xref: /linux/drivers/crypto/hisilicon/sec2/sec_crypto.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 HiSilicon Limited. */
3 
4 #include <crypto/aes.h>
5 #include <crypto/aead.h>
6 #include <crypto/algapi.h>
7 #include <crypto/authenc.h>
8 #include <crypto/des.h>
9 #include <crypto/hash.h>
10 #include <crypto/internal/aead.h>
11 #include <crypto/internal/des.h>
12 #include <crypto/sha1.h>
13 #include <crypto/sha2.h>
14 #include <crypto/skcipher.h>
15 #include <crypto/xts.h>
16 #include <linux/crypto.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/idr.h>
19 
20 #include "sec.h"
21 #include "sec_crypto.h"
22 
23 #define SEC_PRIORITY		4001
24 #define SEC_XTS_MIN_KEY_SIZE	(2 * AES_MIN_KEY_SIZE)
25 #define SEC_XTS_MID_KEY_SIZE	(3 * AES_MIN_KEY_SIZE)
26 #define SEC_XTS_MAX_KEY_SIZE	(2 * AES_MAX_KEY_SIZE)
27 #define SEC_DES3_2KEY_SIZE	(2 * DES_KEY_SIZE)
28 #define SEC_DES3_3KEY_SIZE	(3 * DES_KEY_SIZE)
29 
30 /* SEC sqe(bd) bit operational relative MACRO */
31 #define SEC_DE_OFFSET		1
32 #define SEC_CIPHER_OFFSET	4
33 #define SEC_SCENE_OFFSET	3
34 #define SEC_DST_SGL_OFFSET	2
35 #define SEC_SRC_SGL_OFFSET	7
36 #define SEC_CKEY_OFFSET		9
37 #define SEC_CMODE_OFFSET	12
38 #define SEC_AKEY_OFFSET         5
39 #define SEC_AEAD_ALG_OFFSET     11
40 #define SEC_AUTH_OFFSET		6
41 
42 #define SEC_DE_OFFSET_V3		9
43 #define SEC_SCENE_OFFSET_V3	5
44 #define SEC_CKEY_OFFSET_V3	13
45 #define SEC_CTR_CNT_OFFSET	25
46 #define SEC_CTR_CNT_ROLLOVER	2
47 #define SEC_SRC_SGL_OFFSET_V3	11
48 #define SEC_DST_SGL_OFFSET_V3	14
49 #define SEC_CALG_OFFSET_V3	4
50 #define SEC_AKEY_OFFSET_V3	9
51 #define SEC_MAC_OFFSET_V3	4
52 #define SEC_AUTH_ALG_OFFSET_V3	15
53 #define SEC_CIPHER_AUTH_V3	0xbf
54 #define SEC_AUTH_CIPHER_V3	0x40
55 #define SEC_FLAG_OFFSET		7
56 #define SEC_FLAG_MASK		0x0780
57 #define SEC_TYPE_MASK		0x0F
58 #define SEC_DONE_MASK		0x0001
59 #define SEC_ICV_MASK		0x000E
60 #define SEC_SQE_LEN_RATE_MASK	0x3
61 
62 #define SEC_TOTAL_IV_SZ(depth)	(SEC_IV_SIZE * (depth))
63 #define SEC_SGL_SGE_NR		128
64 #define SEC_CIPHER_AUTH		0xfe
65 #define SEC_AUTH_CIPHER		0x1
66 #define SEC_MAX_MAC_LEN		64
67 #define SEC_MAX_AAD_LEN		65535
68 #define SEC_MAX_CCM_AAD_LEN	65279
69 #define SEC_TOTAL_MAC_SZ(depth) (SEC_MAX_MAC_LEN * (depth))
70 
71 #define SEC_PBUF_SZ			512
72 #define SEC_PBUF_IV_OFFSET		SEC_PBUF_SZ
73 #define SEC_PBUF_MAC_OFFSET		(SEC_PBUF_SZ + SEC_IV_SIZE)
74 #define SEC_PBUF_PKG		(SEC_PBUF_SZ + SEC_IV_SIZE +	\
75 			SEC_MAX_MAC_LEN * 2)
76 #define SEC_PBUF_NUM		(PAGE_SIZE / SEC_PBUF_PKG)
77 #define SEC_PBUF_PAGE_NUM(depth)	((depth) / SEC_PBUF_NUM)
78 #define SEC_PBUF_LEFT_SZ(depth)		(SEC_PBUF_PKG * ((depth) -	\
79 				SEC_PBUF_PAGE_NUM(depth) * SEC_PBUF_NUM))
80 #define SEC_TOTAL_PBUF_SZ(depth)	(PAGE_SIZE * SEC_PBUF_PAGE_NUM(depth) +	\
81 				SEC_PBUF_LEFT_SZ(depth))
82 
83 #define SEC_SQE_LEN_RATE	4
84 #define SEC_SQE_CFLAG		2
85 #define SEC_SQE_AEAD_FLAG	3
86 #define SEC_SQE_DONE		0x1
87 #define SEC_ICV_ERR		0x2
88 #define MIN_MAC_LEN		4
89 #define MAC_LEN_MASK		0x1U
90 #define MAX_INPUT_DATA_LEN	0xFFFE00
91 #define BITS_MASK		0xFF
92 #define BYTE_BITS		0x8
93 #define SEC_XTS_NAME_SZ		0x3
94 #define IV_CM_CAL_NUM		2
95 #define IV_CL_MASK		0x7
96 #define IV_CL_MIN		2
97 #define IV_CL_MID		4
98 #define IV_CL_MAX		8
99 #define IV_FLAGS_OFFSET	0x6
100 #define IV_CM_OFFSET		0x3
101 #define IV_LAST_BYTE1		1
102 #define IV_LAST_BYTE2		2
103 #define IV_LAST_BYTE_MASK	0xFF
104 #define IV_CTR_INIT		0x1
105 #define IV_BYTE_OFFSET		0x8
106 
107 static DEFINE_MUTEX(sec_algs_lock);
108 static unsigned int sec_available_devs;
109 
110 struct sec_skcipher {
111 	u64 alg_msk;
112 	struct skcipher_alg alg;
113 };
114 
115 struct sec_aead {
116 	u64 alg_msk;
117 	struct aead_alg alg;
118 };
119 
120 /* Get an en/de-cipher queue cyclically to balance load over queues of TFM */
121 static inline u32 sec_alloc_queue_id(struct sec_ctx *ctx, struct sec_req *req)
122 {
123 	if (req->c_req.encrypt)
124 		return (u32)atomic_inc_return(&ctx->enc_qcyclic) %
125 				 ctx->hlf_q_num;
126 
127 	return (u32)atomic_inc_return(&ctx->dec_qcyclic) % ctx->hlf_q_num +
128 				 ctx->hlf_q_num;
129 }
130 
131 static inline void sec_free_queue_id(struct sec_ctx *ctx, struct sec_req *req)
132 {
133 	if (req->c_req.encrypt)
134 		atomic_dec(&ctx->enc_qcyclic);
135 	else
136 		atomic_dec(&ctx->dec_qcyclic);
137 }
138 
139 static int sec_alloc_req_id(struct sec_req *req, struct sec_qp_ctx *qp_ctx)
140 {
141 	int req_id;
142 
143 	spin_lock_bh(&qp_ctx->req_lock);
144 	req_id = idr_alloc_cyclic(&qp_ctx->req_idr, NULL, 0, qp_ctx->qp->sq_depth, GFP_ATOMIC);
145 	spin_unlock_bh(&qp_ctx->req_lock);
146 	if (unlikely(req_id < 0)) {
147 		dev_err(req->ctx->dev, "alloc req id fail!\n");
148 		return req_id;
149 	}
150 
151 	req->qp_ctx = qp_ctx;
152 	qp_ctx->req_list[req_id] = req;
153 
154 	return req_id;
155 }
156 
157 static void sec_free_req_id(struct sec_req *req)
158 {
159 	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
160 	int req_id = req->req_id;
161 
162 	if (unlikely(req_id < 0 || req_id >= qp_ctx->qp->sq_depth)) {
163 		dev_err(req->ctx->dev, "free request id invalid!\n");
164 		return;
165 	}
166 
167 	qp_ctx->req_list[req_id] = NULL;
168 	req->qp_ctx = NULL;
169 
170 	spin_lock_bh(&qp_ctx->req_lock);
171 	idr_remove(&qp_ctx->req_idr, req_id);
172 	spin_unlock_bh(&qp_ctx->req_lock);
173 }
174 
175 static u8 pre_parse_finished_bd(struct bd_status *status, void *resp)
176 {
177 	struct sec_sqe *bd = resp;
178 
179 	status->done = le16_to_cpu(bd->type2.done_flag) & SEC_DONE_MASK;
180 	status->icv = (le16_to_cpu(bd->type2.done_flag) & SEC_ICV_MASK) >> 1;
181 	status->flag = (le16_to_cpu(bd->type2.done_flag) &
182 					SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
183 	status->tag = le16_to_cpu(bd->type2.tag);
184 	status->err_type = bd->type2.error_type;
185 
186 	return bd->type_cipher_auth & SEC_TYPE_MASK;
187 }
188 
189 static u8 pre_parse_finished_bd3(struct bd_status *status, void *resp)
190 {
191 	struct sec_sqe3 *bd3 = resp;
192 
193 	status->done = le16_to_cpu(bd3->done_flag) & SEC_DONE_MASK;
194 	status->icv = (le16_to_cpu(bd3->done_flag) & SEC_ICV_MASK) >> 1;
195 	status->flag = (le16_to_cpu(bd3->done_flag) &
196 					SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
197 	status->tag = le64_to_cpu(bd3->tag);
198 	status->err_type = bd3->error_type;
199 
200 	return le32_to_cpu(bd3->bd_param) & SEC_TYPE_MASK;
201 }
202 
203 static int sec_cb_status_check(struct sec_req *req,
204 			       struct bd_status *status)
205 {
206 	struct sec_ctx *ctx = req->ctx;
207 
208 	if (unlikely(req->err_type || status->done != SEC_SQE_DONE)) {
209 		dev_err_ratelimited(ctx->dev, "err_type[%d], done[%u]\n",
210 				    req->err_type, status->done);
211 		return -EIO;
212 	}
213 
214 	if (unlikely(ctx->alg_type == SEC_SKCIPHER)) {
215 		if (unlikely(status->flag != SEC_SQE_CFLAG)) {
216 			dev_err_ratelimited(ctx->dev, "flag[%u]\n",
217 					    status->flag);
218 			return -EIO;
219 		}
220 	} else if (unlikely(ctx->alg_type == SEC_AEAD)) {
221 		if (unlikely(status->flag != SEC_SQE_AEAD_FLAG ||
222 			     status->icv == SEC_ICV_ERR)) {
223 			dev_err_ratelimited(ctx->dev,
224 					    "flag[%u], icv[%u]\n",
225 					    status->flag, status->icv);
226 			return -EBADMSG;
227 		}
228 	}
229 
230 	return 0;
231 }
232 
233 static void sec_req_cb(struct hisi_qp *qp, void *resp)
234 {
235 	struct sec_qp_ctx *qp_ctx = qp->qp_ctx;
236 	struct sec_dfx *dfx = &qp_ctx->ctx->sec->debug.dfx;
237 	u8 type_supported = qp_ctx->ctx->type_supported;
238 	struct bd_status status;
239 	struct sec_ctx *ctx;
240 	struct sec_req *req;
241 	int err;
242 	u8 type;
243 
244 	if (type_supported == SEC_BD_TYPE2) {
245 		type = pre_parse_finished_bd(&status, resp);
246 		req = qp_ctx->req_list[status.tag];
247 	} else {
248 		type = pre_parse_finished_bd3(&status, resp);
249 		req = (void *)(uintptr_t)status.tag;
250 	}
251 
252 	if (unlikely(type != type_supported)) {
253 		atomic64_inc(&dfx->err_bd_cnt);
254 		pr_err("err bd type [%u]\n", type);
255 		return;
256 	}
257 
258 	if (unlikely(!req)) {
259 		atomic64_inc(&dfx->invalid_req_cnt);
260 		atomic_inc(&qp->qp_status.used);
261 		return;
262 	}
263 
264 	req->err_type = status.err_type;
265 	ctx = req->ctx;
266 	err = sec_cb_status_check(req, &status);
267 	if (err)
268 		atomic64_inc(&dfx->done_flag_cnt);
269 
270 	atomic64_inc(&dfx->recv_cnt);
271 
272 	ctx->req_op->buf_unmap(ctx, req);
273 
274 	ctx->req_op->callback(ctx, req, err);
275 }
276 
277 static int sec_bd_send(struct sec_ctx *ctx, struct sec_req *req)
278 {
279 	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
280 	int ret;
281 
282 	if (ctx->fake_req_limit <=
283 	    atomic_read(&qp_ctx->qp->qp_status.used) &&
284 	    !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG))
285 		return -EBUSY;
286 
287 	spin_lock_bh(&qp_ctx->req_lock);
288 	ret = hisi_qp_send(qp_ctx->qp, &req->sec_sqe);
289 	if (ctx->fake_req_limit <=
290 	    atomic_read(&qp_ctx->qp->qp_status.used) && !ret) {
291 		list_add_tail(&req->backlog_head, &qp_ctx->backlog);
292 		atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
293 		atomic64_inc(&ctx->sec->debug.dfx.send_busy_cnt);
294 		spin_unlock_bh(&qp_ctx->req_lock);
295 		return -EBUSY;
296 	}
297 	spin_unlock_bh(&qp_ctx->req_lock);
298 
299 	if (unlikely(ret == -EBUSY))
300 		return -ENOBUFS;
301 
302 	if (likely(!ret)) {
303 		ret = -EINPROGRESS;
304 		atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
305 	}
306 
307 	return ret;
308 }
309 
310 /* Get DMA memory resources */
311 static int sec_alloc_civ_resource(struct device *dev, struct sec_alg_res *res)
312 {
313 	u16 q_depth = res->depth;
314 	int i;
315 
316 	res->c_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ(q_depth),
317 					 &res->c_ivin_dma, GFP_KERNEL);
318 	if (!res->c_ivin)
319 		return -ENOMEM;
320 
321 	for (i = 1; i < q_depth; i++) {
322 		res[i].c_ivin_dma = res->c_ivin_dma + i * SEC_IV_SIZE;
323 		res[i].c_ivin = res->c_ivin + i * SEC_IV_SIZE;
324 	}
325 
326 	return 0;
327 }
328 
329 static void sec_free_civ_resource(struct device *dev, struct sec_alg_res *res)
330 {
331 	if (res->c_ivin)
332 		dma_free_coherent(dev, SEC_TOTAL_IV_SZ(res->depth),
333 				  res->c_ivin, res->c_ivin_dma);
334 }
335 
336 static int sec_alloc_aiv_resource(struct device *dev, struct sec_alg_res *res)
337 {
338 	u16 q_depth = res->depth;
339 	int i;
340 
341 	res->a_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ(q_depth),
342 					 &res->a_ivin_dma, GFP_KERNEL);
343 	if (!res->a_ivin)
344 		return -ENOMEM;
345 
346 	for (i = 1; i < q_depth; i++) {
347 		res[i].a_ivin_dma = res->a_ivin_dma + i * SEC_IV_SIZE;
348 		res[i].a_ivin = res->a_ivin + i * SEC_IV_SIZE;
349 	}
350 
351 	return 0;
352 }
353 
354 static void sec_free_aiv_resource(struct device *dev, struct sec_alg_res *res)
355 {
356 	if (res->a_ivin)
357 		dma_free_coherent(dev, SEC_TOTAL_IV_SZ(res->depth),
358 				  res->a_ivin, res->a_ivin_dma);
359 }
360 
361 static int sec_alloc_mac_resource(struct device *dev, struct sec_alg_res *res)
362 {
363 	u16 q_depth = res->depth;
364 	int i;
365 
366 	res->out_mac = dma_alloc_coherent(dev, SEC_TOTAL_MAC_SZ(q_depth) << 1,
367 					  &res->out_mac_dma, GFP_KERNEL);
368 	if (!res->out_mac)
369 		return -ENOMEM;
370 
371 	for (i = 1; i < q_depth; i++) {
372 		res[i].out_mac_dma = res->out_mac_dma +
373 				     i * (SEC_MAX_MAC_LEN << 1);
374 		res[i].out_mac = res->out_mac + i * (SEC_MAX_MAC_LEN << 1);
375 	}
376 
377 	return 0;
378 }
379 
380 static void sec_free_mac_resource(struct device *dev, struct sec_alg_res *res)
381 {
382 	if (res->out_mac)
383 		dma_free_coherent(dev, SEC_TOTAL_MAC_SZ(res->depth) << 1,
384 				  res->out_mac, res->out_mac_dma);
385 }
386 
387 static void sec_free_pbuf_resource(struct device *dev, struct sec_alg_res *res)
388 {
389 	if (res->pbuf)
390 		dma_free_coherent(dev, SEC_TOTAL_PBUF_SZ(res->depth),
391 				  res->pbuf, res->pbuf_dma);
392 }
393 
394 /*
395  * To improve performance, pbuffer is used for
396  * small packets (< 512Bytes) as IOMMU translation using.
