1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019 HiSilicon Limited. */ 3 4 #include <crypto/aes.h> 5 #include <crypto/aead.h> 6 #include <crypto/algapi.h> 7 #include <crypto/authenc.h> 8 #include <crypto/des.h> 9 #include <crypto/hash.h> 10 #include <crypto/internal/aead.h> 11 #include <crypto/internal/des.h> 12 #include <crypto/sha1.h> 13 #include <crypto/sha2.h> 14 #include <crypto/skcipher.h> 15 #include <crypto/xts.h> 16 #include <linux/crypto.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/idr.h> 19 20 #include "sec.h" 21 #include "sec_crypto.h" 22 23 #define SEC_PRIORITY 4001 24 #define SEC_XTS_MIN_KEY_SIZE (2 * AES_MIN_KEY_SIZE) 25 #define SEC_XTS_MID_KEY_SIZE (3 * AES_MIN_KEY_SIZE) 26 #define SEC_XTS_MAX_KEY_SIZE (2 * AES_MAX_KEY_SIZE) 27 #define SEC_DES3_2KEY_SIZE (2 * DES_KEY_SIZE) 28 #define SEC_DES3_3KEY_SIZE (3 * DES_KEY_SIZE) 29 30 /* SEC sqe(bd) bit operational relative MACRO */ 31 #define SEC_DE_OFFSET 1 32 #define SEC_CIPHER_OFFSET 4 33 #define SEC_SCENE_OFFSET 3 34 #define SEC_DST_SGL_OFFSET 2 35 #define SEC_SRC_SGL_OFFSET 7 36 #define SEC_CKEY_OFFSET 9 37 #define SEC_CMODE_OFFSET 12 38 #define SEC_AKEY_OFFSET 5 39 #define SEC_AEAD_ALG_OFFSET 11 40 #define SEC_AUTH_OFFSET 6 41 42 #define SEC_DE_OFFSET_V3 9 43 #define SEC_SCENE_OFFSET_V3 5 44 #define SEC_CKEY_OFFSET_V3 13 45 #define SEC_CTR_CNT_OFFSET 25 46 #define SEC_CTR_CNT_ROLLOVER 2 47 #define SEC_SRC_SGL_OFFSET_V3 11 48 #define SEC_DST_SGL_OFFSET_V3 14 49 #define SEC_CALG_OFFSET_V3 4 50 #define SEC_AKEY_OFFSET_V3 9 51 #define SEC_MAC_OFFSET_V3 4 52 #define SEC_AUTH_ALG_OFFSET_V3 15 53 #define SEC_CIPHER_AUTH_V3 0xbf 54 #define SEC_AUTH_CIPHER_V3 0x40 55 #define SEC_FLAG_OFFSET 7 56 #define SEC_FLAG_MASK 0x0780 57 #define SEC_TYPE_MASK 0x0F 58 #define SEC_DONE_MASK 0x0001 59 #define SEC_ICV_MASK 0x000E 60 #define SEC_SQE_LEN_RATE_MASK 0x3 61 62 #define SEC_TOTAL_IV_SZ(depth) (SEC_IV_SIZE * (depth)) 63 #define SEC_SGL_SGE_NR 128 64 #define SEC_CIPHER_AUTH 0xfe 65 #define SEC_AUTH_CIPHER 0x1 66 #define SEC_MAX_MAC_LEN 64 67 #define SEC_MAX_AAD_LEN 65535 68 #define SEC_MAX_CCM_AAD_LEN 65279 69 #define SEC_TOTAL_MAC_SZ(depth) (SEC_MAX_MAC_LEN * (depth)) 70 71 #define SEC_PBUF_SZ 512 72 #define SEC_PBUF_IV_OFFSET SEC_PBUF_SZ 73 #define SEC_PBUF_MAC_OFFSET (SEC_PBUF_SZ + SEC_IV_SIZE) 74 #define SEC_PBUF_PKG (SEC_PBUF_SZ + SEC_IV_SIZE + \ 75 SEC_MAX_MAC_LEN * 2) 76 #define SEC_PBUF_NUM (PAGE_SIZE / SEC_PBUF_PKG) 77 #define SEC_PBUF_PAGE_NUM(depth) ((depth) / SEC_PBUF_NUM) 78 #define SEC_PBUF_LEFT_SZ(depth) (SEC_PBUF_PKG * ((depth) - \ 79 SEC_PBUF_PAGE_NUM(depth) * SEC_PBUF_NUM)) 80 #define SEC_TOTAL_PBUF_SZ(depth) (PAGE_SIZE * SEC_PBUF_PAGE_NUM(depth) + \ 81 SEC_PBUF_LEFT_SZ(depth)) 82 83 #define SEC_SQE_LEN_RATE 4 84 #define SEC_SQE_CFLAG 2 85 #define SEC_SQE_AEAD_FLAG 3 86 #define SEC_SQE_DONE 0x1 87 #define SEC_ICV_ERR 0x2 88 #define MIN_MAC_LEN 4 89 #define MAC_LEN_MASK 0x1U 90 #define MAX_INPUT_DATA_LEN 0xFFFE00 91 #define BITS_MASK 0xFF 92 #define BYTE_BITS 0x8 93 #define SEC_XTS_NAME_SZ 0x3 94 #define IV_CM_CAL_NUM 2 95 #define IV_CL_MASK 0x7 96 #define IV_CL_MIN 2 97 #define IV_CL_MID 4 98 #define IV_CL_MAX 8 99 #define IV_FLAGS_OFFSET 0x6 100 #define IV_CM_OFFSET 0x3 101 #define IV_LAST_BYTE1 1 102 #define IV_LAST_BYTE2 2 103 #define IV_LAST_BYTE_MASK 0xFF 104 #define IV_CTR_INIT 0x1 105 #define IV_BYTE_OFFSET 0x8 106 107 static DEFINE_MUTEX(sec_algs_lock); 108 static unsigned int sec_available_devs; 109 110 struct sec_skcipher { 111 u64 alg_msk; 112 struct skcipher_alg alg; 113 }; 114 115 struct sec_aead { 116 u64 alg_msk; 117 struct aead_alg alg; 118 }; 119 120 /* Get an en/de-cipher queue cyclically to balance load over queues of TFM */ 121 static inline int sec_alloc_queue_id(struct sec_ctx *ctx, struct sec_req *req) 122 { 123 if (req->c_req.encrypt) 124 return (u32)atomic_inc_return(&ctx->enc_qcyclic) % 125 ctx->hlf_q_num; 126 127 return (u32)atomic_inc_return(&ctx->dec_qcyclic) % ctx->hlf_q_num + 128 ctx->hlf_q_num; 129 } 130 131 static inline void sec_free_queue_id(struct sec_ctx *ctx, struct sec_req *req) 132 { 133 if (req->c_req.encrypt) 134 atomic_dec(&ctx->enc_qcyclic); 135 else 136 atomic_dec(&ctx->dec_qcyclic); 137 } 138 139 static int sec_alloc_req_id(struct sec_req *req, struct sec_qp_ctx *qp_ctx) 140 { 141 int req_id; 142 143 spin_lock_bh(&qp_ctx->req_lock); 144 req_id = idr_alloc_cyclic(&qp_ctx->req_idr, NULL, 0, qp_ctx->qp->sq_depth, GFP_ATOMIC); 145 spin_unlock_bh(&qp_ctx->req_lock); 146 if (unlikely(req_id < 0)) { 147 dev_err(req->ctx->dev, "alloc req id fail!\n"); 148 return req_id; 149 } 150 151 req->qp_ctx = qp_ctx; 152 qp_ctx->req_list[req_id] = req; 153 154 return req_id; 155 } 156 157 static void sec_free_req_id(struct sec_req *req) 158 { 159 struct sec_qp_ctx *qp_ctx = req->qp_ctx; 160 int req_id = req->req_id; 161 162 if (unlikely(req_id < 0 || req_id >= qp_ctx->qp->sq_depth)) { 163 dev_err(req->ctx->dev, "free request id invalid!\n"); 164 return; 165 } 166 167 qp_ctx->req_list[req_id] = NULL; 168 req->qp_ctx = NULL; 169 170 spin_lock_bh(&qp_ctx->req_lock); 171 idr_remove(&qp_ctx->req_idr, req_id); 172 spin_unlock_bh(&qp_ctx->req_lock); 173 } 174 175 static u8 pre_parse_finished_bd(struct bd_status *status, void *resp) 176 { 177 struct sec_sqe *bd = resp; 178 179 status->done = le16_to_cpu(bd->type2.done_flag) & SEC_DONE_MASK; 180 status->icv = (le16_to_cpu(bd->type2.done_flag) & SEC_ICV_MASK) >> 1; 181 status->flag = (le16_to_cpu(bd->type2.done_flag) & 182 SEC_FLAG_MASK) >> SEC_FLAG_OFFSET; 183 status->tag = le16_to_cpu(bd->type2.tag); 184 status->err_type = bd->type2.error_type; 185 186 return bd->type_cipher_auth & SEC_TYPE_MASK; 187 } 188 189 static u8 pre_parse_finished_bd3(struct bd_status *status, void *resp) 190 { 191 struct sec_sqe3 *bd3 = resp; 192 193 status->done = le16_to_cpu(bd3->done_flag) & SEC_DONE_MASK; 194 status->icv = (le16_to_cpu(bd3->done_flag) & SEC_ICV_MASK) >> 1; 195 status->flag = (le16_to_cpu(bd3->done_flag) & 196 SEC_FLAG_MASK) >> SEC_FLAG_OFFSET; 197 status->tag = le64_to_cpu(bd3->tag); 198 status->err_type = bd3->error_type; 199 200 return le32_to_cpu(bd3->bd_param) & SEC_TYPE_MASK; 201 } 202 203 static int sec_cb_status_check(struct sec_req *req, 204 struct bd_status *status) 205 { 206 struct sec_ctx *ctx = req->ctx; 207 208 if (unlikely(req->err_type || status->done != SEC_SQE_DONE)) { 209 dev_err_ratelimited(ctx->dev, "err_type[%d], done[%u]\n", 210 req->err_type, status->done); 211 return -EIO; 212 } 213 214 if (unlikely(ctx->alg_type == SEC_SKCIPHER)) { 215 if (unlikely(status->flag != SEC_SQE_CFLAG)) { 216 dev_err_ratelimited(ctx->dev, "flag[%u]\n", 217 status->flag); 218 return -EIO; 219 } 220 } else if (unlikely(ctx->alg_type == SEC_AEAD)) { 221 if (unlikely(status->flag != SEC_SQE_AEAD_FLAG || 222 status->icv == SEC_ICV_ERR)) { 223 dev_err_ratelimited(ctx->dev, 224 "flag[%u], icv[%u]\n", 225 status->flag, status->icv); 226 return -EBADMSG; 227 } 228 } 229 230 return 0; 231 } 232 233 static void sec_req_cb(struct hisi_qp *qp, void *resp) 234 { 235 struct sec_qp_ctx *qp_ctx = qp->qp_ctx; 236 struct sec_dfx *dfx = &qp_ctx->ctx->sec->debug.dfx; 237 u8 type_supported = qp_ctx->ctx->type_supported; 238 struct bd_status status; 239 struct sec_ctx *ctx; 240 struct sec_req *req; 241 int err; 242 u8 type; 243 244 if (type_supported == SEC_BD_TYPE2) { 245 type = pre_parse_finished_bd(&status, resp); 246 req = qp_ctx->req_list[status.tag]; 247 } else { 248 type = pre_parse_finished_bd3(&status, resp); 249 req = (void *)(uintptr_t)status.tag; 250 } 251 252 if (unlikely(type != type_supported)) { 253 atomic64_inc(&dfx->err_bd_cnt); 254 pr_err("err bd type [%u]\n", type); 255 return; 256 } 257 258 if (unlikely(!req)) { 259 atomic64_inc(&dfx->invalid_req_cnt); 260 atomic_inc(&qp->qp_status.used); 261 return; 262 } 263 264 req->err_type = status.err_type; 265 ctx = req->ctx; 266 err = sec_cb_status_check(req, &status); 267 if (err) 268 atomic64_inc(&dfx->done_flag_cnt); 269 270 atomic64_inc(&dfx->recv_cnt); 271 272 ctx->req_op->buf_unmap(ctx, req); 273 274 ctx->req_op->callback(ctx, req, err); 275 } 276 277 static int sec_bd_send(struct sec_ctx *ctx, struct sec_req *req) 278 { 279 struct sec_qp_ctx *qp_ctx = req->qp_ctx; 280 int ret; 281 282 if (ctx->fake_req_limit <= 283 atomic_read(&qp_ctx->qp->qp_status.used) && 284 !