xref: /linux/drivers/crypto/mxs-dcp.c (revision 364eeb79a213fcf9164208b53764223ad522d6b3)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Freescale i.MX23/i.MX28 Data Co-Processor driver
4  *
5  * Copyright (C) 2013 Marek Vasut <marex@denx.de>
6  */
7 
8 #include <linux/dma-mapping.h>
9 #include <linux/interrupt.h>
10 #include <linux/io.h>
11 #include <linux/kernel.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/platform_device.h>
16 #include <linux/stmp_device.h>
17 #include <linux/clk.h>
18 #include <soc/fsl/dcp.h>
19 
20 #include <crypto/aes.h>
21 #include <crypto/sha1.h>
22 #include <crypto/sha2.h>
23 #include <crypto/internal/hash.h>
24 #include <crypto/internal/skcipher.h>
25 #include <crypto/scatterwalk.h>
26 
27 #define DCP_MAX_CHANS	4
28 #define DCP_BUF_SZ	PAGE_SIZE
29 #define DCP_SHA_PAY_SZ  64
30 
31 #define DCP_ALIGNMENT	64
32 
33 /*
34  * Null hashes to align with hw behavior on imx6sl and ull
35  * these are flipped for consistency with hw output
36  */
37 static const uint8_t sha1_null_hash[] =
38 	"\x09\x07\xd8\xaf\x90\x18\x60\x95\xef\xbf"
39 	"\x55\x32\x0d\x4b\x6b\x5e\xee\xa3\x39\xda";
40 
41 static const uint8_t sha256_null_hash[] =
42 	"\x55\xb8\x52\x78\x1b\x99\x95\xa4"
43 	"\x4c\x93\x9b\x64\xe4\x41\xae\x27"
44 	"\x24\xb9\x6f\x99\xc8\xf4\xfb\x9a"
45 	"\x14\x1c\xfc\x98\x42\xc4\xb0\xe3";
46 
47 /* DCP DMA descriptor. */
48 struct dcp_dma_desc {
49 	uint32_t	next_cmd_addr;
50 	uint32_t	control0;
51 	uint32_t	control1;
52 	uint32_t	source;
53 	uint32_t	destination;
54 	uint32_t	size;
55 	uint32_t	payload;
56 	uint32_t	status;
57 };
58 
59 /* Coherent aligned block for bounce buffering. */
60 struct dcp_coherent_block {
61 	uint8_t			aes_in_buf[DCP_BUF_SZ];
62 	uint8_t			aes_out_buf[DCP_BUF_SZ];
63 	uint8_t			sha_in_buf[DCP_BUF_SZ];
64 	uint8_t			sha_out_buf[DCP_SHA_PAY_SZ];
65 
66 	uint8_t			aes_key[2 * AES_KEYSIZE_128];
67 
68 	struct dcp_dma_desc	desc[DCP_MAX_CHANS];
69 };
70 
71 struct dcp {
72 	struct device			*dev;
73 	void __iomem			*base;
74 
75 	uint32_t			caps;
76 
77 	struct dcp_coherent_block	*coh;
78 
79 	struct completion		completion[DCP_MAX_CHANS];
80 	spinlock_t			lock[DCP_MAX_CHANS];
81 	struct task_struct		*thread[DCP_MAX_CHANS];
82 	struct crypto_queue		queue[DCP_MAX_CHANS];
83 	struct clk			*dcp_clk;
84 };
85 
86 enum dcp_chan {
87 	DCP_CHAN_HASH_SHA	= 0,
88 	DCP_CHAN_CRYPTO		= 2,
89 };
90 
91 struct dcp_async_ctx {
92 	/* Common context */
93 	enum dcp_chan	chan;
94 	uint32_t	fill;
95 
96 	/* SHA Hash-specific context */
97 	struct mutex			mutex;
98 	uint32_t			alg;
99 	unsigned int			hot:1;
100 
101 	/* Crypto-specific context */
102 	struct crypto_skcipher		*fallback;
103 	unsigned int			key_len;
104 	uint8_t				key[AES_KEYSIZE_128];
105 	bool				key_referenced;
106 };
107 
108 struct dcp_aes_req_ctx {
109 	unsigned int	enc:1;
110 	unsigned int	ecb:1;
111 	struct skcipher_request fallback_req;	// keep at the end
112 };
113 
114 struct dcp_sha_req_ctx {
115 	unsigned int	init:1;
116 	unsigned int	fini:1;
117 };
118 
119 struct dcp_export_state {
120 	struct dcp_sha_req_ctx req_ctx;
121 	struct dcp_async_ctx async_ctx;
122 };
123 
124 /*
125  * There can even be only one instance of the MXS DCP due to the
126  * design of Linux Crypto API.
