1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2017 Marvell 4 * 5 * Antoine Tenart <antoine.tenart@free-electrons.com> 6 */ 7 8 #include <linux/clk.h> 9 #include <linux/device.h> 10 #include <linux/dma-mapping.h> 11 #include <linux/dmapool.h> 12 #include <linux/firmware.h> 13 #include <linux/interrupt.h> 14 #include <linux/module.h> 15 #include <linux/of_platform.h> 16 #include <linux/of_irq.h> 17 #include <linux/pci.h> 18 #include <linux/platform_device.h> 19 #include <linux/workqueue.h> 20 21 #include <crypto/internal/aead.h> 22 #include <crypto/internal/hash.h> 23 #include <crypto/internal/skcipher.h> 24 25 #include "safexcel.h" 26 27 static u32 max_rings = EIP197_MAX_RINGS; 28 module_param(max_rings, uint, 0644); 29 MODULE_PARM_DESC(max_rings, "Maximum number of rings to use."); 30 31 static void eip197_trc_cache_setupvirt(struct safexcel_crypto_priv *priv) 32 { 33 int i; 34 35 /* 36 * Map all interfaces/rings to register index 0 37 * so they can share contexts. Without this, the EIP197 will 38 * assume each interface/ring to be in its own memory domain 39 * i.e. have its own subset of UNIQUE memory addresses. 40 * Which would cause records with the SAME memory address to 41 * use DIFFERENT cache buffers, causing both poor cache utilization 42 * AND serious coherence/invalidation issues. 43 */ 44 for (i = 0; i < 4; i++) 45 writel(0, priv->base + EIP197_FLUE_IFC_LUT(i)); 46 47 /* 48 * Initialize other virtualization regs for cache 49 * These may not be in their reset state ... 50 */ 51 for (i = 0; i < priv->config.rings; i++) { 52 writel(0, priv->base + EIP197_FLUE_CACHEBASE_LO(i)); 53 writel(0, priv->base + EIP197_FLUE_CACHEBASE_HI(i)); 54 writel(EIP197_FLUE_CONFIG_MAGIC, 55 priv->base + EIP197_FLUE_CONFIG(i)); 56 } 57 writel(0, priv->base + EIP197_FLUE_OFFSETS); 58 writel(0, priv->base + EIP197_FLUE_ARC4_OFFSET); 59 } 60 61 static void eip197_trc_cache_banksel(struct safexcel_crypto_priv *priv, 62 u32 addrmid, int *actbank) 63 { 64 u32 val; 65 int curbank; 66 67 curbank = addrmid >> 16; 68 if (curbank != *actbank) { 69 val = readl(priv->base + EIP197_CS_RAM_CTRL); 70 val = (val & ~EIP197_CS_BANKSEL_MASK) | 71 (curbank << EIP197_CS_BANKSEL_OFS); 72 writel(val, priv->base + EIP197_CS_RAM_CTRL); 73 *actbank = curbank; 74 } 75 } 76 77 static u32 eip197_trc_cache_probe(struct safexcel_crypto_priv *priv, 78 int maxbanks, u32 probemask, u32 stride) 79 { 80 u32 val, addrhi, addrlo, addrmid, addralias, delta, marker; 81 int actbank; 82 83 /* 84 * And probe the actual size of the physically attached cache data RAM 85 * Using a binary subdivision algorithm downto 32 byte cache lines. 86 */ 87 addrhi = 1 << (16 + maxbanks); 88 addrlo = 0; 89 actbank = min(maxbanks - 1, 0); 90 while ((addrhi - addrlo) > stride) { 91 /* write marker to lowest address in top half */ 92 addrmid = (addrhi + addrlo) >> 1; 93 marker = (addrmid ^ 0xabadbabe) & probemask; /* Unique */ 94 eip197_trc_cache_banksel(priv, addrmid, &actbank); 95 writel(marker, 96 priv->base + EIP197_CLASSIFICATION_RAMS + 97 (addrmid & 0xffff)); 98 99 /* write invalid markers to possible aliases */ 100 delta = 1 << __fls(addrmid); 101 while (delta >= stride) { 102 addralias = addrmid - delta; 103 eip197_trc_cache_banksel(priv, addralias, &actbank); 104 writel(~marker, 105 priv->base + EIP197_CLASSIFICATION_RAMS + 106 (addralias & 0xffff)); 107 delta >>= 1; 108 } 109 110 /* read back marker from top half */ 111 eip197_trc_cache_banksel(priv, addrmid, &actbank); 112 val = readl(priv->base + EIP197_CLASSIFICATION_RAMS + 113 (addrmid & 0xffff)); 114 115 if ((val & probemask) == marker) 116 /* read back correct, continue with top half */ 117 addrlo = addrmid; 118 else 119 /* not read back correct, continue with bottom half */ 120 addrhi = addrmid; 121 } 122 return addrhi; 123 } 124 125 static void eip197_trc_cache_clear(struct safexcel_crypto_priv *priv, 126 int cs_rc_max, int cs_ht_wc) 127 { 128 int i; 129 u32 htable_offset, val, offset; 130 131 /* Clear all records in administration RAM */ 132 for (i = 0; i < cs_rc_max; i++) { 133 offset = EIP197_CLASSIFICATION_RAMS + i * EIP197_CS_RC_SIZE; 134 135 writel(EIP197_CS_RC_NEXT(EIP197_RC_NULL) | 136 EIP197_CS_RC_PREV(EIP197_RC_NULL), 137 priv->base + offset); 138 139 val = EIP197_CS_RC_NEXT(i + 1) | EIP197_CS_RC_PREV(i - 1); 140 if (i == 0) 141 val |= EIP197_CS_RC_PREV(EIP197_RC_NULL); 142 else if (i == cs_rc_max - 1) 143 val |= EIP197_CS_RC_NEXT(EIP197_RC_NULL); 144 writel(val, priv->base + offset + 4); 145 /* must also initialize the address key due to ECC! */ 146 writel(0, priv->base + offset + 8); 147 writel(0, priv->base + offset + 12); 148 } 149 150 /* Clear the hash table entries */ 151 htable_offset = cs_rc_max * EIP197_CS_RC_SIZE; 152 for (i = 0; i < cs_ht_wc; i++) 153 writel(GENMASK(29, 0), 154 priv->base + EIP197_CLASSIFICATION_RAMS + 155 htable_offset + i * sizeof(u32)); 156 } 157 158 static int eip197_trc_cache_init(struct safexcel_crypto_priv *priv) 159 { 160 u32 val, dsize, asize; 161 int cs_rc_max, cs_ht_wc, cs_trc_rec_wc, cs_trc_lg_rec_wc; 162 int cs_rc_abs_max, cs_ht_sz; 163 int maxbanks; 164 165 /* Setup (dummy) virtualization for cache */ 166 eip197_trc_cache_setupvirt(priv); 167 168 /* 169 * Enable the record cache memory access and 170 * probe the bank select width 171 */ 172 val = readl(priv->base + EIP197_CS_RAM_CTRL); 173 val &= ~EIP197_TRC_ENABLE_MASK; 174 val |= EIP197_TRC_ENABLE_0 | EIP197_CS_BANKSEL_MASK; 175 writel(val, priv->base + EIP197_CS_RAM_CTRL); 176 val = readl(priv->base + EIP197_CS_RAM_CTRL); 177 maxbanks = ((val&EIP197_CS_BANKSEL_MASK)>>EIP197_CS_BANKSEL_OFS) + 1; 178 179 /* Clear all ECC errors */ 180 writel(0, priv->base + EIP197_TRC_ECCCTRL); 181 182 /* 183 * Make sure the cache memory is accessible by taking record cache into 184 * reset. Need data memory access here, not admin access. 185 */ 186 val = readl(priv->base + EIP197_TRC_PARAMS); 187 val |= EIP197_TRC_PARAMS_SW_RESET | EIP197_TRC_PARAMS_DATA_ACCESS; 188 writel(val, priv->base + EIP197_TRC_PARAMS); 189 190 /* Probed data RAM size in bytes */ 191 dsize = eip197_trc_cache_probe(priv, maxbanks, 0xffffffff, 32); 192 193 /* 194 * Now probe the administration RAM size pretty much the same way 195 * Except that only the lower 30 bits are writable and we don't need 196 * bank selects 197 */ 198 val = readl(priv->base + EIP197_TRC_PARAMS); 199 /* admin access now */ 200 val &= ~(EIP197_TRC_PARAMS_DATA_ACCESS | EIP197_CS_BANKSEL_MASK); 201 writel(val, priv->base + EIP197_TRC_PARAMS); 202 203 /* Probed admin RAM size in admin words */ 204 asize = eip197_trc_cache_probe(priv, 0, 0x3fffffff, 16) >> 4; 205 206 /* Clear any ECC errors detected while probing! */ 207 writel(0, priv->base + EIP197_TRC_ECCCTRL); 208 209 /* Sanity check probing results */ 210 if (dsize < EIP197_MIN_DSIZE || asize < EIP197_MIN_ASIZE) { 211 dev_err(priv->dev, "Record cache probing failed (%d,%d).", 212 dsize, asize); 213 return -ENODEV; 214 } 215 216 /* 217 * Determine optimal configuration from RAM sizes 218 * Note that we assume that the physical RAM configuration is sane 219 * Therefore, we don't do any parameter error checking here ... 220 */ 221 222 /* For now, just use a single record format covering everything */ 223 cs_trc_rec_wc = EIP197_CS_TRC_REC_WC; 224 cs_trc_lg_rec_wc = EIP197_CS_TRC_REC_WC; 225 226 /* 227 * Step #1: How many records will physically fit? 228 * Hard upper limit is 1023! 