1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2017 Marvell 4 * 5 * Antoine Tenart <antoine.tenart@free-electrons.com> 6 */ 7 8 #include <linux/clk.h> 9 #include <linux/device.h> 10 #include <linux/dma-mapping.h> 11 #include <linux/dmapool.h> 12 #include <linux/firmware.h> 13 #include <linux/interrupt.h> 14 #include <linux/module.h> 15 #include <linux/of_platform.h> 16 #include <linux/of_irq.h> 17 #include <linux/pci.h> 18 #include <linux/platform_device.h> 19 #include <linux/workqueue.h> 20 21 #include <crypto/internal/aead.h> 22 #include <crypto/internal/hash.h> 23 #include <crypto/internal/skcipher.h> 24 25 #include "safexcel.h" 26 27 static u32 max_rings = EIP197_MAX_RINGS; 28 module_param(max_rings, uint, 0644); 29 MODULE_PARM_DESC(max_rings, "Maximum number of rings to use."); 30 31 static void eip197_trc_cache_setupvirt(struct safexcel_crypto_priv *priv) 32 { 33 int i; 34 35 /* 36 * Map all interfaces/rings to register index 0 37 * so they can share contexts. Without this, the EIP197 will 38 * assume each interface/ring to be in its own memory domain 39 * i.e. have its own subset of UNIQUE memory addresses. 40 * Which would cause records with the SAME memory address to 41 * use DIFFERENT cache buffers, causing both poor cache utilization 42 * AND serious coherence/invalidation issues. 43 */ 44 for (i = 0; i < 4; i++) 45 writel(0, priv->base + EIP197_FLUE_IFC_LUT(i)); 46 47 /* 48 * Initialize other virtualization regs for cache 49 * These may not be in their reset state ... 50 */ 51 for (i = 0; i < priv->config.rings; i++) { 52 writel(0, priv->base + EIP197_FLUE_CACHEBASE_LO(i)); 53 writel(0, priv->base + EIP197_FLUE_CACHEBASE_HI(i)); 54 writel(EIP197_FLUE_CONFIG_MAGIC, 55 priv->base + EIP197_FLUE_CONFIG(i)); 56 } 57 writel(0, priv->base + EIP197_FLUE_OFFSETS); 58 writel(0, priv->base + EIP197_FLUE_ARC4_OFFSET); 59 } 60 61 static void eip197_trc_cache_banksel(struct safexcel_crypto_priv *priv, 62 u32 addrmid, int *actbank) 63 { 64 u32 val; 65 int curbank; 66 67 curbank = addrmid >> 16; 68 if (curbank != *actbank) { 69 val = readl(priv->base + EIP197_CS_RAM_CTRL); 70 val = (val & ~EIP197_CS_BANKSEL_MASK) | 71 (curbank << EIP197_CS_BANKSEL_OFS); 72 writel(val, priv->base + EIP197_CS_RAM_CTRL); 73 *actbank = curbank; 74 } 75 } 76 77 static u32 eip197_trc_cache_probe(struct safexcel_crypto_priv *priv, 78 int maxbanks, u32 probemask, u32 stride) 79 { 80 u32 val, addrhi, addrlo, addrmid, addralias, delta, marker; 81 int actbank; 82 83 /* 84 * And probe the actual size of the physically attached cache data RAM 85 * Using a binary subdivision algorithm downto 32 byte cache lines. 86 */ 87 addrhi = 1 << (16 + maxbanks); 88 addrlo = 0; 89 actbank = min(maxbanks - 1, 0); 90 while ((addrhi - addrlo) > stride) { 91 /* write marker to lowest address in top half */ 92 addrmid = (addrhi + addrlo) >> 1; 93 marker = (addrmid ^ 0xabadbabe) & probemask; /* Unique */ 94 eip197_trc_cache_banksel(priv, addrmid, &actbank); 95 writel(marker, 96 priv->base + EIP197_CLASSIFICATION_RAMS + 97 (addrmid & 0xffff)); 98 99 /* write invalid markers to possible aliases */ 100 delta = 1 << __fls(addrmid); 101 while (delta >= stride) { 102 addralias = addrmid - delta; 103 eip197_trc_cache_banksel(priv, addralias, &actbank); 104 writel(~marker, 105 priv->base + EIP197_CLASSIFICATION_RAMS + 106 (addralias & 0xffff)); 107 delta >>= 1; 108 } 109 110 /* read back marker from top half */ 111 eip197_trc_cache_banksel(priv, addrmid, &actbank); 112 val = readl(priv->base + EIP197_CLASSIFICATION_RAMS + 113 (addrmid & 0xffff)); 114 115 if ((val & probemask) == marker) 116 /* read back correct, continue with top half */ 117 addrlo = addrmid; 118 else 119 /* not read back correct, continue with bottom half */ 120 addrhi = addrmid; 121 } 122 return addrhi; 123 } 124 125 static void eip197_trc_cache_clear(struct safexcel_crypto_priv *priv, 126 int cs_rc_max, int cs_ht_wc) 127 { 128 int i; 129 u32 htable_offset, val, offset; 130 131 /* Clear all records in administration RAM */ 132 for (i = 0; i < cs_rc_max; i++) { 133 offset = EIP197_CLASSIFICATION_RAMS + i * EIP197_CS_RC_SIZE; 134 135 writel(EIP197_CS_RC_NEXT(EIP197_RC_NULL) | 136 EIP197_CS_RC_PREV(EIP197_RC_NULL), 137 priv->base + offset); 138 139 val = EIP197_CS_RC_NEXT(i + 1) | EIP197_CS_RC_PREV(i - 1); 140 if (i == 0) 141 val |= EIP197_CS_RC_PREV(EIP197_RC_NULL); 142 else if (i == cs_rc_max - 1) 143 val |= EIP197_CS_RC_NEXT(EIP197_RC_NULL); 144 writel(val, priv->base + offset + 4); 145 /* must also initialize the address key due to ECC! */ 146 writel(0, priv->base + offset + 8); 147 writel(0, priv->base + offset + 12); 148 } 149 150 /* Clear the hash table entries */ 151 htable_offset = cs_rc_max * EIP197_CS_RC_SIZE; 152 for (i = 0; i < cs_ht_wc; i++) 153 writel(GENMASK(29, 0), 154 priv->base + EIP197_CLASSIFICATION_RAMS + 155 htable_offset + i * sizeof(u32)); 156 } 157 158 static int eip197_trc_cache_init(struct safexcel_crypto_priv *priv) 159 { 160 u32 val, dsize, asize; 161 int cs_rc_max, cs_ht_wc, cs_trc_rec_wc, cs_trc_lg_rec_wc; 162 int cs_rc_abs_max, cs_ht_sz; 163 int maxbanks; 164 165 /* Setup (dummy) virtualization for cache */ 166 eip197_trc_cache_setupvirt(priv); 167 168 /* 169 * Enable the record cache memory access and 170 * probe the bank select width 171 */ 172 val = readl(priv->base + EIP197_CS_RAM_CTRL); 173 val &= ~EIP197_TRC_ENABLE_MASK; 174 val |= EIP197_TRC_ENABLE_0 | EIP197_CS_BANKSEL_MASK; 175 writel(val, priv->base + EIP197_CS_RAM_CTRL); 176 val = readl(priv->base + EIP197_CS_RAM_CTRL); 177 maxbanks = ((val&EIP197_CS_BANKSEL_MASK)>>EIP197_CS_BANKSEL_OFS) + 1; 178 179 /* Clear all ECC errors */ 180 writel(0, priv->base + EIP197_TRC_ECCCTRL); 181 182 /* 183 * Make sure the cache memory is accessible by taking record cache into 184 * reset. Need data memory access here, not admin access. 185 */ 186 val = readl(priv->base + EIP197_TRC_PARAMS); 187 val |= EIP197_TRC_PARAMS_SW_RESET | EIP197_TRC_PARAMS_DATA_ACCESS; 188 writel(val, priv->base + EIP197_TRC_PARAMS); 189 190 /* Probed data RAM size in bytes */ 191 dsize = eip197_trc_cache_probe(priv, maxbanks, 0xffffffff, 32); 192 193 /* 194 * Now probe the administration RAM size pretty much the same way 195 * Except that only the lower 30 bits are writable and we don't need 196 * bank selects 197 */ 198 val = readl(priv->base + EIP197_TRC_PARAMS); 199 /* admin access now */ 200 val &= ~(EIP197_TRC_PARAMS_DATA_ACCESS | EIP197_CS_BANKSEL_MASK); 201 writel(val, priv->base + EIP197_TRC_PARAMS); 202 203 /* Probed admin RAM size in admin words */ 204 asize = eip197_trc_cache_probe(priv, 0, 0x3fffffff, 16) >> 4; 205 206 /* Clear any ECC errors detected while probing! */ 207 writel(0, priv->base + EIP197_TRC_ECCCTRL); 208 209 /* Sanity check probing results */ 210 if (dsize < EIP197_MIN_DSIZE || asize < EIP197_MIN_ASIZE) { 211 dev_err(priv->dev, "Record cache probing failed (%d,%d).", 212 dsize, asize); 213 return -ENODEV; 214 } 215 216 /* 217 * Determine optimal configuration from RAM sizes 218 * Note that we assume that the physical RAM configuration is sane 219 * Therefore, we don't do any parameter error checking here ... 220 */ 221 222 /* For now, just use a single record format covering everything */ 223 cs_trc_rec_wc = EIP197_CS_TRC_REC_WC; 224 cs_trc_lg_rec_wc = EIP197_CS_TRC_REC_WC; 225 226 /* 227 * Step #1: How many records will physically fit? 228 * Hard upper limit is 1023! 