xref: /linux/drivers/crypto/marvell/octeontx/otx_cptvf_reqmgr.c (revision 0526b56cbc3c489642bd6a5fe4b718dea7ef0ee8)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell OcteonTX CPT driver
3  *
4  * Copyright (C) 2019 Marvell International Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include "otx_cptvf.h"
12 #include "otx_cptvf_algs.h"
13 
14 /* Completion code size and initial value */
15 #define COMPLETION_CODE_SIZE	8
16 #define COMPLETION_CODE_INIT	0
17 
18 /* SG list header size in bytes */
19 #define SG_LIST_HDR_SIZE	8
20 
21 /* Default timeout when waiting for free pending entry in us */
22 #define CPT_PENTRY_TIMEOUT	1000
23 #define CPT_PENTRY_STEP		50
24 
25 /* Default threshold for stopping and resuming sender requests */
26 #define CPT_IQ_STOP_MARGIN	128
27 #define CPT_IQ_RESUME_MARGIN	512
28 
29 #define CPT_DMA_ALIGN		128
30 
31 void otx_cpt_dump_sg_list(struct pci_dev *pdev, struct otx_cpt_req_info *req)
32 {
33 	int i;
34 
35 	pr_debug("Gather list size %d\n", req->incnt);
36 	for (i = 0; i < req->incnt; i++) {
37 		pr_debug("Buffer %d size %d, vptr 0x%p, dmaptr 0x%p\n", i,
38 			 req->in[i].size, req->in[i].vptr,
39 			 (void *) req->in[i].dma_addr);
40 		pr_debug("Buffer hexdump (%d bytes)\n",
41 			 req->in[i].size);
42 		print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1,
43 				     req->in[i].vptr, req->in[i].size, false);
44 	}
45 
46 	pr_debug("Scatter list size %d\n", req->outcnt);
47 	for (i = 0; i < req->outcnt; i++) {
48 		pr_debug("Buffer %d size %d, vptr 0x%p, dmaptr 0x%p\n", i,
49 			 req->out[i].size, req->out[i].vptr,
50 			 (void *) req->out[i].dma_addr);
51 		pr_debug("Buffer hexdump (%d bytes)\n", req->out[i].size);
52 		print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1,
53 				     req->out[i].vptr, req->out[i].size, false);
54 	}
55 }
56 
57 static inline struct otx_cpt_pending_entry *get_free_pending_entry(
58 						struct otx_cpt_pending_queue *q,
59 						int qlen)
60 {
61 	struct otx_cpt_pending_entry *ent = NULL;
62 
63 	ent = &q->head[q->rear];
64 	if (unlikely(ent->busy))
65 		return NULL;
66 
67 	q->rear++;
68 	if (unlikely(q->rear == qlen))
69 		q->rear = 0;
70 
71 	return ent;
72 }
73 
74 static inline u32 modulo_inc(u32 index, u32 length, u32 inc)
75 {
76 	if (WARN_ON(inc > length))
77 		inc = length;
78 
79 	index += inc;
80 	if (unlikely(index >= length))
81 		index -= length;
82 
83 	return index;
84 }
85 
86 static inline void free_pentry(struct otx_cpt_pending_entry *pentry)
87 {
88 	pentry->completion_addr = NULL;
89 	pentry->info = NULL;
90 	pentry->callback = NULL;
91 	pentry->areq = NULL;
92 	pentry->resume_sender = false;
93 	pentry->busy = false;
94 }
95 
96 static inline int setup_sgio_components(struct pci_dev *pdev,
97 					struct otx_cpt_buf_ptr *list,
98 					int buf_count, u8 *buffer)
99 {
100 	struct otx_cpt_sglist_component *sg_ptr = NULL;
101 	int ret = 0, i, j;
102 	int components;
103 
104 	if (unlikely(!list)) {
105 		dev_err(&pdev->dev, "Input list pointer is NULL\n");
106 		return -EFAULT;
107 	}
108 
109 	for (i = 0; i < buf_count; i++) {
