xref: /linux/drivers/crypto/inside-secure/safexcel_hash.c (revision 140eb5227767c6754742020a16d2691222b9c19b)
1 /*
2  * Copyright (C) 2017 Marvell
3  *
4  * Antoine Tenart <antoine.tenart@free-electrons.com>
5  *
6  * This file is licensed under the terms of the GNU General Public
7  * License version 2. This program is licensed "as is" without any
8  * warranty of any kind, whether express or implied.
9  */
10 
11 #include <crypto/hmac.h>
12 #include <crypto/sha.h>
13 #include <linux/device.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/dmapool.h>
16 
17 
18 #include "safexcel.h"
19 
20 struct safexcel_ahash_ctx {
21 	struct safexcel_context base;
22 	struct safexcel_crypto_priv *priv;
23 
24 	u32 alg;
25 	u32 digest;
26 
27 	u32 ipad[SHA1_DIGEST_SIZE / sizeof(u32)];
28 	u32 opad[SHA1_DIGEST_SIZE / sizeof(u32)];
29 };
30 
31 struct safexcel_ahash_req {
32 	bool last_req;
33 	bool finish;
34 	bool hmac;
35 	bool needs_inv;
36 
37 	u8 state_sz;    /* expected sate size, only set once */
38 	u32 state[SHA256_DIGEST_SIZE / sizeof(u32)] __aligned(sizeof(u32));
39 
40 	u64 len;
41 	u64 processed;
42 
43 	u8 cache[SHA256_BLOCK_SIZE] __aligned(sizeof(u32));
44 	u8 cache_next[SHA256_BLOCK_SIZE] __aligned(sizeof(u32));
45 };
46 
47 struct safexcel_ahash_export_state {
48 	u64 len;
49 	u64 processed;
50 
51 	u32 state[SHA256_DIGEST_SIZE / sizeof(u32)];
52 	u8 cache[SHA256_BLOCK_SIZE];
53 };
54 
55 static void safexcel_hash_token(struct safexcel_command_desc *cdesc,
56 				u32 input_length, u32 result_length)
57 {
58 	struct safexcel_token *token =
59 		(struct safexcel_token *)cdesc->control_data.token;
60 
61 	token[0].opcode = EIP197_TOKEN_OPCODE_DIRECTION;
62 	token[0].packet_length = input_length;
63 	token[0].stat = EIP197_TOKEN_STAT_LAST_HASH;
64 	token[0].instructions = EIP197_TOKEN_INS_TYPE_HASH;
65 
66 	token[1].opcode = EIP197_TOKEN_OPCODE_INSERT;
67 	token[1].packet_length = result_length;
68 	token[1].stat = EIP197_TOKEN_STAT_LAST_HASH |
69 			EIP197_TOKEN_STAT_LAST_PACKET;
70 	token[1].instructions = EIP197_TOKEN_INS_TYPE_OUTPUT |
71 				EIP197_TOKEN_INS_INSERT_HASH_DIGEST;
72 }
73 
74 static void safexcel_context_control(struct safexcel_ahash_ctx *ctx,
75 				     struct safexcel_ahash_req *req,
76 				     struct safexcel_command_desc *cdesc,
77 				     unsigned int digestsize,
78 				     unsigned int blocksize)
79 {
80 	int i;
81 
82 	cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_HASH_OUT;
83 	cdesc->control_data.control0 |= ctx->alg;
84 	cdesc->control_data.control0 |= ctx->digest;
85 
86 	if (ctx->digest == CONTEXT_CONTROL_DIGEST_PRECOMPUTED) {
87 		if (req->processed) {
88 			if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA1)
89 				cdesc->control_data.control0 |= CONTEXT_CONTROL_SIZE(6);
90 			else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA224 ||
91 				 ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA256)
92 				cdesc->control_data.control0 |= CONTEXT_CONTROL_SIZE(9);
93 
94 			cdesc->control_data.control1 |= CONTEXT_CONTROL_DIGEST_CNT;
95 		} else {
96 			cdesc->control_data.control0 |= CONTEXT_CONTROL_RESTART_HASH;
97 		}
98 
99 		if (!req->finish)
100 			cdesc->control_data.control0 |= CONTEXT_CONTROL_NO_FINISH_HASH;
101 
102 		/*
103 		 * Copy the input digest if needed, and setup the context
104 		 * fields. Do this now as we need it to setup the first command
105 		 * descriptor.