229 */ 230 cs_rc_abs_max = min_t(uint, ((dsize >> 2) / cs_trc_lg_rec_wc), 1023); 231 /* Step #2: Need at least 2 words in the admin RAM per record */ 232 cs_rc_max = min_t(uint, cs_rc_abs_max, (asize >> 1)); 233 /* Step #3: Determine log2 of hash table size */ 234 cs_ht_sz = __fls(asize - cs_rc_max) - 2; 235 /* Step #4: determine current size of hash table in dwords */ 236 cs_ht_wc = 16 << cs_ht_sz; /* dwords, not admin words */ 237 /* Step #5: add back excess words and see if we can fit more records */ 238 cs_rc_max = min_t(uint, cs_rc_abs_max, asize - (cs_ht_wc >> 2)); 239 240 /* Clear the cache RAMs */ 241 eip197_trc_cache_clear(priv, cs_rc_max, cs_ht_wc); 242 243 /* Disable the record cache memory access */ 244 val = readl(priv->base + EIP197_CS_RAM_CTRL); 245 val &= ~EIP197_TRC_ENABLE_MASK; 246 writel(val, priv->base + EIP197_CS_RAM_CTRL); 247 248 /* Write head and tail pointers of the record free chain */ 249 val = EIP197_TRC_FREECHAIN_HEAD_PTR(0) | 250 EIP197_TRC_FREECHAIN_TAIL_PTR(cs_rc_max - 1); 251 writel(val, priv->base + EIP197_TRC_FREECHAIN); 252 253 /* Configure the record cache #1 */ 254 val = EIP197_TRC_PARAMS2_RC_SZ_SMALL(cs_trc_rec_wc) | 255 EIP197_TRC_PARAMS2_HTABLE_PTR(cs_rc_max); 256 writel(val, priv->base + EIP197_TRC_PARAMS2); 257 258 /* Configure the record cache #2 */ 259 val = EIP197_TRC_PARAMS_RC_SZ_LARGE(cs_trc_lg_rec_wc) | 260 EIP197_TRC_PARAMS_BLK_TIMER_SPEED(1) | 261 EIP197_TRC_PARAMS_HTABLE_SZ(cs_ht_sz); 262 writel(val, priv->base + EIP197_TRC_PARAMS); 263 264 dev_info(priv->dev, "TRC init: %dd,%da (%dr,%dh)\n", 265 dsize, asize, cs_rc_max, cs_ht_wc + cs_ht_wc); 266 return 0; 267 } 268 269 static void eip197_init_firmware(struct safexcel_crypto_priv *priv) 270 { 271 int pe, i; 272 u32 val; 273 274 for (pe = 0; pe < priv->config.pes; pe++) { 275 /* Configure the token FIFO's */ 276 writel(3, EIP197_PE(priv) + EIP197_PE_ICE_PUTF_CTRL(pe)); 277 writel(0, EIP197_PE(priv) + EIP197_PE_ICE_PPTF_CTRL(pe)); 278 279 /* Clear the ICE scratchpad memory */ 280 val = readl(EIP197_PE(priv) + EIP197_PE_ICE_SCRATCH_CTRL(pe)); 281 val |= EIP197_PE_ICE_SCRATCH_CTRL_CHANGE_TIMER | 282 EIP197_PE_ICE_SCRATCH_CTRL_TIMER_EN | 283 EIP197_PE_ICE_SCRATCH_CTRL_SCRATCH_ACCESS | 284 EIP197_PE_ICE_SCRATCH_CTRL_CHANGE_ACCESS; 285 writel(val, EIP197_PE(priv) + EIP197_PE_ICE_SCRATCH_CTRL(pe)); 286 287 /* clear the scratchpad RAM using 32 bit writes only */ 288 for (i = 0; i < EIP197_NUM_OF_SCRATCH_BLOCKS; i++) 289 writel(0, EIP197_PE(priv) + 290 EIP197_PE_ICE_SCRATCH_RAM(pe) + (i << 2)); 291 292 /* Reset the IFPP engine to make its program mem accessible */ 293 writel(EIP197_PE_ICE_x_CTRL_SW_RESET | 294 EIP197_PE_ICE_x_CTRL_CLR_ECC_CORR | 295 EIP197_PE_ICE_x_CTRL_CLR_ECC_NON_CORR, 296 EIP197_PE(priv) + EIP197_PE_ICE_FPP_CTRL(pe)); 297 298 /* Reset the IPUE engine to make its program mem accessible */ 299 writel(EIP197_PE_ICE_x_CTRL_SW_RESET | 300 EIP197_PE_ICE_x_CTRL_CLR_ECC_CORR | 301 EIP197_PE_ICE_x_CTRL_CLR_ECC_NON_CORR, 302 EIP197_PE(priv) + EIP197_PE_ICE_PUE_CTRL(pe)); 303 304 /* Enable access to all IFPP program memories */ 305 writel(EIP197_PE_ICE_RAM_CTRL_FPP_PROG_EN, 306 EIP197_PE(priv) + EIP197_PE_ICE_RAM_CTRL(pe)); 307 308 /* bypass the OCE, if present */ 309 if (priv->flags & EIP197_OCE) 310 writel(EIP197_DEBUG_OCE_BYPASS, EIP197_PE(priv) + 311 EIP197_PE_DEBUG(pe)); 312 } 313 314 } 315 316 static int eip197_write_firmware(struct safexcel_crypto_priv *priv, 317 const struct firmware *fw) 318 { 319 u32 val; 320 int i; 321 322 /* Write the firmware */ 323 for (i = 0; i < fw->size / sizeof(u32); i++) { 324 if (priv->data->fw_little_endian) 325 val = le32_to_cpu(((const __le32 *)fw->data)[i]); 326 else 327 val = be32_to_cpu(((const __be32 *)fw->data)[i]); 328 329 writel(val, 330 priv->base + EIP197_CLASSIFICATION_RAMS + 331 i * sizeof(val)); 332 } 333 334 /* Exclude final 2 NOPs from size */ 335 return i - EIP197_FW_TERMINAL_NOPS; 336 } 337 338 /* 339 * If FW is actual production firmware, then poll for its initialization 340 * to complete and check if it is good for the HW, otherwise just return OK. 341 */ 342 static bool poll_fw_ready(struct safexcel_crypto_priv *priv, int fpp) 343 { 344 int pe, pollcnt; 345 u32 base, pollofs; 346 347 if (fpp) 348 pollofs = EIP197_FW_FPP_READY; 349 else 350 pollofs = EIP197_FW_PUE_READY; 351 352 for (pe = 0; pe < priv->config.pes; pe++) { 353 base = EIP197_PE_ICE_SCRATCH_RAM(pe); 354 pollcnt = EIP197_FW_START_POLLCNT; 355 while (pollcnt && 356 (readl_relaxed(EIP197_PE(priv) + base + 357 pollofs) != 1)) { 358 pollcnt--; 359 } 360 if (!pollcnt) { 361 dev_err(priv->dev, "FW(%d) for PE %d failed to start\n", 362 fpp, pe); 363 return false; 364 } 365 } 366 return true; 367 } 368 369 static bool eip197_start_firmware(struct safexcel_crypto_priv *priv, 370 int ipuesz, int ifppsz, int minifw) 371 { 372 int pe; 373 u32 val; 374 375 for (pe = 0; pe < priv->config.pes; pe++) { 376 /* Disable access to all program memory */ 377 writel(0, EIP197_PE(priv) + EIP197_PE_ICE_RAM_CTRL(pe)); 378 379 /* Start IFPP microengines */ 380 if (minifw) 381 val = 0; 382 else 383 val = EIP197_PE_ICE_UENG_START_OFFSET((ifppsz - 1) & 384 EIP197_PE_ICE_UENG_INIT_ALIGN_MASK) | 385 EIP197_PE_ICE_UENG_DEBUG_RESET; 386 writel(val, EIP197_PE(priv) + EIP197_PE_ICE_FPP_CTRL(pe)); 387 388 /* Start IPUE microengines */ 389 if (minifw) 390 val = 0; 391 else 392 val = EIP197_PE_ICE_UENG_START_OFFSET((ipuesz - 1) & 393 EIP197_PE_ICE_UENG_INIT_ALIGN_MASK) | 394 EIP197_PE_ICE_UENG_DEBUG_RESET; 395 writel(val, EIP197_PE(priv) + EIP197_PE_ICE_PUE_CTRL(pe)); 396 } 397 398 /* For miniFW startup, there is no initialization, so always succeed */ 399 if (minifw) 400 return true; 401 402 /* Wait until all the firmwares have properly started up */ 403 if (!poll_fw_ready(priv, 1)) 404 return false; 405 if (!poll_fw_ready(priv, 0)) 406 return false; 407 408 return true; 409 } 410 411 static int eip197_load_firmwares(struct safexcel_crypto_priv *priv) 412 { 413 const char *fw_name[] = {"ifpp.bin", "ipue.bin"}; 414 const struct firmware *fw[FW_NB]; 415 char fw_path[37], *dir = NULL; 416 int i, j, ret = 0, pe; 417 int ipuesz, ifppsz, minifw = 0; 418 419 if (priv->data->version == EIP197D_MRVL) 420 dir = "eip197d"; 421 else if (priv->data->version == EIP197B_MRVL || 422 priv->data->version == EIP197_DEVBRD) 423 dir = "eip197b"; 424 else if (priv->data->version == EIP197C_MXL) 425 dir = "eip197c"; 426 else 427 return -ENODEV; 428 429 retry_fw: 430 for (i = 0; i < FW_NB; i++) { 431 snprintf(fw_path, 37, "inside-secure/%s/%s", dir, fw_name[i]); 432 ret = firmware_request_nowarn(&fw[i], fw_path, priv->dev); 433 if (ret) { 434 if (minifw || priv->data->version != EIP197B_MRVL) 435 goto release_fw; 436 437 /* Fallback to the old firmware location for the 438 * EIP197b. 439 */ 440 ret = firmware_request_nowarn(&fw[i], fw_name[i], 441 priv->dev); 442 if (ret) 443 goto release_fw; 444 } 445 } 446 447 eip197_init_firmware(priv); 448 449 ifppsz = eip197_write_firmware(priv, fw[FW_IFPP]); 450 451 /* Enable access to IPUE program memories */ 452 for (pe = 0; pe < priv->config.pes; pe++) 453 writel(EIP197_PE_ICE_RAM_CTRL_PUE_PROG_EN, 454 EIP197_PE(priv) + EIP197_PE_ICE_RAM_CTRL(pe)); 455 456 ipuesz = eip197_write_firmware(priv, fw[FW_IPUE]); 457 458 if (eip197_start_firmware(priv, ipuesz, ifppsz, minifw)) { 459 dev_dbg(priv->dev, "Firmware loaded successfully\n"); 460 return 0; 461 } 462 463 ret = -ENODEV; 464 465 release_fw: 466 for (j = 0; j < i; j++) 467 release_firmware(fw[j]); 468 469 if (!minifw) { 470 /* Retry with minifw path */ 471 dev_dbg(priv->dev, "Firmware set not (fully) present or init failed, falling back to BCLA mode\n"); 472 dir = "eip197_minifw"; 473 minifw = 1; 474 goto retry_fw; 475 } 476 477 dev_err(priv->dev, "Firmware load failed.\n"); 478 479 return ret; 480 } 481 482 static int safexcel_hw_setup_cdesc_rings(struct safexcel_crypto_priv *priv) 483 { 484 u32 cd_size_rnd, val; 485 int i, cd_fetch_cnt; 486 487 cd_size_rnd = (priv->config.cd_size + 488 (BIT(priv->hwconfig.hwdataw) - 1)) >> 489 priv->hwconfig.hwdataw; 490 /* determine number of CD's we can fetch into the CD FIFO as 1 block */ 491 if (priv->flags & SAFEXCEL_HW_EIP197) { 492 /* EIP197: try to fetch enough in 1 go to keep all pipes busy */ 493 cd_fetch_cnt = (1 << priv->hwconfig.hwcfsize) / cd_size_rnd; 494 cd_fetch_cnt = min_t(uint, cd_fetch_cnt, 495 (priv->config.pes * EIP197_FETCH_DEPTH)); 496 } else { 497 /* for the EIP97, just fetch all that fits minus 1 */ 498 cd_fetch_cnt = ((1 << priv->hwconfig.hwcfsize) / 499 cd_size_rnd) - 1; 500 } 501 /* 502 * Since we're using command desc's way larger than formally specified, 503 * we need to check whether we can fit even 1 for low-end EIP196's! 504 */ 505 if (!cd_fetch_cnt) { 506 dev_err(priv->dev, "Unable to fit even 1 command desc!