397  */
398 static int sec_alloc_pbuf_resource(struct device *dev, struct sec_alg_res *res)
399 {
400 	u16 q_depth = res->depth;
401 	int size = SEC_PBUF_PAGE_NUM(q_depth);
402 	int pbuf_page_offset;
403 	int i, j, k;
404 
405 	res->pbuf = dma_alloc_coherent(dev, SEC_TOTAL_PBUF_SZ(q_depth),
406 				&res->pbuf_dma, GFP_KERNEL);
407 	if (!res->pbuf)
408 		return -ENOMEM;
409 
410 	/*
411 	 * SEC_PBUF_PKG contains data pbuf, iv and
412 	 * out_mac : <SEC_PBUF|SEC_IV|SEC_MAC>
413 	 * Every PAGE contains six SEC_PBUF_PKG
414 	 * The sec_qp_ctx contains QM_Q_DEPTH numbers of SEC_PBUF_PKG
415 	 * So we need SEC_PBUF_PAGE_NUM numbers of PAGE
416 	 * for the SEC_TOTAL_PBUF_SZ
417 	 */
418 	for (i = 0; i <= size; i++) {
419 		pbuf_page_offset = PAGE_SIZE * i;
420 		for (j = 0; j < SEC_PBUF_NUM; j++) {
421 			k = i * SEC_PBUF_NUM + j;
422 			if (k == q_depth)
423 				break;
424 			res[k].pbuf = res->pbuf +
425 				j * SEC_PBUF_PKG + pbuf_page_offset;
426 			res[k].pbuf_dma = res->pbuf_dma +
427 				j * SEC_PBUF_PKG + pbuf_page_offset;
428 		}
429 	}
430 
431 	return 0;
432 }
433 
434 static int sec_alg_resource_alloc(struct sec_ctx *ctx,
435 				  struct sec_qp_ctx *qp_ctx)
436 {
437 	struct sec_alg_res *res = qp_ctx->res;
438 	struct device *dev = ctx->dev;
439 	int ret;
440 
441 	ret = sec_alloc_civ_resource(dev, res);
442 	if (ret)
443 		return ret;
444 
445 	if (ctx->alg_type == SEC_AEAD) {
446 		ret = sec_alloc_aiv_resource(dev, res);
447 		if (ret)
448 			goto alloc_aiv_fail;
449 
450 		ret = sec_alloc_mac_resource(dev, res);
451 		if (ret)
452 			goto alloc_mac_fail;
453 	}
454 	if (ctx->pbuf_supported) {
455 		ret = sec_alloc_pbuf_resource(dev, res);
456 		if (ret) {
457 			dev_err(dev, "fail to alloc pbuf dma resource!\n");
458 			goto alloc_pbuf_fail;
459 		}
460 	}
461 
462 	return 0;
463 
464 alloc_pbuf_fail:
465 	if (ctx->alg_type == SEC_AEAD)
466 		sec_free_mac_resource(dev, qp_ctx->res);
467 alloc_mac_fail:
468 	if (ctx->alg_type == SEC_AEAD)
469 		sec_free_aiv_resource(dev, res);
470 alloc_aiv_fail:
471 	sec_free_civ_resource(dev, res);
472 	return ret;
473 }
474 
475 static void sec_alg_resource_free(struct sec_ctx *ctx,
476 				  struct sec_qp_ctx *qp_ctx)
477 {
478 	struct device *dev = ctx->dev;
479 
480 	sec_free_civ_resource(dev, qp_ctx->res);
481 
482 	if (ctx->pbuf_supported)
483 		sec_free_pbuf_resource(dev, qp_ctx->res);
484 	if (ctx->alg_type == SEC_AEAD) {
485 		sec_free_mac_resource(dev, qp_ctx->res);
486 		sec_free_aiv_resource(dev, qp_ctx->res);
487 	}
488 }
489 
490 static int sec_alloc_qp_ctx_resource(struct sec_ctx *ctx, struct sec_qp_ctx *qp_ctx)
491 {
492 	u16 q_depth = qp_ctx->qp->sq_depth;
493 	struct device *dev = ctx->dev;
494 	int ret = -ENOMEM;
495 
496 	qp_ctx->req_list = kcalloc(q_depth, sizeof(struct sec_req *), GFP_KERNEL);
497 	if (!qp_ctx->req_list)
498 		return ret;
499 
500 	qp_ctx->res = kcalloc(q_depth, sizeof(struct sec_alg_res), GFP_KERNEL);
501 	if (!qp_ctx->res)
502 		goto err_free_req_list;
503 	qp_ctx->res->depth = q_depth;
504 
505 	qp_ctx->c_in_pool = hisi_acc_create_sgl_pool(dev, q_depth, SEC_SGL_SGE_NR);
506 	if (IS_ERR(qp_ctx->c_in_pool)) {
507 		dev_err(dev, "fail to create sgl pool for input!\n");
508 		goto err_free_res;
509 	}
510 
511 	qp_ctx->c_out_pool = hisi_acc_create_sgl_pool(dev, q_depth, SEC_SGL_SGE_NR);
512 	if (IS_ERR(qp_ctx->c_out_pool)) {
513 		dev_err(dev, "fail to create sgl pool for output!\n");
514 		goto err_free_c_in_pool;
515 	}
516 
517 	ret = sec_alg_resource_alloc(ctx, qp_ctx);
518 	if (ret)
519 		goto err_free_c_out_pool;
520 
521 	return 0;
522 
523 err_free_c_out_pool:
524 	hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
525 err_free_c_in_pool:
526 	hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
527 err_free_res:
528 	kfree(qp_ctx->res);
529 err_free_req_list:
530 	kfree(qp_ctx->req_list);
531 	return ret;
532 }
533 
534 static void sec_free_qp_ctx_resource(struct sec_ctx *ctx, struct sec_qp_ctx *qp_ctx)
535 {
536 	struct device *dev = ctx->dev;
537 
538 	sec_alg_resource_free(ctx, qp_ctx);
539 	hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
540 	hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
541 	kfree(qp_ctx->res);
542 	kfree(qp_ctx->req_list);
543 }
544 
545 static int sec_create_qp_ctx(struct sec_ctx *ctx, int qp_ctx_id)
546 {
547 	struct sec_qp_ctx *qp_ctx;
548 	struct hisi_qp *qp;
549 	int ret;
550 
551 	qp_ctx = &ctx->qp_ctx[qp_ctx_id];
552 	qp = ctx->qps[qp_ctx_id];
553 	qp->req_type = 0;
554 	qp->qp_ctx = qp_ctx;
555 	qp_ctx->qp = qp;
556 	qp_ctx->ctx = ctx;
557 
558 	qp->req_cb = sec_req_cb;
559 
560 	spin_lock_init(&qp_ctx->req_lock);
561 	idr_init(&qp_ctx->req_idr);
562 	INIT_LIST_HEAD(&qp_ctx->backlog);
563 
564 	ret = sec_alloc_qp_ctx_resource(ctx, qp_ctx);
565 	if (ret)
566 		goto err_destroy_idr;
567 
568 	ret = hisi_qm_start_qp(qp, 0);
569 	if (ret < 0)
570 		goto err_resource_free;
571 
572 	return 0;
573 
574 err_resource_free:
575 	sec_free_qp_ctx_resource(ctx, qp_ctx);
576 err_destroy_idr:
577 	idr_destroy(&qp_ctx->req_idr);
578 	return ret;
579 }
580 
581 static void sec_release_qp_ctx(struct sec_ctx *ctx,
582 			       struct sec_qp_ctx *qp_ctx)
583 {
584 	hisi_qm_stop_qp(qp_ctx->qp);
585 	sec_free_qp_ctx_resource(ctx, qp_ctx);
586 	idr_destroy(&qp_ctx->req_idr);
587 }
588 
589 static int sec_ctx_base_init(struct sec_ctx *ctx)
590 {
591 	struct sec_dev *sec;
592 	int i, ret;
593 
594 	ctx->qps = sec_create_qps();
595 	if (!ctx->qps) {
596 		pr_err("Can not create sec qps!\n");
597 		return -ENODEV;
598 	}
599 
600 	sec = container_of(ctx->qps[0]->qm, struct sec_dev, qm);
601 	ctx->sec = sec;
602 	ctx->dev = &sec->qm.pdev->dev;
603 	ctx->hlf_q_num = sec->ctx_q_num >> 1;
604 
605 	ctx->pbuf_supported = ctx->sec->iommu_used;
606 
607 	/* Half of queue depth is taken as fake requests limit in the queue. */
608 	ctx->fake_req_limit = ctx->qps[0]->sq_depth >> 1;
609 	ctx->qp_ctx = kcalloc(sec->ctx_q_num, sizeof(struct sec_qp_ctx),
610 			      GFP_KERNEL);
611 	if (!ctx->qp_ctx) {
612 		ret = -ENOMEM;
613 		goto err_destroy_qps;
614 	}
615 
616 	for (i = 0; i < sec->ctx_q_num; i++) {
617 		ret = sec_create_qp_ctx(ctx, i);
618 		if (ret)
619 			goto err_sec_release_qp_ctx;
620 	}
621 
622 	return 0;
623 
624 err_sec_release_qp_ctx:
625 	for (i = i - 1; i >= 0; i--)
626 		sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);
627 	kfree(ctx->qp_ctx);
628 err_destroy_qps:
629 	sec_destroy_qps(ctx->qps, sec->ctx_q_num);
630 	return ret;
631 }
632 
633 static void sec_ctx_base_uninit(struct sec_ctx *ctx)
634 {
635 	int i;
636 
637 	for (i = 0; i < ctx->sec->ctx_q_num; i++)
638 		sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);
639 
640 	sec_destroy_qps(ctx->qps, ctx->sec->ctx_q_num);
641 	kfree(ctx->qp_ctx);
642 }
643 
644 static int sec_cipher_init(struct sec_ctx *ctx)
645 {
646 	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
647 
648 	c_ctx->c_key = dma_alloc_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
649 					  &c_ctx->c_key_dma, GFP_KERNEL);
650 	if (!c_ctx->c_key)
651 		return -ENOMEM;
652 
653 	return 0;
654 }
655 
656 static void sec_cipher_uninit(struct sec_ctx *ctx)
657 {
658 	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
659 
660 	memzero_explicit(c_ctx->c_key, SEC_MAX_KEY_SIZE);
661 	dma_free_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
662 			  c_ctx->c_key, c_ctx->c_key_dma);
663 }
664 
665 static int sec_auth_init(struct sec_ctx *ctx)
666 {
667 	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
668 
669 	a_ctx->a_key = dma_alloc_coherent(ctx->dev, SEC_MAX_AKEY_SIZE,
670 					  &a_ctx->a_key_dma, GFP_KERNEL);
671 	if (!a_ctx->a_key)
672 		return -ENOMEM;
673 
674 	return 0;
675 }
676 
677 static void sec_auth_uninit(struct sec_ctx *ctx)
678 {
679 	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
680 
681 	memzero_explicit(a_ctx->a_key, SEC_MAX_AKEY_SIZE);
682 	dma_free_coherent(ctx->dev, SEC_MAX_AKEY_SIZE,
683 			  a_ctx->a_key, a_ctx->a_key_dma);
684 }
685 
686 static int sec_skcipher_fbtfm_init(struct crypto_skcipher *tfm)
687 {
688 	const char *alg = crypto_tfm_alg_name(&tfm->base);
689 	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
690 	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
691 
692 	c_ctx->fallback = false;
693 
694 	/* Currently, only XTS mode need fallback tfm when using 192bit key */
695 	if (likely(strncmp(alg, "xts", SEC_XTS_NAME_SZ)))
696 		return 0;
697 
698 	c_ctx->fbtfm = crypto_alloc_sync_skcipher(alg, 0,
699 						  CRYPTO_ALG_NEED_FALLBACK);
700 	if (IS_ERR(c_ctx->fbtfm)) {
701 		pr_err("failed to alloc xts mode fallback tfm!\n");
702 		return PTR_ERR(c_ctx->fbtfm);
703 	}
704 
705 	return 0;
706 }
707 
708 static int sec_skcipher_init(struct crypto_skcipher *tfm)
709 {
710 	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
711 	int ret;
712 
713 	ctx->alg_type = SEC_SKCIPHER;
714 	crypto_skcipher_set_reqsize(tfm, sizeof(struct sec_req));
715 	ctx->c_ctx.ivsize = crypto_skcipher_ivsize(tfm);
716 	if (ctx->c_ctx.ivsize > SEC_IV_SIZE) {
717 		pr_err("get error skcipher iv size!\n");
718 		return -EINVAL;
719 	}
720 
721 	ret = sec_ctx_base_init(ctx);
722 	if (ret)
723 		return ret;
724 
725 	ret = sec_cipher_init(ctx);
726 	if (ret)
727 		goto err_cipher_init;
728 
729 	ret = sec_skcipher_fbtfm_init(tfm);
730 	if (ret)
731 		goto err_fbtfm_init;
732 
733 	return 0;
734 
735 err_fbtfm_init:
736 	sec_cipher_uninit(ctx);
737 err_cipher_init:
738 	sec_ctx_base_uninit(ctx);
739 	return ret;
740 }
741 
742 static void sec_skcipher_uninit(struct crypto_skcipher *tfm)
743 {
744 	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
