xref: /linux/drivers/crypto/inside-secure/safexcel.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2017 Marvell
4  *
5  * Antoine Tenart <antoine.tenart@free-electrons.com>
6  */
7 
8 #include <linux/clk.h>
9 #include <linux/device.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/dmapool.h>
12 #include <linux/firmware.h>
13 #include <linux/interrupt.h>
14 #include <linux/module.h>
15 #include <linux/of_platform.h>
16 #include <linux/of_irq.h>
17 #include <linux/pci.h>
18 #include <linux/platform_device.h>
19 #include <linux/workqueue.h>
20 
21 #include <crypto/internal/aead.h>
22 #include <crypto/internal/hash.h>
23 #include <crypto/internal/skcipher.h>
24 
25 #include "safexcel.h"
26 
27 static u32 max_rings = EIP197_MAX_RINGS;
28 module_param(max_rings, uint, 0644);
29 MODULE_PARM_DESC(max_rings, "Maximum number of rings to use.");
30 
31 static void eip197_trc_cache_setupvirt(struct safexcel_crypto_priv *priv)
32 {
33 	int i;
34 
35 	/*
36 	 * Map all interfaces/rings to register index 0
37 	 * so they can share contexts. Without this, the EIP197 will
38 	 * assume each interface/ring to be in its own memory domain
39 	 * i.e. have its own subset of UNIQUE memory addresses.
40 	 * Which would cause records with the SAME memory address to
41 	 * use DIFFERENT cache buffers, causing both poor cache utilization
42 	 * AND serious coherence/invalidation issues.
43 	 */
44 	for (i = 0; i < 4; i++)
45 		writel(0, priv->base + EIP197_FLUE_IFC_LUT(i));
46 
47 	/*
48 	 * Initialize other virtualization regs for cache
49 	 * These may not be in their reset state ...
50 	 */
51 	for (i = 0; i < priv->config.rings; i++) {
52 		writel(0, priv->base + EIP197_FLUE_CACHEBASE_LO(i));
53 		writel(0, priv->base + EIP197_FLUE_CACHEBASE_HI(i));
54 		writel(EIP197_FLUE_CONFIG_MAGIC,
55 		       priv->base + EIP197_FLUE_CONFIG(i));
56 	}
57 	writel(0, priv->base + EIP197_FLUE_OFFSETS);
58 	writel(0, priv->base + EIP197_FLUE_ARC4_OFFSET);
59 }
60 
61 static void eip197_trc_cache_banksel(struct safexcel_crypto_priv *priv,
62 				     u32 addrmid, int *actbank)
63 {
64 	u32 val;
65 	int curbank;
66 
67 	curbank = addrmid >> 16;
68 	if (curbank != *actbank) {
69 		val = readl(priv->base + EIP197_CS_RAM_CTRL);
70 		val = (val & ~EIP197_CS_BANKSEL_MASK) |
71 		      (curbank << EIP197_CS_BANKSEL_OFS);
72 		writel(val, priv->base + EIP197_CS_RAM_CTRL);
73 		*actbank = curbank;
74 	}
75 }
76 
77 static u32 eip197_trc_cache_probe(struct safexcel_crypto_priv *priv,
78 				  int maxbanks, u32 probemask, u32 stride)
79 {
80 	u32 val, addrhi, addrlo, addrmid, addralias, delta, marker;
81 	int actbank;
82 
83 	/*
84 	 * And probe the actual size of the physically attached cache data RAM
85 	 * Using a binary subdivision algorithm downto 32 byte cache lines.
86 	 */
87 	addrhi = 1 << (16 + maxbanks);
88 	addrlo = 0;
89 	actbank = min(maxbanks - 1, 0);
90 	while ((addrhi - addrlo) > stride) {
91 		/* write marker to lowest address in top half */
92 		addrmid = (addrhi + addrlo) >> 1;
93 		marker = (addrmid ^ 0xabadbabe) & probemask; /* Unique */
94 		eip197_trc_cache_banksel(priv, addrmid, &actbank);
95 		writel(marker,
96 			priv->base + EIP197_CLASSIFICATION_RAMS +
97 			(addrmid & 0xffff));
98 
99 		/* write invalid markers to possible aliases */
100 		delta = 1 << __fls(addrmid);
101 		while (delta >= stride) {
102 			addralias = addrmid - delta;
103 			eip197_trc_cache_banksel(priv, addralias, &actbank);
104 			writel(~marker,
105 			       priv->base + EIP197_CLASSIFICATION_RAMS +
106 			       (addralias & 0xffff));
107 			delta >>= 1;
108 		}
109 
110 		/* read back marker from top half */
111 		eip197_trc_cache_banksel(priv, addrmid, &actbank);
112 		val = readl(priv->base + EIP197_CLASSIFICATION_RAMS +
113 			    (addrmid & 0xffff));
114 
115 		if ((val & probemask) == marker)
116 			/* read back correct, continue with top half */
117 			addrlo = addrmid;
118 		else
119 			/* not read back correct, continue with bottom half */
120 			addrhi = addrmid;
121 	}
122 	return addrhi;
123 }
124 
125 static void eip197_trc_cache_clear(struct safexcel_crypto_priv *priv,
126 				   int cs_rc_max, int cs_ht_wc)
127 {
128 	int i;
129 	u32 htable_offset, val, offset;
130 
131 	/* Clear all records in administration RAM */
132 	for (i = 0; i < cs_rc_max; i++) {
133 		offset = EIP197_CLASSIFICATION_RAMS + i * EIP197_CS_RC_SIZE;
134 
135 		writel(EIP197_CS_RC_NEXT(EIP197_RC_NULL) |
136 		       EIP197_CS_RC_PREV(EIP197_RC_NULL),
137 		       priv->base + offset);
138 
139 		val = EIP197_CS_RC_NEXT(i + 1) | EIP197_CS_RC_PREV(i - 1);
140 		if (i == 0)
141 			val |= EIP197_CS_RC_PREV(EIP197_RC_NULL);
142 		else if (i == cs_rc_max - 1)
143 			val |= EIP197_CS_RC_NEXT(EIP197_RC_NULL);
144 		writel(val, priv->base + offset + 4);
145 		/* must also initialize the address key due to ECC! */
146 		writel(0, priv->base + offset + 8);
147 		writel(0, priv->base + offset + 12);
148 	}
149 
150 	/* Clear the hash table entries */
151 	htable_offset = cs_rc_max * EIP197_CS_RC_SIZE;
152 	for (i = 0; i < cs_ht_wc; i++)
153 		writel(GENMASK(29, 0),
154 		       priv->base + EIP197_CLASSIFICATION_RAMS +
155 		       htable_offset + i * sizeof(u32));
156 }
157 
158 static int eip197_trc_cache_init(struct safexcel_crypto_priv *priv)
159 {
160 	u32 val, dsize, asize;
161 	int cs_rc_max, cs_ht_wc, cs_trc_rec_wc, cs_trc_lg_rec_wc;
162 	int cs_rc_abs_max, cs_ht_sz;
163 	int maxbanks;
164 
165 	/* Setup (dummy) virtualization for cache */
166 	eip197_trc_cache_setupvirt(priv);
167 
168 	/*
169 	 * Enable the record cache memory access and
170 	 * probe the bank select width
171 	 */
172 	val = readl(priv->base + EIP197_CS_RAM_CTRL);
173 	val &= ~EIP197_TRC_ENABLE_MASK;
174 	val |= EIP197_TRC_ENABLE_0 | EIP197_CS_BANKSEL_MASK;
175 	writel(val, priv->base + EIP197_CS_RAM_CTRL);
176 	val = readl(priv->base + EIP197_CS_RAM_CTRL);
177 	maxbanks = ((val&EIP197_CS_BANKSEL_MASK)>>EIP197_CS_BANKSEL_OFS) + 1;
178 
179 	/* Clear all ECC errors */
180 	writel(0, priv->base + EIP197_TRC_ECCCTRL);
181 
182 	/*
183 	 * Make sure the cache memory is accessible by taking record cache into
184 	 * reset. Need data memory access here, not admin access.
185 	 */
186 	val = readl(priv->base + EIP197_TRC_PARAMS);
187 	val |= EIP197_TRC_PARAMS_SW_RESET | EIP197_TRC_PARAMS_DATA_ACCESS;
188 	writel(val, priv->base + EIP197_TRC_PARAMS);
189 
190 	/* Probed data RAM size in bytes */
191 	dsize = eip197_trc_cache_probe(priv, maxbanks, 0xffffffff, 32);
192 
193 	/*
194 	 * Now probe the administration RAM size pretty much the same way
195 	 * Except that only the lower 30 bits are writable and we don't need
196 	 * bank selects
197 	 */
198 	val = readl(priv->base + EIP197_TRC_PARAMS);
199 	/* admin access now */
200 	val &= ~(EIP197_TRC_PARAMS_DATA_ACCESS | EIP197_CS_BANKSEL_MASK);
201 	writel(val, priv->base + EIP197_TRC_PARAMS);
202 
203 	/* Probed admin RAM size in admin words */
204 	asize = eip197_trc_cache_probe(priv, 0, 0x3fffffff, 16) >> 4;
205 
206 	/* Clear any ECC errors detected while probing! */
207 	writel(0, priv->base + EIP197_TRC_ECCCTRL);
208 
209 	/* Sanity check probing results */
210 	if (dsize < EIP197_MIN_DSIZE || asize < EIP197_MIN_ASIZE) {
211 		dev_err(priv->dev, "Record cache probing failed (%d,%d).",
212 			dsize, asize);
213 		return -ENODEV;
214 	}
215 
216 	/*
217 	 * Determine optimal configuration from RAM sizes
218 	 * Note that we assume that the physical RAM configuration is sane
219 	 * Therefore, we don't do any parameter error checking here ...
220 	 */
221 
222 	/* For now, just use a single record format covering everything */
223 	cs_trc_rec_wc = EIP197_CS_TRC_REC_WC;
224 	cs_trc_lg_rec_wc = EIP197_CS_TRC_REC_WC;
225 
226 	/*
227 	 * Step #1: How many records will physically fit?
228 	 * Hard upper limit is 1023!