110 		if (likely(list[i].vptr)) {
111 			list[i].dma_addr = dma_map_single(&pdev->dev,
112 							  list[i].vptr,
113 							  list[i].size,
114 							  DMA_BIDIRECTIONAL);
115 			if (unlikely(dma_mapping_error(&pdev->dev,
116 						       list[i].dma_addr))) {
117 				dev_err(&pdev->dev, "Dma mapping failed\n");
118 				ret = -EIO;
119 				goto sg_cleanup;
120 			}
121 		}
122 	}
123 
124 	components = buf_count / 4;
125 	sg_ptr = (struct otx_cpt_sglist_component *)buffer;
126 	for (i = 0; i < components; i++) {
127 		sg_ptr->u.s.len0 = cpu_to_be16(list[i * 4 + 0].size);
128 		sg_ptr->u.s.len1 = cpu_to_be16(list[i * 4 + 1].size);
129 		sg_ptr->u.s.len2 = cpu_to_be16(list[i * 4 + 2].size);
130 		sg_ptr->u.s.len3 = cpu_to_be16(list[i * 4 + 3].size);
131 		sg_ptr->ptr0 = cpu_to_be64(list[i * 4 + 0].dma_addr);
132 		sg_ptr->ptr1 = cpu_to_be64(list[i * 4 + 1].dma_addr);
133 		sg_ptr->ptr2 = cpu_to_be64(list[i * 4 + 2].dma_addr);
134 		sg_ptr->ptr3 = cpu_to_be64(list[i * 4 + 3].dma_addr);
135 		sg_ptr++;
136 	}
137 	components = buf_count % 4;
138 
139 	switch (components) {
140 	case 3:
141 		sg_ptr->u.s.len2 = cpu_to_be16(list[i * 4 + 2].size);
142 		sg_ptr->ptr2 = cpu_to_be64(list[i * 4 + 2].dma_addr);
143 		fallthrough;
144 	case 2:
145 		sg_ptr->u.s.len1 = cpu_to_be16(list[i * 4 + 1].size);
146 		sg_ptr->ptr1 = cpu_to_be64(list[i * 4 + 1].dma_addr);
147 		fallthrough;
148 	case 1:
149 		sg_ptr->u.s.len0 = cpu_to_be16(list[i * 4 + 0].size);
150 		sg_ptr->ptr0 = cpu_to_be64(list[i * 4 + 0].dma_addr);
151 		break;
152 	default:
153 		break;
154 	}
155 	return ret;
156 
157 sg_cleanup:
158 	for (j = 0; j < i; j++) {
159 		if (list[j].dma_addr) {
160 			dma_unmap_single(&pdev->dev, list[i].dma_addr,
161 					 list[i].size, DMA_BIDIRECTIONAL);
162 		}
163 
164 		list[j].dma_addr = 0;
165 	}
166 	return ret;
167 }
168 
169 static inline int setup_sgio_list(struct pci_dev *pdev,
170 				  struct otx_cpt_info_buffer **pinfo,
171 				  struct otx_cpt_req_info *req, gfp_t gfp)
172 {
173 	u32 dlen, align_dlen, info_len, rlen;
174 	struct otx_cpt_info_buffer *info;
175 	u16 g_sz_bytes, s_sz_bytes;
176 	int align = CPT_DMA_ALIGN;
177 	u32 total_mem_len;
178 
179 	if (unlikely(req->incnt > OTX_CPT_MAX_SG_IN_CNT ||
180 		     req->outcnt > OTX_CPT_MAX_SG_OUT_CNT)) {
181 		dev_err(&pdev->dev, "Error too many sg components\n");
182 		return -EINVAL;
183 	}
184 
185 	g_sz_bytes = ((req->incnt + 3) / 4) *
186 		      sizeof(struct otx_cpt_sglist_component);
187 	s_sz_bytes = ((req->outcnt + 3) / 4) *
188 		      sizeof(struct otx_cpt_sglist_component);
189 
190 	dlen = g_sz_bytes + s_sz_bytes + SG_LIST_HDR_SIZE;
191 	align_dlen = ALIGN(dlen, align);
192 	info_len = ALIGN(sizeof(*info), align);
193 	rlen = ALIGN(sizeof(union otx_cpt_res_s), align);
194 	total_mem_len = align_dlen + info_len + rlen + COMPLETION_CODE_SIZE;
195 
196 	info = kzalloc(total_mem_len, gfp);
197 	if (unlikely(!info)) {
198 		dev_err(&pdev->dev, "Memory allocation failed\n");
199 		return -ENOMEM;
200 	}
201 	*pinfo = info;
202 	info->dlen = dlen;
203 	info->in_buffer = (u8 *)info + info_len;
204 
