRA_PRIORITY; 1346 alg->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC | 1347 CRYPTO_ALG_ALLOCATES_MEMORY; 1348 alg->base.cra_blocksize = tmpl->block_size; 1349 p->enc_type = tmpl->enc_type; 1350 alg->base.cra_ctxsize = sizeof(struct n2_skcipher_context); 1351 alg->base.cra_module = THIS_MODULE; 1352 alg->init = n2_skcipher_init_tfm; 1353 1354 list_add(&p->entry, &skcipher_algs); 1355 err = crypto_register_skcipher(alg); 1356 if (err) { 1357 pr_err("%s alg registration failed\n", alg->base.cra_name); 1358 list_del(&p->entry); 1359 kfree(p); 1360 } else { 1361 pr_info("%s alg registered\n", alg->base.cra_name); 1362 } 1363 return err; 1364 } 1365 1366 static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash) 1367 { 1368 struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL); 1369 struct ahash_alg *ahash; 1370 struct crypto_alg *base; 1371 int err; 1372 1373 if (!p) 1374 return -ENOMEM; 1375 1376 p->child_alg = n2ahash->alg.halg.base.cra_name; 1377 memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg)); 1378 INIT_LIST_HEAD(&p->derived.entry); 1379 1380 ahash = &p->derived.alg; 1381 ahash->digest = n2_hmac_async_digest; 1382 ahash->setkey = n2_hmac_async_setkey; 1383 1384 base = &ahash->halg.base; 1385 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg); 1386 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg); 1387 1388 base->cra_ctxsize = sizeof(struct n2_hmac_ctx); 1389 base->cra_init = n2_hmac_cra_init; 1390 base->cra_exit = n2_hmac_cra_exit; 1391 1392 list_add(&p->derived.entry, &hmac_algs); 1393 err = crypto_register_ahash(ahash); 1394 if (err) { 1395 pr_err("%s alg registration failed\n", base->cra_name); 1396 list_del(&p->derived.entry); 1397 kfree(p); 1398 } else { 1399 pr_info("%s alg registered\n", base->cra_name); 1400 } 1401 return err; 1402 } 1403 1404 static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl) 1405 { 1406 struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL); 1407 struct hash_alg_common *halg; 1408 struct crypto_alg *base; 1409 struct ahash_alg *ahash; 1410 int err; 1411 1412 if (!p) 1413 return -ENOMEM; 1414 1415 p->hash_zero = tmpl->hash_zero; 1416 p->hash_init = tmpl->hash_init; 1417 p->auth_type = tmpl->auth_type; 1418 p->hmac_type = tmpl->hmac_type; 1419 p->hw_op_hashsz = tmpl->hw_op_hashsz; 1420 p->digest_size = tmpl->digest_size; 1421 1422 ahash = &p->alg; 1423 ahash->init = n2_hash_async_init; 1424 ahash->update = n2_hash_async_update; 1425 ahash->final = n2_hash_async_final; 1426 ahash->finup = n2_hash_async_finup; 1427 ahash->digest = n2_hash_async_digest; 1428 ahash->export = n2_hash_async_noexport; 1429 ahash->import = n2_hash_async_noimport; 1430 1431 halg = &ahash->halg; 1432 halg->digestsize = tmpl->digest_size; 1433 halg->statesize = tmpl->statesize; 1434 1435 base = &halg->base; 1436 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name); 1437 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name); 1438 base->cra_priority = N2_CRA_PRIORITY; 1439 base->cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | 1440 CRYPTO_ALG_NEED_FALLBACK; 1441 base->cra_blocksize = tmpl->block_size; 1442 base->cra_ctxsize = sizeof(struct n2_hash_ctx); 1443 base->cra_module = THIS_MODULE; 1444 base->cra_init = n2_hash_cra_init; 1445 base->cra_exit = n2_hash_cra_exit; 1446 1447 list_add(&p->entry, &ahash_algs); 1448 err = crypto_register_ahash(ahash); 1449 if (err) { 1450 pr_err("%s alg registration failed\n", base->cra_name); 1451 list_del(&p->entry); 1452 kfree(p); 1453 } else { 1454 pr_info("%s alg