\n"); 507 return -ENODEV; 508 } 509 510 for (i = 0; i < priv->config.rings; i++) { 511 /* ring base address */ 512 writel(lower_32_bits(priv->ring[i].cdr.base_dma), 513 EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_LO); 514 writel(upper_32_bits(priv->ring[i].cdr.base_dma), 515 EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_HI); 516 517 writel(EIP197_xDR_DESC_MODE_64BIT | EIP197_CDR_DESC_MODE_ADCP | 518 (priv->config.cd_offset << 14) | priv->config.cd_size, 519 EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_DESC_SIZE); 520 writel(((cd_fetch_cnt * 521 (cd_size_rnd << priv->hwconfig.hwdataw)) << 16) | 522 (cd_fetch_cnt * (priv->config.cd_offset / sizeof(u32))), 523 EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_CFG); 524 525 /* Configure DMA tx control */ 526 val = EIP197_HIA_xDR_CFG_WR_CACHE(WR_CACHE_3BITS); 527 val |= EIP197_HIA_xDR_CFG_RD_CACHE(RD_CACHE_3BITS); 528 writel(val, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_DMA_CFG); 529 530 /* clear any pending interrupt */ 531 writel(GENMASK(5, 0), 532 EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_STAT); 533 } 534 535 return 0; 536 } 537 538 static int safexcel_hw_setup_rdesc_rings(struct safexcel_crypto_priv *priv) 539 { 540 u32 rd_size_rnd, val; 541 int i, rd_fetch_cnt; 542 543 /* determine number of RD's we can fetch into the FIFO as one block */ 544 rd_size_rnd = (EIP197_RD64_FETCH_SIZE + 545 (BIT(priv->hwconfig.hwdataw) - 1)) >> 546 priv->hwconfig.hwdataw; 547 if (priv->flags & SAFEXCEL_HW_EIP197) { 548 /* EIP197: try to fetch enough in 1 go to keep all pipes busy */ 549 rd_fetch_cnt = (1 << priv->hwconfig.hwrfsize) / rd_size_rnd; 550 rd_fetch_cnt = min_t(uint, rd_fetch_cnt, 551 (priv->config.pes * EIP197_FETCH_DEPTH)); 552 } else { 553 /* for the EIP97, just fetch all that fits minus 1 */ 554 rd_fetch_cnt = ((1 << priv->hwconfig.hwrfsize) / 555 rd_size_rnd) - 1; 556 } 557 558 for (i = 0; i < priv->config.rings; i++) { 559 /* ring base address */ 560 writel(lower_32_bits(priv->ring[i].rdr.base_dma), 561 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_LO); 562 writel(upper_32_bits(priv->ring[i].rdr.base_dma), 563 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_HI); 564 565 writel(EIP197_xDR_DESC_MODE_64BIT | (priv->config.rd_offset << 14) | 566 priv->config.rd_size, 567 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_DESC_SIZE); 568 569 writel(((rd_fetch_cnt * 570 (rd_size_rnd << priv->hwconfig.hwdataw)) << 16) | 571 (rd_fetch_cnt * (priv->config.rd_offset / sizeof(u32))), 572 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_CFG); 573 574 /* Configure DMA tx control */ 575 val = EIP197_HIA_xDR_CFG_WR_CACHE(WR_CACHE_3BITS); 576 val |= EIP197_HIA_xDR_CFG_RD_CACHE(RD_CACHE_3BITS); 577 val |= EIP197_HIA_xDR_WR_RES_BUF | EIP197_HIA_xDR_WR_CTRL_BUF; 578 writel(val, 579 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_DMA_CFG); 580 581 /* clear any pending interrupt */ 582 writel(GENMASK(7, 0), 583 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_STAT); 584 585 /* enable ring interrupt */ 586 val = readl(EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ENABLE_CTRL(i)); 587 val |= EIP197_RDR_IRQ(i); 588 writel(val, EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ENABLE_CTRL(i)); 589 } 590 591 return 0; 592 } 593 594 static int safexcel_hw_init(struct safexcel_crypto_priv *priv) 595 { 596 u32 val; 597 int i, ret, pe, opbuflo, opbufhi; 598 599 dev_dbg(priv->dev, "HW init: using %d pipe(s) and %d ring(s)\n", 600 priv->config.pes, priv->config.rings); 601 602 /* 603 * For EIP197's only set maximum number of TX commands to 2^5 = 32 604 * Skip for the EIP97 as it does not have this field. 605 */ 606 if (priv->flags & SAFEXCEL_HW_EIP197) { 607 val = readl(EIP197_HIA_AIC(priv) + EIP197_HIA_MST_CTRL); 608 val |= EIP197_MST_CTRL_TX_MAX_CMD(5); 609 writel(val, EIP197_HIA_AIC(priv) + EIP197_HIA_MST_CTRL); 610 } 611 612 /* Configure wr/rd cache values */ 613 writel(EIP197_MST_CTRL_RD_CACHE(RD_CACHE_4BITS) | 614 EIP197_MST_CTRL_WD_CACHE(WR_CACHE_4BITS), 615 EIP197_HIA_GEN_CFG(priv) + EIP197_MST_CTRL); 616 617 /* Interrupts reset */ 618 619 /* Disable all global interrupts */ 620 writel(0, EIP197_HIA_AIC_G(priv) + EIP197_HIA_AIC_G_ENABLE_CTRL); 621 622 /* Clear any pending interrupt */ 623 writel(GENMASK(31, 0), EIP197_HIA_AIC_G(priv) + EIP197_HIA_AIC_G_ACK); 624 625 /* Processing Engine configuration */ 626 for (pe = 0; pe < priv->config.pes; pe++) { 627 /* Data Fetch Engine configuration */ 628 629 /* Reset all DFE threads */ 630 writel(EIP197_DxE_THR_CTRL_RESET_PE, 631 EIP197_HIA_DFE_THR(priv) + EIP197_HIA_DFE_THR_CTRL(pe)); 632 633 if (priv->flags & EIP197_PE_ARB) 634 /* Reset HIA input interface arbiter (if present) */ 635 writel(EIP197_HIA_RA_PE_CTRL_RESET, 636 EIP197_HIA_AIC(priv) + EIP197_HIA_RA_PE_CTRL(pe)); 637 638 /* DMA transfer size to use */ 639 val = EIP197_HIA_DFE_CFG_DIS_DEBUG; 640 val |= EIP197_HIA_DxE_CFG_MIN_DATA_SIZE(6) | 641 EIP197_HIA_DxE_CFG_MAX_DATA_SIZE(9); 642 val |= EIP197_HIA_DxE_CFG_MIN_CTRL_SIZE(6) | 643 EIP197_HIA_DxE_CFG_MAX_CTRL_SIZE(7); 644 val |= EIP197_HIA_DxE_CFG_DATA_CACHE_CTRL(RD_CACHE_3BITS); 645 val |= EIP197_HIA_DxE_CFG_CTRL_CACHE_CTRL(RD_CACHE_3BITS); 646 writel(val, EIP197_HIA_DFE(priv) + EIP197_HIA_DFE_CFG(pe)); 647 648 /* Leave the DFE threads reset state */ 649 writel(0, EIP197_HIA_DFE_THR(priv) + EIP197_HIA_DFE_THR_CTRL(pe)); 650 651 /* Configure the processing engine thresholds */ 652 writel(EIP197_PE_IN_xBUF_THRES_MIN(6) | 653 EIP197_PE_IN_xBUF_THRES_MAX(9), 654 EIP197_PE(priv) + EIP197_PE_IN_DBUF_THRES(pe)); 655 writel(EIP197_PE_IN_xBUF_THRES_MIN(6) | 656 EIP197_PE_IN_xBUF_THRES_MAX(7), 657 EIP197_PE(priv) + EIP197_PE_IN_TBUF_THRES(pe)); 658 659 if (priv->flags & SAFEXCEL_HW_EIP197) 660 /* enable HIA input interface arbiter and rings */ 661 writel(EIP197_HIA_RA_PE_CTRL_EN | 662 GENMASK(priv->config.rings - 1, 0), 663 EIP197_HIA_AIC(priv) + EIP197_HIA_RA_PE_CTRL(pe)); 664 665 /* Data Store Engine configuration */ 666 667 /* Reset all DSE threads */ 668 writel(EIP197_DxE_THR_CTRL_RESET_PE, 669 EIP197_HIA_DSE_THR(priv) + EIP197_HIA_DSE_THR_CTRL(pe)); 670 671 /* Wait for all DSE threads to complete */ 672 while ((readl(EIP197_HIA_DSE_THR(priv) + EIP197_HIA_DSE_THR_STAT(pe)) & 673 GENMASK(15, 12)) != GENMASK(15, 12)) 674 ; 675 676 /* DMA transfer size to use */ 677 if (priv->hwconfig.hwnumpes > 4) { 678 opbuflo = 9; 679 opbufhi = 10; 680 } else { 681 opbuflo = 7; 682 opbufhi = 8; 683 } 684 val = EIP197_HIA_DSE_CFG_DIS_DEBUG; 685 val |= EIP197_HIA_DxE_CFG_MIN_DATA_SIZE(opbuflo) | 686 EIP197_HIA_DxE_CFG_MAX_DATA_SIZE(opbufhi); 687 val |= EIP197_HIA_DxE_CFG_DATA_CACHE_CTRL(WR_CACHE_3BITS); 688 val |= EIP197_HIA_DSE_CFG_ALWAYS_BUFFERABLE; 689 /* FIXME: instability issues can occur for EIP97 but disabling 690 * it impacts performance. 691 */ 692 if (priv->flags & SAFEXCEL_HW_EIP197) 693 val |= EIP197_HIA_DSE_CFG_EN_SINGLE_WR; 694 writel(val, EIP197_HIA_DSE(priv) + EIP197_HIA_DSE_CFG(pe)); 695 696 /* Leave the DSE threads reset state */ 697 writel(0, EIP197_HIA_DSE_THR(priv) + EIP197_HIA_DSE_THR_CTRL(pe)); 698 699 /* Configure the processing engine thresholds */ 700 writel(EIP197_PE_OUT_DBUF_THRES_MIN(opbuflo) | 701 EIP197_PE_OUT_DBUF_THRES_MAX(opbufhi), 702 EIP197_PE(priv) + EIP197_PE_OUT_DBUF_THRES(pe)); 703 704 /* Processing Engine configuration */ 705 706 /* Token & context configuration */ 707 val = EIP197_PE_EIP96_TOKEN_CTRL_CTX_UPDATES | 708 EIP197_PE_EIP96_TOKEN_CTRL_NO_TOKEN_WAIT | 709 EIP197_PE_EIP96_TOKEN_CTRL_ENABLE_TIMEOUT; 710 writel(val, EIP197_PE(priv) + EIP197_PE_EIP96_TOKEN_CTRL(pe)); 711 712 /* H/W capabilities selection: just enable everything */ 713 writel(EIP197_FUNCTION_ALL, 714 EIP197_PE(priv) + EIP197_PE_EIP96_FUNCTION_EN(pe)); 715 writel(EIP197_FUNCTION_ALL, 716 EIP197_PE(priv) + EIP197_PE_EIP96_FUNCTION2_EN(pe)); 717 } 718 719 /* Command Descriptor Rings prepare */ 720 for (i = 0; i < priv->config.rings; i++) { 721 /* Clear interrupts for this ring */ 722 writel(GENMASK(31, 0), 723 EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ENABLE_CLR(i)); 724 725 /* Disable external triggering */ 726 writel(0, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_CFG); 727 728 /* Clear the pending prepared counter */ 729 writel(EIP197_xDR_PREP_CLR_COUNT, 730 EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_PREP_COUNT); 731 732 /* Clear the pending processed counter */ 733 writel(EIP197_xDR_PROC_CLR_COUNT, 734 EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_PROC_COUNT); 735 736 writel(0, 737 EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_PREP_PNTR); 738 writel(0, 739 EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_PROC_PNTR); 