1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Cipher algorithms supported by the CESA: DES, 3DES and AES. 4 * 5 * Author: Boris Brezillon <boris.brezillon@free-electrons.com> 6 * Author: Arnaud Ebalard <arno@natisbad.org> 7 * 8 * This work is based on an initial version written by 9 * Sebastian Andrzej Siewior < sebastian at breakpoint dot cc > 10 */ 11 12 #include <crypto/aes.h> 13 #include <crypto/internal/des.h> 14 #include <linux/device.h> 15 #include <linux/dma-mapping.h> 16 17 #include "cesa.h" 18 19 struct mv_cesa_des_ctx { 20 struct mv_cesa_ctx base; 21 u8 key[DES_KEY_SIZE]; 22 }; 23 24 struct mv_cesa_des3_ctx { 25 struct mv_cesa_ctx base; 26 u8 key[DES3_EDE_KEY_SIZE]; 27 }; 28 29 struct mv_cesa_aes_ctx { 30 struct mv_cesa_ctx base; 31 struct crypto_aes_ctx aes; 32 }; 33 34 struct mv_cesa_skcipher_dma_iter { 35 struct mv_cesa_dma_iter base; 36 struct mv_cesa_sg_dma_iter src; 37 struct mv_cesa_sg_dma_iter dst; 38 }; 39 40 static inline void 41 mv_cesa_skcipher_req_iter_init(struct mv_cesa_skcipher_dma_iter *iter, 42 struct skcipher_request *req) 43 { 44 mv_cesa_req_dma_iter_init(&iter->base, req->cryptlen); 45 mv_cesa_sg_dma_iter_init(&iter->src, req->src, DMA_TO_DEVICE); 46 mv_cesa_sg_dma_iter_init(&iter->dst, req->dst, DMA_FROM_DEVICE); 47 } 48 49 static inline bool 50 mv_cesa_skcipher_req_iter_next_op(struct mv_cesa_skcipher_dma_iter *iter) 51 { 52 iter->src.op_offset = 0; 53 iter->dst.op_offset = 0; 54 55 return mv_cesa_req_dma_iter_next_op(&iter->base); 56 } 57 58 static inline void 59 mv_cesa_skcipher_dma_cleanup(struct skcipher_request *req) 60 { 61 struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(req); 62 63 if (req->dst != req->src) { 64 dma_unmap_sg(cesa_dev->dev, req->dst, creq->dst_nents, 65 DMA_FROM_DEVICE); 66 dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents, 67 DMA_TO_DEVICE); 68 } else { 69 dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents, 70 DMA_BIDIRECTIONAL); 71 } 72 mv_cesa_dma_cleanup(&creq->base); 73 } 74 75 static inline void mv_cesa_skcipher_cleanup(struct skcipher_request *req) 76 { 77 struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(req); 78 79 if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ) 80 mv_cesa_skcipher_dma_cleanup(req); 81 } 82 83 static void mv_cesa_skcipher_std_step(struct skcipher_request *req) 84 { 85 struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(req); 86 struct mv_cesa_skcipher_std_req *sreq = &creq->std; 87 struct mv_cesa_engine *engine = creq->base.engine; 88 size_t len = min_t(size_t, req->cryptlen - sreq->offset, 89 CESA_SA_SRAM_PAYLOAD_SIZE); 90 91 mv_cesa_adjust_op(engine, &sreq->op); 92 if (engine->pool) 93 memcpy(engine->sram_pool, &sreq->op, sizeof(sreq->op)); 94 else 95 memcpy_toio(engine->sram, &sreq->op, sizeof(sreq->op)); 96 97 len = mv_cesa_sg_copy_to_sram(engine, req->src, creq->src_nents, 98 CESA_SA_DATA_SRAM_OFFSET, len, 99 sreq->offset); 100 101 sreq->size = len; 102 