registered\n", base->cra_name); 1455 } 1456 if (!err && p->hmac_type != AUTH_TYPE_RESERVED) 1457 err = __n2_register_one_hmac(p); 1458 return err; 1459 } 1460 1461 static int n2_register_algs(void) 1462 { 1463 int i, err = 0; 1464 1465 mutex_lock(&spu_lock); 1466 if (algs_registered++) 1467 goto out; 1468 1469 for (i = 0; i < NUM_HASH_TMPLS; i++) { 1470 err = __n2_register_one_ahash(&hash_tmpls[i]); 1471 if (err) { 1472 __n2_unregister_algs(); 1473 goto out; 1474 } 1475 } 1476 for (i = 0; i < NUM_CIPHER_TMPLS; i++) { 1477 err = __n2_register_one_skcipher(&skcipher_tmpls[i]); 1478 if (err) { 1479 __n2_unregister_algs(); 1480 goto out; 1481 } 1482 } 1483 1484 out: 1485 mutex_unlock(&spu_lock); 1486 return err; 1487 } 1488 1489 static void n2_unregister_algs(void) 1490 { 1491 mutex_lock(&spu_lock); 1492 if (!--algs_registered) 1493 __n2_unregister_algs(); 1494 mutex_unlock(&spu_lock); 1495 } 1496 1497 /* To map CWQ queues to interrupt sources, the hypervisor API provides 1498 * a devino. This isn't very useful to us because all of the 1499 * interrupts listed in the device_node have been translated to 1500 * Linux virtual IRQ cookie numbers. 1501 * 1502 * So we have to back-translate, going through the 'intr' and 'ino' 1503 * property tables of the n2cp MDESC node, matching it with the OF 1504 * 'interrupts' property entries, in order to figure out which 1505 * devino goes to which already-translated IRQ. 1506 */ 1507 static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip, 1508 unsigned long dev_ino) 1509 { 1510 const unsigned int *dev_intrs; 1511 unsigned int intr; 1512 int i; 1513 1514 for (i = 0; i < ip->num_intrs; i++) { 1515 if (ip->ino_table[i].ino == dev_ino) 1516 break; 1517 } 1518 if (i == ip->num_intrs) 1519 return -ENODEV; 1520 1521 intr = ip->ino_table[i].intr; 1522 1523 dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL); 1524 if (!dev_intrs) 1525 return -ENODEV; 1526 1527 for (i = 0; i < dev->archdata.num_irqs; i++) { 1528 if (dev_intrs[i] == intr) 1529 return i; 1530 } 1531 1532 return -ENODEV; 1533 } 1534 1535 static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip, 1536 const char *irq_name, struct spu_queue *p, 1537 irq_handler_t handler) 1538 { 1539 unsigned long herr; 1540 int index; 1541 1542 herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino); 1543 if (herr) 1544 return -EINVAL; 1545 1546 index = find_devino_index(dev, ip, p->devino); 1547 if (index < 0) 1548 return index; 1549 1550 p->irq = dev->archdata.irqs[index]; 1551 1552 sprintf(p->irq_name, "%s-%d", irq_name, index); 1553 1554 return request_irq(p->irq, handler, 0, p->irq_name, p); 1555 } 1556 1557 static struct kmem_cache *queue_cache[2]; 1558 1559 static void *new_queue(unsigned long q_type) 1560 { 1561 return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL); 1562 } 1563 1564 static void free_queue(void *p, unsigned long q_type) 1565 { 1566 kmem_cache_free(queue_cache[q_type - 1], p); 1567 } 1568 1569 static int queue_cache_init(void) 1570 { 1571 if (!queue_cache[HV_NCS_QTYPE_MAU - 1]) 1572 queue_cache[HV_NCS_QTYPE_MAU - 1] = 1573 kmem_cache_create("mau_queue", 1574 (MAU_NUM_ENTRIES * 1575 MAU_ENTRY_SIZE), 1576 MAU_ENTRY_SIZE, 0, NULL); 1577 if (!queue_cache[HV_NCS_QTYPE_MAU - 1]) 1578 return -ENOMEM; 1579 1580 if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) 1581 queue_cache[HV_NCS_QTYPE_CWQ - 1] = 1582 kmem_cache_create("cwq_queue", 1583 (CWQ_NUM_ENTRIES * 1584 CWQ_ENTRY_SIZE), 1585 CWQ_ENTRY_SIZE, 0, NULL); 1586 if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) { 