1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019 HiSilicon Limited. */ 3 4 #include <crypto/aes.h> 5 #include <crypto/aead.h> 6 #include <crypto/algapi.h> 7 #include <crypto/authenc.h> 8 #include <crypto/des.h> 9 #include <crypto/hash.h> 10 #include <crypto/internal/aead.h> 11 #include <crypto/internal/des.h> 12 #include <crypto/sha1.h> 13 #include <crypto/sha2.h> 14 #include <crypto/skcipher.h> 15 #include <crypto/xts.h> 16 #include <linux/crypto.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/idr.h> 19 20 #include "sec.h" 21 #include "sec_crypto.h" 22 23 #define SEC_PRIORITY 4001 24 #define SEC_XTS_MIN_KEY_SIZE (2 * AES_MIN_KEY_SIZE) 25 #define SEC_XTS_MID_KEY_SIZE (3 * AES_MIN_KEY_SIZE) 26 #define SEC_XTS_MAX_KEY_SIZE (2 * AES_MAX_KEY_SIZE) 27 #define SEC_DES3_2KEY_SIZE (2 * DES_KEY_SIZE) 28 #define SEC_DES3_3KEY_SIZE (3 * DES_KEY_SIZE) 29 30 /* SEC sqe(bd) bit operational relative MACRO */ 31 #define SEC_DE_OFFSET 1 32 #define SEC_CIPHER_OFFSET 4 33 #define SEC_SCENE_OFFSET 3 34 #define SEC_DST_SGL_OFFSET 2 35 #define SEC_SRC_SGL_OFFSET 7 36 #define SEC_CKEY_OFFSET 9 37 #define SEC_CMODE_OFFSET 12 38 #define SEC_AKEY_OFFSET 5 39 #define SEC_AEAD_ALG_OFFSET 11 40 #define SEC_AUTH_OFFSET 6 41 42 #define SEC_DE_OFFSET_V3 9 43 #define SEC_SCENE_OFFSET_V3 5 44 #define SEC_CKEY_OFFSET_V3 13 45 #define SEC_CTR_CNT_OFFSET 25 46 #define SEC_CTR_CNT_ROLLOVER 2 47 #define SEC_SRC_SGL_OFFSET_V3 11 48 #define SEC_DST_SGL_OFFSET_V3 14 49 #define SEC_CALG_OFFSET_V3 4 50 #define SEC_AKEY_OFFSET_V3 9 51 #define SEC_MAC_OFFSET_V3 4 52 #define SEC_AUTH_ALG_OFFSET_V3 15 53 #define SEC_CIPHER_AUTH_V3 0xbf 54 #define SEC_AUTH_CIPHER_V3 0x40 55 #define SEC_FLAG_OFFSET 7 56 #define SEC_FLAG_MASK 0x0780 57 #define SEC_TYPE_MASK 0x0F 58 #define SEC_DONE_MASK 0x0001 59 #define SEC_ICV_MASK 0x000E 60 #define SEC_SQE_LEN_RATE_MASK 0x3 61 62 #define SEC_TOTAL_IV_SZ(depth) (SEC_IV_SIZE * (depth)) 63 #define SEC_SGL_SGE_NR 128 64 #define SEC_CIPHER_AUTH 0xfe 65 #define SEC_AUTH_CIPHER 0x1 66 #define SEC_MAX_MAC_LEN 64 67 #define SEC_MAX_AAD_LEN 65535 68 #define SEC_MAX_CCM_AAD_LEN 65279 69 #define SEC_TOTAL_MAC_SZ(depth) (SEC_MAX_MAC_LEN * (depth)) 70 71 #define SEC_PBUF_SZ 512 72 #define SEC_PBUF_IV_OFFSET SEC_PBUF_SZ 73 #define SEC_PBUF_MAC_OFFSET (SEC_PBUF_SZ + SEC_IV_SIZE) 74 #define SEC_PBUF_PKG (SEC_PBUF_SZ + SEC_IV_SIZE + \ 75 SEC_MAX_MAC_LEN * 2) 76 #define SEC_PBUF_NUM (PAGE_SIZE / SEC_PBUF_PKG) 77 #define SEC_PBUF_PAGE_NUM(depth) ((depth) / SEC_PBUF_NUM) 78 #define SEC_PBUF_LEFT_SZ(depth) (SEC_PBUF_PKG * ((depth) - \ 79 SEC_PBUF_PAGE_NUM(depth) * SEC_PBUF_NUM)) 80 #define SEC_TOTAL_PBUF_SZ(depth) (PAGE_SIZE * SEC_PBUF_PAGE_NUM(depth) + \ 81 SEC_PBUF_LEFT_SZ(depth)) 82 83 #define SEC_SQE_LEN_RATE 4 84 #define SEC_SQE_CFLAG 2 85 #define SEC_SQE_AEAD_FLAG 3 86 #define SEC_SQE_DONE 0x1 87 #define SEC_ICV_ERR 0x2 88 #define