xref: /linux/drivers/crypto/marvell/octeontx2/otx2_cptvf_reqmgr.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (C) 2020 Marvell. */
3 
4 #include "otx2_cptvf.h"
5 #include "otx2_cpt_common.h"
6 
7 /* Default timeout when waiting for free pending entry in us */
8 #define CPT_PENTRY_TIMEOUT	1000
9 #define CPT_PENTRY_STEP		50
10 
11 /* Default threshold for stopping and resuming sender requests */
12 #define CPT_IQ_STOP_MARGIN	128
13 #define CPT_IQ_RESUME_MARGIN	512
14 
15 /* Default command timeout in seconds */
16 #define CPT_COMMAND_TIMEOUT	4
17 #define CPT_TIME_IN_RESET_COUNT 5
18 
19 static void otx2_cpt_dump_sg_list(struct pci_dev *pdev,
20 				  struct otx2_cpt_req_info *req)
21 {
22 	int i;
23 
24 	pr_debug("Gather list size %d\n", req->in_cnt);
25 	for (i = 0; i < req->in_cnt; i++) {
26 		pr_debug("Buffer %d size %d, vptr 0x%p, dmaptr 0x%llx\n", i,
27 			 req->in[i].size, req->in[i].vptr,
28 			 req->in[i].dma_addr);
29 		pr_debug("Buffer hexdump (%d bytes)\n",
30 			 req->in[i].size);
31 		print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1,
32 				     req->in[i].vptr, req->in[i].size, false);
33 	}
34 	pr_debug("Scatter list size %d\n", req->out_cnt);
35 	for (i = 0; i < req->out_cnt; i++) {
36 		pr_debug("Buffer %d size %d, vptr 0x%p, dmaptr 0x%llx\n", i,
37 			 req->out[i].size, req->out[i].vptr,
38 			 req->out[i].dma_addr);
39 		pr_debug("Buffer hexdump (%d bytes)\n", req->out[i].size);
40 		print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1,
41 				     req->out[i].vptr, req->out[i].size, false);
42 	}
43 }
44 
45 static inline struct otx2_cpt_pending_entry *get_free_pending_entry(
46 					struct otx2_cpt_pending_queue *q,
47 					int qlen)
48 {
49 	struct otx2_cpt_pending_entry *ent = NULL;
50 
51 	ent = &q->head[q->rear];
52 	if (unlikely(ent->busy))
53 		return NULL;
54 
55 	q->rear++;
56 	if (unlikely(q->rear == qlen))
57 		q->rear = 0;
58 
59 	return ent;
60 }
61 
62 static inline u32 modulo_inc(u32 index, u32 length, u32 inc)
63 {
64 	if (WARN_ON(inc > length))
65 		inc = length;
66 
67 	index += inc;
68 	if (unlikely(index >= length))
69 		index -= length;
70 
71 	return index;
72 }
73 
74 static inline void free_pentry(struct otx2_cpt_pending_entry *pentry)
75 {
76 	pentry->completion_addr = NULL;
77 	pentry->info = NULL;
78 	pentry->callback = NULL;
79 	pentry->areq = NULL;
80 	pentry->resume_sender = false;
81 	pentry->busy = false;
82 }
83 
84 static int process_request(struct pci_dev *pdev, struct otx2_cpt_req_info *req,
85 			   struct otx2_cpt_pending_queue *pqueue,
86 			   struct otx2_cptlf_info *lf)
87 {
88 	struct otx2_cptvf_request *cpt_req = &req->req;
89 	struct otx2_cpt_pending_entry *pentry = NULL;
90 	union otx2_cpt_ctrl_info *ctrl = &req->ctrl;
91 	struct otx2_cpt_inst_info *info = NULL;
92 	union otx2_cpt_res_s *result = NULL;