1587 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]); 1588 queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL; 1589 return -ENOMEM; 1590 } 1591 return 0; 1592 } 1593 1594 static void queue_cache_destroy(void) 1595 { 1596 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]); 1597 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]); 1598 queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL; 1599 queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL; 1600 } 1601 1602 static long spu_queue_register_workfn(void *arg) 1603 { 1604 struct spu_qreg *qr = arg; 1605 struct spu_queue *p = qr->queue; 1606 unsigned long q_type = qr->type; 1607 unsigned long hv_ret; 1608 1609 hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q), 1610 CWQ_NUM_ENTRIES, &p->qhandle); 1611 if (!hv_ret) 1612 sun4v_ncs_sethead_marker(p->qhandle, 0); 1613 1614 return hv_ret ? -EINVAL : 0; 1615 } 1616 1617 static int spu_queue_register(struct spu_queue *p, unsigned long q_type) 1618 { 1619 int cpu = cpumask_any_and(&p->sharing, cpu_online_mask); 1620 struct spu_qreg qr = { .queue = p, .type = q_type }; 1621 1622 return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr); 1623 } 1624 1625 static int spu_queue_setup(struct spu_queue *p) 1626 { 1627 int err; 1628 1629 p->q = new_queue(p->q_type); 1630 if (!p->q) 1631 return -ENOMEM; 1632 1633 err = spu_queue_register(p, p->q_type); 1634 if (err) { 1635 free_queue(p->q, p->q_type); 1636 p->q = NULL; 1637 } 1638 1639 return err; 1640 } 1641 1642 static void spu_queue_destroy(struct spu_queue *p) 1643 { 1644 unsigned long hv_ret; 1645 1646 if (!p->q) 1647 return; 1648 1649 hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle); 1650 1651 if (!hv_ret) 1652 free_queue(p->q, p->q_type); 1653 } 1654 1655 static void spu_list_destroy(struct list_head *list) 1656 { 1657 struct spu_queue *p, *n; 1658 1659 list_for_each_entry_safe(p, n, list, list) { 1660 int i; 1661 1662 for (i = 0; i < NR_CPUS; i++) { 1663 if (cpu_to_cwq[i] == p) 1664 cpu_to_cwq[i] = NULL; 1665 } 1666 1667 if (p->irq) { 1668 free_irq(p->irq, p); 1669 p->irq = 0; 1670 } 1671 spu_queue_destroy(p); 1672 list_del(&p->list); 1673 kfree(p); 1674 } 1675 } 1676 1677 /* Walk the backward arcs of a CWQ 'exec-unit' node, 1678 * gathering cpu membership information. 1679 */ 1680 static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc, 1681 struct platform_device *dev, 1682 u64 node, struct spu_queue *p, 1683 struct spu_queue **table) 1684 { 1685 u64 arc; 1686 1687 mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) { 1688 u64 tgt = mdesc_arc_target(mdesc, arc); 1689 const char *name = mdesc_node_name(mdesc, tgt); 1690 const u64 *id; 1691 1692 if (strcmp(name, "cpu")) 1693 continue; 1694 id = mdesc_get_property(mdesc, tgt, "id", NULL); 1695 if (table[*id] != NULL) { 1696 dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n", 1697 dev->dev.of_node); 1698 return -EINVAL; 1699 } 1700 cpumask_set_cpu(*id, &p->sharing); 1701 table[*id] = p; 1702 } 1703 return 0; 1704 } 1705 1706 /* Process an 'exec-unit' MDESC node of type 'cwq'. */ 1707 static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list, 1708 struct platform_device *dev, struct mdesc_handle *mdesc, 1709 u64 node, const char *iname, unsigned long q_type, 1710 irq_handler_t handler, struct spu_queue **table) 1711 { 1712 struct spu_queue *p; 1713 int err; 1714 1715 p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL); 1716 if (!p) { 1717 dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n", 1718 