229 	 */
230 	cs_rc_abs_max = min_t(uint, ((dsize >> 2) / cs_trc_lg_rec_wc), 1023);
231 	/* Step #2: Need at least 2 words in the admin RAM per record */
232 	cs_rc_max = min_t(uint, cs_rc_abs_max, (asize >> 1));
233 	/* Step #3: Determine log2 of hash table size */
234 	cs_ht_sz = __fls(asize - cs_rc_max) - 2;
235 	/* Step #4: determine current size of hash table in dwords */
236 	cs_ht_wc = 16 << cs_ht_sz; /* dwords, not admin words */
237 	/* Step #5: add back excess words and see if we can fit more records */
238 	cs_rc_max = min_t(uint, cs_rc_abs_max, asize - (cs_ht_wc >> 2));
239 
240 	/* Clear the cache RAMs */
241 	eip197_trc_cache_clear(priv, cs_rc_max, cs_ht_wc);
242 
243 	/* Disable the record cache memory access */
244 	val = readl(priv->base + EIP197_CS_RAM_CTRL);
245 	val &= ~EIP197_TRC_ENABLE_MASK;
246 	writel(val, priv->base + EIP197_CS_RAM_CTRL);
247 
248 	/* Write head and tail pointers of the record free chain */
249 	val = EIP197_TRC_FREECHAIN_HEAD_PTR(0) |
250 	      EIP197_TRC_FREECHAIN_TAIL_PTR(cs_rc_max - 1);
251 	writel(val, priv->base + EIP197_TRC_FREECHAIN);
252 
253 	/* Configure the record cache #1 */
254 	val = EIP197_TRC_PARAMS2_RC_SZ_SMALL(cs_trc_rec_wc) |
255 	      EIP197_TRC_PARAMS2_HTABLE_PTR(cs_rc_max);
256 	writel(val, priv->base + EIP197_TRC_PARAMS2);
257 
258 	/* Configure the record cache #2 */
259 	val = EIP197_TRC_PARAMS_RC_SZ_LARGE(cs_trc_lg_rec_wc) |
260 	      EIP197_TRC_PARAMS_BLK_TIMER_SPEED(1) |
261 	      EIP197_TRC_PARAMS_HTABLE_SZ(cs_ht_sz);
262 	writel(val, priv->base + EIP197_TRC_PARAMS);
263 
264 	dev_info(priv->dev, "TRC init: %dd,%da (%dr,%dh)\n",
265 		 dsize, asize, cs_rc_max, cs_ht_wc + cs_ht_wc);
266 	return 0;
267 }
268 
269 static void eip197_init_firmware(struct safexcel_crypto_priv *priv)
270 {
271 	int pe, i;
272 	u32 val;
273 
274 	for (pe = 0; pe < priv->config.pes; pe++) {
275 		/* Configure the token FIFO's */
276 		writel(3, EIP197_PE(priv) + EIP197_PE_ICE_PUTF_CTRL(pe));
277 		writel(0, EIP197_PE(priv) + EIP197_PE_ICE_PPTF_CTRL(pe));
278 
279 		/* Clear the ICE scratchpad memory */
280 		val = readl(EIP197_PE(priv) + EIP197_PE_ICE_SCRATCH_CTRL(pe));
281 		val |= EIP197_PE_ICE_SCRATCH_CTRL_CHANGE_TIMER |
282 		       EIP197_PE_ICE_SCRATCH_CTRL_TIMER_EN |
283 		       EIP197_PE_ICE_SCRATCH_CTRL_SCRATCH_ACCESS |
284 		       EIP197_PE_ICE_SCRATCH_CTRL_CHANGE_ACCESS;
285 		writel(val, EIP197_PE(priv) + EIP197_PE_ICE_SCRATCH_CTRL(pe));
286 
287 		/* clear the scratchpad RAM using 32 bit writes only */
288 		for (i = 0; i < EIP197_NUM_OF_SCRATCH_BLOCKS; i++)
289 			writel(0, EIP197_PE(priv) +
290 				  EIP197_PE_ICE_SCRATCH_RAM(pe) + (i << 2));
291 
292 		/* Reset the IFPP engine to make its program mem accessible */
293 		writel(EIP197_PE_ICE_x_CTRL_SW_RESET |
294 		       EIP197_PE_ICE_x_CTRL_CLR_ECC_CORR |
295 		       EIP197_PE_ICE_x_CTRL_CLR_ECC_NON_CORR,
296 		       EIP197_PE(priv) + EIP197_PE_ICE_FPP_CTRL(pe));
297 
298 		/* Reset the IPUE engine to make its program mem accessible */
299 		writel(EIP197_PE_ICE_x_CTRL_SW_RESET |
300 		       EIP197_PE_ICE_x_CTRL_CLR_ECC_CORR |
301 		       EIP197_PE_ICE_x_CTRL_CLR_ECC_NON_CORR,
302 		       EIP197_PE(priv) + EIP197_PE_ICE_PUE_CTRL(pe));
303 
304 		/* Enable access to all IFPP program memories */
305 		writel(EIP197_PE_ICE_RAM_CTRL_FPP_PROG_EN,
306 		       EIP197_PE(priv) + EIP197_PE_ICE_RAM_CTRL(pe));
307 
308 		/* bypass the OCE, if present */
309 		if (priv->flags & EIP197_OCE)
310 			writel(EIP197_DEBUG_OCE_BYPASS, EIP197_PE(priv) +
311 							EIP197_PE_DEBUG(pe));
312 	}
313 
314 }
315 
316 static int eip197_write_firmware(struct safexcel_crypto_priv *priv,
317 				  const struct firmware *fw)
318 {
319 	u32 val;
320 	int i;
321 
322 	/* Write the firmware */
323 	for (i = 0; i < fw->size / sizeof(u32); i++) {
324 		if (priv->data->fw_little_endian)
325 			val = le32_to_cpu(((const __le32 *)fw->data)[i]);
326 		else
327 			val = be32_to_cpu(((const __be32 *)fw->data)[i]);
328 
329 		writel(val,
330 		       priv->base + EIP197_CLASSIFICATION_RAMS +
331 		       i * sizeof(val));
332 	}
333 
334 	/* Exclude final 2 NOPs from size */
335 	return i - EIP197_FW_TERMINAL_NOPS;
336 }
337 
338 /*
339  * If FW is actual production firmware, then poll for its initialization
340  * to complete and check if it is good for the HW, otherwise just return OK.
341  */
342 static bool poll_fw_ready(struct safexcel_crypto_priv *priv, int fpp)
343 {
344 	int pe, pollcnt;
345 	u32 base, pollofs;
346 
347 	if (fpp)
348 		pollofs  = EIP197_FW_FPP_READY;
349 	else
350 		pollofs  = EIP197_FW_PUE_READY;
351 
352 	for (pe = 0; pe < priv->config.pes; pe++) {
353 		base = EIP197_PE_ICE_SCRATCH_RAM(pe);
354 		pollcnt = EIP197_FW_START_POLLCNT;
355 		while (pollcnt &&
356 		       (readl_relaxed(EIP197_PE(priv) + base +
357 			      pollofs) != 1)) {
358 			pollcnt--;
359 		}
360 		if (!pollcnt) {
361 			dev_err(priv->dev, "FW(%d) for PE %d failed to start\n",
362 				fpp, pe);
363 			return false;
364 		}
365 	}
366 	return true;
367 }
368 
369 static bool eip197_start_firmware(struct safexcel_crypto_priv *priv,
370 				  int ipuesz, int ifppsz, int minifw)
371 {
372 	int pe;
373 	u32 val;
374 
375 	for (pe = 0; pe < priv->config.pes; pe++) {
376 		/* Disable access to all program memory */
377 		writel(0, EIP197_PE(priv) + EIP197_PE_ICE_RAM_CTRL(pe));
378 
379 		/* Start IFPP microengines */
380 		if (minifw)
381 			val = 0;
382 		else
383 			val = EIP197_PE_ICE_UENG_START_OFFSET((ifppsz - 1) &
384 					EIP197_PE_ICE_UENG_INIT_ALIGN_MASK) |
385 				EIP197_PE_ICE_UENG_DEBUG_RESET;
386 		writel(val, EIP197_PE(priv) + EIP197_PE_ICE_FPP_CTRL(pe));
387 
388 		/* Start IPUE microengines */
389 		if (minifw)
390 			val = 0;
391 		else
392 			val = EIP197_PE_ICE_UENG_START_OFFSET((ipuesz - 1) &
393 					EIP197_PE_ICE_UENG_INIT_ALIGN_MASK) |
394 				EIP197_PE_ICE_UENG_DEBUG_RESET;
395 		writel(val, EIP197_PE(priv) + EIP197_PE_ICE_PUE_CTRL(pe));
396 	}
397 
398 	/* For miniFW startup, there is no initialization, so always succeed */
399 	if (minifw)
400 		return true;
401 
402 	/* Wait until all the firmwares have properly started up */
403 	if (!poll_fw_ready(priv, 1))
404 		return false;
405 	if (!poll_fw_ready(priv, 0))
406 		return false;
407 
408 	return true;
409 }
410 
411 static int eip197_load_firmwares(struct safexcel_crypto_priv *priv)
412 {
413 	const char *fw_name[] = {"ifpp.bin", "ipue.bin"};
414 	const struct firmware *fw[FW_NB];
415 	char fw_path[37], *dir = NULL;
416 	int i, j, ret = 0, pe;
417 	int ipuesz, ifppsz, minifw = 0;
418 
419 	if (priv->data->version == EIP197D_MRVL)
420 		dir = "eip197d";
421 	else if (priv->data->version == EIP197B_MRVL ||
422 		 priv->data->version == EIP197_DEVBRD)
423 		dir = "eip197b";
424 	else if (priv->data->version == EIP197C_MXL)
425 		dir = "eip197c";
426 	else
427 		return -ENODEV;
428 
429 retry_fw:
430 	for (i = 0; i < FW_NB; i++) {
431 		snprintf(fw_path, 37, "inside-secure/%s/%s", dir, fw_name[i]);
432 		ret = firmware_request_nowarn(&fw[i], fw_path, priv->dev);
433 		if (ret) {
434 			if (minifw || priv->data->version != EIP197B_MRVL)
435 				goto release_fw;
436 
437 			/* Fallback to the old firmware location for the
438 			 * EIP197b.
439 			 */
440 			ret = firmware_request_nowarn(&fw[i], fw_name[i],
441 						      priv->dev);
442 			if (ret)
443 				goto release_fw;
444 		}
445 	}
446 
447 	eip197_init_firmware(priv);
448 
449 	ifppsz = eip197_write_firmware(priv, fw[FW_IFPP]);
450 
451 	/* Enable access to IPUE program memories */
452 	for (pe = 0; pe < priv->config.pes; pe++)
453 		writel(EIP197_PE_ICE_RAM_CTRL_PUE_PROG_EN,
454 		       EIP197_PE(priv) + EIP197_PE_ICE_RAM_CTRL(pe));
455 
456 	ipuesz = eip197_write_firmware(priv, fw[FW_IPUE]);
457 
458 	if (eip197_start_firmware(priv, ipuesz, ifppsz, minifw)) {
459 		dev_dbg(priv->dev, "Firmware loaded successfully\n");
460 		return 0;
461 	}
462 
463 	ret = -ENODEV;
464 
465 release_fw:
466 	for (j = 0; j < i; j++)
467 		release_firmware(fw[j]);
468 
469 	if (!minifw) {
470 		/* Retry with minifw path */
471 		dev_dbg(priv->dev, "Firmware set not (fully) present or init failed, falling back to BCLA mode\n");
472 		dir = "eip197_minifw";
473 		minifw = 1;
474 		goto retry_fw;
475 	}
476 
477 	dev_err(priv->dev, "Firmware load failed.\n");
478 
479 	return ret;
480 }
481 
482 static int safexcel_hw_setup_cdesc_rings(struct safexcel_crypto_priv *priv)
483 {
484 	u32 cd_size_rnd, val;
485 	int i, cd_fetch_cnt;
486 
487 	cd_size_rnd  = (priv->config.cd_size +
488 			(BIT(priv->hwconfig.hwdataw) - 1)) >>
489 		       priv->hwconfig.hwdataw;
490 	/* determine number of CD's we can fetch into the CD FIFO as 1 block */
491 	if (priv->flags & SAFEXCEL_HW_EIP197) {
492 		/* EIP197: try to fetch enough in 1 go to keep all pipes busy */
493 		cd_fetch_cnt = (1 << priv->hwconfig.hwcfsize) / cd_size_rnd;
494 		cd_fetch_cnt = min_t(uint, cd_fetch_cnt,
495 				     (priv->config.pes * EIP197_FETCH_DEPTH));
496 	} else {
497 		/* for the EIP97, just fetch all that fits minus 1 */
498 		cd_fetch_cnt = ((1 << priv->hwconfig.hwcfsize) /
499 				cd_size_rnd) - 1;
500 	}
501 	/*
502 	 * Since we're using command desc's way larger than formally specified,
503 	 * we need to check whether we can fit even 1 for low-end EIP196's!
