xref: /linux/drivers/crypto/marvell/octeontx/otx_cptvf_algs.c (revision f9bff0e31881d03badf191d3b0005839391f5f2b)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell OcteonTX CPT driver
3  *
4  * Copyright (C) 2019 Marvell International Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <crypto/aes.h>
12 #include <crypto/authenc.h>
13 #include <crypto/cryptd.h>
14 #include <crypto/des.h>
15 #include <crypto/internal/aead.h>
16 #include <crypto/sha1.h>
17 #include <crypto/sha2.h>
18 #include <crypto/xts.h>
19 #include <crypto/scatterwalk.h>
20 #include <linux/rtnetlink.h>
21 #include <linux/sort.h>
22 #include <linux/module.h>
23 #include "otx_cptvf.h"
24 #include "otx_cptvf_algs.h"
25 #include "otx_cptvf_reqmgr.h"
26 
27 #define CPT_MAX_VF_NUM	64
28 /* Size of salt in AES GCM mode */
29 #define AES_GCM_SALT_SIZE	4
30 /* Size of IV in AES GCM mode */
31 #define AES_GCM_IV_SIZE		8
32 /* Size of ICV (Integrity Check Value) in AES GCM mode */
33 #define AES_GCM_ICV_SIZE	16
34 /* Offset of IV in AES GCM mode */
35 #define AES_GCM_IV_OFFSET	8
36 #define CONTROL_WORD_LEN	8
37 #define KEY2_OFFSET		48
38 #define DMA_MODE_FLAG(dma_mode) \
39 	(((dma_mode) == OTX_CPT_DMA_GATHER_SCATTER) ? (1 << 7) : 0)
40 
41 /* Truncated SHA digest size */
42 #define SHA1_TRUNC_DIGEST_SIZE		12
43 #define SHA256_TRUNC_DIGEST_SIZE	16
44 #define SHA384_TRUNC_DIGEST_SIZE	24
45 #define SHA512_TRUNC_DIGEST_SIZE	32
46 
47 static DEFINE_MUTEX(mutex);
48 static int is_crypto_registered;
49 
50 struct cpt_device_desc {
51 	enum otx_cptpf_type pf_type;
52 	struct pci_dev *dev;
53 	int num_queues;
54 };
55 
56 struct cpt_device_table {
57 	atomic_t count;
58 	struct cpt_device_desc desc[CPT_MAX_VF_NUM];
59 };
60 
61 static struct cpt_device_table se_devices = {
62 	.count = ATOMIC_INIT(0)
63 };
64 
65 static struct cpt_device_table ae_devices = {
66 	.count = ATOMIC_INIT(0)
67 };
68 
69 static inline int get_se_device(struct pci_dev **pdev, int *cpu_num)
70 {
71 	int count, ret = 0;
72 
73 	count = atomic_read(&se_devices.count);
74 	if (count < 1)
75 		return -ENODEV;
76 
77 	*cpu_num = get_cpu();
78 
79 	if (se_devices.desc[0].pf_type == OTX_CPT_SE) {
80 		/*
81 		 * On OcteonTX platform there is one CPT instruction queue bound
82 		 * to each VF. We get maximum performance if one CPT queue
83 		 * is available for each cpu otherwise CPT queues need to be
84 		 * shared between cpus.
85 		 */
86 		if (*cpu_num >= count)
87 			*cpu_num %= count;
88 		*pdev = se_devices.desc[*cpu_num].dev;
89 	} else {
90 		pr_err("Unknown PF type %d\n", se_devices.desc[0].pf_type);
91 		ret = -EINVAL;
92 	}
93 	put_cpu();
94 
95 	return ret;
96 }
97 
98 static inline int validate_hmac_cipher_null(struct otx_cpt_req_info *cpt_req)
99 {
100 	struct otx_cpt_req_ctx *rctx;
101 	struct aead_request *req;
102 	struct crypto_aead *tfm;
103 
104 	req = container_of(cpt_req->areq, struct aead_request, base);
105 	tfm = crypto_aead_reqtfm(req);
106 	rctx = aead_request_ctx_dma(req);
107 	if (memcmp(rctx->fctx.hmac.s.hmac_calc,
108 		   rctx->fctx.hmac.s.hmac_recv,
109 		   crypto_aead_authsize(tfm)) != 0)
110 		return -EBADMSG;
111 
112 	return 0;
113 }
114 
115 static void otx_cpt_aead_callback(int status, void *arg1, void *arg2)
116 {
117 	struct otx_cpt_info_buffer *cpt_info = arg2;
118 	struct crypto_async_request *areq = arg1;
119 	struct otx_cpt_req_info *cpt_req;
120 	struct pci_dev *pdev;
121 
122 	if (!cpt_info)
123 		goto complete;
124 
125 	cpt_req = cpt_info->req;
126 	if (!status) {
127 		/*
128 		 * When selected cipher is NULL we need to manually
129 		 * verify whether calculated hmac value matches
130 		 * received hmac value
131 		 */
132 		if (cpt_req->req_type == OTX_CPT_AEAD_ENC_DEC_NULL_REQ &&
133 		    !cpt_req->is_enc)
134 			status = validate_hmac_cipher_null(cpt_req);
135 	}
136 	pdev = cpt_info->pdev;
137 	do_request_cleanup(pdev, cpt_info);
138 
139 complete:
140 	if (areq)
141 		crypto_request_complete(areq, status);
142 }
143 
144 static void output_iv_copyback(struct crypto_async_request *areq)
145 {
146 	struct otx_cpt_req_info *req_info;
147 	struct skcipher_request *sreq;
148 	struct crypto_skcipher *stfm;
149 	struct otx_cpt_req_ctx *rctx;
150 	struct otx_cpt_enc_ctx *ctx;
151 	u32 start, ivsize;
152 
153 	sreq = container_of(areq, struct skcipher_request, base);
154 	stfm = crypto_skcipher_reqtfm(sreq);
155 	ctx = crypto_skcipher_ctx(stfm);
156 	if (ctx->cipher_type == OTX_CPT_AES_CBC ||
157 	    ctx->cipher_type == OTX_CPT_DES3_CBC) {
158 		rctx = skcipher_request_ctx_dma(sreq);
159 		req_info = &rctx->cpt_req;
160 		ivsize = crypto_skcipher_ivsize(stfm);
161 		start = sreq->cryptlen - ivsize;
162 
163 		if (req_info->is_enc) {
164 			scatterwalk_map_and_copy(sreq->iv, sreq->dst, start,
165 						 ivsize, 0);
166 		} else {
167 			if (sreq->src != sreq->dst) {
168 				scatterwalk_map_and_copy(sreq->iv, sreq->src,
169 							 start, ivsize, 0);
170 			} else {
171 				memcpy(sreq->iv, req_info->iv_out, ivsize);
172 				kfree(req_info->iv_out);
173 			}
174 		}
175 	}
176 }
177 
178 static void otx_cpt_skcipher_callback(int status, void *arg1, void *arg2)
179 {
180 	struct otx_cpt_info_buffer *cpt_info = arg2;
181 	struct crypto_async_request *areq = arg1;
182 	struct pci_dev *pdev;
183 
184 	if (areq) {
185 		if (!status)
186 			output_iv_copyback(areq);
187 		if (cpt_info) {
188 			pdev = cpt_info->pdev;
189 			do_request_cleanup(pdev, cpt_info);
190 		}
191 		crypto_request_complete(areq, status);
192 	}
193 }
194 
195 static inline void update_input_data(struct otx_cpt_req_info *req_info,
196 				     struct scatterlist *inp_sg,
197 				     u32 nbytes, u32 *argcnt)
198 {
199 	req_info->req.dlen += nbytes;
200 
201 	while (nbytes) {
202 		u32 len = min(nbytes, inp_sg->length);
203 		u8 *ptr = sg_virt(inp_sg);
204 
205 		req_info->in[*argcnt].vptr = (void *)ptr;
206 		req_info->in[*argcnt].size = len;
207 		nbytes -= len;
208 		++(*argcnt);
209 		inp_sg = sg_next(inp_sg);
210 	}
211 }
212 
213 static inline void update_output_data(struct otx_cpt_req_info *req_info,
214 				      struct scatterlist *outp_sg,
215 				      u32 offset, u32 nbytes, u32 *argcnt)
216 {
217 	req_info->rlen += nbytes;
218 
219 	while (nbytes) {
220 		u32 len = min(nbytes, outp_sg->length - offset);
221 		u8 *ptr = sg_virt(outp_sg);
222 
223 		req_info->out[*argcnt].vptr = (void *) (ptr + offset);
224 		req_info->out[*argcnt].size = len;
225 		nbytes -= len;
226 		++(*argcnt);
227 		offset = 0;
228 		outp_sg = sg_next(outp_sg);
229 	}
230 }
231 
232 static inline u32 create_ctx_hdr(struct skcipher_request *req, u32 enc,
233 				 u32 *argcnt)
234 {
235 	struct crypto_skcipher *stfm = crypto_skcipher_reqtfm(req);
236 	struct otx_cpt_req_ctx *rctx = skcipher_request_ctx_dma(req);