127  */
128 static struct dcp *global_sdcp;
129 
130 /* DCP register layout. */
131 #define MXS_DCP_CTRL				0x00
132 #define MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES	(1 << 23)
133 #define MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING	(1 << 22)
134 
135 #define MXS_DCP_STAT				0x10
136 #define MXS_DCP_STAT_CLR			0x18
137 #define MXS_DCP_STAT_IRQ_MASK			0xf
138 
139 #define MXS_DCP_CHANNELCTRL			0x20
140 #define MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK	0xff
141 
142 #define MXS_DCP_CAPABILITY1			0x40
143 #define MXS_DCP_CAPABILITY1_SHA256		(4 << 16)
144 #define MXS_DCP_CAPABILITY1_SHA1		(1 << 16)
145 #define MXS_DCP_CAPABILITY1_AES128		(1 << 0)
146 
147 #define MXS_DCP_CONTEXT				0x50
148 
149 #define MXS_DCP_CH_N_CMDPTR(n)			(0x100 + ((n) * 0x40))
150 
151 #define MXS_DCP_CH_N_SEMA(n)			(0x110 + ((n) * 0x40))
152 
153 #define MXS_DCP_CH_N_STAT(n)			(0x120 + ((n) * 0x40))
154 #define MXS_DCP_CH_N_STAT_CLR(n)		(0x128 + ((n) * 0x40))
155 
156 /* DMA descriptor bits. */
157 #define MXS_DCP_CONTROL0_HASH_TERM		(1 << 13)
158 #define MXS_DCP_CONTROL0_HASH_INIT		(1 << 12)
159 #define MXS_DCP_CONTROL0_PAYLOAD_KEY		(1 << 11)
160 #define MXS_DCP_CONTROL0_OTP_KEY		(1 << 10)
161 #define MXS_DCP_CONTROL0_CIPHER_ENCRYPT		(1 << 8)
162 #define MXS_DCP_CONTROL0_CIPHER_INIT		(1 << 9)
163 #define MXS_DCP_CONTROL0_ENABLE_HASH		(1 << 6)
164 #define MXS_DCP_CONTROL0_ENABLE_CIPHER		(1 << 5)
165 #define MXS_DCP_CONTROL0_DECR_SEMAPHORE		(1 << 1)
166 #define MXS_DCP_CONTROL0_INTERRUPT		(1 << 0)
167 
168 #define MXS_DCP_CONTROL1_HASH_SELECT_SHA256	(2 << 16)
169 #define MXS_DCP_CONTROL1_HASH_SELECT_SHA1	(0 << 16)
170 #define MXS_DCP_CONTROL1_CIPHER_MODE_CBC	(1 << 4)
171 #define MXS_DCP_CONTROL1_CIPHER_MODE_ECB	(0 << 4)
172 #define MXS_DCP_CONTROL1_CIPHER_SELECT_AES128	(0 << 0)
173 
174 #define MXS_DCP_CONTROL1_KEY_SELECT_SHIFT	8
175 
176 static int mxs_dcp_start_dma(struct dcp_async_ctx *actx)
177 {
178 	int dma_err;
179 	struct dcp *sdcp = global_sdcp;
180 	const int chan = actx->chan;
181 	uint32_t stat;
182 	unsigned long ret;
183 	struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
184 	dma_addr_t desc_phys = dma_map_single(sdcp->dev, desc, sizeof(*desc),
185 					      DMA_TO_DEVICE);
186 
187 	dma_err = dma_mapping_error(sdcp->dev, desc_phys);
188 	if (dma_err)
189 		return dma_err;
190 
191 	reinit_completion(&sdcp->completion[chan]);
192 
193 	/* Clear status register. */
194 	writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(chan));
195 
196 	/* Load the DMA descriptor. */
197 	writel(desc_phys, sdcp->base + MXS_DCP_CH_N_CMDPTR(chan));
198 
199 	/* Increment the semaphore to start the DMA transfer. */
200 	writel(1, sdcp->base + MXS_DCP_CH_N_SEMA(chan));
201 
202 	ret = wait_for_completion_timeout(&sdcp->completion[chan],
203 					  msecs_to_jiffies(1000));
204 	if (!ret) {
205 		dev_err(sdcp->dev, "Channel %i timeout (DCP_STAT=0x%08x)\n",
206 			chan, readl(sdcp->base + MXS_DCP_STAT));
207 		return -ETIMEDOUT;
208 	}
209 
210 	stat = readl(sdcp->base + MXS_DCP_CH_N_STAT(chan));
211 	if (stat & 0xff) {
212 		dev_err(sdcp->dev, "Channel %i error (CH_STAT=0x%08x)\n",
213 			chan, stat);
214 		return -EINVAL;
215 	}
216 
217 	dma_unmap_single(sdcp->dev, desc_phys, sizeof(*desc), DMA_TO_DEVICE);
218 
219 	return 0;
220 }
221 
222 /*
223  * Encryption (AES128)
224  */
225 static int mxs_dcp_run_aes(struct dcp_async_ctx *actx,
226 			   struct skcipher_request *req, int init)
227 {
228 	dma_addr_t key_phys, src_phys, dst_phys;
229 	struct dcp *sdcp = global_sdcp;
230 	struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
231 	struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
232 	bool key_referenced = actx->key_referenced;
233 	int ret;
234 
235 	if (key_referenced)
236 		key_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_key + AES_KEYSIZE_128,
237 					  AES_KEYSIZE_128, DMA_TO_DEVICE);
238 	else
239 		key_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_key,
240 					  2 * AES_KEYSIZE_128, DMA_TO_DEVICE);
241 	ret = dma_mapping_error(sdcp->dev, key_phys);
242 	if (ret)
243 		return ret;
244 
245 	src_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_in_buf,
246 				  DCP_BUF_SZ, DMA_TO_DEVICE);
247 	ret = dma_mapping_error(sdcp->dev, src_phys);
248 	if (ret)
249 		goto err_src;
250 
251 	dst_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_out_buf,
252 				  DCP_BUF_SZ, DMA_FROM_DEVICE);
253 	ret = dma_mapping_error(sdcp->dev, dst_phys);
254 	if (ret)
255 		goto err_dst;
256 
257 	if (actx->fill % AES_BLOCK_SIZE) {
258 		dev_err(sdcp->dev, "Invalid block size!\n");
259 		ret = -EINVAL;
260 		goto aes_done_run;
261 	}
262 
263 	/* Fill in the DMA descriptor. */
264 	desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
265 		    MXS_DCP_CONTROL0_INTERRUPT |
266 		    MXS_DCP_CONTROL0_ENABLE_CIPHER;
267 
268 	if (key_referenced)
269 		/* Set OTP key bit to select the key via KEY_SELECT. */
270 		desc->control0 |= MXS_DCP_CONTROL0_OTP_KEY;
271 	else
272 		/* Payload contains the key. */
273 		desc->control0 |= MXS_DCP_CONTROL0_PAYLOAD_KEY;
274 
275 	if (rctx->enc)
276 		desc->control0 |= MXS_DCP_CONTROL0_CIPHER_ENCRYPT;
277 	if (init)
278 		desc->control0 |= MXS_DCP_CONTROL0_CIPHER_INIT;