504 	 */
505 	if (!cd_fetch_cnt) {
506 		dev_err(priv->dev, "Unable to fit even 1 command desc!\n");
507 		return -ENODEV;
508 	}
509 
510 	for (i = 0; i < priv->config.rings; i++) {
511 		/* ring base address */
512 		writel(lower_32_bits(priv->ring[i].cdr.base_dma),
513 		       EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_LO);
514 		writel(upper_32_bits(priv->ring[i].cdr.base_dma),
515 		       EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_HI);
516 
517 		writel(EIP197_xDR_DESC_MODE_64BIT | EIP197_CDR_DESC_MODE_ADCP |
518 		       (priv->config.cd_offset << 14) | priv->config.cd_size,
519 		       EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_DESC_SIZE);
520 		writel(((cd_fetch_cnt *
521 			 (cd_size_rnd << priv->hwconfig.hwdataw)) << 16) |
522 		       (cd_fetch_cnt * (priv->config.cd_offset / sizeof(u32))),
523 		       EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_CFG);
524 
525 		/* Configure DMA tx control */
526 		val = EIP197_HIA_xDR_CFG_WR_CACHE(WR_CACHE_3BITS);
527 		val |= EIP197_HIA_xDR_CFG_RD_CACHE(RD_CACHE_3BITS);
528 		writel(val, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_DMA_CFG);
529 
530 		/* clear any pending interrupt */
531 		writel(GENMASK(5, 0),
532 		       EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_STAT);
533 	}
534 
535 	return 0;
536 }
537 
538 static int safexcel_hw_setup_rdesc_rings(struct safexcel_crypto_priv *priv)
539 {
540 	u32 rd_size_rnd, val;
541 	int i, rd_fetch_cnt;
542 
543 	/* determine number of RD's we can fetch into the FIFO as one block */
544 	rd_size_rnd = (EIP197_RD64_FETCH_SIZE +
545 		       (BIT(priv->hwconfig.hwdataw) - 1)) >>
546 		      priv->hwconfig.hwdataw;
547 	if (priv->flags & SAFEXCEL_HW_EIP197) {
548 		/* EIP197: try to fetch enough in 1 go to keep all pipes busy */
549 		rd_fetch_cnt = (1 << priv->hwconfig.hwrfsize) / rd_size_rnd;
550 		rd_fetch_cnt = min_t(uint, rd_fetch_cnt,
551 				     (priv->config.pes * EIP197_FETCH_DEPTH));
552 	} else {
553 		/* for the EIP97, just fetch all that fits minus 1 */
554 		rd_fetch_cnt = ((1 << priv->hwconfig.hwrfsize) /
555 				rd_size_rnd) - 1;
556 	}
557 
558 	for (i = 0; i < priv->config.rings; i++) {
559 		/* ring base address */
560 		writel(lower_32_bits(priv->ring[i].rdr.base_dma),
561 		       EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_LO);
562 		writel(upper_32_bits(priv->ring[i].rdr.base_dma),
563 		       EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_HI);
564 
565 		writel(EIP197_xDR_DESC_MODE_64BIT | (priv->config.rd_offset << 14) |
566 		       priv->config.rd_size,
567 		       EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_DESC_SIZE);
568 
569 		writel(((rd_fetch_cnt *
570 			 (rd_size_rnd << priv->hwconfig.hwdataw)) << 16) |
571 		       (rd_fetch_cnt * (priv->config.rd_offset / sizeof(u32))),
572 		       EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_CFG);
573 
574 		/* Configure DMA tx control */
575 		val = EIP197_HIA_xDR_CFG_WR_CACHE(WR_CACHE_3BITS);
576 		val |= EIP197_HIA_xDR_CFG_RD_CACHE(RD_CACHE_3BITS);
577 		val |= EIP197_HIA_xDR_WR_RES_BUF | EIP197_HIA_xDR_WR_CTRL_BUF;
578 		writel(val,
579 		       EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_DMA_CFG);
580 
581 		/* clear any pending interrupt */
582 		writel(GENMASK(7, 0),
583 		       EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_STAT);
584 
585 		/* enable ring interrupt */
586 		val = readl(EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ENABLE_CTRL(i));
587 		val |= EIP197_RDR_IRQ(i);
588 		writel(val, EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ENABLE_CTRL(i));
589 	}
590 
591 	return 0;
592 }
593 
594 static int safexcel_hw_init(struct safexcel_crypto_priv *priv)
595 {
596 	u32 val;
597 	int i, ret, pe, opbuflo, opbufhi;
598 
599 	dev_dbg(priv->dev, "HW init: using %d pipe(s) and %d ring(s)\n",
600 		priv->config.pes, priv->config.rings);
601 
602 	/*
603 	 * For EIP197's only set maximum number of TX commands to 2^5 = 32
604 	 * Skip for the EIP97 as it does not have this field.
605 	 */
606 	if (priv->flags & SAFEXCEL_HW_EIP197) {
607 		val = readl(EIP197_HIA_AIC(priv) + EIP197_HIA_MST_CTRL);
608 		val |= EIP197_MST_CTRL_TX_MAX_CMD(5);
609 		writel(val, EIP197_HIA_AIC(priv) + EIP197_HIA_MST_CTRL);
610 	}
611 
612 	/* Configure wr/rd cache values */
613 	writel(EIP197_MST_CTRL_RD_CACHE(RD_CACHE_4BITS) |
614 	       EIP197_MST_CTRL_WD_CACHE(WR_CACHE_4BITS),
615 	       EIP197_HIA_GEN_CFG(priv) + EIP197_MST_CTRL);
616 
617 	/* Interrupts reset */
618 
619 	/* Disable all global interrupts */
620 	writel(0, EIP197_HIA_AIC_G(priv) + EIP197_HIA_AIC_G_ENABLE_CTRL);
621 
622 	/* Clear any pending interrupt */
623 	writel(GENMASK(31, 0), EIP197_HIA_AIC_G(priv) + EIP197_HIA_AIC_G_ACK);
624 
625 	/* Processing Engine configuration */
626 	for (pe = 0; pe < priv->config.pes; pe++) {
627 		/* Data Fetch Engine configuration */
628 
629 		/* Reset all DFE threads */
630 		writel(EIP197_DxE_THR_CTRL_RESET_PE,
631 		       EIP197_HIA_DFE_THR(priv) + EIP197_HIA_DFE_THR_CTRL(pe));
632 
633 		if (priv->flags & EIP197_PE_ARB)
634 			/* Reset HIA input interface arbiter (if present) */
635 			writel(EIP197_HIA_RA_PE_CTRL_RESET,
636 			       EIP197_HIA_AIC(priv) + EIP197_HIA_RA_PE_CTRL(pe));
637 
638 		/* DMA transfer size to use */
639 		val = EIP197_HIA_DFE_CFG_DIS_DEBUG;
640 		val |= EIP197_HIA_DxE_CFG_MIN_DATA_SIZE(6) |
641 		       EIP197_HIA_DxE_CFG_MAX_DATA_SIZE(9);
642 		val |= EIP197_HIA_DxE_CFG_MIN_CTRL_SIZE(6) |
643 		       EIP197_HIA_DxE_CFG_MAX_CTRL_SIZE(7);
644 		val |= EIP197_HIA_DxE_CFG_DATA_CACHE_CTRL(RD_CACHE_3BITS);
645 		val |= EIP197_HIA_DxE_CFG_CTRL_CACHE_CTRL(RD_CACHE_3BITS);
646 		writel(val, EIP197_HIA_DFE(priv) + EIP197_HIA_DFE_CFG(pe));
647 
648 		/* Leave the DFE threads reset state */
649 		writel(0, EIP197_HIA_DFE_THR(priv) + EIP197_HIA_DFE_THR_CTRL(pe));
650 
651 		/* Configure the processing engine thresholds */
652 		writel(EIP197_PE_IN_xBUF_THRES_MIN(6) |
653 		       EIP197_PE_IN_xBUF_THRES_MAX(9),
654 		       EIP197_PE(priv) + EIP197_PE_IN_DBUF_THRES(pe));
655 		writel(EIP197_PE_IN_xBUF_THRES_MIN(6) |
656 		       EIP197_PE_IN_xBUF_THRES_MAX(7),
657 		       EIP197_PE(priv) + EIP197_PE_IN_TBUF_THRES(pe));
658 
659 		if (priv->flags & SAFEXCEL_HW_EIP197)
660 			/* enable HIA input interface arbiter and rings */
661 			writel(EIP197_HIA_RA_PE_CTRL_EN |
662 			       GENMASK(priv->config.rings - 1, 0),
663 			       EIP197_HIA_AIC(priv) + EIP197_HIA_RA_PE_CTRL(pe));
664 
665 		/* Data Store Engine configuration */
666 
667 		/* Reset all DSE threads */
668 		writel(EIP197_DxE_THR_CTRL_RESET_PE,
669 		       EIP197_HIA_DSE_THR(priv) + EIP197_HIA_DSE_THR_CTRL(pe));
670 
671 		/* Wait for all DSE threads to complete */
672 		while ((readl(EIP197_HIA_DSE_THR(priv) + EIP197_HIA_DSE_THR_STAT(pe)) &
673 			GENMASK(15, 12)) != GENMASK(15, 12))
674 			;
675 
676 		/* DMA transfer size to use */
677 		if (priv->hwconfig.hwnumpes > 4) {
678 			opbuflo = 9;
679 			opbufhi = 10;
680 		} else {
681 			opbuflo = 7;
682 			opbufhi = 8;
683 		}
684 		val = EIP197_HIA_DSE_CFG_DIS_DEBUG;
685 		val |= EIP197_HIA_DxE_CFG_MIN_DATA_SIZE(opbuflo) |
686 		       EIP197_HIA_DxE_CFG_MAX_DATA_SIZE(opbufhi);
687 		val |= EIP197_HIA_DxE_CFG_DATA_CACHE_CTRL(WR_CACHE_3BITS);
688 		val |= EIP197_HIA_DSE_CFG_ALWAYS_BUFFERABLE;
689 		/* FIXME: instability issues can occur for EIP97 but disabling
690 		 * it impacts performance.