106 		 */
107 		if (req->processed) {
108 			for (i = 0; i < digestsize / sizeof(u32); i++)
109 				ctx->base.ctxr->data[i] = cpu_to_le32(req->state[i]);
110 
111 			if (req->finish)
112 				ctx->base.ctxr->data[i] = cpu_to_le32(req->processed / blocksize);
113 		}
114 	} else if (ctx->digest == CONTEXT_CONTROL_DIGEST_HMAC) {
115 		cdesc->control_data.control0 |= CONTEXT_CONTROL_SIZE(10);
116 
117 		memcpy(ctx->base.ctxr->data, ctx->ipad, digestsize);
118 		memcpy(ctx->base.ctxr->data + digestsize / sizeof(u32),
119 		       ctx->opad, digestsize);
120 	}
121 }
122 
123 static int safexcel_handle_req_result(struct safexcel_crypto_priv *priv, int ring,
124 				      struct crypto_async_request *async,
125 				      bool *should_complete, int *ret)
126 {
127 	struct safexcel_result_desc *rdesc;
128 	struct ahash_request *areq = ahash_request_cast(async);
129 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
130 	struct safexcel_ahash_req *sreq = ahash_request_ctx(areq);
131 	int cache_len;
132 
133 	*ret = 0;
134 
135 	spin_lock_bh(&priv->ring[ring].egress_lock);
136 	rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr);
137 	if (IS_ERR(rdesc)) {
138 		dev_err(priv->dev,
139 			"hash: result: could not retrieve the result descriptor\n");
140 		*ret = PTR_ERR(rdesc);
141 	} else if (rdesc->result_data.error_code) {
142 		dev_err(priv->dev,
143 			"hash: result: result descriptor error (%d)\n",
144 			rdesc->result_data.error_code);
145 		*ret = -EINVAL;
146 	}
147 
148 	safexcel_complete(priv, ring);
149 	spin_unlock_bh(&priv->ring[ring].egress_lock);
150 
151 	if (sreq->finish)
152 		memcpy(areq->result, sreq->state,
153 		       crypto_ahash_digestsize(ahash));
154 
155 	dma_unmap_sg(priv->dev, areq->src,
156 		     sg_nents_for_len(areq->src, areq->nbytes), DMA_TO_DEVICE);
157 
158 	safexcel_free_context(priv, async, sreq->state_sz);
159 
160 	cache_len = sreq->len - sreq->processed;
161 	if (cache_len)
162 		memcpy(sreq->cache, sreq->cache_next, cache_len);
163 
164 	*should_complete = true;
165 
166 	return 1;
167 }
168 
169 static int safexcel_ahash_send_req(struct crypto_async_request *async, int ring,
170 				   struct safexcel_request *request,
171 				   int *commands, int *results)
172 {
173 	struct ahash_request *areq = ahash_request_cast(async);
174 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
175 	struct safexcel_ahash_req *req = ahash_request_ctx(areq);
176 	struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
177 	struct safexcel_crypto_priv *priv = ctx->priv;
178 	struct safexcel_command_desc *cdesc, *first_cdesc = NULL;
179 	struct safexcel_result_desc *rdesc;
180 	struct scatterlist *sg;
181 	int i, nents, queued, len, cache_len, extra, n_cdesc = 0, ret = 0;
182 
183 	queued = len = req->len - req->processed;
184 	if (queued < crypto_ahash_blocksize(ahash))
185 		cache_len = queued;
186 	else
187 		cache_len = queued - areq->nbytes;
188 
189 	/*
190 	 * If this is not the last request and the queued data does not fit
191 	 * into full blocks, cache it for the next send() call.
192 	 */
193 	extra = queued & (crypto_ahash_blocksize(ahash) - 1);
194 	if (!req->last_req && extra) {
195 		sg_pcopy_to_buffer(areq->src, sg_nents(areq->src),
196 				   req->cache_next, extra, areq->nbytes - extra);
197 
198 		queued -= extra;
199 		len -= extra;
200 	}
201 
202 	spin_lock_bh(&priv->ring[ring].egress_lock);
203 
204 	/* Add a command descriptor for the cached data, if any */
205 	if (cache_len) {
206 		ctx->base.cache = kzalloc(cache_len, EIP197_GFP_FLAGS(*async));
207 		if (!ctx->base.cache) {
208 			ret = -ENOMEM;
209 			goto unlock;
210 		}
211 		memcpy(ctx->base.cache, req->cache, cache_len);
212 		ctx->base.cache_dma = dma_map_single(priv->dev, ctx->base.cache,
213 						     cache_len, DMA_TO_DEVICE);
214 		if (dma_mapping_error(priv->dev, ctx->base.cache_dma)) {
215 			ret = -EINVAL;
216 			goto free_cache;
217 		}
218 
219 		ctx->base.cache_sz = cache_len;
220 		first_cdesc = safexcel_add_cdesc(priv, ring, 1,
221 						 (cache_len == len),
222 						 ctx->base.cache_dma,
223 						 cache_len, len,
224 						 ctx->base.ctxr_dma);