745 
746 	if (ctx->c_ctx.fbtfm)
747 		crypto_free_sync_skcipher(ctx->c_ctx.fbtfm);
748 
749 	sec_cipher_uninit(ctx);
750 	sec_ctx_base_uninit(ctx);
751 }
752 
753 static int sec_skcipher_3des_setkey(struct crypto_skcipher *tfm, const u8 *key, const u32 keylen)
754 {
755 	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
756 	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
757 	int ret;
758 
759 	ret = verify_skcipher_des3_key(tfm, key);
760 	if (ret)
761 		return ret;
762 
763 	switch (keylen) {
764 	case SEC_DES3_2KEY_SIZE:
765 		c_ctx->c_key_len = SEC_CKEY_3DES_2KEY;
766 		break;
767 	case SEC_DES3_3KEY_SIZE:
768 		c_ctx->c_key_len = SEC_CKEY_3DES_3KEY;
769 		break;
770 	default:
771 		return -EINVAL;
772 	}
773 
774 	return 0;
775 }
776 
777 static int sec_skcipher_aes_sm4_setkey(struct sec_cipher_ctx *c_ctx,
778 				       const u32 keylen,
779 				       const enum sec_cmode c_mode)
780 {
781 	if (c_mode == SEC_CMODE_XTS) {
782 		switch (keylen) {
783 		case SEC_XTS_MIN_KEY_SIZE:
784 			c_ctx->c_key_len = SEC_CKEY_128BIT;
785 			break;
786 		case SEC_XTS_MID_KEY_SIZE:
787 			c_ctx->fallback = true;
788 			break;
789 		case SEC_XTS_MAX_KEY_SIZE:
790 			c_ctx->c_key_len = SEC_CKEY_256BIT;
791 			break;
792 		default:
793 			pr_err("hisi_sec2: xts mode key error!\n");
794 			return -EINVAL;
795 		}
796 	} else {
797 		if (c_ctx->c_alg == SEC_CALG_SM4 &&
798 		    keylen != AES_KEYSIZE_128) {
799 			pr_err("hisi_sec2: sm4 key error!\n");
800 			return -EINVAL;
801 		} else {
802 			switch (keylen) {
803 			case AES_KEYSIZE_128:
804 				c_ctx->c_key_len = SEC_CKEY_128BIT;
805 				break;
806 			case AES_KEYSIZE_192:
807 				c_ctx->c_key_len = SEC_CKEY_192BIT;
808 				break;
809 			case AES_KEYSIZE_256:
810 				c_ctx->c_key_len = SEC_CKEY_256BIT;
811 				break;
812 			default:
813 				pr_err("hisi_sec2: aes key error!\n");
814 				return -EINVAL;
815 			}
816 		}
817 	}
818 
819 	return 0;
820 }
821 
822 static int sec_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
823 			       const u32 keylen, const enum sec_calg c_alg,
824 			       const enum sec_cmode c_mode)
825 {
826 	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
827 	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
828 	struct device *dev = ctx->dev;
829 	int ret;
830 
831 	if (c_mode == SEC_CMODE_XTS) {
832 		ret = xts_verify_key(tfm, key, keylen);
833 		if (ret) {
834 			dev_err(dev, "xts mode key err!\n");
835 			return ret;
836 		}
837 	}
838 
839 	c_ctx->c_alg  = c_alg;
840 	c_ctx->c_mode = c_mode;
841 
842 	switch (c_alg) {
843 	case SEC_CALG_3DES:
844 		ret = sec_skcipher_3des_setkey(tfm, key, keylen);
845 		break;
846 	case SEC_CALG_AES:
847 	case SEC_CALG_SM4:
848 		ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
849 		break;
850 	default:
851 		dev_err(dev, "sec c_alg err!\n");
852 		return -EINVAL;
853 	}
854 
855 	if (ret) {
856 		dev_err(dev, "set sec key err!\n");
857 		return ret;
858 	}
859 
860 	memcpy(c_ctx->c_key, key, keylen);
861 	if (c_ctx->fallback && c_ctx->fbtfm) {
862 		ret = crypto_sync_skcipher_setkey(c_ctx->fbtfm, key, keylen);
863 		if (ret) {
864 			dev_err(dev, "failed to set fallback skcipher key!\n");
865 			return ret;
866 		}
867 	}
868 	return 0;
869 }
870 
871 #define GEN_SEC_SETKEY_FUNC(name, c_alg, c_mode)			\
872 static int sec_setkey_##name(struct crypto_skcipher *tfm, const u8 *key,\
873 	u32 keylen)							\
874 {									\
875 	return sec_skcipher_setkey(tfm, key, keylen, c_alg, c_mode);	\
876 }
877 
878 GEN_SEC_SETKEY_FUNC(aes_ecb, SEC_CALG_AES, SEC_CMODE_ECB)
879 GEN_SEC_SETKEY_FUNC(aes_cbc, SEC_CALG_AES, SEC_CMODE_CBC)
880 GEN_SEC_SETKEY_FUNC(aes_xts, SEC_CALG_AES, SEC_CMODE_XTS)
881 GEN_SEC_SETKEY_FUNC(aes_ctr, SEC_CALG_AES, SEC_CMODE_CTR)
882 GEN_SEC_SETKEY_FUNC(3des_ecb, SEC_CALG_3DES, SEC_CMODE_ECB)
883 GEN_SEC_SETKEY_FUNC(3des_cbc, SEC_CALG_3DES, SEC_CMODE_CBC)
884 GEN_SEC_SETKEY_FUNC(sm4_xts, SEC_CALG_SM4, SEC_CMODE_XTS)
885 GEN_SEC_SETKEY_FUNC(sm4_cbc, SEC_CALG_SM4, SEC_CMODE_CBC)
886 GEN_SEC_SETKEY_FUNC(sm4_ctr, SEC_CALG_SM4, SEC_CMODE_CTR)
887 
888 static int sec_cipher_pbuf_map(struct sec_ctx *ctx, struct sec_req *req,
889 			struct scatterlist *src)
890 {
891 	struct sec_aead_req *a_req = &req->aead_req;
892 	struct aead_request *aead_req = a_req->aead_req;
893 	struct sec_cipher_req *c_req = &req->c_req;
894 	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
895 	struct device *dev = ctx->dev;
896 	int copy_size, pbuf_length;
897 	int req_id = req->req_id;
898 	struct crypto_aead *tfm;
899 	size_t authsize;
900 	u8 *mac_offset;
901 
902 	if (ctx->alg_type == SEC_AEAD)
903 		copy_size = aead_req->cryptlen + aead_req->assoclen;
904 	else
905 		copy_size = c_req->c_len;
906 
907 	pbuf_length = sg_copy_to_buffer(src, sg_nents(src),
908 			qp_ctx->res[req_id].pbuf, copy_size);
909 	if (unlikely(pbuf_length != copy_size)) {
910 		dev_err(dev, "copy src data to pbuf error!\n");
911 		return -EINVAL;
912 	}
913 	if (!c_req->encrypt && ctx->alg_type == SEC_AEAD) {
914 		tfm = crypto_aead_reqtfm(aead_req);
915 		authsize = crypto_aead_authsize(tfm);
916 		mac_offset = qp_ctx->res[req_id].pbuf + copy_size - authsize;
917 		memcpy(a_req->out_mac, mac_offset, authsize);
918 	}
919 
920 	req->in_dma = qp_ctx->res[req_id].pbuf_dma;
921 	c_req->c_out_dma = req->in_dma;
922 
923 	return 0;
924 }
925 
926 static void sec_cipher_pbuf_unmap(struct sec_ctx *ctx, struct sec_req *req,
927 			struct scatterlist *dst)
928 {
929 	struct aead_request *aead_req = req->aead_req.aead_req;
930 	struct sec_cipher_req *c_req = &req->c_req;
931 	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
932 	int copy_size, pbuf_length;
933 	int req_id = req->req_id;
934 
935 	if (ctx->alg_type == SEC_AEAD)
936 		copy_size = c_req->c_len + aead_req->assoclen;
937 	else
938 		copy_size = c_req->c_len;
939 
940 	pbuf_length = sg_copy_from_buffer(dst, sg_nents(dst),
941 			qp_ctx->res[req_id].pbuf, copy_size);
942 	if (unlikely(pbuf_length != copy_size))
943 		dev_err(ctx->dev, "copy pbuf data to dst error!\n");
944 }
945 
946 static int sec_aead_mac_init(struct sec_aead_req *req)
947 {
948 	struct aead_request *aead_req = req->aead_req;
949 	struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req);
950 	size_t authsize = crypto_aead_authsize(tfm);
951 	u8 *mac_out = req->out_mac;
952 	struct scatterlist *sgl = aead_req->src;
953 	size_t copy_size;
954 	off_t skip_size;
955 
956 	/* Copy input mac */
957 	skip_size = aead_req->assoclen + aead_req->cryptlen - authsize;
958 	copy_size = sg_pcopy_to_buffer(sgl, sg_nents(sgl), mac_out,
959 				       authsize, skip_size);
960 	if (unlikely(copy_size != authsize))
961 		return -EINVAL;
962 
963 	return 0;
964 }
965 
966 static int sec_cipher_map(struct sec_ctx *ctx, struct sec_req *req,
967 			  struct scatterlist *src, struct scatterlist *dst)
968 {
969 	struct sec_cipher_req *c_req = &req->c_req;
970 	struct sec_aead_req *a_req = &req->aead_req;
971 	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
972 	struct sec_alg_res *res = &qp_ctx->res[req->req_id];
973 	struct device *dev = ctx->dev;
974 	int ret;
975 
976 	if (req->use_pbuf) {
977 		c_req->c_ivin = res->pbuf + SEC_PBUF_IV_OFFSET;
978 		c_req->c_ivin_dma = res->pbuf_dma + SEC_PBUF_IV_OFFSET;
979 		if (ctx->alg_type == SEC_AEAD) {
980 			a_req->a_ivin = res->a_ivin;
981 			a_req->a_ivin_dma = res->a_ivin_dma;
982 			a_req->out_mac = res->pbuf + SEC_PBUF_MAC_OFFSET;
983 			a_req->out_mac_dma = res->pbuf_dma +
984 					SEC_PBUF_MAC_OFFSET;
985 		}
986 		ret = sec_cipher_pbuf_map(ctx, req, src);
987 
988 		return ret;
989 	}
990 	c_req->c_ivin = res->c_ivin;
991 	c_req->c_ivin_dma = res->c_ivin_dma;
992 	if (ctx->alg_type == SEC_AEAD) {
993 		a_req->a_ivin = res->a_ivin;
994 		a_req->a_ivin_dma = res->a_ivin_dma;
995 		a_req->out_mac = res->out_mac;
996 		a_req->out_mac_dma = res->out_mac_dma;
997 	}
998 
999 	req->in = hisi_acc_sg_buf_map_to_hw_sgl(dev, src,
1000 						qp_ctx->c_in_pool,
1001 						req->req_id,
1002 						&req->in_dma);
1003 	if (IS_ERR(req->in)) {
1004 		dev_err(dev, "fail to dma map input sgl buffers!\n");
1005 		return PTR_ERR(req->in);
1006 	}
1007 
1008 	if (!c_req->encrypt && ctx->alg_type == SEC_AEAD) {
1009 		ret = sec_aead_mac_init(a_req);
1010 		if (unlikely(ret)) {
1011 			dev_err(dev, "fail to init mac data for ICV!\n");
1012 			hisi_acc_sg_buf_unmap(dev, src, req->in);
1013 			return ret;
1014 		}
1015 	}
1016 
1017 	if (dst == src) {
1018 		c_req->c_out = req->in;
1019 		c_req->c_out_dma = req->in_dma;
1020 	} else {
1021 		c_req->c_out = hisi_acc_sg_buf_map_to_hw_sgl(dev, dst,
1022 							     qp_ctx->c_out_pool,
1023 							     req->req_id,
1024 							     &c_req->c_out_dma);
1025 
1026 		if (IS_ERR(c_req->c_out)) {
1027 			dev_err(dev, "fail to dma map output sgl buffers!\n");
1028 			hisi_acc_sg_buf_unmap(dev, src, req->in);
1029 			return PTR_ERR(c_req->c_out);
1030 		}
1031 	}
1032 
1033 	return 0;
1034 }
1035 
1036 static void sec_cipher_unmap(struct sec_ctx *ctx, struct sec_req *req,
1037 			     struct scatterlist *src, struct scatterlist *dst)
1038 {
1039 	struct sec_cipher_req *c_req = &req->c_req;
1040 	struct device *dev = ctx->dev;
1041 
1042 	if (req->use_pbuf) {
1043 		sec_cipher_pbuf_unmap(ctx, req, dst);
1044 	} else {
1045 		if (dst != src)
1046 			hisi_acc_sg_buf_unmap(dev, src, req->in);
1047 
1048 		hisi_acc_sg_buf_unmap(dev, dst, c_req->c_out);
1049 	}
1050 }
1051 
1052 static int sec_skcipher_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
1053 {
1054 	struct skcipher_request *sq = req->c_req.sk_req;
1055 