691 		 */
692 		if (priv->flags & SAFEXCEL_HW_EIP197)
693 			val |= EIP197_HIA_DSE_CFG_EN_SINGLE_WR;
694 		writel(val, EIP197_HIA_DSE(priv) + EIP197_HIA_DSE_CFG(pe));
695 
696 		/* Leave the DSE threads reset state */
697 		writel(0, EIP197_HIA_DSE_THR(priv) + EIP197_HIA_DSE_THR_CTRL(pe));
698 
699 		/* Configure the processing engine thresholds */
700 		writel(EIP197_PE_OUT_DBUF_THRES_MIN(opbuflo) |
701 		       EIP197_PE_OUT_DBUF_THRES_MAX(opbufhi),
702 		       EIP197_PE(priv) + EIP197_PE_OUT_DBUF_THRES(pe));
703 
704 		/* Processing Engine configuration */
705 
706 		/* Token & context configuration */
707 		val = EIP197_PE_EIP96_TOKEN_CTRL_CTX_UPDATES |
708 		      EIP197_PE_EIP96_TOKEN_CTRL_NO_TOKEN_WAIT |
709 		      EIP197_PE_EIP96_TOKEN_CTRL_ENABLE_TIMEOUT;
710 		writel(val, EIP197_PE(priv) + EIP197_PE_EIP96_TOKEN_CTRL(pe));
711 
712 		/* H/W capabilities selection: just enable everything */
713 		writel(EIP197_FUNCTION_ALL,
714 		       EIP197_PE(priv) + EIP197_PE_EIP96_FUNCTION_EN(pe));
715 		writel(EIP197_FUNCTION_ALL,
716 		       EIP197_PE(priv) + EIP197_PE_EIP96_FUNCTION2_EN(pe));
717 	}
718 
719 	/* Command Descriptor Rings prepare */
720 	for (i = 0; i < priv->config.rings; i++) {
721 		/* Clear interrupts for this ring */
722 		writel(GENMASK(31, 0),
723 		       EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ENABLE_CLR(i));
724 
725 		/* Disable external triggering */
726 		writel(0, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_CFG);
727 
728 		/* Clear the pending prepared counter */
729 		writel(EIP197_xDR_PREP_CLR_COUNT,
730 		       EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_PREP_COUNT);
731 
732 		/* Clear the pending processed counter */
733 		writel(EIP197_xDR_PROC_CLR_COUNT,
734 		       EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_PROC_COUNT);
735 
736 		writel(0,
737 		       EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_PREP_PNTR);
738 		writel(0,
739 		       EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_PROC_PNTR);
740 
741 		writel((EIP197_DEFAULT_RING_SIZE * priv->config.cd_offset),
742 		       EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_SIZE);
743 	}
744 
745 	/* Result Descriptor Ring prepare */
746 	for (i = 0; i < priv->config.rings; i++) {
747 		/* Disable external triggering*/
748 		writel(0, EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_CFG);
749 
750 		/* Clear the pending prepared counter */
751 		writel(EIP197_xDR_PREP_CLR_COUNT,
752 		       EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_PREP_COUNT);
753 
754 		/* Clear the pending processed counter */
755 		writel(EIP197_xDR_PROC_CLR_COUNT,
756 		       EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_PROC_COUNT);
757 
758 		writel(0,
759 		       EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_PREP_PNTR);
760 		writel(0,
761 		       EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_PROC_PNTR);
762 
763 		/* Ring size */
764 		writel((EIP197_DEFAULT_RING_SIZE * priv->config.rd_offset),
765 		       EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_SIZE);
766 	}
767 
768 	for (pe = 0; pe < priv->config.pes; pe++) {
769 		/* Enable command descriptor rings */
770 		writel(EIP197_DxE_THR_CTRL_EN | GENMASK(priv->config.rings - 1, 0),
771 		       EIP197_HIA_DFE_THR(priv) + EIP197_HIA_DFE_THR_CTRL(pe));
772 
773 		/* Enable result descriptor rings */
774 		writel(EIP197_DxE_THR_CTRL_EN | GENMASK(priv->config.rings - 1, 0),
775 		       EIP197_HIA_DSE_THR(priv) + EIP197_HIA_DSE_THR_CTRL(pe));
776 	}
777 
778 	/* Clear any HIA interrupt */
779 	writel(GENMASK(30, 20), EIP197_HIA_AIC_G(priv) + EIP197_HIA_AIC_G_ACK);
780 
781 	if (priv->flags & EIP197_SIMPLE_TRC) {
782 		writel(EIP197_STRC_CONFIG_INIT |
783 		       EIP197_STRC_CONFIG_LARGE_REC(EIP197_CS_TRC_REC_WC) |
784 		       EIP197_STRC_CONFIG_SMALL_REC(EIP197_CS_TRC_REC_WC),
785 		       priv->base + EIP197_STRC_CONFIG);
786 		writel(EIP197_PE_EIP96_TOKEN_CTRL2_CTX_DONE,
787 		       EIP197_PE(priv) + EIP197_PE_EIP96_TOKEN_CTRL2(0));
788 	} else if (priv->flags & SAFEXCEL_HW_EIP197) {
789 		ret = eip197_trc_cache_init(priv);
790 		if (ret)
791 			return ret;
792 	}
793 
794 	if (priv->flags & EIP197_ICE) {
795 		ret = eip197_load_firmwares(priv);
796 		if (ret)
797 			return ret;
798 	}
799 
800 	return safexcel_hw_setup_cdesc_rings(priv) ?:
801 	       safexcel_hw_setup_rdesc_rings(priv) ?:
802 	       0;
803 }
804 
805 /* Called with ring's lock taken */
806 static void safexcel_try_push_requests(struct safexcel_crypto_priv *priv,
807 				       int ring)
808 {
809 	int coal = min_t(int, priv->ring[ring].requests, EIP197_MAX_BATCH_SZ);
810 
811 	if (!coal)
812 		return;
813 
814 	/* Configure when we want an interrupt */
815 	writel(EIP197_HIA_RDR_THRESH_PKT_MODE |
816 	       EIP197_HIA_RDR_THRESH_PROC_PKT(coal),
817 	       EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_THRESH);
818 }
819 
820 void safexcel_dequeue(struct safexcel_crypto_priv *priv, int ring)
821 {
822 	struct crypto_async_request *req, *backlog;
823 	struct safexcel_context *ctx;
824 	int ret, nreq = 0, cdesc = 0, rdesc = 0, commands, results;
825 
826 	/* If a request wasn't properly dequeued because of a lack of resources,
827 	 * proceeded it first,
828 	 */
829 	req = priv->ring[ring].req;
830 	backlog = priv->ring[ring].backlog;
831 	if (req)
832 		goto handle_req;
833 
834 	while (true) {
835 		spin_lock_bh(&priv->ring[ring].queue_lock);
836 		backlog = crypto_get_backlog(&priv->ring[ring].queue);
837 		req = crypto_dequeue_request(&priv->ring[ring].queue);
838 		spin_unlock_bh(&priv->ring[ring].queue_lock);
839 
840 		if (!req) {
841 			priv->ring[ring].req = NULL;
842 			priv->ring[ring].backlog = NULL;
843 			goto finalize;
844 		}
845 
846 handle_req:
847 		ctx = crypto_tfm_ctx(req->tfm);
848 		ret = ctx->send(req, ring, &commands, &results);
849 		if (ret)
850 			goto request_failed;
851 
852 		if (backlog)
853 			crypto_request_complete(backlog, -EINPROGRESS);
854 
855 		/* In case the send() helper did not issue any command to push
856 		 * to the engine because the input data was cached, continue to
857 		 * dequeue other requests as this is valid and not an error.
858 		 */
859 		if (!commands && !results)
860 			continue;
861 
862 		cdesc += commands;
863 		rdesc += results;
864 		nreq++;
865 	}
866 
867 request_failed:
868 	/* Not enough resources to handle all the requests. Bail out and save
869 	 * the request and the backlog for the next dequeue call (per-ring).
870 	 */
871 	priv->ring[ring].req = req;
872 	priv->ring[ring].backlog = backlog;
873 
874 finalize:
875 	if (!nreq)
876 		return;
877 
878 	spin_lock_bh(&priv->ring[ring].lock);
879 
880 	priv->ring[ring].requests += nreq;
881 
882 	if (!priv->ring[ring].busy) {
883 		safexcel_try_push_requests(priv, ring);
884 		priv->ring[ring].busy = true;
885 	}
886 
887 	spin_unlock_bh(&priv->ring[ring].lock);
888 
889 	/* let the RDR know we have pending descriptors */
890 	writel((rdesc * priv->config.rd_offset),
891 	       EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_PREP_COUNT);
892 
893 	/* let the CDR know we have pending descriptors */
894 	writel((cdesc * priv->config.cd_offset),
895 	       EIP197_HIA_CDR(priv, ring) + EIP197_HIA_xDR_PREP_COUNT);
896 }
897 
898 inline int safexcel_rdesc_check_errors(struct safexcel_crypto_priv *priv,
899 				       void *rdp)
900 {
901 	struct safexcel_result_desc *rdesc = rdp;
902 	struct result_data_desc *result_data = rdp + priv->config.res_offset;
903 
904 	if (likely((!rdesc->last_seg) || /* Rest only valid if last seg! */
905 		   ((!rdesc->descriptor_overflow) &&
906 		    (!rdesc->buffer_overflow) &&
907 		    (!result_data->error_code))))
908 		return 0;
909 
910 	if (rdesc->descriptor_overflow)
911 		dev_err(priv->dev, "Descriptor overflow detected");
912 
913 	if (rdesc->buffer_overflow)
914 		dev_err(priv->dev, "Buffer overflow detected");
915 
916 	if (result_data->error_code & 0x4066) {
917 		/* Fatal error (bits 1,2,5,6 & 14) */
918 		dev_err(priv->dev,
919 			"result descriptor error (%x)",
920 			result_data->error_code);
921 
922 		return -EIO;
923 	} else if (result_data->error_code &
924 		   (BIT(7) | BIT(4) | BIT(3) | BIT(0))) {
925 		/*
926 		 * Give priority over authentication fails:
927 		 * Blocksize, length & overflow errors,
928 		 * something wrong with the input!
929 		 */
930 		return -EINVAL;
931 	} else if (result_data->error_code & BIT(9)) {
932 		/* Authentication failed */
933 		return -EBADMSG;
934 	}
935 
936 	/* All other non-fatal errors */
937 	return -EINVAL;
938 }
939 
940 inline void safexcel_rdr_req_set(struct safexcel_crypto_priv *priv,
941 				 int ring,
942 				 struct safexcel_result_desc *rdesc,
943 				 struct crypto_async_request *req)
944 {
945 	int i = safexcel_ring_rdr_rdesc_index(priv, ring, rdesc);
946 
947 	priv->ring[ring].rdr_req[i] = req;
948 }
949 
950 inline struct crypto_async_request *
951 safexcel_rdr_req_get(struct safexcel_crypto_priv *priv, int ring)
952 {
953 	int i = safexcel_ring_first_rdr_index(priv, ring);
954 
955 	return priv->ring[ring].rdr_req[i];
956 }
957 
958 void safexcel_complete(struct safexcel_crypto_priv *priv, int ring)
959 {
960 	struct safexcel_command_desc *cdesc;
961 
962 	/* Acknowledge the command descriptors */
963 	do {
964 		cdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].cdr);
965 		if (IS_ERR(cdesc)) {
966 			dev_err(priv->dev,
967 				"Could not retrieve the command descriptor\n");
968 			return;
969 		}
970 	} while (!cdesc->last_seg);
971 }
972 
973 int safexcel_invalidate_cache(struct crypto_async_request *async,
974 			      struct safexcel_crypto_priv *priv,
975 			      dma_addr_t ctxr_dma, int ring)
976 {
977 	struct safexcel_command_desc *cdesc;
978 	struct safexcel_result_desc *rdesc;
979 	struct safexcel_token  *dmmy;
980 	int ret = 0;
981 
982 	/* Prepare command descriptor */
983 	cdesc = safexcel_add_cdesc(priv, ring, true, true, 0, 0, 0, ctxr_dma,
984 				   &dmmy);
985 	if (IS_ERR(cdesc))
986 		return PTR_ERR(cdesc);
987 
988 	cdesc->control_data.type = EIP197_TYPE_EXTENDED;
989 	cdesc->control_data.options = 0;
990 	cdesc->control_data.context_lo &= ~EIP197_CONTEXT_SIZE_MASK;
991 	cdesc->control_data.control0 = CONTEXT_CONTROL_INV_TR;
992 
993 	/* Prepare result descriptor */
994 	rdesc = safexcel_add_rdesc(priv, ring, true, true, 0, 0);
995 
996 	if (IS_ERR(rdesc)) {
997 		ret = PTR_ERR(rdesc);
998 		goto cdesc_rollback;
999 	}
1000 
1001 	safexcel_rdr_req_set(priv, ring, rdesc, async);
1002 
1003 	return ret;
1004 
1005 cdesc_rollback:
1006 	safexcel_ring_rollback_wptr(priv, &priv->ring[ring].cdr);
1007 
1008 	return ret;
1009 }
1010 
1011 static inline void safexcel_handle_result_descriptor(struct safexcel_crypto_priv *priv,
1012 						     int ring)
1013 {
1014 	struct crypto_async_request *req;
1015 	struct safexcel_context *ctx;
1016 	int ret, i, nreq, ndesc, tot_descs, handled = 0;
1017 	bool should_complete;
1018 
1019 handle_results:
1020 	tot_descs = 0;
1021 
1022 	nreq = readl(EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_PROC_COUNT);
1023 	nreq >>= EIP197_xDR_PROC_xD_PKT_OFFSET;
1024 	nreq &= EIP197_xDR_PROC_xD_PKT_MASK;
1025 	if (!nreq)
1026 		goto requests_left;
1027 
1028 	for (i = 0; i < nreq; i++) {
1029 		req = safexcel_rdr_req_get(priv, ring);
1030 
1031 		ctx = crypto_tfm_ctx(req->tfm);
1032 		ndesc = ctx->handle_result(priv, ring, req,
1033 					   &should_complete, &ret);
1034 		if (ndesc < 0) {
1035 			dev_err(priv->dev, "failed to handle result (%d)\n",
1036 				ndesc);
1037 			goto acknowledge;
1038 		}
1039 
1040 		if (should_complete) {
1041 			local_bh_disable();
1042 			crypto_request_complete(req, ret);
1043 			local_bh_enable();
1044 		}
1045 
1046 		tot_descs += ndesc;
1047 		handled++;
1048 	}
1049 
1050 acknowledge:
1051 	if (i)
1052 		writel(EIP197_xDR_PROC_xD_PKT(i) |
1053 		       (tot_descs * priv->config.rd_offset),
1054 		       EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_PROC_COUNT);
1055 
1056 	/* If the number of requests overflowed the counter, try to proceed more
1057 	 * requests.