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG)) 285 return -EBUSY; 286 287 spin_lock_bh(&qp_ctx->req_lock); 288 ret = hisi_qp_send(qp_ctx->qp, &req->sec_sqe); 289 if (ctx->fake_req_limit <= 290 atomic_read(&qp_ctx->qp->qp_status.used) && !ret) { 291 list_add_tail(&req->backlog_head, &qp_ctx->backlog); 292 atomic64_inc(&ctx->sec->debug.dfx.send_cnt); 293 atomic64_inc(&ctx->sec->debug.dfx.send_busy_cnt); 294 spin_unlock_bh(&qp_ctx->req_lock); 295 return -EBUSY; 296 } 297 spin_unlock_bh(&qp_ctx->req_lock); 298 299 if (unlikely(ret == -EBUSY)) 300 return -ENOBUFS; 301 302 if (likely(!ret)) { 303 ret = -EINPROGRESS; 304 atomic64_inc(&ctx->sec->debug.dfx.send_cnt); 305 } 306 307 return ret; 308 } 309 310 /* Get DMA memory resources */ 311 static int sec_alloc_civ_resource(struct device *dev, struct sec_alg_res *res) 312 { 313 u16 q_depth = res->depth; 314 int i; 315 316 res->c_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ(q_depth), 317 &res->c_ivin_dma, GFP_KERNEL); 318 if (!res->c_ivin) 319 return -ENOMEM; 320 321 for (i = 1; i < q_depth; i++) { 322 res[i].c_ivin_dma = res->c_ivin_dma + i * SEC_IV_SIZE; 323 res[i].c_ivin = res->c_ivin + i * SEC_IV_SIZE; 324 } 325 326 return 0; 327 } 328 329 static void sec_free_civ_resource(struct device *dev, struct sec_alg_res *res) 330 { 331 if (res->c_ivin) 332 dma_free_coherent(dev, SEC_TOTAL_IV_SZ(res->depth), 333 res->c_ivin, res->c_ivin_dma); 334 } 335 336 static int sec_alloc_aiv_resource(struct device *dev, struct sec_alg_res *res) 337 { 338 u16 q_depth = res->depth; 339 int i; 340 341 res->a_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ(q_depth), 342 &res->a_ivin_dma, GFP_KERNEL); 343 if (!res->a_ivin) 344 return -ENOMEM; 345 346 for (i = 1; i < q_depth; i++) { 347 res[i].a_ivin_dma = res->a_ivin_dma + i * SEC_IV_SIZE; 348 res[i].a_ivin = res->a_ivin + i * SEC_IV_SIZE; 349 } 350 351 return 0; 352 } 353 354 static void sec_free_aiv_resource(struct device *dev, struct sec_alg_res *res) 355 { 356 if (res->a_ivin) 357 dma_free_coherent(dev, SEC_TOTAL_IV_SZ(res->depth), 358 res->a_ivin, res->a_ivin_dma); 359 } 360 361 static int sec_alloc_mac_resource(struct device *dev, struct sec_alg_res *res) 362 { 363 u16 q_depth = res->depth; 364 int i; 365 366 res->out_mac = dma_alloc_coherent(dev, SEC_TOTAL_MAC_SZ(q_depth) << 1, 367 &res->out_mac_dma, GFP_KERNEL); 368 if (!res->out_mac) 369 return -ENOMEM; 370 371 for (i = 1; i < q_depth; i++) { 372 res[i].out_mac_dma = res->out_mac_dma + 373 i * (SEC_MAX_MAC_LEN << 1); 374 res[i].out_mac = res->out_mac + i * (SEC_MAX_MAC_LEN << 1); 375 } 376 377 return 0; 378 } 379 380 static void sec_free_mac_resource(struct device *dev, struct sec_alg_res *res) 381 { 382 if (res->out_mac) 383 dma_free_coherent(dev, SEC_TOTAL_MAC_SZ(res->depth) << 1, 384 res->out_mac, res->out_mac_dma); 385 } 386 387 static void sec_free_pbuf_resource(struct device *dev, struct sec_alg_res *res) 388 { 389 if (res->pbuf) 390 dma_free_coherent(dev, SEC_TOTAL_PBUF_SZ(res->depth), 391 res->pbuf, res->pbuf_dma); 392 } 393 394 /* 395 * To improve performance, pbuffer is used for 396 * small packets (< 512Bytes) as IOMMU translation using. 397 */ 398 static int sec_alloc_pbuf_resource(struct device *dev, struct sec_alg_res *res) 399 { 400 u16 q_depth = res->depth; 401 int size = SEC_PBUF_PAGE_NUM(q_depth); 402 int pbuf_page_offset; 403 int i, j, k; 404 405 res->pbuf = dma_alloc_coherent(dev, SEC_TOTAL_PBUF_SZ(q_depth), 406 &res->pbuf_dma, GFP_KERNEL); 407 if (!res->pbuf) 408 return -ENOMEM; 409 410 /* 411 * SEC_PBUF_PKG contains data pbuf, iv and 412 * out_mac : <SEC_PBUF|SEC_IV|SEC_MAC> 413 * Every PAGE contains six SEC_PBUF_PKG 414 * The sec_qp_ctx contains QM_Q_DEPTH numbers of SEC_PBUF_PKG 415 * So we need SEC_PBUF_PAGE_NUM numbers of PAGE 416 * for the SEC_TOTAL_PBUF_SZ 417 */ 418 for (i = 0; i <= size; i++) { 419 pbuf_page_offset = PAGE_SIZE * i; 420 for (j = 0; j < SEC_PBUF_NUM; j++) { 421 k = i * SEC_PBUF_NUM + j; 422 if (k == q_depth) 423 break; 424 res[k].pbuf = res->pbuf + 425 j * SEC_PBUF_PKG + pbuf_page_offset; 426 res[k].pbuf_dma = res->pbuf_dma + 427 j * SEC_PBUF_PKG + pbuf_page_offset; 428 } 429 } 430 431 return 0; 432 } 433 434 static int sec_alg_resource_alloc(struct sec_ctx *ctx, 435 struct sec_qp_ctx *qp_ctx) 436 { 437 struct sec_alg_res *res = qp_ctx->res; 438 struct device *dev = ctx->dev; 439 int ret; 440 441 ret = sec_alloc_civ_resource(dev, res); 442 if (ret) 443 return ret; 444 445 if (ctx->alg_type == SEC_AEAD) { 446 ret = sec_alloc_aiv_resource(dev, res); 447 if (ret) 448 goto alloc_aiv_fail; 449 450 ret = sec_alloc_mac_resource(dev, res); 451 if (ret) 452 goto alloc_mac_fail; 453 } 454 if (ctx->pbuf_supported) { 455 ret = sec_alloc_pbuf_resource(dev, res); 456 if (ret) { 457 dev_err(dev, "fail to alloc pbuf dma resource!\n"); 458 goto alloc_pbuf_fail; 459 } 460 } 461 462 return 0; 463 464 alloc_pbuf_fail: 465 if (ctx->alg_type == SEC_AEAD) 466 sec_free_mac_resource(dev, qp_ctx->res); 467 alloc_mac_fail: 468 if (ctx->alg_type == SEC_AEAD) 469 sec_free_aiv_resource(dev, res); 470 alloc_aiv_fail: 471 sec_free_civ_resource(dev, res); 472 return ret; 473 } 474 475 static void sec_alg_resource_free(struct sec_ctx *ctx, 476 struct sec_qp_ctx *qp_ctx) 477 { 478 struct device *dev = ctx->dev; 479 480 sec_free_civ_resource(dev, qp_ctx->res); 481 482 if (ctx->pbuf_supported) 483 sec_free_pbuf_resource(dev, qp_ctx->res); 484 if (ctx->alg_type == SEC_AEAD) 485 sec_free_mac_resource(dev, qp_ctx->res); 486 } 487 488 static int sec_alloc_qp_ctx_resource(struct hisi_qm *qm, struct sec_ctx *ctx, 489 struct sec_qp_ctx *qp_ctx) 490 { 491 u16 q_depth = qp_ctx->qp->sq_depth; 492 struct device *dev = ctx->dev; 493 int ret = -ENOMEM; 494 495 qp_ctx->req_list = kcalloc(q_depth, sizeof(struct sec_req *), GFP_KERNEL); 496 if (!qp_ctx->req_list) 497 return ret; 498 499 qp_ctx->res = kcalloc(q_depth, sizeof(struct sec_alg_res), GFP_KERNEL); 500 if (!qp_ctx->res) 501 goto err_free_req_list; 502 qp_ctx->res->depth = q_depth; 503 504 qp_ctx->c_in_pool = hisi_acc_create_sgl_pool(dev, q_depth, SEC_SGL_SGE_NR); 505 if (IS_ERR(qp_ctx->c_in_pool)) { 506 dev_err(dev, "fail to create sgl pool for input!\n"); 507 goto err_free_res; 508 } 509 510 qp_ctx->c_out_pool = hisi_acc_create_sgl_pool(dev, q_depth, SEC_SGL_SGE_NR); 511 if (IS_ERR(qp_ctx->c_out_pool)) { 512 dev_err(dev, "fail to create sgl pool for output!\n"); 513 goto err_free_c_in_pool; 514 } 515 516 ret = sec_alg_resource_alloc(ctx, qp_ctx); 517 if (ret) 518 goto err_free_c_out_pool; 519 520 return 0; 521 522 err_free_c_out_pool: 523 hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool); 524 err_free_c_in_pool: 525 hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool); 526 err_free_res: 527 kfree(qp_ctx->res); 528 err_free_req_list: 529 kfree(qp_ctx->req_list); 530 return ret; 531 } 532 533 static void sec_free_qp_ctx_resource(struct sec_ctx *ctx, struct sec_qp_ctx *qp_ctx) 534 { 535 struct device *dev = ctx->dev; 536 537 sec_alg_resource_free(ctx, qp_ctx); 538 hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool); 539 hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool); 540 kfree(qp_ctx->res); 541 kfree(qp_ctx->req_list); 542 } 543 544 static int sec_create_qp_ctx(struct hisi_qm *qm, struct sec_ctx *ctx, 545 int qp_ctx_id, int alg_type) 546 { 547 struct sec_qp_ctx *qp_ctx; 548 struct hisi_qp *qp; 549 int ret; 550 551 qp_ctx = &ctx->qp_ctx[qp_ctx_id]; 552 qp = ctx->qps[qp_ctx_id]; 553 qp->req_type = 0; 554 qp->qp_ctx = qp_ctx; 555 qp_ctx->qp = qp; 556 qp_ctx->ctx = ctx; 557 558 qp->req_cb = sec_req_cb; 559 560 spin_lock_init(&qp_ctx->req_lock); 561 idr_init(&qp_ctx->req_idr); 562 INIT_LIST_HEAD(&qp_ctx->backlog); 563 564 ret = sec_alloc_qp_ctx_resource(qm, ctx, qp_ctx); 565 if (ret) 566 goto err_destroy_idr; 567 568 ret = hisi_qm_start_qp(qp, 0); 569 if (ret < 0) 570 goto err_resource_free; 571 572 return 0; 573 574 err_resource_free: 575 sec_free_qp_ctx_resource(ctx, qp_ctx); 576 err_destroy_idr: 577 idr_destroy(&qp_ctx->req_idr); 578 return ret; 579 } 580 581 static void sec_release_qp_ctx(struct sec_ctx *ctx, 582 struct sec_qp_ctx *qp_ctx) 583 { 584 hisi_qm_stop_qp(qp_ctx->qp); 585 sec_free_qp_ctx_resource(ctx, qp_ctx); 586 idr_destroy(&qp_ctx->req_idr); 587 } 588 589 static int sec_ctx_base_init(struct sec_ctx *ctx) 590 { 591 struct sec_dev *sec; 592 int i, ret; 593 594 ctx->qps = sec_create_qps(); 595 if (!ctx->qps) { 596 pr_err("Can not create sec qps!\n"); 597 return -ENODEV; 598 } 599 600 sec = container_of(ctx->qps[0]->qm, struct sec_dev, qm); 601 ctx->sec = sec; 602 ctx->dev = &sec->qm.pdev->dev; 603 ctx->hlf_q_num = sec->ctx_q_num >> 1; 604 605 ctx->pbuf_supported = ctx->sec->iommu_used; 606 607 /* Half of queue depth is taken as fake requests limit in the queue. */ 608 ctx->fake_req_limit = ctx->qps[0]->sq_depth >> 1; 609 ctx->qp_ctx = kcalloc(sec->ctx_q_num, sizeof(struct sec_qp_ctx), 610 GFP_KERNEL); 611 if (!ctx->qp_ctx) { 612 ret = -ENOMEM; 613 goto err_destroy_qps; 614 } 615 616 for (i = 0; i < sec->ctx_q_num; i++) { 617 ret = sec_create_qp_ctx(&sec->qm, ctx, i, 0); 618 if (ret) 619 goto err_sec_release_qp_ctx; 620 } 621 622 return 0; 623 624 err_sec_release_qp_ctx: 625 for (i = i - 1; i >= 0; i--) 626 sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]); 627 kfree(ctx->qp_ctx); 628 err_destroy_qps: 629 sec_destroy_qps(ctx->qps, sec->ctx_q_num); 630 return ret; 631 } 632 633 static void sec_ctx_base_uninit(struct sec_ctx *ctx) 634 { 635 int i; 636 637 for (i = 0; i < ctx->sec->ctx_q_num; i++) 638 sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]); 639 640 sec_destroy_qps(ctx->qps, ctx->sec->ctx_q_num); 641 kfree(ctx->qp_ctx); 642 } 643 644 static int sec_cipher_init(struct sec_ctx *ctx) 645 { 646 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx; 647 648 c_ctx->c_key = dma_alloc_coherent(ctx->dev, SEC_MAX_KEY_SIZE, 649 &c_ctx->c_key_dma, GFP_KERNEL); 650 if (!c_ctx->c_key) 651 return -ENOMEM; 652 653 return 0; 654 } 655 656 static void sec_cipher_uninit(struct sec_ctx *ctx) 657 { 658 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx; 659 660 memzero_explicit(c_ctx->c_key, SEC_MAX_KEY_SIZE); 661 dma_free_coherent(ctx->dev, SEC_MAX_KEY_SIZE, 662 c_ctx->c_key, c_ctx->c_key_dma); 663 } 664 665 static int sec_auth_init(struct sec_ctx *ctx) 666 { 667 struct sec_auth_ctx *a_ctx = &ctx->a_ctx; 668 669 a_ctx->a_key = dma_alloc_coherent(ctx->dev, SEC_MAX_AKEY_SIZE, 670 &a_ctx->a_key_dma, GFP_KERNEL); 671 if (!a_ctx->a_key) 672 return -ENOMEM; 673 674 return 0; 675 } 676 677 static void sec_auth_uninit(struct sec_ctx *ctx) 678 { 679 struct sec_auth_ctx *a_ctx = &ctx->a_ctx; 680 681 memzero_explicit(a_ctx->a_key, SEC_MAX_AKEY_SIZE); 682 dma_free_coherent(ctx->dev, SEC_MAX_AKEY_SIZE, 683 a_ctx->a_key, a_ctx->a_key_dma); 684 } 685 686 static int sec_skcipher_fbtfm_init(struct crypto_skcipher *tfm) 687 { 688 const char *alg = crypto_tfm_alg_name(&tfm->base); 689 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm); 690 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx; 691 692 c_ctx->fallback = false; 693 694 /* Currently, only XTS mode need fallback tfm when using 192bit key */ 695 if (likely(strncmp(alg, "xts", SEC_XTS_NAME_SZ))) 696 return 0; 697 698 c_ctx->fbtfm = crypto_alloc_sync_skcipher(alg, 0, 699 CRYPTO_ALG_NEED_FALLBACK); 700 if (IS_ERR(c_ctx->fbtfm)) { 701 pr_err("failed to alloc xts mode fallback tfm!