225 		if (IS_ERR(first_cdesc)) {
226 			ret = PTR_ERR(first_cdesc);
227 			goto unmap_cache;
228 		}
229 		n_cdesc++;
230 
231 		queued -= cache_len;
232 		if (!queued)
233 			goto send_command;
234 	}
235 
236 	/* Now handle the current ahash request buffer(s) */
237 	nents = dma_map_sg(priv->dev, areq->src,
238 		       sg_nents_for_len(areq->src, areq->nbytes),
239 		       DMA_TO_DEVICE);
240 	if (!nents) {
241 		ret = -ENOMEM;
242 		goto cdesc_rollback;
243 	}
244 
245 	for_each_sg(areq->src, sg, nents, i) {
246 		int sglen = sg_dma_len(sg);
247 
248 		/* Do not overflow the request */
249 		if (queued - sglen < 0)
250 			sglen = queued;
251 
252 		cdesc = safexcel_add_cdesc(priv, ring, !n_cdesc,
253 					   !(queued - sglen), sg_dma_address(sg),
254 					   sglen, len, ctx->base.ctxr_dma);
255 		if (IS_ERR(cdesc)) {
256 			ret = PTR_ERR(cdesc);
257 			goto cdesc_rollback;
258 		}
259 		n_cdesc++;
260 
261 		if (n_cdesc == 1)
262 			first_cdesc = cdesc;
263 
264 		queued -= sglen;
265 		if (!queued)
266 			break;
267 	}
268 
269 send_command:
270 	/* Setup the context options */
271 	safexcel_context_control(ctx, req, first_cdesc, req->state_sz,
272 				 crypto_ahash_blocksize(ahash));
273 
274 	/* Add the token */
275 	safexcel_hash_token(first_cdesc, len, req->state_sz);
276 
277 	ctx->base.result_dma = dma_map_single(priv->dev, req->state,
278 					      req->state_sz, DMA_FROM_DEVICE);
279 	if (dma_mapping_error(priv->dev, ctx->base.result_dma)) {
280 		ret = -EINVAL;
281 		goto cdesc_rollback;
282 	}
283 
284 	/* Add a result descriptor */
285 	rdesc = safexcel_add_rdesc(priv, ring, 1, 1, ctx->base.result_dma,
286 				   req->state_sz);
287 	if (IS_ERR(rdesc)) {
288 		ret = PTR_ERR(rdesc);
289 		goto cdesc_rollback;
290 	}
291 
292 	spin_unlock_bh(&priv->ring[ring].egress_lock);
293 
294 	req->processed += len;
295 	request->req = &areq->base;
296 
297 	*commands = n_cdesc;
298 	*results = 1;
299 	return 0;
300 
301 cdesc_rollback:
302 	for (i = 0; i < n_cdesc; i++)
303 		safexcel_ring_rollback_wptr(priv, &priv->ring[ring].cdr);
304 unmap_cache:
305 	if (ctx->base.cache_dma) {
306 		dma_unmap_single(priv->dev, ctx->base.cache_dma,
307 				 ctx->base.cache_sz, DMA_TO_DEVICE);
308 		ctx->base.cache_sz = 0;
309 	}
310 free_cache:
311 	kfree(ctx->base.cache);
312 	ctx->base.cache = NULL;
313 
314 unlock:
315 	spin_unlock_bh(&priv->ring[ring].egress_lock);
316 	return ret;
317 }
318 
319 static inline bool safexcel_ahash_needs_inv_get(struct ahash_request *areq)
320 {
321 	struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
322 	struct safexcel_ahash_req *req = ahash_request_ctx(areq);
323 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
324 	unsigned int state_w_sz = req->state_sz / sizeof(u32);
325 	int i;
326 
327 	for (i = 0; i < state_w_sz; i++)
328 		if (ctx->base.ctxr->data[i] != cpu_to_le32(req->state[i]))
329 			return true;
330 
331 	if (ctx->base.ctxr->data[state_w_sz] !=
332 	    cpu_to_le32(req->processed / crypto_ahash_blocksize(ahash)))
333 		return true;
334 
335 	return false;
336 }
337 
338 static int safexcel_handle_inv_result(struct safexcel_crypto_priv *priv,
339 				      int ring,
340 				      struct crypto_async_request *async,
341 				      bool *should_complete, int *ret)
342 {
343 	struct safexcel_result_desc *rdesc;
344 	struct ahash_request *areq = ahash_request_cast(async);
345 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
346 	struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(ahash);
347 	int enq_ret;
348 
349 	*ret = 0;
350 
351 	spin_lock_bh(&priv->ring[ring].egress_lock);
352 	rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr);
353 	if (IS_ERR(rdesc)) {
354 		dev_err(priv->dev,
355 			"hash: invalidate: could not retrieve the result descriptor\n");
356 		*ret = PTR_ERR(rdesc);
357 	} else if (rdesc->result_data.error_code) {
358 		dev_err(priv->dev,
359 			"hash: invalidate: result descriptor error (%d)\n",
360 			rdesc->result_data.error_code);
361 		*ret = -EINVAL;
362 	}
363 
364 	safexcel_complete(priv, ring);
365 	spin_unlock_bh(&priv->ring[ring].egress_lock);
366 