237 	struct otx_cpt_req_info *req_info = &rctx->cpt_req;
238 	struct crypto_tfm *tfm = crypto_skcipher_tfm(stfm);
239 	struct otx_cpt_enc_ctx *ctx = crypto_tfm_ctx(tfm);
240 	struct otx_cpt_fc_ctx *fctx = &rctx->fctx;
241 	int ivsize = crypto_skcipher_ivsize(stfm);
242 	u32 start = req->cryptlen - ivsize;
243 	gfp_t flags;
244 
245 	flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
246 			GFP_KERNEL : GFP_ATOMIC;
247 	req_info->ctrl.s.dma_mode = OTX_CPT_DMA_GATHER_SCATTER;
248 	req_info->ctrl.s.se_req = OTX_CPT_SE_CORE_REQ;
249 
250 	req_info->req.opcode.s.major = OTX_CPT_MAJOR_OP_FC |
251 				DMA_MODE_FLAG(OTX_CPT_DMA_GATHER_SCATTER);
252 	if (enc) {
253 		req_info->req.opcode.s.minor = 2;
254 	} else {
255 		req_info->req.opcode.s.minor = 3;
256 		if ((ctx->cipher_type == OTX_CPT_AES_CBC ||
257 		    ctx->cipher_type == OTX_CPT_DES3_CBC) &&
258 		    req->src == req->dst) {
259 			req_info->iv_out = kmalloc(ivsize, flags);
260 			if (!req_info->iv_out)
261 				return -ENOMEM;
262 
263 			scatterwalk_map_and_copy(req_info->iv_out, req->src,
264 						 start, ivsize, 0);
265 		}
266 	}
267 	/* Encryption data length */
268 	req_info->req.param1 = req->cryptlen;
269 	/* Authentication data length */
270 	req_info->req.param2 = 0;
271 
272 	fctx->enc.enc_ctrl.e.enc_cipher = ctx->cipher_type;
273 	fctx->enc.enc_ctrl.e.aes_key = ctx->key_type;
274 	fctx->enc.enc_ctrl.e.iv_source = OTX_CPT_FROM_CPTR;
275 
276 	if (ctx->cipher_type == OTX_CPT_AES_XTS)
277 		memcpy(fctx->enc.encr_key, ctx->enc_key, ctx->key_len * 2);
278 	else
279 		memcpy(fctx->enc.encr_key, ctx->enc_key, ctx->key_len);
280 
281 	memcpy(fctx->enc.encr_iv, req->iv, crypto_skcipher_ivsize(stfm));
282 
283 	fctx->enc.enc_ctrl.flags = cpu_to_be64(fctx->enc.enc_ctrl.cflags);
284 
285 	/*
286 	 * Storing  Packet Data Information in offset
287 	 * Control Word First 8 bytes
288 	 */
289 	req_info->in[*argcnt].vptr = (u8 *)&rctx->ctrl_word;
290 	req_info->in[*argcnt].size = CONTROL_WORD_LEN;
291 	req_info->req.dlen += CONTROL_WORD_LEN;
292 	++(*argcnt);
293 
294 	req_info->in[*argcnt].vptr = (u8 *)fctx;
295 	req_info->in[*argcnt].size = sizeof(struct otx_cpt_fc_ctx);
296 	req_info->req.dlen += sizeof(struct otx_cpt_fc_ctx);
297 
298 	++(*argcnt);
299 
300 	return 0;
301 }
302 
303 static inline u32 create_input_list(struct skcipher_request *req, u32 enc,
304 				    u32 enc_iv_len)
305 {
306 	struct otx_cpt_req_ctx *rctx = skcipher_request_ctx_dma(req);
307 	struct otx_cpt_req_info *req_info = &rctx->cpt_req;
308 	u32 argcnt =  0;
309 	int ret;
310 
311 	ret = create_ctx_hdr(req, enc, &argcnt);
312 	if (ret)
313 		return ret;
314 
315 	update_input_data(req_info, req->src, req->cryptlen, &argcnt);
316 	req_info->incnt = argcnt;
317 
318 	return 0;
319 }
320 
321 static inline void create_output_list(struct skcipher_request *req,
322 				      u32 enc_iv_len)
323 {
324 	struct otx_cpt_req_ctx *rctx = skcipher_request_ctx_dma(req);
325 	struct otx_cpt_req_info *req_info = &rctx->cpt_req;
326 	u32 argcnt = 0;
327 
328 	/*
329 	 * OUTPUT Buffer Processing
330 	 * AES encryption/decryption output would be
331 	 * received in the following format
332 	 *
333 	 * ------IV--------|------ENCRYPTED/DECRYPTED DATA-----|
334 	 * [ 16 Bytes/     [   Request Enc/Dec/ DATA Len AES CBC ]
335 	 */
336 	update_output_data(req_info, req->dst, 0, req->cryptlen, &argcnt);
337 	req_info->outcnt = argcnt;
338 }
339 
340 static inline int cpt_enc_dec(struct skcipher_request *req, u32 enc)
341 {
342 	struct crypto_skcipher *stfm = crypto_skcipher_reqtfm(req);
343 	struct otx_cpt_req_ctx *rctx = skcipher_request_ctx_dma(req);
344 	struct otx_cpt_req_info *req_info = &rctx->cpt_req;
345 	u32 enc_iv_len = crypto_skcipher_ivsize(stfm);
346 	struct pci_dev *pdev;
347 	int status, cpu_num;
348 
349 	/* Validate that request doesn't exceed maximum CPT supported size */
350 	if (req->cryptlen > OTX_CPT_MAX_REQ_SIZE)
351 		return -E2BIG;
352 
353 	/* Clear control words */
354 	rctx->ctrl_word.flags = 0;
355 	rctx->fctx.enc.enc_ctrl.flags = 0;
356 
357 	status = create_input_list(req, enc, enc_iv_len);
358 	if (status)
359 		return status;
360 	create_output_list(req, enc_iv_len);
361 
362 	status = get_se_device(&pdev, &cpu_num);
363 	if (status)
364 		return status;
365 
366 	req_info->callback = (void *)otx_cpt_skcipher_callback;
367 	req_info->areq = &req->base;
368 	req_info->req_type = OTX_CPT_ENC_DEC_REQ;
369 	req_info->is_enc = enc;
370 	req_info->is_trunc_hmac = false;
371 	req_info->ctrl.s.grp = 0;
372 
373 	/*
374 	 * We perform an asynchronous send and once
375 	 * the request is completed the driver would
376 	 * intimate through registered call back functions
377 	 */
378 	status = otx_cpt_do_request(pdev, req_info, cpu_num);
379 
380 	return status;
381 }
382 
383 static int otx_cpt_skcipher_encrypt(struct skcipher_request *req)
384 {
385 	return cpt_enc_dec(req, true);
386 }
387 
388 static int otx_cpt_skcipher_decrypt(struct skcipher_request *req)
389 {
390 	return cpt_enc_dec(req, false);
391 }
392 
393 static int otx_cpt_skcipher_xts_setkey(struct crypto_skcipher *tfm,
394 				       const u8 *key, u32 keylen)
395 {
396 	struct otx_cpt_enc_ctx *ctx = crypto_skcipher_ctx(tfm);
397 	const u8 *key2 = key + (keylen / 2);
398 	const u8 *key1 = key;
399 	int ret;
400 
401 	ret = xts_verify_key(tfm, key, keylen);
402 	if (ret)
403 		return ret;
404 	ctx->key_len = keylen;
405 	memcpy(ctx->enc_key, key1, keylen / 2);
406 	memcpy(ctx->enc_key + KEY2_OFFSET, key2, keylen / 2);
407 	ctx->cipher_type = OTX_CPT_AES_XTS;
408 	switch (ctx->key_len) {
409 	case 2 * AES_KEYSIZE_128:
410 		ctx->key_type = OTX_CPT_AES_128_BIT;
411 		break;
412 	case 2 * AES_KEYSIZE_256:
413 		ctx->key_type = OTX_CPT_AES_256_BIT;
414 		break;
415 	default:
416 		return -EINVAL;
417 	}
418 
419 	return 0;
420 }
421 
422 static int cpt_des_setkey(struct crypto_skcipher *tfm, const u8 *key,
423 			  u32 keylen, u8 cipher_type)
424 {
425 	struct otx_cpt_enc_ctx *ctx = crypto_skcipher_ctx(tfm);
426 
427 	if (keylen != DES3_EDE_KEY_SIZE)
428 		return -EINVAL;
429 
430 	ctx->key_len = keylen;
431 	ctx->cipher_type = cipher_type;
432 
433 	memcpy(ctx->enc_key, key, keylen);
434 
435 	return 0;
436 }
437 
438 static int cpt_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
439 			  u32 keylen, u8 cipher_type)
440 {
441 	struct otx_cpt_enc_ctx *ctx = crypto_skcipher_ctx(tfm);
442 
443 	switch (keylen) {
444 	case AES_KEYSIZE_128:
445 		ctx->key_type = OTX_CPT_AES_128_BIT;
446 		break;
447 	case AES_KEYSIZE_192:
448 		ctx->key_type = OTX_CPT_AES_192_BIT;
449 		break;
450 	case AES_KEYSIZE_256:
451 		ctx->key_type = OTX_CPT_AES_256_BIT;
452 		break;
453 	default:
454 		return -EINVAL;
455 	}
456 	ctx->key_len = keylen;
457 	ctx->cipher_type = cipher_type;
458 
459 	memcpy(ctx->enc_key, key, keylen);
460 
461 	return 0;
462 }
463 
464 static int otx_cpt_skcipher_cbc_aes_setkey(struct crypto_skcipher *tfm,
465 					   const u8 *key, u32 keylen)
466 {
467 	return cpt_aes_setkey(tfm, key, keylen, OTX_CPT_AES_CBC);
468 }
469 
470 static int otx_cpt_skcipher_ecb_aes_setkey(struct crypto_skcipher *tfm,
471 					   const u8 *key, u32 keylen)
472 {
473 	return cpt_aes_setkey(tfm, key, keylen, OTX_CPT_AES_ECB);
474 }
475 
476 static int otx_cpt_skcipher_cfb_aes_setkey(struct crypto_skcipher *tfm,
477 					   const u8 *key, u32 keylen)
478 {
479 	return cpt_aes_setkey(tfm, key, keylen, OTX_CPT_AES_CFB);
480 }
481 
482 static int otx_cpt_skcipher_cbc_des3_setkey(struct crypto_skcipher *tfm,
483 					    const u8 *key, u32 keylen)
484 {
485 	return cpt_des_setkey(tfm, key, keylen, OTX_CPT_DES3_CBC);
486 }
487 
488 static int otx_cpt_skcipher_ecb_des3_setkey(struct crypto_skcipher *tfm,
489 					    const u8 *key, u32 keylen)
490 {
491 	return cpt_des_setkey(tfm, key, keylen, OTX_CPT_DES3_ECB);
492 }
493 
494 static int otx_cpt_enc_dec_init(struct crypto_skcipher *tfm)
495 {
496 	struct otx_cpt_enc_ctx *ctx = crypto_skcipher_ctx(tfm);
497 
498 	memset(ctx, 0, sizeof(*ctx));
499 	/*
500 	 * Additional memory for skcipher_request is
501 	 * allocated since the cryptd daemon uses
502 	 * this memory for request_ctx information
503 	 */
504 	crypto_skcipher_set_reqsize_dma(
505 		tfm, sizeof(struct otx_cpt_req_ctx) +
506 		     sizeof(struct skcipher_request));
507 
508 	return 0;
509 }
510 
511 static int cpt_aead_init(struct crypto_aead *tfm, u8 cipher_type, u8 mac_type)
512 {
513 	struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(tfm);
514 
515 	ctx->cipher_type = cipher_type;
516 	ctx->mac_type = mac_type;
517 
518 	/*
519 	 * When selected cipher is NULL we use HMAC opcode instead of
520 	 * FLEXICRYPTO opcode therefore we don't need to use HASH algorithms
521 	 * for calculating ipad and opad
522 	 */
523 	if (ctx->cipher_type != OTX_CPT_CIPHER_NULL) {
524 		switch (ctx->mac_type) {
525 		case OTX_CPT_SHA1:
526 			ctx->hashalg = crypto_alloc_shash("sha1", 0,
527 							  CRYPTO_ALG_ASYNC);
528 			if (IS_ERR(ctx->hashalg))
529 				return PTR_ERR(ctx->hashalg);
530 			break;
531 
532 		case OTX_CPT_SHA256:
533 			ctx->hashalg = crypto_alloc_shash("sha256", 0,
534 							  CRYPTO_ALG_ASYNC);
535 			if (IS_ERR(ctx->hashalg))
536 				return PTR_ERR(ctx->hashalg);
537 			break;
538 
539 		case OTX_CPT_SHA384:
540 			ctx->hashalg = crypto_alloc_shash("sha384", 0,
541 							  CRYPTO_ALG_ASYNC);
542 			if (IS_ERR(ctx->hashalg))
543 				return PTR_ERR(ctx->hashalg);
544 			break;
545 
546 		case OTX_CPT_SHA512:
547 			ctx->hashalg = crypto_alloc_shash("sha512", 0,
548 							  CRYPTO_ALG_ASYNC);
549 			if (IS_ERR(ctx->hashalg))
550 				return PTR_ERR(ctx->hashalg);
551 			break;
552 		}
553 	}
554 
555 	crypto_aead_set_reqsize_dma(tfm, sizeof(struct otx_cpt_req_ctx));
556 
557 	return 0;
558 }
559 
560 static int otx_cpt_aead_cbc_aes_sha1_init(struct crypto_aead *tfm)
561 {
562 	return cpt_aead_init(tfm, OTX_CPT_AES_CBC, OTX_CPT_SHA1);
563 }
564 
565 static int otx_cpt_aead_cbc_aes_sha256_init(struct crypto_aead *tfm)
566 {
567 	return cpt_aead_init(tfm, OTX_CPT_AES_CBC, OTX_CPT_SHA256);
568 }
569 
570 static int otx_cpt_aead_cbc_aes_sha384_init(struct crypto_aead *tfm)
571 {
572 	return cpt_aead_init(tfm, OTX_CPT_AES_CBC, OTX_CPT_SHA384);
573 }
574 
575 static int otx_cpt_aead_cbc_aes_sha512_init(struct crypto_aead *tfm)
576 {
577 	return cpt_aead_init(tfm, OTX_CPT_AES_CBC, OTX_CPT_SHA512);
578 }
579 
580 static int otx_cpt_aead_ecb_null_sha1_init(struct crypto_aead *tfm)
581 {
582 	return cpt_aead_init(tfm, OTX_CPT_CIPHER_NULL, OTX_CPT_SHA1);
583 }
584 
585 static int otx_cpt_aead_ecb_null_sha256_init(struct crypto_aead *tfm)
586 {
587 	return cpt_aead_init(tfm, OTX_CPT_CIPHER_NULL, OTX_CPT_SHA256);
588 }
589 
590 static int otx_cpt_aead_ecb_null_sha384_init(struct crypto_aead *tfm)
591 {
592 	return cpt_aead_init(tfm, OTX_CPT_CIPHER_NULL, OTX_CPT_SHA384);
593 }
594 
595 static int otx_cpt_aead_ecb_null_sha512_init(struct crypto_aead *tfm)
596 {
597 	return cpt_aead_init(tfm, OTX_CPT_CIPHER_NULL, OTX_CPT_SHA512);
598 }
599 
600 static int otx_cpt_aead_gcm_aes_init(struct crypto_aead *tfm)
601 {
602 	return cpt_aead_init(tfm, OTX_CPT_AES_GCM, OTX_CPT_MAC_NULL);
603 }
604 
605 static void otx_cpt_aead_exit(struct crypto_aead *tfm)
606 {
607 	struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(tfm);
608 
609 	kfree(ctx->ipad);
610 	kfree(ctx->opad);
611 	if (ctx->hashalg)
612 		crypto_free_shash(ctx->hashalg);
613 	kfree(ctx->sdesc);
614 }
615 
616 /*
617  * This is the Integrity Check Value validation (aka the authentication tag
618  * length)
619  */
620 static int otx_cpt_aead_set_authsize(struct crypto_aead *tfm,
621 				     unsigned int authsize)
622 {
623 	struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(tfm);
624 
625 	switch (ctx->mac_type) {
626 	case OTX_CPT_SHA1:
627 		if (authsize != SHA1_DIGEST_SIZE &&
628 		    authsize != SHA1_TRUNC_DIGEST_SIZE)
629 			return -EINVAL;
630 
631 		if (authsize == SHA1_TRUNC_DIGEST_SIZE)
632 			ctx->is_trunc_hmac = true;
633 		break;
634 
635 	case OTX_CPT_SHA256:
636 		if (authsize != SHA256_DIGEST_SIZE &&
637 		    authsize != SHA256_TRUNC_DIGEST_SIZE)
638 			return -EINVAL;
639 
640 		if (authsize == SHA256_TRUNC_DIGEST_SIZE)
641 			ctx->is_trunc_hmac = true;
642 		break;
643 
644 	case OTX_CPT_SHA384:
645 		if (authsize != SHA384_DIGEST_SIZE &&
646 		    authsize != SHA384_TRUNC_DIGEST_SIZE)
647 			return -EINVAL;
648 
649 		if (authsize == SHA384_TRUNC_DIGEST_SIZE)
650 			ctx->is_trunc_hmac = true;
651 		break;
652 
653 	case OTX_CPT_SHA512:
654 		if (authsize != SHA512_DIGEST_SIZE &&
655 		    authsize != SHA512_TRUNC_DIGEST_SIZE)
656 			return -EINVAL;
657 
658 		if (authsize == SHA512_TRUNC_DIGEST_SIZE)
659 			ctx->is_trunc_hmac = true;
660 		break;
661 
662 	case OTX_CPT_MAC_NULL:
663 		if (ctx->cipher_type == OTX_CPT_AES_GCM) {
664 			if (authsize != AES_GCM_ICV_SIZE)
665 				return -EINVAL;
666 		} else
667 			return -EINVAL;
668 		break;
669 
670 	default:
671 		return -EINVAL;
672 	}
673 
674 	tfm->authsize = authsize;
675 	return 0;
676 }
677 
678 static struct otx_cpt_sdesc *alloc_sdesc(struct crypto_shash *alg)
679 {
680 	struct otx_cpt_sdesc *sdesc;
681 	int size;
682 
683 	size = sizeof(struct shash_desc) + crypto_shash_descsize(alg);
684 	sdesc = kmalloc(size, GFP_KERNEL);
685 	if (!sdesc)
686 		return NULL;
687 
688 	sdesc->shash.tfm = alg;
689 
690 	return sdesc;
691 }
692 