93 	struct otx2_cpt_iq_command iq_cmd;
94 	union otx2_cpt_inst_s cptinst;
95 	int retry, ret = 0;
96 	u8 resume_sender;
97 	gfp_t gfp;
98 
99 	gfp = (req->areq->flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL :
100 							      GFP_ATOMIC;
101 	if (unlikely(!otx2_cptlf_started(lf->lfs)))
102 		return -ENODEV;
103 
104 	info = lf->lfs->ops->cpt_sg_info_create(pdev, req, gfp);
105 	if (unlikely(!info)) {
106 		dev_err(&pdev->dev, "Setting up cpt inst info failed");
107 		return -ENOMEM;
108 	}
109 	cpt_req->dlen = info->dlen;
110 
111 	result = info->completion_addr;
112 	result->s.compcode = OTX2_CPT_COMPLETION_CODE_INIT;
113 
114 	spin_lock_bh(&pqueue->lock);
115 	pentry = get_free_pending_entry(pqueue, pqueue->qlen);
116 	retry = CPT_PENTRY_TIMEOUT / CPT_PENTRY_STEP;
117 	while (unlikely(!pentry) && retry--) {
118 		spin_unlock_bh(&pqueue->lock);
119 		udelay(CPT_PENTRY_STEP);
120 		spin_lock_bh(&pqueue->lock);
121 		pentry = get_free_pending_entry(pqueue, pqueue->qlen);
122 	}
123 
124 	if (unlikely(!pentry)) {
125 		ret = -ENOSPC;
126 		goto destroy_info;
127 	}
128 
129 	/*
130 	 * Check if we are close to filling in entire pending queue,
131 	 * if so then tell the sender to stop/sleep by returning -EBUSY
132 	 * We do it only for context which can sleep (GFP_KERNEL)
133 	 */
134 	if (gfp == GFP_KERNEL &&
135 	    pqueue->pending_count > (pqueue->qlen - CPT_IQ_STOP_MARGIN)) {
136 		pentry->resume_sender = true;
137 	} else
138 		pentry->resume_sender = false;
139 	resume_sender = pentry->resume_sender;
140 	pqueue->pending_count++;
141 
142 	pentry->completion_addr = info->completion_addr;
143 	pentry->info = info;
144 	pentry->callback = req->callback;
145 	pentry->areq = req->areq;
146 	pentry->busy = true;
147 	info->pentry = pentry;
148 	info->time_in = jiffies;
149 	info->req = req;
150 
151 	/* Fill in the command */
152 	iq_cmd.cmd.u = 0;
153 	iq_cmd.cmd.s.opcode = cpu_to_be16(cpt_req->opcode.flags);
154 	iq_cmd.cmd.s.param1 = cpu_to_be16(cpt_req->param1);
155 	iq_cmd.cmd.s.param2 = cpu_to_be16(cpt_req->param2);
156 	iq_cmd.cmd.s.dlen   = cpu_to_be16(cpt_req->dlen);
157 
158 	/* 64-bit swap for microcode data reads, not needed for addresses*/
159 	cpu_to_be64s(&iq_cmd.cmd.u);
160 	iq_cmd.dptr = info->dptr_baddr | info->gthr_sz << 60;
161 	iq_cmd.rptr = info->rptr_baddr | info->sctr_sz << 60;
162 	iq_cmd.cptr.s.cptr = cpt_req->cptr_dma;
163 	iq_cmd.cptr.s.grp = ctrl->s.grp;
164 
165 	/* Fill in the CPT_INST_S type command for HW interpretation */
166 	otx2_cpt_fill_inst(&cptinst, &iq_cmd, info->comp_baddr);
167 
168 	/* Print debug info if enabled */
169 	otx2_cpt_dump_sg_list(pdev, req);
170 	pr_debug("Cpt_inst_s hexdump (%d bytes)\n", OTX2_CPT_INST_SIZE);
171 	print_hex_dump_debug("", 0, 16, 1, &cptinst, OTX2_CPT_INST_SIZE, false);
172 	pr_debug("Dptr hexdump (%d bytes)\n", cpt_req->dlen);