dev->dev.of_node); 1719 return -ENOMEM; 1720 } 1721 1722 cpumask_clear(&p->sharing); 1723 spin_lock_init(&p->lock); 1724 p->q_type = q_type; 1725 INIT_LIST_HEAD(&p->jobs); 1726 list_add(&p->list, list); 1727 1728 err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table); 1729 if (err) 1730 return err; 1731 1732 err = spu_queue_setup(p); 1733 if (err) 1734 return err; 1735 1736 return spu_map_ino(dev, ip, iname, p, handler); 1737 } 1738 1739 static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev, 1740 struct spu_mdesc_info *ip, struct list_head *list, 1741 const char *exec_name, unsigned long q_type, 1742 irq_handler_t handler, struct spu_queue **table) 1743 { 1744 int err = 0; 1745 u64 node; 1746 1747 mdesc_for_each_node_by_name(mdesc, node, "exec-unit") { 1748 const char *type; 1749 1750 type = mdesc_get_property(mdesc, node, "type", NULL); 1751 if (!type || strcmp(type, exec_name)) 1752 continue; 1753 1754 err = handle_exec_unit(ip, list, dev, mdesc, node, 1755 exec_name, q_type, handler, table); 1756 if (err) { 1757 spu_list_destroy(list); 1758 break; 1759 } 1760 } 1761 1762 return err; 1763 } 1764 1765 static int get_irq_props(struct mdesc_handle *mdesc, u64 node, 1766 struct spu_mdesc_info *ip) 1767 { 1768 const u64 *ino; 1769 int ino_len; 1770 int i; 1771 1772 ino = mdesc_get_property(mdesc, node, "ino", &ino_len); 1773 if (!ino) { 1774 printk("NO 'ino'\n"); 1775 return -ENODEV; 1776 } 1777 1778 ip->num_intrs = ino_len / sizeof(u64); 1779 ip->ino_table = kzalloc((sizeof(struct ino_blob) * 1780 ip->num_intrs), 1781 GFP_KERNEL); 1782 if (!ip->ino_table) 1783 return -ENOMEM; 1784 1785 for (i = 0; i < ip->num_intrs; i++) { 1786 struct ino_blob *b = &ip->ino_table[i]; 1787 b->intr = i + 1; 1788 b->ino = ino[i]; 1789 } 1790 1791 return 0; 1792 } 1793 1794 static int grab_mdesc_irq_props(struct mdesc_handle *mdesc, 1795 struct platform_device *dev, 1796 struct spu_mdesc_info *ip, 1797 const char *node_name) 1798 { 1799 u64 node, reg; 1800 1801 if (of_property_read_reg(dev->dev.of_node, 0, ®, NULL) < 0) 1802 return -ENODEV; 1803 1804 mdesc_for_each_node_by_name(mdesc, node, "virtual-device") { 1805 const char *name; 1806 const u64 *chdl; 1807 1808 name = mdesc_get_property(mdesc, node, "name", NULL); 1809 if (!name || strcmp(name, node_name)) 1810 continue; 1811 chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL); 1812 if (!chdl || (*chdl != reg)) 1813 continue; 1814 ip->cfg_handle = *chdl; 1815 return get_irq_props(mdesc, node, ip); 1816 } 1817 1818 return -ENODEV; 1819 } 1820 1821 static unsigned long n2_spu_hvapi_major; 1822 static unsigned long n2_spu_hvapi_minor; 1823 1824 static int n2_spu_hvapi_register(void) 1825 { 1826 int err; 1827 1828 n2_spu_hvapi_major = 2; 1829 n2_spu_hvapi_minor = 0; 1830 1831 err = sun4v_hvapi_register(HV_GRP_NCS, 1832 n2_spu_hvapi_major, 1833 &n2_spu_hvapi_minor); 1834 1835 if (!err) 1836 pr_info("Registered NCS HVAPI version %lu.%lu\n", 1837 n2_spu_hvapi_major, 1838 n2_spu_hvapi_minor); 1839 1840 return err; 1841 } 1842 1843 static void n2_spu_hvapi_unregister(void) 1844 { 1845 sun4v_hvapi_unregister(HV_GRP_NCS); 1846 } 1847 1848 static int global_ref; 1849 1850 static int grab_global_resources(void) 1851 { 1852 int err = 0; 1853 1854 mutex_lock(&spu_lock); 1855 1856 if (global_ref++) 1857 goto out; 1858 1859 err = n2_spu_hvapi_register(); 1860 if (err) 1861 goto out; 1862 1863 err = queue_cache_init(); 1864 if (err) 1865 goto out_hvapi_release; 1866 1867 err = -ENOMEM; 1868 cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *), 1869 