740 741 writel((EIP197_DEFAULT_RING_SIZE * priv->config.cd_offset), 742 EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_SIZE); 743 } 744 745 /* Result Descriptor Ring prepare */ 746 for (i = 0; i < priv->config.rings; i++) { 747 /* Disable external triggering*/ 748 writel(0, EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_CFG); 749 750 /* Clear the pending prepared counter */ 751 writel(EIP197_xDR_PREP_CLR_COUNT, 752 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_PREP_COUNT); 753 754 /* Clear the pending processed counter */ 755 writel(EIP197_xDR_PROC_CLR_COUNT, 756 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_PROC_COUNT); 757 758 writel(0, 759 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_PREP_PNTR); 760 writel(0, 761 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_PROC_PNTR); 762 763 /* Ring size */ 764 writel((EIP197_DEFAULT_RING_SIZE * priv->config.rd_offset), 765 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_SIZE); 766 } 767 768 for (pe = 0; pe < priv->config.pes; pe++) { 769 /* Enable command descriptor rings */ 770 writel(EIP197_DxE_THR_CTRL_EN | GENMASK(priv->config.rings - 1, 0), 771 EIP197_HIA_DFE_THR(priv) + EIP197_HIA_DFE_THR_CTRL(pe)); 772 773 /* Enable result descriptor rings */ 774 writel(EIP197_DxE_THR_CTRL_EN | GENMASK(priv->config.rings - 1, 0), 775 EIP197_HIA_DSE_THR(priv) + EIP197_HIA_DSE_THR_CTRL(pe)); 776 } 777 778 /* Clear any HIA interrupt */ 779 writel(GENMASK(30, 20), EIP197_HIA_AIC_G(priv) + EIP197_HIA_AIC_G_ACK); 780 781 if (priv->flags & EIP197_SIMPLE_TRC) { 782 writel(EIP197_STRC_CONFIG_INIT | 783 EIP197_STRC_CONFIG_LARGE_REC(EIP197_CS_TRC_REC_WC) | 784 EIP197_STRC_CONFIG_SMALL_REC(EIP197_CS_TRC_REC_WC), 785 priv->base + EIP197_STRC_CONFIG); 786 writel(EIP197_PE_EIP96_TOKEN_CTRL2_CTX_DONE, 787 EIP197_PE(priv) + EIP197_PE_EIP96_TOKEN_CTRL2(0)); 788 } else if (priv->flags & SAFEXCEL_HW_EIP197) { 789 ret = eip197_trc_cache_init(priv); 790 if (ret) 791 return ret; 792 } 793 794 if (priv->flags & EIP197_ICE) { 795 ret = eip197_load_firmwares(priv); 796 if (ret) 797 return ret; 798 } 799 800 return safexcel_hw_setup_cdesc_rings(priv) ?: 801 safexcel_hw_setup_rdesc_rings(priv) ?: 802 0; 803 } 804 805 /* Called with ring's lock taken */ 806 static void safexcel_try_push_requests(struct safexcel_crypto_priv *priv, 807 int ring) 808 { 809 int coal = min_t(int, priv->ring[ring].requests, EIP197_MAX_BATCH_SZ); 810 811 if (!coal) 812 return; 813 814 /* Configure when we want an interrupt */ 815 writel(EIP197_HIA_RDR_THRESH_PKT_MODE | 816 EIP197_HIA_RDR_THRESH_PROC_PKT(coal), 817 EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_THRESH); 818 } 819 820 void safexcel_dequeue(struct safexcel_crypto_priv *priv, int ring) 821 { 822 struct crypto_async_request *req, *backlog; 823 struct safexcel_context *ctx; 824 int ret, nreq = 0, cdesc = 0, rdesc = 0, commands, results; 825 826 /* If a request wasn't properly dequeued because of a lack of resources, 827 * proceeded it first, 828 */ 829 req = priv->ring[ring].req; 830 backlog = priv->ring[ring].backlog; 831 if (req) 832 goto handle_req; 833 834 while (true) { 835 spin_lock_bh(&priv->ring[ring].queue_lock); 836 backlog = crypto_get_backlog(&priv->ring[ring].queue); 837 req = crypto_dequeue_request(&priv->ring[ring].queue); 838 spin_unlock_bh(&priv->ring[ring].queue_lock); 839 840 if (!req) { 841 priv->ring[ring].req = NULL; 842 priv->ring[ring].backlog = NULL; 843 goto finalize; 844 } 845 846 handle_req: 847 ctx = crypto_tfm_ctx(req->tfm); 848 ret = ctx->send(req, ring, &commands, &results); 849 if (ret) 850 goto request_failed; 851 852 if (backlog) 853 crypto_request_complete(backlog, -EINPROGRESS); 854 855 /* In case the send() helper did not issue any command to push 856 * to the engine because the input data was cached, continue to 857 * dequeue other requests as this is valid and not an error. 858 */ 859 if (!commands && !results) 860 continue; 861 862 cdesc += commands; 863 rdesc += results; 864 nreq++; 865 } 866 867 request_failed: 868 /* Not enough resources to handle all the requests. Bail out and save 869 * the request and the backlog for the next dequeue call (per-ring). 870 */ 871 priv->ring[ring].req = req; 872 priv->ring[ring].backlog = backlog; 873 874 finalize: 875 if (!nreq) 876 return; 877 878 spin_lock_bh(&priv->ring[ring].lock); 879 880 priv->ring[ring].requests += nreq; 881 882 if (!priv->ring[ring].busy) { 883 safexcel_try_push_requests(priv, ring); 884 priv->ring[ring].busy = true; 885 } 886 887 spin_unlock_bh(&priv->ring[ring].lock); 888 889 /* let the RDR know we have pending descriptors */ 890 writel((rdesc * priv->config.rd_offset), 891 EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_PREP_COUNT); 892 893 /* let the CDR know we have pending descriptors */ 894 writel((cdesc * priv->config.cd_offset), 895 EIP197_HIA_CDR(priv, ring) + EIP197_HIA_xDR_PREP_COUNT); 896 } 897 898 inline int safexcel_rdesc_check_errors(struct safexcel_crypto_priv *priv, 899 void *rdp) 900 { 901 struct safexcel_result_desc *rdesc = rdp; 902 struct result_data_desc *result_data = rdp + priv->config.res_offset; 903 904 if (likely((!rdesc->last_seg) || /* Rest only valid if last seg! */ 905 ((!rdesc->descriptor_overflow) && 906 (!rdesc->buffer_overflow) && 907 (!result_data->error_code)))) 908 return 0; 909 910 if (rdesc->descriptor_overflow) 911 dev_err(priv->dev, "Descriptor overflow detected"); 912 913 if (rdesc->buffer_overflow) 914 dev_err(priv->dev, "Buffer overflow detected"); 915 916 if (result_data->error_code & 0x4066) { 917 /* Fatal error (bits 1,2,5,6 & 14) */ 918 dev_err(priv->dev, 919 "result descriptor error (%x)", 920 result_data->error_code); 921 922 return -EIO; 923 } else if (result_data->error_code & 924 (BIT(7) | BIT(4) | BIT(3) | BIT(0))) { 925 /* 926 * Give priority over authentication fails: 927 * Blocksize, length & overflow errors, 928 * something wrong with the input! 929 */ 930 return -EINVAL; 931 } else if (result_data->error_code & BIT(9)) { 932 /* Authentication failed */ 933 return -EBADMSG; 934 } 935 936 /* All other non-fatal errors */ 937 return -EINVAL; 938 } 939 940 inline void safexcel_rdr_req_set(struct safexcel_crypto_priv *priv, 941 int ring, 942 struct safexcel_result_desc *rdesc, 943 struct crypto_async_request *req) 944 { 945 int i = safexcel_ring_rdr_rdesc_index(priv, ring, rdesc); 946 947 priv->ring[ring].rdr_req[i] = req; 948 } 949 950 inline struct crypto_async_request * 951 safexcel_rdr_req_get(struct safexcel_crypto_priv *priv, int ring) 952 { 953 int i = safexcel_ring_first_rdr_index(priv, ring); 954 955 return priv->ring[ring].rdr_req[i]; 956 } 957 958 void safexcel_complete(struct safexcel_crypto_priv *priv, int ring) 959 { 960 struct safexcel_command_desc *cdesc; 961 962 /* Acknowledge the command descriptors */ 963 do { 964 cdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].cdr); 965 if (IS_ERR(cdesc)) { 966 dev_err(priv->dev, 967 "Could not retrieve the command descriptor\n"); 968 return; 969 } 970 } while (!cdesc->last_seg); 971 } 972 973 int safexcel_invalidate_cache(struct crypto_async_request *async, 974 struct safexcel_crypto_priv *priv, 975 dma_addr_t ctxr_dma, int ring) 976 { 977 struct safexcel_command_desc *cdesc; 978 struct safexcel_result_desc *rdesc; 979 struct safexcel_token *dmmy; 980 int ret = 0; 981 982 /* Prepare command descriptor */ 983 cdesc = safexcel_add_cdesc(priv, ring, true, true, 0, 0, 0, ctxr_dma, 984 &dmmy); 985 if (IS_ERR(cdesc)) 986 return PTR_ERR(cdesc); 987 988 cdesc->control_data.type = EIP197_TYPE_EXTENDED; 989 cdesc->control_data.options = 0; 990 cdesc->control_data.context_lo &= ~EIP197_CONTEXT_SIZE_MASK; 991 cdesc->control_data.control0 = CONTEXT_CONTROL_INV_TR; 992 993 /* Prepare result descriptor */ 994 rdesc = safexcel_add_rdesc(priv, ring, true, true, 0, 0); 995 996 if (IS_ERR(rdesc)) { 997 ret = PTR_ERR(rdesc); 998 goto cdesc_rollback; 999 } 1000 1001 safexcel_rdr_req_set(priv, ring, rdesc, async); 1002 1003 return ret; 1004 1005 cdesc_rollback: 1006 safexcel_ring_rollback_wptr(priv, &priv->ring[ring].cdr); 1007 1008 return ret; 1009 } 1010 1011 static inline void safexcel_handle_result_descriptor(struct safexcel_crypto_priv *priv, 1012 int ring) 1013 { 1014 struct crypto_async_request *req; 1015 struct safexcel_context *ctx; 1016 int ret, i, nreq, ndesc, tot_descs, handled = 0; 1017 bool should_complete; 1018 1019 handle_results: 1020 tot_descs = 0; 1021 1022 nreq = readl(EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_PROC_COUNT); 1023 nreq >>= EIP197_xDR_PROC_xD_PKT_OFFSET; 1024 nreq &= EIP197_xDR_PROC_xD_PKT_MASK; 1025 if (!nreq) 1026 goto requests_left; 1027 1028 for (i = 0; i < nreq; i++) { 1029 req = safexcel_rdr_req_get(priv, ring); 1030 1031 ctx = crypto_tfm_ctx(req->tfm); 1032 ndesc = ctx->handle_result(priv, ring, req, 1033 &should_complete, &ret); 1034 if (ndesc < 0) { 1035 dev_err(priv->dev, "failed to handle result (%d)\n", 1036 ndesc); 1037 goto acknowledge; 1038 } 1039 1040 if (should_complete) { 1041 local_bh_disable(); 1042 crypto_request_complete(req, ret); 1043 local_bh_enable(); 1044 } 1045 1046 tot_descs += ndesc; 1047 handled++; 1048 } 1049 1050 acknowledge: 1051 if (i) 1052 writel(EIP197_xDR_PROC_xD_PKT(i) | 1053 (tot_descs * priv->config.rd_offset), 1054 EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_PROC_COUNT); 1055 1056 /* If the number of requests overflowed the counter, try to proceed more 1057 * requests. 