205 	((__be16 *)info->in_buffer)[0] = cpu_to_be16(req->outcnt);
206 	((__be16 *)info->in_buffer)[1] = cpu_to_be16(req->incnt);
207 	((u16 *)info->in_buffer)[2] = 0;
208 	((u16 *)info->in_buffer)[3] = 0;
209 
210 	/* Setup gather (input) components */
211 	if (setup_sgio_components(pdev, req->in, req->incnt,
212 				  &info->in_buffer[8])) {
213 		dev_err(&pdev->dev, "Failed to setup gather list\n");
214 		return -EFAULT;
215 	}
216 
217 	if (setup_sgio_components(pdev, req->out, req->outcnt,
218 				  &info->in_buffer[8 + g_sz_bytes])) {
219 		dev_err(&pdev->dev, "Failed to setup scatter list\n");
220 		return -EFAULT;
221 	}
222 
223 	info->dma_len = total_mem_len - info_len;
224 	info->dptr_baddr = dma_map_single(&pdev->dev, (void *)info->in_buffer,
225 					  info->dma_len, DMA_BIDIRECTIONAL);
226 	if (unlikely(dma_mapping_error(&pdev->dev, info->dptr_baddr))) {
227 		dev_err(&pdev->dev, "DMA Mapping failed for cpt req\n");
228 		return -EIO;
229 	}
230 	/*
231 	 * Get buffer for union otx_cpt_res_s response
232 	 * structure and its physical address
233 	 */
234 	info->completion_addr = (u64 *)(info->in_buffer + align_dlen);
235 	info->comp_baddr = info->dptr_baddr + align_dlen;
236 
237 	/* Create and initialize RPTR */
238 	info->out_buffer = (u8 *)info->completion_addr + rlen;
239 	info->rptr_baddr = info->comp_baddr + rlen;
240 
241 	*((u64 *) info->out_buffer) = ~((u64) COMPLETION_CODE_INIT);
242 
243 	return 0;
244 }
245 
246 
247 static void cpt_fill_inst(union otx_cpt_inst_s *inst,
248 			  struct otx_cpt_info_buffer *info,
249 			  struct otx_cpt_iq_cmd *cmd)
250 {
251 	inst->u[0] = 0x0;
252 	inst->s.doneint = true;
253 	inst->s.res_addr = (u64)info->comp_baddr;
254 	inst->u[2] = 0x0;
255 	inst->s.wq_ptr = 0;
256 	inst->s.ei0 = cmd->cmd.u64;
257 	inst->s.ei1 = cmd->dptr;
258 	inst->s.ei2 = cmd->rptr;
259 	inst->s.ei3 = cmd->cptr.u64;
260 }
261 
262 /*
263  * On OcteonTX platform the parameter db_count is used as a count for ringing
264  * door bell. The valid values for db_count are:
265  * 0 - 1 CPT instruction will be enqueued however CPT will not be informed
266  * 1 - 1 CPT instruction will be enqueued and CPT will be informed
267  */
268 static void cpt_send_cmd(union otx_cpt_inst_s *cptinst, struct otx_cptvf *cptvf)
269 {
270 	struct otx_cpt_cmd_qinfo *qinfo = &cptvf->cqinfo;
271 	struct otx_cpt_cmd_queue *queue;
272 	struct otx_cpt_cmd_chunk *curr;
273 	u8 *ent;
274 
275 	queue = &qinfo->queue[0];
276 	/*
277 	 * cpt_send_cmd is currently called only from critical section
278 	 * therefore no locking is required for accessing instruction queue
279 	 */
280 	ent = &queue->qhead->head[queue->idx * OTX_CPT_INST_SIZE];
281 	memcpy(ent, (void *) cptinst, OTX_CPT_INST_SIZE);
282 
283 	if (++queue->idx >= queue->qhead->size / 64) {
284 		curr = queue->qhead;
285 
286 		if (list_is_last(&curr->nextchunk, &queue->chead))
287 			queue->qhead = queue->base;
288 		else
289 			queue->qhead = list_next_entry(queue->qhead, nextchunk);
290 		queue->idx = 0;
291 	}
292 	/* make sure all memory stores are done before ringing doorbell */
293 	smp_wmb();