229 */ 230 cs_rc_abs_max = min_t(uint, ((dsize >> 2) / cs_trc_lg_rec_wc), 1023); 231 /* Step #2: Need at least 2 words in the admin RAM per record */ 232 cs_rc_max = min_t(uint, cs_rc_abs_max, (asize >> 1)); 233 /* Step #3: Determine log2 of hash table size */ 234 cs_ht_sz = __fls(asize - cs_rc_max) - 2; 235 /* Step #4: determine current size of hash table in dwords */ 236 cs_ht_wc = 16 << cs_ht_sz; /* dwords, not admin words */ 237 /* Step #5: add back excess words and see if we can fit more records */ 238 cs_rc_max = min_t(uint, cs_rc_abs_max, asize - (cs_ht_wc >> 2)); 239 240 /* Clear the cache RAMs */ 241 eip197_trc_cache_clear(priv, cs_rc_max, cs_ht_wc); 242 243 /* Disable the record cache memory access */ 244 val = readl(priv->base + EIP197_CS_RAM_CTRL); 245 val &= ~EIP197_TRC_ENABLE_MASK; 246 writel(val, priv->base + EIP197_CS_RAM_CTRL); 247 248 /* Write head and tail pointers of the record free chain */ 249 val = EIP197_TRC_FREECHAIN_HEAD_PTR(0) | 250 EIP197_TRC_FREECHAIN_TAIL_PTR(cs_rc_max - 1); 251 writel(val, priv->base + EIP197_TRC_FREECHAIN); 252 253 /* Configure the record cache #1 */ 254 val = EIP197_TRC_PARAMS2_RC_SZ_SMALL(cs_trc_rec_wc) | 255 EIP197_TRC_PARAMS2_HTABLE_PTR(cs_rc_max); 256 writel(val, priv->base + EIP197_TRC_PARAMS2); 257 258 /* Configure the record cache #2 */ 259 val = EIP197_TRC_PARAMS_RC_SZ_LARGE(cs_trc_lg_rec_wc) | 260 EIP197_TRC_PARAMS_BLK_TIMER_SPEED(1) | 261 EIP197_TRC_PARAMS_HTABLE_SZ(cs_ht_sz); 262 writel(val, priv->base + EIP197_TRC_PARAMS); 263 264 dev_info(priv->dev, "TRC init: %dd,%da (%dr,%dh)\n", 265 dsize, asize, cs_rc_max, cs_ht_wc + cs_ht_wc); 266 return 0; 267 } 268 269 static void eip197_init_firmware(struct safexcel_crypto_priv *priv) 270 { 271 int pe, i; 272 u32 val; 273 274 for (pe = 0; pe < priv->config.pes; pe++) { 275 /* Configure the token FIFO's */ 276 writel(3, EIP197_PE(priv) + EIP197_PE_ICE_PUTF_CTRL(pe)); 277 writel(0, EIP197_PE(priv) + EIP197_PE_ICE_PPTF_CTRL(pe)); 278 279 /* Clear the ICE scratchpad memory */ 280 val = readl(EIP197_PE(priv) + EIP197_PE_ICE_SCRATCH_CTRL(pe)); 281 val |= EIP197_PE_ICE_SCRATCH_CTRL_CHANGE_TIMER | 282 EIP197_PE_ICE_SCRATCH_CTRL_TIMER_EN | 283 EIP197_PE_ICE_SCRATCH_CTRL_SCRATCH_ACCESS | 284 EIP197_PE_ICE_SCRATCH_CTRL_CHANGE_ACCESS; 285 writel(val, EIP197_PE(priv) + EIP197_PE_ICE_SCRATCH_CTRL(pe)); 286 287 /* clear the scratchpad RAM using 32 bit writes only */ 288 for (i = 0; i < EIP197_NUM_OF_SCRATCH_BLOCKS; i++) 289 writel(0, EIP197_PE(priv) + 290 EIP197_PE_ICE_SCRATCH_RAM(pe) + (i << 2)); 291 292 /* Reset the IFPP engine to make its program mem accessible */ 293 writel(EIP197_PE_ICE_x_CTRL_SW_RESET | 294 EIP197_PE_ICE_x_CTRL_CLR_ECC_CORR | 295 EIP197_PE_ICE_x_CTRL_CLR_ECC_NON_CORR, 296 EIP197_PE(priv) + EIP197_PE_ICE_FPP_CTRL(pe)); 297 298 /* Reset the IPUE engine to make its program mem accessible */ 299 writel(EIP197_PE_ICE_x_CTRL_SW_RESET | 300 EIP197_PE_ICE_x_CTRL_CLR_ECC_CORR | 301 EIP197_PE_ICE_x_CTRL_CLR_ECC_NON_CORR, 302 EIP197_PE(priv) + EIP197_PE_ICE_PUE_CTRL(pe)); 303 304 /* Enable access to all IFPP program memories */ 305 writel(EIP197_PE_ICE_RAM_CTRL_FPP_PROG_EN, 306 EIP197_PE(priv) + EIP197_PE_ICE_RAM_CTRL(pe)); 307 308 /* bypass the OCE, if present */ 309 if (priv->flags & EIP197_OCE) 310 writel(EIP197_DEBUG_OCE_BYPASS, EIP197_PE(priv) + 311 EIP197_PE_DEBUG(pe)); 312 } 313 314 } 315 316 static int eip197_write_firmware(struct safexcel_crypto_priv *priv, 317 const struct firmware *fw) 318 { 319 u32 val; 320 int i; 321 322 /* Write the firmware */ 323 for (i = 0; i < fw->size / sizeof(u32); i++) { 324 if (priv->data->fw_little_endian) 325 val = le32_to_cpu(((const __le32 *)fw->data)[i]); 326 else 327 val = be32_to_cpu(((const __be32 *)fw->data)[i]); 328 329 writel(val, 330 priv->base + EIP197_CLASSIFICATION_RAMS + 331 i * sizeof(val)); 332 } 333 334 /* Exclude final 2 NOPs from size */ 335 return i - EIP197_FW_TERMINAL_NOPS; 336 } 337 338 /* 339 * If FW is actual production firmware, then poll for its initialization 340 * to complete and check if it is good for the HW, otherwise just return OK. 341 */ 342 static bool poll_fw_ready(struct safexcel_crypto_priv *priv, int fpp) 343 { 344 int pe, pollcnt; 345 u32 base, pollofs; 346 347 if (fpp) 348 pollofs = EIP197_FW_FPP_READY; 349 else 350 pollofs = EIP197_FW_PUE_READY; 351 352 for (pe = 0; pe < priv->config.pes; pe++) { 353 base = EIP197_PE_ICE_SCRATCH_RAM(pe); 354 pollcnt = EIP197_FW_START_POLLCNT; 355 while (pollcnt && 356 (readl_relaxed(EIP197_PE(priv) + base + 357 pollofs) != 1)) { 358 pollcnt--; 359 } 360 if (!pollcnt) { 361 dev_err(priv->dev, "FW(%d) for PE %d failed to start\n", 362 fpp, pe); 363 return false; 364 } 365 } 366 return true; 367 } 368 369 static bool eip197_start_firmware(struct safexcel_crypto_priv *priv, 370 int ipuesz, int ifppsz, int minifw) 371 { 372 int pe; 373 u32 val; 374 375 for (pe = 0; pe < priv->config.pes; pe++) { 376 /* Disable access to all program memory */ 377 writel(0, EIP197_PE(priv) + EIP197_PE_ICE_RAM_CTRL(pe)); 378 379 /* Start IFPP microengines */ 380 if (minifw) 381 val = 0; 382 else 383 val = EIP197_PE_ICE_UENG_START_OFFSET((ifppsz - 1) & 384 EIP197_PE_ICE_UENG_INIT_ALIGN_MASK) | 385 EIP197_PE_ICE_UENG_DEBUG_RESET; 386 writel(val, EIP197_PE(priv) + EIP197_PE_ICE_FPP_CTRL(pe)); 387 388 /* Start IPUE microengines */ 389 if (minifw) 390 val = 0; 391 else 392 val = EIP197_PE_ICE_UENG_START_OFFSET((ipuesz - 1) & 393 EIP197_PE_ICE_UENG_INIT_ALIGN_MASK) | 394 EIP197_PE_ICE_UENG_DEBUG_RESET; 395 writel(val, EIP197_PE(priv) + EIP197_PE_ICE_PUE_CTRL(pe)); 396 } 397 398 /* For miniFW startup, there is no initialization, so always succeed */ 399 if (minifw) 400 return true; 401 402 /* Wait until all the firmwares have properly started up */ 403 if (!poll_fw_ready(priv, 1)) 404 return false; 405 if (!poll_fw_ready(priv, 0)) 406 return false; 407 408 return true; 409 } 410 411 static int eip197_load_firmwares(struct safexcel_crypto_priv *priv) 412 { 413 const char *fw_name[] = {"ifpp.bin", "ipue.bin"}; 414 const struct firmware *fw[FW_NB]; 415 char fw_path[37], *dir = NULL; 416 int i, j, ret = 0, pe; 417 int ipuesz, ifppsz, minifw = 0; 418 419 if (priv->data->version == EIP197D_MRVL) 420 dir = "eip197d"; 421 else if (priv->data->version == EIP197B_MRVL || 422 priv->data->version == EIP197_DEVBRD) 423 dir = "eip197b"; 424 else if (priv->data->version == EIP197C_MXL) 425 dir = "eip197c"; 426 else 427 return -ENODEV; 428 429 retry_fw: 430 for (i = 0; i < FW_NB; i++) { 431 snprintf(fw_path, 37, "inside-secure/%s/%s", dir, fw_name[i]); 432 ret = firmware_request_nowarn(&fw[i], fw_path, priv->dev); 433 if (ret) { 434 if (minifw || priv->data->version != EIP197B_MRVL) 435 goto release_fw; 436 437 /* Fallback to the old firmware location for the 438 * EIP197b. 439 */ 440 ret = firmware_request_nowarn(&fw[i], fw_name[i], 441 priv->dev); 442 if (ret) 443 goto release_fw; 444 } 445 } 446 447 eip197_init_firmware(priv); 448 449 ifppsz = eip197_write_firmware(priv, fw[FW_IFPP]); 450 451 /* Enable access to IPUE program memories */ 452 for (pe = 0; pe < priv->config.pes; pe++) 453 writel(EIP197_PE_ICE_RAM_CTRL_PUE_PROG_EN, 454 EIP197_PE(priv) + EIP197_PE_ICE_RAM_CTRL(pe)); 455 456 ipuesz = eip197_write_firmware(priv, fw[FW_IPUE]); 457 458 if (eip197_start_firmware(priv, ipuesz, ifppsz, minifw)) { 459 dev_dbg(priv->dev, "Firmware loaded successfully\n"); 460 return 0; 461 } 462 463 ret = -ENODEV; 464 465 release_fw: 466 for (j = 0; j < i; j++) 467 release_firmware(fw[j]); 468 469 if (!minifw) { 470 /* Retry with minifw path */ 471 dev_dbg(priv->dev, "Firmware set not (fully) present or init failed, falling back to BCLA mode\n"); 472 dir = "eip197_minifw"; 473 minifw = 1; 474 goto retry_fw; 475 } 476 477 dev_err(priv->dev, "Firmware load failed.\n"); 478 479 return ret; 480 } 481 482 static int safexcel_hw_setup_cdesc_rings(struct safexcel_crypto_priv *priv) 483 { 484 u32 cd_size_rnd, val; 485 int i, cd_fetch_cnt; 486 487 cd_size_rnd = (priv->config.cd_size + 488 (BIT(priv->hwconfig.hwdataw) - 1)) >> 489 priv->hwconfig.hwdataw; 490 /* determine number of CD's we can fetch into the CD FIFO as 1 block */ 491 if (priv->flags & SAFEXCEL_HW_EIP197) { 492 /* EIP197: try to fetch enough in 1 go to keep all pipes busy */ 493 cd_fetch_cnt = (1 << priv->hwconfig.hwcfsize) / cd_size_rnd; 494 cd_fetch_cnt = min_t(uint, cd_fetch_cnt, 495 (priv->config.pes * EIP197_FETCH_DEPTH)); 496 } else { 497 /* for the EIP97, just fetch all that fits minus 1 */ 498 cd_fetch_cnt = ((1 << priv->hwconfig.hwcfsize) / 499 cd_size_rnd) - 1; 500 } 501 /* 502 * Since we're using command desc's way larger than formally specified, 503 * we need to check whether we can fit even 1 for low-end EIP196's! 504 */ 505 if (!cd_fetch_cnt) { 506 dev_err(priv->dev, "Unable to fit even 1 command desc!