693 static inline void swap_data32(void *buf, u32 len)
694 {
695 	cpu_to_be32_array(buf, buf, len / 4);
696 }
697 
698 static inline void swap_data64(void *buf, u32 len)
699 {
700 	__be64 *dst = buf;
701 	u64 *src = buf;
702 	int i = 0;
703 
704 	for (i = 0 ; i < len / 8; i++, src++, dst++)
705 		*dst = cpu_to_be64p(src);
706 }
707 
708 static int copy_pad(u8 mac_type, u8 *out_pad, u8 *in_pad)
709 {
710 	struct sha512_state *sha512;
711 	struct sha256_state *sha256;
712 	struct sha1_state *sha1;
713 
714 	switch (mac_type) {
715 	case OTX_CPT_SHA1:
716 		sha1 = (struct sha1_state *) in_pad;
717 		swap_data32(sha1->state, SHA1_DIGEST_SIZE);
718 		memcpy(out_pad, &sha1->state, SHA1_DIGEST_SIZE);
719 		break;
720 
721 	case OTX_CPT_SHA256:
722 		sha256 = (struct sha256_state *) in_pad;
723 		swap_data32(sha256->state, SHA256_DIGEST_SIZE);
724 		memcpy(out_pad, &sha256->state, SHA256_DIGEST_SIZE);
725 		break;
726 
727 	case OTX_CPT_SHA384:
728 	case OTX_CPT_SHA512:
729 		sha512 = (struct sha512_state *) in_pad;
730 		swap_data64(sha512->state, SHA512_DIGEST_SIZE);
731 		memcpy(out_pad, &sha512->state, SHA512_DIGEST_SIZE);
732 		break;
733 
734 	default:
735 		return -EINVAL;
736 	}
737 
738 	return 0;
739 }
740 
741 static int aead_hmac_init(struct crypto_aead *cipher)
742 {
743 	struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(cipher);
744 	int state_size = crypto_shash_statesize(ctx->hashalg);
745 	int ds = crypto_shash_digestsize(ctx->hashalg);
746 	int bs = crypto_shash_blocksize(ctx->hashalg);
747 	int authkeylen = ctx->auth_key_len;
748 	u8 *ipad = NULL, *opad = NULL;
749 	int ret = 0, icount = 0;
750 
751 	ctx->sdesc = alloc_sdesc(ctx->hashalg);
752 	if (!ctx->sdesc)
753 		return -ENOMEM;
754 
755 	ctx->ipad = kzalloc(bs, GFP_KERNEL);
756 	if (!ctx->ipad) {
757 		ret = -ENOMEM;
758 		goto calc_fail;
759 	}
760 
761 	ctx->opad = kzalloc(bs, GFP_KERNEL);
762 	if (!ctx->opad) {
763 		ret = -ENOMEM;
764 		goto calc_fail;
765 	}
766 
767 	ipad = kzalloc(state_size, GFP_KERNEL);
768 	if (!ipad) {
769 		ret = -ENOMEM;
770 		goto calc_fail;
771 	}
772 
773 	opad = kzalloc(state_size, GFP_KERNEL);
774 	if (!opad) {
775 		ret = -ENOMEM;
776 		goto calc_fail;
777 	}
778 
779 	if (authkeylen > bs) {
780 		ret = crypto_shash_digest(&ctx->sdesc->shash, ctx->key,
781 					  authkeylen, ipad);
782 		if (ret)
783 			goto calc_fail;
784 
785 		authkeylen = ds;
786 	} else {
787 		memcpy(ipad, ctx->key, authkeylen);
788 	}
789 
790 	memset(ipad + authkeylen, 0, bs - authkeylen);
791 	memcpy(opad, ipad, bs);
792 
793 	for (icount = 0; icount < bs; icount++) {
794 		ipad[icount] ^= 0x36;
795 		opad[icount] ^= 0x5c;
796 	}
797 
798 	/*
799 	 * Partial Hash calculated from the software
800 	 * algorithm is retrieved for IPAD & OPAD
801 	 */
802 
803 	/* IPAD Calculation */
804 	crypto_shash_init(&ctx->sdesc->shash);
805 	crypto_shash_update(&ctx->sdesc->shash, ipad, bs);
806 	crypto_shash_export(&ctx->sdesc->shash, ipad);
807 	ret = copy_pad(ctx->mac_type, ctx->ipad, ipad);
808 	if (ret)
809 		goto calc_fail;
810 
811 	/* OPAD Calculation */
812 	crypto_shash_init(&ctx->sdesc->shash);
813 	crypto_shash_update(&ctx->sdesc->shash, opad, bs);
814 	crypto_shash_export(&ctx->sdesc->shash, opad);
815 	ret = copy_pad(ctx->mac_type, ctx->opad, opad);
816 	if (ret)
817 		goto calc_fail;
818 
819 	kfree(ipad);
820 	kfree(opad);
821 
822 	return 0;
823 
824 calc_fail:
825 	kfree(ctx->ipad);
826 	ctx->ipad = NULL;
827 	kfree(ctx->opad);
828 	ctx->opad = NULL;
829 	kfree(ipad);
830 	kfree(opad);
831 	kfree(ctx->sdesc);
832 	ctx->sdesc = NULL;
833 
834 	return ret;
835 }
836 
837 static int otx_cpt_aead_cbc_aes_sha_setkey(struct crypto_aead *cipher,
838 					   const unsigned char *key,
839 					   unsigned int keylen)
840 {
841 	struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(cipher);
842 	struct crypto_authenc_key_param *param;
843 	int enckeylen = 0, authkeylen = 0;
844 	struct rtattr *rta = (void *)key;
845 	int status = -EINVAL;
846 
847 	if (!RTA_OK(rta, keylen))
848 		goto badkey;
849 
850 	if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM)
851 		goto badkey;
852 
853 	if (RTA_PAYLOAD(rta) < sizeof(*param))
854 		goto badkey;
855 
856 	param = RTA_DATA(rta);
857 	enckeylen = be32_to_cpu(param->enckeylen);
858 	key += RTA_ALIGN(rta->rta_len);
859 	keylen -= RTA_ALIGN(rta->rta_len);
860 	if (keylen < enckeylen)
861 		goto badkey;
862 
863 	if (keylen > OTX_CPT_MAX_KEY_SIZE)
864 		goto badkey;
865 
866 	authkeylen = keylen - enckeylen;
867 	memcpy(ctx->key, key, keylen);
868 
869 	switch (enckeylen) {
870 	case AES_KEYSIZE_128:
871 		ctx->key_type = OTX_CPT_AES_128_BIT;
872 		break;
873 	case AES_KEYSIZE_192:
874 		ctx->key_type = OTX_CPT_AES_192_BIT;
875 		break;
876 	case AES_KEYSIZE_256:
877 		ctx->key_type = OTX_CPT_AES_256_BIT;
878 		break;
879 	default:
880 		/* Invalid key length */
881 		goto badkey;
882 	}
883 
884 	ctx->enc_key_len = enckeylen;
885 	ctx->auth_key_len = authkeylen;
886 
887 	status = aead_hmac_init(cipher);
888 	if (status)
889 		goto badkey;
890 
891 	return 0;
892 badkey:
893 	return status;
894 }
895 
896 static int otx_cpt_aead_ecb_null_sha_setkey(struct crypto_aead *cipher,
897 					    const unsigned char *key,
898 					    unsigned int keylen)
899 {
900 	struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(cipher);
901 	struct crypto_authenc_key_param *param;
902 	struct rtattr *rta = (void *)key;
903 	int enckeylen = 0;
904 
905 	if (!RTA_OK(rta, keylen))
906 		goto badkey;
907 
908 	if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM)
909 		goto badkey;
910 
911 	if (RTA_PAYLOAD(rta) < sizeof(*param))
912 		goto badkey;
913 
914 	param = RTA_DATA(rta);
915 	enckeylen = be32_to_cpu(param->enckeylen);
916 	key += RTA_ALIGN(rta->rta_len);
917 	keylen -= RTA_ALIGN(rta->rta_len);
918 	if (enckeylen != 0)
919 		goto badkey;
920 
921 	if (keylen > OTX_CPT_MAX_KEY_SIZE)
922 		goto badkey;
923 
924 	memcpy(ctx->key, key, keylen);
925 	ctx->enc_key_len = enckeylen;
926 	ctx->auth_key_len = keylen;
927 	return 0;
928 badkey:
929 	return -EINVAL;
930 }
931 
932 static int otx_cpt_aead_gcm_aes_setkey(struct crypto_aead *cipher,
933 				       const unsigned char *key,
934 				       unsigned int keylen)
935 {
936 	struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(cipher);
937 
938 	/*
939 	 * For aes gcm we expect to get encryption key (16, 24, 32 bytes)
940 	 * and salt (4 bytes)
941 	 */
942 	switch (keylen) {
943 	case AES_KEYSIZE_128 + AES_GCM_SALT_SIZE:
944 		ctx->key_type = OTX_CPT_AES_128_BIT;
945 		ctx->enc_key_len = AES_KEYSIZE_128;
946 		break;
947 	case AES_KEYSIZE_192 + AES_GCM_SALT_SIZE:
948 		ctx->key_type = OTX_CPT_AES_192_BIT;
949 		ctx->enc_key_len = AES_KEYSIZE_192;
950 		break;