mv_cesa_set_crypt_op_len(&sreq->op, len); 103 104 /* FIXME: only update enc_len field */ 105 if (!sreq->skip_ctx) { 106 if (engine->pool) 107 memcpy(engine->sram_pool, &sreq->op, sizeof(sreq->op)); 108 else 109 memcpy_toio(engine->sram, &sreq->op, sizeof(sreq->op)); 110 sreq->skip_ctx = true; 111 } else if (engine->pool) 112 memcpy(engine->sram_pool, &sreq->op, sizeof(sreq->op.desc)); 113 else 114 memcpy_toio(engine->sram, &sreq->op, sizeof(sreq->op.desc)); 115 116 mv_cesa_set_int_mask(engine, CESA_SA_INT_ACCEL0_DONE); 117 writel_relaxed(CESA_SA_CFG_PARA_DIS, engine->regs + CESA_SA_CFG); 118 WARN_ON(readl(engine->regs + CESA_SA_CMD) & 119 CESA_SA_CMD_EN_CESA_SA_ACCL0); 120 writel(CESA_SA_CMD_EN_CESA_SA_ACCL0, engine->regs + CESA_SA_CMD); 121 } 122 123 static int mv_cesa_skcipher_std_process(struct skcipher_request *req, 124 u32 status) 125 { 126 struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(req); 127 struct mv_cesa_skcipher_std_req *sreq = &creq->std; 128 struct mv_cesa_engine *engine = creq->base.engine; 129 size_t len; 130 131 len = mv_cesa_sg_copy_from_sram(engine, req->dst, creq->dst_nents, 132 CESA_SA_DATA_SRAM_OFFSET, sreq->size, 133 sreq->offset); 134 135 sreq->offset += len; 136 if (sreq->offset < req->cryptlen) 137 return -EINPROGRESS; 138 139 return 0; 140 } 141 142 static int mv_cesa_skcipher_process(struct crypto_async_request *req, 143 u32 status) 144 { 145 struct skcipher_request *skreq = skcipher_request_cast(req); 146 struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(skreq); 147 struct mv_cesa_req *basereq = &creq->base; 148 149 if (mv_cesa_req_get_type(basereq) == CESA_STD_REQ) 150 return mv_cesa_skcipher_std_process(skreq, status); 151 152 return mv_cesa_dma_process(basereq, status); 153 } 154 155 static void mv_cesa_skcipher_step(struct crypto_async_request *req) 156 { 157 struct skcipher_request *skreq = skcipher_request_cast(req); 158 struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(skreq); 159 160 if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ) 161 mv_cesa_dma_step(&creq->base); 162 else 163 mv_cesa_skcipher_std_step(skreq); 164 } 165 166 static inline void 167 mv_cesa_skcipher_dma_prepare(struct skcipher_request *req) 168 { 169 struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(req); 170 struct mv_cesa_req *basereq = &creq->base; 171 172 mv_cesa_dma_prepare(basereq, basereq->engine); 173 } 174 175 static inline void 176 mv_cesa_skcipher_std_prepare(struct skcipher_request *req) 177 { 178 struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(req); 179 struct mv_cesa_skcipher_std_req *sreq = &creq->std; 180 181 sreq->size = 0; 182 sreq->offset = 0; 183 } 184 185 static inline void mv_cesa_skcipher_prepare(struct crypto_async_request *req, 186 struct mv_cesa_engine *engine) 187 { 188 struct skcipher_request *skreq = skcipher_request_cast(req); 189 struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(skreq); 190 191 creq->base.engine = engine; 192 193 