1056 	return sec_cipher_map(ctx, req, sq->src, sq->dst);
1057 }
1058 
1059 static void sec_skcipher_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
1060 {
1061 	struct skcipher_request *sq = req->c_req.sk_req;
1062 
1063 	sec_cipher_unmap(ctx, req, sq->src, sq->dst);
1064 }
1065 
1066 static int sec_aead_aes_set_key(struct sec_cipher_ctx *c_ctx,
1067 				struct crypto_authenc_keys *keys)
1068 {
1069 	switch (keys->enckeylen) {
1070 	case AES_KEYSIZE_128:
1071 		c_ctx->c_key_len = SEC_CKEY_128BIT;
1072 		break;
1073 	case AES_KEYSIZE_192:
1074 		c_ctx->c_key_len = SEC_CKEY_192BIT;
1075 		break;
1076 	case AES_KEYSIZE_256:
1077 		c_ctx->c_key_len = SEC_CKEY_256BIT;
1078 		break;
1079 	default:
1080 		pr_err("hisi_sec2: aead aes key error!\n");
1081 		return -EINVAL;
1082 	}
1083 	memcpy(c_ctx->c_key, keys->enckey, keys->enckeylen);
1084 
1085 	return 0;
1086 }
1087 
1088 static int sec_aead_auth_set_key(struct sec_auth_ctx *ctx,
1089 				 struct crypto_authenc_keys *keys)
1090 {
1091 	struct crypto_shash *hash_tfm = ctx->hash_tfm;
1092 	int blocksize, digestsize, ret;
1093 
1094 	if (!keys->authkeylen) {
1095 		pr_err("hisi_sec2: aead auth key error!\n");
1096 		return -EINVAL;
1097 	}
1098 
1099 	blocksize = crypto_shash_blocksize(hash_tfm);
1100 	digestsize = crypto_shash_digestsize(hash_tfm);
1101 	if (keys->authkeylen > blocksize) {
1102 		ret = crypto_shash_tfm_digest(hash_tfm, keys->authkey,
1103 					      keys->authkeylen, ctx->a_key);
1104 		if (ret) {
1105 			pr_err("hisi_sec2: aead auth digest error!\n");
1106 			return -EINVAL;
1107 		}
1108 		ctx->a_key_len = digestsize;
1109 	} else {
1110 		memcpy(ctx->a_key, keys->authkey, keys->authkeylen);
1111 		ctx->a_key_len = keys->authkeylen;
1112 	}
1113 
1114 	return 0;
1115 }
1116 
1117 static int sec_aead_setauthsize(struct crypto_aead *aead, unsigned int authsize)
1118 {
1119 	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
1120 	struct sec_ctx *ctx = crypto_tfm_ctx(tfm);
1121 	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
1122 
1123 	if (unlikely(a_ctx->fallback_aead_tfm))
1124 		return crypto_aead_setauthsize(a_ctx->fallback_aead_tfm, authsize);
1125 
1126 	return 0;
1127 }
1128 
1129 static int sec_aead_fallback_setkey(struct sec_auth_ctx *a_ctx,
1130 				    struct crypto_aead *tfm, const u8 *key,
1131 				    unsigned int keylen)
1132 {
1133 	crypto_aead_clear_flags(a_ctx->fallback_aead_tfm, CRYPTO_TFM_REQ_MASK);
1134 	crypto_aead_set_flags(a_ctx->fallback_aead_tfm,
1135 			      crypto_aead_get_flags(tfm) & CRYPTO_TFM_REQ_MASK);
1136 	return crypto_aead_setkey(a_ctx->fallback_aead_tfm, key, keylen);
1137 }
1138 
1139 static int sec_aead_setkey(struct crypto_aead *tfm, const u8 *key,
1140 			   const u32 keylen, const enum sec_hash_alg a_alg,
1141 			   const enum sec_calg c_alg,
1142 			   const enum sec_mac_len mac_len,
1143 			   const enum sec_cmode c_mode)
1144 {
1145 	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1146 	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
1147 	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
1148 	struct device *dev = ctx->dev;
1149 	struct crypto_authenc_keys keys;
1150 	int ret;
1151 
1152 	ctx->a_ctx.a_alg = a_alg;
1153 	ctx->c_ctx.c_alg = c_alg;
1154 	ctx->a_ctx.mac_len = mac_len;
1155 	c_ctx->c_mode = c_mode;
1156 
1157 	if (c_mode == SEC_CMODE_CCM || c_mode == SEC_CMODE_GCM) {
1158 		ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
1159 		if (ret) {
1160 			dev_err(dev, "set sec aes ccm cipher key err!\n");
1161 			return ret;
1162 		}
1163 		memcpy(c_ctx->c_key, key, keylen);
1164 
1165 		if (unlikely(a_ctx->fallback_aead_tfm)) {
1166 			ret = sec_aead_fallback_setkey(a_ctx, tfm, key, keylen);
1167 			if (ret)
1168 				return ret;
1169 		}
1170 
1171 		return 0;
1172 	}
1173 
1174 	ret = crypto_authenc_extractkeys(&keys, key, keylen);
1175 	if (ret)
1176 		goto bad_key;
1177 
1178 	ret = sec_aead_aes_set_key(c_ctx, &keys);
1179 	if (ret) {
1180 		dev_err(dev, "set sec cipher key err!\n");
1181 		goto bad_key;
1182 	}
1183 
1184 	ret = sec_aead_auth_set_key(&ctx->a_ctx, &keys);
1185 	if (ret) {
1186 		dev_err(dev, "set sec auth key err!\n");
1187 		goto bad_key;
1188 	}
1189 
1190 	if ((ctx->a_ctx.mac_len & SEC_SQE_LEN_RATE_MASK)  ||
1191 	    (ctx->a_ctx.a_key_len & SEC_SQE_LEN_RATE_MASK)) {
1192 		ret = -EINVAL;
1193 		dev_err(dev, "MAC or AUTH key length error!\n");
1194 		goto bad_key;
1195 	}
1196 
1197 	return 0;
1198 
1199 bad_key:
1200 	memzero_explicit(&keys, sizeof(struct crypto_authenc_keys));
1201 	return ret;
1202 }
1203 
1204 
1205 #define GEN_SEC_AEAD_SETKEY_FUNC(name, aalg, calg, maclen, cmode)	\
1206 static int sec_setkey_##name(struct crypto_aead *tfm, const u8 *key,	\
1207 	u32 keylen)							\
1208 {									\
1209 	return sec_aead_setkey(tfm, key, keylen, aalg, calg, maclen, cmode);\
1210 }
1211 
1212 GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha1, SEC_A_HMAC_SHA1,
1213 			 SEC_CALG_AES, SEC_HMAC_SHA1_MAC, SEC_CMODE_CBC)
1214 GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha256, SEC_A_HMAC_SHA256,
1215 			 SEC_CALG_AES, SEC_HMAC_SHA256_MAC, SEC_CMODE_CBC)
1216 GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha512, SEC_A_HMAC_SHA512,
1217 			 SEC_CALG_AES, SEC_HMAC_SHA512_MAC, SEC_CMODE_CBC)
1218 GEN_SEC_AEAD_SETKEY_FUNC(aes_ccm, 0, SEC_CALG_AES,
1219 			 SEC_HMAC_CCM_MAC, SEC_CMODE_CCM)
1220 GEN_SEC_AEAD_SETKEY_FUNC(aes_gcm, 0, SEC_CALG_AES,
1221 			 SEC_HMAC_GCM_MAC, SEC_CMODE_GCM)
1222 GEN_SEC_AEAD_SETKEY_FUNC(sm4_ccm, 0, SEC_CALG_SM4,
1223 			 SEC_HMAC_CCM_MAC, SEC_CMODE_CCM)
1224 GEN_SEC_AEAD_SETKEY_FUNC(sm4_gcm, 0, SEC_CALG_SM4,
1225 			 SEC_HMAC_GCM_MAC, SEC_CMODE_GCM)
1226 
1227 static int sec_aead_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
1228 {
1229 	struct aead_request *aq = req->aead_req.aead_req;
1230 
1231 	return sec_cipher_map(ctx, req, aq->src, aq->dst);
1232 }
1233 
1234 static void sec_aead_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
1235 {
1236 	struct aead_request *aq = req->aead_req.aead_req;
1237 
1238 	sec_cipher_unmap(ctx, req, aq->src, aq->dst);
1239 }
1240 
1241 static int sec_request_transfer(struct sec_ctx *ctx, struct sec_req *req)
1242 {
1243 	int ret;
1244 
1245 	ret = ctx->req_op->buf_map(ctx, req);
1246 	if (unlikely(ret))
1247 		return ret;
1248 
1249 	ctx->req_op->do_transfer(ctx, req);
1250 
1251 	ret = ctx->req_op->bd_fill(ctx, req);
1252 	if (unlikely(ret))
1253 		goto unmap_req_buf;
1254 
1255 	return ret;
1256 
1257 unmap_req_buf:
1258 	ctx->req_op->buf_unmap(ctx, req);
1259 	return ret;
1260 }
1261 
1262 static void sec_request_untransfer(struct sec_ctx *ctx, struct sec_req *req)
1263 {
1264 	ctx->req_op->buf_unmap(ctx, req);
1265 }
1266 
1267 static void sec_skcipher_copy_iv(struct sec_ctx *ctx, struct sec_req *req)
1268 {
1269 	struct skcipher_request *sk_req = req->c_req.sk_req;
1270 	struct sec_cipher_req *c_req = &req->c_req;
1271 
1272 	memcpy(c_req->c_ivin, sk_req->iv, ctx->c_ctx.ivsize);
1273 }
1274 
1275 static int sec_skcipher_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
1276 {
1277 	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
1278 	struct sec_cipher_req *c_req = &req->c_req;
1279 	struct sec_sqe *sec_sqe = &req->sec_sqe;
1280 	u8 scene, sa_type, da_type;
1281 	u8 bd_type, cipher;
1282 	u8 de = 0;
1283 
1284 	memset(sec_sqe, 0, sizeof(struct sec_sqe));
1285 
1286 	sec_sqe->type2.c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
1287 	sec_sqe->type2.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma);
1288 	sec_sqe->type2.data_src_addr = cpu_to_le64(req->in_dma);
1289 	sec_sqe->type2.data_dst_addr = cpu_to_le64(c_req->c_out_dma);
1290 
1291 	sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_mode) <<
1292 						SEC_CMODE_OFFSET);
1293 	sec_sqe->type2.c_alg = c_ctx->c_alg;
1294 	sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
1295 						SEC_CKEY_OFFSET);
1296 
1297 	bd_type = SEC_BD_TYPE2;
1298 	if (c_req->encrypt)
1299 		cipher = SEC_CIPHER_ENC << SEC_CIPHER_OFFSET;
1300 	else
1301 		cipher = SEC_CIPHER_DEC << SEC_CIPHER_OFFSET;
1302 	sec_sqe->type_cipher_auth = bd_type | cipher;
1303 
1304 	/* Set destination and source address type */
1305 	if (req->use_pbuf) {
1306 		sa_type = SEC_PBUF << SEC_SRC_SGL_OFFSET;
1307 		da_type = SEC_PBUF << SEC_DST_SGL_OFFSET;
1308 	} else {
1309 		sa_type = SEC_SGL << SEC_SRC_SGL_OFFSET;
1310 		da_type = SEC_SGL << SEC_DST_SGL_OFFSET;
1311 	}
1312 
1313 	sec_sqe->sdm_addr_type |= da_type;
1314 	scene = SEC_COMM_SCENE << SEC_SCENE_OFFSET;
1315 	if (req->in_dma != c_req->c_out_dma)
1316 		de = 0x1 << SEC_DE_OFFSET;
1317 
1318 	sec_sqe->sds_sa_type = (de | scene | sa_type);
1319 
1320 	sec_sqe->type2.clen_ivhlen |= cpu_to_le32(c_req->c_len);
1321 	sec_sqe->type2.tag = cpu_to_le16((u16)req->req_id);
1322 
1323 	return 0;
1324 }
1325 
1326 static int sec_skcipher_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req)
1327 {
1328 	struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3;
1329 	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
1330 	struct sec_cipher_req *c_req = &req->c_req;
1331 	u32 bd_param = 0;
1332 	u16 cipher;
1333 
1334 	memset(sec_sqe3, 0, sizeof(struct sec_sqe3));
1335 
1336 	sec_sqe3->c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
1337 	sec_sqe3->no_scene.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma);
1338 	sec_sqe3->data_src_addr = cpu_to_le64(req->in_dma);
1339 	sec_sqe3->data_dst_addr = cpu_to_le64(c_req->c_out_dma);
1340 
1341 	sec_sqe3->c_mode_alg = ((u8)c_ctx->c_alg << SEC_CALG_OFFSET_V3) |
1342 						c_ctx->c_mode;
1343 	sec_sqe3->c_icv_key |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