\n"); 702 return PTR_ERR(c_ctx->fbtfm); 703 } 704 705 return 0; 706 } 707 708 static int sec_skcipher_init(struct crypto_skcipher *tfm) 709 { 710 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm); 711 int ret; 712 713 ctx->alg_type = SEC_SKCIPHER; 714 crypto_skcipher_set_reqsize(tfm, sizeof(struct sec_req)); 715 ctx->c_ctx.ivsize = crypto_skcipher_ivsize(tfm); 716 if (ctx->c_ctx.ivsize > SEC_IV_SIZE) { 717 pr_err("get error skcipher iv size!\n"); 718 return -EINVAL; 719 } 720 721 ret = sec_ctx_base_init(ctx); 722 if (ret) 723 return ret; 724 725 ret = sec_cipher_init(ctx); 726 if (ret) 727 goto err_cipher_init; 728 729 ret = sec_skcipher_fbtfm_init(tfm); 730 if (ret) 731 goto err_fbtfm_init; 732 733 return 0; 734 735 err_fbtfm_init: 736 sec_cipher_uninit(ctx); 737 err_cipher_init: 738 sec_ctx_base_uninit(ctx); 739 return ret; 740 } 741 742 static void sec_skcipher_uninit(struct crypto_skcipher *tfm) 743 { 744 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm); 745 746 if (ctx->c_ctx.fbtfm) 747 crypto_free_sync_skcipher(ctx->c_ctx.fbtfm); 748 749 sec_cipher_uninit(ctx); 750 sec_ctx_base_uninit(ctx); 751 } 752 753 static int sec_skcipher_3des_setkey(struct crypto_skcipher *tfm, const u8 *key, 754 const u32 keylen, 755 const enum sec_cmode c_mode) 756 { 757 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm); 758 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx; 759 int ret; 760 761 ret = verify_skcipher_des3_key(tfm, key); 762 if (ret) 763 return ret; 764 765 switch (keylen) { 766 case SEC_DES3_2KEY_SIZE: 767 c_ctx->c_key_len = SEC_CKEY_3DES_2KEY; 768 break; 769 case SEC_DES3_3KEY_SIZE: 770 c_ctx->c_key_len = SEC_CKEY_3DES_3KEY; 771 break; 772 default: 773 return -EINVAL; 774 } 775 776 return 0; 777 } 778 779 static int sec_skcipher_aes_sm4_setkey(struct sec_cipher_ctx *c_ctx, 780 const u32 keylen, 781 const enum sec_cmode c_mode) 782 { 783 if (c_mode == SEC_CMODE_XTS) { 784 switch (keylen) { 785 case SEC_XTS_MIN_KEY_SIZE: 786 c_ctx->c_key_len = SEC_CKEY_128BIT; 787 break; 788 case SEC_XTS_MID_KEY_SIZE: 789 c_ctx->fallback = true; 790 break; 791 case SEC_XTS_MAX_KEY_SIZE: 792 c_ctx->c_key_len = SEC_CKEY_256BIT; 793 break; 794 default: 795 pr_err("hisi_sec2: xts mode key error!\n"); 796 return -EINVAL; 797 } 798 } else { 799 if (c_ctx->c_alg == SEC_CALG_SM4 && 800 keylen != AES_KEYSIZE_128) { 801 pr_err("hisi_sec2: sm4 key error!\n"); 802 return -EINVAL; 803 } else { 804 switch (keylen) { 805 case AES_KEYSIZE_128: 806 c_ctx->c_key_len = SEC_CKEY_128BIT; 807 break; 808 case AES_KEYSIZE_192: 809 c_ctx->c_key_len = SEC_CKEY_192BIT; 810 break; 811 case AES_KEYSIZE_256: 812 c_ctx->c_key_len = SEC_CKEY_256BIT; 813 break; 814 default: 815 pr_err("hisi_sec2: aes key error!\n"); 816 return -EINVAL; 817 } 818 } 819 } 820 821 return 0; 822 } 823 824 static int sec_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key, 825 const u32 keylen, const enum sec_calg c_alg, 826 const enum sec_cmode c_mode) 827 { 828 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm); 829 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx; 830 struct device *dev = ctx->dev; 831 int ret; 832 833 if (c_mode == SEC_CMODE_XTS) { 834 ret = xts_verify_key(tfm, key, keylen); 835 if (ret) { 836 dev_err(dev, "xts mode key err!\n"); 837 return ret; 838 } 839 } 840 841 c_ctx->c_alg = c_alg; 842 c_ctx->c_mode = c_mode; 843 844 switch (c_alg) { 845 case SEC_CALG_3DES: 846 ret = sec_skcipher_3des_setkey(tfm, key, keylen, c_mode); 847 break; 848 case SEC_CALG_AES: 849 case SEC_CALG_SM4: 850 ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode); 851 break; 852 default: 853 dev_err(dev, "sec c_alg err!\n"); 854 return -EINVAL; 855 } 856 857 if (ret) { 858 dev_err(dev, "set sec key err!\n"); 859 return ret; 860 } 861 862 memcpy(c_ctx->c_key, key, keylen); 863 if (c_ctx->fallback && c_ctx->fbtfm) { 864 ret = crypto_sync_skcipher_setkey(c_ctx->fbtfm, key, keylen); 865 if (ret) { 866 dev_err(dev, "failed to set fallback skcipher key!\n"); 867 return ret; 868 } 869 } 870 return 0; 871 } 872 873 #define GEN_SEC_SETKEY_FUNC(name, c_alg, c_mode) \ 874 static int sec_setkey_##name(struct crypto_skcipher *tfm, const u8 *key,\ 875 u32 keylen) \ 876 { \ 877 return sec_skcipher_setkey(tfm, key, keylen, c_alg, c_mode); \ 878 } 879 880 GEN_SEC_SETKEY_FUNC(aes_ecb, SEC_CALG_AES, SEC_CMODE_ECB) 881 GEN_SEC_SETKEY_FUNC(aes_cbc, SEC_CALG_AES, SEC_CMODE_CBC) 882 GEN_SEC_SETKEY_FUNC(aes_xts, SEC_CALG_AES, SEC_CMODE_XTS) 883 GEN_SEC_SETKEY_FUNC(aes_ctr, SEC_CALG_AES, SEC_CMODE_CTR) 884 GEN_SEC_SETKEY_FUNC(3des_ecb, SEC_CALG_3DES, SEC_CMODE_ECB) 885 GEN_SEC_SETKEY_FUNC(3des_cbc, SEC_CALG_3DES, SEC_CMODE_CBC) 886 GEN_SEC_SETKEY_FUNC(sm4_xts, SEC_CALG_SM4, SEC_CMODE_XTS) 887 GEN_SEC_SETKEY_FUNC(sm4_cbc, SEC_CALG_SM4, SEC_CMODE_CBC) 888 GEN_SEC_SETKEY_FUNC(sm4_ctr, SEC_CALG_SM4, SEC_CMODE_CTR) 889 890 static int sec_cipher_pbuf_map(struct sec_ctx *ctx, struct sec_req *req, 891 struct scatterlist *src) 892 { 893 struct sec_aead_req *a_req = &req->aead_req; 894 struct aead_request *aead_req = a_req->aead_req; 895 struct sec_cipher_req *c_req = &req->c_req; 896 struct sec_qp_ctx *qp_ctx = req->qp_ctx; 897 struct device *dev = ctx->dev; 898 int copy_size, pbuf_length; 899 int req_id = req->req_id; 900 struct crypto_aead *tfm; 901 size_t authsize; 902 u8 *mac_offset; 903 904 if (ctx->alg_type == SEC_AEAD) 905 copy_size = aead_req->cryptlen + aead_req->assoclen; 906 else 907 copy_size = c_req->c_len; 908 909 pbuf_length = sg_copy_to_buffer(src, sg_nents(src), 910 qp_ctx->res[req_id].pbuf, copy_size); 911 if (unlikely(pbuf_length != copy_size)) { 912 dev_err(dev, "copy src data to pbuf error!\n"); 913 return -EINVAL; 914 } 915 if (!c_req->encrypt && ctx->alg_type == SEC_AEAD) { 916 tfm = crypto_aead_reqtfm(aead_req); 917 authsize = crypto_aead_authsize(tfm); 918 mac_offset = qp_ctx->res[req_id].pbuf + copy_size - authsize; 919 memcpy(a_req->out_mac, mac_offset, authsize); 920 } 921 922 req->in_dma = qp_ctx->res[req_id].pbuf_dma; 923 c_req->c_out_dma = req->in_dma; 924 925 return 0; 926 } 927 928 static void sec_cipher_pbuf_unmap(struct sec_ctx *ctx, struct sec_req *req, 929 struct scatterlist *dst) 930 { 931 struct aead_request *aead_req = req->aead_req.aead_req; 932 struct sec_cipher_req *c_req = &req->c_req; 933 struct sec_qp_ctx *qp_ctx = req->qp_ctx; 934 int copy_size, pbuf_length; 935 int req_id = req->req_id; 936 937 if (ctx->alg_type == SEC_AEAD) 938 copy_size = c_req->c_len + aead_req->assoclen; 939 else 940 copy_size = c_req->c_len; 941 942 pbuf_length = sg_copy_from_buffer(dst, sg_nents(dst), 943 qp_ctx->res[req_id].pbuf, copy_size); 944 if (unlikely(pbuf_length != copy_size)) 945 dev_err(ctx->dev, "copy pbuf data to dst error!\n"); 946 } 947 948 static int sec_aead_mac_init(struct sec_aead_req *req) 949 { 950 struct aead_request *aead_req = req->aead_req; 951 struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req); 952 size_t authsize = crypto_aead_authsize(tfm); 953 u8 *mac_out = req->out_mac; 954 struct scatterlist *sgl = aead_req->src; 955 size_t copy_size; 956 off_t skip_size; 957 958 /* Copy input mac */ 959 skip_size = aead_req->assoclen + aead_req->cryptlen - authsize; 960 copy_size = sg_pcopy_to_buffer(sgl, sg_nents(sgl), mac_out, 961 authsize, skip_size); 962 if (unlikely(copy_size != authsize)) 963 return -EINVAL; 964 965 return 0; 966 } 967 968 static int sec_cipher_map(struct sec_ctx *ctx, struct sec_req *req, 969 struct scatterlist *src, struct scatterlist *dst) 970 { 971 struct sec_cipher_req *c_req = &req->c_req; 972 struct sec_aead_req *a_req = &req->aead_req; 973 struct sec_qp_ctx *qp_ctx = req->qp_ctx; 974 struct sec_alg_res *res = &qp_ctx->res[req->req_id]; 975 struct device *dev = ctx->dev; 976 int ret; 977 978 if (req->use_pbuf) { 979 c_req->c_ivin = res->pbuf + SEC_PBUF_IV_OFFSET; 980 c_req->c_ivin_dma = res->pbuf_dma + SEC_PBUF_IV_OFFSET; 981 if (ctx->alg_type == SEC_AEAD) { 982 a_req->a_ivin = res->a_ivin; 983 a_req->a_ivin_dma = res->a_ivin_dma; 984 a_req->out_mac = res->pbuf + SEC_PBUF_MAC_OFFSET; 985 a_req->out_mac_dma = res->pbuf_dma + 986 SEC_PBUF_MAC_OFFSET; 987 } 988 ret = sec_cipher_pbuf_map(ctx, req, src); 989 990 return ret; 991 } 992 c_req->c_ivin = res->c_ivin; 993 c_req->c_ivin_dma = res->c_ivin_dma; 994 if (ctx->alg_type == SEC_AEAD) { 995 a_req->a_ivin = res->a_ivin; 996 a_req->a_ivin_dma = res->a_ivin_dma; 997 a_req->out_mac = res->out_mac; 998 a_req->out_mac_dma = res->out_mac_dma; 999 } 1000 1001 req->in = hisi_acc_sg_buf_map_to_hw_sgl(dev, src, 1002 qp_ctx->c_in_pool, 1003 req->req_id, 1004 &req->in_dma); 1005 if (IS_ERR(req->in)) { 1006 dev_err(dev, "fail to dma map input sgl buffers!