367 	if (ctx->base.exit_inv) {
368 		dma_pool_free(priv->context_pool, ctx->base.ctxr,
369 			      ctx->base.ctxr_dma);
370 
371 		*should_complete = true;
372 		return 1;
373 	}
374 
375 	ring = safexcel_select_ring(priv);
376 	ctx->base.ring = ring;
377 
378 	spin_lock_bh(&priv->ring[ring].queue_lock);
379 	enq_ret = crypto_enqueue_request(&priv->ring[ring].queue, async);
380 	spin_unlock_bh(&priv->ring[ring].queue_lock);
381 
382 	if (enq_ret != -EINPROGRESS)
383 		*ret = enq_ret;
384 
385 	if (!priv->ring[ring].need_dequeue)
386 		safexcel_dequeue(priv, ring);
387 
388 	*should_complete = false;
389 
390 	return 1;
391 }
392 
393 static int safexcel_handle_result(struct safexcel_crypto_priv *priv, int ring,
394 				  struct crypto_async_request *async,
395 				  bool *should_complete, int *ret)
396 {
397 	struct ahash_request *areq = ahash_request_cast(async);
398 	struct safexcel_ahash_req *req = ahash_request_ctx(areq);
399 	int err;
400 
401 	if (req->needs_inv) {
402 		req->needs_inv = false;
403 		err = safexcel_handle_inv_result(priv, ring, async,
404 						 should_complete, ret);
405 	} else {
406 		err = safexcel_handle_req_result(priv, ring, async,
407 						 should_complete, ret);
408 	}
409 
410 	return err;
411 }
412 
413 static int safexcel_ahash_send_inv(struct crypto_async_request *async,
414 				   int ring, struct safexcel_request *request,
415 				   int *commands, int *results)
416 {
417 	struct ahash_request *areq = ahash_request_cast(async);
418 	struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
419 	int ret;
420 
421 	ret = safexcel_invalidate_cache(async, &ctx->base, ctx->priv,
422 					ctx->base.ctxr_dma, ring, request);
423 	if (unlikely(ret))
424 		return ret;
425 
426 	*commands = 1;
427 	*results = 1;
428 
429 	return 0;
430 }
431 
432 static int safexcel_ahash_send(struct crypto_async_request *async,
433 			       int ring, struct safexcel_request *request,
434 			       int *commands, int *results)
435 {
436 	struct ahash_request *areq = ahash_request_cast(async);
437 	struct safexcel_ahash_req *req = ahash_request_ctx(areq);
438 	int ret;
439 
440 	if (req->needs_inv)
441 		ret = safexcel_ahash_send_inv(async, ring, request,
442 					      commands, results);
443 	else
444 		ret = safexcel_ahash_send_req(async, ring, request,
445 					      commands, results);
446 	return ret;
447 }
448 
449 static int safexcel_ahash_exit_inv(struct crypto_tfm *tfm)
450 {
451 	struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm);
452 	struct safexcel_crypto_priv *priv = ctx->priv;
453 	AHASH_REQUEST_ON_STACK(req, __crypto_ahash_cast(tfm));
454 	struct safexcel_ahash_req *rctx = ahash_request_ctx(req);
455 	struct safexcel_inv_result result = {};
456 	int ring = ctx->base.ring;
457 
458 	memset(req, 0, sizeof(struct ahash_request));
459 
460 	/* create invalidation request */
461 	init_completion(&result.completion);
462 	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
463 				   safexcel_inv_complete, &result);
464 
465 	ahash_request_set_tfm(req, __crypto_ahash_cast(tfm));
466 	ctx = crypto_tfm_ctx(req->base.tfm);
467 	ctx->base.exit_inv = true;
468 	rctx->needs_inv = true;
469 
470 	spin_lock_bh(&priv->ring[ring].queue_lock);
471 	crypto_enqueue_request(&priv->ring[ring].queue, &req->base);
472 	spin_unlock_bh(&priv->ring[ring].queue_lock);
473 
474 	if (!priv->ring[ring].need_dequeue)
475 		safexcel_dequeue(priv, ring);
476 
477 	wait_for_completion_interruptible(&result.completion);
478 
479 	if (result.error) {
480 		dev_warn(priv->dev, "hash: completion error (%d)\n",
481 			 result.error);
482 		return result.error;
483 	}
484 
485 	return 0;
486 }
487 
488 static int safexcel_ahash_cache(struct ahash_request *areq)
489 {
490 	struct safexcel_ahash_req *req = ahash_request_ctx(areq);
491 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
492 	int queued, cache_len;
493 
494 	cache_len = req->len - areq->nbytes - req->processed;
495 	queued = req->len - req->processed;
496 
497 	/*
498 	 * In case there isn't enough bytes to proceed (less than a
499 	 * block size), cache the data until we have enough.