\n"); 507 return -ENODEV; 508 } 509 510 for (i = 0; i < priv->config.rings; i++) { 511 /* ring base address */ 512 writel(lower_32_bits(priv->ring[i].cdr.base_dma), 513 EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_LO); 514 writel(upper_32_bits(priv->ring[i].cdr.base_dma), 515 EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_HI); 516 517 writel(EIP197_xDR_DESC_MODE_64BIT | EIP197_CDR_DESC_MODE_ADCP | 518 (priv->config.cd_offset << 14) | priv->config.cd_size, 519 EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_DESC_SIZE); 520 writel(((cd_fetch_cnt * 521 (cd_size_rnd << priv->hwconfig.hwdataw)) << 16) | 522 (cd_fetch_cnt * (priv->config.cd_offset / sizeof(u32))), 523 EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_CFG); 524 525 /* Configure DMA tx control */ 526 val = EIP197_HIA_xDR_CFG_WR_CACHE(WR_CACHE_3BITS); 527 val |= EIP197_HIA_xDR_CFG_RD_CACHE(RD_CACHE_3BITS); 528 writel(val, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_DMA_CFG); 529 530 /* clear any pending interrupt */ 531 writel(GENMASK(5, 0), 532 EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_STAT); 533 } 534 535 return 0; 536 } 537 538 static int safexcel_hw_setup_rdesc_rings(struct safexcel_crypto_priv *priv) 539 { 540 u32 rd_size_rnd, val; 541 int i, rd_fetch_cnt; 542 543 /* determine number of RD's we can fetch into the FIFO as one block */ 544 rd_size_rnd = (EIP197_RD64_FETCH_SIZE + 545 (BIT(priv->hwconfig.hwdataw) - 1)) >> 546 priv->hwconfig.hwdataw; 547 if (priv->flags & SAFEXCEL_HW_EIP197) { 548 /* EIP197: try to fetch enough in 1 go to keep all pipes busy */ 549 rd_fetch_cnt = (1 << priv->hwconfig.hwrfsize) / rd_size_rnd; 550 rd_fetch_cnt = min_t(uint, rd_fetch_cnt, 551 (priv->config.pes * EIP197_FETCH_DEPTH)); 552 } else { 553 /* for the EIP97, just fetch all that fits minus 1 */ 554 rd_fetch_cnt = ((1 << priv->hwconfig.hwrfsize) / 555 rd_size_rnd) - 1; 556 } 557 558 for (i = 0; i < priv->config.rings; i++) { 559 /* ring base address */ 560 writel(lower_32_bits(priv->ring[i].rdr.base_dma), 561 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_LO); 562 writel(upper_32_bits(priv->ring[i].rdr.base_dma), 563 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_HI); 564 565 writel(EIP197_xDR_DESC_MODE_64BIT | (priv->config.rd_offset << 14) | 566 priv->config.rd_size, 567 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_DESC_SIZE); 568 569 writel(((rd_fetch_cnt * 570 (rd_size_rnd << priv->hwconfig.hwdataw)) << 16) | 571 (rd_fetch_cnt * (priv->config.rd_offset / sizeof(u32))), 572 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_CFG); 573 574 /* Configure DMA tx control */ 575 val = EIP197_HIA_xDR_CFG_WR_CACHE(WR_CACHE_3BITS); 576 val |= EIP197_HIA_xDR_CFG_RD_CACHE(RD_CACHE_3BITS); 577 val |= EIP197_HIA_xDR_WR_RES_BUF | EIP197_HIA_xDR_WR_CTRL_BUF; 578 writel(val, 579 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_DMA_CFG); 580 581 /* clear any pending interrupt */ 582 writel(GENMASK(7, 0), 583 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_STAT); 584 585 /* enable ring interrupt */ 586 val = readl(EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ENABLE_CTRL(i)); 587 val |= EIP197_RDR_IRQ(i); 588 writel(val, EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ENABLE_CTRL(i)); 589 } 590 591 return 0; 592 } 593 594 static int safexcel_hw_init(struct safexcel_crypto_priv *priv) 595 { 596 u32 val; 597 int i, ret, pe, opbuflo, opbufhi; 598 599 dev_dbg(priv->dev, "HW init: using %d pipe(s) and %d ring(s)\n", 600 priv->config.pes, priv->config.rings); 601 602 /* 603 * For EIP197's only set maximum number of TX commands to 2^5 = 32 604 * Skip for the EIP97 as it does not have this field. 605 */ 606 if (priv->flags & SAFEXCEL_HW_EIP197) { 607 val = readl(EIP197_HIA_AIC(priv) + EIP197_HIA_MST_CTRL); 608 val |= EIP197_MST_CTRL_TX_MAX_CMD(5); 609 writel(val, EIP197_HIA_AIC(priv) + EIP197_HIA_MST_CTRL); 610 } 611 612 /* Configure wr/rd cache values */ 613 writel(EIP197_MST_CTRL_RD_CACHE(RD_CACHE_4BITS) | 614 EIP197_MST_CTRL_WD_CACHE(WR_CACHE_4BITS), 615 EIP197_HIA_GEN_CFG(priv) + EIP197_MST_CTRL); 616 617 /* Interrupts reset */ 618 619 /* Disable all global interrupts */ 620 writel(0, EIP197_HIA_AIC_G(priv) + EIP197_HIA_AIC_G_ENABLE_CTRL); 621 622 /* Clear any pending interrupt */ 623 writel(GENMASK(31, 0), EIP197_HIA_AIC_G(priv) + EIP197_HIA_AIC_G_ACK); 624 625 /* Processing Engine configuration */ 626 for (pe = 0; pe < priv->config.pes; pe++) { 627 /* Data Fetch Engine configuration */ 628 629 /* Reset all DFE threads */ 630 writel(EIP197_DxE_THR_CTRL_RESET_PE, 631 EIP197_HIA_DFE_THR(priv) + EIP197_HIA_DFE_THR_CTRL(pe)); 632 633 if (priv->flags & EIP197_PE_ARB) 634 /* Reset HIA input interface arbiter (if present) */ 635 writel(EIP197_HIA_RA_PE_CTRL_RESET, 636 EIP197_HIA_AIC(priv) + EIP197_HIA_RA_PE_CTRL(pe)); 637 638 /* DMA transfer size to use */ 639 val = EIP197_HIA_DFE_CFG_DIS_DEBUG; 640 val |= EIP197_HIA_DxE_CFG_MIN_DATA_SIZE(6) | 641 EIP197_HIA_DxE_CFG_MAX_DATA_SIZE(9); 642 val |= EIP197_HIA_DxE_CFG_MIN_CTRL_SIZE(6) | 643 EIP197_HIA_DxE_CFG_MAX_CTRL_SIZE(7); 644 val |= EIP197_HIA_DxE_CFG_DATA_CACHE_CTRL(RD_CACHE_3BITS); 645 val |= EIP197_HIA_DxE_CFG_CTRL_CACHE_CTRL(RD_CACHE_3BITS); 646 writel(val, EIP197_HIA_DFE(priv) + EIP197_HIA_DFE_CFG(pe)); 647 648 /* Leave the DFE threads reset state */ 649 writel(0, EIP197_HIA_DFE_THR(priv) + EIP197_HIA_DFE_THR_CTRL(pe)); 650 651 /* Configure the processing engine thresholds */ 652 writel(EIP197_PE_IN_xBUF_THRES_MIN(6) | 653 EIP197_PE_IN_xBUF_THRES_MAX(9), 654 EIP197_PE(priv) + EIP197_PE_IN_DBUF_THRES(pe)); 655 writel(EIP197_PE_IN_xBUF_THRES_MIN(6) | 656 EIP197_PE_IN_xBUF_THRES_MAX(7), 657 EIP197_PE(priv) + EIP197_PE_IN_TBUF_THRES(pe)); 658 659 if (priv->flags & SAFEXCEL_HW_EIP197) 660 /* enable HIA input interface arbiter and rings */ 661 writel(EIP197_HIA_RA_PE_CTRL_EN | 662 GENMASK(priv->config.rings - 1, 0), 663 EIP197_HIA_AIC(priv) + EIP197_HIA_RA_PE_CTRL(pe)); 664 665 /* Data Store Engine configuration */ 666 667 /* Reset all DSE threads */ 668 writel(EIP197_DxE_THR_CTRL_RESET_PE, 669 EIP197_HIA_DSE_THR(priv) + EIP197_HIA_DSE_THR_CTRL(pe)); 670 671 /* Wait for all DSE threads to complete */ 672 while ((readl(EIP197_HIA_DSE_THR(priv) + EIP197_HIA_DSE_THR_STAT(pe)) & 673 GENMASK(15, 12)) != GENMASK(15, 12)) 674 ; 675 676 /* DMA transfer size to use */ 677 if (priv->hwconfig.hwnumpes > 4) { 678 opbuflo = 9; 679 opbufhi = 10; 680 } else { 681 opbuflo = 7; 682 opbufhi = 8; 683 } 684 val = EIP197_HIA_DSE_CFG_DIS_DEBUG; 685 val |= EIP197_HIA_DxE_CFG_MIN_DATA_SIZE(opbuflo) | 686 EIP197_HIA_DxE_CFG_MAX_DATA_SIZE(opbufhi); 687 val |= EIP197_HIA_DxE_CFG_DATA_CACHE_CTRL(WR_CACHE_3BITS); 688 val |= EIP197_HIA_DSE_CFG_ALWAYS_BUFFERABLE; 689 /* FIXME: instability issues can occur for EIP97 but disabling 690 * it impacts performance. 691 */ 692 if (priv->flags & SAFEXCEL_HW_EIP197) 693 val |= EIP197_HIA_DSE_CFG_EN_SINGLE_WR; 694 writel(val, EIP197_HIA_DSE(priv) + EIP197_HIA_DSE_CFG(pe)); 695 696 /* Leave the DSE threads reset state */ 697 writel(0, EIP197_HIA_DSE_THR(priv) + EIP197_HIA_DSE_THR_CTRL(pe)); 698 699 /* Configure the processing engine thresholds */ 700 writel(EIP197_PE_OUT_DBUF_THRES_MIN(opbuflo) | 701 EIP197_PE_OUT_DBUF_THRES_MAX(opbufhi), 702 EIP197_PE(priv) + EIP197_PE_OUT_DBUF_THRES(pe)); 703 704 /* Processing Engine configuration */ 705 706 /* Token & context configuration */ 707 val = EIP197_PE_EIP96_TOKEN_CTRL_CTX_UPDATES | 708 EIP197_PE_EIP96_TOKEN_CTRL_NO_TOKEN_WAIT | 709 EIP197_PE_EIP96_TOKEN_CTRL_ENABLE_TIMEOUT; 710 writel(val, EIP197_PE(priv) + EIP197_PE_EIP96_TOKEN_CTRL(pe)); 711 712 /* H/W capabilities selection: just enable everything */ 713 writel(EIP197_FUNCTION_ALL, 714 EIP197_PE(priv) + EIP197_PE_EIP96_FUNCTION_EN(pe)); 715 writel(EIP197_FUNCTION_ALL, 716 EIP197_PE(priv) + EIP197_PE_EIP96_FUNCTION2_EN(pe)); 717 } 718 719 /* Command Descriptor Rings prepare */ 720 for (i = 0; i < priv->config.rings; i++) { 721 /* Clear interrupts for this ring */ 722 writel(GENMASK(31, 0), 723 EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ENABLE_CLR(i)); 724 725 /* Disable external triggering */ 726 writel(0, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_CFG); 727 728 /* Clear the pending prepared counter */ 729 writel(EIP197_xDR_PREP_CLR_COUNT, 730 EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_PREP_COUNT); 731 732 /* Clear the pending processed counter */ 733 writel(EIP197_xDR_PROC_CLR_COUNT, 734 EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_PROC_COUNT); 735 736 writel(0, 737 EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_PREP_PNTR); 738 writel(0, 739 EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_PROC_PNTR); 740 741 writel((EIP197_DEFAULT_RING_SIZE * priv->config.cd_offset), 742 EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_SIZE); 743 } 744 745 /* Result Descriptor Ring prepare */ 746 for (i = 0; i < priv->config.rings; i++) { 747 /* Disable external triggering*/ 748 writel(0, EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_CFG); 749 750 /* Clear the pending prepared counter */ 751 writel(EIP197_xDR_PREP_CLR_COUNT, 752 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_PREP_COUNT); 753 754 /* Clear the pending processed counter */ 755 writel(EIP197_xDR_PROC_CLR_COUNT, 756 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_PROC_COUNT); 757 758 writel(0, 759 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_PREP_PNTR); 760 writel(0, 761 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_PROC_PNTR); 762 763 /* Ring size */ 764 writel((EIP197_DEFAULT_RING_SIZE * priv->config.rd_offset), 765 EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_SIZE); 766 } 767 768 for (pe = 0; pe < priv->config.pes; pe++) { 769 /* Enable command descriptor rings */ 770 writel(EIP197_DxE_THR_CTRL_EN | GENMASK(priv->config.rings - 1, 0), 771 EIP197_HIA_DFE_THR(priv) + EIP197_HIA_DFE_THR_CTRL(pe)); 772 773 /* Enable result descriptor rings */ 774 writel(EIP197_DxE_THR_CTRL_EN | GENMASK(priv->config.rings - 1, 0), 775 EIP197_HIA_DSE_THR(priv) + EIP197_HIA_DSE_THR_CTRL(pe)); 776 } 777 778 /* Clear any HIA interrupt */ 779 writel(GENMASK(30, 20), EIP197_HIA_AIC_G(priv) + EIP197_HIA_AIC_G_ACK); 780 781 if (priv->flags & EIP197_SIMPLE_TRC) { 782 writel(EIP197_STRC_CONFIG_INIT | 783 EIP197_STRC_CONFIG_LARGE_REC(EIP197_CS_TRC_REC_WC) | 784 EIP197_STRC_CONFIG_SMALL_REC(EIP197_CS_TRC_REC_WC), 785 priv->base + EIP197_STRC_CONFIG); 786 writel(EIP197_PE_EIP96_TOKEN_CTRL2_CTX_DONE, 787 EIP197_PE(priv) + EIP197_PE_EIP96_TOKEN_CTRL2(0)); 788 } else if (priv->flags & SAFEXCEL_HW_EIP197) { 789 ret = eip197_trc_cache_init(priv); 790 if (ret) 791 return ret; 792 } 793 794 if (priv->flags & EIP197_ICE) { 795 ret = eip197_load_firmwares(priv); 796 if (ret) 797 return ret; 798 } 799 800 return safexcel_hw_setup_cdesc_rings(priv) ?: 801 safexcel_hw_setup_rdesc_rings(priv) ?: 802 0; 803 } 804 805 /* Called with ring's lock taken */ 806 static void safexcel_try_push_requests(struct safexcel_crypto_priv *priv, 807 int ring) 808 { 809 int coal = min_t(int, priv->ring[ring].requests, EIP197_MAX_BATCH_SZ); 810 811 if (!coal) 812 return; 813 814 /* Configure when we want an interrupt */ 815 writel(EIP197_HIA_RDR_THRESH_PKT_MODE | 816 EIP197_HIA_RDR_THRESH_PROC_PKT(coal), 817 EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_THRESH); 818 } 819 820 void safexcel_dequeue(struct safexcel_crypto_priv *priv, int ring) 821 { 822 struct crypto_async_request *req, *backlog; 823 struct safexcel_context *ctx; 824 int ret, nreq = 0, cdesc = 0, rdesc = 0, commands, results; 825 826 /* If a request wasn't properly dequeued because of a lack of resources, 827 * proceeded it first, 828 */ 829 req = priv->ring[ring].req; 830 backlog = priv->ring[ring].backlog; 831 if (req) 832 goto handle_req; 833 834 while (true) { 835 spin_lock_bh(&priv->ring[ring].queue_lock); 836 backlog = crypto_get_backlog(&priv->ring[ring].queue); 837 req = crypto_dequeue_request(&priv->ring[ring].queue); 838 spin_unlock_bh(&priv->ring[ring].queue_lock); 839 840 if (!req) { 841 priv->ring[ring].req = NULL; 842 priv->ring[ring].backlog = NULL; 843 goto finalize; 844 } 845 846 handle_req: 847 ctx = crypto_tfm_ctx(req->tfm); 848 ret = ctx->send(req, ring, &commands, &results); 849 if (ret) 850 goto request_failed; 851 852 if (backlog) 853 crypto_request_complete(backlog, -EINPROGRESS); 854 855 /* In case the send() helper did not issue any command to push 856 * to the engine because the input data was cached, continue to 857 * dequeue other requests as this is valid and not an error. 858 */ 859 if (!commands && !results) 860 continue; 861 862 cdesc += commands; 863 rdesc += results; 864 nreq++; 865 } 866 867 request_failed: 868 /* Not enough resources to handle all the requests. Bail out and save 869 * the request and the backlog for the next dequeue call (per-ring). 870 */ 871 priv->ring[ring].req = req; 872 priv->ring[ring].backlog = backlog; 873 874 finalize: 875 if (!nreq) 876 return; 877 878 spin_lock_bh(&priv->ring[ring].lock); 879 880 priv->ring[ring].requests += nreq; 881 882 if (!priv->ring[ring].busy) { 883 safexcel_try_push_requests(priv, ring); 884 priv->ring[ring].busy = true; 885 } 886 887 spin_unlock_bh(&priv->ring[ring].lock); 888 889 /* let the RDR know we have pending descriptors */ 890 writel((rdesc * priv->config.rd_offset), 891 EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_PREP_COUNT); 892 893 /* let the CDR know we have pending descriptors */ 894 writel((cdesc * priv->config.cd_offset), 895 EIP197_HIA_CDR(priv, ring) + EIP197_HIA_xDR_PREP_COUNT); 896 } 897 898 inline int safexcel_rdesc_check_errors(struct safexcel_crypto_priv *priv, 899 void *rdp) 900 { 901 struct safexcel_result_desc *rdesc = rdp; 902 struct result_data_desc *result_data = rdp + priv->config.res_offset; 903 904 if (likely((!rdesc->last_seg) || /* Rest only valid if last seg! */ 905 ((!rdesc->descriptor_overflow) && 906 (!rdesc->buffer_overflow) && 907 (!result_data->error_code)))) 908 return 0; 909 910 if (rdesc->descriptor_overflow) 911 dev_err(priv->dev, "Descriptor overflow detected"); 912 913 if (rdesc->buffer_overflow) 914 dev_err(priv->dev, "Buffer overflow detected"); 915 916 if (result_data->error_code & 0x4066) { 917 /* Fatal error (bits 1,2,5,6 & 14) */ 918 dev_err(priv->dev, 919 "result descriptor error (%x)", 920 result_data->error_code); 921 922 return -EIO; 923 } else if (result_data->error_code & 924 (BIT(7) | BIT(4) | BIT(3) | BIT(0))) { 925 /* 926 * Give priority over authentication fails: 927 * Blocksize, length & overflow errors, 928 * something wrong with the input! 929 */ 930 return -EINVAL; 931 } else if (result_data->error_code & BIT(9)) { 932 /* Authentication failed */ 933 return -EBADMSG; 934 } 935 936 /* All other non-fatal errors */ 937 return -EINVAL; 938 } 939 940 inline void safexcel_rdr_req_set(struct safexcel_crypto_priv *priv, 941 int ring, 942 struct safexcel_result_desc *rdesc, 943 struct crypto_async_request *req) 944 { 945 int i = safexcel_ring_rdr_rdesc_index(priv, ring, rdesc); 946 947 priv->ring[ring].rdr_req[i] = req; 948 } 949 950 inline struct crypto_async_request * 951 safexcel_rdr_req_get(struct safexcel_crypto_priv *priv, int ring) 952 { 953 int i = safexcel_ring_first_rdr_index(priv, ring); 954 955 return priv->ring[ring].rdr_req[i]; 956 } 957 958 void safexcel_complete(struct safexcel_crypto_priv *priv, int ring) 959 { 960 struct safexcel_command_desc *cdesc; 961 962 /* Acknowledge the command descriptors */ 963 do { 964 cdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].cdr); 965 if (IS_ERR(cdesc)) { 966 dev_err(priv->dev, 967 "Could not retrieve the command descriptor\n"); 968 return; 969 } 970 } while (!cdesc->last_seg); 971 } 972 973 int safexcel_invalidate_cache(struct crypto_async_request *async, 974 struct safexcel_crypto_priv *priv, 975 dma_addr_t ctxr_dma, int ring) 976 { 977 struct safexcel_command_desc *cdesc; 978 struct safexcel_result_desc *rdesc; 979 struct safexcel_token *dmmy; 980 int ret = 0; 981 982 /* Prepare command descriptor */ 983 cdesc = safexcel_add_cdesc(priv, ring, true, true, 0, 0, 0, ctxr_dma, 984 &dmmy); 985 if (IS_ERR(cdesc)) 986 return PTR_ERR(cdesc); 987 988 cdesc->control_data.type = EIP197_TYPE_EXTENDED; 989 cdesc->control_data.options = 0; 990 cdesc->control_data.context_lo &= ~EIP197_CONTEXT_SIZE_MASK; 991 cdesc->control_data.control0 = CONTEXT_CONTROL_INV_TR; 992 993 /* Prepare result descriptor */ 994 rdesc = safexcel_add_rdesc(priv, ring, true, true, 0, 0); 995 996 if (IS_ERR(rdesc)) { 997 ret = PTR_ERR(rdesc); 998 goto cdesc_rollback; 999 } 1000 1001 safexcel_rdr_req_set(priv, ring, rdesc, async); 1002 1003 return ret; 1004 1005 cdesc_rollback: 1006 safexcel_ring_rollback_wptr(priv, &priv->ring[ring].cdr); 1007 1008 return ret; 1009 } 1010 1011 static inline void safexcel_handle_result_descriptor(struct safexcel_crypto_priv *priv, 1012 int ring) 1013 { 1014 struct crypto_async_request *req; 1015 struct safexcel_context *ctx; 1016 int ret, i, nreq, ndesc, tot_descs, handled = 0; 1017 bool should_complete; 1018 1019 handle_results: 1020 tot_descs = 0; 1021 1022 nreq = readl(EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_PROC_COUNT); 1023 nreq >>= EIP197_xDR_PROC_xD_PKT_OFFSET; 1024 nreq &= EIP197_xDR_PROC_xD_PKT_MASK; 1025 if (!nreq) 1026 goto requests_left; 1027 1028 for (i = 0; i < nreq; i++) { 1029 req = safexcel_rdr_req_get(priv, ring); 1030 1031 ctx = crypto_tfm_ctx(req->tfm); 1032 ndesc = ctx->handle_result(priv, ring, req, 1033 &should_complete, &ret); 1034 if (ndesc < 0) { 1035 dev_err(priv->dev, "failed to handle result (%d)\n", 1036 ndesc); 1037 goto acknowledge; 1038 } 1039 1040 if (should_complete) { 1041 local_bh_disable(); 1042 crypto_request_complete(req, ret); 1043 local_bh_enable(); 1044 } 1045 1046 tot_descs += ndesc; 1047 handled++; 1048 } 1049 1050 acknowledge: 1051 if (i) 1052 writel(EIP197_xDR_PROC_xD_PKT(i) | 1053 (tot_descs * priv->config.rd_offset), 1054 EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_PROC_COUNT); 1055 1056 /* If the number of requests overflowed the counter, try to proceed more 1057 * requests. 