\n"); 1007 return PTR_ERR(req->in); 1008 } 1009 1010 if (!c_req->encrypt && ctx->alg_type == SEC_AEAD) { 1011 ret = sec_aead_mac_init(a_req); 1012 if (unlikely(ret)) { 1013 dev_err(dev, "fail to init mac data for ICV!\n"); 1014 hisi_acc_sg_buf_unmap(dev, src, req->in); 1015 return ret; 1016 } 1017 } 1018 1019 if (dst == src) { 1020 c_req->c_out = req->in; 1021 c_req->c_out_dma = req->in_dma; 1022 } else { 1023 c_req->c_out = hisi_acc_sg_buf_map_to_hw_sgl(dev, dst, 1024 qp_ctx->c_out_pool, 1025 req->req_id, 1026 &c_req->c_out_dma); 1027 1028 if (IS_ERR(c_req->c_out)) { 1029 dev_err(dev, "fail to dma map output sgl buffers!\n"); 1030 hisi_acc_sg_buf_unmap(dev, src, req->in); 1031 return PTR_ERR(c_req->c_out); 1032 } 1033 } 1034 1035 return 0; 1036 } 1037 1038 static void sec_cipher_unmap(struct sec_ctx *ctx, struct sec_req *req, 1039 struct scatterlist *src, struct scatterlist *dst) 1040 { 1041 struct sec_cipher_req *c_req = &req->c_req; 1042 struct device *dev = ctx->dev; 1043 1044 if (req->use_pbuf) { 1045 sec_cipher_pbuf_unmap(ctx, req, dst); 1046 } else { 1047 if (dst != src) 1048 hisi_acc_sg_buf_unmap(dev, src, req->in); 1049 1050 hisi_acc_sg_buf_unmap(dev, dst, c_req->c_out); 1051 } 1052 } 1053 1054 static int sec_skcipher_sgl_map(struct sec_ctx *ctx, struct sec_req *req) 1055 { 1056 struct skcipher_request *sq = req->c_req.sk_req; 1057 1058 return sec_cipher_map(ctx, req, sq->src, sq->dst); 1059 } 1060 1061 static void sec_skcipher_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req) 1062 { 1063 struct skcipher_request *sq = req->c_req.sk_req; 1064 1065 sec_cipher_unmap(ctx, req, sq->src, sq->dst); 1066 } 1067 1068 static int sec_aead_aes_set_key(struct sec_cipher_ctx *c_ctx, 1069 struct crypto_authenc_keys *keys) 1070 { 1071 switch (keys->enckeylen) { 1072 case AES_KEYSIZE_128: 1073 c_ctx->c_key_len = SEC_CKEY_128BIT; 1074 break; 1075 case AES_KEYSIZE_192: 1076 c_ctx->c_key_len = SEC_CKEY_192BIT; 1077 break; 1078 case AES_KEYSIZE_256: 1079 c_ctx->c_key_len = SEC_CKEY_256BIT; 1080 break; 1081 default: 1082 pr_err("hisi_sec2: aead aes key error!\n"); 1083 return -EINVAL; 1084 } 1085 memcpy(c_ctx->c_key, keys->enckey, keys->enckeylen); 1086 1087 return 0; 1088 } 1089 1090 static int sec_aead_auth_set_key(struct sec_auth_ctx *ctx, 1091 struct crypto_authenc_keys *keys) 1092 { 1093 struct crypto_shash *hash_tfm = ctx->hash_tfm; 1094 int blocksize, digestsize, ret; 1095 1096 if (!keys->authkeylen) { 1097 pr_err("hisi_sec2: aead auth key error!\n"); 1098 return -EINVAL; 1099 } 1100 1101 blocksize = crypto_shash_blocksize(hash_tfm); 1102 digestsize = crypto_shash_digestsize(hash_tfm); 1103 if (keys->authkeylen > blocksize) { 1104 ret = crypto_shash_tfm_digest(hash_tfm, keys->authkey, 1105 keys->authkeylen, ctx->a_key); 1106 if (ret) { 1107 pr_err("hisi_sec2: aead auth digest error!\n"); 1108 return -EINVAL; 1109 } 1110 ctx->a_key_len = digestsize; 1111 } else { 1112 memcpy(ctx->a_key, keys->authkey, keys->authkeylen); 1113 ctx->a_key_len = keys->authkeylen; 1114 } 1115 1116 return 0; 1117 } 1118 1119 static int sec_aead_setauthsize(struct crypto_aead *aead, unsigned int authsize) 1120 { 1121 struct crypto_tfm *tfm = crypto_aead_tfm(aead); 1122 struct sec_ctx *ctx = crypto_tfm_ctx(tfm); 1123 struct sec_auth_ctx *a_ctx = &ctx->a_ctx; 1124 1125 if (unlikely(a_ctx->fallback_aead_tfm)) 1126 return crypto_aead_setauthsize(a_ctx->fallback_aead_tfm, authsize); 1127 1128 return 0; 1129 } 1130 1131 static int sec_aead_fallback_setkey(struct sec_auth_ctx *a_ctx, 1132 struct crypto_aead *tfm, const u8 *key, 1133 unsigned int keylen) 1134 { 1135 crypto_aead_clear_flags(a_ctx->fallback_aead_tfm, CRYPTO_TFM_REQ_MASK); 1136 crypto_aead_set_flags(a_ctx->fallback_aead_tfm, 1137 crypto_aead_get_flags(tfm) & CRYPTO_TFM_REQ_MASK); 1138 return crypto_aead_setkey(a_ctx->fallback_aead_tfm, key, keylen); 1139 } 1140 1141 static int sec_aead_setkey(struct crypto_aead *tfm, const u8 *key, 1142 const u32 keylen, const enum sec_hash_alg a_alg, 1143 const enum sec_calg c_alg, 1144 const enum sec_mac_len mac_len, 1145 const enum sec_cmode c_mode) 1146 { 1147 struct sec_ctx *ctx = crypto_aead_ctx(tfm); 1148 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx; 1149 struct sec_auth_ctx *a_ctx = &ctx->a_ctx; 1150 struct device *dev = ctx->dev; 1151 struct crypto_authenc_keys keys; 1152 int ret; 1153 1154 ctx->a_ctx.a_alg = a_alg; 1155 ctx->c_ctx.c_alg = c_alg; 1156 ctx->a_ctx.mac_len = mac_len; 1157 c_ctx->c_mode = c_mode; 1158 1159 if (c_mode == SEC_CMODE_CCM || c_mode == SEC_CMODE_GCM) { 1160 ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode); 1161 if (ret) { 1162 dev_err(dev, "set sec aes ccm cipher key err!\n"); 1163 return ret; 1164 } 1165 memcpy(c_ctx->c_key, key, keylen); 1166 1167 if (unlikely(a_ctx->fallback_aead_tfm)) { 1168 ret = sec_aead_fallback_setkey(a_ctx, tfm, key, keylen); 1169 if (ret) 1170 return ret; 1171 } 1172 1173 return 0; 1174 } 1175 1176 ret = crypto_authenc_extractkeys(&keys, key, keylen); 1177 if (ret) 1178 goto bad_key; 1179 1180 ret = sec_aead_aes_set_key(c_ctx, &keys); 1181 if (ret) { 1182 dev_err(dev, "set sec cipher key err!\n"); 1183 goto bad_key; 1184 } 1185 1186 ret = sec_aead_auth_set_key(&ctx->a_ctx, &keys); 1187 if (ret) { 1188 dev_err(dev, "set sec auth key err!\n"); 1189 goto bad_key; 1190 } 1191 1192 if ((ctx->a_ctx.mac_len & SEC_SQE_LEN_RATE_MASK) || 1193 (ctx->a_ctx.a_key_len & SEC_SQE_LEN_RATE_MASK)) { 1194 ret = -EINVAL; 1195 dev_err(dev, "MAC or AUTH key length error!\n"); 1196 goto bad_key; 1197 } 1198 1199 return 0; 1200 1201 bad_key: 1202 memzero_explicit(&keys, sizeof(struct crypto_authenc_keys)); 1203 return ret; 1204 } 1205 1206 1207 #define GEN_SEC_AEAD_SETKEY_FUNC(name, aalg, calg, maclen, cmode) \ 1208 static int sec_setkey_##name(struct crypto_aead *tfm, const u8 *key, \ 1209 u32 keylen) \ 1210 { \ 1211 return sec_aead_setkey(tfm, key, keylen, aalg, calg, maclen, cmode);\ 1212 } 1213 1214 GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha1, SEC_A_HMAC_SHA1, 1215 SEC_CALG_AES, SEC_HMAC_SHA1_MAC, SEC_CMODE_CBC) 1216 GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha256, SEC_A_HMAC_SHA256, 1217 SEC_CALG_AES, SEC_HMAC_SHA256_MAC, SEC_CMODE_CBC) 1218 GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha512, SEC_A_HMAC_SHA512, 1219 SEC_CALG_AES, SEC_HMAC_SHA512_MAC, SEC_CMODE_CBC) 1220 GEN_SEC_AEAD_SETKEY_FUNC(aes_ccm, 0, SEC_CALG_AES, 1221 SEC_HMAC_CCM_MAC, SEC_CMODE_CCM) 1222 GEN_SEC_AEAD_SETKEY_FUNC(aes_gcm, 0, SEC_CALG_AES, 1223 SEC_HMAC_GCM_MAC, SEC_CMODE_GCM) 1224 GEN_SEC_AEAD_SETKEY_FUNC(sm4_ccm, 0, SEC_CALG_SM4, 1225 SEC_HMAC_CCM_MAC, SEC_CMODE_CCM) 1226 GEN_SEC_AEAD_SETKEY_FUNC(sm4_gcm, 0, SEC_CALG_SM4, 1227 SEC_HMAC_GCM_MAC, SEC_CMODE_GCM) 1228 1229 static int sec_aead_sgl_map(struct sec_ctx *ctx, struct sec_req *req) 1230 { 1231 struct aead_request *aq = req->aead_req.aead_req; 1232 1233 return sec_cipher_map(ctx, req, aq->src, aq->dst); 1234 } 1235 1236 static void sec_aead_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req) 1237 { 1238 struct aead_request *aq = req->aead_req.aead_req; 1239 1240 sec_cipher_unmap(ctx, req, aq->src, aq->dst); 1241 } 1242 1243 static int sec_request_transfer(struct sec_ctx *ctx, struct sec_req *req) 1244 { 1245 int ret; 1246 1247 ret = ctx->req_op->buf_map(ctx, req); 1248 if (unlikely(ret)) 1249 return ret; 1250 1251 ctx->req_op->do_transfer(ctx, req); 1252 1253 ret = ctx->req_op->bd_fill(ctx, req); 1254 if (unlikely(ret)) 1255 goto unmap_req_buf; 1256 1257 return ret; 1258 1259 unmap_req_buf: 1260 ctx->req_op->buf_unmap(ctx, req); 1261 return ret; 1262 } 1263 1264 static void sec_request_untransfer(struct sec_ctx *ctx, struct sec_req *req) 1265 { 1266 ctx->req_op->buf_unmap(ctx, req); 1267 } 1268 1269 static void sec_skcipher_copy_iv(struct sec_ctx *ctx, struct sec_req *req) 1270 { 1271 struct skcipher_request *sk_req = req->c_req.sk_req; 1272 struct sec_cipher_req *c_req = &req->c_req; 1273 1274 memcpy(c_req->c_ivin, sk_req->iv, ctx->c_ctx.ivsize); 1275 } 1276 1277 static int sec_skcipher_bd_fill(struct sec_ctx *ctx, struct sec_req *req) 1278 { 1279 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx; 1280 struct sec_cipher_req *c_req = &req->c_req; 1281 struct sec_sqe *sec_sqe = &req->sec_sqe; 1282 u8 scene, sa_type, da_type; 1283 u8 bd_type, cipher; 1284 u8 de = 0; 1285 1286 memset(sec_sqe, 0, sizeof(struct sec_sqe)); 1287 1288 sec_sqe->type2.c_key_addr = cpu_to_le64(c_ctx->c_key_dma); 1289 sec_sqe->type2.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma); 1290 sec_sqe->type2.data_src_addr = cpu_to_le64(req->in_dma); 1291 sec_sqe->type2.data_dst_addr = cpu_to_le64(c_req->c_out_dma); 1292 1293 sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_mode) << 1294 SEC_CMODE_OFFSET); 1295 sec_sqe->type2.c_alg = c_ctx->c_alg; 1296 sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_key_len) << 1297 SEC_CKEY_OFFSET); 1298 1299 bd_type = SEC_BD_TYPE2; 1300 if (c_req->encrypt) 1301 cipher = SEC_CIPHER_ENC << SEC_CIPHER_OFFSET; 1302 else 1303 cipher = SEC_CIPHER_DEC << SEC_CIPHER_OFFSET; 1304 sec_sqe->type_cipher_auth = bd_type | cipher; 1305 1306 /* Set destination and source address type */ 1307 if (req->use_pbuf) { 1308 sa_type = SEC_PBUF << SEC_SRC_SGL_OFFSET; 1309 da_type = SEC_PBUF << SEC_DST_SGL_OFFSET; 1310 } else { 1311 sa_type = SEC_SGL << SEC_SRC_SGL_OFFSET; 1312 da_type = SEC_SGL << SEC_DST_SGL_OFFSET; 1313 } 1314 1315 sec_sqe->sdm_addr_type |= da_type; 1316 scene = SEC_COMM_SCENE << SEC_SCENE_OFFSET; 1317 if (req->in_dma != c_req->c_out_dma) 1318 de = 0x1 << SEC_DE_OFFSET; 1319 1320 sec_sqe->sds_sa_type = (de | scene | sa_type); 1321 1322 sec_sqe->type2.clen_ivhlen |= cpu_to_le32(c_req->c_len); 1323 sec_sqe->type2.tag = cpu_to_le16((u16)req->req_id); 1324 1325 return 0; 1326 } 1327 1328 static int sec_skcipher_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req) 1329 { 1330 struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3; 1331 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx; 1332 struct sec_cipher_req *c_req = &req->c_req; 1333 u32 bd_param = 0; 1334 u16 cipher; 1335 1336 memset(sec_sqe3, 0, sizeof(struct sec_sqe3)); 1337 1338 sec_sqe3->c_key_addr = cpu_to_le64(c_ctx->c_key_dma); 1339 sec_sqe3->no_scene.