951 	case AES_KEYSIZE_256 + AES_GCM_SALT_SIZE:
952 		ctx->key_type = OTX_CPT_AES_256_BIT;
953 		ctx->enc_key_len = AES_KEYSIZE_256;
954 		break;
955 	default:
956 		/* Invalid key and salt length */
957 		return -EINVAL;
958 	}
959 
960 	/* Store encryption key and salt */
961 	memcpy(ctx->key, key, keylen);
962 
963 	return 0;
964 }
965 
966 static inline u32 create_aead_ctx_hdr(struct aead_request *req, u32 enc,
967 				      u32 *argcnt)
968 {
969 	struct otx_cpt_req_ctx *rctx = aead_request_ctx_dma(req);
970 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
971 	struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(tfm);
972 	struct otx_cpt_req_info *req_info = &rctx->cpt_req;
973 	struct otx_cpt_fc_ctx *fctx = &rctx->fctx;
974 	int mac_len = crypto_aead_authsize(tfm);
975 	int ds;
976 
977 	rctx->ctrl_word.e.enc_data_offset = req->assoclen;
978 
979 	switch (ctx->cipher_type) {
980 	case OTX_CPT_AES_CBC:
981 		fctx->enc.enc_ctrl.e.iv_source = OTX_CPT_FROM_CPTR;
982 		/* Copy encryption key to context */
983 		memcpy(fctx->enc.encr_key, ctx->key + ctx->auth_key_len,
984 		       ctx->enc_key_len);
985 		/* Copy IV to context */
986 		memcpy(fctx->enc.encr_iv, req->iv, crypto_aead_ivsize(tfm));
987 
988 		ds = crypto_shash_digestsize(ctx->hashalg);
989 		if (ctx->mac_type == OTX_CPT_SHA384)
990 			ds = SHA512_DIGEST_SIZE;
991 		if (ctx->ipad)
992 			memcpy(fctx->hmac.e.ipad, ctx->ipad, ds);
993 		if (ctx->opad)
994 			memcpy(fctx->hmac.e.opad, ctx->opad, ds);
995 		break;
996 
997 	case OTX_CPT_AES_GCM:
998 		fctx->enc.enc_ctrl.e.iv_source = OTX_CPT_FROM_DPTR;
999 		/* Copy encryption key to context */
1000 		memcpy(fctx->enc.encr_key, ctx->key, ctx->enc_key_len);
1001 		/* Copy salt to context */
1002 		memcpy(fctx->enc.encr_iv, ctx->key + ctx->enc_key_len,
1003 		       AES_GCM_SALT_SIZE);
1004 
1005 		rctx->ctrl_word.e.iv_offset = req->assoclen - AES_GCM_IV_OFFSET;
1006 		break;
1007 
1008 	default:
1009 		/* Unknown cipher type */
1010 		return -EINVAL;
1011 	}
1012 	rctx->ctrl_word.flags = cpu_to_be64(rctx->ctrl_word.cflags);
1013 
1014 	req_info->ctrl.s.dma_mode = OTX_CPT_DMA_GATHER_SCATTER;
1015 	req_info->ctrl.s.se_req = OTX_CPT_SE_CORE_REQ;
1016 	req_info->req.opcode.s.major = OTX_CPT_MAJOR_OP_FC |
1017 				 DMA_MODE_FLAG(OTX_CPT_DMA_GATHER_SCATTER);
1018 	if (enc) {
1019 		req_info->req.opcode.s.minor = 2;
1020 		req_info->req.param1 = req->cryptlen;
1021 		req_info->req.param2 = req->cryptlen + req->assoclen;
1022 	} else {
1023 		req_info->req.opcode.s.minor = 3;
1024 		req_info->req.param1 = req->cryptlen - mac_len;
1025 		req_info->req.param2 = req->cryptlen + req->assoclen - mac_len;
1026 	}
1027 
1028 	fctx->enc.enc_ctrl.e.enc_cipher = ctx->cipher_type;
1029 	fctx->enc.enc_ctrl.e.aes_key = ctx->key_type;
1030 	fctx->enc.enc_ctrl.e.mac_type = ctx->mac_type;
1031 	fctx->enc.enc_ctrl.e.mac_len = mac_len;
1032 	fctx->enc.enc_ctrl.flags = cpu_to_be64(fctx->enc.enc_ctrl.cflags);
1033 
1034 	/*
1035 	 * Storing Packet Data Information in offset
1036 	 * Control Word First 8 bytes
1037 	 */
1038 	req_info->in[*argcnt].vptr = (u8 *)&rctx->ctrl_word;
1039 	req_info->in[*argcnt].size = CONTROL_WORD_LEN;
1040 	req_info->req.dlen += CONTROL_WORD_LEN;
1041 	++(*argcnt);
1042 
1043 	req_info->in[*argcnt].vptr = (u8 *)fctx;
1044 	req_info->in[*argcnt].size = sizeof(struct otx_cpt_fc_ctx);
1045 	req_info->req.dlen += sizeof(struct otx_cpt_fc_ctx);
1046 	++(*argcnt);
1047 
1048 	return 0;
1049 }
1050 
1051 static inline u32 create_hmac_ctx_hdr(struct aead_request *req, u32 *argcnt,
1052 				      u32 enc)
1053 {
1054 	struct otx_cpt_req_ctx *rctx = aead_request_ctx_dma(req);
1055 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1056 	struct otx_cpt_aead_ctx *ctx = crypto_aead_ctx_dma(tfm);
1057 	struct otx_cpt_req_info *req_info = &rctx->cpt_req;
1058 
1059 	req_info->ctrl.s.dma_mode = OTX_CPT_DMA_GATHER_SCATTER;
1060 	req_info->ctrl.s.se_req = OTX_CPT_SE_CORE_REQ;
1061 	req_info->req.opcode.s.major = OTX_CPT_MAJOR_OP_HMAC |
1062 				 DMA_MODE_FLAG(OTX_CPT_DMA_GATHER_SCATTER);
1063 	req_info->is_trunc_hmac = ctx->is_trunc_hmac;
1064 
1065 	req_info->req.opcode.s.minor = 0;
1066 	req_info->req.param1 = ctx->auth_key_len;
1067 	req_info->req.param2 = ctx->mac_type << 8;
1068 
1069 	/* Add authentication key */
1070 	req_info->in[*argcnt].vptr = ctx->key;
1071 	req_info->in[*argcnt].size = round_up(ctx->auth_key_len, 8);
1072 	req_info->req.dlen += round_up(ctx->auth_key_len, 8);
1073 	++(*argcnt);
1074 
1075 	return 0;
1076 }
1077 
1078 static inline u32 create_aead_input_list(struct aead_request *req, u32 enc)
1079 {
1080 	struct otx_cpt_req_ctx *rctx = aead_request_ctx_dma(req);
1081 	struct otx_cpt_req_info *req_info = &rctx->cpt_req;
1082 	u32 inputlen =  req->cryptlen + req->assoclen;
1083 	u32 status, argcnt = 0;
1084 
1085 	status = create_aead_ctx_hdr(req, enc, &argcnt);
1086 	if (status)
1087 		return status;
1088 	update_input_data(req_info, req->src, inputlen, &argcnt);
1089 	req_info->incnt = argcnt;
1090 
1091 	return 0;
1092 }
1093 
1094 static inline u32 create_aead_output_list(struct aead_request *req, u32 enc,
1095 					  u32 mac_len)
1096 {
1097 	struct otx_cpt_req_ctx *rctx = aead_request_ctx_dma(req);
1098 	struct otx_cpt_req_info *req_info =  &rctx->cpt_req;
1099 	u32 argcnt = 0, outputlen = 0;
1100 
1101 	if (enc)
1102 		outputlen = req->cryptlen +  req->assoclen + mac_len;
1103 	else
1104 		outputlen = req->cryptlen + req->assoclen - mac_len;
1105 
1106 	update_output_data(req_info, req->dst, 0, outputlen, &argcnt);
1107 	req_info->outcnt = argcnt;
1108 
1109 	return 0;
1110 }
1111 
1112 static inline u32 create_aead_null_input_list(struct aead_request *req,
1113 					      u32 enc, u32 mac_len)
1114 {
1115 	struct otx_cpt_req_ctx *rctx = aead_request_ctx_dma(req);
1116 	struct otx_cpt_req_info *req_info = &rctx->cpt_req;
1117 	u32 inputlen, argcnt = 0;
1118 
1119 	if (enc)
1120 		inputlen =  req->cryptlen + req->assoclen;
1121 	else
1122 		inputlen =  req->cryptlen + req->assoclen - mac_len;
1123 
1124 	create_hmac_ctx_hdr(req, &argcnt, enc);
1125 	update_input_data(req_info, req->src, inputlen, &argcnt);
1126 	req_info->incnt = argcnt;
1127 
1128 	return 0;
1129 }
1130 
1131 static inline u32 create_aead_null_output_list(struct aead_request *req,
1132 					       u32 enc, u32 mac_len)
1133 {
1134 	struct otx_cpt_req_ctx *rctx = aead_request_ctx_dma(req);
1135 	struct otx_cpt_req_info *req_info =  &rctx->cpt_req;
1136 	struct scatterlist *dst;
1137 	u8 *ptr = NULL;
1138 	int argcnt = 0, status, offset;
1139 	u32 inputlen;
1140 
1141 	if (enc)
1142 		inputlen =  req->cryptlen + req->assoclen;
1143 	else
1144 		inputlen =  req->cryptlen + req->assoclen - mac_len;