1058 	 */
1059 	if (nreq == EIP197_xDR_PROC_xD_PKT_MASK)
1060 		goto handle_results;
1061 
1062 requests_left:
1063 	spin_lock_bh(&priv->ring[ring].lock);
1064 
1065 	priv->ring[ring].requests -= handled;
1066 	safexcel_try_push_requests(priv, ring);
1067 
1068 	if (!priv->ring[ring].requests)
1069 		priv->ring[ring].busy = false;
1070 
1071 	spin_unlock_bh(&priv->ring[ring].lock);
1072 }
1073 
1074 static void safexcel_dequeue_work(struct work_struct *work)
1075 {
1076 	struct safexcel_work_data *data =
1077 			container_of(work, struct safexcel_work_data, work);
1078 
1079 	safexcel_dequeue(data->priv, data->ring);
1080 }
1081 
1082 struct safexcel_ring_irq_data {
1083 	struct safexcel_crypto_priv *priv;
1084 	int ring;
1085 };
1086 
1087 static irqreturn_t safexcel_irq_ring(int irq, void *data)
1088 {
1089 	struct safexcel_ring_irq_data *irq_data = data;
1090 	struct safexcel_crypto_priv *priv = irq_data->priv;
1091 	int ring = irq_data->ring, rc = IRQ_NONE;
1092 	u32 status, stat;
1093 
1094 	status = readl(EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ENABLED_STAT(ring));
1095 	if (!status)
1096 		return rc;
1097 
1098 	/* RDR interrupts */
1099 	if (status & EIP197_RDR_IRQ(ring)) {
1100 		stat = readl(EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_STAT);
1101 
1102 		if (unlikely(stat & EIP197_xDR_ERR)) {
1103 			/*
1104 			 * Fatal error, the RDR is unusable and must be
1105 			 * reinitialized. This should not happen under
1106 			 * normal circumstances.
1107 			 */
1108 			dev_err(priv->dev, "RDR: fatal error.\n");
1109 		} else if (likely(stat & EIP197_xDR_THRESH)) {
1110 			rc = IRQ_WAKE_THREAD;
1111 		}
1112 
1113 		/* ACK the interrupts */
1114 		writel(stat & 0xff,
1115 		       EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_STAT);
1116 	}
1117 
1118 	/* ACK the interrupts */
1119 	writel(status, EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ACK(ring));
1120 
1121 	return rc;
1122 }
1123 
1124 static irqreturn_t safexcel_irq_ring_thread(int irq, void *data)
1125 {
1126 	struct safexcel_ring_irq_data *irq_data = data;
1127 	struct safexcel_crypto_priv *priv = irq_data->priv;
1128 	int ring = irq_data->ring;
1129 
1130 	safexcel_handle_result_descriptor(priv, ring);
1131 
1132 	queue_work(priv->ring[ring].workqueue,
1133 		   &priv->ring[ring].work_data.work);
1134 
1135 	return IRQ_HANDLED;
1136 }
1137 
1138 static int safexcel_request_ring_irq(void *pdev, int irqid,
1139 				     int is_pci_dev,
1140 				     int ring_id,
1141 				     irq_handler_t handler,
1142 				     irq_handler_t threaded_handler,
1143 				     struct safexcel_ring_irq_data *ring_irq_priv)
1144 {
1145 	int ret, irq, cpu;
1146 	struct device *dev;
1147 
1148 	if (IS_ENABLED(CONFIG_PCI) && is_pci_dev) {
1149 		struct pci_dev *pci_pdev = pdev;
1150 
1151 		dev = &pci_pdev->dev;
1152 		irq = pci_irq_vector(pci_pdev, irqid);
1153 		if (irq < 0) {
1154 			dev_err(dev, "unable to get device MSI IRQ %d (err %d)\n",
1155 				irqid, irq);
1156 			return irq;
1157 		}
1158 	} else if (IS_ENABLED(CONFIG_OF)) {
1159 		struct platform_device *plf_pdev = pdev;
1160 		char irq_name[6] = {0}; /* "ringX\0" */
1161 
1162 		snprintf(irq_name, 6, "ring%d", irqid);
1163 		dev = &plf_pdev->dev;
1164 		irq = platform_get_irq_byname(plf_pdev, irq_name);
1165 
1166 		if (irq < 0)
1167 			return irq;
1168 	} else {
1169 		return -ENXIO;
1170 	}
1171 
1172 	ret = devm_request_threaded_irq(dev, irq, handler,
1173 					threaded_handler, IRQF_ONESHOT,
1174 					dev_name(dev), ring_irq_priv);
1175 	if (ret) {
1176 		dev_err(dev, "unable to request IRQ %d\n", irq);
1177 		return ret;
1178 	}
1179 
1180 	/* Set affinity */
1181 	cpu = cpumask_local_spread(ring_id, NUMA_NO_NODE);
1182 	irq_set_affinity_hint(irq, get_cpu_mask(cpu));
1183 
1184 	return irq;
1185 }
1186 
1187 static struct safexcel_alg_template *safexcel_algs[] = {
1188 	&safexcel_alg_ecb_des,
1189 	&safexcel_alg_cbc_des,
1190 	&safexcel_alg_ecb_des3_ede,
1191 	&safexcel_alg_cbc_des3_ede,
1192 	&safexcel_alg_ecb_aes,
1193 	&safexcel_alg_cbc_aes,
1194 	&safexcel_alg_ctr_aes,
1195 	&safexcel_alg_md5,
1196 	&safexcel_alg_sha1,
1197 	&safexcel_alg_sha224,
1198 	&safexcel_alg_sha256,
1199 	&safexcel_alg_sha384,
1200 	&safexcel_alg_sha512,
1201 	&safexcel_alg_hmac_md5,
1202 	&safexcel_alg_hmac_sha1,
1203 	&safexcel_alg_hmac_sha224,
1204 	&safexcel_alg_hmac_sha256,
1205 	&safexcel_alg_hmac_sha384,
1206 	&safexcel_alg_hmac_sha512,
1207 	&safexcel_alg_authenc_hmac_sha1_cbc_aes,
1208 	&safexcel_alg_authenc_hmac_sha224_cbc_aes,
1209 	&safexcel_alg_authenc_hmac_sha256_cbc_aes,
1210 	&safexcel_alg_authenc_hmac_sha384_cbc_aes,
1211 	&safexcel_alg_authenc_hmac_sha512_cbc_aes,
1212 	&safexcel_alg_authenc_hmac_sha1_cbc_des3_ede,
1213 	&safexcel_alg_authenc_hmac_sha1_ctr_aes,
1214 	&safexcel_alg_authenc_hmac_sha224_ctr_aes,
1215 	&safexcel_alg_authenc_hmac_sha256_ctr_aes,
1216 	&safexcel_alg_authenc_hmac_sha384_ctr_aes,
1217 	&safexcel_alg_authenc_hmac_sha512_ctr_aes,
1218 	&safexcel_alg_xts_aes,
1219 	&safexcel_alg_gcm,
1220 	&safexcel_alg_ccm,
1221 	&safexcel_alg_crc32,
1222 	&safexcel_alg_cbcmac,
1223 	&safexcel_alg_xcbcmac,
1224 	&safexcel_alg_cmac,
1225 	&safexcel_alg_chacha20,
1226 	&safexcel_alg_chachapoly,
1227 	&safexcel_alg_chachapoly_esp,
1228 	&safexcel_alg_sm3,
1229 	&safexcel_alg_hmac_sm3,
1230 	&safexcel_alg_ecb_sm4,
1231 	&safexcel_alg_cbc_sm4,
1232 	&safexcel_alg_ctr_sm4,
1233 	&safexcel_alg_authenc_hmac_sha1_cbc_sm4,
1234 	&safexcel_alg_authenc_hmac_sm3_cbc_sm4,
1235 	&safexcel_alg_authenc_hmac_sha1_ctr_sm4,
1236 	&safexcel_alg_authenc_hmac_sm3_ctr_sm4,
1237 	&safexcel_alg_sha3_224,
1238 	&safexcel_alg_sha3_256,
1239 	&safexcel_alg_sha3_384,
1240 	&safexcel_alg_sha3_512,
1241 	&safexcel_alg_hmac_sha3_224,
1242 	&safexcel_alg_hmac_sha3_256,
1243 	&safexcel_alg_hmac_sha3_384,
1244 	&safexcel_alg_hmac_sha3_512,
1245 	&safexcel_alg_authenc_hmac_sha1_cbc_des,
1246 	&safexcel_alg_authenc_hmac_sha256_cbc_des3_ede,
1247 	&safexcel_alg_authenc_hmac_sha224_cbc_des3_ede,
1248 	&safexcel_alg_authenc_hmac_sha512_cbc_des3_ede,
1249 	&safexcel_alg_authenc_hmac_sha384_cbc_des3_ede,
1250 	&safexcel_alg_authenc_hmac_sha256_cbc_des,
1251 	&safexcel_alg_authenc_hmac_sha224_cbc_des,
1252 	&safexcel_alg_authenc_hmac_sha512_cbc_des,
1253 	&safexcel_alg_authenc_hmac_sha384_cbc_des,
1254 	&safexcel_alg_rfc4106_gcm,
1255 	&safexcel_alg_rfc4543_gcm,
1256 	&safexcel_alg_rfc4309_ccm,
1257 };
1258 
1259 static int safexcel_register_algorithms(struct safexcel_crypto_priv *priv)
1260 {
1261 	int i, j, ret = 0;
1262 
1263 	for (i = 0; i < ARRAY_SIZE(safexcel_algs); i++) {
1264 		safexcel_algs[i]->priv = priv;
1265 
1266 		/* Do we have all required base algorithms available? */
1267 		if ((safexcel_algs[i]->algo_mask & priv->hwconfig.algo_flags) !=
1268 		    safexcel_algs[i]->algo_mask)
1269 			/* No, so don't register this ciphersuite */
1270 			continue;
1271 
1272 		if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_SKCIPHER)
1273 			ret = crypto_register_skcipher(&safexcel_algs[i]->alg.skcipher);
1274 		else if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_AEAD)
1275 			ret = crypto_register_aead(&safexcel_algs[i]->alg.aead);
1276 		else
1277 			ret = crypto_register_ahash(&safexcel_algs[i]->alg.ahash);
1278 
1279 		if (ret)
1280 			goto fail;
1281 	}
1282 
1283 	return 0;
1284 
1285 fail:
1286 	for (j = 0; j < i; j++) {
1287 		/* Do we have all required base algorithms available? */
1288 		if ((safexcel_algs[j]->algo_mask & priv->hwconfig.algo_flags) !=
1289 		    safexcel_algs[j]->algo_mask)
1290 			/* No, so don't unregister this ciphersuite */
1291 			continue;
1292 
1293 		if (safexcel_algs[j]->type == SAFEXCEL_ALG_TYPE_SKCIPHER)
1294 			crypto_unregister_skcipher(&safexcel_algs[j]->alg.skcipher);
1295 		else if (safexcel_algs[j]->type == SAFEXCEL_ALG_TYPE_AEAD)
1296 			crypto_unregister_aead(&safexcel_algs[j]->alg.aead);
1297 		else
1298 			crypto_unregister_ahash(&safexcel_algs[j]->alg.ahash);
1299 	}
1300 
1301 	return ret;
1302 }
1303 
1304 static void safexcel_unregister_algorithms(struct safexcel_crypto_priv *priv)
1305 {
1306 	int i;
1307 
1308 	for (i = 0; i < ARRAY_SIZE(safexcel_algs); i++) {
1309 		/* Do we have all required base algorithms available? */
1310 		if ((safexcel_algs[i]->algo_mask & priv->hwconfig.algo_flags) !=
1311 		    safexcel_algs[i]->algo_mask)
1312 			/* No, so don't unregister this ciphersuite */
1313 			continue;
1314 
1315 		if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_SKCIPHER)
1316 			crypto_unregister_skcipher(&safexcel_algs[i]->alg.skcipher);
1317 		else if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_AEAD)
1318 			crypto_unregister_aead(&safexcel_algs[i]->alg.aead);
1319 		else
1320 			crypto_unregister_ahash(&safexcel_algs[i]->alg.ahash);
1321 	}
1322 }
1323 
1324 static void safexcel_configure(struct safexcel_crypto_priv *priv)
1325 {
1326 	u32 mask = BIT(priv->hwconfig.hwdataw) - 1;
1327 
1328 	priv->config.pes = priv->hwconfig.hwnumpes;
1329 	priv->config.rings = min_t(u32, priv->hwconfig.hwnumrings, max_rings);
1330 	/* Cannot currently support more rings than we have ring AICs! */
1331 	priv->config.rings = min_t(u32, priv->config.rings,
1332 					priv->hwconfig.hwnumraic);
1333 
1334 	priv->config.cd_size = EIP197_CD64_FETCH_SIZE;
1335 	priv->config.cd_offset = (priv->config.cd_size + mask) & ~mask;
1336 	priv->config.cdsh_offset = (EIP197_MAX_TOKENS + mask) & ~mask;
1337 
1338 	/* res token is behind the descr, but ofs must be rounded to buswdth */
1339 	priv->config.res_offset = (EIP197_RD64_FETCH_SIZE + mask) & ~mask;
1340 	/* now the size of the descr is this 1st part plus the result struct */
1341 	priv->config.rd_size    = priv->config.res_offset +
1342 				  EIP197_RD64_RESULT_SIZE;
1343 	priv->config.rd_offset = (priv->config.rd_size + mask) & ~mask;
1344 
1345 	/* convert dwords to bytes */
1346 	priv->config.cd_offset *= sizeof(u32);
1347 	priv->config.cdsh_offset *= sizeof(u32);
1348 	priv->config.rd_offset *= sizeof(u32);
1349 	priv->config.res_offset *= sizeof(u32);
1350 }
1351 
1352 static void safexcel_init_register_offsets(struct safexcel_crypto_priv *priv)
1353 {
1354 	struct safexcel_register_offsets *offsets = &priv->offsets;
1355 
1356 	if (priv->flags & SAFEXCEL_HW_EIP197) {
1357 		offsets->hia_aic	= EIP197_HIA_AIC_BASE;
1358 		offsets->hia_aic_g	= EIP197_HIA_AIC_G_BASE;
1359 		offsets->hia_aic_r	= EIP197_HIA_AIC_R_BASE;
1360 		offsets->hia_aic_xdr	= EIP197_HIA_AIC_xDR_BASE;
1361 		offsets->hia_dfe	= EIP197_HIA_DFE_BASE;
1362 		offsets->hia_dfe_thr	= EIP197_HIA_DFE_THR_BASE;
1363 		offsets->hia_dse	= EIP197_HIA_DSE_BASE;
1364 		offsets->hia_dse_thr	= EIP197_HIA_DSE_THR_BASE;
1365 		offsets->hia_gen_cfg	= EIP197_HIA_GEN_CFG_BASE;
1366 		offsets->pe		= EIP197_PE_BASE;
1367 		offsets->global		= EIP197_GLOBAL_BASE;
1368 	} else {
1369 		offsets->hia_aic	= EIP97_HIA_AIC_BASE;
1370 		offsets->hia_aic_g	= EIP97_HIA_AIC_G_BASE;
1371 		offsets->hia_aic_r	= EIP97_HIA_AIC_R_BASE;
1372 		offsets->hia_aic_xdr	= EIP97_HIA_AIC_xDR_BASE;
1373 		offsets->hia_dfe	= EIP97_HIA_DFE_BASE;
1374 		offsets->hia_dfe_thr	= EIP97_HIA_DFE_THR_BASE;
1375 		offsets->hia_dse	= EIP97_HIA_DSE_BASE;
1376 		offsets->hia_dse_thr	= EIP97_HIA_DSE_THR_BASE;
1377 		offsets->hia_gen_cfg	= EIP97_HIA_GEN_CFG_BASE;
1378 		offsets->pe		= EIP97_PE_BASE;
1379 		offsets->global		= EIP97_GLOBAL_BASE;
1380 	}
1381 }
1382 
1383 /*
1384  * Generic part of probe routine, shared by platform and PCI driver
1385  *
1386  * Assumes IO resources have been mapped, private data mem has been allocated,
1387  * clocks have been enabled, device pointer has been assigned etc.
1388  *
1389  */
1390 static int safexcel_probe_generic(void *pdev,
1391 				  struct safexcel_crypto_priv *priv,
1392 				  int is_pci_dev)
1393 {
1394 	struct device *dev = priv->dev;
1395 	u32 peid, version, mask, val, hiaopt, hwopt, peopt;
1396 	int i, ret, hwctg;
1397 
1398 	priv->context_pool = dmam_pool_create("safexcel-context", dev,
1399 					      sizeof(struct safexcel_context_record),
1400 					      1, 0);
1401 	if (!priv->context_pool)
1402 		return -ENOMEM;
1403 
1404 	/*
1405 	 * First try the EIP97 HIA version regs
1406 	 * For the EIP197, this is guaranteed to NOT return any of the test
1407 	 * values
1408 	 */
1409 	version = readl(priv->base + EIP97_HIA_AIC_BASE + EIP197_HIA_VERSION);
1410 
1411 	mask = 0;  /* do not swap */
1412 	if (EIP197_REG_LO16(version) == EIP197_HIA_VERSION_LE) {
1413 		priv->hwconfig.hiaver = EIP197_VERSION_MASK(version);
1414 	} else if (EIP197_REG_HI16(version) == EIP197_HIA_VERSION_BE) {
1415 		/* read back byte-swapped, so complement byte swap bits */
1416 		mask = EIP197_MST_CTRL_BYTE_SWAP_BITS;
1417 		priv->hwconfig.hiaver = EIP197_VERSION_SWAP(version);
1418 	} else {
1419 		/* So it wasn't an EIP97 ... maybe it's an EIP197? */
1420 		version = readl(priv->base + EIP197_HIA_AIC_BASE +
1421 				EIP197_HIA_VERSION);
1422 		if (EIP197_REG_LO16(version) == EIP197_HIA_VERSION_LE) {
1423 			priv->hwconfig.hiaver = EIP197_VERSION_MASK(version);
1424 			priv->flags |= SAFEXCEL_HW_EIP197;
1425 		} else if (EIP197_REG_HI16(version) ==
1426 			   EIP197_HIA_VERSION_BE) {
1427 			/* read back byte-swapped, so complement swap bits */
1428 			mask = EIP197_MST_CTRL_BYTE_SWAP_BITS;
1429 			priv->hwconfig.hiaver = EIP197_VERSION_SWAP(version);
1430 			priv->flags |= SAFEXCEL_HW_EIP197;
1431 		} else {
1432 			return -ENODEV;
1433 		}
1434 	}
1435 
1436 	/* Now initialize the reg offsets based on the probing info so far */
1437 	safexcel_init_register_offsets(priv);
1438 
1439 	/*
1440 	 * If the version was read byte-swapped, we need to flip the device
1441 	 * swapping Keep in mind here, though, that what we write will also be
1442 	 * byte-swapped ...
1443 	 */
1444 	if (mask) {
1445 		val = readl(EIP197_HIA_AIC(priv) + EIP197_HIA_MST_CTRL);
1446 		val = val ^ (mask >> 24); /* toggle byte swap bits */
1447 		writel(val, EIP197_HIA_AIC(priv) + EIP197_HIA_MST_CTRL);
1448 	}
1449 
1450 	/*
1451 	 * We're not done probing yet! We may fall through to here if no HIA
1452 	 * was found at all. So, with the endianness presumably correct now and
1453 	 * the offsets setup, *really* probe for the EIP97/EIP197.
1454 	 */
1455 	version = readl(EIP197_GLOBAL(priv) + EIP197_VERSION);
1456 	if (((priv->flags & SAFEXCEL_HW_EIP197) &&
1457 	     (EIP197_REG_LO16(version) != EIP197_VERSION_LE) &&
1458 	     (EIP197_REG_LO16(version) != EIP196_VERSION_LE)) ||
1459 	    ((!(priv->flags & SAFEXCEL_HW_EIP197) &&
1460 	     (EIP197_REG_LO16(version) != EIP97_VERSION_LE)))) {
1461 		/*
1462 		 * We did not find the device that matched our initial probing
1463 		 * (or our initial probing failed) Report appropriate error.