500 	 */
501 	if (cache_len + areq->nbytes <= crypto_ahash_blocksize(ahash)) {
502 		sg_pcopy_to_buffer(areq->src, sg_nents(areq->src),
503 				   req->cache + cache_len,
504 				   areq->nbytes, 0);
505 		return areq->nbytes;
506 	}
507 
508 	/* We could'nt cache all the data */
509 	return -E2BIG;
510 }
511 
512 static int safexcel_ahash_enqueue(struct ahash_request *areq)
513 {
514 	struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
515 	struct safexcel_ahash_req *req = ahash_request_ctx(areq);
516 	struct safexcel_crypto_priv *priv = ctx->priv;
517 	int ret, ring;
518 
519 	req->needs_inv = false;
520 
521 	if (req->processed && ctx->digest == CONTEXT_CONTROL_DIGEST_PRECOMPUTED)
522 		ctx->base.needs_inv = safexcel_ahash_needs_inv_get(areq);
523 
524 	if (ctx->base.ctxr) {
525 		if (ctx->base.needs_inv) {
526 			ctx->base.needs_inv = false;
527 			req->needs_inv = true;
528 		}
529 	} else {
530 		ctx->base.ring = safexcel_select_ring(priv);
531 		ctx->base.ctxr = dma_pool_zalloc(priv->context_pool,
532 						 EIP197_GFP_FLAGS(areq->base),
533 						 &ctx->base.ctxr_dma);
534 		if (!ctx->base.ctxr)
535 			return -ENOMEM;
536 	}
537 
538 	ring = ctx->base.ring;
539 
540 	spin_lock_bh(&priv->ring[ring].queue_lock);
541 	ret = crypto_enqueue_request(&priv->ring[ring].queue, &areq->base);
542 	spin_unlock_bh(&priv->ring[ring].queue_lock);
543 
544 	if (!priv->ring[ring].need_dequeue)
545 		safexcel_dequeue(priv, ring);
546 
547 	return ret;
548 }
549 
550 static int safexcel_ahash_update(struct ahash_request *areq)
551 {
552 	struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
553 	struct safexcel_ahash_req *req = ahash_request_ctx(areq);
554 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
555 
556 	/* If the request is 0 length, do nothing */
557 	if (!areq->nbytes)
558 		return 0;
559 
560 	req->len += areq->nbytes;
561 
562 	safexcel_ahash_cache(areq);
563 
564 	/*
565 	 * We're not doing partial updates when performing an hmac request.
566 	 * Everything will be handled by the final() call.
567 	 */
568 	if (ctx->digest == CONTEXT_CONTROL_DIGEST_HMAC)
569 		return 0;
570 
571 	if (req->hmac)
572 		return safexcel_ahash_enqueue(areq);
573 
574 	if (!req->last_req &&
575 	    req->len - req->processed > crypto_ahash_blocksize(ahash))
576 		return safexcel_ahash_enqueue(areq);
577 
578 	return 0;
579 }
580 
581 static int safexcel_ahash_final(struct ahash_request *areq)
582 {
583 	struct safexcel_ahash_req *req = ahash_request_ctx(areq);
584 	struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
585 
586 	req->last_req = true;
587 	req->finish = true;
588 
589 	/* If we have an overall 0 length request */
590 	if (!(req->len + areq->nbytes)) {
591 		if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA1)
592 			memcpy(areq->result, sha1_zero_message_hash,
593 			       SHA1_DIGEST_SIZE);
594 		else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA224)
595 			memcpy(areq->result, sha224_zero_message_hash,
596 			       SHA224_DIGEST_SIZE);
597 		else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA256)
598 			memcpy(areq->result, sha256_zero_message_hash,
599 			       SHA256_DIGEST_SIZE);
600 
601 		return 0;
602 	}
603 
604 	return safexcel_ahash_enqueue(areq);
605 }
606 
607 static int safexcel_ahash_finup(struct ahash_request *areq)
608 {
609 	struct safexcel_ahash_req *req = ahash_request_ctx(areq);
610 
611 	req->last_req = true;
612 	req->finish = true;
613 
614 	safexcel_ahash_update(areq);
615 	return safexcel_ahash_final(areq);
616 }
617 
618 static int safexcel_ahash_export(struct ahash_request *areq, void *out)
619 {
620 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
621 	struct safexcel_ahash_req *req = ahash_request_ctx(areq);
622 	struct safexcel_ahash_export_state *export = out;
623 
624 	export->len = req->len;
625 	export->processed = req->processed;
626 
627 	memcpy(export->state, req->state, req->state_sz);
628 	memset(export->cache, 0, crypto_ahash_blocksize(ahash));
629 	memcpy(export->cache, req->cache, crypto_ahash_blocksize(ahash));
630 
631 	return 0;
632 }
633 
634 static int safexcel_ahash_import(struct ahash_request *areq, const void *in)
635 {
636 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
637 	struct safexcel_ahash_req *req = ahash_request_ctx(areq);
638 	const struct safexcel_ahash_export_state *export = in;