294 	otx_cptvf_write_vq_doorbell(cptvf, 1);
295 }
296 
297 static int process_request(struct pci_dev *pdev, struct otx_cpt_req_info *req,
298 			   struct otx_cpt_pending_queue *pqueue,
299 			   struct otx_cptvf *cptvf)
300 {
301 	struct otx_cptvf_request *cpt_req = &req->req;
302 	struct otx_cpt_pending_entry *pentry = NULL;
303 	union otx_cpt_ctrl_info *ctrl = &req->ctrl;
304 	struct otx_cpt_info_buffer *info = NULL;
305 	union otx_cpt_res_s *result = NULL;
306 	struct otx_cpt_iq_cmd iq_cmd;
307 	union otx_cpt_inst_s cptinst;
308 	int retry, ret = 0;
309 	u8 resume_sender;
310 	gfp_t gfp;
311 
312 	gfp = (req->areq->flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL :
313 							      GFP_ATOMIC;
314 	ret = setup_sgio_list(pdev, &info, req, gfp);
315 	if (unlikely(ret)) {
316 		dev_err(&pdev->dev, "Setting up SG list failed\n");
317 		goto request_cleanup;
318 	}
319 	cpt_req->dlen = info->dlen;
320 
321 	result = (union otx_cpt_res_s *) info->completion_addr;
322 	result->s.compcode = COMPLETION_CODE_INIT;
323 
324 	spin_lock_bh(&pqueue->lock);
325 	pentry = get_free_pending_entry(pqueue, pqueue->qlen);
326 	retry = CPT_PENTRY_TIMEOUT / CPT_PENTRY_STEP;
327 	while (unlikely(!pentry) && retry--) {
328 		spin_unlock_bh(&pqueue->lock);
329 		udelay(CPT_PENTRY_STEP);
330 		spin_lock_bh(&pqueue->lock);
331 		pentry = get_free_pending_entry(pqueue, pqueue->qlen);
332 	}
333 
334 	if (unlikely(!pentry)) {
335 		ret = -ENOSPC;
336 		spin_unlock_bh(&pqueue->lock);
337 		goto request_cleanup;
338 	}
339 
340 	/*
341 	 * Check if we are close to filling in entire pending queue,
342 	 * if so then tell the sender to stop/sleep by returning -EBUSY
343 	 * We do it only for context which can sleep (GFP_KERNEL)
344 	 */
345 	if (gfp == GFP_KERNEL &&
346 	    pqueue->pending_count > (pqueue->qlen - CPT_IQ_STOP_MARGIN)) {
347 		pentry->resume_sender = true;
348 	} else
349 		pentry->resume_sender = false;
350 	resume_sender = pentry->resume_sender;
351 	pqueue->pending_count++;
352 
353 	pentry->completion_addr = info->completion_addr;
354 	pentry->info = info;
355 	pentry->callback = req->callback;
356 	pentry->areq = req->areq;
357 	pentry->busy = true;
358 	info->pentry = pentry;
359 	info->time_in = jiffies;
360 	info->req = req;
361 
362 	/* Fill in the command */
363 	iq_cmd.cmd.u64 = 0;
364 	iq_cmd.cmd.s.opcode = cpu_to_be16(cpt_req->opcode.flags);
365 	iq_cmd.cmd.s.param1 = cpu_to_be16(cpt_req->param1);
366 	iq_cmd.cmd.s.param2 = cpu_to_be16(cpt_req->param2);
367 	iq_cmd.cmd.s.dlen   = cpu_to_be16(cpt_req->dlen);
368 
369 	iq_cmd.dptr = info->dptr_baddr;
370 	iq_cmd.rptr = info->rptr_baddr;
371 	iq_cmd.cptr.u64 = 0;
372 	iq_cmd.cptr.s.grp = ctrl->s.grp;
373 
374 	/* Fill in the CPT_INST_S type command for HW interpretation */
375 	cpt_fill_inst(&cptinst, info, &iq_cmd);
376 
377 	/* Print debug info if enabled */
378 	otx_cpt_dump_sg_list(pdev, req);
379 	pr_debug("Cpt_inst_s hexdump (%d bytes)\n", OTX_CPT_INST_SIZE);
380 	print_hex_dump_debug("", 0, 16, 1, &cptinst, OTX_CPT_INST_SIZE, false);
381 	pr_debug("Dptr hexdump (%d bytes)\n", cpt_req->dlen);