if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ) 194 mv_cesa_skcipher_dma_prepare(skreq); 195 else 196 mv_cesa_skcipher_std_prepare(skreq); 197 } 198 199 static inline void 200 mv_cesa_skcipher_req_cleanup(struct crypto_async_request *req) 201 { 202 struct skcipher_request *skreq = skcipher_request_cast(req); 203 204 mv_cesa_skcipher_cleanup(skreq); 205 } 206 207 static void 208 mv_cesa_skcipher_complete(struct crypto_async_request *req) 209 { 210 struct skcipher_request *skreq = skcipher_request_cast(req); 211 struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(skreq); 212 struct mv_cesa_engine *engine = creq->base.engine; 213 unsigned int ivsize; 214 215 atomic_sub(skreq->cryptlen, &engine->load); 216 ivsize = crypto_skcipher_ivsize(crypto_skcipher_reqtfm(skreq)); 217 218 if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ) { 219 struct mv_cesa_req *basereq; 220 221 basereq = &creq->base; 222 memcpy(skreq->iv, basereq->chain.last->op->ctx.skcipher.iv, 223 ivsize); 224 } else if (engine->pool) 225 memcpy(skreq->iv, 226 engine->sram_pool + CESA_SA_CRYPT_IV_SRAM_OFFSET, 227 ivsize); 228 else 229 memcpy_fromio(skreq->iv, 230 engine->sram + CESA_SA_CRYPT_IV_SRAM_OFFSET, 231 ivsize); 232 } 233 234 static const struct mv_cesa_req_ops mv_cesa_skcipher_req_ops = { 235 .step = mv_cesa_skcipher_step, 236 .process = mv_cesa_skcipher_process, 237 .cleanup = mv_cesa_skcipher_req_cleanup, 238 .complete = mv_cesa_skcipher_complete, 239 }; 240 241 static void mv_cesa_skcipher_cra_exit(struct crypto_tfm *tfm) 242 { 243 void *ctx = crypto_tfm_ctx(tfm); 244 245 memzero_explicit(ctx, tfm->__crt_alg->cra_ctxsize); 246 } 247 248 static int mv_cesa_skcipher_cra_init(struct crypto_tfm *tfm) 249 { 250 struct mv_cesa_ctx *ctx = crypto_tfm_ctx(tfm); 251 252 ctx->ops = &mv_cesa_skcipher_req_ops; 253 254 crypto_skcipher_set_reqsize(__crypto_skcipher_cast(tfm), 255 sizeof(struct mv_cesa_skcipher_req)); 256 257 return 0; 258 } 259 260 static int mv_cesa_aes_setkey(struct crypto_skcipher *cipher, const u8 *key, 261 unsigned int len) 262 { 263 struct crypto_tfm *tfm = crypto_skcipher_tfm(cipher); 264 struct mv_cesa_aes_ctx *ctx = crypto_tfm_ctx(tfm); 265 int remaining; 266 int offset; 267 int ret; 268 int i; 269 270 ret = aes_expandkey(&ctx->aes, key, len); 271 if (ret) 272 return ret; 273 274 remaining = (ctx->aes.key_length - 16) / 4; 275 offset = ctx->aes.key_length + 24 - remaining; 276 for (i = 0; i < remaining; i++) 277 ctx->aes.key_dec[4 + i] = ctx->aes.key_enc[offset + i]; 278 279 return 0; 280 } 281 282 static int mv_cesa_des_setkey(struct crypto_skcipher *cipher, const u8 *key, 283 unsigned int len) 284 { 285 struct mv_cesa_des_ctx *ctx = crypto_skcipher_ctx(cipher); 286 int err; 287 288 err = verify_skcipher_des_key(cipher, key); 289 if (err) 290 return err; 291 292 memcpy(ctx->key, key, DES_KEY_SIZE); 293 294 return 0; 295 } 296 297 static int mv_cesa_des3_ede_setkey(struct crypto_skcipher *cipher, 298 const u8 *key, unsigned int len) 299 { 300 struct mv_cesa_des3_ctx *ctx = crypto_skcipher_ctx(cipher); 301 int err; 302 303 err = verify_skcipher_des3_key(cipher, key); 304 if (err) 305 return err; 306 307 memcpy(ctx->key, key, DES3_EDE_KEY_SIZE); 308 309 return 0; 310 } 311 312 static int mv_cesa_skcipher_dma_req_init(struct skcipher_request *req, 313 const struct mv_cesa_op_ctx *op_templ) 314 { 315 struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(req); 316 gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? 317 GFP_KERNEL : GFP_ATOMIC; 318 struct mv_cesa_req *basereq = &creq->base; 319 struct mv_cesa_skcipher_dma_iter iter; 320 bool skip_ctx = false; 321 int ret; 322 323 basereq->chain.first = NULL; 324 basereq->chain.last = NULL; 325 326 if (req->src != req->dst) { 327 ret = dma_map_sg(cesa_dev->dev, req->src, creq->src_nents, 328 DMA_TO_DEVICE); 329 if (!ret) 330 return -ENOMEM; 331 332 ret = dma_map_sg(cesa_dev->dev, req->dst, creq->dst_nents, 333 DMA_FROM_DEVICE); 334 if (!ret) { 335 ret = -ENOMEM; 336 goto err_unmap_src; 337 } 338 } else { 339 ret = dma_map_sg(cesa_dev->dev, req->src, creq->src_nents, 340 DMA_BIDIRECTIONAL); 341 if (!ret) 342 return -ENOMEM; 343 } 344 345 mv_cesa_tdma_desc_iter_init(&basereq->chain); 346 mv_cesa_skcipher_req_iter_init(&iter, req); 347 348 do { 349 struct mv_cesa_op_ctx *op; 350 351 op = mv_cesa_dma_add_op(&basereq->chain, op_templ, skip_ctx, 352 flags); 353 if (IS_ERR(op)) { 354 ret = PTR_ERR(op); 355 goto err_free_tdma; 356 } 357 skip_ctx = true; 358 359 mv_cesa_set_crypt_op_len(op, iter.base.op_len); 360 361 /* Add input transfers */ 362 ret = mv_cesa_dma_add_op_transfers(&basereq->chain, &iter.base, 363 &iter.src, flags); 364 if (ret) 365 goto err_free_tdma; 366 367 /* Add dummy desc to launch the crypto operation */ 368 ret = mv_cesa_dma_add_dummy_launch(&basereq->chain, flags); 369 if (ret) 370 goto err_free_tdma; 371 372 /* Add output transfers */ 373 ret = mv_cesa_dma_add_op_transfers(&basereq->chain, &iter.base, 374 &iter.dst, flags); 375 if (ret) 376 goto err_free_tdma; 377 378 } while (mv_cesa_skcipher_req_iter_next_op(&iter)); 379 380 /* Add output data for IV */ 381 ret = mv_cesa_dma_add_result_op(&basereq->chain, 382 CESA_SA_CFG_SRAM_OFFSET, 383 CESA_SA_DATA_SRAM_OFFSET, 384 CESA_TDMA_SRC_IN_SRAM, flags); 385 386 if (ret) 387 goto err_free_tdma; 388 389 basereq->chain.last->flags |= CESA_TDMA_END_OF_REQ; 390 391 return 0; 392 393 err_free_tdma: 394 mv_cesa_dma_cleanup(basereq); 395 if (req->dst != req->src) 396 dma_unmap_sg(cesa_dev->dev, req->dst, creq->dst_nents, 397 DMA_FROM_DEVICE); 398 399 err_unmap_src: 400 dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents, 401 req->dst != req->src ? DMA_TO_DEVICE : DMA_BIDIRECTIONAL); 402 403 return ret; 404 } 405 406 static inline int 407 mv_cesa_skcipher_std_req_init(struct skcipher_request *req, 408 const struct mv_cesa_op_ctx *op_templ) 409 { 410 struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(req); 