1344 						SEC_CKEY_OFFSET_V3);
1345 
1346 	if (c_req->encrypt)
1347 		cipher = SEC_CIPHER_ENC;
1348 	else
1349 		cipher = SEC_CIPHER_DEC;
1350 	sec_sqe3->c_icv_key |= cpu_to_le16(cipher);
1351 
1352 	/* Set the CTR counter mode is 128bit rollover */
1353 	sec_sqe3->auth_mac_key = cpu_to_le32((u32)SEC_CTR_CNT_ROLLOVER <<
1354 					SEC_CTR_CNT_OFFSET);
1355 
1356 	if (req->use_pbuf) {
1357 		bd_param |= SEC_PBUF << SEC_SRC_SGL_OFFSET_V3;
1358 		bd_param |= SEC_PBUF << SEC_DST_SGL_OFFSET_V3;
1359 	} else {
1360 		bd_param |= SEC_SGL << SEC_SRC_SGL_OFFSET_V3;
1361 		bd_param |= SEC_SGL << SEC_DST_SGL_OFFSET_V3;
1362 	}
1363 
1364 	bd_param |= SEC_COMM_SCENE << SEC_SCENE_OFFSET_V3;
1365 	if (req->in_dma != c_req->c_out_dma)
1366 		bd_param |= 0x1 << SEC_DE_OFFSET_V3;
1367 
1368 	bd_param |= SEC_BD_TYPE3;
1369 	sec_sqe3->bd_param = cpu_to_le32(bd_param);
1370 
1371 	sec_sqe3->c_len_ivin |= cpu_to_le32(c_req->c_len);
1372 	sec_sqe3->tag = cpu_to_le64((unsigned long)req);
1373 
1374 	return 0;
1375 }
1376 
1377 /* increment counter (128-bit int) */
1378 static void ctr_iv_inc(__u8 *counter, __u8 bits, __u32 nums)
1379 {
1380 	do {
1381 		--bits;
1382 		nums += counter[bits];
1383 		counter[bits] = nums & BITS_MASK;
1384 		nums >>= BYTE_BITS;
1385 	} while (bits && nums);
1386 }
1387 
1388 static void sec_update_iv(struct sec_req *req, enum sec_alg_type alg_type)
1389 {
1390 	struct aead_request *aead_req = req->aead_req.aead_req;
1391 	struct skcipher_request *sk_req = req->c_req.sk_req;
1392 	u32 iv_size = req->ctx->c_ctx.ivsize;
1393 	struct scatterlist *sgl;
1394 	unsigned int cryptlen;
1395 	size_t sz;
1396 	u8 *iv;
1397 
1398 	if (req->c_req.encrypt)
1399 		sgl = alg_type == SEC_SKCIPHER ? sk_req->dst : aead_req->dst;
1400 	else
1401 		sgl = alg_type == SEC_SKCIPHER ? sk_req->src : aead_req->src;
1402 
1403 	if (alg_type == SEC_SKCIPHER) {
1404 		iv = sk_req->iv;
1405 		cryptlen = sk_req->cryptlen;
1406 	} else {
1407 		iv = aead_req->iv;
1408 		cryptlen = aead_req->cryptlen;
1409 	}
1410 
1411 	if (req->ctx->c_ctx.c_mode == SEC_CMODE_CBC) {
1412 		sz = sg_pcopy_to_buffer(sgl, sg_nents(sgl), iv, iv_size,
1413 					cryptlen - iv_size);
1414 		if (unlikely(sz != iv_size))
1415 			dev_err(req->ctx->dev, "copy output iv error!\n");
1416 	} else {
1417 		sz = cryptlen / iv_size;
1418 		if (cryptlen % iv_size)
1419 			sz += 1;
1420 		ctr_iv_inc(iv, iv_size, sz);
1421 	}
1422 }
1423 
1424 static struct sec_req *sec_back_req_clear(struct sec_ctx *ctx,
1425 				struct sec_qp_ctx *qp_ctx)
1426 {
1427 	struct sec_req *backlog_req = NULL;
1428 
1429 	spin_lock_bh(&qp_ctx->req_lock);
1430 	if (ctx->fake_req_limit >=
1431 	    atomic_read(&qp_ctx->qp->qp_status.used) &&
1432 	    !list_empty(&qp_ctx->backlog)) {
1433 		backlog_req = list_first_entry(&qp_ctx->backlog,
1434 				typeof(*backlog_req), backlog_head);
1435 		list_del(&backlog_req->backlog_head);
1436 	}
1437 	spin_unlock_bh(&qp_ctx->req_lock);
1438 
1439 	return backlog_req;
1440 }
1441 
1442 static void sec_skcipher_callback(struct sec_ctx *ctx, struct sec_req *req,
1443 				  int err)
1444 {
1445 	struct skcipher_request *sk_req = req->c_req.sk_req;
1446 	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
1447 	struct skcipher_request *backlog_sk_req;
1448 	struct sec_req *backlog_req;
1449 
1450 	sec_free_req_id(req);
1451 
1452 	/* IV output at encrypto of CBC/CTR mode */
1453 	if (!err && (ctx->c_ctx.c_mode == SEC_CMODE_CBC ||
1454 	    ctx->c_ctx.c_mode == SEC_CMODE_CTR) && req->c_req.encrypt)
1455 		sec_update_iv(req, SEC_SKCIPHER);
1456 
1457 	while (1) {
1458 		backlog_req = sec_back_req_clear(ctx, qp_ctx);
1459 		if (!backlog_req)
1460 			break;
1461 
1462 		backlog_sk_req = backlog_req->c_req.sk_req;
1463 		skcipher_request_complete(backlog_sk_req, -EINPROGRESS);
1464 		atomic64_inc(&ctx->sec->debug.dfx.recv_busy_cnt);
1465 	}
1466 
1467 	skcipher_request_complete(sk_req, err);
1468 }
1469 
1470 static void set_aead_auth_iv(struct sec_ctx *ctx, struct sec_req *req)
1471 {
1472 	struct aead_request *aead_req = req->aead_req.aead_req;
1473 	struct sec_cipher_req *c_req = &req->c_req;
1474 	struct sec_aead_req *a_req = &req->aead_req;
1475 	size_t authsize = ctx->a_ctx.mac_len;
1476 	u32 data_size = aead_req->cryptlen;
1477 	u8 flage = 0;
1478 	u8 cm, cl;
1479 
1480 	/* the specification has been checked in aead_iv_demension_check() */
1481 	cl = c_req->c_ivin[0] + 1;
1482 	c_req->c_ivin[ctx->c_ctx.ivsize - cl] = 0x00;
1483 	memset(&c_req->c_ivin[ctx->c_ctx.ivsize - cl], 0, cl);
1484 	c_req->c_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE1] = IV_CTR_INIT;
1485 
1486 	/* the last 3bit is L' */
1487 	flage |= c_req->c_ivin[0] & IV_CL_MASK;
1488 
1489 	/* the M' is bit3~bit5, the Flags is bit6 */
1490 	cm = (authsize - IV_CM_CAL_NUM) / IV_CM_CAL_NUM;
1491 	flage |= cm << IV_CM_OFFSET;
1492 	if (aead_req->assoclen)
1493 		flage |= 0x01 << IV_FLAGS_OFFSET;
1494 
1495 	memcpy(a_req->a_ivin, c_req->c_ivin, ctx->c_ctx.ivsize);
1496 	a_req->a_ivin[0] = flage;
1497 
1498 	/*
1499 	 * the last 32bit is counter's initial number,
1500 	 * but the nonce uses the first 16bit
1501 	 * the tail 16bit fill with the cipher length
1502 	 */
1503 	if (!c_req->encrypt)
1504 		data_size = aead_req->cryptlen - authsize;
1505 
1506 	a_req->a_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE1] =
1507 			data_size & IV_LAST_BYTE_MASK;
1508 	data_size >>= IV_BYTE_OFFSET;
1509 	a_req->a_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE2] =
1510 			data_size & IV_LAST_BYTE_MASK;
1511 }
1512 
1513 static void sec_aead_set_iv(struct sec_ctx *ctx, struct sec_req *req)
1514 {
1515 	struct aead_request *aead_req = req->aead_req.aead_req;
1516 	struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req);
1517 	size_t authsize = crypto_aead_authsize(tfm);
1518 	struct sec_cipher_req *c_req = &req->c_req;
1519 	struct sec_aead_req *a_req = &req->aead_req;
1520 
1521 	memcpy(c_req->c_ivin, aead_req->iv, ctx->c_ctx.ivsize);
1522 
1523 	if (ctx->c_ctx.c_mode == SEC_CMODE_CCM) {
1524 		/*
1525 		 * CCM 16Byte Cipher_IV: {1B_Flage,13B_IV,2B_counter},
1526 		 * the  counter must set to 0x01
1527 		 */
1528 		ctx->a_ctx.mac_len = authsize;
1529 		/* CCM 16Byte Auth_IV: {1B_AFlage,13B_IV,2B_Ptext_length} */
1530 		set_aead_auth_iv(ctx, req);
1531 	}
1532 
1533 	/* GCM 12Byte Cipher_IV == Auth_IV */
1534 	if (ctx->c_ctx.c_mode == SEC_CMODE_GCM) {
1535 		ctx->a_ctx.mac_len = authsize;
1536 		memcpy(a_req->a_ivin, c_req->c_ivin, SEC_AIV_SIZE);
1537 	}
1538 }
1539 
1540 static void sec_auth_bd_fill_xcm(struct sec_auth_ctx *ctx, int dir,
1541 				 struct sec_req *req, struct sec_sqe *sec_sqe)
1542 {
1543 	struct sec_aead_req *a_req = &req->aead_req;
1544 	struct aead_request *aq = a_req->aead_req;
1545 
1546 	/* C_ICV_Len is MAC size, 0x4 ~ 0x10 */
1547 	sec_sqe->type2.icvw_kmode |= cpu_to_le16((u16)ctx->mac_len);
1548 
1549 	/* mode set to CCM/GCM, don't set {A_Alg, AKey_Len, MAC_Len} */
1550 	sec_sqe->type2.a_key_addr = sec_sqe->type2.c_key_addr;
1551 	sec_sqe->type2.a_ivin_addr = cpu_to_le64(a_req->a_ivin_dma);
1552 	sec_sqe->type_cipher_auth |= SEC_NO_AUTH << SEC_AUTH_OFFSET;
1553 
1554 	if (dir)
1555 		sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH;
1556 	else
1557 		sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER;
1558 
1559 	sec_sqe->type2.alen_ivllen = cpu_to_le32(aq->assoclen);
1560 	sec_sqe->type2.auth_src_offset = cpu_to_le16(0x0);
1561 	sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1562 
1563 	sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma);
1564 }
1565 
1566 static void sec_auth_bd_fill_xcm_v3(struct sec_auth_ctx *ctx, int dir,
1567 				    struct sec_req *req, struct sec_sqe3 *sqe3)
1568 {
1569 	struct sec_aead_req *a_req = &req->aead_req;
1570 	struct aead_request *aq = a_req->aead_req;
1571 
1572 	/* C_ICV_Len is MAC size, 0x4 ~ 0x10 */
1573 	sqe3->c_icv_key |= cpu_to_le16((u16)ctx->mac_len << SEC_MAC_OFFSET_V3);
1574 
1575 	/* mode set to CCM/GCM, don't set {A_Alg, AKey_Len, MAC_Len} */
1576 	sqe3->a_key_addr = sqe3->c_key_addr;
1577 	sqe3->auth_ivin.a_ivin_addr = cpu_to_le64(a_req->a_ivin_dma);
1578 	sqe3->auth_mac_key |= SEC_NO_AUTH;
1579 
1580 	if (dir)
1581 		sqe3->huk_iv_seq &= SEC_CIPHER_AUTH_V3;
1582 	else
1583 		sqe3->huk_iv_seq |= SEC_AUTH_CIPHER_V3;
1584 
1585 	sqe3->a_len_key = cpu_to_le32(aq->assoclen);
1586 	sqe3->auth_src_offset = cpu_to_le16(0x0);
1587 	sqe3->cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1588 	sqe3->mac_addr = cpu_to_le64(a_req->out_mac_dma);
1589 }
1590 
1591 static void sec_auth_bd_fill_ex(struct sec_auth_ctx *ctx, int dir,
1592 			       struct sec_req *req, struct sec_sqe *sec_sqe)
1593 {
1594 	struct sec_aead_req *a_req = &req->aead_req;
1595 	struct sec_cipher_req *c_req = &req->c_req;
1596 	struct aead_request *aq = a_req->aead_req;
1597 
1598 	sec_sqe->type2.a_key_addr = cpu_to_le64(ctx->a_key_dma);
1599 
1600 	sec_sqe->type2.mac_key_alg =
1601 			cpu_to_le32(ctx->mac_len / SEC_SQE_LEN_RATE);
1602 
1603 	sec_sqe->type2.mac_key_alg |=
1604 			cpu_to_le32((u32)((ctx->a_key_len) /
1605 			SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET);
1606 
1607 	sec_sqe->type2.mac_key_alg |=
1608 			cpu_to_le32((u32)(ctx->a_alg) << SEC_AEAD_ALG_OFFSET);
1609 
1610 	if (dir) {
1611 		sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE1 << SEC_AUTH_OFFSET;
1612 		sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH;
1613 	} else {
1614 		sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE2 << SEC_AUTH_OFFSET;
1615 		sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER;