1464 		 */
1465 		dev_err(priv->dev, "Probing for EIP97/EIP19x failed - no such device (read %08x)\n",
1466 			version);
1467 		return -ENODEV;
1468 	}
1469 
1470 	priv->hwconfig.hwver = EIP197_VERSION_MASK(version);
1471 	hwctg = version >> 28;
1472 	peid = version & 255;
1473 
1474 	/* Detect EIP206 processing pipe */
1475 	version = readl(EIP197_PE(priv) + + EIP197_PE_VERSION(0));
1476 	if (EIP197_REG_LO16(version) != EIP206_VERSION_LE) {
1477 		dev_err(priv->dev, "EIP%d: EIP206 not detected\n", peid);
1478 		return -ENODEV;
1479 	}
1480 	priv->hwconfig.ppver = EIP197_VERSION_MASK(version);
1481 
1482 	/* Detect EIP96 packet engine and version */
1483 	version = readl(EIP197_PE(priv) + EIP197_PE_EIP96_VERSION(0));
1484 	if (EIP197_REG_LO16(version) != EIP96_VERSION_LE) {
1485 		dev_err(dev, "EIP%d: EIP96 not detected.\n", peid);
1486 		return -ENODEV;
1487 	}
1488 	priv->hwconfig.pever = EIP197_VERSION_MASK(version);
1489 
1490 	hwopt = readl(EIP197_GLOBAL(priv) + EIP197_OPTIONS);
1491 	hiaopt = readl(EIP197_HIA_AIC(priv) + EIP197_HIA_OPTIONS);
1492 
1493 	priv->hwconfig.icever = 0;
1494 	priv->hwconfig.ocever = 0;
1495 	priv->hwconfig.psever = 0;
1496 	if (priv->flags & SAFEXCEL_HW_EIP197) {
1497 		/* EIP197 */
1498 		peopt = readl(EIP197_PE(priv) + EIP197_PE_OPTIONS(0));
1499 
1500 		priv->hwconfig.hwdataw  = (hiaopt >> EIP197_HWDATAW_OFFSET) &
1501 					  EIP197_HWDATAW_MASK;
1502 		priv->hwconfig.hwcfsize = ((hiaopt >> EIP197_CFSIZE_OFFSET) &
1503 					   EIP197_CFSIZE_MASK) +
1504 					  EIP197_CFSIZE_ADJUST;
1505 		priv->hwconfig.hwrfsize = ((hiaopt >> EIP197_RFSIZE_OFFSET) &
1506 					   EIP197_RFSIZE_MASK) +
1507 					  EIP197_RFSIZE_ADJUST;
1508 		priv->hwconfig.hwnumpes	= (hiaopt >> EIP197_N_PES_OFFSET) &
1509 					  EIP197_N_PES_MASK;
1510 		priv->hwconfig.hwnumrings = (hiaopt >> EIP197_N_RINGS_OFFSET) &
1511 					    EIP197_N_RINGS_MASK;
1512 		if (hiaopt & EIP197_HIA_OPT_HAS_PE_ARB)
1513 			priv->flags |= EIP197_PE_ARB;
1514 		if (EIP206_OPT_ICE_TYPE(peopt) == 1) {
1515 			priv->flags |= EIP197_ICE;
1516 			/* Detect ICE EIP207 class. engine and version */
1517 			version = readl(EIP197_PE(priv) +
1518 				  EIP197_PE_ICE_VERSION(0));
1519 			if (EIP197_REG_LO16(version) != EIP207_VERSION_LE) {
1520 				dev_err(dev, "EIP%d: ICE EIP207 not detected.\n",
1521 					peid);
1522 				return -ENODEV;
1523 			}
1524 			priv->hwconfig.icever = EIP197_VERSION_MASK(version);
1525 		}
1526 		if (EIP206_OPT_OCE_TYPE(peopt) == 1) {
1527 			priv->flags |= EIP197_OCE;
1528 			/* Detect EIP96PP packet stream editor and version */
1529 			version = readl(EIP197_PE(priv) + EIP197_PE_PSE_VERSION(0));
1530 			if (EIP197_REG_LO16(version) != EIP96_VERSION_LE) {
1531 				dev_err(dev, "EIP%d: EIP96PP not detected.\n", peid);
1532 				return -ENODEV;
1533 			}
1534 			priv->hwconfig.psever = EIP197_VERSION_MASK(version);
1535 			/* Detect OCE EIP207 class. engine and version */
1536 			version = readl(EIP197_PE(priv) +
1537 				  EIP197_PE_ICE_VERSION(0));
1538 			if (EIP197_REG_LO16(version) != EIP207_VERSION_LE) {
1539 				dev_err(dev, "EIP%d: OCE EIP207 not detected.\n",
1540 					peid);
1541 				return -ENODEV;
1542 			}
1543 			priv->hwconfig.ocever = EIP197_VERSION_MASK(version);
1544 		}
1545 		/* If not a full TRC, then assume simple TRC */
1546 		if (!(hwopt & EIP197_OPT_HAS_TRC))
1547 			priv->flags |= EIP197_SIMPLE_TRC;
1548 		/* EIP197 always has SOME form of TRC */
1549 		priv->flags |= EIP197_TRC_CACHE;
1550 	} else {
1551 		/* EIP97 */
1552 		priv->hwconfig.hwdataw  = (hiaopt >> EIP197_HWDATAW_OFFSET) &
1553 					  EIP97_HWDATAW_MASK;
1554 		priv->hwconfig.hwcfsize = (hiaopt >> EIP97_CFSIZE_OFFSET) &
1555 					  EIP97_CFSIZE_MASK;
1556 		priv->hwconfig.hwrfsize = (hiaopt >> EIP97_RFSIZE_OFFSET) &
1557 					  EIP97_RFSIZE_MASK;
1558 		priv->hwconfig.hwnumpes	= 1; /* by definition */
1559 		priv->hwconfig.hwnumrings = (hiaopt >> EIP197_N_RINGS_OFFSET) &
1560 					    EIP197_N_RINGS_MASK;
1561 	}
1562 
1563 	/* Scan for ring AIC's */
1564 	for (i = 0; i < EIP197_MAX_RING_AIC; i++) {
1565 		version = readl(EIP197_HIA_AIC_R(priv) +
1566 				EIP197_HIA_AIC_R_VERSION(i));
1567 		if (EIP197_REG_LO16(version) != EIP201_VERSION_LE)
1568 			break;
1569 	}
1570 	priv->hwconfig.hwnumraic = i;
1571 	/* Low-end EIP196 may not have any ring AIC's ... */
1572 	if (!priv->hwconfig.hwnumraic) {
1573 		dev_err(priv->dev, "No ring interrupt controller present!\n");
1574 		return -ENODEV;
1575 	}
1576 
1577 	/* Get supported algorithms from EIP96 transform engine */
1578 	priv->hwconfig.algo_flags = readl(EIP197_PE(priv) +
1579 				    EIP197_PE_EIP96_OPTIONS(0));
1580 
1581 	/* Print single info line describing what we just detected */
1582 	dev_info(priv->dev, "EIP%d:%x(%d,%d,%d,%d)-HIA:%x(%d,%d,%d),PE:%x/%x(alg:%08x)/%x/%x/%x\n",
1583 		 peid, priv->hwconfig.hwver, hwctg, priv->hwconfig.hwnumpes,
1584 		 priv->hwconfig.hwnumrings, priv->hwconfig.hwnumraic,
1585 		 priv->hwconfig.hiaver, priv->hwconfig.hwdataw,
1586 		 priv->hwconfig.hwcfsize, priv->hwconfig.hwrfsize,
1587 		 priv->hwconfig.ppver, priv->hwconfig.pever,
1588 		 priv->hwconfig.algo_flags, priv->hwconfig.icever,
1589 		 priv->hwconfig.ocever, priv->hwconfig.psever);
1590 
1591 	safexcel_configure(priv);
1592 
1593 	if (IS_ENABLED(CONFIG_PCI) && priv->data->version == EIP197_DEVBRD) {
1594 		/*
1595 		 * Request MSI vectors for global + 1 per ring -
1596 		 * or just 1 for older dev images
1597 		 */
1598 		struct pci_dev *pci_pdev = pdev;
1599 
1600 		ret = pci_alloc_irq_vectors(pci_pdev,
1601 					    priv->config.rings + 1,
1602 					    priv->config.rings + 1,
1603 					    PCI_IRQ_MSI | PCI_IRQ_MSIX);
1604 		if (ret < 0) {
1605 			dev_err(dev, "Failed to allocate PCI MSI interrupts\n");
1606 			return ret;
1607 		}
1608 	}
1609 
1610 	/* Register the ring IRQ handlers and configure the rings */
1611 	priv->ring = devm_kcalloc(dev, priv->config.rings,
1612 				  sizeof(*priv->ring),
1613 				  GFP_KERNEL);
1614 	if (!priv->ring)
1615 		return -ENOMEM;
1616 
1617 	for (i = 0; i < priv->config.rings; i++) {
1618 		char wq_name[9] = {0};
1619 		int irq;
1620 		struct safexcel_ring_irq_data *ring_irq;
1621 
1622 		ret = safexcel_init_ring_descriptors(priv,
1623 						     &priv->ring[i].cdr,
1624 						     &priv->ring[i].rdr);
1625 		if (ret) {
1626 			dev_err(dev, "Failed to initialize rings\n");
1627 			goto err_cleanup_rings;
1628 		}
1629 
1630 		priv->ring[i].rdr_req = devm_kcalloc(dev,
1631 			EIP197_DEFAULT_RING_SIZE,
1632 			sizeof(*priv->ring[i].rdr_req),
1633 			GFP_KERNEL);
1634 		if (!priv->ring[i].rdr_req) {
1635 			ret = -ENOMEM;
1636 			goto err_cleanup_rings;
1637 		}
1638 
1639 		ring_irq = devm_kzalloc(dev, sizeof(*ring_irq), GFP_KERNEL);
1640 		if (!ring_irq) {
1641 			ret = -ENOMEM;
1642 			goto err_cleanup_rings;
1643 		}
1644 
1645 		ring_irq->priv = priv;
1646 		ring_irq->ring = i;
1647 
1648 		irq = safexcel_request_ring_irq(pdev,
1649 						EIP197_IRQ_NUMBER(i, is_pci_dev),
1650 						is_pci_dev,
1651 						i,
1652 						safexcel_irq_ring,
1653 						safexcel_irq_ring_thread,
1654 						ring_irq);
1655 		if (irq < 0) {
1656 			dev_err(dev, "Failed to get IRQ ID for ring %d\n", i);
1657 			ret = irq;
1658 			goto err_cleanup_rings;
1659 		}
1660 
1661 		priv->ring[i].irq = irq;
1662 		priv->ring[i].work_data.priv = priv;
1663 		priv->ring[i].work_data.ring = i;
1664 		INIT_WORK(&priv->ring[i].work_data.work,
1665 			  safexcel_dequeue_work);
1666 
1667 		snprintf(wq_name, 9, "wq_ring%d", i);
1668 		priv->ring[i].workqueue =
1669 			create_singlethread_workqueue(wq_name);
1670 		if (!priv->ring[i].workqueue) {
1671 			ret = -ENOMEM;
1672 			goto err_cleanup_rings;
1673 		}
1674 
1675 		priv->ring[i].requests = 0;
1676 		priv->ring[i].busy = false;
1677 
1678 		crypto_init_queue(&priv->ring[i].queue,
1679 				  EIP197_DEFAULT_RING_SIZE);
1680 
1681 		spin_lock_init(&priv->ring[i].lock);
1682 		spin_lock_init(&priv->ring[i].queue_lock);
1683 	}
1684 
1685 	atomic_set(&priv->ring_used, 0);
1686 
1687 	ret = safexcel_hw_init(priv);
1688 	if (ret) {
1689 		dev_err(dev, "HW init failed (%d)\n", ret);
1690 		goto err_cleanup_rings;
1691 	}
1692 
1693 	ret = safexcel_register_algorithms(priv);
1694 	if (ret) {
1695 		dev_err(dev, "Failed to register algorithms (%d)\n", ret);
1696 		goto err_cleanup_rings;
1697 	}
1698 
1699 	return 0;
1700 
1701 err_cleanup_rings:
1702 	for (i = 0; i < priv->config.rings; i++) {
1703 		if (priv->ring[i].irq)
1704 			irq_set_affinity_hint(priv->ring[i].irq, NULL);
1705 		if (priv->ring[i].workqueue)
1706 			destroy_workqueue(priv->ring[i].workqueue);
1707 	}
1708 
1709 	return ret;
1710 }
1711 
1712 static void safexcel_hw_reset_rings(struct safexcel_crypto_priv *priv)
1713 {
1714 	int i;
1715 
1716 	for (i = 0; i < priv->config.rings; i++) {
1717 		/* clear any pending interrupt */
1718 		writel(GENMASK(5, 0), EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_STAT);
1719 		writel(GENMASK(7, 0), EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_STAT);
1720 
1721 		/* Reset the CDR base address */
1722 		writel(0, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_LO);
1723 		writel(0, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_HI);
1724 
1725 		/* Reset the RDR base address */
1726 		writel(0, EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_LO);
1727 		writel(0, EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_HI);
1728 	}
1729 }
1730 
1731 /* for Device Tree platform driver */
1732 
1733 static int safexcel_probe(struct platform_device *pdev)