1058 */ 1059 if (nreq == EIP197_xDR_PROC_xD_PKT_MASK) 1060 goto handle_results; 1061 1062 requests_left: 1063 spin_lock_bh(&priv->ring[ring].lock); 1064 1065 priv->ring[ring].requests -= handled; 1066 safexcel_try_push_requests(priv, ring); 1067 1068 if (!priv->ring[ring].requests) 1069 priv->ring[ring].busy = false; 1070 1071 spin_unlock_bh(&priv->ring[ring].lock); 1072 } 1073 1074 static void safexcel_dequeue_work(struct work_struct *work) 1075 { 1076 struct safexcel_work_data *data = 1077 container_of(work, struct safexcel_work_data, work); 1078 1079 safexcel_dequeue(data->priv, data->ring); 1080 } 1081 1082 struct safexcel_ring_irq_data { 1083 struct safexcel_crypto_priv *priv; 1084 int ring; 1085 }; 1086 1087 static irqreturn_t safexcel_irq_ring(int irq, void *data) 1088 { 1089 struct safexcel_ring_irq_data *irq_data = data; 1090 struct safexcel_crypto_priv *priv = irq_data->priv; 1091 int ring = irq_data->ring, rc = IRQ_NONE; 1092 u32 status, stat; 1093 1094 status = readl(EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ENABLED_STAT(ring)); 1095 if (!status) 1096 return rc; 1097 1098 /* RDR interrupts */ 1099 if (status & EIP197_RDR_IRQ(ring)) { 1100 stat = readl(EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_STAT); 1101 1102 if (unlikely(stat & EIP197_xDR_ERR)) { 1103 /* 1104 * Fatal error, the RDR is unusable and must be 1105 * reinitialized. This should not happen under 1106 * normal circumstances. 1107 */ 1108 dev_err(priv->dev, "RDR: fatal error.\n"); 1109 } else if (likely(stat & EIP197_xDR_THRESH)) { 1110 rc = IRQ_WAKE_THREAD; 1111 } 1112 1113 /* ACK the interrupts */ 1114 writel(stat & 0xff, 1115 EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_STAT); 1116 } 1117 1118 /* ACK the interrupts */ 1119 writel(status, EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ACK(ring)); 1120 1121 return rc; 1122 } 1123 1124 static irqreturn_t safexcel_irq_ring_thread(int irq, void *data) 1125 { 1126 struct safexcel_ring_irq_data *irq_data = data; 1127 struct safexcel_crypto_priv *priv = irq_data->priv; 1128 int ring = irq_data->ring; 1129 1130 safexcel_handle_result_descriptor(priv, ring); 1131 1132 queue_work(priv->ring[ring].workqueue, 1133 &priv->ring[ring].work_data.work); 1134 1135 return IRQ_HANDLED; 1136 } 1137 1138 static int safexcel_request_ring_irq(void *pdev, int irqid, 1139 int is_pci_dev, 1140 int ring_id, 1141 irq_handler_t handler, 1142 irq_handler_t threaded_handler, 1143 struct safexcel_ring_irq_data *ring_irq_priv) 1144 { 1145 int ret, irq, cpu; 1146 struct device *dev; 1147 1148 if (IS_ENABLED(CONFIG_PCI) && is_pci_dev) { 1149 struct pci_dev *pci_pdev = pdev; 1150 1151 dev = &pci_pdev->dev; 1152 irq = pci_irq_vector(pci_pdev, irqid); 1153 if (irq < 0) { 1154 dev_err(dev, "unable to get device MSI IRQ %d (err %d)\n", 1155 irqid, irq); 1156 return irq; 1157 } 1158 } else if (IS_ENABLED(CONFIG_OF)) { 1159 struct platform_device *plf_pdev = pdev; 1160 char irq_name[6] = {0}; /* "ringX\0" */ 1161 1162 snprintf(irq_name, 6, "ring%d", irqid); 1163 dev = &plf_pdev->dev; 1164 irq = platform_get_irq_byname(plf_pdev, irq_name); 1165 1166 if (irq < 0) 1167 return irq; 1168 } else { 1169 return -ENXIO; 1170 } 1171 1172 ret = devm_request_threaded_irq(dev, irq, handler, 1173 threaded_handler, IRQF_ONESHOT, 1174 dev_name(dev), ring_irq_priv); 1175 if (ret) { 1176 dev_err(dev, "unable to request IRQ %d\n", irq); 1177 return ret; 1178 } 1179 1180 /* Set affinity */ 1181 cpu = cpumask_local_spread(ring_id, NUMA_NO_NODE); 1182 irq_set_affinity_hint(irq, get_cpu_mask(cpu)); 1183 1184 return irq; 1185 } 1186 1187 static struct safexcel_alg_template *safexcel_algs[] = { 1188 &safexcel_alg_ecb_des, 1189 &safexcel_alg_cbc_des, 1190 &safexcel_alg_ecb_des3_ede, 1191 &safexcel_alg_cbc_des3_ede, 1192 &safexcel_alg_ecb_aes, 1193 &safexcel_alg_cbc_aes, 1194 &safexcel_alg_cfb_aes, 1195 &safexcel_alg_ofb_aes, 1196 &safexcel_alg_ctr_aes, 1197 &safexcel_alg_md5, 1198 &safexcel_alg_sha1, 1199 &safexcel_alg_sha224, 1200 &safexcel_alg_sha256, 1201 &safexcel_alg_sha384, 1202 &safexcel_alg_sha512, 1203 &safexcel_alg_hmac_md5, 1204 &safexcel_alg_hmac_sha1, 1205 &safexcel_alg_hmac_sha224, 1206 &safexcel_alg_hmac_sha256, 1207 &safexcel_alg_hmac_sha384, 1208 &safexcel_alg_hmac_sha512, 1209 &safexcel_alg_authenc_hmac_sha1_cbc_aes, 1210 &safexcel_alg_authenc_hmac_sha224_cbc_aes, 1211 &safexcel_alg_authenc_hmac_sha256_cbc_aes, 1212 &safexcel_alg_authenc_hmac_sha384_cbc_aes, 1213 &safexcel_alg_authenc_hmac_sha512_cbc_aes, 1214 &safexcel_alg_authenc_hmac_sha1_cbc_des3_ede, 1215 &safexcel_alg_authenc_hmac_sha1_ctr_aes, 1216 &safexcel_alg_authenc_hmac_sha224_ctr_aes, 1217 &safexcel_alg_authenc_hmac_sha256_ctr_aes, 1218 &safexcel_alg_authenc_hmac_sha384_ctr_aes, 1219 &safexcel_alg_authenc_hmac_sha512_ctr_aes, 1220 &safexcel_alg_xts_aes, 1221 &safexcel_alg_gcm, 1222 &safexcel_alg_ccm, 1223 &safexcel_alg_crc32, 1224 &safexcel_alg_cbcmac, 1225 &safexcel_alg_xcbcmac, 1226 &safexcel_alg_cmac, 1227 &safexcel_alg_chacha20, 1228 &safexcel_alg_chachapoly, 1229 &safexcel_alg_chachapoly_esp, 1230 &safexcel_alg_sm3, 1231 &safexcel_alg_hmac_sm3, 1232 &safexcel_alg_ecb_sm4, 1233 &safexcel_alg_cbc_sm4, 1234 &safexcel_alg_ofb_sm4, 1235 &safexcel_alg_cfb_sm4, 1236 &safexcel_alg_ctr_sm4, 1237 &safexcel_alg_authenc_hmac_sha1_cbc_sm4, 1238 &safexcel_alg_authenc_hmac_sm3_cbc_sm4, 1239 &safexcel_alg_authenc_hmac_sha1_ctr_sm4, 1240 &safexcel_alg_authenc_hmac_sm3_ctr_sm4, 1241 &safexcel_alg_sha3_224, 1242 &safexcel_alg_sha3_256, 1243 &safexcel_alg_sha3_384, 1244 &safexcel_alg_sha3_512, 1245 &safexcel_alg_hmac_sha3_224, 1246 &safexcel_alg_hmac_sha3_256, 1247 &safexcel_alg_hmac_sha3_384, 1248 &safexcel_alg_hmac_sha3_512, 1249 &safexcel_alg_authenc_hmac_sha1_cbc_des, 1250 &safexcel_alg_authenc_hmac_sha256_cbc_des3_ede, 1251 &safexcel_alg_authenc_hmac_sha224_cbc_des3_ede, 1252 &safexcel_alg_authenc_hmac_sha512_cbc_des3_ede, 1253 &safexcel_alg_authenc_hmac_sha384_cbc_des3_ede, 1254 &safexcel_alg_authenc_hmac_sha256_cbc_des, 1255 &safexcel_alg_authenc_hmac_sha224_cbc_des, 1256 &safexcel_alg_authenc_hmac_sha512_cbc_des, 1257 &safexcel_alg_authenc_hmac_sha384_cbc_des, 1258 &safexcel_alg_rfc4106_gcm, 1259 &safexcel_alg_rfc4543_gcm, 1260 &safexcel_alg_rfc4309_ccm, 1261 }; 1262 1263 static int safexcel_register_algorithms(struct safexcel_crypto_priv *priv) 1264 { 1265 int i, j, ret = 0; 1266 1267 for (i = 0; i < ARRAY_SIZE(safexcel_algs); i++) { 1268 safexcel_algs[i]->priv = priv; 1269 1270 /* Do we have all required base algorithms available? */ 1271 if ((safexcel_algs[i]->algo_mask & priv->hwconfig.algo_flags) != 1272 safexcel_algs[i]->algo_mask) 1273 /* No, so don't register this ciphersuite */ 1274 continue; 1275 1276 if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_SKCIPHER) 1277 ret = crypto_register_skcipher(&safexcel_algs[i]->alg.skcipher); 1278 else if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_AEAD) 1279 ret = crypto_register_aead(&safexcel_algs[i]->alg.aead); 1280 else 1281 ret = crypto_register_ahash(&safexcel_algs[i]->alg.ahash); 1282 1283 if (ret) 1284 goto fail; 1285 } 1286 1287 return 0; 1288 1289 fail: 1290 for (j = 0; j < i; j++) { 1291 /* Do we have all required base