1616 	}
1617 	sec_sqe->type2.alen_ivllen = cpu_to_le32(c_req->c_len + aq->assoclen);
1618 
1619 	sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1620 
1621 	sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma);
1622 }
1623 
1624 static int sec_aead_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
1625 {
1626 	struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
1627 	struct sec_sqe *sec_sqe = &req->sec_sqe;
1628 	int ret;
1629 
1630 	ret = sec_skcipher_bd_fill(ctx, req);
1631 	if (unlikely(ret)) {
1632 		dev_err(ctx->dev, "skcipher bd fill is error!\n");
1633 		return ret;
1634 	}
1635 
1636 	if (ctx->c_ctx.c_mode == SEC_CMODE_CCM ||
1637 	    ctx->c_ctx.c_mode == SEC_CMODE_GCM)
1638 		sec_auth_bd_fill_xcm(auth_ctx, req->c_req.encrypt, req, sec_sqe);
1639 	else
1640 		sec_auth_bd_fill_ex(auth_ctx, req->c_req.encrypt, req, sec_sqe);
1641 
1642 	return 0;
1643 }
1644 
1645 static void sec_auth_bd_fill_ex_v3(struct sec_auth_ctx *ctx, int dir,
1646 				   struct sec_req *req, struct sec_sqe3 *sqe3)
1647 {
1648 	struct sec_aead_req *a_req = &req->aead_req;
1649 	struct sec_cipher_req *c_req = &req->c_req;
1650 	struct aead_request *aq = a_req->aead_req;
1651 
1652 	sqe3->a_key_addr = cpu_to_le64(ctx->a_key_dma);
1653 
1654 	sqe3->auth_mac_key |=
1655 			cpu_to_le32((u32)(ctx->mac_len /
1656 			SEC_SQE_LEN_RATE) << SEC_MAC_OFFSET_V3);
1657 
1658 	sqe3->auth_mac_key |=
1659 			cpu_to_le32((u32)(ctx->a_key_len /
1660 			SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET_V3);
1661 
1662 	sqe3->auth_mac_key |=
1663 			cpu_to_le32((u32)(ctx->a_alg) << SEC_AUTH_ALG_OFFSET_V3);
1664 
1665 	if (dir) {
1666 		sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE1);
1667 		sqe3->huk_iv_seq &= SEC_CIPHER_AUTH_V3;
1668 	} else {
1669 		sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE2);
1670 		sqe3->huk_iv_seq |= SEC_AUTH_CIPHER_V3;
1671 	}
1672 	sqe3->a_len_key = cpu_to_le32(c_req->c_len + aq->assoclen);
1673 
1674 	sqe3->cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1675 
1676 	sqe3->mac_addr = cpu_to_le64(a_req->out_mac_dma);
1677 }
1678 
1679 static int sec_aead_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req)
1680 {
1681 	struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
1682 	struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3;
1683 	int ret;
1684 
1685 	ret = sec_skcipher_bd_fill_v3(ctx, req);
1686 	if (unlikely(ret)) {
1687 		dev_err(ctx->dev, "skcipher bd3 fill is error!\n");
1688 		return ret;
1689 	}
1690 
1691 	if (ctx->c_ctx.c_mode == SEC_CMODE_CCM ||
1692 	    ctx->c_ctx.c_mode == SEC_CMODE_GCM)
1693 		sec_auth_bd_fill_xcm_v3(auth_ctx, req->c_req.encrypt,
1694 					req, sec_sqe3);
1695 	else
1696 		sec_auth_bd_fill_ex_v3(auth_ctx, req->c_req.encrypt,
1697 				       req, sec_sqe3);
1698 
1699 	return 0;
1700 }
1701 
1702 static void sec_aead_callback(struct sec_ctx *c, struct sec_req *req, int err)
1703 {
1704 	struct aead_request *a_req = req->aead_req.aead_req;
1705 	struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
1706 	struct sec_aead_req *aead_req = &req->aead_req;
1707 	struct sec_cipher_req *c_req = &req->c_req;
1708 	size_t authsize = crypto_aead_authsize(tfm);
1709 	struct sec_qp_ctx *qp_ctx = req->qp_ctx;
1710 	struct aead_request *backlog_aead_req;
1711 	struct sec_req *backlog_req;
1712 	size_t sz;
1713 
1714 	if (!err && c->c_ctx.c_mode == SEC_CMODE_CBC && c_req->encrypt)
1715 		sec_update_iv(req, SEC_AEAD);
1716 
1717 	/* Copy output mac */
1718 	if (!err && c_req->encrypt) {
1719 		struct scatterlist *sgl = a_req->dst;
1720 
1721 		sz = sg_pcopy_from_buffer(sgl, sg_nents(sgl),
1722 					  aead_req->out_mac,
1723 					  authsize, a_req->cryptlen +
1724 					  a_req->assoclen);
1725 		if (unlikely(sz != authsize)) {
1726 			dev_err(c->dev, "copy out mac err!\n");
1727 			err = -EINVAL;
1728 		}
1729 	}
1730 
1731 	sec_free_req_id(req);
1732 
1733 	while (1) {
1734 		backlog_req = sec_back_req_clear(c, qp_ctx);
1735 		if (!backlog_req)
1736 			break;
1737 
1738 		backlog_aead_req = backlog_req->aead_req.aead_req;
1739 		aead_request_complete(backlog_aead_req, -EINPROGRESS);
1740 		atomic64_inc(&c->sec->debug.dfx.recv_busy_cnt);
1741 	}
1742 
1743 	aead_request_complete(a_req, err);
1744 }
1745 
1746 static void sec_request_uninit(struct sec_ctx *ctx, struct sec_req *req)
1747 {
1748 	sec_free_req_id(req);
1749 	sec_free_queue_id(ctx, req);
1750 }
1751 
1752 static int sec_request_init(struct sec_ctx *ctx, struct sec_req *req)
1753 {
1754 	struct sec_qp_ctx *qp_ctx;
1755 	int queue_id;
1756 
1757 	/* To load balance */
1758 	queue_id = sec_alloc_queue_id(ctx, req);
1759 	qp_ctx = &ctx->qp_ctx[queue_id];
1760 
1761 	req->req_id = sec_alloc_req_id(req, qp_ctx);
1762 	if (unlikely(req->req_id < 0)) {
1763 		sec_free_queue_id(ctx, req);
1764 		return req->req_id;
1765 	}
1766 
1767 	return 0;
1768 }
1769 
1770 static int sec_process(struct sec_ctx *ctx, struct sec_req *req)
1771 {
1772 	struct sec_cipher_req *c_req = &req->c_req;
1773 	int ret;
1774 
1775 	ret = sec_request_init(ctx, req);
1776 	if (unlikely(ret))
1777 		return ret;
1778 
1779 	ret = sec_request_transfer(ctx, req);
1780 	if (unlikely(ret))
1781 		goto err_uninit_req;
1782 
1783 	/* Output IV as decrypto */
1784 	if (!req->c_req.encrypt && (ctx->c_ctx.c_mode == SEC_CMODE_CBC ||
1785 	    ctx->c_ctx.c_mode == SEC_CMODE_CTR))
1786 		sec_update_iv(req, ctx->alg_type);
1787 
1788 	ret = ctx->req_op->bd_send(ctx, req);
1789 	if (unlikely((ret != -EBUSY && ret != -EINPROGRESS) ||
1790 		(ret == -EBUSY && !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG)))) {
1791 		dev_err_ratelimited(ctx->dev, "send sec request failed!\n");
1792 		goto err_send_req;
1793 	}
1794 
1795 	return ret;
1796 
1797 err_send_req:
1798 	/* As failing, restore the IV from user */
1799 	if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt) {
1800 		if (ctx->alg_type == SEC_SKCIPHER)
1801 			memcpy(req->c_req.sk_req->iv, c_req->c_ivin,
1802 			       ctx->c_ctx.ivsize);
1803 		else
1804 			memcpy(req->aead_req.aead_req->iv, c_req->c_ivin,
1805 			       ctx->c_ctx.ivsize);
1806 	}
1807 
1808 	sec_request_untransfer(ctx, req);
1809 err_uninit_req:
1810 	sec_request_uninit(ctx, req);
1811 	return ret;
1812 }
1813 
1814 static const struct sec_req_op sec_skcipher_req_ops = {
1815 	.buf_map	= sec_skcipher_sgl_map,
1816 	.buf_unmap	= sec_skcipher_sgl_unmap,
1817 	.do_transfer	= sec_skcipher_copy_iv,
1818 	.bd_fill	= sec_skcipher_bd_fill,
1819 	.bd_send	= sec_bd_send,
1820 	.callback	= sec_skcipher_callback,
1821 	.process	= sec_process,
1822 };
1823 
1824 static const struct sec_req_op sec_aead_req_ops = {
1825 	.buf_map	= sec_aead_sgl_map,
1826 	.buf_unmap	= sec_aead_sgl_unmap,
1827 	.do_transfer	= sec_aead_set_iv,
1828 	.bd_fill	= sec_aead_bd_fill,
1829 	.bd_send	= sec_bd_send,
1830 	.callback	= sec_aead_callback,
1831 	.process	= sec_process,
1832 };
1833 
1834 static const struct sec_req_op sec_skcipher_req_ops_v3 = {
1835 	.buf_map	= sec_skcipher_sgl_map,
1836 	.buf_unmap	= sec_skcipher_sgl_unmap,
1837 	.do_transfer	= sec_skcipher_copy_iv,
1838 	.bd_fill	= sec_skcipher_bd_fill_v3,
1839 	.bd_send	= sec_bd_send,
1840 	.callback	= sec_skcipher_callback,
1841 	.process	= sec_process,
1842 };
1843 
1844 static const struct sec_req_op sec_aead_req_ops_v3 = {
1845 	.buf_map	= sec_aead_sgl_map,
1846 	.buf_unmap	= sec_aead_sgl_unmap,
1847 	.do_transfer	= sec_aead_set_iv,
1848 	.bd_fill	= sec_aead_bd_fill_v3,
1849 	.bd_send	= sec_bd_send,
1850 	.callback	= sec_aead_callback,
1851 	.process	= sec_process,
1852 };
1853 
1854 static int sec_skcipher_ctx_init(struct crypto_skcipher *tfm)
1855 {
1856 	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
1857 	int ret;
1858 
1859 	ret = sec_skcipher_init(tfm);
1860 	if (ret)
1861 		return ret;
1862 
1863 	if (ctx->sec->qm.ver < QM_HW_V3) {
1864 		ctx->type_supported = SEC_BD_TYPE2;
1865 		ctx->req_op = &sec_skcipher_req_ops;
1866 	} else {
1867 		ctx->type_supported = SEC_BD_TYPE3;
1868 		ctx->req_op = &sec_skcipher_req_ops_v3;
1869 	}
1870 
1871 	return ret;
1872 }
1873 
1874 static void sec_skcipher_ctx_exit(struct crypto_skcipher *tfm)
1875 {
1876 	sec_skcipher_uninit(tfm);
1877 }
1878 
1879 static int sec_aead_init(struct crypto_aead *tfm)
1880 {
1881 	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1882 	int ret;
1883 
1884 	crypto_aead_set_reqsize(tfm, sizeof(struct sec_req));
1885 	ctx->alg_type = SEC_AEAD;
1886 	ctx->c_ctx.ivsize = crypto_aead_ivsize(tfm);
1887 	if (ctx->c_ctx.ivsize < SEC_AIV_SIZE ||
1888 	    ctx->c_ctx.ivsize > SEC_IV_SIZE) {
1889 		pr_err("get error aead iv size!\n");
1890 		return -EINVAL;
1891 	}
1892 
1893 	ret = sec_ctx_base_init(ctx);
1894 	if (ret)
1895 		return ret;
1896 	if (ctx->sec->qm.ver < QM_HW_V3) {
1897 		ctx->type_supported = SEC_BD_TYPE2;
1898 		ctx->req_op = &sec_aead_req_ops;
1899 	} else {
1900 		ctx->type_supported = SEC_BD_TYPE3;
1901 		ctx->req_op = &sec_aead_req_ops_v3;
1902 	}
1903 
1904 	ret = sec_auth_init(ctx);
1905 	if (ret)
1906 		goto err_auth_init;
1907 
1908 	ret = sec_cipher_init(ctx);
1909 	if (ret)
1910 		goto err_cipher_init;
1911 
1912 	return ret;
1913 
1914 err_cipher_init:
1915 	sec_auth_uninit(ctx);
1916 err_auth_init:
1917 	sec_ctx_base_uninit(ctx);
1918 	return ret;
1919 }
1920 
1921 static void sec_aead_exit(struct crypto_aead *tfm)
1922 {
1923 	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1924 
1925 	sec_cipher_uninit(ctx);
1926 	sec_auth_uninit(ctx);
1927 	sec_ctx_base_uninit(ctx);
1928 }
1929 
1930 static int sec_aead_ctx_init(struct crypto_aead *tfm, const char *hash_name)
1931 {