1058 */ 1059 if (nreq == EIP197_xDR_PROC_xD_PKT_MASK) 1060 goto handle_results; 1061 1062 requests_left: 1063 spin_lock_bh(&priv->ring[ring].lock); 1064 1065 priv->ring[ring].requests -= handled; 1066 safexcel_try_push_requests(priv, ring); 1067 1068 if (!priv->ring[ring].requests) 1069 priv->ring[ring].busy = false; 1070 1071 spin_unlock_bh(&priv->ring[ring].lock); 1072 } 1073 1074 static void safexcel_dequeue_work(struct work_struct *work) 1075 { 1076 struct safexcel_work_data *data = 1077 container_of(work, struct safexcel_work_data, work); 1078 1079 safexcel_dequeue(data->priv, data->ring); 1080 } 1081 1082 struct safexcel_ring_irq_data { 1083 struct safexcel_crypto_priv *priv; 1084 int ring; 1085 }; 1086 1087 static irqreturn_t safexcel_irq_ring(int irq, void *data) 1088 { 1089 struct safexcel_ring_irq_data *irq_data = data; 1090 struct safexcel_crypto_priv *priv = irq_data->priv; 1091 int ring = irq_data->ring, rc = IRQ_NONE; 1092 u32 status, stat; 1093 1094 status = readl(EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ENABLED_STAT(ring)); 1095 if (!status) 1096 return rc; 1097 1098 /* RDR interrupts */ 1099 if (status & EIP197_RDR_IRQ(ring)) { 1100 stat = readl(EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_STAT); 1101 1102 if (unlikely(stat & EIP197_xDR_ERR)) { 1103 /* 1104 * Fatal error, the RDR is unusable and must be 1105 * reinitialized. This should not happen under 1106 * normal circumstances. 1107 */ 1108 dev_err(priv->dev, "RDR: fatal error.\n"); 1109 } else if (likely(stat & EIP197_xDR_THRESH)) { 1110 rc = IRQ_WAKE_THREAD; 1111 } 1112 1113 /* ACK the interrupts */ 1114 writel(stat & 0xff, 1115 EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_STAT); 1116 } 1117 1118 /* ACK the interrupts */ 1119 writel(status, EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ACK(ring)); 1120 1121 return rc; 1122 } 1123 1124 static irqreturn_t safexcel_irq_ring_thread(int irq, void *data) 1125 { 1126 struct safexcel_ring_irq_data *irq_data = data; 1127 struct safexcel_crypto_priv *priv = irq_data->priv; 1128 int ring = irq_data->ring; 1129 1130 safexcel_handle_result_descriptor(priv, ring); 1131 1132 queue_work(priv->ring[ring].workqueue, 1133 &priv->ring[ring].work_data.work); 1134 1135 return IRQ_HANDLED; 1136 } 1137 1138 static int safexcel_request_ring_irq(void *pdev, int irqid, 1139 int is_pci_dev, 1140 int ring_id, 1141 irq_handler_t handler, 1142 irq_handler_t threaded_handler, 1143 struct safexcel_ring_irq_data *ring_irq_priv) 1144 { 1145 int ret, irq, cpu; 1146 struct device *dev; 1147 1148 if (IS_ENABLED(CONFIG_PCI) && is_pci_dev) { 1149 struct pci_dev *pci_pdev = pdev; 1150 1151 dev = &pci_pdev->dev; 1152 irq = pci_irq_vector(pci_pdev, irqid); 1153 if (irq < 0) { 1154 dev_err(dev, "unable to get device MSI IRQ %d (err %d)\n", 1155 irqid, irq); 1156 return irq; 1157 } 1158 } else if (IS_ENABLED(CONFIG_OF)) { 1159 struct platform_device *plf_pdev = pdev; 1160 char irq_name[6] = {0}; /* "ringX\0" */ 1161 1162 snprintf(irq_name, 6, "ring%d", irqid); 1163 dev = &plf_pdev->dev; 1164 irq = platform_get_irq_byname(plf_pdev, irq_name); 1165 1166 if (irq < 0) 1167 return irq; 1168 } else { 1169 return -ENXIO; 1170 } 1171 1172 ret = devm_request_threaded_irq(dev, irq, handler, 1173 threaded_handler, IRQF_ONESHOT, 1174 dev_name(dev), ring_irq_priv); 1175 if (ret) { 1176 dev_err(dev, "unable to request IRQ %d\n", irq); 1177 return ret; 1178 } 1179 1180 /* Set affinity */ 1181 cpu = cpumask_local_spread(ring_id, NUMA_NO_NODE); 1182 irq_set_affinity_hint(irq, get_cpu_mask(cpu)); 1183 1184 return irq; 1185 } 1186 1187 static struct safexcel_alg_template *safexcel_algs[] = { 1188 &safexcel_alg_ecb_des, 1189 &safexcel_alg_cbc_des, 1190 &safexcel_alg_ecb_des3_ede, 1191 &safexcel_alg_cbc_des3_ede, 1192 &safexcel_alg_ecb_aes, 1193 &safexcel_alg_cbc_aes, 1194 &safexcel_alg_ctr_aes, 1195 &safexcel_alg_md5, 1196 &safexcel_alg_sha1, 1197 &safexcel_alg_sha224, 1198 &safexcel_alg_sha256, 1199 &safexcel_alg_sha384, 1200 &safexcel_alg_sha512, 1201 &safexcel_alg_hmac_md5, 1202 &safexcel_alg_hmac_sha1, 1203 &safexcel_alg_hmac_sha224, 1204 &safexcel_alg_hmac_sha256, 1205 &safexcel_alg_hmac_sha384, 1206 &safexcel_alg_hmac_sha512, 1207 &safexcel_alg_authenc_hmac_sha1_cbc_aes, 1208 &safexcel_alg_authenc_hmac_sha224_cbc_aes, 1209 &safexcel_alg_authenc_hmac_sha256_cbc_aes, 1210 &safexcel_alg_authenc_hmac_sha384_cbc_aes, 1211 &safexcel_alg_authenc_hmac_sha512_cbc_aes, 1212 &safexcel_alg_authenc_hmac_sha1_cbc_des3_ede, 1213 &safexcel_alg_authenc_hmac_sha1_ctr_aes, 1214 &safexcel_alg_authenc_hmac_sha224_ctr_aes, 1215 &safexcel_alg_authenc_hmac_sha256_ctr_aes, 1216 &safexcel_alg_authenc_hmac_sha384_ctr_aes, 1217 &safexcel_alg_authenc_hmac_sha512_ctr_aes, 1218 &safexcel_alg_xts_aes, 1219 &safexcel_alg_gcm, 1220 &safexcel_alg_ccm, 1221 &safexcel_alg_crc32, 1222 &safexcel_alg_cbcmac, 1223 &safexcel_alg_xcbcmac, 1224 &safexcel_alg_cmac, 1225 &safexcel_alg_chacha20, 1226 &safexcel_alg_chachapoly, 1227 &safexcel_alg_chachapoly_esp, 1228 &safexcel_alg_sm3, 1229 &safexcel_alg_hmac_sm3, 1230 &safexcel_alg_ecb_sm4, 1231 &safexcel_alg_cbc_sm4, 1232 &safexcel_alg_ctr_sm4, 1233 &safexcel_alg_authenc_hmac_sha1_cbc_sm4, 1234 &safexcel_alg_authenc_hmac_sm3_cbc_sm4, 1235 &safexcel_alg_authenc_hmac_sha1_ctr_sm4, 1236 &safexcel_alg_authenc_hmac_sm3_ctr_sm4, 1237 &safexcel_alg_sha3_224, 1238 &safexcel_alg_sha3_256, 1239 &safexcel_alg_sha3_384, 1240 &safexcel_alg_sha3_512, 1241 &safexcel_alg_hmac_sha3_224, 1242 &safexcel_alg_hmac_sha3_256, 1243 &safexcel_alg_hmac_sha3_384, 1244 &safexcel_alg_hmac_sha3_512, 1245 &safexcel_alg_authenc_hmac_sha1_cbc_des, 1246 &safexcel_alg_authenc_hmac_sha256_cbc_des3_ede, 1247 &safexcel_alg_authenc_hmac_sha224_cbc_des3_ede, 1248 &safexcel_alg_authenc_hmac_sha512_cbc_des3_ede, 1249 &safexcel_alg_authenc_hmac_sha384_cbc_des3_ede, 1250 &safexcel_alg_authenc_hmac_sha256_cbc_des, 1251 &safexcel_alg_authenc_hmac_sha224_cbc_des, 1252 &safexcel_alg_authenc_hmac_sha512_cbc_des, 1253 &safexcel_alg_authenc_hmac_sha384_cbc_des, 1254 &safexcel_alg_rfc4106_gcm, 1255 &safexcel_alg_rfc4543_gcm, 1256 &safexcel_alg_rfc4309_ccm, 1257 }; 1258 1259 static int safexcel_register_algorithms(struct safexcel_crypto_priv *priv) 1260 { 1261 int i, j, ret = 0; 1262 1263 for (i = 0; i < ARRAY_SIZE(safexcel_algs); i++) { 1264 safexcel_algs[i]->priv = priv; 1265 1266 /* Do we have all required base algorithms available? */ 1267 if ((safexcel_algs[i]->algo_mask & priv->hwconfig.algo_flags) != 1268 safexcel_algs[i]->algo_mask) 1269 /* No, so don't register this ciphersuite */ 1270 continue; 1271 1272 if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_SKCIPHER) 1273 ret = crypto_register_skcipher(&safexcel_algs[i]->alg.skcipher); 1274 else if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_AEAD) 1275 ret = crypto_register_aead(&safexcel_algs[i]->alg.aead); 1276 else 1277 ret = crypto_register_ahash(&safexcel_algs[i]->alg.ahash); 1278 1279 if (ret) 1280 goto fail; 1281 } 1282 1283 return 0; 1284 1285 fail: 1286 for (j = 0; j < i; j++) { 1287 /* Do we have all required base algorithms available? */ 1288 if ((safexcel_algs[j]->algo_mask & priv->hwconfig.algo_flags) != 1289 safexcel_algs[j]->algo_mask) 1290 /* No, so don't unregister this ciphersuite */ 1291 continue; 1292 1293 if (safexcel_algs[j]->type == SAFEXCEL_ALG_TYPE_SKCIPHER) 1294 crypto_unregister_skcipher(&safexcel_algs[j]->alg.skcipher); 1295 else if (safexcel_algs[j]->type == SAFEXCEL_ALG_TYPE_AEAD) 1296 crypto_unregister_aead(&safexcel_algs[j]->alg.aead); 1297 else 1298 crypto_unregister_ahash(&safexcel_algs[j]->alg.ahash); 1299 } 1300 1301 return ret; 1302 } 1303 1304 static void safexcel_unregister_algorithms(struct safexcel_crypto_priv *priv) 1305 { 1306 int i; 1307 1308 for (i = 0; i < ARRAY_SIZE(safexcel_algs); i++) { 1309 /* Do we have all required base algorithms available? */ 1310 if ((safexcel_algs[i]->algo_mask & priv->hwconfig.algo_flags) != 1311 safexcel_algs[i]->algo_mask) 1312 /* No, so don't unregister this ciphersuite */ 1313 continue; 1314 1315 if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_SKCIPHER) 1316 crypto_unregister_skcipher(&safexcel_algs[i]->alg.skcipher); 1317 else if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_AEAD) 1318 crypto_unregister_aead(&safexcel_algs[i]->alg.aead); 1319 else 1320 crypto_unregister_ahash(&safexcel_algs[i]->alg.ahash); 1321 } 1322 } 1323 1324 static void safexcel_configure(struct safexcel_crypto_priv *priv) 1325 { 1326 u32 mask = BIT(priv->hwconfig.hwdataw) - 1; 1327 1328 priv->config.pes = priv->hwconfig.hwnumpes; 1329 priv->config.rings = min_t(u32, priv->hwconfig.hwnumrings, max_rings); 1330 /* Cannot currently support more rings than we have ring AICs! */ 1331 priv->config.rings = min_t(u32, priv->config.rings, 1332 priv->hwconfig.hwnumraic); 1333 1334 priv->config.cd_size = EIP197_CD64_FETCH_SIZE; 1335 priv->config.cd_offset = (priv->config.cd_size + mask) & ~mask; 1336 priv->config.cdsh_offset = (EIP197_MAX_TOKENS + mask) & ~mask; 1337 1338 /* res token is behind the descr, but ofs must be rounded to buswdth */ 1339 priv->config.res_offset = (EIP197_RD64_FETCH_SIZE + mask) & ~mask; 1340 /* now the size of the descr is this 1st part plus the result struct */ 1341 priv->config.rd_size = priv->config.res_offset + 1342 EIP197_RD64_RESULT_SIZE; 1343 priv->config.rd_offset = (priv->config.rd_size + mask) & ~mask; 1344 1345 /* convert dwords to bytes */ 1346 priv->config.cd_offset *= sizeof(u32); 1347 priv->config.cdsh_offset *= sizeof(u32); 1348 priv->config.rd_offset *= sizeof(u32); 1349 priv->config.res_offset *= sizeof(u32); 1350 } 1351 1352 static void safexcel_init_register_offsets(struct safexcel_crypto_priv *priv) 1353 { 1354 struct safexcel_register_offsets *offsets = &priv->offsets; 1355 1356 if (priv->flags & SAFEXCEL_HW_EIP197) { 1357 offsets->hia_aic = EIP197_HIA_AIC_BASE; 1358 offsets->hia_aic_g = EIP197_HIA_AIC_G_BASE; 1359 offsets->hia_aic_r = EIP197_HIA_AIC_R_BASE; 1360 offsets->hia_aic_xdr = EIP197_HIA_AIC_xDR_BASE; 1361 offsets->hia_dfe = EIP197_HIA_DFE_BASE; 1362 offsets->hia_dfe_thr = EIP197_HIA_DFE_THR_BASE; 1363 offsets->hia_dse = EIP197_HIA_DSE_BASE; 1364 offsets->hia_dse_thr = EIP197_HIA_DSE_THR_BASE; 1365 offsets->hia_gen_cfg = EIP197_HIA_GEN_CFG_BASE; 1366 offsets->pe = EIP197_PE_BASE; 1367 offsets->global = EIP197_GLOBAL_BASE; 1368 } else { 1369 offsets->hia_aic = EIP97_HIA_AIC_BASE; 1370 offsets->hia_aic_g = EIP97_HIA_AIC_G_BASE; 1371 offsets->hia_aic_r = EIP97_HIA_AIC_R_BASE; 1372 offsets->hia_aic_xdr = EIP97_HIA_AIC_xDR_BASE; 1373 offsets->hia_dfe = EIP97_HIA_DFE_BASE; 1374 offsets->hia_dfe_thr = EIP97_HIA_DFE_THR_BASE; 1375 offsets->hia_dse = EIP97_HIA_DSE_BASE; 1376 offsets->hia_dse_thr = EIP97_HIA_DSE_THR_BASE; 1377 offsets->hia_gen_cfg = EIP97_HIA_GEN_CFG_BASE; 1378 offsets->pe = EIP97_PE_BASE; 1379 offsets->global = EIP97_GLOBAL_BASE; 1380 } 1381 } 1382 1383 /* 1384 * Generic part of probe routine, shared by platform and PCI driver 1385 * 1386 * Assumes IO resources have been mapped, private data mem has been allocated, 1387 * clocks have been enabled, device pointer has been assigned etc. 1388 * 1389 */ 1390 static int safexcel_probe_generic(void *pdev, 1391 struct safexcel_crypto_priv *priv, 1392 int is_pci_dev) 1393 { 1394 struct device *dev = priv->dev; 1395 u32 peid, version, mask, val, hiaopt, hwopt, peopt; 1396 int i, ret, hwctg; 1397 1398 priv->context_pool = dmam_pool_create("safexcel-context", dev, 1399 sizeof(struct safexcel_context_record), 1400 1, 0); 1401 if (!priv->context_pool) 1402 return -ENOMEM; 1403 1404 /* 1405 * First try the EIP97 HIA version regs 1406 * For the EIP197, this is guaranteed to NOT return any of the test 1407 * values 1408 */ 1409 version = readl(priv->base + EIP97_HIA_AIC_BASE + EIP197_HIA_VERSION); 1410 1411 mask = 0; /* do not swap */ 1412 if (EIP197_REG_LO16(version) == EIP197_HIA_VERSION_LE) { 1413 priv->hwconfig.hiaver = EIP197_VERSION_MASK(version); 1414 } else if (EIP197_REG_HI16(version) == EIP197_HIA_VERSION_BE) { 1415 /* read back byte-swapped, so complement byte swap bits */ 1416 mask = EIP197_MST_CTRL_BYTE_SWAP_BITS; 1417 priv->hwconfig.hiaver = EIP197_VERSION_SWAP(version); 1418 } else { 1419 /* So it wasn't an EIP97 ... maybe it's an EIP197? */ 1420 version = readl(priv->base + EIP197_HIA_AIC_BASE + 1421 EIP197_HIA_VERSION); 1422 if (EIP197_REG_LO16(version) == EIP197_HIA_VERSION_LE) { 1423 priv->hwconfig.hiaver = EIP197_VERSION_MASK(version); 1424 priv->flags |= SAFEXCEL_HW_EIP197; 1425 } else if (EIP197_REG_HI16(version) == 1426 EIP197_HIA_VERSION_BE) { 1427 /* read back byte-swapped, so complement swap bits */ 1428 mask = EIP197_MST_CTRL_BYTE_SWAP_BITS; 1429 priv->hwconfig.hiaver = EIP197_VERSION_SWAP(version); 1430 priv->flags |= SAFEXCEL_HW_EIP197; 1431 } else { 1432 return -ENODEV; 1433 } 1434 } 1435 1436 /* Now initialize the reg offsets based on the probing info so far */ 1437 safexcel_init_register_offsets(priv); 1438 1439 /* 1440 * If the version was read byte-swapped, we need to flip the device 1441 * swapping Keep in mind here, though, that what we write will also be 1442 * byte-swapped ... 1443 */ 1444 if (mask) { 1445 val = readl(EIP197_HIA_AIC(priv) + EIP197_HIA_MST_CTRL); 1446 val = val ^ (mask >> 24); /* toggle byte swap bits */ 1447 writel(val, EIP197_HIA_AIC(priv) + EIP197_HIA_MST_CTRL); 1448 } 1449 1450 /* 1451 * We're not done probing yet! We may fall through to here if no HIA 1452 * was found at all. So, with the endianness presumably correct now and 1453 * the offsets setup, *really* probe for the EIP97/EIP197. 1454 */ 1455 version = readl(EIP197_GLOBAL(priv) + EIP197_VERSION); 1456 if (((priv->flags & SAFEXCEL_HW_EIP197) && 1457 (EIP197_REG_LO16(version) != EIP197_VERSION_LE) && 1458 (EIP197_REG_LO16(version) != EIP196_VERSION_LE)) || 1459 ((!(priv->flags & SAFEXCEL_HW_EIP197) && 1460 (EIP197_REG_LO16(version) != EIP97_VERSION_LE)))) { 1461 /* 1462 * We did not find the device that matched our initial probing 1463 * (or our initial probing failed) Report appropriate error. 1464 */ 1465 dev_err(priv->dev, "Probing for EIP97/EIP19x failed - no such device (read %08x)\n", 1466 version); 1467 return -ENODEV; 1468 } 1469 1470 priv->hwconfig.hwver = EIP197_VERSION_MASK(version); 1471 hwctg = version >> 28; 1472 peid = version & 255; 1473 1474 /* Detect EIP206 processing pipe */ 1475 version = readl(EIP197_PE(priv) + + EIP197_PE_VERSION(0)); 1476 if (EIP197_REG_LO16(version) != EIP206_VERSION_LE) { 1477 dev_err(priv->dev, "EIP%d: EIP206 not detected\n", peid); 1478 return -ENODEV; 1479 } 1480 priv->hwconfig.ppver = EIP197_VERSION_MASK(version); 1481 1482 /* Detect EIP96 packet engine and version */ 1483 version = readl(EIP197_PE(priv) + EIP197_PE_EIP96_VERSION(0)); 1484 if (EIP197_REG_LO16(version) != EIP96_VERSION_LE) { 1485 dev_err(dev, "EIP%d: EIP96 not detected.