279 
280 	desc->control1 = MXS_DCP_CONTROL1_CIPHER_SELECT_AES128;
281 
282 	if (rctx->ecb)
283 		desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_ECB;
284 	else
285 		desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_CBC;
286 
287 	if (key_referenced)
288 		desc->control1 |= sdcp->coh->aes_key[0] << MXS_DCP_CONTROL1_KEY_SELECT_SHIFT;
289 
290 	desc->next_cmd_addr = 0;
291 	desc->source = src_phys;
292 	desc->destination = dst_phys;
293 	desc->size = actx->fill;
294 	desc->payload = key_phys;
295 	desc->status = 0;
296 
297 	ret = mxs_dcp_start_dma(actx);
298 
299 aes_done_run:
300 	dma_unmap_single(sdcp->dev, dst_phys, DCP_BUF_SZ, DMA_FROM_DEVICE);
301 err_dst:
302 	dma_unmap_single(sdcp->dev, src_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
303 err_src:
304 	if (key_referenced)
305 		dma_unmap_single(sdcp->dev, key_phys, AES_KEYSIZE_128,
306 				 DMA_TO_DEVICE);
307 	else
308 		dma_unmap_single(sdcp->dev, key_phys, 2 * AES_KEYSIZE_128,
309 				 DMA_TO_DEVICE);
310 	return ret;
311 }
312 
313 static int mxs_dcp_aes_block_crypt(struct crypto_async_request *arq)
314 {
315 	struct dcp *sdcp = global_sdcp;
316 
317 	struct skcipher_request *req = skcipher_request_cast(arq);
318 	struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
319 	struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
320 
321 	struct scatterlist *dst = req->dst;
322 	struct scatterlist *src = req->src;
323 	int dst_nents = sg_nents(dst);
324 
325 	const int out_off = DCP_BUF_SZ;
326 	uint8_t *in_buf = sdcp->coh->aes_in_buf;
327 	uint8_t *out_buf = sdcp->coh->aes_out_buf;
328 
329 	uint32_t dst_off = 0;
330 	uint8_t *src_buf = NULL;
331 	uint32_t last_out_len = 0;
332 
333 	uint8_t *key = sdcp->coh->aes_key;
334 
335 	int ret = 0;
336 	unsigned int i, len, clen, tlen = 0;
337 	int init = 0;
338 	bool limit_hit = false;
339 
340 	actx->fill = 0;
341 
342 	/* Copy the key from the temporary location. */
343 	memcpy(key, actx->key, actx->key_len);
344 
345 	if (!rctx->ecb) {
346 		/* Copy the CBC IV just past the key. */
347 		memcpy(key + AES_KEYSIZE_128, req->iv, AES_KEYSIZE_128);
348 		/* CBC needs the INIT set. */
349 		init = 1;
350 	} else {
351 		memset(key + AES_KEYSIZE_128, 0, AES_KEYSIZE_128);
352 	}
353 
354 	for_each_sg(req->src, src, sg_nents(req->src), i) {
355 		src_buf = sg_virt(src);
356 		len = sg_dma_len(src);
357 		tlen += len;
358 		limit_hit = tlen > req->cryptlen;
359 
360 		if (limit_hit)
361 			len = req->cryptlen - (tlen - len);
362 
363 		do {
364 			if (actx->fill + len > out_off)
365 				clen = out_off - actx->fill;
366 			else
367 				clen = len;
368 
369 			memcpy(in_buf + actx->fill, src_buf, clen);
370 			len -= clen;
371 			src_buf += clen;
372 			actx->fill += clen;
373 
374 			/*
375 			 * If we filled the buffer or this is the last SG,
376 			 * submit the buffer.
377 			 */
378 			if (actx->fill == out_off || sg_is_last(src) ||
379 			    limit_hit) {
380 				ret = mxs_dcp_run_aes(actx, req, init);
381 				if (ret)
382 					return ret;
383 				init = 0;
384 
385 				sg_pcopy_from_buffer(dst, dst_nents, out_buf,
386 						     actx->fill, dst_off);
387 				dst_off += actx->fill;
388 				last_out_len = actx->fill;
389 				actx->fill = 0;
390 			}
391 		} while (len);
392 
393 		if (limit_hit)
394 			break;
395 	}
396 
397 	/* Copy the IV for CBC for chaining */
398 	if (!rctx->ecb) {
399 		if (rctx->enc)
400 			memcpy(req->iv, out_buf+(last_out_len-AES_BLOCK_SIZE),
401 				AES_BLOCK_SIZE);
402 		else
403 			memcpy(req->iv, in_buf+(last_out_len-AES_BLOCK_SIZE),
404 				AES_BLOCK_SIZE);
405 	}
406 
407 	return ret;
408 }
409 
410 static int dcp_chan_thread_aes(void *data)
411 {
412 	struct dcp *sdcp = global_sdcp;
413 	const int chan = DCP_CHAN_CRYPTO;
414 
415 	struct crypto_async_request *backlog;
416 	struct crypto_async_request *arq;
417 
418 	int ret;
419 
420 	while (!kthread_should_stop()) {
421 		set_current_state(TASK_INTERRUPTIBLE);
422 
423 		spin_lock(&sdcp->lock[chan]);
424 		backlog = crypto_get_backlog(&sdcp->queue[chan]);
425 		arq = crypto_dequeue_request(&sdcp->queue[chan]);
426 		spin_unlock(&sdcp->lock[chan]);
427 
428 		if (!backlog && !arq) {
429 			schedule();
430 			continue;
431 		}
432 
433 		set_current_state(TASK_RUNNING);
434 
435 		if (backlog)
436 			crypto_request_complete(backlog, -EINPROGRESS);
437 
438 		if (arq) {
439 			ret = mxs_dcp_aes_block_crypt(arq);
440 			crypto_request_complete(arq, ret);
441 		}
442 	}
443 
444 	return 0;
445 }
446 
447 static int mxs_dcp_block_fallback(struct skcipher_request *req, int enc)
448 {
449 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
450 	struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
451 	struct dcp_async_ctx *ctx = crypto_skcipher_ctx(tfm);
452 	int ret;
453 
454 	skcipher_request_set_tfm(&rctx->fallback_req, ctx->fallback);
455 	skcipher_request_set_callback(&rctx->fallback_req, req->base.flags,
456 				      req->base.complete, req->base.data);
457 	skcipher_request_set_crypt(&rctx->fallback_req, req->src, req->dst,
458 				   req->cryptlen, req->iv);
459 
460 	if (enc)
461 		ret = crypto_skcipher_encrypt(&rctx->fallback_req);
462 	else
463 		ret = crypto_skcipher_decrypt(&rctx->fallback_req);
464 
465 	return ret;
466 }