173 	print_hex_dump_debug("", 0, 16, 1, info->in_buffer,
174 			     cpt_req->dlen, false);
175 
176 	/* Send CPT command */
177 	lf->lfs->ops->send_cmd(&cptinst, 1, lf);
178 
179 	/*
180 	 * We allocate and prepare pending queue entry in critical section
181 	 * together with submitting CPT instruction to CPT instruction queue
182 	 * to make sure that order of CPT requests is the same in both
183 	 * pending and instruction queues
184 	 */
185 	spin_unlock_bh(&pqueue->lock);
186 
187 	ret = resume_sender ? -EBUSY : -EINPROGRESS;
188 	return ret;
189 
190 destroy_info:
191 	spin_unlock_bh(&pqueue->lock);
192 	otx2_cpt_info_destroy(pdev, info);
193 	return ret;
194 }
195 
196 int otx2_cpt_do_request(struct pci_dev *pdev, struct otx2_cpt_req_info *req,
197 			int cpu_num)
198 {
199 	struct otx2_cptvf_dev *cptvf = pci_get_drvdata(pdev);
200 	struct otx2_cptlfs_info *lfs = &cptvf->lfs;
201 
202 	return process_request(lfs->pdev, req, &lfs->lf[cpu_num].pqueue,
203 			       &lfs->lf[cpu_num]);
204 }
205 
206 static int cpt_process_ccode(struct otx2_cptlfs_info *lfs,
207 			     union otx2_cpt_res_s *cpt_status,
208 			     struct otx2_cpt_inst_info *info,
209 			     u32 *res_code)
210 {
211 	u8 uc_ccode = lfs->ops->cpt_get_uc_compcode(cpt_status);
212 	u8 ccode = lfs->ops->cpt_get_compcode(cpt_status);
213 	struct pci_dev *pdev = lfs->pdev;
214 
215 	switch (ccode) {
216 	case OTX2_CPT_COMP_E_FAULT:
217 		dev_err(&pdev->dev,
218 			"Request failed with DMA fault\n");
219 		otx2_cpt_dump_sg_list(pdev, info->req);
220 		break;
221 
222 	case OTX2_CPT_COMP_E_HWERR:
223 		dev_err(&pdev->dev,
224 			"Request failed with hardware error\n");
225 		otx2_cpt_dump_sg_list(pdev, info->req);
226 		break;
227 
228 	case OTX2_CPT_COMP_E_INSTERR:
229 		dev_err(&pdev->dev,
230 			"Request failed with instruction error\n");
231 		otx2_cpt_dump_sg_list(pdev, info->req);
232 		break;
233 
234 	case OTX2_CPT_COMP_E_NOTDONE:
235 		/* check for timeout */
236 		if (time_after_eq(jiffies, info->time_in +
237 				  CPT_COMMAND_TIMEOUT * HZ))
238 			dev_warn(&pdev->dev,
239 				 "Request timed out 0x%p", info->req);
240 		else if (info->extra_time < CPT_TIME_IN_RESET_COUNT) {
241 			info->time_in = jiffies;
242 			info->extra_time++;
243 		}
244 		return 1;
245 
246 	case OTX2_CPT_COMP_E_GOOD:
247 	case OTX2_CPT_COMP_E_WARN:
248 		/*
249 		 * Check microcode completion code, it is only valid
250 		 * when completion code is CPT_COMP_E::GOOD
251 		 */
252 		if (uc_ccode != OTX2_CPT_UCC_SUCCESS) {
253 			/*
254 			 * If requested hmac is truncated and ucode returns
255 			 * s/g write length error then we report success
256 			 * because ucode writes as many bytes of calculated
257 			 * hmac as available in gather buffer and reports
258 			 * s/g write length error if number of bytes in gather
259 			 * buffer is less than full hmac size.