\n", peid); 1486 return -ENODEV; 1487 } 1488 priv->hwconfig.pever = EIP197_VERSION_MASK(version); 1489 1490 hwopt = readl(EIP197_GLOBAL(priv) + EIP197_OPTIONS); 1491 hiaopt = readl(EIP197_HIA_AIC(priv) + EIP197_HIA_OPTIONS); 1492 1493 priv->hwconfig.icever = 0; 1494 priv->hwconfig.ocever = 0; 1495 priv->hwconfig.psever = 0; 1496 if (priv->flags & SAFEXCEL_HW_EIP197) { 1497 /* EIP197 */ 1498 peopt = readl(EIP197_PE(priv) + EIP197_PE_OPTIONS(0)); 1499 1500 priv->hwconfig.hwdataw = (hiaopt >> EIP197_HWDATAW_OFFSET) & 1501 EIP197_HWDATAW_MASK; 1502 priv->hwconfig.hwcfsize = ((hiaopt >> EIP197_CFSIZE_OFFSET) & 1503 EIP197_CFSIZE_MASK) + 1504 EIP197_CFSIZE_ADJUST; 1505 priv->hwconfig.hwrfsize = ((hiaopt >> EIP197_RFSIZE_OFFSET) & 1506 EIP197_RFSIZE_MASK) + 1507 EIP197_RFSIZE_ADJUST; 1508 priv->hwconfig.hwnumpes = (hiaopt >> EIP197_N_PES_OFFSET) & 1509 EIP197_N_PES_MASK; 1510 priv->hwconfig.hwnumrings = (hiaopt >> EIP197_N_RINGS_OFFSET) & 1511 EIP197_N_RINGS_MASK; 1512 if (hiaopt & EIP197_HIA_OPT_HAS_PE_ARB) 1513 priv->flags |= EIP197_PE_ARB; 1514 if (EIP206_OPT_ICE_TYPE(peopt) == 1) { 1515 priv->flags |= EIP197_ICE; 1516 /* Detect ICE EIP207 class. engine and version */ 1517 version = readl(EIP197_PE(priv) + 1518 EIP197_PE_ICE_VERSION(0)); 1519 if (EIP197_REG_LO16(version) != EIP207_VERSION_LE) { 1520 dev_err(dev, "EIP%d: ICE EIP207 not detected.\n", 1521 peid); 1522 return -ENODEV; 1523 } 1524 priv->hwconfig.icever = EIP197_VERSION_MASK(version); 1525 } 1526 if (EIP206_OPT_OCE_TYPE(peopt) == 1) { 1527 priv->flags |= EIP197_OCE; 1528 /* Detect EIP96PP packet stream editor and version */ 1529 version = readl(EIP197_PE(priv) + EIP197_PE_PSE_VERSION(0)); 1530 if (EIP197_REG_LO16(version) != EIP96_VERSION_LE) { 1531 dev_err(dev, "EIP%d: EIP96PP not detected.\n", peid); 1532 return -ENODEV; 1533 } 1534 priv->hwconfig.psever = EIP197_VERSION_MASK(version); 1535 /* Detect OCE EIP207 class. engine and version */ 1536 version = readl(EIP197_PE(priv) + 1537 EIP197_PE_ICE_VERSION(0)); 1538 if (EIP197_REG_LO16(version) != EIP207_VERSION_LE) { 1539 dev_err(dev, "EIP%d: OCE EIP207 not detected.\n", 1540 peid); 1541 return -ENODEV; 1542 } 1543 priv->hwconfig.ocever = EIP197_VERSION_MASK(version); 1544 } 1545 /* If not a full TRC, then assume simple TRC */ 1546 if (!(hwopt & EIP197_OPT_HAS_TRC)) 1547 priv->flags |= EIP197_SIMPLE_TRC; 1548 /* EIP197 always has SOME form of TRC */ 1549 priv->flags |= EIP197_TRC_CACHE; 1550 } else { 1551 /* EIP97 */ 1552 priv->hwconfig.hwdataw = (hiaopt >> EIP197_HWDATAW_OFFSET) & 1553 EIP97_HWDATAW_MASK; 1554 priv->hwconfig.hwcfsize = (hiaopt >> EIP97_CFSIZE_OFFSET) & 1555 EIP97_CFSIZE_MASK; 1556 priv->hwconfig.hwrfsize = (hiaopt >> EIP97_RFSIZE_OFFSET) & 1557 EIP97_RFSIZE_MASK; 1558 priv->hwconfig.hwnumpes = 1; /* by definition */ 1559 priv->hwconfig.hwnumrings = (hiaopt >> EIP197_N_RINGS_OFFSET) & 1560 EIP197_N_RINGS_MASK; 1561 } 1562 1563 /* Scan for ring AIC's */ 1564 for (i = 0; i < EIP197_MAX_RING_AIC; i++) { 1565 version = readl(EIP197_HIA_AIC_R(priv) + 1566 EIP197_HIA_AIC_R_VERSION(i)); 1567 if (EIP197_REG_LO16(version) != EIP201_VERSION_LE) 1568 break; 1569 } 1570 priv->hwconfig.hwnumraic = i; 1571 /* Low-end EIP196 may not have any ring AIC's ... */ 1572 if (!priv->hwconfig.hwnumraic) { 1573 dev_err(priv->dev, "No ring interrupt controller present!\n"); 1574 return -ENODEV; 1575 } 1576 1577 /* Get supported algorithms from EIP96 transform engine */ 1578 priv->hwconfig.algo_flags = readl(EIP197_PE(priv) + 1579 EIP197_PE_EIP96_OPTIONS(0)); 1580 1581 /* Print single info line describing what we just detected */ 1582 dev_info(priv->dev, "EIP%d:%x(%d,%d,%d,%d)-HIA:%x(%d,%d,%d),PE:%x/%x(alg:%08x)/%x/%x/%x\n", 1583 peid, priv->hwconfig.hwver, hwctg, priv->hwconfig.hwnumpes, 1584 priv->hwconfig.hwnumrings, priv->hwconfig.hwnumraic, 1585 priv->hwconfig.hiaver, priv->hwconfig.hwdataw, 1586 priv->hwconfig.hwcfsize, priv->hwconfig.hwrfsize, 1587 priv->hwconfig.ppver, priv->hwconfig.pever, 1588 priv->hwconfig.algo_flags, priv->hwconfig.icever, 1589 priv->hwconfig.ocever, priv->hwconfig.psever); 1590 1591 safexcel_configure(priv); 1592 1593 if (IS_ENABLED(CONFIG_PCI) && priv->data->version == EIP197_DEVBRD) { 1594 /* 1595 * Request MSI vectors for global + 1 per ring - 1596 * or just 1 for older dev images 1597 */ 1598 struct pci_dev *pci_pdev = pdev; 1599 1600 ret = pci_alloc_irq_vectors(pci_pdev, 1601 priv->config.rings + 1, 1602 priv->config.rings + 1, 1603 PCI_IRQ_MSI | PCI_IRQ_MSIX); 1604 if (ret < 0) { 1605 dev_err(dev, "Failed to allocate PCI MSI interrupts\n"); 1606 return ret; 1607 } 1608 } 1609 1610 /* Register the ring IRQ handlers and configure the rings */ 1611 priv->ring = devm_kcalloc(dev, priv->config.rings, 1612 sizeof(*priv->ring), 1613 GFP_KERNEL); 1614 if (!priv->ring) 1615 return -ENOMEM; 1616 1617 for (i = 0; i < priv->config.rings; i++) { 1618 char wq_name[9] = {0}; 1619 int irq; 1620 struct safexcel_ring_irq_data *ring_irq; 1621 1622 ret = safexcel_init_ring_descriptors(priv, 1623 &priv->ring[i].cdr, 1624 &priv->ring[i].rdr); 1625 if (ret) { 1626 dev_err(dev, "Failed to initialize rings\n"); 1627 goto err_cleanup_rings; 1628 } 1629 1630 priv->ring[i].rdr_req = devm_kcalloc(dev, 1631 EIP197_DEFAULT_RING_SIZE, 1632 sizeof(*priv->ring[i].rdr_req), 1633 GFP_KERNEL); 1634 if (!priv->ring[i].rdr_req) { 1635 ret = -ENOMEM; 1636 goto err_cleanup_rings; 1637 } 1638 1639 ring_irq = devm_kzalloc(dev, sizeof(*ring_irq), GFP_KERNEL); 1640 if (!ring_irq) { 1641 ret = -ENOMEM; 1642 goto err_cleanup_rings; 1643 } 1644 1645 ring_irq->priv = priv; 1646 ring_irq->ring = i; 1647 1648 irq = safexcel_request_ring_irq(pdev, 1649 EIP197_IRQ_NUMBER(i, is_pci_dev), 1650 is_pci_dev, 1651 i, 1652 safexcel_irq_ring, 1653 safexcel_irq_ring_thread, 1654 ring_irq); 1655 if (irq < 0) { 1656 dev_err(dev, "Failed to get IRQ ID for ring %d\n", i); 1657 ret = irq; 1658 goto err_cleanup_rings; 1659 } 1660 1661 priv->ring[i].irq = irq; 1662 priv->ring[i].work_data.priv = priv; 1663 priv->ring[i].work_data.ring = i; 1664 INIT_WORK(&priv->ring[i].work_data.work, 1665 safexcel_dequeue_work); 1666 1667 snprintf(wq_name, 9, "wq_ring%d", i); 1668 priv->ring[i].workqueue = 1669 create_singlethread_workqueue(wq_name); 1670 if (!priv->ring[i].workqueue) { 1671 ret = -ENOMEM; 1672 goto err_cleanup_rings; 1673 } 1674 1675 priv->ring[i].requests = 0; 1676 priv->ring[i].busy = false; 1677 1678 crypto_init_queue(&priv->ring[i].queue, 1679 EIP197_DEFAULT_RING_SIZE); 1680 1681 spin_lock_init(&priv->ring[i].lock); 1682 spin_lock_init(&priv->ring[i].queue_lock); 1683 } 1684 1685 atomic_set(&priv->ring_used, 0); 1686 1687 ret = safexcel_hw_init(priv); 1688 if (ret) { 1689 dev_err(dev, "HW init failed (%d)\n", ret); 1690 goto err_cleanup_rings; 1691 } 1692 1693 ret = safexcel_register_algorithms(priv); 1694 if (ret) { 1695 dev_err(dev, "Failed to register algorithms (%d)\n", ret); 1696 goto err_cleanup_rings; 1697 } 1698 1699 return 0; 1700 1701 err_cleanup_rings: 1702 for (i = 0; i < priv->config.rings; i++) { 1703 if (priv->ring[i].irq) 1704 irq_set_affinity_hint(priv->ring[i].irq, NULL); 1705 if (priv->ring[i].workqueue) 1706 destroy_workqueue(priv->ring[i].workqueue); 1707 } 1708 1709 return ret; 1710 } 1711 1712 static void safexcel_hw_reset_rings(struct safexcel_crypto_priv *priv) 1713 { 1714 int i; 1715 1716 for (i = 0; i < priv->config.rings; i++) { 1717 /* clear any pending interrupt */ 1718 writel(GENMASK(5, 0), EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_STAT); 1719 writel(GENMASK(7, 0), EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_STAT); 1720 1721 /* Reset the CDR base address */ 1722 writel(0, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_LO); 1723 writel(0, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_HI); 1724 1725 /* Reset the RDR base address */ 1726 writel(0, EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_LO); 1727 writel(0, EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_HI); 1728 } 1729 } 1730 1731 /* for Device Tree platform driver */ 1732 1733 static int safexcel_probe(struct platform_device *pdev) 1734 { 1735 struct device *dev = &pdev->dev; 1736 struct safexcel_crypto_priv *priv; 1737 int ret; 1738 1739 priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); 1740 if (!priv) 1741 return -ENOMEM; 1742 1743 priv->dev = dev; 1744 priv->data = (struct safexcel_priv_data *)of_device_get_match_data(dev); 1745 1746 platform_set_drvdata(pdev, priv); 1747 1748 priv->base = devm_platform_ioremap_resource(pdev, 0); 1749 if (IS_ERR(priv->base)) { 1750 dev_err(dev, "failed to get resource\n"); 1751 return PTR_ERR(priv->base); 1752 } 1753 1754 priv->clk = devm_clk_get(&pdev->dev, NULL); 1755 ret = PTR_ERR_OR_ZERO(priv->clk); 1756 /* The clock isn't mandatory */ 1757 if (ret != -ENOENT) { 1758 if (ret) 1759 return ret; 1760 1761 ret = clk_prepare_enable(priv->clk); 1762 if (ret) { 1763 dev_err(dev, "unable to enable clk (%d)\n", ret); 1764 return ret; 1765 } 1766 } 1767 1768 priv->reg_clk = devm_clk_get(&pdev->dev, "reg"); 1769 ret = PTR_ERR_OR_ZERO(priv->reg_clk); 1770 /* The clock isn't mandatory */ 1771 if (ret != -ENOENT) { 1772 if (ret) 1773 goto err_core_clk; 1774 1775 ret = clk_prepare_enable(priv->reg_clk); 1776 if (ret) { 1777 dev_err(dev, "unable to enable reg clk (%d)\n", ret); 1778 goto err_core_clk; 1779 } 1780 } 1781 1782 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 1783 if (ret) 1784 goto err_reg_clk; 1785 1786 /* Generic EIP97/EIP197 device probing */ 1787 ret = safexcel_probe_generic(pdev, priv, 0); 1788 if (ret) 1789 goto err_reg_clk; 1790 1791 return 0; 1792 1793 err_reg_clk: 1794 clk_disable_unprepare(priv->reg_clk); 1795 err_core_clk: 1796 clk_disable_unprepare(priv->clk); 1797 return ret; 1798 } 1799 1800 static void safexcel_remove(struct platform_device *pdev) 1801 { 1802 struct safexcel_crypto_priv *priv = platform_get_drvdata(pdev); 1803 int i; 1804 1805 safexcel_unregister_algorithms(priv); 1806 safexcel_hw_reset_rings(priv); 1807 1808 clk_disable_unprepare(priv->reg_clk); 1809 clk_disable_unprepare(priv->clk); 1810 1811 for (i = 0; i < priv->config.rings; i++) { 1812 irq_set_affinity_hint(priv->ring[i].irq, NULL); 1813 destroy_workqueue(priv->ring[i].workqueue); 1814 } 1815 } 1816 1817 static const struct safexcel_priv_data eip97ies_mrvl_data = { 1818 .version = EIP97IES_MRVL, 1819 }; 1820 1821 static const struct safexcel_priv_data eip197b_mrvl_data = { 1822 .version = EIP197B_MRVL, 1823 }; 1824 1825 static const struct safexcel_priv_data eip197d_mrvl_data = { 1826 .version = EIP197D_MRVL, 1827 }; 1828 1829 static const struct safexcel_priv_data eip197_devbrd_data = { 1830 .version = EIP197_DEVBRD, 1831 }; 1832 1833 static const struct safexcel_priv_data eip197c_mxl_data = { 1834 .version = EIP197C_MXL, 1835 .fw_little_endian = true, 1836 }; 1837 1838 static const struct of_device_id safexcel_of_match_table[] = { 1839 { 1840 .compatible = "inside-secure,safexcel-eip97ies", 1841 .data = &eip97ies_mrvl_data, 1842 }, 1843 { 1844 .compatible = "inside-secure,safexcel-eip197b", 1845 .data = &eip197b_mrvl_data, 1846 }, 1847 { 1848 .compatible = "inside-secure,safexcel-eip197d", 1849 .data = &eip197d_mrvl_data, 1850 }, 1851 { 1852 .compatible = "inside-secure,safexcel-eip197c-mxl", 1853 .data = &eip197c_mxl_data, 1854 }, 1855 /* For backward compatibility and intended for generic use */ 1856 { 1857 .compatible = "inside-secure,safexcel-eip97", 1858 .data = &eip97ies_mrvl_data, 1859 }, 1860 { 1861 .compatible = "inside-secure,safexcel-eip197", 1862 .data = &eip197b_mrvl_data, 1863 }, 1864 {}, 1865 }; 1866 1867 MODULE_DEVICE_TABLE(of, safexcel_of_match_table); 1868 1869 static struct platform_driver crypto_safexcel = { 1870 .probe = safexcel_probe, 1871 .remove_new = safexcel_remove, 1872 .driver = { 1873 .name = "crypto-safexcel", 1874 .of_match_table = safexcel_of_match_table, 1875 }, 1876 }; 1877 1878 /* PCIE devices - i.e. Inside Secure development boards */ 1879 1880 static int safexcel_pci_probe(struct pci_dev *pdev, 1881 const struct pci_device_id *ent) 1882 { 1883 struct device *dev = &pdev->dev; 1884 struct safexcel_crypto_priv *priv; 1885 void __iomem *pciebase; 1886 int rc; 1887 u32 val; 1888 1889 dev_dbg(dev, "Probing PCIE device: vendor %04x, device %04x, subv %04x, subdev %04x, ctxt %lx\n", 1890 ent->vendor, ent->device, ent->subvendor, 1891 ent->subdevice, ent->driver_data); 1892 1893 priv = kzalloc(sizeof(*priv), GFP_KERNEL); 1894 if (!priv) 1895 return -ENOMEM; 1896 1897 priv->dev = dev; 1898 priv->data = (struct safexcel_priv_data *)ent->driver_data; 1899 1900 pci_set_drvdata(pdev, priv); 1901 1902 /* enable the device */ 1903 rc = pcim_enable_device(pdev); 1904 if (rc) { 1905 dev_err(dev, "Failed to enable PCI device\n"); 1906 return rc; 1907 } 1908 1909 /* take ownership of PCI BAR0 */ 1910 rc = pcim_iomap_regions(pdev, 1, "crypto_safexcel"); 1911 if (rc) { 1912 dev_err(dev, "Failed to map IO region for BAR0\n"); 1913 return rc; 1914 } 1915 priv->base = pcim_iomap_table(pdev)[0]; 1916 1917 if (priv->data->version == EIP197_DEVBRD) { 1918 dev_dbg(dev, "Device identified as FPGA based development board - applying HW reset\n"); 1919 1920 rc = pcim_iomap_regions(pdev, 4, "crypto_safexcel"); 1921 if (rc) { 1922 dev_err(dev, "Failed to map IO region for BAR4\n"); 1923 return rc; 1924 } 1925 1926 pciebase = pcim_iomap_table(pdev)[2]; 1927 val = readl(pciebase + EIP197_XLX_IRQ_BLOCK_ID_ADDR); 1928 if ((val >> 16) == EIP197_XLX_IRQ_BLOCK_ID_VALUE) { 1929 dev_dbg(dev, "Detected Xilinx PCIE IRQ block version %d, multiple MSI support enabled\n", 1930 (val & 0xff)); 1931 1932 /* Setup MSI identity map mapping */ 1933 writel(EIP197_XLX_USER_VECT_LUT0_IDENT, 1934 pciebase + EIP197_XLX_USER_VECT_LUT0_ADDR); 1935 writel(EIP197_XLX_USER_VECT_LUT1_IDENT, 1936 pciebase + EIP197_XLX_USER_VECT_LUT1_ADDR); 1937 writel(EIP197_XLX_USER_VECT_LUT2_IDENT, 1938 pciebase + EIP197_XLX_USER_VECT_LUT2_ADDR); 1939 writel(EIP197_XLX_USER_VECT_LUT3_IDENT, 1940 pciebase + EIP197_XLX_USER_VECT_LUT3_ADDR); 1941 1942 /* Enable all device interrupts */ 1943 writel(GENMASK(31, 0), 1944 pciebase + EIP197_XLX_USER_INT_ENB_MSK); 1945 } else { 1946 dev_err(dev, "Unrecognised IRQ block identifier %x\n", 1947 val); 1948 return -ENODEV; 1949 } 1950 1951 /* HW reset FPGA dev board */ 1952 /* assert reset */ 1953 writel(1, priv->base + EIP197_XLX_GPIO_BASE); 1954 wmb(); /* maintain strict ordering for accesses here */ 1955 /* deassert reset */ 1956 writel(0, priv->base + EIP197_XLX_GPIO_BASE); 1957 wmb(); /* maintain strict ordering for accesses here */ 1958 } 1959 1960 /* enable bus mastering */ 1961 pci_set_master(pdev); 1962 1963 /* Generic EIP97/EIP197 device probing */ 1964 rc = safexcel_probe_generic(pdev, priv, 1); 1965 return rc; 1966 } 1967 1968 static void safexcel_pci_remove(struct pci_dev *pdev) 1969 { 1970 struct safexcel_crypto_priv *priv = pci_get_drvdata(pdev); 1971 int i; 1972 1973 safexcel_unregister_algorithms(priv); 1974 1975 for (i = 0; i < priv->config.rings; i++) 1976 destroy_workqueue(priv->ring[i].workqueue); 1977 1978 safexcel_hw_reset_rings(priv); 1979 } 1980 1981 static const struct pci_device_id safexcel_pci_ids[] = { 1982 { 1983 PCI_DEVICE_SUB(PCI_VENDOR_ID_XILINX, 0x9038, 1984 0x16ae, 0xc522), 1985 .driver_data = (kernel_ulong_t)&eip197_devbrd_data, 1986 }, 1987 {}, 1988 }; 1989 1990 MODULE_DEVICE_TABLE(pci, safexcel_pci_ids); 1991 1992 static struct pci_driver safexcel_pci_driver = { 1993 .name = "crypto-safexcel", 1994 .id_table = safexcel_pci_ids, 1995 .probe = safexcel_pci_probe, 1996 .remove = safexcel_pci_remove, 1997 }; 1998 1999 static int __init safexcel_init(void) 2000 { 2001 int ret; 2002 2003 /* Register PCI driver */ 2004 ret = pci_register_driver(&safexcel_pci_driver); 2005 2006 /* Register platform driver */ 2007 if (IS_ENABLED(CONFIG_OF) && !ret) { 2008 ret = platform_driver_register(&crypto_safexcel); 2009 if (ret) 2010 pci_unregister_driver(&safexcel_pci_driver); 2011 } 2012 2013 return ret; 2014 } 2015 2016 static void __exit safexcel_exit(void) 2017 { 2018 /* Unregister platform driver */ 2019 if (IS_ENABLED(CONFIG_OF)) 2020 platform_driver_unregister(&crypto_safexcel); 2021 2022 /* Unregister PCI driver if successfully registered before */ 2023 pci_unregister_driver(&safexcel_pci_driver); 2024 } 2025 2026 module_init(safexcel_init); 2027 module_exit(safexcel_exit); 2028 2029 MODULE_AUTHOR("Antoine Tenart <antoine.tenart@free-electrons.com>"); 2030 MODULE_AUTHOR("Ofer Heifetz <oferh@marvell.com>"); 2031 MODULE_AUTHOR("Igal Liberman <igall@marvell.com>"); 2032 MODULE_DESCRIPTION("Support for SafeXcel cryptographic engines: EIP97 & EIP197"); 2033 MODULE_LICENSE("GPL v2"); 2034 MODULE_IMPORT_NS(CRYPTO_INTERNAL); 2035 2036 MODULE_FIRMWARE("ifpp.bin"); 2037 MODULE_FIRMWARE("ipue.bin"); 2038 MODULE_FIRMWARE("inside-secure/eip197b/ifpp.bin"); 2039 MODULE_FIRMWARE("inside-secure/eip197b/ipue.bin"); 2040 MODULE_FIRMWARE("inside-secure/eip197d/ifpp.bin"); 2041 MODULE_FIRMWARE("inside-secure/eip197d/ipue.bin"); 2042 MODULE_FIRMWARE("inside-secure/eip197_minifw/ifpp.bin"); 2043 MODULE_FIRMWARE("inside-secure/eip197_minifw/ipue.bin"); 2044