1734 {
1735 	struct device *dev = &pdev->dev;
1736 	struct safexcel_crypto_priv *priv;
1737 	int ret;
1738 
1739 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
1740 	if (!priv)
1741 		return -ENOMEM;
1742 
1743 	priv->dev = dev;
1744 	priv->data = (struct safexcel_priv_data *)of_device_get_match_data(dev);
1745 
1746 	platform_set_drvdata(pdev, priv);
1747 
1748 	priv->base = devm_platform_ioremap_resource(pdev, 0);
1749 	if (IS_ERR(priv->base)) {
1750 		dev_err(dev, "failed to get resource\n");
1751 		return PTR_ERR(priv->base);
1752 	}
1753 
1754 	priv->clk = devm_clk_get(&pdev->dev, NULL);
1755 	ret = PTR_ERR_OR_ZERO(priv->clk);
1756 	/* The clock isn't mandatory */
1757 	if  (ret != -ENOENT) {
1758 		if (ret)
1759 			return ret;
1760 
1761 		ret = clk_prepare_enable(priv->clk);
1762 		if (ret) {
1763 			dev_err(dev, "unable to enable clk (%d)\n", ret);
1764 			return ret;
1765 		}
1766 	}
1767 
1768 	priv->reg_clk = devm_clk_get(&pdev->dev, "reg");
1769 	ret = PTR_ERR_OR_ZERO(priv->reg_clk);
1770 	/* The clock isn't mandatory */
1771 	if  (ret != -ENOENT) {
1772 		if (ret)
1773 			goto err_core_clk;
1774 
1775 		ret = clk_prepare_enable(priv->reg_clk);
1776 		if (ret) {
1777 			dev_err(dev, "unable to enable reg clk (%d)\n", ret);
1778 			goto err_core_clk;
1779 		}
1780 	}
1781 
1782 	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
1783 	if (ret)
1784 		goto err_reg_clk;
1785 
1786 	/* Generic EIP97/EIP197 device probing */
1787 	ret = safexcel_probe_generic(pdev, priv, 0);
1788 	if (ret)
1789 		goto err_reg_clk;
1790 
1791 	return 0;
1792 
1793 err_reg_clk:
1794 	clk_disable_unprepare(priv->reg_clk);
1795 err_core_clk:
1796 	clk_disable_unprepare(priv->clk);
1797 	return ret;
1798 }
1799 
1800 static void safexcel_remove(struct platform_device *pdev)
1801 {
1802 	struct safexcel_crypto_priv *priv = platform_get_drvdata(pdev);
1803 	int i;
1804 
1805 	safexcel_unregister_algorithms(priv);
1806 	safexcel_hw_reset_rings(priv);
1807 
1808 	clk_disable_unprepare(priv->reg_clk);
1809 	clk_disable_unprepare(priv->clk);
1810 
1811 	for (i = 0; i < priv->config.rings; i++) {
1812 		irq_set_affinity_hint(priv->ring[i].irq, NULL);
1813 		destroy_workqueue(priv->ring[i].workqueue);
1814 	}
1815 }
1816 
1817 static const struct safexcel_priv_data eip97ies_mrvl_data = {
1818 	.version = EIP97IES_MRVL,
1819 };
1820 
1821 static const struct safexcel_priv_data eip197b_mrvl_data = {
1822 	.version = EIP197B_MRVL,
1823 };
1824 
1825 static const struct safexcel_priv_data eip197d_mrvl_data = {
1826 	.version = EIP197D_MRVL,
1827 };
1828 
1829 static const struct safexcel_priv_data eip197_devbrd_data = {
1830 	.version = EIP197_DEVBRD,
1831 };
1832 
1833 static const struct safexcel_priv_data eip197c_mxl_data = {
1834 	.version = EIP197C_MXL,
1835 	.fw_little_endian = true,
1836 };
1837 
1838 static const struct of_device_id safexcel_of_match_table[] = {
1839 	{
1840 		.compatible = "inside-secure,safexcel-eip97ies",
1841 		.data = &eip97ies_mrvl_data,
1842 	},
1843 	{
1844 		.compatible = "inside-secure,safexcel-eip197b",
1845 		.data = &eip197b_mrvl_data,
1846 	},
1847 	{
1848 		.compatible = "inside-secure,safexcel-eip197d",
1849 		.data = &eip197d_mrvl_data,
1850 	},
1851 	{
1852 		.compatible = "inside-secure,safexcel-eip197c-mxl",
1853 		.data = &eip197c_mxl_data,
1854 	},
1855 	/* For backward compatibility and intended for generic use */
1856 	{
1857 		.compatible = "inside-secure,safexcel-eip97",
1858 		.data = &eip97ies_mrvl_data,
1859 	},
1860 	{
1861 		.compatible = "inside-secure,safexcel-eip197",
1862 		.data = &eip197b_mrvl_data,
1863 	},
1864 	{},
1865 };
1866 
1867 MODULE_DEVICE_TABLE(of, safexcel_of_match_table);
1868 
1869 static struct platform_driver  crypto_safexcel = {
1870 	.probe		= safexcel_probe,
1871 	.remove_new	= safexcel_remove,
1872 	.driver		= {
1873 		.name	= "crypto-safexcel",
1874 		.of_match_table = safexcel_of_match_table,
1875 	},
1876 };
1877 
1878 /* PCIE devices - i.e. Inside Secure development boards */
1879 
1880 static int safexcel_pci_probe(struct pci_dev *pdev,
1881 			       const struct pci_device_id *ent)
1882 {
1883 	struct device *dev = &pdev->dev;
1884 	struct safexcel_crypto_priv *priv;
1885 	void __iomem *pciebase;
1886 	int rc;
1887 	u32 val;
1888 
1889 	dev_dbg(dev, "Probing PCIE device: vendor %04x, device %04x, subv %04x, subdev %04x, ctxt %lx\n",
1890 		ent->vendor, ent->device, ent->subvendor,
1891 		ent->subdevice, ent->driver_data);
1892 
1893 	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1894 	if (!priv)
1895 		return -ENOMEM;
1896 
1897 	priv->dev = dev;
1898 	priv->data = (struct safexcel_priv_data *)ent->driver_data;
1899 
1900 	pci_set_drvdata(pdev, priv);
1901 
1902 	/* enable the device */
1903 	rc = pcim_enable_device(pdev);
1904 	if (rc) {
1905 		dev_err(dev, "Failed to enable PCI device\n");
1906 		return rc;
1907 	}
1908 
1909 	/* take ownership of PCI BAR0 */
1910 	rc = pcim_iomap_regions(pdev, 1, "crypto_safexcel");
1911 	if (rc) {
1912 		dev_err(dev, "Failed to map IO region for BAR0\n");
1913 		return rc;
1914 	}
1915 	priv->base = pcim_iomap_table(pdev)[0];
1916 
1917 	if (priv->data->version == EIP197_DEVBRD) {
1918 		dev_dbg(dev, "Device identified as FPGA based development board - applying HW reset\n");
1919 
1920 		rc = pcim_iomap_regions(pdev, 4, "crypto_safexcel");
1921 		if (rc) {
1922 			dev_err(dev, "Failed to map IO region for BAR4\n");
1923 			return rc;
1924 		}
1925 
1926 		pciebase = pcim_iomap_table(pdev)[2];
1927 		val = readl(pciebase + EIP197_XLX_IRQ_BLOCK_ID_ADDR);
1928 		if ((val >> 16) == EIP197_XLX_IRQ_BLOCK_ID_VALUE) {
1929 			dev_dbg(dev, "Detected Xilinx PCIE IRQ block version %d, multiple MSI support enabled\n",
1930 				(val & 0xff));
1931 
1932 			/* Setup MSI identity map mapping */
1933 			writel(EIP197_XLX_USER_VECT_LUT0_IDENT,
1934 			       pciebase + EIP197_XLX_USER_VECT_LUT0_ADDR);
1935 			writel(EIP197_XLX_USER_VECT_LUT1_IDENT,
1936 			       pciebase + EIP197_XLX_USER_VECT_LUT1_ADDR);
1937 			writel(EIP197_XLX_USER_VECT_LUT2_IDENT,
1938 			       pciebase + EIP197_XLX_USER_VECT_LUT2_ADDR);
1939 			writel(EIP197_XLX_USER_VECT_LUT3_IDENT,
1940 			       pciebase + EIP197_XLX_USER_VECT_LUT3_ADDR);
1941 
1942 			/* Enable all device interrupts */
1943 			writel(GENMASK(31, 0),
1944 			       pciebase + EIP197_XLX_USER_INT_ENB_MSK);
1945 		} else {
1946 			dev_err(dev, "Unrecognised IRQ block identifier %x\n",
1947 				val);
1948 			return -ENODEV;
1949 		}
1950 
1951 		/* HW reset FPGA dev board */
1952 		/* assert reset */
1953 		writel(1, priv->base + EIP197_XLX_GPIO_BASE);
1954 		wmb(); /* maintain strict ordering for accesses here */
1955 		/* deassert reset */
1956 		writel(0, priv->base + EIP197_XLX_GPIO_BASE);
1957 		wmb(); /* maintain strict ordering for accesses here */
1958 	}
1959 
1960 	/* enable bus mastering */
1961 	pci_set_master(pdev);
1962 
1963 	/* Generic EIP97/EIP197 device probing */
1964 	rc = safexcel_probe_generic(pdev, priv, 1);
1965 	return rc;
1966 }
1967 
1968 static void safexcel_pci_remove(struct pci_dev *pdev)
1969 {
1970 	struct safexcel_crypto_priv *priv = pci_get_drvdata(pdev);
1971 	int i;
1972 
1973 	safexcel_unregister_algorithms(priv);
1974 
1975 	for (i = 0; i < priv->config.rings; i++)
1976 		destroy_workqueue(priv->ring[i].workqueue);
1977 
1978 	safexcel_hw_reset_rings(priv);
1979 }
1980 
1981 static const struct pci_device_id safexcel_pci_ids[] = {
1982 	{
1983 		PCI_DEVICE_SUB(PCI_VENDOR_ID_XILINX, 0x9038,
1984 			       0x16ae, 0xc522),
1985 		.driver_data = (kernel_ulong_t)&eip197_devbrd_data,
1986 	},
1987 	{},
1988 };
1989 
1990 MODULE_DEVICE_TABLE(pci, safexcel_pci_ids);
1991 
1992 static struct pci_driver safexcel_pci_driver = {
1993 	.name          = "crypto-safexcel",
1994 	.id_table      = safexcel_pci_ids,
1995 	.probe         = safexcel_pci_probe,
1996 	.remove        = safexcel_pci_remove,
1997 };
1998 
1999 static int __init safexcel_init(void)
2000 {
2001 	int ret;
2002 
2003 	/* Register PCI driver */
2004 	ret = pci_register_driver(&safexcel_pci_driver);
2005 
2006 	/* Register platform driver */
2007 	if (IS_ENABLED(CONFIG_OF) && !ret) {
2008 		ret = platform_driver_register(&crypto_safexcel);
2009 		if (ret)
2010 			pci_unregister_driver(&safexcel_pci_driver);
2011 	}
2012 
2013 	return ret;
2014 }
2015 
2016 static void __exit safexcel_exit(void)
2017 {
2018 	/* Unregister platform driver */
2019 	if (IS_ENABLED(CONFIG_OF))
2020 		platform_driver_unregister(&crypto_safexcel);
2021 
2022 	/* Unregister PCI driver if successfully registered before */
2023 	pci_unregister_driver(&safexcel_pci_driver);
2024 }
2025 
2026 module_init(safexcel_init);
2027 module_exit(safexcel_exit);
2028 
2029 MODULE_AUTHOR("Antoine Tenart <antoine.tenart@free-electrons.com>");
2030 MODULE_AUTHOR("Ofer Heifetz <oferh@marvell.com>");
2031 MODULE_AUTHOR("Igal Liberman <igall@marvell.com>");
2032 MODULE_DESCRIPTION("Support for SafeXcel cryptographic engines: EIP97 & EIP197");
2033 MODULE_LICENSE("GPL v2");
2034 MODULE_IMPORT_NS(CRYPTO_INTERNAL);
2035 
2036 MODULE_FIRMWARE("ifpp.bin");
2037 MODULE_FIRMWARE("ipue.bin");
2038 MODULE_FIRMWARE("inside-secure/eip197b/ifpp.bin");
2039 MODULE_FIRMWARE("inside-secure/eip197b/ipue.bin");
2040 MODULE_FIRMWARE("inside-secure/eip197d/ifpp.bin");
2041 MODULE_FIRMWARE("inside-secure/eip197d/ipue.bin");
2042 MODULE_FIRMWARE("inside-secure/eip197_minifw/ifpp.bin");
2043 MODULE_FIRMWARE("inside-secure/eip197_minifw/ipue.bin");
2044