411 struct mv_cesa_skcipher_std_req *sreq = &creq->std; 412 struct mv_cesa_req *basereq = &creq->base; 413 414 sreq->op = *op_templ; 415 sreq->skip_ctx = false; 416 basereq->chain.first = NULL; 417 basereq->chain.last = NULL; 418 419 return 0; 420 } 421 422 static int mv_cesa_skcipher_req_init(struct skcipher_request *req, 423 struct mv_cesa_op_ctx *tmpl) 424 { 425 struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(req); 426 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 427 unsigned int blksize = crypto_skcipher_blocksize(tfm); 428 int ret; 429 430 if (!IS_ALIGNED(req->cryptlen, blksize)) 431 return -EINVAL; 432 433 creq->src_nents = sg_nents_for_len(req->src, req->cryptlen); 434 if (creq->src_nents < 0) { 435 dev_err(cesa_dev->dev, "Invalid number of src SG"); 436 return creq->src_nents; 437 } 438 creq->dst_nents = sg_nents_for_len(req->dst, req->cryptlen); 439 if (creq->dst_nents < 0) { 440 dev_err(cesa_dev->dev, "Invalid number of dst SG"); 441 return creq->dst_nents; 442 } 443 444 mv_cesa_update_op_cfg(tmpl, CESA_SA_DESC_CFG_OP_CRYPT_ONLY, 445 CESA_SA_DESC_CFG_OP_MSK); 446 447 if (cesa_dev->caps->has_tdma) 448 ret = mv_cesa_skcipher_dma_req_init(req, tmpl); 449 else 450 ret = mv_cesa_skcipher_std_req_init(req, tmpl); 451 452 return ret; 453 } 454 455 static int mv_cesa_skcipher_queue_req(struct skcipher_request *req, 456 struct mv_cesa_op_ctx *tmpl) 457 { 458 int ret; 459 struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(req); 460 struct mv_cesa_engine *engine; 461 462 ret = mv_cesa_skcipher_req_init(req, tmpl); 463 if (ret) 464 return ret; 465 466 engine = mv_cesa_select_engine(req->cryptlen); 467 mv_cesa_skcipher_prepare(&req->base, engine); 468 469 ret = mv_cesa_queue_req(&req->base, &creq->base); 470 471 if (mv_cesa_req_needs_cleanup(&req->base, ret)) 472 mv_cesa_skcipher_cleanup(req); 473 474 return ret; 475 } 476 477 static int mv_cesa_des_op(struct skcipher_request *req, 478 struct mv_cesa_op_ctx *tmpl) 479 { 480 struct mv_cesa_des_ctx *ctx = crypto_tfm_ctx(req->base.tfm); 481 482 mv_cesa_update_op_cfg(tmpl, CESA_SA_DESC_CFG_CRYPTM_DES, 483 CESA_SA_DESC_CFG_CRYPTM_MSK); 484 485 memcpy(tmpl->ctx.skcipher.key, ctx->key, DES_KEY_SIZE); 486 487 return mv_cesa_skcipher_queue_req(req, tmpl); 488 } 489 490 static int mv_cesa_ecb_des_encrypt(struct skcipher_request *req) 491 { 492 struct mv_cesa_op_ctx tmpl = { }; 493 494 mv_cesa_set_op_cfg(&tmpl, 495 CESA_SA_DESC_CFG_CRYPTCM_ECB | 496 CESA_SA_DESC_CFG_DIR_ENC); 497 498 return mv_cesa_des_op(req, &tmpl); 499 } 500 501 static int mv_cesa_ecb_des_decrypt(struct skcipher_request *req) 502 { 503 struct mv_cesa_op_ctx tmpl = { }; 504 505 mv_cesa_set_op_cfg(&tmpl, 506 CESA_SA_DESC_CFG_CRYPTCM_ECB | 507 CESA_SA_DESC_CFG_DIR_DEC); 508 509 return mv_cesa_des_op(req, &tmpl); 510 } 511 512 struct skcipher_alg mv_cesa_ecb_des_alg = { 513 .setkey = mv_cesa_des_setkey, 514 .encrypt = mv_cesa_ecb_des_encrypt, 515 .decrypt = mv_cesa_ecb_des_decrypt, 