1145 
1146 	/*
1147 	 * If source and destination are different
1148 	 * then copy payload to destination
1149 	 */
1150 	if (req->src != req->dst) {
1151 
1152 		ptr = kmalloc(inputlen, (req_info->areq->flags &
1153 					 CRYPTO_TFM_REQ_MAY_SLEEP) ?
1154 					 GFP_KERNEL : GFP_ATOMIC);
1155 		if (!ptr) {
1156 			status = -ENOMEM;
1157 			goto error;
1158 		}
1159 
1160 		status = sg_copy_to_buffer(req->src, sg_nents(req->src), ptr,
1161 					   inputlen);
1162 		if (status != inputlen) {
1163 			status = -EINVAL;
1164 			goto error_free;
1165 		}
1166 		status = sg_copy_from_buffer(req->dst, sg_nents(req->dst), ptr,
1167 					     inputlen);
1168 		if (status != inputlen) {
1169 			status = -EINVAL;
1170 			goto error_free;
1171 		}
1172 		kfree(ptr);
1173 	}
1174 
1175 	if (enc) {
1176 		/*
1177 		 * In an encryption scenario hmac needs
1178 		 * to be appended after payload
1179 		 */
1180 		dst = req->dst;
1181 		offset = inputlen;
1182 		while (offset >= dst->length) {
1183 			offset -= dst->length;
1184 			dst = sg_next(dst);
1185 			if (!dst) {
1186 				status = -ENOENT;
1187 				goto error;
1188 			}
1189 		}
1190 
1191 		update_output_data(req_info, dst, offset, mac_len, &argcnt);
1192 	} else {
1193 		/*
1194 		 * In a decryption scenario calculated hmac for received
1195 		 * payload needs to be compare with hmac received
1196 		 */
1197 		status = sg_copy_buffer(req->src, sg_nents(req->src),
1198 					rctx->fctx.hmac.s.hmac_recv, mac_len,
1199 					inputlen, true);
1200 		if (status != mac_len) {
1201 			status = -EINVAL;
1202 			goto error;
1203 		}
1204 
1205 		req_info->out[argcnt].vptr = rctx->fctx.hmac.s.hmac_calc;
1206 		req_info->out[argcnt].size = mac_len;
1207 		argcnt++;
1208 	}
1209 
1210 	req_info->outcnt = argcnt;
1211 	return 0;
1212 
1213 error_free:
1214 	kfree(ptr);
1215 error:
1216 	return status;
1217 }
1218 
1219 static u32 cpt_aead_enc_dec(struct aead_request *req, u8 reg_type, u8 enc)
1220 {
1221 	struct otx_cpt_req_ctx *rctx = aead_request_ctx_dma(req);
1222 	struct otx_cpt_req_info *req_info = &rctx->cpt_req;
1223 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1224 	struct pci_dev *pdev;
1225 	u32 status, cpu_num;
1226 
1227 	/* Clear control words */
1228 	rctx->ctrl_word.flags = 0;
1229 	rctx->fctx.enc.enc_ctrl.flags = 0;
1230 
1231 	req_info->callback = otx_cpt_aead_callback;
1232 	req_info->areq = &req->base;
1233 	req_info->req_type = reg_type;
1234 	req_info->is_enc = enc;
1235 	req_info->is_trunc_hmac = false;
1236 
1237 	switch (reg_type) {
1238 	case OTX_CPT_AEAD_ENC_DEC_REQ:
1239 		status = create_aead_input_list(req, enc);
1240 		if (status)
1241 			return status;
1242 		status = create_aead_output_list(req, enc,
1243 						 crypto_aead_authsize(tfm));
1244 		if (status)
1245 			return status;
1246 		break;
1247 
1248 	case OTX_CPT_AEAD_ENC_DEC_NULL_REQ:
1249 		status = create_aead_null_input_list(req, enc,
1250 						     crypto_aead_authsize(tfm));
1251 		if (status)
1252 			return status;
1253 		status = create_aead_null_output_list(req, enc,
1254 						crypto_aead_authsize(tfm));
1255 		if (status)
1256 			return status;
1257 		break;
1258 
1259 	default:
1260 		return -EINVAL;
1261 	}
1262 
1263 	/* Validate that request doesn't exceed maximum CPT supported size */
1264 	if (req_info->req.param1 > OTX_CPT_MAX_REQ_SIZE ||
1265 	    req_info->req.param2 > OTX_CPT_MAX_REQ_SIZE)
1266 		return -E2BIG;
1267 
1268 	status = get_se_device(&pdev, &cpu_num);
1269 	if (status)
1270 		return status;
1271 
1272 	req_info->ctrl.s.grp = 0;
1273 
1274 	status = otx_cpt_do_request(pdev, req_info, cpu_num);
1275 	/*
1276 	 * We perform an asynchronous send and once
1277 	 * the request is completed the driver would
1278 	 * intimate through registered call back functions
1279 	 */
1280 	return status;
1281 }
1282 
1283 static int otx_cpt_aead_encrypt(struct aead_request *req)
1284 {
1285 	return cpt_aead_enc_dec(req, OTX_CPT_AEAD_ENC_DEC_REQ, true);
1286 }
1287 
1288 static int otx_cpt_aead_decrypt(struct aead_request *req)
1289 {
1290 	return cpt_aead_enc_dec(req, OTX_CPT_AEAD_ENC_DEC_REQ, false);
1291 }
1292 
1293 static int otx_cpt_aead_null_encrypt(struct aead_request *req)
1294 {
1295 	return cpt_aead_enc_dec(req, OTX_CPT_AEAD_ENC_DEC_NULL_REQ, true);
1296 }
1297 
1298 static int otx_cpt_aead_null_decrypt(struct aead_request *req)
1299 {
1300 	return cpt_aead_enc_dec(req, OTX_CPT_AEAD_ENC_DEC_NULL_REQ, false);
1301 }
1302 
1303 static struct skcipher_alg otx_cpt_skciphers[] = { {
1304 	.base.cra_name = "xts(aes)",
1305 	.base.cra_driver_name = "cpt_xts_aes",
1306 	.base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
1307 	.base.cra_blocksize = AES_BLOCK_SIZE,
1308 	.base.cra_ctxsize = sizeof(struct otx_cpt_enc_ctx),
1309 	.base.cra_alignmask = 7,
1310 	.base.cra_priority = 4001,
1311 	.base.cra_module = THIS_MODULE,
1312 
1313 	.init = otx_cpt_enc_dec_init,
1314 	.ivsize = AES_BLOCK_SIZE,
1315 	.min_keysize = 2 * AES_MIN_KEY_SIZE,
1316 	.max_keysize = 2 * AES_MAX_KEY_SIZE,
1317 	.setkey = otx_cpt_skcipher_xts_setkey,
1318 	.encrypt = otx_cpt_skcipher_encrypt,
1319 	.decrypt = otx_cpt_skcipher_decrypt,
1320 }, {
1321 	.base.cra_name = "cbc(aes)",
1322 	.base.cra_driver_name = "cpt_cbc_aes",
1323 	.base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
1324 	.base.cra_blocksize = AES_BLOCK_SIZE,
1325 	.base.cra_ctxsize = sizeof(struct otx_cpt_enc_ctx),
1326 	.base.cra_alignmask = 7,
1327 	.base.cra_priority = 4001,
1328 	.base.cra_module = THIS_MODULE,
1329 
1330 	.init = otx_cpt_enc_dec_init,
1331 	.ivsize = AES_BLOCK_SIZE,
1332 	.min_keysize = AES_MIN_KEY_SIZE,
1333 	.max_keysize = AES_MAX_KEY_SIZE,
1334 	.setkey = otx_cpt_skcipher_cbc_aes_setkey,
1335 	.encrypt = otx_cpt_skcipher_encrypt,
1336 	.decrypt = otx_cpt_skcipher_decrypt,
1337 }, {
1338 	.base.cra_name = "ecb(aes)",
1339 	.base.cra_driver_name = "cpt_ecb_aes",
1340 	.base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
1341 	.base.cra_blocksize = AES_BLOCK_SIZE,
1342 	.base.cra_ctxsize = sizeof(struct otx_cpt_enc_ctx),
1343 	.base.cra_alignmask = 7,
1344 	.base.cra_priority = 4001,
1345 	.base.cra_module = THIS_MODULE,
1346 
1347 	.init = otx_cpt_enc_dec_init,
1348 	.ivsize = 0,
1349 	.min_keysize = AES_MIN_KEY_SIZE,
1350 	.max_keysize = AES_MAX_KEY_SIZE,
1351 	.setkey = otx_cpt_skcipher_ecb_aes_setkey,
1352 	.encrypt = otx_cpt_skcipher_encrypt,
1353 	.decrypt = otx_cpt_skcipher_decrypt,
1354 }, {
1355 	.base.cra_name = "cfb(aes)",
1356 	.base.cra_driver_name = "cpt_cfb_aes",
1357 	.base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
1358 	.base.cra_blocksize = AES_BLOCK_SIZE,
1359 	.base.cra_ctxsize = sizeof(struct otx_cpt_enc_ctx),