467 
468 static int mxs_dcp_aes_enqueue(struct skcipher_request *req, int enc, int ecb)
469 {
470 	struct dcp *sdcp = global_sdcp;
471 	struct crypto_async_request *arq = &req->base;
472 	struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
473 	struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
474 	int ret;
475 
476 	if (unlikely(actx->key_len != AES_KEYSIZE_128 && !actx->key_referenced))
477 		return mxs_dcp_block_fallback(req, enc);
478 
479 	rctx->enc = enc;
480 	rctx->ecb = ecb;
481 	actx->chan = DCP_CHAN_CRYPTO;
482 
483 	spin_lock(&sdcp->lock[actx->chan]);
484 	ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
485 	spin_unlock(&sdcp->lock[actx->chan]);
486 
487 	wake_up_process(sdcp->thread[actx->chan]);
488 
489 	return ret;
490 }
491 
492 static int mxs_dcp_aes_ecb_decrypt(struct skcipher_request *req)
493 {
494 	return mxs_dcp_aes_enqueue(req, 0, 1);
495 }
496 
497 static int mxs_dcp_aes_ecb_encrypt(struct skcipher_request *req)
498 {
499 	return mxs_dcp_aes_enqueue(req, 1, 1);
500 }
501 
502 static int mxs_dcp_aes_cbc_decrypt(struct skcipher_request *req)
503 {
504 	return mxs_dcp_aes_enqueue(req, 0, 0);
505 }
506 
507 static int mxs_dcp_aes_cbc_encrypt(struct skcipher_request *req)
508 {
509 	return mxs_dcp_aes_enqueue(req, 1, 0);
510 }
511 
512 static int mxs_dcp_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
513 			      unsigned int len)
514 {
515 	struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
516 
517 	/*
518 	 * AES 128 is supposed by the hardware, store key into temporary
519 	 * buffer and exit. We must use the temporary buffer here, since
520 	 * there can still be an operation in progress.
521 	 */
522 	actx->key_len = len;
523 	actx->key_referenced = false;
524 	if (len == AES_KEYSIZE_128) {
525 		memcpy(actx->key, key, len);
526 		return 0;
527 	}
528 
529 	/*
530 	 * If the requested AES key size is not supported by the hardware,
531 	 * but is supported by in-kernel software implementation, we use
532 	 * software fallback.
533 	 */
534 	crypto_skcipher_clear_flags(actx->fallback, CRYPTO_TFM_REQ_MASK);
535 	crypto_skcipher_set_flags(actx->fallback,
536 				  tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
537 	return crypto_skcipher_setkey(actx->fallback, key, len);
538 }
539 
540 static int mxs_dcp_aes_setrefkey(struct crypto_skcipher *tfm, const u8 *key,
541 				 unsigned int len)
542 {
543 	struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
544 
545 	if (len != DCP_PAES_KEYSIZE)
546 		return -EINVAL;
547 
548 	switch (key[0]) {
549 	case DCP_PAES_KEY_SLOT0:
550 	case DCP_PAES_KEY_SLOT1:
551 	case DCP_PAES_KEY_SLOT2:
552 	case DCP_PAES_KEY_SLOT3:
553 	case DCP_PAES_KEY_UNIQUE:
554 	case DCP_PAES_KEY_OTP:
555 		memcpy(actx->key, key, len);
556 		actx->key_len = len;
557 		actx->key_referenced = true;
558 		break;
559 	default:
560 		return -EINVAL;
561 	}
562 
563 	return 0;
564 }
565 
566 static int mxs_dcp_aes_fallback_init_tfm(struct crypto_skcipher *tfm)
567 {
568 	const char *name = crypto_tfm_alg_name(crypto_skcipher_tfm(tfm));
569 	struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
570 	struct crypto_skcipher *blk;
571 
572 	blk = crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK);
573 	if (IS_ERR(blk))
574 		return PTR_ERR(blk);
575 
576 	actx->fallback = blk;
577 	crypto_skcipher_set_reqsize(tfm, sizeof(struct dcp_aes_req_ctx) +
578 					 crypto_skcipher_reqsize(blk));
579 	return 0;
580 }
581 
582 static void mxs_dcp_aes_fallback_exit_tfm(struct crypto_skcipher *tfm)
583 {
584 	struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
585 
586 	crypto_free_skcipher(actx->fallback);
587 }
588 
589 static int mxs_dcp_paes_init_tfm(struct crypto_skcipher *tfm)
590 {
591 	crypto_skcipher_set_reqsize(tfm, sizeof(struct dcp_aes_req_ctx));
592 
593 	return 0;
594 }
595 
596 /*
597  * Hashing (SHA1/SHA256)
598  */
599 static int mxs_dcp_run_sha(struct ahash_request *req)
600 {
601 	struct dcp *sdcp = global_sdcp;
602 	int ret;
603 
604 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
605 	struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
606 	struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
607 	struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
608 
609 	dma_addr_t digest_phys = 0;
610 	dma_addr_t buf_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_in_buf,
611 					     DCP_BUF_SZ, DMA_TO_DEVICE);
612 
613 	ret = dma_mapping_error(sdcp->dev, buf_phys);
614 	if (ret)
615 		return ret;
616 
617 	/* Fill in the DMA descriptor. */
618 	desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
619 		    MXS_DCP_CONTROL0_INTERRUPT |
620 		    MXS_DCP_CONTROL0_ENABLE_HASH;
621 	if (rctx->init)
622 		desc->control0 |= MXS_DCP_CONTROL0_HASH_INIT;
623 
624 	desc->control1 = actx->alg;
625 	desc->next_cmd_addr = 0;
626 	desc->source = buf_phys;
627 	desc->destination = 0;
628 	desc->size = actx->fill;
629 	desc->payload = 0;
630 	desc->status = 0;
631 
632 	/*
633 	 * Align driver with hw behavior when generating null hashes
634 	 */
635 	if (rctx->init && rctx->fini && desc->size == 0) {
636 		struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
637 		const uint8_t *sha_buf =
638 			(actx->alg == MXS_DCP_CONTROL1_HASH_SELECT_SHA1) ?