GFP_KERNEL); 1870 if (!cpu_to_cwq) 1871 goto out_queue_cache_destroy; 1872 1873 cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *), 1874 GFP_KERNEL); 1875 if (!cpu_to_mau) 1876 goto out_free_cwq_table; 1877 1878 err = 0; 1879 1880 out: 1881 if (err) 1882 global_ref--; 1883 mutex_unlock(&spu_lock); 1884 return err; 1885 1886 out_free_cwq_table: 1887 kfree(cpu_to_cwq); 1888 cpu_to_cwq = NULL; 1889 1890 out_queue_cache_destroy: 1891 queue_cache_destroy(); 1892 1893 out_hvapi_release: 1894 n2_spu_hvapi_unregister(); 1895 goto out; 1896 } 1897 1898 static void release_global_resources(void) 1899 { 1900 mutex_lock(&spu_lock); 1901 if (!--global_ref) { 1902 kfree(cpu_to_cwq); 1903 cpu_to_cwq = NULL; 1904 1905 kfree(cpu_to_mau); 1906 cpu_to_mau = NULL; 1907 1908 queue_cache_destroy(); 1909 n2_spu_hvapi_unregister(); 1910 } 1911 mutex_unlock(&spu_lock); 1912 } 1913 1914 static struct n2_crypto *alloc_n2cp(void) 1915 { 1916 struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL); 1917 1918 if (np) 1919 INIT_LIST_HEAD(&np->cwq_list); 1920 1921 return np; 1922 } 1923 1924 static void free_n2cp(struct n2_crypto *np) 1925 { 1926 kfree(np->cwq_info.ino_table); 1927 np->cwq_info.ino_table = NULL; 1928 1929 kfree(np); 1930 } 1931 1932 static void n2_spu_driver_version(void) 1933 { 1934 static int n2_spu_version_printed; 1935 1936 if (n2_spu_version_printed++ == 0) 1937 pr_info("%s", version); 1938 } 1939 1940 static int n2_crypto_probe(struct platform_device *dev) 1941 { 1942 struct mdesc_handle *mdesc; 1943 struct n2_crypto *np; 1944 int err; 1945 1946 n2_spu_driver_version(); 1947 1948 pr_info("Found N2CP at %pOF\n", dev->dev.of_node); 1949 1950 np = alloc_n2cp(); 1951 if (!np) { 1952 dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n", 1953 dev->dev.of_node); 1954 return -ENOMEM; 1955 } 1956 1957 err = grab_global_resources(); 1958 if (err) { 1959 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n", 1960 dev->dev.of_node); 1961 goto out_free_n2cp; 1962 } 1963 1964 mdesc = mdesc_grab(); 1965 1966 if (!mdesc) { 1967 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n", 1968 dev->dev.of_node); 1969 err = -ENODEV; 1970 goto out_free_global; 1971 } 1972 err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp"); 1973 if (err) { 1974 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n", 1975 dev->dev.of_node); 1976 mdesc_release(mdesc); 1977 goto out_free_global; 1978 } 1979 1980 err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list, 1981 "cwq", HV_NCS_QTYPE_CWQ, cwq_intr, 1982 cpu_to_cwq); 1983 mdesc_release(mdesc); 1984 1985 if (err) { 1986 dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n", 1987 dev->dev.of_node); 1988 goto out_free_global; 1989 } 1990 1991 err = n2_register_algs(); 1992 if (err) { 1993 dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n", 1994 dev->dev.of_node); 1995 goto out_free_spu_list; 1996 } 1997 1998 dev_set_drvdata(&dev->dev, np); 1999 2000 return 0; 2001 2002 out_free_spu_list: 2003 spu_list_destroy(&np->cwq_list); 2004 2005 out_free_global: 2006 release_global_resources(); 2007 2008 out_free_n2cp: 2009 free_n2cp(np); 2010 2011 return err; 2012 } 2013 2014 static int n2_crypto_remove(struct platform_device *dev) 2015 { 2016 struct n2_crypto *np = dev_get_drvdata(&dev->dev); 2017 2018 n2_unregister_algs(); 2019 2020 spu_list_destroy(&np->cwq_list); 2021 2022 release_global_resources(); 2023 2024 free_n2cp(np); 2025 2026 return 0; 2027 } 2028 2029 static struct n2_mau *alloc_ncp(void) 2030 { 2031 struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL); 