1360 	.base.cra_alignmask = 7,
1361 	.base.cra_priority = 4001,
1362 	.base.cra_module = THIS_MODULE,
1363 
1364 	.init = otx_cpt_enc_dec_init,
1365 	.ivsize = AES_BLOCK_SIZE,
1366 	.min_keysize = AES_MIN_KEY_SIZE,
1367 	.max_keysize = AES_MAX_KEY_SIZE,
1368 	.setkey = otx_cpt_skcipher_cfb_aes_setkey,
1369 	.encrypt = otx_cpt_skcipher_encrypt,
1370 	.decrypt = otx_cpt_skcipher_decrypt,
1371 }, {
1372 	.base.cra_name = "cbc(des3_ede)",
1373 	.base.cra_driver_name = "cpt_cbc_des3_ede",
1374 	.base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
1375 	.base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1376 	.base.cra_ctxsize = sizeof(struct otx_cpt_des3_ctx),
1377 	.base.cra_alignmask = 7,
1378 	.base.cra_priority = 4001,
1379 	.base.cra_module = THIS_MODULE,
1380 
1381 	.init = otx_cpt_enc_dec_init,
1382 	.min_keysize = DES3_EDE_KEY_SIZE,
1383 	.max_keysize = DES3_EDE_KEY_SIZE,
1384 	.ivsize = DES_BLOCK_SIZE,
1385 	.setkey = otx_cpt_skcipher_cbc_des3_setkey,
1386 	.encrypt = otx_cpt_skcipher_encrypt,
1387 	.decrypt = otx_cpt_skcipher_decrypt,
1388 }, {
1389 	.base.cra_name = "ecb(des3_ede)",
1390 	.base.cra_driver_name = "cpt_ecb_des3_ede",
1391 	.base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
1392 	.base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1393 	.base.cra_ctxsize = sizeof(struct otx_cpt_des3_ctx),
1394 	.base.cra_alignmask = 7,
1395 	.base.cra_priority = 4001,
1396 	.base.cra_module = THIS_MODULE,
1397 
1398 	.init = otx_cpt_enc_dec_init,
1399 	.min_keysize = DES3_EDE_KEY_SIZE,
1400 	.max_keysize = DES3_EDE_KEY_SIZE,
1401 	.ivsize = 0,
1402 	.setkey = otx_cpt_skcipher_ecb_des3_setkey,
1403 	.encrypt = otx_cpt_skcipher_encrypt,
1404 	.decrypt = otx_cpt_skcipher_decrypt,
1405 } };
1406 
1407 static struct aead_alg otx_cpt_aeads[] = { {
1408 	.base = {
1409 		.cra_name = "authenc(hmac(sha1),cbc(aes))",
1410 		.cra_driver_name = "cpt_hmac_sha1_cbc_aes",
1411 		.cra_blocksize = AES_BLOCK_SIZE,
1412 		.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
1413 		.cra_ctxsize = sizeof(struct otx_cpt_aead_ctx) + CRYPTO_DMA_PADDING,
1414 		.cra_priority = 4001,
1415 		.cra_alignmask = 0,
1416 		.cra_module = THIS_MODULE,
1417 	},
1418 	.init = otx_cpt_aead_cbc_aes_sha1_init,
1419 	.exit = otx_cpt_aead_exit,
1420 	.setkey = otx_cpt_aead_cbc_aes_sha_setkey,
1421 	.setauthsize = otx_cpt_aead_set_authsize,
1422 	.encrypt = otx_cpt_aead_encrypt,
1423 	.decrypt = otx_cpt_aead_decrypt,
1424 	.ivsize = AES_BLOCK_SIZE,
1425 	.maxauthsize = SHA1_DIGEST_SIZE,
1426 }, {
1427 	.base = {
1428 		.cra_name = "authenc(hmac(sha256),cbc(aes))",
1429 		.cra_driver_name = "cpt_hmac_sha256_cbc_aes",
1430 		.cra_blocksize = AES_BLOCK_SIZE,
1431 		.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
1432 		.cra_ctxsize = sizeof(struct otx_cpt_aead_ctx) + CRYPTO_DMA_PADDING,
1433 		.cra_priority = 4001,
1434 		.cra_alignmask = 0,
1435 		.cra_module = THIS_MODULE,
1436 	},
1437 	.init = otx_cpt_aead_cbc_aes_sha256_init,
1438 	.exit = otx_cpt_aead_exit,
1439 	.setkey = otx_cpt_aead_cbc_aes_sha_setkey,
1440 	.setauthsize = otx_cpt_aead_set_authsize,
1441 	.encrypt = otx_cpt_aead_encrypt,
1442 	.decrypt = otx_cpt_aead_decrypt,
1443 	.ivsize = AES_BLOCK_SIZE,
1444 	.maxauthsize = SHA256_DIGEST_SIZE,
1445 }, {
1446 	.base = {
1447 		.cra_name = "authenc(hmac(sha384),cbc(aes))",
1448 		.cra_driver_name = "cpt_hmac_sha384_cbc_aes",
1449 		.cra_blocksize = AES_BLOCK_SIZE,
1450 		.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
1451 		.cra_ctxsize = sizeof(struct otx_cpt_aead_ctx) + CRYPTO_DMA_PADDING,
1452 		.cra_priority = 4001,
1453 		.cra_alignmask = 0,
1454 		.cra_module = THIS_MODULE,
1455 	},
1456 	.init = otx_cpt_aead_cbc_aes_sha384_init,
1457 	.exit = otx_cpt_aead_exit,
1458 	.setkey = otx_cpt_aead_cbc_aes_sha_setkey,
1459 	.setauthsize = otx_cpt_aead_set_authsize,
1460 	.encrypt = otx_cpt_aead_encrypt,
1461 	.decrypt = otx_cpt_aead_decrypt,
1462 	.ivsize = AES_BLOCK_SIZE,
1463 	.maxauthsize = SHA384_DIGEST_SIZE,
1464 }, {
1465 	.base = {
1466 		.cra_name = "authenc(hmac(sha512),cbc(aes))",
1467 		.cra_driver_name = "cpt_hmac_sha512_cbc_aes",
1468 		.cra_blocksize = AES_BLOCK_SIZE,
1469 		.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
1470 		.cra_ctxsize = sizeof(struct otx_cpt_aead_ctx) + CRYPTO_DMA_PADDING,
1471 		.cra_priority = 4001,
1472 		.cra_alignmask = 0,
1473 		.cra_module = THIS_MODULE,
1474 	},
1475 	.init = otx_cpt_aead_cbc_aes_sha512_init,
1476 	.exit = otx_cpt_aead_exit,
1477 	.setkey = otx_cpt_aead_cbc_aes_sha_setkey,
1478 	.setauthsize = otx_cpt_aead_set_authsize,
1479 	.encrypt = otx_cpt_aead_encrypt,
1480 	.decrypt = otx_cpt_aead_decrypt,
1481 	.ivsize = AES_BLOCK_SIZE,
1482 	.maxauthsize = SHA512_DIGEST_SIZE,
1483 }, {
1484 	.base = {
1485 		.cra_name = "authenc(hmac(sha1),ecb(cipher_null))",
1486 		.cra_driver_name = "cpt_hmac_sha1_ecb_null",
1487 		.cra_blocksize = 1,
1488 		.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
1489 		.cra_ctxsize = sizeof(struct otx_cpt_aead_ctx) + CRYPTO_DMA_PADDING,
1490 		.cra_priority = 4001,
1491 		.cra_alignmask = 0,
1492 		.cra_module = THIS_MODULE,
1493 	},
1494 	.init = otx_cpt_aead_ecb_null_sha1_init,
1495 	.exit = otx_cpt_aead_exit,
1496 	.setkey = otx_cpt_aead_ecb_null_sha_setkey,
1497 	.setauthsize = otx_cpt_aead_set_authsize,
1498 	.encrypt = otx_cpt_aead_null_encrypt,
1499 	.decrypt = otx_cpt_aead_null_decrypt,
1500 	.ivsize = 0,
1501 	.maxauthsize = SHA1_DIGEST_SIZE,
1502 }, {
1503 	.base = {
1504 		.cra_name = "authenc(hmac(sha256),ecb(cipher_null))",
1505 		.cra_driver_name = "cpt_hmac_sha256_ecb_null",
1506 		.cra_blocksize = 1,
1507 		.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
1508 		.cra_ctxsize = sizeof(struct otx_cpt_aead_ctx) + CRYPTO_DMA_PADDING,
1509 		.cra_priority = 4001,
1510 		.cra_alignmask = 0,
1511 		.cra_module = THIS_MODULE,
1512 	},
1513 	.init = otx_cpt_aead_ecb_null_sha256_init,
1514 	.exit = otx_cpt_aead_exit,
1515 	.setkey = otx_cpt_aead_ecb_null_sha_setkey,
1516 	.setauthsize = otx_cpt_aead_set_authsize,
1517 	.encrypt = otx_cpt_aead_null_encrypt,
1518 	.decrypt = otx_cpt_aead_null_decrypt,
1519 	.ivsize = 0,
1520 	.maxauthsize = SHA256_DIGEST_SIZE,
1521 }, {
1522 	.base = {
1523 		.cra_name = "authenc(hmac(sha384),ecb(cipher_null))",
1524 		.cra_driver_name = "cpt_hmac_sha384_ecb_null",
1525 		.cra_blocksize = 1,
1526 		.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
1527 		.cra_ctxsize = sizeof(struct otx_cpt_aead_ctx) + CRYPTO_DMA_PADDING,
1528 		.cra_priority = 4001,
1529 		.cra_alignmask = 0,
1530 		.cra_module = THIS_MODULE,
1531 	},
1532 	.init = otx_cpt_aead_ecb_null_sha384_init,
1533 	.exit = otx_cpt_aead_exit,