639 			sha1_null_hash : sha256_null_hash;
640 		memcpy(sdcp->coh->sha_out_buf, sha_buf, halg->digestsize);
641 		ret = 0;
642 		goto done_run;
643 	}
644 
645 	/* Set HASH_TERM bit for last transfer block. */
646 	if (rctx->fini) {
647 		digest_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_out_buf,
648 					     DCP_SHA_PAY_SZ, DMA_FROM_DEVICE);
649 		ret = dma_mapping_error(sdcp->dev, digest_phys);
650 		if (ret)
651 			goto done_run;
652 
653 		desc->control0 |= MXS_DCP_CONTROL0_HASH_TERM;
654 		desc->payload = digest_phys;
655 	}
656 
657 	ret = mxs_dcp_start_dma(actx);
658 
659 	if (rctx->fini)
660 		dma_unmap_single(sdcp->dev, digest_phys, DCP_SHA_PAY_SZ,
661 				 DMA_FROM_DEVICE);
662 
663 done_run:
664 	dma_unmap_single(sdcp->dev, buf_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
665 
666 	return ret;
667 }
668 
669 static int dcp_sha_req_to_buf(struct crypto_async_request *arq)
670 {
671 	struct dcp *sdcp = global_sdcp;
672 
673 	struct ahash_request *req = ahash_request_cast(arq);
674 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
675 	struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
676 	struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
677 	struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
678 
679 	uint8_t *in_buf = sdcp->coh->sha_in_buf;
680 	uint8_t *out_buf = sdcp->coh->sha_out_buf;
681 
682 	struct scatterlist *src;
683 
684 	unsigned int i, len, clen, oft = 0;
685 	int ret;
686 
687 	int fin = rctx->fini;
688 	if (fin)
689 		rctx->fini = 0;
690 
691 	src = req->src;
692 	len = req->nbytes;
693 
694 	while (len) {
695 		if (actx->fill + len > DCP_BUF_SZ)
696 			clen = DCP_BUF_SZ - actx->fill;
697 		else
698 			clen = len;
699 
700 		scatterwalk_map_and_copy(in_buf + actx->fill, src, oft, clen,
701 					 0);
702 
703 		len -= clen;
704 		oft += clen;
705 		actx->fill += clen;
706 
707 		/*
708 		 * If we filled the buffer and still have some
709 		 * more data, submit the buffer.
710 		 */
711 		if (len && actx->fill == DCP_BUF_SZ) {
712 			ret = mxs_dcp_run_sha(req);
713 			if (ret)
714 				return ret;
715 			actx->fill = 0;
716 			rctx->init = 0;
717 		}
718 	}
719 
720 	if (fin) {
721 		rctx->fini = 1;
722 
723 		/* Submit whatever is left. */
724 		if (!req->result)
725 			return -EINVAL;
726 
727 		ret = mxs_dcp_run_sha(req);
728 		if (ret)
729 			return ret;
730 
731 		actx->fill = 0;
732 
733 		/* For some reason the result is flipped */
734 		for (i = 0; i < halg->digestsize; i++)
735 			req->result[i] = out_buf[halg->digestsize - i - 1];
736 	}
737 
738 	return 0;
739 }
740 
741 static int dcp_chan_thread_sha(void *data)
742 {
743 	struct dcp *sdcp = global_sdcp;
744 	const int chan = DCP_CHAN_HASH_SHA;
745 
746 	struct crypto_async_request *backlog;
747 	struct crypto_async_request *arq;
748 	int ret;
749 
750 	while (!kthread_should_stop()) {
751 		set_current_state(TASK_INTERRUPTIBLE);
752 
753 		spin_lock(&sdcp->lock[chan]);
754 		backlog = crypto_get_backlog(&sdcp->queue[chan]);
755 		arq = crypto_dequeue_request(&sdcp->queue[chan]);
756 		spin_unlock(&sdcp->lock[chan]);
757 
758 		if (!backlog && !arq) {
759 			schedule();
760 			continue;
761 		}
762 
763 		set_current_state(TASK_RUNNING);
764 
765 		if (backlog)
766 			crypto_request_complete(backlog, -EINPROGRESS);
767 
768 		if (arq) {
769 			ret = dcp_sha_req_to_buf(arq);
770 			crypto_request_complete(arq, ret);
771 		}
772 	}
773 
774 	return 0;
775 }
776 
777 static int dcp_sha_init(struct ahash_request *req)
778 {
779 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
780 	struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
781 
782 	struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
783 
784 	/*
785 	 * Start hashing session. The code below only inits the
786 	 * hashing session context, nothing more.
787 	 */
788 	memset(actx, 0, sizeof(*actx));
789 
790 	if (strcmp(halg->base.cra_name, "sha1") == 0)
791 		actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA1;
792 	else
793 		actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA256;
794 
795 	actx->fill = 0;
796 	actx->hot = 0;
797 	actx->chan = DCP_CHAN_HASH_SHA;
798 
799 	mutex_init(&actx->mutex);
800 
801 	return 0;
802 }
803 
804 static int dcp_sha_update_fx(struct ahash_request *req, int fini)
805 {
806 	struct dcp *sdcp = global_sdcp;
807 
808 	struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
809 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
810 	struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
811 
812 	int ret;
813 
814 	/*
815 	 * Ignore requests that have no data in them and are not
816 	 * the trailing requests in the stream of requests.