1932 	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1933 	struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
1934 	int ret;
1935 
1936 	ret = sec_aead_init(tfm);
1937 	if (ret) {
1938 		pr_err("hisi_sec2: aead init error!\n");
1939 		return ret;
1940 	}
1941 
1942 	auth_ctx->hash_tfm = crypto_alloc_shash(hash_name, 0, 0);
1943 	if (IS_ERR(auth_ctx->hash_tfm)) {
1944 		dev_err(ctx->dev, "aead alloc shash error!\n");
1945 		sec_aead_exit(tfm);
1946 		return PTR_ERR(auth_ctx->hash_tfm);
1947 	}
1948 
1949 	return 0;
1950 }
1951 
1952 static void sec_aead_ctx_exit(struct crypto_aead *tfm)
1953 {
1954 	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1955 
1956 	crypto_free_shash(ctx->a_ctx.hash_tfm);
1957 	sec_aead_exit(tfm);
1958 }
1959 
1960 static int sec_aead_xcm_ctx_init(struct crypto_aead *tfm)
1961 {
1962 	struct aead_alg *alg = crypto_aead_alg(tfm);
1963 	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1964 	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
1965 	const char *aead_name = alg->base.cra_name;
1966 	int ret;
1967 
1968 	ret = sec_aead_init(tfm);
1969 	if (ret) {
1970 		dev_err(ctx->dev, "hisi_sec2: aead xcm init error!\n");
1971 		return ret;
1972 	}
1973 
1974 	a_ctx->fallback_aead_tfm = crypto_alloc_aead(aead_name, 0,
1975 						     CRYPTO_ALG_NEED_FALLBACK |
1976 						     CRYPTO_ALG_ASYNC);
1977 	if (IS_ERR(a_ctx->fallback_aead_tfm)) {
1978 		dev_err(ctx->dev, "aead driver alloc fallback tfm error!\n");
1979 		sec_aead_exit(tfm);
1980 		return PTR_ERR(a_ctx->fallback_aead_tfm);
1981 	}
1982 	a_ctx->fallback = false;
1983 
1984 	return 0;
1985 }
1986 
1987 static void sec_aead_xcm_ctx_exit(struct crypto_aead *tfm)
1988 {
1989 	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1990 
1991 	crypto_free_aead(ctx->a_ctx.fallback_aead_tfm);
1992 	sec_aead_exit(tfm);
1993 }
1994 
1995 static int sec_aead_sha1_ctx_init(struct crypto_aead *tfm)
1996 {
1997 	return sec_aead_ctx_init(tfm, "sha1");
1998 }
1999 
2000 static int sec_aead_sha256_ctx_init(struct crypto_aead *tfm)
2001 {
2002 	return sec_aead_ctx_init(tfm, "sha256");
2003 }
2004 
2005 static int sec_aead_sha512_ctx_init(struct crypto_aead *tfm)
2006 {
2007 	return sec_aead_ctx_init(tfm, "sha512");
2008 }
2009 
2010 static int sec_skcipher_cryptlen_check(struct sec_ctx *ctx,
2011 	struct sec_req *sreq)
2012 {
2013 	u32 cryptlen = sreq->c_req.sk_req->cryptlen;
2014 	struct device *dev = ctx->dev;
2015 	u8 c_mode = ctx->c_ctx.c_mode;
2016 	int ret = 0;
2017 
2018 	switch (c_mode) {
2019 	case SEC_CMODE_XTS:
2020 		if (unlikely(cryptlen < AES_BLOCK_SIZE)) {
2021 			dev_err(dev, "skcipher XTS mode input length error!\n");
2022 			ret = -EINVAL;
2023 		}
2024 		break;
2025 	case SEC_CMODE_ECB:
2026 	case SEC_CMODE_CBC:
2027 		if (unlikely(cryptlen & (AES_BLOCK_SIZE - 1))) {
2028 			dev_err(dev, "skcipher AES input length error!\n");
2029 			ret = -EINVAL;
2030 		}
2031 		break;
2032 	case SEC_CMODE_CTR:
2033 		if (unlikely(ctx->sec->qm.ver < QM_HW_V3)) {
2034 			dev_err(dev, "skcipher HW version error!\n");
2035 			ret = -EINVAL;
2036 		}
2037 		break;
2038 	default:
2039 		ret = -EINVAL;
2040 	}
2041 
2042 	return ret;
2043 }
2044 
2045 static int sec_skcipher_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
2046 {
2047 	struct skcipher_request *sk_req = sreq->c_req.sk_req;
2048 	struct device *dev = ctx->dev;
2049 	u8 c_alg = ctx->c_ctx.c_alg;
2050 
2051 	if (unlikely(!sk_req->src || !sk_req->dst ||
2052 		     sk_req->cryptlen > MAX_INPUT_DATA_LEN)) {
2053 		dev_err(dev, "skcipher input param error!\n");
2054 		return -EINVAL;
2055 	}
2056 	sreq->c_req.c_len = sk_req->cryptlen;
2057 
2058 	if (ctx->pbuf_supported && sk_req->cryptlen <= SEC_PBUF_SZ)
2059 		sreq->use_pbuf = true;
2060 	else
2061 		sreq->use_pbuf = false;
2062 
2063 	if (c_alg == SEC_CALG_3DES) {
2064 		if (unlikely(sk_req->cryptlen & (DES3_EDE_BLOCK_SIZE - 1))) {
2065 			dev_err(dev, "skcipher 3des input length error!\n");
2066 			return -EINVAL;
2067 		}
2068 		return 0;
2069 	} else if (c_alg == SEC_CALG_AES || c_alg == SEC_CALG_SM4) {
2070 		return sec_skcipher_cryptlen_check(ctx, sreq);
2071 	}
2072 
2073 	dev_err(dev, "skcipher algorithm error!\n");
2074 
2075 	return -EINVAL;
2076 }
2077 
2078 static int sec_skcipher_soft_crypto(struct sec_ctx *ctx,
2079 				    struct skcipher_request *sreq, bool encrypt)
2080 {
2081 	struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
2082 	SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, c_ctx->fbtfm);
2083 	struct device *dev = ctx->dev;
2084 	int ret;
2085 
2086 	if (!c_ctx->fbtfm) {
2087 		dev_err_ratelimited(dev, "the soft tfm isn't supported in the current system.\n");
2088 		return -EINVAL;
2089 	}
2090 
2091 	skcipher_request_set_sync_tfm(subreq, c_ctx->fbtfm);
2092 
2093 	/* software need sync mode to do crypto */
2094 	skcipher_request_set_callback(subreq, sreq->base.flags,
2095 				      NULL, NULL);
2096 	skcipher_request_set_crypt(subreq, sreq->src, sreq->dst,
2097 				   sreq->cryptlen, sreq->iv);
2098 	if (encrypt)
2099 		ret = crypto_skcipher_encrypt(subreq);
2100 	else
2101 		ret = crypto_skcipher_decrypt(subreq);
2102 
2103 	skcipher_request_zero(subreq);
2104 
2105 	return ret;
2106 }
2107 
2108 static int sec_skcipher_crypto(struct skcipher_request *sk_req, bool encrypt)
2109 {
2110 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(sk_req);
2111 	struct sec_req *req = skcipher_request_ctx(sk_req);
2112 	struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
2113 	int ret;
2114 
2115 	if (!sk_req->cryptlen) {
2116 		if (ctx->c_ctx.c_mode == SEC_CMODE_XTS)
2117 			return -EINVAL;
2118 		return 0;
2119 	}
2120 
2121 	req->flag = sk_req->base.flags;
2122 	req->c_req.sk_req = sk_req;
2123 	req->c_req.encrypt = encrypt;
2124 	req->ctx = ctx;
2125 
2126 	ret = sec_skcipher_param_check(ctx, req);
2127 	if (unlikely(ret))
2128 		return -EINVAL;
2129 
2130 	if (unlikely(ctx->c_ctx.fallback))
2131 		return sec_skcipher_soft_crypto(ctx, sk_req, encrypt);
2132 
2133 	return ctx->req_op->process(ctx, req);
2134 }
2135 
2136 static int sec_skcipher_encrypt(struct skcipher_request *sk_req)
2137 {
2138 	return sec_skcipher_crypto(sk_req, true);
2139 }
2140 
2141 static int sec_skcipher_decrypt(struct skcipher_request *sk_req)
2142 {
2143 	return sec_skcipher_crypto(sk_req, false);
2144 }
2145 
2146 #define SEC_SKCIPHER_ALG(sec_cra_name, sec_set_key, \
2147 	sec_min_key_size, sec_max_key_size, blk_size, iv_size)\
2148 {\
2149 	.base = {\
2150 		.cra_name = sec_cra_name,\
2151 		.cra_driver_name = "hisi_sec_"sec_cra_name,\
2152 		.cra_priority = SEC_PRIORITY,\
2153 		.cra_flags = CRYPTO_ALG_ASYNC |\
2154 		 CRYPTO_ALG_NEED_FALLBACK,\
2155 		.cra_blocksize = blk_size,\
2156 		.cra_ctxsize = sizeof(struct sec_ctx),\
2157 		.cra_module = THIS_MODULE,\
2158 	},\
2159 	.init = sec_skcipher_ctx_init,\
2160 	.exit = sec_skcipher_ctx_exit,\
2161 	.setkey = sec_set_key,\
2162 	.decrypt = sec_skcipher_decrypt,\
2163 	.encrypt = sec_skcipher_encrypt,\
2164 	.min_keysize = sec_min_key_size,\
2165 	.max_keysize = sec_max_key_size,\
2166 	.ivsize = iv_size,\
2167 }
2168 
2169 static struct sec_skcipher sec_skciphers[] = {
2170 	{
2171 		.alg_msk = BIT(0),
2172 		.alg = SEC_SKCIPHER_ALG("ecb(aes)", sec_setkey_aes_ecb, AES_MIN_KEY_SIZE,
2173 					AES_MAX_KEY_SIZE, AES_BLOCK_SIZE, 0),
2174 	},
2175 	{
2176 		.alg_msk = BIT(1),
2177 		.alg = SEC_SKCIPHER_ALG("cbc(aes)", sec_setkey_aes_cbc, AES_MIN_KEY_SIZE,
2178 					AES_MAX_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
2179 	},
2180 	{
2181 		.alg_msk = BIT(2),
2182 		.alg = SEC_SKCIPHER_ALG("ctr(aes)", sec_setkey_aes_ctr,	AES_MIN_KEY_SIZE,
2183 					AES_MAX_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
2184 	},
2185 	{
2186 		.alg_msk = BIT(3),
2187 		.alg = SEC_SKCIPHER_ALG("xts(aes)", sec_setkey_aes_xts,	SEC_XTS_MIN_KEY_SIZE,
2188 					SEC_XTS_MAX_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
2189 	},
2190 	{
2191 		.alg_msk = BIT(12),
2192 		.alg = SEC_SKCIPHER_ALG("cbc(sm4)", sec_setkey_sm4_cbc,	AES_MIN_KEY_SIZE,
2193 					AES_MIN_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
2194 	},
2195 	{
2196 		.alg_msk = BIT(13),
2197 		.alg = SEC_SKCIPHER_ALG("ctr(sm4)", sec_setkey_sm4_ctr, AES_MIN_KEY_SIZE,
2198 					AES_MIN_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
2199 	},
2200 	{
2201 		.alg_msk = BIT(14),
2202 		.alg = SEC_SKCIPHER_ALG("xts(sm4)", sec_setkey_sm4_xts,	SEC_XTS_MIN_KEY_SIZE,
2203 					SEC_XTS_MIN_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
2204 	},
2205 	{
2206 		.alg_msk = BIT(23),
2207 		.alg = SEC_SKCIPHER_ALG("ecb(des3_ede)", sec_setkey_3des_ecb, SEC_DES3_3KEY_SIZE,
2208 					SEC_DES3_3KEY_SIZE, DES3_EDE_BLOCK_SIZE, 0),
2209 	},
2210 	{
2211 		.alg_msk = BIT(24),
2212 		.alg = SEC_SKCIPHER_ALG("cbc(des3_ede)", sec_setkey_3des_cbc, SEC_DES3_3KEY_SIZE,
2213 					SEC_DES3_3KEY_SIZE, DES3_EDE_BLOCK_SIZE,
2214 					DES3_EDE_BLOCK_SIZE),
2215 	},
2216 };
2217 
2218 static int aead_iv_demension_check(struct aead_request *aead_req)
2219 {
2220 	u8 cl;
2221 
2222 	cl = aead_req->iv[0] + 1;
2223 	if (cl < IV_CL_MIN || cl > IV_CL_MAX)
2224 		return -EINVAL;
2225 
2226 	if (cl < IV_CL_MID && aead_req->cryptlen >> (BYTE_BITS * cl))
2227 		return -EOVERFLOW;
2228 
2229 	return 0;
2230 }
2231 
2232 static int sec_aead_spec_check(struct sec_ctx *ctx, struct sec_req *sreq)
2233 {
2234 	struct aead_request *req = sreq->aead_req.aead_req;
2235 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2236 	size_t authsize = crypto_aead_authsize(tfm);
2237 	u8 c_mode = ctx->c_ctx.c_mode;
2238 	struct device *dev = ctx->dev;