1534 	.setkey = otx_cpt_aead_ecb_null_sha_setkey,
1535 	.setauthsize = otx_cpt_aead_set_authsize,
1536 	.encrypt = otx_cpt_aead_null_encrypt,
1537 	.decrypt = otx_cpt_aead_null_decrypt,
1538 	.ivsize = 0,
1539 	.maxauthsize = SHA384_DIGEST_SIZE,
1540 }, {
1541 	.base = {
1542 		.cra_name = "authenc(hmac(sha512),ecb(cipher_null))",
1543 		.cra_driver_name = "cpt_hmac_sha512_ecb_null",
1544 		.cra_blocksize = 1,
1545 		.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
1546 		.cra_ctxsize = sizeof(struct otx_cpt_aead_ctx) + CRYPTO_DMA_PADDING,
1547 		.cra_priority = 4001,
1548 		.cra_alignmask = 0,
1549 		.cra_module = THIS_MODULE,
1550 	},
1551 	.init = otx_cpt_aead_ecb_null_sha512_init,
1552 	.exit = otx_cpt_aead_exit,
1553 	.setkey = otx_cpt_aead_ecb_null_sha_setkey,
1554 	.setauthsize = otx_cpt_aead_set_authsize,
1555 	.encrypt = otx_cpt_aead_null_encrypt,
1556 	.decrypt = otx_cpt_aead_null_decrypt,
1557 	.ivsize = 0,
1558 	.maxauthsize = SHA512_DIGEST_SIZE,
1559 }, {
1560 	.base = {
1561 		.cra_name = "rfc4106(gcm(aes))",
1562 		.cra_driver_name = "cpt_rfc4106_gcm_aes",
1563 		.cra_blocksize = 1,
1564 		.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY,
1565 		.cra_ctxsize = sizeof(struct otx_cpt_aead_ctx) + CRYPTO_DMA_PADDING,
1566 		.cra_priority = 4001,
1567 		.cra_alignmask = 0,
1568 		.cra_module = THIS_MODULE,
1569 	},
1570 	.init = otx_cpt_aead_gcm_aes_init,
1571 	.exit = otx_cpt_aead_exit,
1572 	.setkey = otx_cpt_aead_gcm_aes_setkey,
1573 	.setauthsize = otx_cpt_aead_set_authsize,
1574 	.encrypt = otx_cpt_aead_encrypt,
1575 	.decrypt = otx_cpt_aead_decrypt,
1576 	.ivsize = AES_GCM_IV_SIZE,
1577 	.maxauthsize = AES_GCM_ICV_SIZE,
1578 } };
1579 
1580 static inline int is_any_alg_used(void)
1581 {
1582 	int i;
1583 
1584 	for (i = 0; i < ARRAY_SIZE(otx_cpt_skciphers); i++)
1585 		if (refcount_read(&otx_cpt_skciphers[i].base.cra_refcnt) != 1)
1586 			return true;
1587 	for (i = 0; i < ARRAY_SIZE(otx_cpt_aeads); i++)
1588 		if (refcount_read(&otx_cpt_aeads[i].base.cra_refcnt) != 1)
1589 			return true;
1590 	return false;
1591 }
1592 
1593 static inline int cpt_register_algs(void)
1594 {
1595 	int i, err = 0;
1596 
1597 	if (!IS_ENABLED(CONFIG_DM_CRYPT)) {
1598 		for (i = 0; i < ARRAY_SIZE(otx_cpt_skciphers); i++)
1599 			otx_cpt_skciphers[i].base.cra_flags &= ~CRYPTO_ALG_DEAD;
1600 
1601 		err = crypto_register_skciphers(otx_cpt_skciphers,
1602 						ARRAY_SIZE(otx_cpt_skciphers));
1603 		if (err)
1604 			return err;
1605 	}
1606 
1607 	for (i = 0; i < ARRAY_SIZE(otx_cpt_aeads); i++)
1608 		otx_cpt_aeads[i].base.cra_flags &= ~CRYPTO_ALG_DEAD;
1609 
1610 	err = crypto_register_aeads(otx_cpt_aeads, ARRAY_SIZE(otx_cpt_aeads));
1611 	if (err) {
1612 		crypto_unregister_skciphers(otx_cpt_skciphers,
1613 					    ARRAY_SIZE(otx_cpt_skciphers));
1614 		return err;
1615 	}
1616 
1617 	return 0;
1618 }
1619 
1620 static inline void cpt_unregister_algs(void)
1621 {
1622 	crypto_unregister_skciphers(otx_cpt_skciphers,
1623 				    ARRAY_SIZE(otx_cpt_skciphers));
1624 	crypto_unregister_aeads(otx_cpt_aeads, ARRAY_SIZE(otx_cpt_aeads));
1625 }
1626 
1627 static int compare_func(const void *lptr, const void *rptr)
1628 {
1629 	struct cpt_device_desc *ldesc = (struct cpt_device_desc *) lptr;
1630 	struct cpt_device_desc *rdesc = (struct cpt_device_desc *) rptr;
1631 
1632 	if (ldesc->dev->devfn < rdesc->dev->devfn)
1633 		return -1;
1634 	if (ldesc->dev->devfn > rdesc->dev->devfn)
1635 		return 1;
1636 	return 0;
1637 }
1638 
1639 static void swap_func(void *lptr, void *rptr, int size)
1640 {
1641 	struct cpt_device_desc *ldesc = (struct cpt_device_desc *) lptr;
1642 	struct cpt_device_desc *rdesc = (struct cpt_device_desc *) rptr;
1643 
1644 	swap(*ldesc, *rdesc);
1645 }
1646 
1647 int otx_cpt_crypto_init(struct pci_dev *pdev, struct module *mod,
1648 			enum otx_cptpf_type pf_type,
1649 			enum otx_cptvf_type engine_type,
1650 			int num_queues, int num_devices)
1651 {
1652 	int ret = 0;
1653 	int count;
1654 
1655 	mutex_lock(&mutex);
1656 	switch (engine_type) {
1657 	case OTX_CPT_SE_TYPES:
1658 		count = atomic_read(&se_devices.count);
1659 		if (count >= CPT_MAX_VF_NUM) {
1660 			dev_err(&pdev->dev, "No space to add a new device\n");
1661 			ret = -ENOSPC;
1662 			goto err;
1663 		}
1664 		se_devices.desc[count].pf_type = pf_type;
1665 		se_devices.desc[count].num_queues = num_queues;
1666 		se_devices.desc[count++].dev = pdev;
1667 		atomic_inc(&se_devices.count);
1668 
1669 		if (atomic_read(&se_devices.count) == num_devices &&
1670 		    is_crypto_registered == false) {
1671 			if (cpt_register_algs()) {
1672 				dev_err(&pdev->dev,
1673 				   "Error in registering crypto algorithms\n");
1674 				ret =  -EINVAL;
1675 				goto err;
1676 			}
1677 			try_module_get(mod);
1678 			is_crypto_registered = true;
1679 		}
1680 		sort(se_devices.desc, count, sizeof(struct cpt_device_desc),
1681 		     compare_func, swap_func);
1682 		break;
1683 
1684 	case OTX_CPT_AE_TYPES:
1685 		count = atomic_read(&ae_devices.count);
1686 		if (count >= CPT_MAX_VF_NUM) {
1687 			dev_err(&pdev->dev, "No space to a add new device\n");
1688 			ret = -ENOSPC;
1689 			goto err;
1690 		}
1691 		ae_devices.desc[count].pf_type = pf_type;
1692 		ae_devices.desc[count].num_queues = num_queues;
1693 		ae_devices.desc[count++].dev = pdev;
1694 		atomic_inc(&ae_devices.count);
1695 		sort(ae_devices.desc, count, sizeof(struct cpt_device_desc),
1696 		     compare_func, swap_func);
1697 		break;
1698 
1699 	default:
1700 		dev_err(&pdev->dev, "Unknown VF type %d\n", engine_type);
1701 		ret = BAD_OTX_CPTVF_TYPE;
1702 	}
1703 err:
1704 	mutex_unlock(&mutex);
1705 	return ret;
1706 }
1707 
1708 void otx_cpt_crypto_exit(struct pci_dev *pdev, struct module *mod,
1709 			 enum otx_cptvf_type engine_type)
1710 {
1711 	struct cpt_device_table *dev_tbl;
1712 	bool dev_found = false;
1713 	int i, j, count;
1714 
1715 	mutex_lock(&mutex);
1716 
1717 	dev_tbl = (engine_type == OTX_CPT_AE_TYPES) ? &ae_devices : &se_devices;
1718 	count = atomic_read(&dev_tbl->count);
1719 	for (i = 0; i < count; i++)
1720 		if (pdev == dev_tbl->desc[i].dev) {
1721 			for (j = i; j < count-1; j++)
1722 				dev_tbl->desc[j] = dev_tbl->desc[j+1];
1723 			dev_found = true;
1724 			break;
1725 		}
1726 
1727 	if (!dev_found) {
1728 		dev_err(&pdev->dev, "%s device not found\n", __func__);
1729 		goto exit;
1730 	}
1731 
1732 	if (engine_type != OTX_CPT_AE_TYPES) {
1733 		if (atomic_dec_and_test(&se_devices.count) &&
1734 		    !is_any_alg_used()) {
1735 			cpt_unregister_algs();
1736 			module_put(mod);
1737 			is_crypto_registered = false;
1738 		}
1739 	} else
1740 		atomic_dec(&ae_devices.count);
1741 exit:
1742 	mutex_unlock(&mutex);
1743 }
1744