817 	 */
818 	if (!req->nbytes && !fini)
819 		return 0;
820 
821 	mutex_lock(&actx->mutex);
822 
823 	rctx->fini = fini;
824 
825 	if (!actx->hot) {
826 		actx->hot = 1;
827 		rctx->init = 1;
828 	}
829 
830 	spin_lock(&sdcp->lock[actx->chan]);
831 	ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
832 	spin_unlock(&sdcp->lock[actx->chan]);
833 
834 	wake_up_process(sdcp->thread[actx->chan]);
835 	mutex_unlock(&actx->mutex);
836 
837 	return ret;
838 }
839 
840 static int dcp_sha_update(struct ahash_request *req)
841 {
842 	return dcp_sha_update_fx(req, 0);
843 }
844 
845 static int dcp_sha_final(struct ahash_request *req)
846 {
847 	ahash_request_set_crypt(req, NULL, req->result, 0);
848 	req->nbytes = 0;
849 	return dcp_sha_update_fx(req, 1);
850 }
851 
852 static int dcp_sha_finup(struct ahash_request *req)
853 {
854 	return dcp_sha_update_fx(req, 1);
855 }
856 
857 static int dcp_sha_digest(struct ahash_request *req)
858 {
859 	int ret;
860 
861 	ret = dcp_sha_init(req);
862 	if (ret)
863 		return ret;
864 
865 	return dcp_sha_finup(req);
866 }
867 
868 static int dcp_sha_import(struct ahash_request *req, const void *in)
869 {
870 	struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
871 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
872 	struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
873 	const struct dcp_export_state *export = in;
874 
875 	memset(rctx, 0, sizeof(struct dcp_sha_req_ctx));
876 	memset(actx, 0, sizeof(struct dcp_async_ctx));
877 	memcpy(rctx, &export->req_ctx, sizeof(struct dcp_sha_req_ctx));
878 	memcpy(actx, &export->async_ctx, sizeof(struct dcp_async_ctx));
879 
880 	return 0;
881 }
882 
883 static int dcp_sha_export(struct ahash_request *req, void *out)
884 {
885 	struct dcp_sha_req_ctx *rctx_state = ahash_request_ctx(req);
886 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
887 	struct dcp_async_ctx *actx_state = crypto_ahash_ctx(tfm);
888 	struct dcp_export_state *export = out;
889 
890 	memcpy(&export->req_ctx, rctx_state, sizeof(struct dcp_sha_req_ctx));
891 	memcpy(&export->async_ctx, actx_state, sizeof(struct dcp_async_ctx));
892 
893 	return 0;
894 }
895 
896 static int dcp_sha_cra_init(struct crypto_tfm *tfm)
897 {
898 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
899 				 sizeof(struct dcp_sha_req_ctx));
900 	return 0;
901 }
902 
903 static void dcp_sha_cra_exit(struct crypto_tfm *tfm)
904 {
905 }
906 
907 /* AES 128 ECB and AES 128 CBC */
908 static struct skcipher_alg dcp_aes_algs[] = {
909 	{
910 		.base.cra_name		= "ecb(aes)",
911 		.base.cra_driver_name	= "ecb-aes-dcp",
912 		.base.cra_priority	= 400,
913 		.base.cra_alignmask	= 15,
914 		.base.cra_flags		= CRYPTO_ALG_ASYNC |
915 					  CRYPTO_ALG_NEED_FALLBACK,
916 		.base.cra_blocksize	= AES_BLOCK_SIZE,
917 		.base.cra_ctxsize	= sizeof(struct dcp_async_ctx),
918 		.base.cra_module	= THIS_MODULE,
919 
920 		.min_keysize		= AES_MIN_KEY_SIZE,
921 		.max_keysize		= AES_MAX_KEY_SIZE,
922 		.setkey			= mxs_dcp_aes_setkey,
923 		.encrypt		= mxs_dcp_aes_ecb_encrypt,
924 		.decrypt		= mxs_dcp_aes_ecb_decrypt,
925 		.init			= mxs_dcp_aes_fallback_init_tfm,
926 		.exit			= mxs_dcp_aes_fallback_exit_tfm,
927 	}, {
928 		.base.cra_name		= "cbc(aes)",
929 		.base.cra_driver_name	= "cbc-aes-dcp",
930 		.base.cra_priority	= 400,
931 		.base.cra_alignmask	= 15,
932 		.base.cra_flags		= CRYPTO_ALG_ASYNC |
933 					  CRYPTO_ALG_NEED_FALLBACK,
934 		.base.cra_blocksize	= AES_BLOCK_SIZE,
935 		.base.cra_ctxsize	= sizeof(struct dcp_async_ctx),
936 		.base.cra_module	= THIS_MODULE,
937 
938 		.min_keysize		= AES_MIN_KEY_SIZE,
939 		.max_keysize		= AES_MAX_KEY_SIZE,
940 		.setkey			= mxs_dcp_aes_setkey,
941 		.encrypt		= mxs_dcp_aes_cbc_encrypt,
942 		.decrypt		= mxs_dcp_aes_cbc_decrypt,
943 		.ivsize			= AES_BLOCK_SIZE,
944 		.init			= mxs_dcp_aes_fallback_init_tfm,
945 		.exit			= mxs_dcp_aes_fallback_exit_tfm,
946 	}, {
947 		.base.cra_name		= "ecb(paes)",
948 		.base.cra_driver_name	= "ecb-paes-dcp",
949 		.base.cra_priority	= 401,
950 		.base.cra_alignmask	= 15,
951 		.base.cra_flags		= CRYPTO_ALG_ASYNC | CRYPTO_ALG_INTERNAL,
952 		.base.cra_blocksize	= AES_BLOCK_SIZE,
953 		.base.cra_ctxsize	= sizeof(struct dcp_async_ctx),
954 		.base.cra_module	= THIS_MODULE,
955 
956 		.min_keysize		= DCP_PAES_KEYSIZE,
957 		.max_keysize		= DCP_PAES_KEYSIZE,
958 		.setkey			= mxs_dcp_aes_setrefkey,
959 		.encrypt		= mxs_dcp_aes_ecb_encrypt,
960 		.decrypt		= mxs_dcp_aes_ecb_decrypt,
961 		.init			= mxs_dcp_paes_init_tfm,
962 	}, {
963 		.base.cra_name		= "cbc(paes)",
964 		.base.cra_driver_name	= "cbc-paes-dcp",
965 		.base.cra_priority	= 401,
966 		.base.cra_alignmask	= 15,
967 		.base.cra_flags		= CRYPTO_ALG_ASYNC | CRYPTO_ALG_INTERNAL,
968 		.base.cra_blocksize	= AES_BLOCK_SIZE,
969 		.base.cra_ctxsize	= sizeof(struct dcp_async_ctx),
970 		.base.cra_module	= THIS_MODULE,
971 
972 		.min_keysize		= DCP_PAES_KEYSIZE,
973 		.max_keysize		= DCP_PAES_KEYSIZE,