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma); 1340 sec_sqe3->data_src_addr = cpu_to_le64(req->in_dma); 1341 sec_sqe3->data_dst_addr = cpu_to_le64(c_req->c_out_dma); 1342 1343 sec_sqe3->c_mode_alg = ((u8)c_ctx->c_alg << SEC_CALG_OFFSET_V3) | 1344 c_ctx->c_mode; 1345 sec_sqe3->c_icv_key |= cpu_to_le16(((u16)c_ctx->c_key_len) << 1346 SEC_CKEY_OFFSET_V3); 1347 1348 if (c_req->encrypt) 1349 cipher = SEC_CIPHER_ENC; 1350 else 1351 cipher = SEC_CIPHER_DEC; 1352 sec_sqe3->c_icv_key |= cpu_to_le16(cipher); 1353 1354 /* Set the CTR counter mode is 128bit rollover */ 1355 sec_sqe3->auth_mac_key = cpu_to_le32((u32)SEC_CTR_CNT_ROLLOVER << 1356 SEC_CTR_CNT_OFFSET); 1357 1358 if (req->use_pbuf) { 1359 bd_param |= SEC_PBUF << SEC_SRC_SGL_OFFSET_V3; 1360 bd_param |= SEC_PBUF << SEC_DST_SGL_OFFSET_V3; 1361 } else { 1362 bd_param |= SEC_SGL << SEC_SRC_SGL_OFFSET_V3; 1363 bd_param |= SEC_SGL << SEC_DST_SGL_OFFSET_V3; 1364 } 1365 1366 bd_param |= SEC_COMM_SCENE << SEC_SCENE_OFFSET_V3; 1367 if (req->in_dma != c_req->c_out_dma) 1368 bd_param |= 0x1 << SEC_DE_OFFSET_V3; 1369 1370 bd_param |= SEC_BD_TYPE3; 1371 sec_sqe3->bd_param = cpu_to_le32(bd_param); 1372 1373 sec_sqe3->c_len_ivin |= cpu_to_le32(c_req->c_len); 1374 sec_sqe3->tag = cpu_to_le64(req); 1375 1376 return 0; 1377 } 1378 1379 /* increment counter (128-bit int) */ 1380 static void ctr_iv_inc(__u8 *counter, __u8 bits, __u32 nums) 1381 { 1382 do { 1383 --bits; 1384 nums += counter[bits]; 1385 counter[bits] = nums & BITS_MASK; 1386 nums >>= BYTE_BITS; 1387 } while (bits && nums); 1388 } 1389 1390 static void sec_update_iv(struct sec_req *req, enum sec_alg_type alg_type) 1391 { 1392 struct aead_request *aead_req = req->aead_req.aead_req; 1393 struct skcipher_request *sk_req = req->c_req.sk_req; 1394 u32 iv_size = req->ctx->c_ctx.ivsize; 1395 struct scatterlist *sgl; 1396 unsigned int cryptlen; 1397 size_t sz; 1398 u8 *iv; 1399 1400 if (req->c_req.encrypt) 1401 sgl = alg_type == SEC_SKCIPHER ? sk_req->dst : aead_req->dst; 1402 else 1403 sgl = alg_type == SEC_SKCIPHER ? sk_req->src : aead_req->src; 1404 1405 if (alg_type == SEC_SKCIPHER) { 1406 iv = sk_req->iv; 1407 cryptlen = sk_req->cryptlen; 1408 } else { 1409 iv = aead_req->iv; 1410 cryptlen = aead_req->cryptlen; 1411 } 1412 1413 if (req->ctx->c_ctx.c_mode == SEC_CMODE_CBC) { 1414 sz = sg_pcopy_to_buffer(sgl, sg_nents(sgl), iv, iv_size, 1415 cryptlen - iv_size); 1416 if (unlikely(sz != iv_size)) 1417 dev_err(req->ctx->dev, "copy output iv error!\n"); 1418 } else { 1419 sz = cryptlen / iv_size; 1420 if (cryptlen % iv_size) 1421 sz += 1; 1422 ctr_iv_inc(iv, iv_size, sz); 1423 } 1424 } 1425 1426 static struct sec_req *sec_back_req_clear(struct sec_ctx *ctx, 1427 struct sec_qp_ctx *qp_ctx) 1428 { 1429 struct sec_req *backlog_req = NULL; 1430 1431 spin_lock_bh(&qp_ctx->req_lock); 1432 if (ctx->fake_req_limit >= 1433 atomic_read(&qp_ctx->qp->qp_status.used) && 1434 !list_empty(&qp_ctx->backlog)) { 1435 backlog_req = list_first_entry(&qp_ctx->backlog, 1436 typeof(*backlog_req), backlog_head); 1437 list_del(&backlog_req->backlog_head); 1438 } 1439 spin_unlock_bh(&qp_ctx->req_lock); 1440 1441 return backlog_req; 1442 } 1443 1444 static void sec_skcipher_callback(struct sec_ctx *ctx, struct sec_req *req, 1445 int err) 1446 { 1447 struct skcipher_request *sk_req = req->c_req.sk_req; 1448 struct sec_qp_ctx *qp_ctx = req->qp_ctx; 1449 struct skcipher_request *backlog_sk_req; 1450 struct sec_req *backlog_req; 1451 1452 sec_free_req_id(req); 1453 1454 /* IV output at encrypto of CBC/CTR mode */ 1455 if (!err && (ctx->c_ctx.c_mode == SEC_CMODE_CBC || 1456 ctx->c_ctx.c_mode == SEC_CMODE_CTR) && req->c_req.encrypt) 1457 sec_update_iv(req, SEC_SKCIPHER); 1458 1459 while (1) { 1460 backlog_req = sec_back_req_clear(ctx, qp_ctx); 1461 if (!backlog_req) 1462 break; 1463 1464 backlog_sk_req = backlog_req->c_req.sk_req; 1465 skcipher_request_complete(backlog_sk_req, -EINPROGRESS); 1466 atomic64_inc(&ctx->sec->debug.dfx.recv_busy_cnt); 1467 } 1468 1469 skcipher_request_complete(sk_req, err); 1470 } 1471 1472 static void set_aead_auth_iv(struct sec_ctx *ctx, struct sec_req *req) 1473 { 1474 struct aead_request *aead_req = req->aead_req.aead_req; 1475 struct sec_cipher_req *c_req = &req->c_req; 1476 struct sec_aead_req *a_req = &req->aead_req; 1477 size_t authsize = ctx->a_ctx.mac_len; 1478 u32 data_size = aead_req->cryptlen; 1479 u8 flage = 0; 1480 u8 cm, cl; 1481 1482 /* the specification has been checked in aead_iv_demension_check() */ 1483 cl = c_req->c_ivin[0] + 1; 1484 c_req->c_ivin[ctx->c_ctx.ivsize - cl] = 0x00; 1485 memset(&c_req->c_ivin[ctx->c_ctx.ivsize - cl], 0, cl); 1486 c_req->c_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE1] = IV_CTR_INIT; 1487 1488 /* the last 3bit is L' */ 1489 flage |= c_req->c_ivin[0] & IV_CL_MASK; 1490 1491 /* the M' is bit3~bit5, the Flags is bit6 */ 1492 cm = (authsize - IV_CM_CAL_NUM) / IV_CM_CAL_NUM; 1493 flage |= cm << IV_CM_OFFSET; 1494 if (aead_req->assoclen) 1495 flage |= 0x01 << IV_FLAGS_OFFSET; 1496 1497 memcpy(a_req->a_ivin, c_req->c_ivin, ctx->c_ctx.ivsize); 1498 a_req->a_ivin[0] = flage; 1499 1500 /* 1501 * the last 32bit is counter's initial number, 1502 * but the nonce uses the first 16bit 1503 * the tail 16bit fill with the cipher length 1504 */ 1505 if (!c_req->encrypt) 1506 data_size = aead_req->cryptlen - authsize; 1507 1508 a_req->a_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE1] = 1509 data_size & IV_LAST_BYTE_MASK; 1510 data_size >>= IV_BYTE_OFFSET; 1511 a_req->a_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE2] = 1512 data_size & IV_LAST_BYTE_MASK; 1513 } 1514 1515 static void sec_aead_set_iv(struct sec_ctx *ctx, struct sec_req *req) 1516 { 1517 struct aead_request *aead_req = req->aead_req.aead_req; 1518 struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req); 1519 size_t authsize = crypto_aead_authsize(tfm); 1520 struct sec_cipher_req *c_req = &req->c_req; 1521 struct sec_aead_req *a_req = &req->aead_req; 1522 1523 memcpy(c_req->c_ivin, aead_req->iv, ctx->c_ctx.ivsize); 1524 1525 if (ctx->c_ctx.c_mode == SEC_CMODE_CCM) { 1526 /* 1527 * CCM 16Byte Cipher_IV: {1B_Flage,13B_IV,2B_counter}, 1528 * the counter must set to 0x01 1529 */ 1530 ctx->a_ctx.mac_len = authsize; 1531 /* CCM 16Byte Auth_IV: {1B_AFlage,13B_IV,2B_Ptext_length} */ 1532 set_aead_auth_iv(ctx, req); 1533 } 1534 1535 /* GCM 12Byte Cipher_IV == Auth_IV */ 1536 if (ctx->c_ctx.c_mode == SEC_CMODE_GCM) { 1537 ctx->a_ctx.mac_len = authsize; 1538 memcpy(a_req->a_ivin, c_req->c_ivin, SEC_AIV_SIZE); 1539 } 1540 } 1541 1542 static void sec_auth_bd_fill_xcm(struct sec_auth_ctx *ctx, int dir, 1543 struct sec_req *req, struct sec_sqe *sec_sqe) 1544 { 1545 struct sec_aead_req *a_req = &req->aead_req; 1546 struct aead_request *aq = a_req->aead_req; 1547 1548 /* C_ICV_Len is MAC size, 0x4 ~ 0x10 */ 1549 sec_sqe->type2.icvw_kmode |= cpu_to_le16((u16)ctx->mac_len); 1550 1551 /* mode set to CCM/GCM, don't set {A_Alg, AKey_Len, MAC_Len} */ 1552 sec_sqe->type2.a_key_addr = sec_sqe->type2.c_key_addr; 1553 sec_sqe->type2.a_ivin_addr = cpu_to_le64(a_req->a_ivin_dma); 1554 sec_sqe->type_cipher_auth |= SEC_NO_AUTH << SEC_AUTH_OFFSET; 1555 1556 if (dir) 1557 sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH; 1558 else 1559 sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER; 1560 1561 sec_sqe->type2.alen_ivllen = cpu_to_le32(aq->assoclen); 1562 sec_sqe->type2.auth_src_offset = cpu_to_le16(0x0); 1563 sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen); 1564 1565 sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma); 1566 } 1567 1568 static void sec_auth_bd_fill_xcm_v3(struct sec_auth_ctx *ctx, int dir, 1569 struct sec_req *req, struct sec_sqe3 *sqe3) 1570 { 1571 struct sec_aead_req *a_req = &req->aead_req; 1572 struct aead_request *aq = a_req->aead_req; 1573 1574 /* C_ICV_Len is MAC size, 0x4 ~ 0x10 */ 1575 sqe3->c_icv_key |= cpu_to_le16((u16)ctx->mac_len << SEC_MAC_OFFSET_V3); 1576 1577 /* mode set to CCM/GCM, don't set {A_Alg, AKey_Len, MAC_Len} */ 1578 sqe3->a_key_addr = sqe3->c_key_addr; 1579 sqe3->auth_ivin.a_ivin_addr = cpu_to_le64(a_req->a_ivin_dma); 1580 sqe3->auth_mac_key |= SEC_NO_AUTH; 1581 1582 if (dir) 1583 sqe3->huk_iv_seq &= SEC_CIPHER_AUTH_V3; 1584 else 1585 sqe3->huk_iv_seq |= SEC_AUTH_CIPHER_V3; 1586 1587 sqe3->a_len_key = cpu_to_le32(aq->assoclen); 1588 sqe3->auth_src_offset = cpu_to_le16(0x0); 1589 sqe3->cipher_src_offset = cpu_to_le16((u16)aq->assoclen); 1590 sqe3->mac_addr = cpu_to_le64(a_req->out_mac_dma); 1591 } 1592 1593 static void sec_auth_bd_fill_ex(struct sec_auth_ctx *ctx, int dir, 1594 struct sec_req *req, struct sec_sqe *sec_sqe) 1595 { 1596 struct sec_aead_req *a_req = &req->aead_req; 1597 struct sec_cipher_req *c_req = &req->c_req; 1598 struct aead_request *aq = a_req->aead_req; 1599 1600 sec_sqe->type2.a_key_addr = cpu_to_le64(ctx->a_key_dma); 1601 1602 sec_sqe->type2.mac_key_alg = 1603 cpu_to_le32(ctx->mac_len / SEC_SQE_LEN_RATE); 1604 1605 sec_sqe->type2.mac_key_alg |= 1606 cpu_to_le32((u32)((ctx->a_key_len) / 1607 SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET); 1608 1609 sec_sqe->type2.mac_key_alg |= 1610 cpu_to_le32((u32)(ctx->a_alg) << SEC_AEAD_ALG_OFFSET); 1611 1612 if (dir) { 1613 sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE1 << SEC_AUTH_OFFSET; 1614 sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH; 1615 } else { 1616 sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE2 << SEC_AUTH_OFFSET; 1617 sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER; 1618 } 1619 sec_sqe->type2.alen_ivllen = cpu_to_le32(c_req->c_len + aq->assoclen); 1620 1621 sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen); 1622 1623 sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma); 1624 } 1625 1626 static int sec_aead_bd_fill(struct sec_ctx *ctx, struct sec_req *req) 1627 { 1628 struct sec_auth_ctx *auth_ctx = &ctx->a_ctx; 1629 struct sec_sqe *sec_sqe = &req->sec_sqe; 1630 int ret; 1631 1632 ret = sec_skcipher_bd_fill(ctx, req); 1633 if (unlikely(ret)) { 1634 dev_err(ctx->dev, "skcipher bd fill is error!