algorithms available? */ 1292 if ((safexcel_algs[j]->algo_mask & priv->hwconfig.algo_flags) != 1293 safexcel_algs[j]->algo_mask) 1294 /* No, so don't unregister this ciphersuite */ 1295 continue; 1296 1297 if (safexcel_algs[j]->type == SAFEXCEL_ALG_TYPE_SKCIPHER) 1298 crypto_unregister_skcipher(&safexcel_algs[j]->alg.skcipher); 1299 else if (safexcel_algs[j]->type == SAFEXCEL_ALG_TYPE_AEAD) 1300 crypto_unregister_aead(&safexcel_algs[j]->alg.aead); 1301 else 1302 crypto_unregister_ahash(&safexcel_algs[j]->alg.ahash); 1303 } 1304 1305 return ret; 1306 } 1307 1308 static void safexcel_unregister_algorithms(struct safexcel_crypto_priv *priv) 1309 { 1310 int i; 1311 1312 for (i = 0; i < ARRAY_SIZE(safexcel_algs); i++) { 1313 /* Do we have all required base algorithms available? */ 1314 if ((safexcel_algs[i]->algo_mask & priv->hwconfig.algo_flags) != 1315 safexcel_algs[i]->algo_mask) 1316 /* No, so don't unregister this ciphersuite */ 1317 continue; 1318 1319 if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_SKCIPHER) 1320 crypto_unregister_skcipher(&safexcel_algs[i]->alg.skcipher); 1321 else if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_AEAD) 1322 crypto_unregister_aead(&safexcel_algs[i]->alg.aead); 1323 else 1324 crypto_unregister_ahash(&safexcel_algs[i]->alg.ahash); 1325 } 1326 } 1327 1328 static void safexcel_configure(struct safexcel_crypto_priv *priv) 1329 { 1330 u32 mask = BIT(priv->hwconfig.hwdataw) - 1; 1331 1332 priv->config.pes = priv->hwconfig.hwnumpes; 1333 priv->config.rings = min_t(u32, priv->hwconfig.hwnumrings, max_rings); 1334 /* Cannot currently support more rings than we have ring AICs! */ 1335 priv->config.rings = min_t(u32, priv->config.rings, 1336 priv->hwconfig.hwnumraic); 1337 1338 priv->config.cd_size = EIP197_CD64_FETCH_SIZE; 1339 priv->config.cd_offset = (priv->config.cd_size + mask) & ~mask; 1340 priv->config.cdsh_offset = (EIP197_MAX_TOKENS + mask) & ~mask; 1341 1342 /* res token is behind the descr, but ofs must be rounded to buswdth */ 1343 priv->config.res_offset = (EIP197_RD64_FETCH_SIZE + mask) & ~mask; 1344 /* now the size of the descr is this 1st part plus the result struct */ 1345 priv->config.rd_size = priv->config.res_offset + 1346 EIP197_RD64_RESULT_SIZE; 1347 priv->config.rd_offset = (priv->config.rd_size + mask) & ~mask; 1348 1349 /* convert dwords to bytes */ 1350 priv->config.cd_offset *= sizeof(u32); 1351 priv->config.cdsh_offset *= sizeof(u32); 1352 priv->config.rd_offset *= sizeof(u32); 1353 priv->config.res_offset *= sizeof(u32); 1354 } 1355 1356 static void safexcel_init_register_offsets(struct safexcel_crypto_priv *priv) 1357 { 1358 struct safexcel_register_offsets *offsets = &priv->offsets; 1359 1360 if (priv->flags & SAFEXCEL_HW_EIP197) { 1361 offsets->hia_aic = EIP197_HIA_AIC_BASE; 1362 offsets->hia_aic_g = EIP197_HIA_AIC_G_BASE; 1363 offsets->hia_aic_r = EIP197_HIA_AIC_R_BASE; 1364 offsets->hia_aic_xdr = EIP197_HIA_AIC_xDR_BASE; 1365 offsets->hia_dfe = EIP197_HIA_DFE_BASE; 1366 offsets->hia_dfe_thr = EIP197_HIA_DFE_THR_BASE; 1367 offsets->hia_dse = EIP197_HIA_DSE_BASE; 1368 offsets->hia_dse_thr = EIP197_HIA_DSE_THR_BASE; 1369 offsets->hia_gen_cfg = EIP197_HIA_GEN_CFG_BASE; 1370 offsets->pe = EIP197_PE_BASE; 1371 offsets->global = EIP197_GLOBAL_BASE; 1372 } else { 1373 offsets->hia_aic = EIP97_HIA_AIC_BASE; 1374 offsets->hia_aic_g = EIP97_HIA_AIC_G_BASE; 1375 offsets->hia_aic_r = EIP97_HIA_AIC_R_BASE; 1376 offsets->hia_aic_xdr = EIP97_HIA_AIC_xDR_BASE; 1377 offsets->hia_dfe = EIP97_HIA_DFE_BASE; 1378 offsets->hia_dfe_thr = EIP97_HIA_DFE_THR_BASE; 1379 offsets->hia_dse = EIP97_HIA_DSE_BASE; 1380 offsets->hia_dse_thr = EIP97_HIA_DSE_THR_BASE; 1381 offsets->hia_gen_cfg = EIP97_HIA_GEN_CFG_BASE; 1382 offsets->pe = EIP97_PE_BASE; 1383 offsets->global = EIP97_GLOBAL_BASE; 1384 } 1385 } 1386 1387 /* 1388 * Generic part of probe routine, shared by platform and PCI driver 1389 * 1390 * Assumes IO resources have been mapped, private data mem has been allocated, 1391 * clocks have been enabled, device pointer has been assigned etc. 1392 * 1393 */ 1394 static int safexcel_probe_generic(void *pdev, 1395 struct safexcel_crypto_priv *priv, 1396 int is_pci_dev) 1397 { 1398 struct device *dev = priv->dev; 1399 u32 peid, version, mask, val, hiaopt, hwopt, peopt; 1400 int i, ret, hwctg; 1401 1402 priv->context_pool = dmam_pool_create("safexcel-context", dev, 1403 sizeof(struct safexcel_context_record), 1404 1, 0); 1405 if (!priv->context_pool) 1406 return -ENOMEM; 1407 1408 /* 1409 * First try the EIP97 HIA version regs 1410 * For the EIP197, this is guaranteed to NOT return any of the test 1411 * values 1412 */ 1413 version = readl(priv->base + EIP97_HIA_AIC_BASE + EIP197_HIA_VERSION); 1414 1415 mask = 0; /* do not swap */ 1416 if (EIP197_REG_LO16(version) == EIP197_HIA_VERSION_LE) { 1417 priv->hwconfig.hiaver = EIP197_VERSION_MASK(version); 1418 } else if (EIP197_REG_HI16(version) == EIP197_HIA_VERSION_BE) { 1419 /* read back byte-swapped, so complement byte swap bits */ 1420 mask = EIP197_MST_CTRL_BYTE_SWAP_BITS; 1421 priv->hwconfig.hiaver = EIP197_VERSION_SWAP(version); 1422 } else { 1423 /* So it wasn't an EIP97 ... maybe it's an EIP197? */ 1424 version = readl(priv->base + EIP197_HIA_AIC_BASE + 1425 EIP197_HIA_VERSION); 1426 if (EIP197_REG_LO16(version) == EIP197_HIA_VERSION_LE) { 1427 priv->hwconfig.hiaver = EIP197_VERSION_MASK(version); 1428 priv->flags |= SAFEXCEL_HW_EIP197; 1429 } else if (EIP197_REG_HI16(version) == 1430 EIP197_HIA_VERSION_BE) { 1431 /* read back byte-swapped, so complement swap bits */ 1432 mask = EIP197_MST_CTRL_BYTE_SWAP_BITS; 1433 priv->hwconfig.hiaver = EIP197_VERSION_SWAP(version); 1434 priv->flags |= SAFEXCEL_HW_EIP197; 1435 } else { 1436 return -ENODEV; 1437 } 1438 } 1439 1440 /* Now initialize the reg offsets based on the probing info so far */ 1441 safexcel_init_register_offsets(priv); 1442 1443 /* 1444 * If the version was read byte-swapped, we need to flip the device 1445 * swapping Keep in mind here, though, that what we write will also be 1446 * byte-swapped ... 1447 */ 1448 if (mask) { 1449 val = readl(EIP197_HIA_AIC(priv) + EIP197_HIA_MST_CTRL); 1450 val = val ^ (mask >> 24); /* toggle byte swap bits */ 1451 writel(val, EIP197_HIA_AIC(priv) + EIP197_HIA_MST_CTRL); 1452 } 1453 1454 /* 1455 * We're not done probing yet! We may fall through to here if no HIA 1456 * was found at all. So, with the endianness presumably correct now and 1457 * the offsets setup, *really* probe for the EIP97/EIP197. 1458 */ 1459 version = readl(EIP197_GLOBAL(priv) + EIP197_VERSION); 1460 if (((priv->flags & SAFEXCEL_HW_EIP197) && 1461 (EIP197_REG_LO16(version) != EIP197_VERSION_LE) && 1462 (EIP197_REG_LO16(version) != EIP196_VERSION_LE)) || 1463 ((!(priv->flags & SAFEXCEL_HW_EIP197) && 1464 (EIP197_REG_LO16(version) != EIP97_VERSION_LE)))) { 1465 /* 1466 * We did not find the device that matched our initial probing 1467 * (or our initial probing failed) Report appropriate error. 1468 */ 1469 dev_err(priv->dev, "Probing for EIP97/EIP19x failed - no such device (read %08x)\n", 1470 version); 1471 return -ENODEV; 1472 } 1473 1474 priv->hwconfig.hwver = EIP197_VERSION_MASK(version); 1475 hwctg = version >> 28; 1476 peid = version & 255; 1477 1478 /* Detect EIP206 processing pipe */ 1479 version = readl(EIP197_PE(priv) + + EIP197_PE_VERSION(0)); 1480 if (EIP197_REG_LO16(version) != EIP206_VERSION_LE) { 1481 dev_err(priv->dev, "EIP%d: EIP206 not detected\n", peid); 1482 return -ENODEV; 1483 } 1484 priv->hwconfig.ppver = EIP197_VERSION_MASK(version); 1485 1486 /* Detect EIP96 packet engine and version */ 1487 version = readl(EIP197_PE(priv) + EIP197_PE_EIP96_VERSION(0)); 1488 if (EIP197_REG_LO16(version) != EIP96_VERSION_LE) { 1489 dev_err(dev, "EIP%d: EIP96 not detected.