974 		.setkey			= mxs_dcp_aes_setrefkey,
975 		.encrypt		= mxs_dcp_aes_cbc_encrypt,
976 		.decrypt		= mxs_dcp_aes_cbc_decrypt,
977 		.ivsize			= AES_BLOCK_SIZE,
978 		.init			= mxs_dcp_paes_init_tfm,
979 	},
980 };
981 
982 /* SHA1 */
983 static struct ahash_alg dcp_sha1_alg = {
984 	.init	= dcp_sha_init,
985 	.update	= dcp_sha_update,
986 	.final	= dcp_sha_final,
987 	.finup	= dcp_sha_finup,
988 	.digest	= dcp_sha_digest,
989 	.import = dcp_sha_import,
990 	.export = dcp_sha_export,
991 	.halg	= {
992 		.digestsize	= SHA1_DIGEST_SIZE,
993 		.statesize	= sizeof(struct dcp_export_state),
994 		.base		= {
995 			.cra_name		= "sha1",
996 			.cra_driver_name	= "sha1-dcp",
997 			.cra_priority		= 400,
998 			.cra_flags		= CRYPTO_ALG_ASYNC,
999 			.cra_blocksize		= SHA1_BLOCK_SIZE,
1000 			.cra_ctxsize		= sizeof(struct dcp_async_ctx),
1001 			.cra_module		= THIS_MODULE,
1002 			.cra_init		= dcp_sha_cra_init,
1003 			.cra_exit		= dcp_sha_cra_exit,
1004 		},
1005 	},
1006 };
1007 
1008 /* SHA256 */
1009 static struct ahash_alg dcp_sha256_alg = {
1010 	.init	= dcp_sha_init,
1011 	.update	= dcp_sha_update,
1012 	.final	= dcp_sha_final,
1013 	.finup	= dcp_sha_finup,
1014 	.digest	= dcp_sha_digest,
1015 	.import = dcp_sha_import,
1016 	.export = dcp_sha_export,
1017 	.halg	= {
1018 		.digestsize	= SHA256_DIGEST_SIZE,
1019 		.statesize	= sizeof(struct dcp_export_state),
1020 		.base		= {
1021 			.cra_name		= "sha256",
1022 			.cra_driver_name	= "sha256-dcp",
1023 			.cra_priority		= 400,
1024 			.cra_flags		= CRYPTO_ALG_ASYNC,
1025 			.cra_blocksize		= SHA256_BLOCK_SIZE,
1026 			.cra_ctxsize		= sizeof(struct dcp_async_ctx),
1027 			.cra_module		= THIS_MODULE,
1028 			.cra_init		= dcp_sha_cra_init,
1029 			.cra_exit		= dcp_sha_cra_exit,
1030 		},
1031 	},
1032 };
1033 
1034 static irqreturn_t mxs_dcp_irq(int irq, void *context)
1035 {
1036 	struct dcp *sdcp = context;
1037 	uint32_t stat;
1038 	int i;
1039 
1040 	stat = readl(sdcp->base + MXS_DCP_STAT);
1041 	stat &= MXS_DCP_STAT_IRQ_MASK;
1042 	if (!stat)
1043 		return IRQ_NONE;
1044 
1045 	/* Clear the interrupts. */
1046 	writel(stat, sdcp->base + MXS_DCP_STAT_CLR);
1047 
1048 	/* Complete the DMA requests that finished. */
1049 	for (i = 0; i < DCP_MAX_CHANS; i++)
1050 		if (stat & (1 << i))
1051 			complete(&sdcp->completion[i]);
1052 
1053 	return IRQ_HANDLED;
1054 }
1055 
1056 static int mxs_dcp_probe(struct platform_device *pdev)
1057 {
1058 	struct device *dev = &pdev->dev;
1059 	struct dcp *sdcp = NULL;
1060 	int i, ret;
1061 	int dcp_vmi_irq, dcp_irq;
1062 
1063 	if (global_sdcp) {
1064 		dev_err(dev, "Only one DCP instance allowed!\n");
1065 		return -ENODEV;
1066 	}
1067 
1068 	dcp_vmi_irq = platform_get_irq(pdev, 0);
1069 	if (dcp_vmi_irq < 0)
1070 		return dcp_vmi_irq;
1071 
1072 	dcp_irq = platform_get_irq(pdev, 1);
1073 	if (dcp_irq < 0)
1074 		return dcp_irq;
1075 
1076 	sdcp = devm_kzalloc(dev, sizeof(*sdcp), GFP_KERNEL);
1077 	if (!sdcp)
1078 		return -ENOMEM;
1079 
1080 	sdcp->dev = dev;
1081 	sdcp->base = devm_platform_ioremap_resource(pdev, 0);
1082 	if (IS_ERR(sdcp->base))
1083 		return PTR_ERR(sdcp->base);
1084 
1085 
1086 	ret = devm_request_irq(dev, dcp_vmi_irq, mxs_dcp_irq, 0,
1087 			       "dcp-vmi-irq", sdcp);
1088 	if (ret) {
1089 		dev_err(dev, "Failed to claim DCP VMI IRQ!\n");
1090 		return ret;
1091 	}
1092 
1093 	ret = devm_request_irq(dev, dcp_irq, mxs_dcp_irq, 0,
1094 			       "dcp-irq", sdcp);
1095 	if (ret) {
1096 		dev_err(dev, "Failed to claim DCP IRQ!\n");
1097 		return ret;
1098 	}
1099 
1100 	/* Allocate coherent helper block. */
1101 	sdcp->coh = devm_kzalloc(dev, sizeof(*sdcp->coh) + DCP_ALIGNMENT,
1102 				   GFP_KERNEL);
1103 	if (!sdcp->coh)
1104 		return -ENOMEM;
1105 
1106 	/* Re-align the structure so it fits the DCP constraints. */
1107 	sdcp->coh = PTR_ALIGN(sdcp->coh, DCP_ALIGNMENT);
1108 
1109 	/* DCP clock is optional, only used on some SOCs */
1110 	sdcp->dcp_clk = devm_clk_get_optional_enabled(dev, "dcp");
1111 	if (IS_ERR(sdcp->dcp_clk))
1112 		return PTR_ERR(sdcp->dcp_clk);
1113 
1114 	/* Restart the DCP block. */
1115 	ret = stmp_reset_block(sdcp->base);
1116 	if (ret) {
1117 		dev_err(dev, "Failed reset\n");
1118 		return ret;
1119 	}
1120 
1121 	/* Initialize control register. */
1122 	writel(MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES |
1123 	       MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING | 0xf,
1124 	       sdcp->base + MXS_DCP_CTRL);
1125 
1126 	/* Enable all DCP DMA channels. */
1127 	writel(MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK,
1128 	       sdcp->base + MXS_DCP_CHANNELCTRL);
1129 
1130 	/*
1131 	 * We do not enable context switching. Give the context buffer a
1132 	 * pointer to an illegal address so if context switching is
1133 	 * inadvertantly enabled, the DCP will return an error instead of
1134 	 * trashing good memory. The DCP DMA cannot access ROM, so any ROM
1135 	 * address will do.