\n"); 1635 return ret; 1636 } 1637 1638 if (ctx->c_ctx.c_mode == SEC_CMODE_CCM || 1639 ctx->c_ctx.c_mode == SEC_CMODE_GCM) 1640 sec_auth_bd_fill_xcm(auth_ctx, req->c_req.encrypt, req, sec_sqe); 1641 else 1642 sec_auth_bd_fill_ex(auth_ctx, req->c_req.encrypt, req, sec_sqe); 1643 1644 return 0; 1645 } 1646 1647 static void sec_auth_bd_fill_ex_v3(struct sec_auth_ctx *ctx, int dir, 1648 struct sec_req *req, struct sec_sqe3 *sqe3) 1649 { 1650 struct sec_aead_req *a_req = &req->aead_req; 1651 struct sec_cipher_req *c_req = &req->c_req; 1652 struct aead_request *aq = a_req->aead_req; 1653 1654 sqe3->a_key_addr = cpu_to_le64(ctx->a_key_dma); 1655 1656 sqe3->auth_mac_key |= 1657 cpu_to_le32((u32)(ctx->mac_len / 1658 SEC_SQE_LEN_RATE) << SEC_MAC_OFFSET_V3); 1659 1660 sqe3->auth_mac_key |= 1661 cpu_to_le32((u32)(ctx->a_key_len / 1662 SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET_V3); 1663 1664 sqe3->auth_mac_key |= 1665 cpu_to_le32((u32)(ctx->a_alg) << SEC_AUTH_ALG_OFFSET_V3); 1666 1667 if (dir) { 1668 sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE1); 1669 sqe3->huk_iv_seq &= SEC_CIPHER_AUTH_V3; 1670 } else { 1671 sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE2); 1672 sqe3->huk_iv_seq |= SEC_AUTH_CIPHER_V3; 1673 } 1674 sqe3->a_len_key = cpu_to_le32(c_req->c_len + aq->assoclen); 1675 1676 sqe3->cipher_src_offset = cpu_to_le16((u16)aq->assoclen); 1677 1678 sqe3->mac_addr = cpu_to_le64(a_req->out_mac_dma); 1679 } 1680 1681 static int sec_aead_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req) 1682 { 1683 struct sec_auth_ctx *auth_ctx = &ctx->a_ctx; 1684 struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3; 1685 int ret; 1686 1687 ret = sec_skcipher_bd_fill_v3(ctx, req); 1688 if (unlikely(ret)) { 1689 dev_err(ctx->dev, "skcipher bd3 fill is error!\n"); 1690 return ret; 1691 } 1692 1693 if (ctx->c_ctx.c_mode == SEC_CMODE_CCM || 1694 ctx->c_ctx.c_mode == SEC_CMODE_GCM) 1695 sec_auth_bd_fill_xcm_v3(auth_ctx, req->c_req.encrypt, 1696 req, sec_sqe3); 1697 else 1698 sec_auth_bd_fill_ex_v3(auth_ctx, req->c_req.encrypt, 1699 req, sec_sqe3); 1700 1701 return 0; 1702 } 1703 1704 static void sec_aead_callback(struct sec_ctx *c, struct sec_req *req, int err) 1705 { 1706 struct aead_request *a_req = req->aead_req.aead_req; 1707 struct crypto_aead *tfm = crypto_aead_reqtfm(a_req); 1708 struct sec_aead_req *aead_req = &req->aead_req; 1709 struct sec_cipher_req *c_req = &req->c_req; 1710 size_t authsize = crypto_aead_authsize(tfm); 1711 struct sec_qp_ctx *qp_ctx = req->qp_ctx; 1712 struct aead_request *backlog_aead_req; 1713 struct sec_req *backlog_req; 1714 size_t sz; 1715 1716 if (!err && c->c_ctx.c_mode == SEC_CMODE_CBC && c_req->encrypt) 1717 sec_update_iv(req, SEC_AEAD); 1718 1719 /* Copy output mac */ 1720 if (!err && c_req->encrypt) { 1721 struct scatterlist *sgl = a_req->dst; 1722 1723 sz = sg_pcopy_from_buffer(sgl, sg_nents(sgl), 1724 aead_req->out_mac, 1725 authsize, a_req->cryptlen + 1726 a_req->assoclen); 1727 if (unlikely(sz != authsize)) { 1728 dev_err(c->dev, "copy out mac err!\n"); 1729 err = -EINVAL; 1730 } 1731 } 1732 1733 sec_free_req_id(req); 1734 1735 while (1) { 1736 backlog_req = sec_back_req_clear(c, qp_ctx); 1737 if (!backlog_req) 1738 break; 1739 1740 backlog_aead_req = backlog_req->aead_req.aead_req; 1741 aead_request_complete(backlog_aead_req, -EINPROGRESS); 1742 atomic64_inc(&c->sec->debug.dfx.recv_busy_cnt); 1743 } 1744 1745 aead_request_complete(a_req, err); 1746 } 1747 1748 static void sec_request_uninit(struct sec_ctx *ctx, struct sec_req *req) 1749 { 1750 sec_free_req_id(req); 1751 sec_free_queue_id(ctx, req); 1752 } 1753 1754 static int sec_request_init(struct sec_ctx *ctx, struct sec_req *req) 1755 { 1756 struct sec_qp_ctx *qp_ctx; 1757 int queue_id; 1758 1759 /* To load balance */ 1760 queue_id = sec_alloc_queue_id(ctx, req); 1761 qp_ctx = &ctx->qp_ctx[queue_id]; 1762 1763 req->req_id = sec_alloc_req_id(req, qp_ctx); 1764 if (unlikely(req->req_id < 0)) { 1765 sec_free_queue_id(ctx, req); 1766 return req->req_id; 1767 } 1768 1769 return 0; 1770 } 1771 1772 static int sec_process(struct sec_ctx *ctx, struct sec_req *req) 1773 { 1774 struct sec_cipher_req *c_req = &req->c_req; 1775 int ret; 1776 1777 ret = sec_request_init(ctx, req); 1778 if (unlikely(ret)) 1779 return ret; 1780 1781 ret = sec_request_transfer(ctx, req); 1782 if (unlikely(ret)) 1783 goto err_uninit_req; 1784 1785 /* Output IV as decrypto */ 1786 if (!req->c_req.encrypt && (ctx->c_ctx.c_mode == SEC_CMODE_CBC || 1787 ctx->c_ctx.c_mode == SEC_CMODE_CTR)) 1788 sec_update_iv(req, ctx->alg_type); 1789 1790 ret = ctx->req_op->bd_send(ctx, req); 1791 if (unlikely((ret != -EBUSY && ret != -EINPROGRESS) || 1792 (ret == -EBUSY && !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG)))) { 1793 dev_err_ratelimited(ctx->dev, "send sec request failed!\n"); 1794 goto err_send_req; 1795 } 1796 1797 return ret; 1798 1799 err_send_req: 1800 /* As failing, restore the IV from user */ 1801 if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt) { 1802 if (ctx->alg_type == SEC_SKCIPHER) 1803 memcpy(req->c_req.sk_req->iv, c_req->c_ivin, 1804 ctx->c_ctx.ivsize); 1805 else 1806 memcpy(req->aead_req.aead_req->iv, c_req->c_ivin, 1807 ctx->c_ctx.ivsize); 1808 } 1809 1810 sec_request_untransfer(ctx, req); 1811 err_uninit_req: 1812 sec_request_uninit(ctx, req); 1813 return ret; 1814 } 1815 1816 static const struct sec_req_op sec_skcipher_req_ops = { 1817 .buf_map = sec_skcipher_sgl_map, 1818 .buf_unmap = sec_skcipher_sgl_unmap, 1819 .do_transfer = sec_skcipher_copy_iv, 1820 .bd_fill = sec_skcipher_bd_fill, 1821 .bd_send = sec_bd_send, 1822 .callback = sec_skcipher_callback, 1823 .process = sec_process, 1824 }; 1825 1826 static const struct sec_req_op sec_aead_req_ops = { 1827 .buf_map = sec_aead_sgl_map, 1828 .buf_unmap = sec_aead_sgl_unmap, 1829 .do_transfer = sec_aead_set_iv, 1830 .bd_fill = sec_aead_bd_fill, 1831 .bd_send = sec_bd_send, 1832 .callback = sec_aead_callback, 1833 .process = sec_process, 1834 }; 1835 1836 static const struct sec_req_op sec_skcipher_req_ops_v3 = { 1837 .buf_map = sec_skcipher_sgl_map, 1838 .buf_unmap = sec_skcipher_sgl_unmap, 1839 .do_transfer = sec_skcipher_copy_iv, 1840 .bd_fill = sec_skcipher_bd_fill_v3, 1841 .bd_send = sec_bd_send, 1842 .callback = sec_skcipher_callback, 1843 .process = sec_process, 1844 }; 1845 1846 static const struct sec_req_op sec_aead_req_ops_v3 = { 1847 .buf_map = sec_aead_sgl_map, 1848 .buf_unmap = sec_aead_sgl_unmap, 1849 .do_transfer = sec_aead_set_iv, 1850 .bd_fill = sec_aead_bd_fill_v3, 1851 .bd_send = sec_bd_send, 1852 .callback = sec_aead_callback, 1853 .process = sec_process, 1854 }; 1855 1856 static int sec_skcipher_ctx_init(struct crypto_skcipher *tfm) 1857 { 1858 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm); 1859 int ret; 1860 1861 ret = sec_skcipher_init(tfm); 1862 if (ret) 1863 return ret; 1864 1865 if (ctx->sec->qm.ver < QM_HW_V3) { 1866 ctx->type_supported = SEC_BD_TYPE2; 1867 ctx->req_op = &sec_skcipher_req_ops; 1868 } else { 1869 ctx->type_supported = SEC_BD_TYPE3; 1870 ctx->req_op = &sec_skcipher_req_ops_v3; 1871 } 1872 1873 return ret; 1874 } 1875 1876 static void sec_skcipher_ctx_exit(struct crypto_skcipher *tfm) 1877 { 1878 sec_skcipher_uninit(tfm); 1879 } 1880 1881 static int sec_aead_init(struct crypto_aead *tfm) 1882 { 1883 struct sec_ctx *ctx = crypto_aead_ctx(tfm); 1884 int ret; 1885 1886 crypto_aead_set_reqsize(tfm, sizeof(struct sec_req)); 1887 ctx->alg_type = SEC_AEAD; 1888 ctx->c_ctx.ivsize = crypto_aead_ivsize(tfm); 1889 if (ctx->c_ctx.ivsize < SEC_AIV_SIZE || 1890 ctx->c_ctx.ivsize > SEC_IV_SIZE) { 1891 pr_err("get error aead iv size!