639 	int ret;
640 
641 	ret = crypto_ahash_init(areq);
642 	if (ret)
643 		return ret;
644 
645 	req->len = export->len;
646 	req->processed = export->processed;
647 
648 	memcpy(req->cache, export->cache, crypto_ahash_blocksize(ahash));
649 	memcpy(req->state, export->state, req->state_sz);
650 
651 	return 0;
652 }
653 
654 static int safexcel_ahash_cra_init(struct crypto_tfm *tfm)
655 {
656 	struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm);
657 	struct safexcel_alg_template *tmpl =
658 		container_of(__crypto_ahash_alg(tfm->__crt_alg),
659 			     struct safexcel_alg_template, alg.ahash);
660 
661 	ctx->priv = tmpl->priv;
662 	ctx->base.send = safexcel_ahash_send;
663 	ctx->base.handle_result = safexcel_handle_result;
664 
665 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
666 				 sizeof(struct safexcel_ahash_req));
667 	return 0;
668 }
669 
670 static int safexcel_sha1_init(struct ahash_request *areq)
671 {
672 	struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
673 	struct safexcel_ahash_req *req = ahash_request_ctx(areq);
674 
675 	memset(req, 0, sizeof(*req));
676 
677 	req->state[0] = SHA1_H0;
678 	req->state[1] = SHA1_H1;
679 	req->state[2] = SHA1_H2;
680 	req->state[3] = SHA1_H3;
681 	req->state[4] = SHA1_H4;
682 
683 	ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA1;
684 	ctx->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
685 	req->state_sz = SHA1_DIGEST_SIZE;
686 
687 	return 0;
688 }
689 
690 static int safexcel_sha1_digest(struct ahash_request *areq)
691 {
692 	int ret = safexcel_sha1_init(areq);
693 
694 	if (ret)
695 		return ret;
696 
697 	return safexcel_ahash_finup(areq);
698 }
699 
700 static void safexcel_ahash_cra_exit(struct crypto_tfm *tfm)
701 {
702 	struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm);
703 	struct safexcel_crypto_priv *priv = ctx->priv;
704 	int ret;
705 
706 	/* context not allocated, skip invalidation */
707 	if (!ctx->base.ctxr)
708 		return;
709 
710 	ret = safexcel_ahash_exit_inv(tfm);
711 	if (ret)
712 		dev_warn(priv->dev, "hash: invalidation error %d\n", ret);
713 }
714 
715 struct safexcel_alg_template safexcel_alg_sha1 = {
716 	.type = SAFEXCEL_ALG_TYPE_AHASH,
717 	.alg.ahash = {
718 		.init = safexcel_sha1_init,
719 		.update = safexcel_ahash_update,
720 		.final = safexcel_ahash_final,
721 		.finup = safexcel_ahash_finup,
722 		.digest = safexcel_sha1_digest,
723 		.export = safexcel_ahash_export,
724 		.import = safexcel_ahash_import,
725 		.halg = {
726 			.digestsize = SHA1_DIGEST_SIZE,
727 			.statesize = sizeof(struct safexcel_ahash_export_state),
728 			.base = {
729 				.cra_name = "sha1",
730 				.cra_driver_name = "safexcel-sha1",
731 				.cra_priority = 300,
732 				.cra_flags = CRYPTO_ALG_ASYNC |
733 					     CRYPTO_ALG_KERN_DRIVER_ONLY,
734 				.cra_blocksize = SHA1_BLOCK_SIZE,
735 				.cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
736 				.cra_init = safexcel_ahash_cra_init,
737 				.cra_exit = safexcel_ahash_cra_exit,
738 				.cra_module = THIS_MODULE,
739 			},
740 		},
741 	},
742 };
743 
744 static int safexcel_hmac_sha1_init(struct ahash_request *areq)
745 {
746 	struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
747 
748 	safexcel_sha1_init(areq);
749 	ctx->digest = CONTEXT_CONTROL_DIGEST_HMAC;
750 	return 0;
751 }
752 
753 static int safexcel_hmac_sha1_digest(struct ahash_request *areq)
754 {
755 	int ret = safexcel_hmac_sha1_init(areq);
756 
757 	if (ret)
758 		return ret;
759 
760 	return safexcel_ahash_finup(areq);
761 }
762 
763 struct safexcel_ahash_result {
764 	struct completion completion;
765 	int error;
766 };
767 
768 static void safexcel_ahash_complete(struct crypto_async_request *req, int error)
769 {
770 	struct safexcel_ahash_result *result = req->data;
771 
772 	if (error == -EINPROGRESS)
773 		return;
774 
775 	result->error = error;
776 	complete(&result->completion);
777 }
778 
779 static int safexcel_hmac_init_pad(struct ahash_request *areq,
780 				  unsigned int blocksize, const u8 *key,
781 				  unsigned int keylen, u8 *ipad, u8 *opad)
782 {
783 	struct safexcel_ahash_result result;
784 	struct scatterlist sg;
785 	int ret, i;
786 	u8 *keydup;
787 
788 	if (keylen <= blocksize) {
789 		memcpy(ipad, key, keylen);
790 	} else {
791 		keydup = kmemdup(key, keylen, GFP_KERNEL);
792 		if (!keydup)
793 			return -ENOMEM;
794 