1136 	 */
1137 	writel(0xffff0000, sdcp->base + MXS_DCP_CONTEXT);
1138 	for (i = 0; i < DCP_MAX_CHANS; i++)
1139 		writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(i));
1140 	writel(0xffffffff, sdcp->base + MXS_DCP_STAT_CLR);
1141 
1142 	global_sdcp = sdcp;
1143 
1144 	platform_set_drvdata(pdev, sdcp);
1145 
1146 	for (i = 0; i < DCP_MAX_CHANS; i++) {
1147 		spin_lock_init(&sdcp->lock[i]);
1148 		init_completion(&sdcp->completion[i]);
1149 		crypto_init_queue(&sdcp->queue[i], 50);
1150 	}
1151 
1152 	/* Create the SHA and AES handler threads. */
1153 	sdcp->thread[DCP_CHAN_HASH_SHA] = kthread_run(dcp_chan_thread_sha,
1154 						      NULL, "mxs_dcp_chan/sha");
1155 	if (IS_ERR(sdcp->thread[DCP_CHAN_HASH_SHA])) {
1156 		dev_err(dev, "Error starting SHA thread!\n");
1157 		ret = PTR_ERR(sdcp->thread[DCP_CHAN_HASH_SHA]);
1158 		return ret;
1159 	}
1160 
1161 	sdcp->thread[DCP_CHAN_CRYPTO] = kthread_run(dcp_chan_thread_aes,
1162 						    NULL, "mxs_dcp_chan/aes");
1163 	if (IS_ERR(sdcp->thread[DCP_CHAN_CRYPTO])) {
1164 		dev_err(dev, "Error starting SHA thread!\n");
1165 		ret = PTR_ERR(sdcp->thread[DCP_CHAN_CRYPTO]);
1166 		goto err_destroy_sha_thread;
1167 	}
1168 
1169 	/* Register the various crypto algorithms. */
1170 	sdcp->caps = readl(sdcp->base + MXS_DCP_CAPABILITY1);
1171 
1172 	if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128) {
1173 		ret = crypto_register_skciphers(dcp_aes_algs,
1174 						ARRAY_SIZE(dcp_aes_algs));
1175 		if (ret) {
1176 			/* Failed to register algorithm. */
1177 			dev_err(dev, "Failed to register AES crypto!\n");
1178 			goto err_destroy_aes_thread;
1179 		}
1180 	}
1181 
1182 	if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1) {
1183 		ret = crypto_register_ahash(&dcp_sha1_alg);
1184 		if (ret) {
1185 			dev_err(dev, "Failed to register %s hash!\n",
1186 				dcp_sha1_alg.halg.base.cra_name);
1187 			goto err_unregister_aes;
1188 		}
1189 	}
1190 
1191 	if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256) {
1192 		ret = crypto_register_ahash(&dcp_sha256_alg);
1193 		if (ret) {
1194 			dev_err(dev, "Failed to register %s hash!\n",
1195 				dcp_sha256_alg.halg.base.cra_name);
1196 			goto err_unregister_sha1;
1197 		}
1198 	}
1199 
1200 	return 0;
1201 
1202 err_unregister_sha1:
1203 	if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1204 		crypto_unregister_ahash(&dcp_sha1_alg);
1205 
1206 err_unregister_aes:
1207 	if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1208 		crypto_unregister_skciphers(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1209 
1210 err_destroy_aes_thread:
1211 	kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1212 
1213 err_destroy_sha_thread:
1214 	kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1215 
1216 	return ret;
1217 }
1218 
1219 static void mxs_dcp_remove(struct platform_device *pdev)
1220 {
1221 	struct dcp *sdcp = platform_get_drvdata(pdev);
1222 
1223 	if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256)
1224 		crypto_unregister_ahash(&dcp_sha256_alg);
1225 
1226 	if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1227 		crypto_unregister_ahash(&dcp_sha1_alg);
1228 
1229 	if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1230 		crypto_unregister_skciphers(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1231 
1232 	kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1233 	kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1234 
1235 	platform_set_drvdata(pdev, NULL);
1236 
1237 	global_sdcp = NULL;
1238 }
1239 
1240 static const struct of_device_id mxs_dcp_dt_ids[] = {
1241 	{ .compatible = "fsl,imx23-dcp", .data = NULL, },
1242 	{ .compatible = "fsl,imx28-dcp", .data = NULL, },
1243 	{ /* sentinel */ }
1244 };
1245 
1246 MODULE_DEVICE_TABLE(of, mxs_dcp_dt_ids);
1247 
1248 static struct platform_driver mxs_dcp_driver = {
1249 	.probe	= mxs_dcp_probe,
1250 	.remove = mxs_dcp_remove,
1251 	.driver	= {
1252 		.name		= "mxs-dcp",
1253 		.of_match_table	= mxs_dcp_dt_ids,
1254 	},
1255 };
1256 
1257 module_platform_driver(mxs_dcp_driver);
1258 
1259 MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
1260 MODULE_DESCRIPTION("Freescale MXS DCP Driver");
1261 MODULE_LICENSE("GPL");
1262 MODULE_ALIAS("platform:mxs-dcp");
1263