382 	print_hex_dump_debug("", 0, 16, 1, info->in_buffer,
383 			     cpt_req->dlen, false);
384 
385 	/* Send CPT command */
386 	cpt_send_cmd(&cptinst, cptvf);
387 
388 	/*
389 	 * We allocate and prepare pending queue entry in critical section
390 	 * together with submitting CPT instruction to CPT instruction queue
391 	 * to make sure that order of CPT requests is the same in both
392 	 * pending and instruction queues
393 	 */
394 	spin_unlock_bh(&pqueue->lock);
395 
396 	ret = resume_sender ? -EBUSY : -EINPROGRESS;
397 	return ret;
398 
399 request_cleanup:
400 	do_request_cleanup(pdev, info);
401 	return ret;
402 }
403 
404 int otx_cpt_do_request(struct pci_dev *pdev, struct otx_cpt_req_info *req,
405 		       int cpu_num)
406 {
407 	struct otx_cptvf *cptvf = pci_get_drvdata(pdev);
408 
409 	if (!otx_cpt_device_ready(cptvf)) {
410 		dev_err(&pdev->dev, "CPT Device is not ready\n");
411 		return -ENODEV;
412 	}
413 
414 	if ((cptvf->vftype == OTX_CPT_SE_TYPES) && (!req->ctrl.s.se_req)) {
415 		dev_err(&pdev->dev, "CPTVF-%d of SE TYPE got AE request\n",
416 			cptvf->vfid);
417 		return -EINVAL;
418 	} else if ((cptvf->vftype == OTX_CPT_AE_TYPES) &&
419 		   (req->ctrl.s.se_req)) {
420 		dev_err(&pdev->dev, "CPTVF-%d of AE TYPE got SE request\n",
421 			cptvf->vfid);
422 		return -EINVAL;
423 	}
424 
425 	return process_request(pdev, req, &cptvf->pqinfo.queue[0], cptvf);
426 }
427 
428 static int cpt_process_ccode(struct pci_dev *pdev,
429 			     union otx_cpt_res_s *cpt_status,
430 			     struct otx_cpt_info_buffer *cpt_info,
431 			     struct otx_cpt_req_info *req, u32 *res_code)
432 {
433 	u8 ccode = cpt_status->s.compcode;
434 	union otx_cpt_error_code ecode;
435 
436 	ecode.u = be64_to_cpup((__be64 *)cpt_info->out_buffer);
437 	switch (ccode) {
438 	case CPT_COMP_E_FAULT:
439 		dev_err(&pdev->dev,
440 			"Request failed with DMA fault\n");
441 		otx_cpt_dump_sg_list(pdev, req);
442 		break;
443 
444 	case CPT_COMP_E_SWERR:
445 		dev_err(&pdev->dev,
446 			"Request failed with software error code %d\n",
447 			ecode.s.ccode);
448 		otx_cpt_dump_sg_list(pdev, req);
449 		break;
450 
451 	case CPT_COMP_E_HWERR:
452 		dev_err(&pdev->dev,
453 			"Request failed with hardware error\n");
454 		otx_cpt_dump_sg_list(pdev, req);
455 		break;
456 
457 	case COMPLETION_CODE_INIT:
458 		/* check for timeout */
459 		if (time_after_eq(jiffies, cpt_info->time_in +
460 				  OTX_CPT_COMMAND_TIMEOUT * HZ))
461 			dev_warn(&pdev->dev, "Request timed out 0x%p\n", req);
462 		else if (cpt_info->extra_time < OTX_CPT_TIME_IN_RESET_COUNT) {
463 			cpt_info->time_in = jiffies;
464 			cpt_info->extra_time++;
465 		}
466 		return 1;
467 
468 	case CPT_COMP_E_GOOD:
469 		/* Check microcode completion code */
470 		if (ecode.s.ccode) {
471 			/*
472 			 * If requested hmac is truncated and ucode returns
473 			 * s/g write length error then we report success
474 			 * because ucode writes as many bytes of calculated
475 			 * hmac as available in gather buffer and reports
476 			 * s/g write length error if number of bytes in gather
477 			 * buffer is less than full hmac size.