260 			 */
261 			if (info->req->is_trunc_hmac &&
262 			    uc_ccode == OTX2_CPT_UCC_SG_WRITE_LENGTH) {
263 				*res_code = 0;
264 				break;
265 			}
266 
267 			dev_err(&pdev->dev,
268 				"Request failed with software error code 0x%x\n",
269 				cpt_status->s.uc_compcode);
270 			otx2_cpt_dump_sg_list(pdev, info->req);
271 			break;
272 		}
273 		/* Request has been processed with success */
274 		*res_code = 0;
275 		break;
276 
277 	default:
278 		dev_err(&pdev->dev,
279 			"Request returned invalid status %d\n", ccode);
280 		break;
281 	}
282 	return 0;
283 }
284 
285 static inline void process_pending_queue(struct otx2_cptlfs_info *lfs,
286 					 struct otx2_cpt_pending_queue *pqueue)
287 {
288 	struct otx2_cpt_pending_entry *resume_pentry = NULL;
289 	void (*callback)(int status, void *arg, void *req);
290 	struct otx2_cpt_pending_entry *pentry = NULL;
291 	union otx2_cpt_res_s *cpt_status = NULL;
292 	struct otx2_cpt_inst_info *info = NULL;
293 	struct otx2_cpt_req_info *req = NULL;
294 	struct crypto_async_request *areq;
295 	struct pci_dev *pdev = lfs->pdev;
296 	u32 res_code, resume_index;
297 
298 	while (1) {
299 		spin_lock_bh(&pqueue->lock);
300 		pentry = &pqueue->head[pqueue->front];
301 
302 		if (WARN_ON(!pentry)) {
303 			spin_unlock_bh(&pqueue->lock);
304 			break;
305 		}
306 
307 		res_code = -EINVAL;
308 		if (unlikely(!pentry->busy)) {
309 			spin_unlock_bh(&pqueue->lock);
310 			break;
311 		}
312 
313 		if (unlikely(!pentry->callback)) {
314 			dev_err(&pdev->dev, "Callback NULL\n");
315 			goto process_pentry;
316 		}
317 
318 		info = pentry->info;
319 		if (unlikely(!info)) {
320 			dev_err(&pdev->dev, "Pending entry post arg NULL\n");
321 			goto process_pentry;
322 		}
323 
324 		req = info->req;
325 		if (unlikely(!req)) {
326 			dev_err(&pdev->dev, "Request NULL\n");
327 			goto process_pentry;
328 		}
329 
330 		cpt_status = pentry->completion_addr;
331 		if (unlikely(!cpt_status)) {
332 			dev_err(&pdev->dev, "Completion address NULL\n");
333 			goto process_pentry;
334 		}
335 
336 		if (cpt_process_ccode(lfs, cpt_status, info, &res_code)) {
337 			spin_unlock_bh(&pqueue->lock);
338 			return;
339 		}
340 		info->pdev = pdev;
341 
342 process_pentry:
343 		/*
344 		 * Check if we should inform sending side to resume
345 		 * We do it CPT_IQ_RESUME_MARGIN elements in advance before
346 		 * pending queue becomes empty
347 		 */
348 		resume_index = modulo_inc(pqueue->front, pqueue->qlen,
349 					  CPT_IQ_RESUME_MARGIN);
350 		resume_pentry = &pqueue->head[resume_index];
351 		if (resume_pentry &&
352 		    resume_pentry->resume_sender) {
353 			resume_pentry->resume_sender = false;
354 			callback = resume_pentry->callback;
355 			areq = resume_pentry->areq;
356 
357 			if (callback) {
358 				spin_unlock_bh(&pqueue->lock);
359 
360 				/*
361 				 * EINPROGRESS is an indication for sending
362 				 * side that it can resume sending requests
363 				 */
364 				callback(-EINPROGRESS, areq, info);
365 				spin_lock_bh(&pqueue->lock);
366 			}
367 		}
368 
369 		callback = pentry->callback;
370 		areq = pentry->areq;
371 		free_pentry(pentry);
372 
373 		pqueue->pending_count--;
374 		pqueue->front = modulo_inc(pqueue->front, pqueue->qlen, 1);
375 		spin_unlock_bh(&pqueue->lock);
376 
377 		/*
378 		 * Call callback after current pending entry has been
379 		 * processed, we don't do it if the callback pointer is
380 		 * invalid.
381 		 */
382 		if (callback)
383 			callback(res_code, areq, info);
384 	}
385 }
386 
387 void otx2_cpt_post_process(struct otx2_cptlf_wqe *wqe)
388 {
389 	process_pending_queue(wqe->lfs,
390 			      &wqe->lfs->lf[wqe->lf_num].pqueue);
391 }
392 
393 int otx2_cpt_get_kcrypto_eng_grp_num(struct pci_dev *pdev)
394 {
395 	struct otx2_cptvf_dev *cptvf = pci_get_drvdata(pdev);
396 
397 	return cptvf->lfs.kcrypto_eng_grp_num;
398 }
399