\n"); 1892 return -EINVAL; 1893 } 1894 1895 ret = sec_ctx_base_init(ctx); 1896 if (ret) 1897 return ret; 1898 if (ctx->sec->qm.ver < QM_HW_V3) { 1899 ctx->type_supported = SEC_BD_TYPE2; 1900 ctx->req_op = &sec_aead_req_ops; 1901 } else { 1902 ctx->type_supported = SEC_BD_TYPE3; 1903 ctx->req_op = &sec_aead_req_ops_v3; 1904 } 1905 1906 ret = sec_auth_init(ctx); 1907 if (ret) 1908 goto err_auth_init; 1909 1910 ret = sec_cipher_init(ctx); 1911 if (ret) 1912 goto err_cipher_init; 1913 1914 return ret; 1915 1916 err_cipher_init: 1917 sec_auth_uninit(ctx); 1918 err_auth_init: 1919 sec_ctx_base_uninit(ctx); 1920 return ret; 1921 } 1922 1923 static void sec_aead_exit(struct crypto_aead *tfm) 1924 { 1925 struct sec_ctx *ctx = crypto_aead_ctx(tfm); 1926 1927 sec_cipher_uninit(ctx); 1928 sec_auth_uninit(ctx); 1929 sec_ctx_base_uninit(ctx); 1930 } 1931 1932 static int sec_aead_ctx_init(struct crypto_aead *tfm, const char *hash_name) 1933 { 1934 struct sec_ctx *ctx = crypto_aead_ctx(tfm); 1935 struct sec_auth_ctx *auth_ctx = &ctx->a_ctx; 1936 int ret; 1937 1938 ret = sec_aead_init(tfm); 1939 if (ret) { 1940 pr_err("hisi_sec2: aead init error!\n"); 1941 return ret; 1942 } 1943 1944 auth_ctx->hash_tfm = crypto_alloc_shash(hash_name, 0, 0); 1945 if (IS_ERR(auth_ctx->hash_tfm)) { 1946 dev_err(ctx->dev, "aead alloc shash error!\n"); 1947 sec_aead_exit(tfm); 1948 return PTR_ERR(auth_ctx->hash_tfm); 1949 } 1950 1951 return 0; 1952 } 1953 1954 static void sec_aead_ctx_exit(struct crypto_aead *tfm) 1955 { 1956 struct sec_ctx *ctx = crypto_aead_ctx(tfm); 1957 1958 crypto_free_shash(ctx->a_ctx.hash_tfm); 1959 sec_aead_exit(tfm); 1960 } 1961 1962 static int sec_aead_xcm_ctx_init(struct crypto_aead *tfm) 1963 { 1964 struct aead_alg *alg = crypto_aead_alg(tfm); 1965 struct sec_ctx *ctx = crypto_aead_ctx(tfm); 1966 struct sec_auth_ctx *a_ctx = &ctx->a_ctx; 1967 const char *aead_name = alg->base.cra_name; 1968 int ret; 1969 1970 ret = sec_aead_init(tfm); 1971 if (ret) { 1972 dev_err(ctx->dev, "hisi_sec2: aead xcm init error!\n"); 1973 return ret; 1974 } 1975 1976 a_ctx->fallback_aead_tfm = crypto_alloc_aead(aead_name, 0, 1977 CRYPTO_ALG_NEED_FALLBACK | 1978 CRYPTO_ALG_ASYNC); 1979 if (IS_ERR(a_ctx->fallback_aead_tfm)) { 1980 dev_err(ctx->dev, "aead driver alloc fallback tfm error!\n"); 1981 sec_aead_exit(tfm); 1982 return PTR_ERR(a_ctx->fallback_aead_tfm); 1983 } 1984 a_ctx->fallback = false; 1985 1986 return 0; 1987 } 1988 1989 static void sec_aead_xcm_ctx_exit(struct crypto_aead *tfm) 1990 { 1991 struct sec_ctx *ctx = crypto_aead_ctx(tfm); 1992 1993 crypto_free_aead(ctx->a_ctx.fallback_aead_tfm); 1994 sec_aead_exit(tfm); 1995 } 1996 1997 static int sec_aead_sha1_ctx_init(struct crypto_aead *tfm) 1998 { 1999 return sec_aead_ctx_init(tfm, "sha1"); 2000 } 2001 2002 static int sec_aead_sha256_ctx_init(struct crypto_aead *tfm) 2003 { 2004 return sec_aead_ctx_init(tfm, "sha256"); 2005 } 2006 2007 static int sec_aead_sha512_ctx_init(struct crypto_aead *tfm) 2008 { 2009 return sec_aead_ctx_init(tfm, "sha512"); 2010 } 2011 2012 static int sec_skcipher_cryptlen_check(struct sec_ctx *ctx, 2013 struct sec_req *sreq) 2014 { 2015 u32 cryptlen = sreq->c_req.sk_req->cryptlen; 2016 struct device *dev = ctx->dev; 2017 u8 c_mode = ctx->c_ctx.c_mode; 2018 int ret = 0; 2019 2020 switch (c_mode) { 2021 case SEC_CMODE_XTS: 2022 if (unlikely(cryptlen < AES_BLOCK_SIZE)) { 2023 dev_err(dev, "skcipher XTS mode input length error!\n"); 2024 ret = -EINVAL; 2025 } 2026 break; 2027 case SEC_CMODE_ECB: 2028 case SEC_CMODE_CBC: 2029 if (unlikely(cryptlen & (AES_BLOCK_SIZE - 1))) { 2030 dev_err(dev, "skcipher AES input length error!\n"); 2031 ret = -EINVAL; 2032 } 2033 break; 2034 case SEC_CMODE_CTR: 2035 if (unlikely(ctx->sec->qm.ver < QM_HW_V3)) { 2036 dev_err(dev, "skcipher HW version error!\n"); 2037 ret = -EINVAL; 2038 } 2039 break; 2040 default: 2041 ret = -EINVAL; 2042 } 2043 2044 return ret; 2045 } 2046 2047 static int sec_skcipher_param_check(struct sec_ctx *ctx, struct sec_req *sreq) 2048 { 2049 struct skcipher_request *sk_req = sreq->c_req.sk_req; 2050 struct device *dev = ctx->dev; 2051 u8 c_alg = ctx->c_ctx.c_alg; 2052 2053 if (unlikely(!sk_req->src || !sk_req->dst || 2054 sk_req->cryptlen > MAX_INPUT_DATA_LEN)) { 2055 dev_err(dev, "skcipher input param error!\n"); 2056 return -EINVAL; 2057 } 2058 sreq->c_req.c_len = sk_req->cryptlen; 2059 2060 if (ctx->pbuf_supported && sk_req->cryptlen <= SEC_PBUF_SZ) 2061 sreq->use_pbuf = true; 2062 else 2063 sreq->use_pbuf = false; 2064 2065 if (c_alg == SEC_CALG_3DES) { 2066 if (unlikely(sk_req->cryptlen & (DES3_EDE_BLOCK_SIZE - 1))) { 2067 dev_err(dev, "skcipher 3des input length error!\n"); 2068 return -EINVAL; 2069 } 2070 return 0; 2071 } else if (c_alg == SEC_CALG_AES || c_alg == SEC_CALG_SM4) { 2072 return sec_skcipher_cryptlen_check(ctx, sreq); 2073 } 2074 2075 dev_err(dev, "skcipher algorithm error!\n"); 2076 2077 return -EINVAL; 2078 } 2079 2080 static int sec_skcipher_soft_crypto(struct sec_ctx *ctx, 2081 struct skcipher_request *sreq, bool encrypt) 2082 { 2083 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx; 2084 SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, c_ctx->fbtfm); 2085 struct device *dev = ctx->dev; 2086 int ret; 2087 2088 if (!c_ctx->fbtfm) { 2089 dev_err_ratelimited(dev, "the soft tfm isn't supported in the current system.\n"); 2090 return -EINVAL; 2091 } 2092 2093 skcipher_request_set_sync_tfm(subreq, c_ctx->fbtfm); 2094 2095 /* software need sync mode to do crypto */ 2096 skcipher_request_set_callback(subreq, sreq->base.flags, 2097 NULL, NULL); 2098 skcipher_request_set_crypt(subreq, sreq->src, sreq->dst, 2099 sreq->cryptlen, sreq->iv); 2100 if (encrypt) 2101 ret = crypto_skcipher_encrypt(subreq); 2102 else 2103 ret = crypto_skcipher_decrypt(subreq); 2104 2105 skcipher_request_zero(subreq); 2106 2107 return ret; 2108 } 2109 2110 static int sec_skcipher_crypto(struct skcipher_request *sk_req, bool encrypt) 2111 { 2112 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(sk_req); 2113 struct sec_req *req = skcipher_request_ctx(sk_req); 2114 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm); 2115 int ret; 2116 2117 if (!sk_req->cryptlen) { 2118 if (ctx->c_ctx.c_mode == SEC_CMODE_XTS) 2119 return -EINVAL; 2120 return 0; 2121 } 2122 2123 req->flag = sk_req->base.flags; 2124 req->c_req.sk_req = sk_req; 2125 req->c_req.encrypt = encrypt; 2126 req->ctx = ctx; 2127 2128 ret = sec_skcipher_param_check(ctx, req); 2129 if (unlikely(ret)) 2130 return -EINVAL; 2131 2132 if (unlikely(ctx->c_ctx.fallback)) 2133 return sec_skcipher_soft_crypto(ctx, sk_req, encrypt); 2134 2135 return ctx->req_op->process(ctx, req); 2136 } 2137 2138 static int sec_skcipher_encrypt(struct skcipher_request *sk_req) 2139 { 2140 return sec_skcipher_crypto(sk_req, true); 2141 } 2142 2143 static int sec_skcipher_decrypt(struct skcipher_request *sk_req) 2144 { 2145 return sec_skcipher_crypto(sk_req, false); 2146 } 2147 2148 #define SEC_SKCIPHER_GEN_ALG(sec_cra_name, sec_set_key, sec_min_key_size, \ 2149 sec_max_key_size, ctx_init, ctx_exit, blk_size, iv_size)\ 2150 {\ 2151 .base = {\ 2152 .cra_name = sec_cra_name,\ 2153 .cra_driver_name = "hisi_sec_"sec_cra_name,\ 2154 .cra_priority = SEC_PRIORITY,\ 2155 .cra_flags = CRYPTO_ALG_ASYNC |\ 2156 CRYPTO_ALG_NEED_FALLBACK,\ 2157 .cra_blocksize = blk_size,\ 2158 .cra_ctxsize = sizeof(struct sec_ctx),\ 2159 .cra_module = THIS_MODULE,\ 2160 },\ 2161 .init = ctx_init,\ 2162 .exit = ctx_exit,\ 2163 .setkey = sec_set_key,\ 2164 .decrypt = sec_skcipher_decrypt,\ 2165 .encrypt = sec_skcipher_encrypt,\ 2166 .min_keysize = sec_min_key_size,\ 2167 .max_keysize = sec_max_key_size,\ 2168 .ivsize = iv_size,\ 2169 } 2170 2171 #define SEC_SKCIPHER_ALG(name, key_func, min_key_size, \ 2172 max_key_size, blk_size, iv_size) \ 2173 SEC_SKCIPHER_GEN_ALG(name, key_func, min_key_size, max_key_size, \ 2174 sec_skcipher_ctx_init, sec_skcipher_ctx_exit, blk_size, iv_size) 2175 2176 static struct sec_skcipher sec_skciphers[] = { 2177 { 2178 .alg_msk = BIT(0), 2179 .alg = SEC_SKCIPHER_ALG("ecb(aes)", sec_setkey_aes_ecb, AES_MIN_KEY_SIZE, 2180 AES_MAX_KEY_SIZE, AES_BLOCK_SIZE, 0), 2181 }, 2182 { 2183 .alg_msk = BIT(1), 2184 .alg = SEC_SKCIPHER_ALG("cbc(aes)", sec_setkey_aes_cbc, AES_MIN_KEY_SIZE, 2185 AES_MAX_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE), 2186 }, 2187 { 2188 .alg_msk = BIT(2), 2189 .alg = SEC_SKCIPHER_ALG("ctr(aes)", sec_setkey_aes_ctr, AES_MIN_KEY_SIZE, 2190 AES_MAX_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE), 2191 }, 2192 { 2193 .alg_msk = BIT(3), 2194 .alg = SEC_SKCIPHER_ALG("xts(aes)", sec_setkey_aes_xts, SEC_XTS_MIN_KEY_SIZE, 2195 SEC_XTS_MAX_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE), 2196 }, 2197 { 2198 .alg_msk = BIT(12), 2199 .alg = SEC_SKCIPHER_ALG("cbc(sm4)", sec_setkey_sm4_cbc, AES_MIN_KEY_SIZE, 2200 AES_MIN_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE), 2201 }, 2202 { 2203 .alg_msk = BIT(13), 2204 .alg = SEC_SKCIPHER_ALG("ctr(sm4)", sec_setkey_sm4_ctr, AES_MIN_KEY_SIZE, 2205 AES_MIN_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE), 2206 }, 2207 { 2208 .alg_msk = BIT(14), 2209 .alg = SEC_SKCIPHER_ALG("xts(sm4)", sec_setkey_sm4_xts, SEC_XTS_MIN_KEY_SIZE, 2210 SEC_XTS_MIN_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE), 2211 }, 2212 { 2213 .alg_msk = BIT(23), 2214 .alg = SEC_SKCIPHER_ALG("ecb(des3_ede)", sec_setkey_3des_ecb, SEC_DES3_3KEY_SIZE, 2215 SEC_DES3_3KEY_SIZE, DES3_EDE_BLOCK_SIZE, 0), 2216 }, 2217 { 2218 .alg_msk = BIT(24), 2219 .alg = SEC_SKCIPHER_ALG("cbc(des3_ede)", sec_setkey_3des_cbc, SEC_DES3_3KEY_SIZE, 2220 SEC_DES3_3KEY_SIZE, DES3_EDE_BLOCK_SIZE, 2221 DES3_EDE_BLOCK_SIZE), 2222 }, 2223 }; 2224 2225 static int aead_iv_demension_check(struct aead_request *aead_req) 2226 { 2227 u8 cl; 2228 2229 cl = aead_req->iv[0] + 1; 2230 if (cl < IV_CL_MIN || cl > IV_CL_MAX) 2231 return -EINVAL; 2232 2233 if (cl < IV_CL_MID && aead_req->cryptlen >> (BYTE_BITS * cl)) 2234 return -EOVERFLOW; 2235 2236 return 0; 2237 } 2238 2239 static int sec_aead_spec_check(struct sec_ctx *ctx, struct sec_req *sreq) 2240 { 2241 struct aead_request *req = sreq->aead_req.aead_req; 2242 struct crypto_aead *tfm = crypto_aead_reqtfm(req); 2243 size_t authsize = crypto_aead_authsize(tfm); 2244 u8 c_mode = ctx->c_ctx.c_mode; 2245 struct device *dev = ctx->dev; 2246 int ret; 2247 2248 if (unlikely(req->cryptlen + req->assoclen > MAX_INPUT_DATA_LEN || 2249 req->assoclen > SEC_MAX_AAD_LEN)) { 2250 dev_err(dev, "aead input spec error!