478 			 */
479 			if (req->is_trunc_hmac &&
480 			    ecode.s.ccode == ERR_SCATTER_GATHER_WRITE_LENGTH) {
481 				*res_code = 0;
482 				break;
483 			}
484 
485 			dev_err(&pdev->dev,
486 				"Request failed with software error code 0x%x\n",
487 				ecode.s.ccode);
488 			otx_cpt_dump_sg_list(pdev, req);
489 			break;
490 		}
491 
492 		/* Request has been processed with success */
493 		*res_code = 0;
494 		break;
495 
496 	default:
497 		dev_err(&pdev->dev, "Request returned invalid status\n");
498 		break;
499 	}
500 
501 	return 0;
502 }
503 
504 static inline void process_pending_queue(struct pci_dev *pdev,
505 					 struct otx_cpt_pending_queue *pqueue)
506 {
507 	void (*callback)(int status, void *arg1, void *arg2);
508 	struct otx_cpt_pending_entry *resume_pentry = NULL;
509 	struct otx_cpt_pending_entry *pentry = NULL;
510 	struct otx_cpt_info_buffer *cpt_info = NULL;
511 	union otx_cpt_res_s *cpt_status = NULL;
512 	struct otx_cpt_req_info *req = NULL;
513 	struct crypto_async_request *areq;
514 	u32 res_code, resume_index;
515 
516 	while (1) {
517 		spin_lock_bh(&pqueue->lock);
518 		pentry = &pqueue->head[pqueue->front];
519 
520 		if (WARN_ON(!pentry)) {
521 			spin_unlock_bh(&pqueue->lock);
522 			break;
523 		}
524 
525 		res_code = -EINVAL;
526 		if (unlikely(!pentry->busy)) {
527 			spin_unlock_bh(&pqueue->lock);
528 			break;
529 		}
530 
531 		if (unlikely(!pentry->callback)) {
532 			dev_err(&pdev->dev, "Callback NULL\n");
533 			goto process_pentry;
534 		}
535 
536 		cpt_info = pentry->info;
537 		if (unlikely(!cpt_info)) {
538 			dev_err(&pdev->dev, "Pending entry post arg NULL\n");
539 			goto process_pentry;
540 		}
541 
542 		req = cpt_info->req;
543 		if (unlikely(!req)) {
544 			dev_err(&pdev->dev, "Request NULL\n");
545 			goto process_pentry;
546 		}
547 
548 		cpt_status = (union otx_cpt_res_s *) pentry->completion_addr;
549 		if (unlikely(!cpt_status)) {
550 			dev_err(&pdev->dev, "Completion address NULL\n");
551 			goto process_pentry;
552 		}
553 
554 		if (cpt_process_ccode(pdev, cpt_status, cpt_info, req,
555 				      &res_code)) {
556 			spin_unlock_bh(&pqueue->lock);
557 			return;
558 		}
559 		cpt_info->pdev = pdev;
560 
561 process_pentry:
562 		/*
563 		 * Check if we should inform sending side to resume
564 		 * We do it CPT_IQ_RESUME_MARGIN elements in advance before
565 		 * pending queue becomes empty
566 		 */
567 		resume_index = modulo_inc(pqueue->front, pqueue->qlen,
568 					  CPT_IQ_RESUME_MARGIN);
569 		resume_pentry = &pqueue->head[resume_index];
570 		if (resume_pentry &&
571 		    resume_pentry->resume_sender) {
572 			resume_pentry->resume_sender = false;
573 			callback = resume_pentry->callback;
574 			areq = resume_pentry->areq;
575 
576 			if (callback) {
577 				spin_unlock_bh(&pqueue->lock);
578 
579 				/*
580 				 * EINPROGRESS is an indication for sending
581 				 * side that it can resume sending requests
582 				 */
583 				callback(-EINPROGRESS, areq, cpt_info);
584 				spin_lock_bh(&pqueue->lock);
585 			}
586 		}
587 
588 		callback = pentry->callback;
589 		areq = pentry->areq;
590 		free_pentry(pentry);
591 
592 		pqueue->pending_count--;
593 		pqueue->front = modulo_inc(pqueue->front, pqueue->qlen, 1);
594 		spin_unlock_bh(&pqueue->lock);
595 
596 		/*
597 		 * Call callback after current pending entry has been
598 		 * processed, we don't do it if the callback pointer is
599 		 * invalid.
600 		 */
601 		if (callback)
602 			callback(res_code, areq, cpt_info);
603 	}
604 }
605 
606 void otx_cpt_post_process(struct otx_cptvf_wqe *wqe)
607 {
608 	process_pending_queue(wqe->cptvf->pdev, &wqe->cptvf->pqinfo.queue[0]);
609 }
610