516 .min_keysize = DES_KEY_SIZE, 517 .max_keysize = DES_KEY_SIZE, 518 .base = { 519 .cra_name = "ecb(des)", 520 .cra_driver_name = "mv-ecb-des", 521 .cra_priority = 300, 522 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC | 523 CRYPTO_ALG_ALLOCATES_MEMORY, 524 .cra_blocksize = DES_BLOCK_SIZE, 525 .cra_ctxsize = sizeof(struct mv_cesa_des_ctx), 526 .cra_alignmask = 0, 527 .cra_module = THIS_MODULE, 528 .cra_init = mv_cesa_skcipher_cra_init, 529 .cra_exit = mv_cesa_skcipher_cra_exit, 530 }, 531 }; 532 533 static int mv_cesa_cbc_des_op(struct skcipher_request *req, 534 struct mv_cesa_op_ctx *tmpl) 535 { 536 mv_cesa_update_op_cfg(tmpl, CESA_SA_DESC_CFG_CRYPTCM_CBC, 537 CESA_SA_DESC_CFG_CRYPTCM_MSK); 538 539 memcpy(tmpl->ctx.skcipher.iv, req->iv, DES_BLOCK_SIZE); 540 541 return mv_cesa_des_op(req, tmpl); 542 } 543 544 static int mv_cesa_cbc_des_encrypt(struct skcipher_request *req) 545 { 546 struct mv_cesa_op_ctx tmpl = { }; 547 548 mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_DIR_ENC); 549 550 return mv_cesa_cbc_des_op(req, &tmpl); 551 } 552 553 static int mv_cesa_cbc_des_decrypt(struct skcipher_request *req) 554 { 555 struct mv_cesa_op_ctx tmpl = { }; 556 557 mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_DIR_DEC); 558 559 return mv_cesa_cbc_des_op(req, &tmpl); 560 } 561 562 struct skcipher_alg mv_cesa_cbc_des_alg = { 563 .setkey = mv_cesa_des_setkey, 564 .encrypt = mv_cesa_cbc_des_encrypt, 565 .decrypt = mv_cesa_cbc_des_decrypt, 566 .min_keysize = DES_KEY_SIZE, 567 .max_keysize = DES_KEY_SIZE, 568 .ivsize = DES_BLOCK_SIZE, 569 .base = { 570 .cra_name = "cbc(des)", 571 .cra_driver_name = "mv-cbc-des", 572 .cra_priority = 300, 573 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC | 574 CRYPTO_ALG_ALLOCATES_MEMORY, 575 .cra_blocksize = DES_BLOCK_SIZE, 576 .cra_ctxsize = sizeof(struct mv_cesa_des_ctx), 577 .cra_alignmask = 0, 578 .cra_module = THIS_MODULE, 579 .cra_init = mv_cesa_skcipher_cra_init, 580 .cra_exit = mv_cesa_skcipher_cra_exit, 581 }, 582 }; 583 584 static int mv_cesa_des3_op(struct skcipher_request *req, 585 struct mv_cesa_op_ctx *tmpl) 586 { 587 struct mv_cesa_des3_ctx *ctx = crypto_tfm_ctx(req->base.tfm); 588 589 mv_cesa_update_op_cfg(tmpl, CESA_SA_DESC_CFG_CRYPTM_3DES, 590 CESA_SA_DESC_CFG_CRYPTM_MSK); 591 592 memcpy(tmpl->ctx.skcipher.key, ctx->key, DES3_EDE_KEY_SIZE); 593 594 return mv_cesa_skcipher_queue_req(req, tmpl); 595 } 596 597 static int mv_cesa_ecb_des3_ede_encrypt(struct skcipher_request *req) 598 { 599 struct mv_cesa_op_ctx tmpl = { }; 600 601 mv_cesa_set_op_cfg(&tmpl, 602 CESA_SA_DESC_CFG_CRYPTCM_ECB | 603 CESA_SA_DESC_CFG_3DES_EDE | 604 CESA_SA_DESC_CFG_DIR_ENC); 605 606 return mv_cesa_des3_op(req, &tmpl); 607 } 608 609 static int mv_cesa_ecb_des3_ede_decrypt(struct skcipher_request *req) 610 { 611 struct mv_cesa_op_ctx tmpl = { }; 612 613 mv_cesa_set_op_cfg(&tmpl, 614 CESA_SA_DESC_CFG_CRYPTCM_ECB | 615 CESA_SA_DESC_CFG_3DES_EDE | 616 