795 		ahash_request_set_callback(areq, CRYPTO_TFM_REQ_MAY_BACKLOG,
796 					   safexcel_ahash_complete, &result);
797 		sg_init_one(&sg, keydup, keylen);
798 		ahash_request_set_crypt(areq, &sg, ipad, keylen);
799 		init_completion(&result.completion);
800 
801 		ret = crypto_ahash_digest(areq);
802 		if (ret == -EINPROGRESS) {
803 			wait_for_completion_interruptible(&result.completion);
804 			ret = result.error;
805 		}
806 
807 		/* Avoid leaking */
808 		memzero_explicit(keydup, keylen);
809 		kfree(keydup);
810 
811 		if (ret)
812 			return ret;
813 
814 		keylen = crypto_ahash_digestsize(crypto_ahash_reqtfm(areq));
815 	}
816 
817 	memset(ipad + keylen, 0, blocksize - keylen);
818 	memcpy(opad, ipad, blocksize);
819 
820 	for (i = 0; i < blocksize; i++) {
821 		ipad[i] ^= HMAC_IPAD_VALUE;
822 		opad[i] ^= HMAC_OPAD_VALUE;
823 	}
824 
825 	return 0;
826 }
827 
828 static int safexcel_hmac_init_iv(struct ahash_request *areq,
829 				 unsigned int blocksize, u8 *pad, void *state)
830 {
831 	struct safexcel_ahash_result result;
832 	struct safexcel_ahash_req *req;
833 	struct scatterlist sg;
834 	int ret;
835 
836 	ahash_request_set_callback(areq, CRYPTO_TFM_REQ_MAY_BACKLOG,
837 				   safexcel_ahash_complete, &result);
838 	sg_init_one(&sg, pad, blocksize);
839 	ahash_request_set_crypt(areq, &sg, pad, blocksize);
840 	init_completion(&result.completion);
841 
842 	ret = crypto_ahash_init(areq);
843 	if (ret)
844 		return ret;
845 
846 	req = ahash_request_ctx(areq);
847 	req->hmac = true;
848 	req->last_req = true;
849 
850 	ret = crypto_ahash_update(areq);
851 	if (ret && ret != -EINPROGRESS)
852 		return ret;
853 
854 	wait_for_completion_interruptible(&result.completion);
855 	if (result.error)
856 		return result.error;
857 
858 	return crypto_ahash_export(areq, state);
859 }
860 
861 static int safexcel_hmac_setkey(const char *alg, const u8 *key,
862 				unsigned int keylen, void *istate, void *ostate)
863 {
864 	struct ahash_request *areq;
865 	struct crypto_ahash *tfm;
866 	unsigned int blocksize;
867 	u8 *ipad, *opad;
868 	int ret;
869 
870 	tfm = crypto_alloc_ahash(alg, CRYPTO_ALG_TYPE_AHASH,
871 				 CRYPTO_ALG_TYPE_AHASH_MASK);
872 	if (IS_ERR(tfm))
873 		return PTR_ERR(tfm);
874 
875 	areq = ahash_request_alloc(tfm, GFP_KERNEL);
876 	if (!areq) {
877 		ret = -ENOMEM;
878 		goto free_ahash;
879 	}
880 
881 	crypto_ahash_clear_flags(tfm, ~0);
882 	blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
883 
884 	ipad = kzalloc(2 * blocksize, GFP_KERNEL);
885 	if (!ipad) {
886 		ret = -ENOMEM;
887 		goto free_request;
888 	}
889 
890 	opad = ipad + blocksize;
891 
892 	ret = safexcel_hmac_init_pad(areq, blocksize, key, keylen, ipad, opad);
893 	if (ret)
894 		goto free_ipad;
895 
896 	ret = safexcel_hmac_init_iv(areq, blocksize, ipad, istate);
897 	if (ret)
898 		goto free_ipad;
899 
900 	ret = safexcel_hmac_init_iv(areq, blocksize, opad, ostate);
901 
902 free_ipad:
903 	kfree(ipad);
904 free_request:
905 	ahash_request_free(areq);
906 free_ahash:
907 	crypto_free_ahash(tfm);
908 
909 	return ret;
910 }
911 
912 static int safexcel_hmac_sha1_setkey(struct crypto_ahash *tfm, const u8 *key,
913 				     unsigned int keylen)
914 {
915 	struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
916 	struct safexcel_ahash_export_state istate, ostate;
917 	int ret, i;
918 
919 	ret = safexcel_hmac_setkey("safexcel-sha1", key, keylen, &istate, &ostate);
920 	if (ret)
921 		return ret;
922 
923 	for (i = 0; i < SHA1_DIGEST_SIZE / sizeof(u32); i++) {
924 		if (ctx->ipad[i] != le32_to_cpu(istate.state[i]) ||
925 		    ctx->opad[i] != le32_to_cpu(ostate.state[i])) {
926 			ctx->base.needs_inv = true;
927 			break;
928 		}
929 	}
930 
931 	memcpy(ctx->ipad, &istate.state, SHA1_DIGEST_SIZE);
932 	memcpy(ctx->opad, &ostate.state, SHA1_DIGEST_SIZE);
933 
934 	return 0;
935 }
936 
937 struct safexcel_alg_template safexcel_alg_hmac_sha1 = {
938 	.type = SAFEXCEL_ALG_TYPE_AHASH,
939 	.alg.ahash = {
940 		.init = safexcel_hmac_sha1_init,
941 		.update = safexcel_ahash_update,
942 		.final = safexcel_ahash_final,
943 		.finup = safexcel_ahash_finup,
944 		.digest = safexcel_hmac_sha1_digest,
945 		.setkey = safexcel_hmac_sha1_setkey,
946 		.export = safexcel_ahash_export,
947 		.import = safexcel_ahash_import,
948 		.halg = {
949 			.digestsize = SHA1_DIGEST_SIZE,
950 			.statesize = sizeof(struct safexcel_ahash_export_state),