\n"); 2251 return -EINVAL; 2252 } 2253 2254 if (unlikely((c_mode == SEC_CMODE_GCM && authsize < DES_BLOCK_SIZE) || 2255 (c_mode == SEC_CMODE_CCM && (authsize < MIN_MAC_LEN || 2256 authsize & MAC_LEN_MASK)))) { 2257 dev_err(dev, "aead input mac length error!\n"); 2258 return -EINVAL; 2259 } 2260 2261 if (c_mode == SEC_CMODE_CCM) { 2262 if (unlikely(req->assoclen > SEC_MAX_CCM_AAD_LEN)) { 2263 dev_err_ratelimited(dev, "CCM input aad parameter is too long!\n"); 2264 return -EINVAL; 2265 } 2266 ret = aead_iv_demension_check(req); 2267 if (ret) { 2268 dev_err(dev, "aead input iv param error!\n"); 2269 return ret; 2270 } 2271 } 2272 2273 if (sreq->c_req.encrypt) 2274 sreq->c_req.c_len = req->cryptlen; 2275 else 2276 sreq->c_req.c_len = req->cryptlen - authsize; 2277 if (c_mode == SEC_CMODE_CBC) { 2278 if (unlikely(sreq->c_req.c_len & (AES_BLOCK_SIZE - 1))) { 2279 dev_err(dev, "aead crypto length error!\n"); 2280 return -EINVAL; 2281 } 2282 } 2283 2284 return 0; 2285 } 2286 2287 static int sec_aead_param_check(struct sec_ctx *ctx, struct sec_req *sreq) 2288 { 2289 struct aead_request *req = sreq->aead_req.aead_req; 2290 struct crypto_aead *tfm = crypto_aead_reqtfm(req); 2291 size_t authsize = crypto_aead_authsize(tfm); 2292 struct device *dev = ctx->dev; 2293 u8 c_alg = ctx->c_ctx.c_alg; 2294 2295 if (unlikely(!req->src || !req->dst)) { 2296 dev_err(dev, "aead input param error!\n"); 2297 return -EINVAL; 2298 } 2299 2300 if (ctx->sec->qm.ver == QM_HW_V2) { 2301 if (unlikely(!req->cryptlen || (!sreq->c_req.encrypt && 2302 req->cryptlen <= authsize))) { 2303 ctx->a_ctx.fallback = true; 2304 return -EINVAL; 2305 } 2306 } 2307 2308 /* Support AES or SM4 */ 2309 if (unlikely(c_alg != SEC_CALG_AES && c_alg != SEC_CALG_SM4)) { 2310 dev_err(dev, "aead crypto alg error!\n"); 2311 return -EINVAL; 2312 } 2313 2314 if (unlikely(sec_aead_spec_check(ctx, sreq))) 2315 return -EINVAL; 2316 2317 if (ctx->pbuf_supported && (req->cryptlen + req->assoclen) <= 2318 SEC_PBUF_SZ) 2319 sreq->use_pbuf = true; 2320 else 2321 sreq->use_pbuf = false; 2322 2323 return 0; 2324 } 2325 2326 static int sec_aead_soft_crypto(struct sec_ctx *ctx, 2327 struct aead_request *aead_req, 2328 bool encrypt) 2329 { 2330 struct sec_auth_ctx *a_ctx = &ctx->a_ctx; 2331 struct device *dev = ctx->dev; 2332 struct aead_request *subreq; 2333 int ret; 2334 2335 /* Kunpeng920 aead mode not support input 0 size */ 2336 if (!a_ctx->fallback_aead_tfm) { 2337 dev_err(dev, "aead fallback tfm is NULL!\n"); 2338 return -EINVAL; 2339 } 2340 2341 subreq = aead_request_alloc(a_ctx->fallback_aead_tfm, GFP_KERNEL); 2342 if (!subreq) 2343 return -ENOMEM; 2344 2345 aead_request_set_tfm(subreq, a_ctx->fallback_aead_tfm); 2346 aead_request_set_callback(subreq, aead_req->base.flags, 2347 aead_req->base.complete, aead_req->base.data); 2348 aead_request_set_crypt(subreq, aead_req->src, aead_req->dst, 2349 aead_req->cryptlen, aead_req->iv); 2350 aead_request_set_ad(subreq, aead_req->assoclen); 2351 2352 if (encrypt) 2353 ret = crypto_aead_encrypt(subreq); 2354 else 2355 ret = crypto_aead_decrypt(subreq); 2356 aead_request_free(subreq); 2357 2358 return ret; 2359 } 2360 2361 static int sec_aead_crypto(struct aead_request *a_req, bool encrypt) 2362 { 2363 struct crypto_aead *tfm = crypto_aead_reqtfm(a_req); 2364 struct sec_req *req = aead_request_ctx(a_req); 2365 struct sec_ctx *ctx = crypto_aead_ctx(tfm); 2366 int ret; 2367 2368 req->flag = a_req->base.flags; 2369 req->aead_req.aead_req = a_req; 2370 req->c_req.encrypt = encrypt; 2371 req->ctx = ctx; 2372 2373 ret = sec_aead_param_check(ctx, req); 2374 if (unlikely(ret)) { 2375 if (ctx->a_ctx.fallback) 2376 return sec_aead_soft_crypto(ctx, a_req, encrypt); 2377 return -EINVAL; 2378 } 2379 2380 return ctx->req_op->process(ctx, req); 2381 } 2382 2383 static int sec_aead_encrypt(struct aead_request *a_req) 2384 { 2385 return sec_aead_crypto(a_req, true); 2386 } 2387 2388 static int sec_aead_decrypt(struct aead_request *a_req) 2389 { 2390 return sec_aead_crypto(a_req, false); 2391 } 2392 2393 #define SEC_AEAD_ALG(sec_cra_name, sec_set_key, ctx_init,\ 2394 ctx_exit, blk_size, iv_size, max_authsize)\ 2395 {\ 2396 .base = {\ 2397 .cra_name = sec_cra_name,\ 2398 .cra_driver_name = "hisi_sec_"sec_cra_name,\ 2399 .cra_priority = SEC_PRIORITY,\ 2400 .cra_flags = CRYPTO_ALG_ASYNC |\ 2401 CRYPTO_ALG_NEED_FALLBACK,\ 2402 .cra_blocksize = blk_size,\ 2403 .cra_ctxsize = sizeof(struct sec_ctx),\ 2404 .cra_module = THIS_MODULE,\ 2405 },\ 2406 .init = ctx_init,\ 2407 .exit = ctx_exit,\ 2408 .setkey = sec_set_key,\ 2409 .setauthsize = sec_aead_setauthsize,\ 2410 .decrypt = sec_aead_decrypt,\ 2411 .encrypt = sec_aead_encrypt,\ 2412 .ivsize = iv_size,\ 2413 .maxauthsize = max_authsize,\ 2414 } 2415 2416 static struct sec_aead sec_aeads[] = { 2417 { 2418 .alg_msk = BIT(6), 2419 .alg = SEC_AEAD_ALG("ccm(aes)", sec_setkey_aes_ccm, sec_aead_xcm_ctx_init, 2420 sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE, 2421 AES_BLOCK_SIZE), 2422 }, 2423 { 2424 .alg_msk = BIT(7), 2425 .alg = SEC_AEAD_ALG("gcm(aes)", sec_setkey_aes_gcm, sec_aead_xcm_ctx_init, 2426 sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, SEC_AIV_SIZE, 2427 AES_BLOCK_SIZE), 2428 }, 2429 { 2430 .alg_msk = BIT(17), 2431 .alg = SEC_AEAD_ALG("ccm(sm4)", sec_setkey_sm4_ccm, sec_aead_xcm_ctx_init, 2432 sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE, 2433 AES_BLOCK_SIZE), 2434 }, 2435 { 2436 .alg_msk = BIT(18), 2437 .alg = SEC_AEAD_ALG("gcm(sm4)", sec_setkey_sm4_gcm, sec_aead_xcm_ctx_init, 2438 sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, SEC_AIV_SIZE, 2439 AES_BLOCK_SIZE), 2440 }, 2441 { 2442 .alg_msk = BIT(43), 2443 .alg = SEC_AEAD_ALG("authenc(hmac(sha1),cbc(aes))", sec_setkey_aes_cbc_sha1, 2444 sec_aead_sha1_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE, 2445 AES_BLOCK_SIZE, SHA1_DIGEST_SIZE), 2446 }, 2447 { 2448 .alg_msk = BIT(44), 2449 .alg = SEC_AEAD_ALG("authenc(hmac(sha256),cbc(aes))", sec_setkey_aes_cbc_sha256, 2450 sec_aead_sha256_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE, 2451 AES_BLOCK_SIZE, SHA256_DIGEST_SIZE), 2452 }, 2453 { 2454 .alg_msk = BIT(45), 2455 .alg = SEC_AEAD_ALG("authenc(hmac(sha512),cbc(aes))", sec_setkey_aes_cbc_sha512, 2456 sec_aead_sha512_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE, 2457 AES_BLOCK_SIZE, SHA512_DIGEST_SIZE), 2458 }, 2459 }; 2460 2461 static void sec_unregister_skcipher(u64 alg_mask, int end) 2462 { 2463 int i; 2464 2465 for (i = 0; i < end; i++) 2466 if (sec_skciphers[i].alg_msk & alg_mask) 2467 crypto_unregister_skcipher(&sec_skciphers[i].alg); 2468 } 2469 2470 static int sec_register_skcipher(u64 alg_mask) 2471 { 2472 int i, ret, count; 2473 2474 count = ARRAY_SIZE(sec_skciphers); 2475 2476 for (i = 0; i < count; i++) { 2477 if (!(sec_skciphers[i].alg_msk & alg_mask)) 2478 continue; 2479 2480 ret = crypto_register_skcipher(&sec_skciphers[i].alg); 2481 if (ret) 2482 goto err; 2483 } 2484 2485 return 0; 2486 2487 err: 2488 sec_unregister_skcipher(alg_mask, i); 2489 2490 return ret; 2491 } 2492 2493 static void sec_unregister_aead(u64 alg_mask, int end) 2494 { 2495 int i; 2496 2497 for (i = 0; i < end; i++) 2498 if (sec_aeads[i].alg_msk & alg_mask) 2499 crypto_unregister_aead(&sec_aeads[i].alg); 2500 } 2501 2502 static int sec_register_aead(u64 alg_mask) 2503 { 2504 int i, ret, count; 2505 2506 count = ARRAY_SIZE(sec_aeads); 2507 2508 for (i = 0; i < count; i++) { 2509 if (!(sec_aeads[i].alg_msk & alg_mask)) 2510 continue; 2511 2512 ret = crypto_register_aead(&sec_aeads[i].alg); 2513 if (ret) 2514 goto err; 2515 } 2516 2517 return 0; 2518 2519 err: 2520 sec_unregister_aead(alg_mask, i); 2521 2522 return ret; 2523 } 2524 2525 int sec_register_to_crypto(struct hisi_qm *qm) 2526 { 2527 u64 alg_mask; 2528 int ret = 0; 2529 2530 alg_mask = sec_get_alg_bitmap(qm, SEC_DRV_ALG_BITMAP_HIGH_IDX, 2531 SEC_DRV_ALG_BITMAP_LOW_IDX); 2532 2533 mutex_lock(&sec_algs_lock); 2534 if (sec_available_devs) { 2535 sec_available_devs++; 2536 goto unlock; 2537 } 2538 2539 ret = sec_register_skcipher(alg_mask); 2540 if (ret) 2541 goto unlock; 2542 2543 ret = sec_register_aead(alg_mask); 2544 if (ret) 2545 goto unreg_skcipher; 2546 2547 sec_available_devs++; 2548 mutex_unlock(&sec_algs_lock); 2549 2550 return 0; 2551 2552 unreg_skcipher: 2553 sec_unregister_skcipher(alg_mask, ARRAY_SIZE(sec_skciphers)); 2554 unlock: 2555 mutex_unlock(&sec_algs_lock); 2556 return ret; 2557 } 2558 2559 void sec_unregister_from_crypto(struct hisi_qm *qm) 2560 { 2561 u64 alg_mask; 2562 2563 alg_mask = sec_get_alg_bitmap(qm, SEC_DRV_ALG_BITMAP_HIGH_IDX, 2564 SEC_DRV_ALG_BITMAP_LOW_IDX); 2565 2566 mutex_lock(&sec_algs_lock); 2567 if (--sec_available_devs) 2568 goto unlock; 2569 2570 sec_unregister_aead(alg_mask, ARRAY_SIZE(sec_aeads)); 2571 sec_unregister_skcipher(alg_mask, ARRAY_SIZE(sec_skciphers)); 2572 2573 unlock: 2574 mutex_unlock(&sec_algs_lock); 2575 } 2576