CESA_SA_DESC_CFG_DIR_DEC); 617 618 return mv_cesa_des3_op(req, &tmpl); 619 } 620 621 struct skcipher_alg mv_cesa_ecb_des3_ede_alg = { 622 .setkey = mv_cesa_des3_ede_setkey, 623 .encrypt = mv_cesa_ecb_des3_ede_encrypt, 624 .decrypt = mv_cesa_ecb_des3_ede_decrypt, 625 .min_keysize = DES3_EDE_KEY_SIZE, 626 .max_keysize = DES3_EDE_KEY_SIZE, 627 .base = { 628 .cra_name = "ecb(des3_ede)", 629 .cra_driver_name = "mv-ecb-des3-ede", 630 .cra_priority = 300, 631 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC | 632 CRYPTO_ALG_ALLOCATES_MEMORY, 633 .cra_blocksize = DES3_EDE_BLOCK_SIZE, 634 .cra_ctxsize = sizeof(struct mv_cesa_des3_ctx), 635 .cra_alignmask = 0, 636 .cra_module = THIS_MODULE, 637 .cra_init = mv_cesa_skcipher_cra_init, 638 .cra_exit = mv_cesa_skcipher_cra_exit, 639 }, 640 }; 641 642 static int mv_cesa_cbc_des3_op(struct skcipher_request *req, 643 struct mv_cesa_op_ctx *tmpl) 644 { 645 memcpy(tmpl->ctx.skcipher.iv, req->iv, DES3_EDE_BLOCK_SIZE); 646 647 return mv_cesa_des3_op(req, tmpl); 648 } 649 650 static int mv_cesa_cbc_des3_ede_encrypt(struct skcipher_request *req) 651 { 652 struct mv_cesa_op_ctx tmpl = { }; 653 654 mv_cesa_set_op_cfg(&tmpl, 655 CESA_SA_DESC_CFG_CRYPTCM_CBC | 656 CESA_SA_DESC_CFG_3DES_EDE | 657 CESA_SA_DESC_CFG_DIR_ENC); 658 659 return mv_cesa_cbc_des3_op(req, &tmpl); 660 } 661 662 static int mv_cesa_cbc_des3_ede_decrypt(struct skcipher_request *req) 663 { 664 struct mv_cesa_op_ctx tmpl = { }; 665 666 mv_cesa_set_op_cfg(&tmpl, 667 CESA_SA_DESC_CFG_CRYPTCM_CBC | 668 CESA_SA_DESC_CFG_3DES_EDE | 669 CESA_SA_DESC_CFG_DIR_DEC); 670 671 return mv_cesa_cbc_des3_op(req, &tmpl); 672 } 673 674 struct skcipher_alg mv_cesa_cbc_des3_ede_alg = { 675 .setkey = mv_cesa_des3_ede_setkey, 676 .encrypt = mv_cesa_cbc_des3_ede_encrypt, 677 .decrypt = mv_cesa_cbc_des3_ede_decrypt, 678 .min_keysize = DES3_EDE_KEY_SIZE, 679 .max_keysize = DES3_EDE_KEY_SIZE, 680 .ivsize = DES3_EDE_BLOCK_SIZE, 681 .base = { 682 .cra_name = "cbc(des3_ede)", 683 .cra_driver_name = "mv-cbc-des3-ede", 684 .cra_priority = 300, 685 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC | 686 CRYPTO_ALG_ALLOCATES_MEMORY, 687 .cra_blocksize = DES3_EDE_BLOCK_SIZE, 688 .cra_ctxsize = sizeof(struct mv_cesa_des3_ctx), 689 .cra_alignmask = 0, 690 .cra_module = THIS_MODULE, 691 .cra_init = mv_cesa_skcipher_cra_init, 692 .cra_exit = mv_cesa_skcipher_cra_exit, 693 }, 694 }; 695 696 static int mv_cesa_aes_op(struct skcipher_request *req, 697 struct mv_cesa_op_ctx *tmpl) 698 { 699 struct mv_cesa_aes_ctx *ctx = crypto_tfm_ctx(req->base.tfm); 700 int i; 701 u32 *key; 702 u32 cfg; 703 704 cfg = CESA_SA_DESC_CFG_CRYPTM_AES; 705 706 if (mv_cesa_get_op_cfg(tmpl) & CESA_SA_DESC_CFG_DIR_DEC) 707 key = ctx->aes.key_dec; 708 else 709 key = ctx->aes.key_enc; 710 711 for (i = 0; i < ctx->aes.key_length / sizeof(u32); i++) 712 tmpl->ctx.skcipher.key[i] = cpu_to_le32(key[i]); 713 714 if (ctx->aes.key_length == 24) 715 cfg |= CESA_SA_DESC_CFG_AES_LEN_192; 716 else if (ctx->aes.key_length == 32) 717 cfg |= CESA_SA_DESC_CFG_AES_LEN_256; 718 719 mv_cesa_update_op_cfg(tmpl, cfg, 720 CESA_SA_DESC_CFG_CRYPTM_MSK | 721 CESA_SA_DESC_CFG_AES_LEN_MSK); 722 723 return mv_cesa_skcipher_queue_req(req, tmpl); 724 } 725 726 static int mv_cesa_ecb_aes_encrypt(struct skcipher_request *req) 727 { 728 struct mv_cesa_op_ctx tmpl = { }; 729 730 mv_cesa_set_op_cfg(&tmpl, 731 CESA_SA_DESC_CFG_CRYPTCM_ECB | 732 CESA_SA_DESC_CFG_DIR_ENC); 733 734 return mv_cesa_aes_op(req, &tmpl); 735 } 736 737 static int mv_cesa_ecb_aes_decrypt(struct skcipher_request *req) 738 { 739 struct mv_cesa_op_ctx tmpl = { }; 740 741 mv_cesa_set_op_cfg(&tmpl, 742 CESA_SA_DESC_CFG_CRYPTCM_ECB | 743 CESA_SA_DESC_CFG_DIR_DEC); 744 745 return mv_cesa_aes_op(req, &tmpl); 746 } 747 748 struct skcipher_alg mv_cesa_ecb_aes_alg = { 749 .setkey = mv_cesa_aes_setkey, 750 .encrypt = mv_cesa_ecb_aes_encrypt, 751 .decrypt = mv_cesa_ecb_aes_decrypt, 752 .min_keysize = AES_MIN_KEY_SIZE, 753 .max_keysize = AES_MAX_KEY_SIZE, 754 .base = { 755 .cra_name = "ecb(aes)", 756 .cra_driver_name = "mv-ecb-aes", 757 .cra_priority = 300, 758 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC | 759 CRYPTO_ALG_ALLOCATES_MEMORY, 760 .cra_blocksize = AES_BLOCK_SIZE, 761 .cra_ctxsize = sizeof(struct mv_cesa_aes_ctx), 762 .cra_alignmask = 0, 763 .cra_module = THIS_MODULE, 764 .cra_init = mv_cesa_skcipher_cra_init, 765 .cra_exit = mv_cesa_skcipher_cra_exit, 766 }, 767 }; 768 769 static int mv_cesa_cbc_aes_op(struct skcipher_request *req, 770 struct mv_cesa_op_ctx *tmpl) 771 { 772 mv_cesa_update_op_cfg(tmpl, CESA_SA_DESC_CFG_CRYPTCM_CBC, 773 CESA_SA_DESC_CFG_CRYPTCM_MSK); 774 memcpy(tmpl->ctx.skcipher.iv, req->iv, AES_BLOCK_SIZE); 775 776 return mv_cesa_aes_op(req, tmpl); 777 } 778 779 static int mv_cesa_cbc_aes_encrypt(struct skcipher_request *req) 780 { 781 struct mv_cesa_op_ctx tmpl = { }; 782 783 mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_DIR_ENC); 784 785 return mv_cesa_cbc_aes_op(req, &tmpl); 786 } 787 788 static int mv_cesa_cbc_aes_decrypt(struct skcipher_request *req) 789 { 790 struct mv_cesa_op_ctx tmpl = { }; 791 792 mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_DIR_DEC); 793 794 return mv_cesa_cbc_aes_op(req, &tmpl); 795 } 796 797 struct skcipher_alg mv_cesa_cbc_aes_alg = { 798 .setkey = mv_cesa_aes_setkey, 799 .encrypt = mv_cesa_cbc_aes_encrypt, 800 .decrypt = mv_cesa_cbc_aes_decrypt, 801 .min_keysize = AES_MIN_KEY_SIZE, 802 .max_keysize = AES_MAX_KEY_SIZE, 803 .ivsize = AES_BLOCK_SIZE, 804 .base = { 805 .cra_name = "cbc(aes)", 806 .cra_driver_name = "mv-cbc-aes", 807 .cra_priority = 300, 808 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC | 809 CRYPTO_ALG_ALLOCATES_MEMORY, 810 .cra_blocksize = AES_BLOCK_SIZE, 811 .cra_ctxsize = sizeof(struct mv_cesa_aes_ctx), 812 .cra_alignmask = 0, 813 .cra_module = THIS_MODULE, 814 .cra_init = mv_cesa_skcipher_cra_init, 815 .cra_exit = mv_cesa_skcipher_cra_exit, 816 }, 817 }; 818