2239 	int ret;
2240 
2241 	if (unlikely(req->cryptlen + req->assoclen > MAX_INPUT_DATA_LEN ||
2242 	    req->assoclen > SEC_MAX_AAD_LEN)) {
2243 		dev_err(dev, "aead input spec error!\n");
2244 		return -EINVAL;
2245 	}
2246 
2247 	if (unlikely((c_mode == SEC_CMODE_GCM && authsize < DES_BLOCK_SIZE) ||
2248 	   (c_mode == SEC_CMODE_CCM && (authsize < MIN_MAC_LEN ||
2249 		authsize & MAC_LEN_MASK)))) {
2250 		dev_err(dev, "aead input mac length error!\n");
2251 		return -EINVAL;
2252 	}
2253 
2254 	if (c_mode == SEC_CMODE_CCM) {
2255 		if (unlikely(req->assoclen > SEC_MAX_CCM_AAD_LEN)) {
2256 			dev_err_ratelimited(dev, "CCM input aad parameter is too long!\n");
2257 			return -EINVAL;
2258 		}
2259 		ret = aead_iv_demension_check(req);
2260 		if (ret) {
2261 			dev_err(dev, "aead input iv param error!\n");
2262 			return ret;
2263 		}
2264 	}
2265 
2266 	if (sreq->c_req.encrypt)
2267 		sreq->c_req.c_len = req->cryptlen;
2268 	else
2269 		sreq->c_req.c_len = req->cryptlen - authsize;
2270 	if (c_mode == SEC_CMODE_CBC) {
2271 		if (unlikely(sreq->c_req.c_len & (AES_BLOCK_SIZE - 1))) {
2272 			dev_err(dev, "aead crypto length error!\n");
2273 			return -EINVAL;
2274 		}
2275 	}
2276 
2277 	return 0;
2278 }
2279 
2280 static int sec_aead_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
2281 {
2282 	struct aead_request *req = sreq->aead_req.aead_req;
2283 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2284 	size_t authsize = crypto_aead_authsize(tfm);
2285 	struct device *dev = ctx->dev;
2286 	u8 c_alg = ctx->c_ctx.c_alg;
2287 
2288 	if (unlikely(!req->src || !req->dst)) {
2289 		dev_err(dev, "aead input param error!\n");
2290 		return -EINVAL;
2291 	}
2292 
2293 	if (ctx->sec->qm.ver == QM_HW_V2) {
2294 		if (unlikely(!req->cryptlen || (!sreq->c_req.encrypt &&
2295 		    req->cryptlen <= authsize))) {
2296 			ctx->a_ctx.fallback = true;
2297 			return -EINVAL;
2298 		}
2299 	}
2300 
2301 	/* Support AES or SM4 */
2302 	if (unlikely(c_alg != SEC_CALG_AES && c_alg != SEC_CALG_SM4)) {
2303 		dev_err(dev, "aead crypto alg error!\n");
2304 		return -EINVAL;
2305 	}
2306 
2307 	if (unlikely(sec_aead_spec_check(ctx, sreq)))
2308 		return -EINVAL;
2309 
2310 	if (ctx->pbuf_supported && (req->cryptlen + req->assoclen) <=
2311 		SEC_PBUF_SZ)
2312 		sreq->use_pbuf = true;
2313 	else
2314 		sreq->use_pbuf = false;
2315 
2316 	return 0;
2317 }
2318 
2319 static int sec_aead_soft_crypto(struct sec_ctx *ctx,
2320 				struct aead_request *aead_req,
2321 				bool encrypt)
2322 {
2323 	struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
2324 	struct device *dev = ctx->dev;
2325 	struct aead_request *subreq;
2326 	int ret;
2327 
2328 	/* Kunpeng920 aead mode not support input 0 size */
2329 	if (!a_ctx->fallback_aead_tfm) {
2330 		dev_err(dev, "aead fallback tfm is NULL!\n");
2331 		return -EINVAL;
2332 	}
2333 
2334 	subreq = aead_request_alloc(a_ctx->fallback_aead_tfm, GFP_KERNEL);
2335 	if (!subreq)
2336 		return -ENOMEM;
2337 
2338 	aead_request_set_tfm(subreq, a_ctx->fallback_aead_tfm);
2339 	aead_request_set_callback(subreq, aead_req->base.flags,
2340 				  aead_req->base.complete, aead_req->base.data);
2341 	aead_request_set_crypt(subreq, aead_req->src, aead_req->dst,
2342 			       aead_req->cryptlen, aead_req->iv);
2343 	aead_request_set_ad(subreq, aead_req->assoclen);
2344 
2345 	if (encrypt)
2346 		ret = crypto_aead_encrypt(subreq);
2347 	else
2348 		ret = crypto_aead_decrypt(subreq);
2349 	aead_request_free(subreq);
2350 
2351 	return ret;
2352 }
2353 
2354 static int sec_aead_crypto(struct aead_request *a_req, bool encrypt)
2355 {
2356 	struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
2357 	struct sec_req *req = aead_request_ctx(a_req);
2358 	struct sec_ctx *ctx = crypto_aead_ctx(tfm);
2359 	int ret;
2360 
2361 	req->flag = a_req->base.flags;
2362 	req->aead_req.aead_req = a_req;
2363 	req->c_req.encrypt = encrypt;
2364 	req->ctx = ctx;
2365 
2366 	ret = sec_aead_param_check(ctx, req);
2367 	if (unlikely(ret)) {
2368 		if (ctx->a_ctx.fallback)
2369 			return sec_aead_soft_crypto(ctx, a_req, encrypt);
2370 		return -EINVAL;
2371 	}
2372 
2373 	return ctx->req_op->process(ctx, req);
2374 }
2375 
2376 static int sec_aead_encrypt(struct aead_request *a_req)
2377 {
2378 	return sec_aead_crypto(a_req, true);
2379 }
2380 
2381 static int sec_aead_decrypt(struct aead_request *a_req)
2382 {
2383 	return sec_aead_crypto(a_req, false);
2384 }
2385 
2386 #define SEC_AEAD_ALG(sec_cra_name, sec_set_key, ctx_init,\
2387 			 ctx_exit, blk_size, iv_size, max_authsize)\
2388 {\
2389 	.base = {\
2390 		.cra_name = sec_cra_name,\
2391 		.cra_driver_name = "hisi_sec_"sec_cra_name,\
2392 		.cra_priority = SEC_PRIORITY,\
2393 		.cra_flags = CRYPTO_ALG_ASYNC |\
2394 		 CRYPTO_ALG_NEED_FALLBACK,\
2395 		.cra_blocksize = blk_size,\
2396 		.cra_ctxsize = sizeof(struct sec_ctx),\
2397 		.cra_module = THIS_MODULE,\
2398 	},\
2399 	.init = ctx_init,\
2400 	.exit = ctx_exit,\
2401 	.setkey = sec_set_key,\
2402 	.setauthsize = sec_aead_setauthsize,\
2403 	.decrypt = sec_aead_decrypt,\
2404 	.encrypt = sec_aead_encrypt,\
2405 	.ivsize = iv_size,\
2406 	.maxauthsize = max_authsize,\
2407 }
2408 
2409 static struct sec_aead sec_aeads[] = {
2410 	{
2411 		.alg_msk = BIT(6),
2412 		.alg = SEC_AEAD_ALG("ccm(aes)", sec_setkey_aes_ccm, sec_aead_xcm_ctx_init,
2413 				    sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE,
2414 				    AES_BLOCK_SIZE),
2415 	},
2416 	{
2417 		.alg_msk = BIT(7),
2418 		.alg = SEC_AEAD_ALG("gcm(aes)", sec_setkey_aes_gcm, sec_aead_xcm_ctx_init,
2419 				    sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, SEC_AIV_SIZE,
2420 				    AES_BLOCK_SIZE),
2421 	},
2422 	{
2423 		.alg_msk = BIT(17),
2424 		.alg = SEC_AEAD_ALG("ccm(sm4)", sec_setkey_sm4_ccm, sec_aead_xcm_ctx_init,
2425 				    sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE,
2426 				    AES_BLOCK_SIZE),
2427 	},
2428 	{
2429 		.alg_msk = BIT(18),
2430 		.alg = SEC_AEAD_ALG("gcm(sm4)", sec_setkey_sm4_gcm, sec_aead_xcm_ctx_init,
2431 				    sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, SEC_AIV_SIZE,
2432 				    AES_BLOCK_SIZE),
2433 	},
2434 	{
2435 		.alg_msk = BIT(43),
2436 		.alg = SEC_AEAD_ALG("authenc(hmac(sha1),cbc(aes))", sec_setkey_aes_cbc_sha1,
2437 				    sec_aead_sha1_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE,
2438 				    AES_BLOCK_SIZE, SHA1_DIGEST_SIZE),
2439 	},
2440 	{
2441 		.alg_msk = BIT(44),
2442 		.alg = SEC_AEAD_ALG("authenc(hmac(sha256),cbc(aes))", sec_setkey_aes_cbc_sha256,
2443 				    sec_aead_sha256_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE,
2444 				    AES_BLOCK_SIZE, SHA256_DIGEST_SIZE),
2445 	},
2446 	{
2447 		.alg_msk = BIT(45),
2448 		.alg = SEC_AEAD_ALG("authenc(hmac(sha512),cbc(aes))", sec_setkey_aes_cbc_sha512,
2449 				    sec_aead_sha512_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE,
2450 				    AES_BLOCK_SIZE, SHA512_DIGEST_SIZE),
2451 	},
2452 };
2453 
2454 static void sec_unregister_skcipher(u64 alg_mask, int end)
2455 {
2456 	int i;
2457 
2458 	for (i = 0; i < end; i++)
2459 		if (sec_skciphers[i].alg_msk & alg_mask)
2460 			crypto_unregister_skcipher(&sec_skciphers[i].alg);
2461 }
2462 
2463 static int sec_register_skcipher(u64 alg_mask)
2464 {
2465 	int i, ret, count;
2466 
2467 	count = ARRAY_SIZE(sec_skciphers);
2468 
2469 	for (i = 0; i < count; i++) {
2470 		if (!(sec_skciphers[i].alg_msk & alg_mask))
2471 			continue;
2472 
2473 		ret = crypto_register_skcipher(&sec_skciphers[i].alg);
2474 		if (ret)
2475 			goto err;
2476 	}
2477 
2478 	return 0;
2479 
2480 err:
2481 	sec_unregister_skcipher(alg_mask, i);
2482 
2483 	return ret;
2484 }
2485 
2486 static void sec_unregister_aead(u64 alg_mask, int end)
2487 {
2488 	int i;
2489 
2490 	for (i = 0; i < end; i++)
2491 		if (sec_aeads[i].alg_msk & alg_mask)
2492 			crypto_unregister_aead(&sec_aeads[i].alg);
2493 }
2494 
2495 static int sec_register_aead(u64 alg_mask)
2496 {
2497 	int i, ret, count;
2498 
2499 	count = ARRAY_SIZE(sec_aeads);
2500 
2501 	for (i = 0; i < count; i++) {
2502 		if (!(sec_aeads[i].alg_msk & alg_mask))
2503 			continue;
2504 
2505 		ret = crypto_register_aead(&sec_aeads[i].alg);
2506 		if (ret)
2507 			goto err;
2508 	}
2509 
2510 	return 0;
2511 
2512 err:
2513 	sec_unregister_aead(alg_mask, i);
2514 
2515 	return ret;
2516 }
2517 
2518 int sec_register_to_crypto(struct hisi_qm *qm)
2519 {
2520 	u64 alg_mask;
2521 	int ret = 0;
2522 
2523 	alg_mask = sec_get_alg_bitmap(qm, SEC_DRV_ALG_BITMAP_HIGH_TB,
2524 				      SEC_DRV_ALG_BITMAP_LOW_TB);
2525 
2526 	mutex_lock(&sec_algs_lock);
2527 	if (sec_available_devs) {
2528 		sec_available_devs++;
2529 		goto unlock;
2530 	}
2531 
2532 	ret = sec_register_skcipher(alg_mask);
2533 	if (ret)
2534 		goto unlock;
2535 
2536 	ret = sec_register_aead(alg_mask);
2537 	if (ret)
2538 		goto unreg_skcipher;
2539 
2540 	sec_available_devs++;
2541 	mutex_unlock(&sec_algs_lock);
2542 
2543 	return 0;
2544 
2545 unreg_skcipher:
2546 	sec_unregister_skcipher(alg_mask, ARRAY_SIZE(sec_skciphers));
2547 unlock:
2548 	mutex_unlock(&sec_algs_lock);
2549 	return ret;
2550 }
2551 
2552 void sec_unregister_from_crypto(struct hisi_qm *qm)
2553 {
2554 	u64 alg_mask;
2555 
2556 	alg_mask = sec_get_alg_bitmap(qm, SEC_DRV_ALG_BITMAP_HIGH_TB,
2557 				      SEC_DRV_ALG_BITMAP_LOW_TB);
2558 
2559 	mutex_lock(&sec_algs_lock);
2560 	if (--sec_available_devs)
2561 		goto unlock;
2562 
2563 	sec_unregister_aead(alg_mask, ARRAY_SIZE(sec_aeads));
2564 	sec_unregister_skcipher(alg_mask, ARRAY_SIZE(sec_skciphers));
2565 
2566 unlock:
2567 	mutex_unlock(&sec_algs_lock);
2568 }
2569