\n", peid); 1490 return -ENODEV; 1491 } 1492 priv->hwconfig.pever = EIP197_VERSION_MASK(version); 1493 1494 hwopt = readl(EIP197_GLOBAL(priv) + EIP197_OPTIONS); 1495 hiaopt = readl(EIP197_HIA_AIC(priv) + EIP197_HIA_OPTIONS); 1496 1497 priv->hwconfig.icever = 0; 1498 priv->hwconfig.ocever = 0; 1499 priv->hwconfig.psever = 0; 1500 if (priv->flags & SAFEXCEL_HW_EIP197) { 1501 /* EIP197 */ 1502 peopt = readl(EIP197_PE(priv) + EIP197_PE_OPTIONS(0)); 1503 1504 priv->hwconfig.hwdataw = (hiaopt >> EIP197_HWDATAW_OFFSET) & 1505 EIP197_HWDATAW_MASK; 1506 priv->hwconfig.hwcfsize = ((hiaopt >> EIP197_CFSIZE_OFFSET) & 1507 EIP197_CFSIZE_MASK) + 1508 EIP197_CFSIZE_ADJUST; 1509 priv->hwconfig.hwrfsize = ((hiaopt >> EIP197_RFSIZE_OFFSET) & 1510 EIP197_RFSIZE_MASK) + 1511 EIP197_RFSIZE_ADJUST; 1512 priv->hwconfig.hwnumpes = (hiaopt >> EIP197_N_PES_OFFSET) & 1513 EIP197_N_PES_MASK; 1514 priv->hwconfig.hwnumrings = (hiaopt >> EIP197_N_RINGS_OFFSET) & 1515 EIP197_N_RINGS_MASK; 1516 if (hiaopt & EIP197_HIA_OPT_HAS_PE_ARB) 1517 priv->flags |= EIP197_PE_ARB; 1518 if (EIP206_OPT_ICE_TYPE(peopt) == 1) { 1519 priv->flags |= EIP197_ICE; 1520 /* Detect ICE EIP207 class. engine and version */ 1521 version = readl(EIP197_PE(priv) + 1522 EIP197_PE_ICE_VERSION(0)); 1523 if (EIP197_REG_LO16(version) != EIP207_VERSION_LE) { 1524 dev_err(dev, "EIP%d: ICE EIP207 not detected.\n", 1525 peid); 1526 return -ENODEV; 1527 } 1528 priv->hwconfig.icever = EIP197_VERSION_MASK(version); 1529 } 1530 if (EIP206_OPT_OCE_TYPE(peopt) == 1) { 1531 priv->flags |= EIP197_OCE; 1532 /* Detect EIP96PP packet stream editor and version */ 1533 version = readl(EIP197_PE(priv) + EIP197_PE_PSE_VERSION(0)); 1534 if (EIP197_REG_LO16(version) != EIP96_VERSION_LE) { 1535 dev_err(dev, "EIP%d: EIP96PP not detected.\n", peid); 1536 return -ENODEV; 1537 } 1538 priv->hwconfig.psever = EIP197_VERSION_MASK(version); 1539 /* Detect OCE EIP207 class. engine and version */ 1540 version = readl(EIP197_PE(priv) + 1541 EIP197_PE_ICE_VERSION(0)); 1542 if (EIP197_REG_LO16(version) != EIP207_VERSION_LE) { 1543 dev_err(dev, "EIP%d: OCE EIP207 not detected.\n", 1544 peid); 1545 return -ENODEV; 1546 } 1547 priv->hwconfig.ocever = EIP197_VERSION_MASK(version); 1548 } 1549 /* If not a full TRC, then assume simple TRC */ 1550 if (!(hwopt & EIP197_OPT_HAS_TRC)) 1551 priv->flags |= EIP197_SIMPLE_TRC; 1552 /* EIP197 always has SOME form of TRC */ 1553 priv->flags |= EIP197_TRC_CACHE; 1554 } else { 1555 /* EIP97 */ 1556 priv->hwconfig.hwdataw = (hiaopt >> EIP197_HWDATAW_OFFSET) & 1557 EIP97_HWDATAW_MASK; 1558 priv->hwconfig.hwcfsize = (hiaopt >> EIP97_CFSIZE_OFFSET) & 1559 EIP97_CFSIZE_MASK; 1560 priv->hwconfig.hwrfsize = (hiaopt >> EIP97_RFSIZE_OFFSET) & 1561 EIP97_RFSIZE_MASK; 1562 priv->hwconfig.hwnumpes = 1; /* by definition */ 1563 priv->hwconfig.hwnumrings = (hiaopt >> EIP197_N_RINGS_OFFSET) & 1564 EIP197_N_RINGS_MASK; 1565 } 1566 1567 /* Scan for ring AIC's */ 1568 for (i = 0; i < EIP197_MAX_RING_AIC; i++) { 1569 version = readl(EIP197_HIA_AIC_R(priv) + 1570 EIP197_HIA_AIC_R_VERSION(i)); 1571 if (EIP197_REG_LO16(version) != EIP201_VERSION_LE) 1572 break; 1573 } 1574 priv->hwconfig.hwnumraic = i; 1575 /* Low-end EIP196 may not have any ring AIC's ... */ 1576 if (!priv->hwconfig.hwnumraic) { 1577 dev_err(priv->dev, "No ring interrupt controller present!\n"); 1578 return -ENODEV; 1579 } 1580 1581 /* Get supported algorithms from EIP96 transform engine */ 1582 priv->hwconfig.algo_flags = readl(EIP197_PE(priv) + 1583 EIP197_PE_EIP96_OPTIONS(0)); 1584 1585 /* Print single info line describing what we just detected */ 1586 dev_info(priv->dev, "EIP%d:%x(%d,%d,%d,%d)-HIA:%x(%d,%d,%d),PE:%x/%x(alg:%08x)/%x/%x/%x\n", 1587 peid, priv->hwconfig.hwver, hwctg, priv->hwconfig.hwnumpes, 1588 priv->hwconfig.hwnumrings, priv->hwconfig.hwnumraic, 1589 priv->hwconfig.hiaver, priv->hwconfig.hwdataw, 1590 priv->hwconfig.hwcfsize, priv->hwconfig.hwrfsize, 1591 priv->hwconfig.ppver, priv->hwconfig.pever, 1592 priv->hwconfig.algo_flags, priv->hwconfig.icever, 1593 priv->hwconfig.ocever, priv->hwconfig.psever); 1594 1595 safexcel_configure(priv); 1596 1597 if (IS_ENABLED(CONFIG_PCI) && priv->data->version == EIP197_DEVBRD) { 1598 /* 1599 * Request MSI vectors for global + 1 per ring - 1600 * or just 1 for older dev images 1601 */ 1602 struct pci_dev *pci_pdev = pdev; 1603 1604 ret = pci_alloc_irq_vectors(pci_pdev, 1605 priv->config.rings + 1, 1606 priv->config.rings + 1, 1607 PCI_IRQ_MSI | PCI_IRQ_MSIX); 1608 if (ret < 0) { 1609 dev_err(dev, "Failed to allocate PCI MSI interrupts\n"); 1610 return ret; 1611 } 1612 } 1613 1614 /* Register the ring IRQ handlers and configure the rings */ 1615 priv->ring = devm_kcalloc(dev, priv->config.rings, 1616 sizeof(*priv->ring), 1617 GFP_KERNEL); 1618 if (!priv->ring) 1619 return -ENOMEM; 1620 1621 for (i = 0; i < priv->config.rings; i++) { 1622 char wq_name[9] = {0}; 1623 int irq; 1624 struct safexcel_ring_irq_data *ring_irq; 1625 1626 ret = safexcel_init_ring_descriptors(priv, 1627 &priv->ring[i].cdr, 1628 &priv->ring[i].rdr); 1629 if (ret) { 1630 dev_err(dev, "Failed to initialize rings\n"); 1631 goto err_cleanup_rings; 1632 } 1633 1634 priv->ring[i].rdr_req = devm_kcalloc(dev, 1635 EIP197_DEFAULT_RING_SIZE, 1636 sizeof(*priv->ring[i].rdr_req), 1637 GFP_KERNEL); 1638 if (!priv->ring[i].rdr_req) { 1639 ret = -ENOMEM; 1640 goto err_cleanup_rings; 1641 } 1642 1643 ring_irq = devm_kzalloc(dev, sizeof(*ring_irq), GFP_KERNEL); 1644 if (!ring_irq) { 1645 ret = -ENOMEM; 1646 goto err_cleanup_rings; 1647 } 1648 1649 ring_irq->priv = priv; 1650 ring_irq->ring = i; 1651 1652 irq = safexcel_request_ring_irq(pdev, 1653 EIP197_IRQ_NUMBER(i, is_pci_dev), 1654 is_pci_dev, 1655 i, 1656 safexcel_irq_ring, 1657 safexcel_irq_ring_thread, 1658 ring_irq); 1659 if (irq < 0) { 1660 dev_err(dev, "Failed to get IRQ ID for ring %d\n", i); 1661 ret = irq; 1662 goto err_cleanup_rings; 1663 } 1664 1665 priv->ring[i].irq = irq; 1666 priv->ring[i].work_data.priv = priv; 1667 priv->ring[i].work_data.ring = i; 1668 INIT_WORK(&priv->ring[i].work_data.work, 1669 safexcel_dequeue_work); 1670 1671 snprintf(wq_name, 9, "wq_ring%d", i); 1672 priv->ring[i].workqueue = 1673 create_singlethread_workqueue(wq_name); 1674 if (!priv->ring[i].workqueue) { 1675 ret = -ENOMEM; 1676 goto err_cleanup_rings; 1677 } 1678 1679 priv->ring[i].requests = 0; 1680 priv->ring[i].busy = false; 1681 1682 crypto_init_queue(&priv->ring[i].queue, 1683 EIP197_DEFAULT_RING_SIZE); 1684 1685 spin_lock_init(&priv->ring[i].lock); 1686 spin_lock_init(&priv->ring[i].queue_lock); 1687 } 1688 1689 atomic_set(&priv->ring_used, 0); 1690 1691 ret = safexcel_hw_init(priv); 1692 if (ret) { 1693 dev_err(dev, "HW init failed (%d)\n", ret); 1694 goto err_cleanup_rings; 1695 } 1696 1697 ret = safexcel_register_algorithms(priv); 1698 if (ret) { 1699 dev_err(dev, "Failed to register algorithms (%d)\n", ret); 1700 goto err_cleanup_rings; 1701 } 1702 1703 return 0; 1704 1705 err_cleanup_rings: 1706 for (i = 0; i < priv->config.rings; i++) { 1707 if (priv->ring[i].irq) 1708 irq_set_affinity_hint(priv->ring[i].irq, NULL); 1709 if (priv->ring[i].workqueue) 1710 destroy_workqueue(priv->ring[i].workqueue); 1711 } 1712 1713 return ret; 1714 } 1715 1716 static void safexcel_hw_reset_rings(struct safexcel_crypto_priv *priv) 1717 { 1718 int i; 1719 1720 for (i = 0; i < priv->config.rings; i++) { 1721 /* clear any pending interrupt */ 1722 writel(GENMASK(5, 0), EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_STAT); 1723 writel(GENMASK(7, 0), EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_STAT); 1724 1725 /* Reset the CDR base address */ 1726 writel(0, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_LO); 1727 writel(0, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_HI); 1728 1729 /* Reset the RDR base address */ 1730 writel(0, EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_LO); 1731 writel(0, EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_HI); 1732 } 1733 } 1734 1735 /* for Device Tree platform driver */ 1736 1737 static int safexcel_probe(struct platform_device *pdev) 1738 { 1739 struct device *dev = &pdev->dev; 1740 struct safexcel_crypto_priv *priv; 1741 int ret; 1742 1743 priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); 1744 if (!priv) 1745 return -ENOMEM; 1746 1747 priv->dev = dev; 1748 priv->data = (struct safexcel_priv_data *)of_device_get_match_data(dev); 1749 1750 platform_set_drvdata(pdev, priv); 1751 1752 priv->base = devm_platform_ioremap_resource(pdev, 0); 1753 if (IS_ERR(priv->base)) { 1754 dev_err(dev, "failed to get resource\n"); 1755 return PTR_ERR(priv->base); 1756 } 1757 1758 priv->clk = devm_clk_get(&pdev->dev, NULL); 1759 ret = PTR_ERR_OR_ZERO(priv->clk); 1760 /* The clock isn't mandatory */ 1761 if (ret != -ENOENT) { 1762 if (ret) 1763 return ret; 1764 1765 ret = clk_prepare_enable(priv->clk); 1766 if (ret) { 1767 dev_err(dev, "unable to enable clk (%d)\n", ret); 1768 return ret; 1769 } 1770 } 1771 1772 priv->reg_clk = devm_clk_get(&pdev->dev, "reg"); 1773 ret = PTR_ERR_OR_ZERO(priv->reg_clk); 1774 /* The clock isn't mandatory */ 1775 if (ret != -ENOENT) { 1776 if (ret) 1777 goto err_core_clk; 1778 1779 ret = clk_prepare_enable(priv->reg_clk); 1780 if (ret) { 1781 dev_err(dev, "unable to enable reg clk (%d)\n", ret); 1782 goto err_core_clk; 1783 } 1784 } 1785 1786 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 1787 if (ret) 1788 goto err_reg_clk; 1789 1790 /* Generic EIP97/EIP197 device probing */ 1791 ret = safexcel_probe_generic(pdev, priv, 0); 1792 if (ret) 1793 goto err_reg_clk; 1794 1795 return 0; 1796 1797 err_reg_clk: 1798 clk_disable_unprepare(priv->reg_clk); 1799 err_core_clk: 1800 clk_disable_unprepare(priv->clk); 1801 return ret; 1802 } 1803 1804 static int safexcel_remove(struct platform_device *pdev) 1805 { 1806 struct safexcel_crypto_priv *priv = platform_get_drvdata(pdev); 1807 int i; 1808 1809 safexcel_unregister_algorithms(priv); 1810 safexcel_hw_reset_rings(priv); 1811 1812 clk_disable_unprepare(priv->reg_clk); 1813 clk_disable_unprepare(priv->clk); 1814 1815 for (i = 0; i < priv->config.rings; i++) { 1816 irq_set_affinity_hint(priv->ring[i].irq, NULL); 1817 destroy_workqueue(priv->ring[i].workqueue); 1818 } 1819 1820 return 0; 1821 } 1822 1823 static const struct safexcel_priv_data eip97ies_mrvl_data = { 1824 .version = EIP97IES_MRVL, 1825 }; 1826 1827 static const struct safexcel_priv_data eip197b_mrvl_data = { 1828 .version = EIP197B_MRVL, 1829 }; 1830 1831 static const struct safexcel_priv_data eip197d_mrvl_data = { 1832 .version = EIP197D_MRVL, 1833 }; 1834 1835 static const struct safexcel_priv_data eip197_devbrd_data = { 1836 .version = EIP197_DEVBRD, 1837 }; 1838 1839 static const struct safexcel_priv_data eip197c_mxl_data = { 1840 .version = EIP197C_MXL, 1841 .fw_little_endian = true, 1842 }; 1843 1844 static const struct of_device_id safexcel_of_match_table[] = { 1845 { 1846 .compatible = "inside-secure,safexcel-eip97ies", 1847 .data = &eip97ies_mrvl_data, 1848 }, 1849 { 1850 .compatible = "inside-secure,safexcel-eip197b", 1851 .data = &eip197b_mrvl_data, 1852 }, 1853 { 1854 .compatible = "inside-secure,safexcel-eip197d", 1855 .data = &eip197d_mrvl_data, 1856 }, 1857 { 1858 .compatible = "inside-secure,safexcel-eip197c-mxl", 1859 .data = &eip197c_mxl_data, 1860 }, 1861 /* For backward compatibility and intended for generic use */ 1862 { 1863 .compatible = "inside-secure,safexcel-eip97", 1864 .data = &eip97ies_mrvl_data, 1865 }, 1866 { 1867 .compatible = "inside-secure,safexcel-eip197", 1868 .data = &eip197b_mrvl_data, 1869 }, 1870 {}, 1871 }; 1872 1873 MODULE_DEVICE_TABLE(of, safexcel_of_match_table); 1874 1875 static struct platform_driver crypto_safexcel = { 1876 .probe = safexcel_probe, 1877 .remove = safexcel_remove, 1878 .driver = { 1879 .name = "crypto-safexcel", 1880 .of_match_table = safexcel_of_match_table, 1881 }, 1882 }; 1883 1884 /* PCIE devices - i.e. Inside Secure development boards */ 1885 1886 static int safexcel_pci_probe(struct pci_dev *pdev, 1887 const struct pci_device_id *ent) 1888 { 1889 struct device *dev = &pdev->dev; 1890 struct safexcel_crypto_priv *priv; 1891 void __iomem *pciebase; 1892 int rc; 1893 u32 val; 1894 1895 dev_dbg(dev, "Probing PCIE device: vendor %04x, device %04x, subv %04x, subdev %04x, ctxt %lx\n", 1896 ent->vendor, ent->device, ent->subvendor, 1897 ent->subdevice, ent->driver_data); 1898 1899 priv = kzalloc(sizeof(*priv), GFP_KERNEL); 1900 if (!priv) 1901 return -ENOMEM; 1902 1903 priv->dev = dev; 1904 priv->data = (struct safexcel_priv_data *)ent->driver_data; 1905 1906 pci_set_drvdata(pdev, priv); 1907 1908 /* enable the device */ 1909 rc = pcim_enable_device(pdev); 1910 if (rc) { 1911 dev_err(dev, "Failed to enable PCI device\n"); 1912 return rc; 1913 } 1914 1915 /* take ownership of PCI BAR0 */ 1916 rc = pcim_iomap_regions(pdev, 1, "crypto_safexcel"); 1917 if (rc) { 1918 dev_err(dev, "Failed to map IO region for BAR0\n"); 1919 return rc; 1920 } 1921 priv->base = pcim_iomap_table(pdev)[0]; 1922 1923 if (priv->data->version == EIP197_DEVBRD) { 1924 dev_dbg(dev, "Device identified as FPGA based development board - applying HW reset\n"); 1925 1926 rc = pcim_iomap_regions(pdev, 4, "crypto_safexcel"); 1927 if (rc) { 1928 dev_err(dev, "Failed to map IO region for BAR4\n"); 1929 return rc; 1930 } 1931 1932 pciebase = pcim_iomap_table(pdev)[2]; 1933 val = readl(pciebase + EIP197_XLX_IRQ_BLOCK_ID_ADDR); 1934 if ((val >> 16) == EIP197_XLX_IRQ_BLOCK_ID_VALUE) { 1935 dev_dbg(dev, "Detected Xilinx PCIE IRQ block version %d, multiple MSI support enabled\n", 1936 (val & 0xff)); 1937 1938 /* Setup MSI identity map mapping */ 1939 writel(EIP197_XLX_USER_VECT_LUT0_IDENT, 1940 pciebase + EIP197_XLX_USER_VECT_LUT0_ADDR); 1941 writel(EIP197_XLX_USER_VECT_LUT1_IDENT, 1942 pciebase + EIP197_XLX_USER_VECT_LUT1_ADDR); 1943 writel(EIP197_XLX_USER_VECT_LUT2_IDENT, 1944 pciebase + EIP197_XLX_USER_VECT_LUT2_ADDR); 1945 writel(EIP197_XLX_USER_VECT_LUT3_IDENT, 1946 pciebase + EIP197_XLX_USER_VECT_LUT3_ADDR); 1947 1948 /* Enable all device interrupts */ 1949 writel(GENMASK(31, 0), 1950 pciebase + EIP197_XLX_USER_INT_ENB_MSK); 1951 } else { 1952 dev_err(dev, "Unrecognised IRQ block identifier %x\n", 1953 val); 1954 return -ENODEV; 1955 } 1956 1957 /* HW reset FPGA dev board */ 1958 /* assert reset */ 1959 writel(1, priv->base + EIP197_XLX_GPIO_BASE); 1960 wmb(); /* maintain strict ordering for accesses here */ 1961 /* deassert reset */ 1962 writel(0, priv->base + EIP197_XLX_GPIO_BASE); 1963 wmb(); /* maintain strict ordering for accesses here */ 1964 } 1965 1966 /* enable bus mastering */ 1967 pci_set_master(pdev); 1968 1969 /* Generic EIP97/EIP197 device probing */ 1970 rc = safexcel_probe_generic(pdev, priv, 1); 1971 return rc; 1972 } 1973 1974 static void safexcel_pci_remove(struct pci_dev *pdev) 1975 { 1976 struct safexcel_crypto_priv *priv = pci_get_drvdata(pdev); 1977 int i; 1978 1979 safexcel_unregister_algorithms(priv); 1980 1981 for (i = 0; i < priv->config.rings; i++) 1982 destroy_workqueue(priv->ring[i].workqueue); 1983 1984 safexcel_hw_reset_rings(priv); 1985 } 1986 1987 static const struct pci_device_id safexcel_pci_ids[] = { 1988 { 1989 PCI_DEVICE_SUB(PCI_VENDOR_ID_XILINX, 0x9038, 1990 0x16ae, 0xc522), 1991 .driver_data = (kernel_ulong_t)&eip197_devbrd_data, 1992 }, 1993 {}, 1994 }; 1995 1996 MODULE_DEVICE_TABLE(pci, safexcel_pci_ids); 1997 1998 static struct pci_driver safexcel_pci_driver = { 1999 .name = "crypto-safexcel", 2000 .id_table = safexcel_pci_ids, 2001 .probe = safexcel_pci_probe, 2002 .remove = safexcel_pci_remove, 2003 }; 2004 2005 static int __init safexcel_init(void) 2006 { 2007 int ret; 2008 2009 /* Register PCI driver */ 2010 ret = pci_register_driver(&safexcel_pci_driver); 2011 2012 /* Register platform driver */ 2013 if (IS_ENABLED(CONFIG_OF) && !ret) { 2014 ret = platform_driver_register(&crypto_safexcel); 2015 if (ret) 2016 pci_unregister_driver(&safexcel_pci_driver); 2017 } 2018 2019 return ret; 2020 } 2021 2022 static void __exit safexcel_exit(void) 2023 { 2024 /* Unregister platform driver */ 2025 if (IS_ENABLED(CONFIG_OF)) 2026 platform_driver_unregister(&crypto_safexcel); 2027 2028 /* Unregister PCI driver if successfully registered before */ 2029 pci_unregister_driver(&safexcel_pci_driver); 2030 } 2031 2032 module_init(safexcel_init); 2033 module_exit(safexcel_exit); 2034 2035 MODULE_AUTHOR("Antoine Tenart <antoine.tenart@free-electrons.com>"); 2036 MODULE_AUTHOR("Ofer Heifetz <oferh@marvell.com>"); 2037 MODULE_AUTHOR("Igal Liberman <igall@marvell.com>"); 2038 MODULE_DESCRIPTION("Support for SafeXcel cryptographic engines: EIP97 & EIP197"); 2039 MODULE_LICENSE("GPL v2"); 2040 MODULE_IMPORT_NS(CRYPTO_INTERNAL); 2041 2042 MODULE_FIRMWARE("ifpp.bin"); 2043 MODULE_FIRMWARE("ipue.bin"); 2044 MODULE_FIRMWARE("inside-secure/eip197b/ifpp.bin"); 2045 MODULE_FIRMWARE("inside-secure/eip197b/ipue.bin"); 2046 MODULE_FIRMWARE("inside-secure/eip197d/ifpp.bin"); 2047 MODULE_FIRMWARE("inside-secure/eip197d/ipue.bin"); 2048 MODULE_FIRMWARE("inside-secure/eip197_minifw/ifpp.bin"); 2049 MODULE_FIRMWARE("inside-secure/eip197_minifw/ipue.bin"); 2050