951 			.base = {
952 				.cra_name = "hmac(sha1)",
953 				.cra_driver_name = "safexcel-hmac-sha1",
954 				.cra_priority = 300,
955 				.cra_flags = CRYPTO_ALG_ASYNC |
956 					     CRYPTO_ALG_KERN_DRIVER_ONLY,
957 				.cra_blocksize = SHA1_BLOCK_SIZE,
958 				.cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
959 				.cra_init = safexcel_ahash_cra_init,
960 				.cra_exit = safexcel_ahash_cra_exit,
961 				.cra_module = THIS_MODULE,
962 			},
963 		},
964 	},
965 };
966 
967 static int safexcel_sha256_init(struct ahash_request *areq)
968 {
969 	struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
970 	struct safexcel_ahash_req *req = ahash_request_ctx(areq);
971 
972 	memset(req, 0, sizeof(*req));
973 
974 	req->state[0] = SHA256_H0;
975 	req->state[1] = SHA256_H1;
976 	req->state[2] = SHA256_H2;
977 	req->state[3] = SHA256_H3;
978 	req->state[4] = SHA256_H4;
979 	req->state[5] = SHA256_H5;
980 	req->state[6] = SHA256_H6;
981 	req->state[7] = SHA256_H7;
982 
983 	ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA256;
984 	ctx->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
985 	req->state_sz = SHA256_DIGEST_SIZE;
986 
987 	return 0;
988 }
989 
990 static int safexcel_sha256_digest(struct ahash_request *areq)
991 {
992 	int ret = safexcel_sha256_init(areq);
993 
994 	if (ret)
995 		return ret;
996 
997 	return safexcel_ahash_finup(areq);
998 }
999 
1000 struct safexcel_alg_template safexcel_alg_sha256 = {
1001 	.type = SAFEXCEL_ALG_TYPE_AHASH,
1002 	.alg.ahash = {
1003 		.init = safexcel_sha256_init,
1004 		.update = safexcel_ahash_update,
1005 		.final = safexcel_ahash_final,
1006 		.finup = safexcel_ahash_finup,
1007 		.digest = safexcel_sha256_digest,
1008 		.export = safexcel_ahash_export,
1009 		.import = safexcel_ahash_import,
1010 		.halg = {
1011 			.digestsize = SHA256_DIGEST_SIZE,
1012 			.statesize = sizeof(struct safexcel_ahash_export_state),
1013 			.base = {
1014 				.cra_name = "sha256",
1015 				.cra_driver_name = "safexcel-sha256",
1016 				.cra_priority = 300,
1017 				.cra_flags = CRYPTO_ALG_ASYNC |
1018 					     CRYPTO_ALG_KERN_DRIVER_ONLY,
1019 				.cra_blocksize = SHA256_BLOCK_SIZE,
1020 				.cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
1021 				.cra_init = safexcel_ahash_cra_init,
1022 				.cra_exit = safexcel_ahash_cra_exit,
1023 				.cra_module = THIS_MODULE,
1024 			},
1025 		},
1026 	},
1027 };
1028 
1029 static int safexcel_sha224_init(struct ahash_request *areq)
1030 {
1031 	struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
1032 	struct safexcel_ahash_req *req = ahash_request_ctx(areq);
1033 
1034 	memset(req, 0, sizeof(*req));
1035 
1036 	req->state[0] = SHA224_H0;
1037 	req->state[1] = SHA224_H1;
1038 	req->state[2] = SHA224_H2;
1039 	req->state[3] = SHA224_H3;
1040 	req->state[4] = SHA224_H4;
1041 	req->state[5] = SHA224_H5;
1042 	req->state[6] = SHA224_H6;
1043 	req->state[7] = SHA224_H7;
1044 
1045 	ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA224;
1046 	ctx->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
1047 	req->state_sz = SHA256_DIGEST_SIZE;
1048 
1049 	return 0;
1050 }
1051 
1052 static int safexcel_sha224_digest(struct ahash_request *areq)
1053 {
1054 	int ret = safexcel_sha224_init(areq);
1055 
1056 	if (ret)
1057 		return ret;
1058 
1059 	return safexcel_ahash_finup(areq);
1060 }
1061 
1062 struct safexcel_alg_template safexcel_alg_sha224 = {
1063 	.type = SAFEXCEL_ALG_TYPE_AHASH,
1064 	.alg.ahash = {
1065 		.init = safexcel_sha224_init,
1066 		.update = safexcel_ahash_update,
1067 		.final = safexcel_ahash_final,
1068 		.finup = safexcel_ahash_finup,
1069 		.digest = safexcel_sha224_digest,
1070 		.export = safexcel_ahash_export,
1071 		.import = safexcel_ahash_import,
1072 		.halg = {
1073 			.digestsize = SHA224_DIGEST_SIZE,
1074 			.statesize = sizeof(struct safexcel_ahash_export_state),
1075 			.base = {
1076 				.cra_name = "sha224",
1077 				.cra_driver_name = "safexcel-sha224",
1078 				.cra_priority = 300,
1079 				.cra_flags = CRYPTO_ALG_ASYNC |
1080 					     CRYPTO_ALG_KERN_DRIVER_ONLY,
1081 				.cra_blocksize = SHA224_BLOCK_SIZE,
1082 				.cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
1083 				.cra_init = safexcel_ahash_cra_init,
1084 				.cra_exit = safexcel_ahash_cra_exit,
1085 				.cra_module = THIS_MODULE,
1086 			},
1087 		},
1088 	},
1089 };
1090