2032 2033 if (mp) 2034 INIT_LIST_HEAD(&mp->mau_list); 2035 2036 return mp; 2037 } 2038 2039 static void free_ncp(struct n2_mau *mp) 2040 { 2041 kfree(mp->mau_info.ino_table); 2042 mp->mau_info.ino_table = NULL; 2043 2044 kfree(mp); 2045 } 2046 2047 static int n2_mau_probe(struct platform_device *dev) 2048 { 2049 struct mdesc_handle *mdesc; 2050 struct n2_mau *mp; 2051 int err; 2052 2053 n2_spu_driver_version(); 2054 2055 pr_info("Found NCP at %pOF\n", dev->dev.of_node); 2056 2057 mp = alloc_ncp(); 2058 if (!mp) { 2059 dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n", 2060 dev->dev.of_node); 2061 return -ENOMEM; 2062 } 2063 2064 err = grab_global_resources(); 2065 if (err) { 2066 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n", 2067 dev->dev.of_node); 2068 goto out_free_ncp; 2069 } 2070 2071 mdesc = mdesc_grab(); 2072 2073 if (!mdesc) { 2074 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n", 2075 dev->dev.of_node); 2076 err = -ENODEV; 2077 goto out_free_global; 2078 } 2079 2080 err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp"); 2081 if (err) { 2082 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n", 2083 dev->dev.of_node); 2084 mdesc_release(mdesc); 2085 goto out_free_global; 2086 } 2087 2088 err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list, 2089 "mau", HV_NCS_QTYPE_MAU, mau_intr, 2090 cpu_to_mau); 2091 mdesc_release(mdesc); 2092 2093 if (err) { 2094 dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n", 2095 dev->dev.of_node); 2096 goto out_free_global; 2097 } 2098 2099 dev_set_drvdata(&dev->dev, mp); 2100 2101 return 0; 2102 2103 out_free_global: 2104 release_global_resources(); 2105 2106 out_free_ncp: 2107 free_ncp(mp); 2108 2109 return err; 2110 } 2111 2112 static int n2_mau_remove(struct platform_device *dev) 2113 { 2114 struct n2_mau *mp = dev_get_drvdata(&dev->dev); 2115 2116 spu_list_destroy(&mp->mau_list); 2117 2118 release_global_resources(); 2119 2120 free_ncp(mp); 2121 2122 return 0; 2123 } 2124 2125 static const struct of_device_id n2_crypto_match[] = { 2126 { 2127 .name = "n2cp", 2128 .compatible = "SUNW,n2-cwq", 2129 }, 2130 { 2131 .name = "n2cp", 2132 .compatible = "SUNW,vf-cwq", 2133 }, 2134 { 2135 .name = "n2cp", 2136 .compatible = "SUNW,kt-cwq", 2137 }, 2138 {}, 2139 }; 2140 2141 MODULE_DEVICE_TABLE(of, n2_crypto_match); 2142 2143 static struct platform_driver n2_crypto_driver = { 2144 .driver = { 2145 .name = "n2cp", 2146 .of_match_table = n2_crypto_match, 2147 }, 2148 .probe = n2_crypto_probe, 2149 .remove = n2_crypto_remove, 2150 }; 2151 2152 static const struct of_device_id n2_mau_match[] = { 2153 { 2154 .name = "ncp", 2155 .compatible = "SUNW,n2-mau", 2156 }, 2157 { 2158 .name = "ncp", 2159 .compatible = "SUNW,vf-mau", 2160 }, 2161 { 2162 .name = "ncp", 2163 .compatible = "SUNW,kt-mau", 2164 }, 2165 {}, 2166 }; 2167 2168 MODULE_DEVICE_TABLE(of, n2_mau_match); 2169 2170 static struct platform_driver n2_mau_driver = { 2171 .driver = { 2172 .name = "ncp", 2173 .of_match_table = n2_mau_match, 2174 }, 2175 .probe = n2_mau_probe, 2176 .remove = n2_mau_remove, 2177 }; 2178 2179 static struct platform_driver * const drivers[] = { 2180 &n2_crypto_driver, 2181 &n2_mau_driver, 2182 }; 2183 2184 static int __init n2_init(void) 2185 { 2186 return platform_register_drivers(drivers, ARRAY_SIZE(drivers)); 2187 } 2188 2189 static void __exit n2_exit(void) 2190 { 2191 platform_unregister_drivers(drivers, ARRAY_SIZE(drivers)); 2192 } 2193 2194 module_init(n2_init); 2195 module_exit(n2_exit); 2196