MIN_MAC_LEN 4 89 #define MAC_LEN_MASK 0x1U 90 #define MAX_INPUT_DATA_LEN 0xFFFE00 91 #define BITS_MASK 0xFF 92 #define BYTE_BITS 0x8 93 #define SEC_XTS_NAME_SZ 0x3 94 #define IV_CM_CAL_NUM 2 95 #define IV_CL_MASK 0x7 96 #define IV_CL_MIN 2 97 #define IV_CL_MID 4 98 #define IV_CL_MAX 8 99 #define IV_FLAGS_OFFSET 0x6 100 #define IV_CM_OFFSET 0x3 101 #define IV_LAST_BYTE1 1 102 #define IV_LAST_BYTE2 2 103 #define IV_LAST_BYTE_MASK 0xFF 104 #define IV_CTR_INIT 0x1 105 #define IV_BYTE_OFFSET 0x8 106 107 static DEFINE_MUTEX(sec_algs_lock); 108 static unsigned int sec_available_devs; 109 110 struct sec_skcipher { 111 u64 alg_msk; 112 struct skcipher_alg alg; 113 }; 114 115 struct sec_aead { 116 u64 alg_msk; 117 struct aead_alg alg; 118 }; 119 120 /* Get an en/de-cipher queue cyclically to balance load over queues of TFM */ 121 static inline u32 sec_alloc_queue_id(struct sec_ctx *ctx, struct sec_req *req) 122 { 123 if (req->c_req.encrypt) 124 return (u32)atomic_inc_return(&ctx->enc_qcyclic) % 125 ctx->hlf_q_num; 126 127 return (u32)atomic_inc_return(&ctx->dec_qcyclic) % ctx->hlf_q_num + 128 ctx->hlf_q_num; 129 } 130 131 static inline void sec_free_queue_id(struct sec_ctx *ctx, struct sec_req *req) 132 { 133 if (req->c_req.encrypt) 134 atomic_dec(&ctx->enc_qcyclic); 135 else 136 atomic_dec(&ctx->dec_qcyclic); 137 } 138 139 static int sec_alloc_req_id(struct sec_req *req, struct sec_qp_ctx *qp_ctx) 140 { 141 int req_id; 142 143 spin_lock_bh(&qp_ctx->req_lock); 144 req_id = idr_alloc_cyclic(&qp_ctx->req_idr, NULL, 0, qp_ctx->qp->sq_depth, GFP_ATOMIC); 145 spin_unlock_bh(&qp_ctx->req_lock); 146 if (unlikely(req_id < 0)) { 147 dev_err(req->ctx->dev, "alloc req id fail!\n"); 148 return req_id; 149 } 150 151 req->qp_ctx = qp_ctx; 152 qp_ctx->req_list[req_id] = req; 153 154 return req_id; 155 } 156 157 static void sec_free_req_id(struct sec_req *req) 158 { 159 struct sec_qp_ctx *qp_ctx = req->qp_ctx; 160 int req_id = req->req_id; 161 162 if (unlikely(req_id < 0 || req_id >= qp_ctx->qp->sq_depth)) { 163 dev_err(req->ctx->dev, "free request id invalid!\n"); 164 return; 165 } 166 167 qp_ctx->req_list[req_id] = NULL; 168 req->qp_ctx = NULL; 169 170 spin_lock_bh(&qp_ctx->req_lock); 171 idr_remove(&qp_ctx->req_idr, req_id); 172 spin_unlock_bh(&qp_ctx->req_lock); 173 } 174 175 static u8 pre_parse_finished_bd(struct bd_status *status, void *resp) 176 { 177 struct sec_sqe *bd = resp; 178 179 status->done = le16_to_cpu(bd->type2.done_flag) & SEC_DONE_MASK; 180 status->icv = (le16_to_cpu(bd->type2.done_flag) & SEC_ICV_MASK) >> 1; 181 status->flag = (le16_to_cpu(bd->type2.done_flag) & 182 SEC_FLAG_MASK) >> SEC_FLAG_OFFSET; 183 status->tag = le16_to_cpu(bd->type2.tag); 184 status->err_type = bd->type2.error_type; 185 186 return bd->type_cipher_auth & SEC_TYPE_MASK; 187 } 188 189 static u8 pre_parse_finished_bd3(struct bd_status *status, void *resp) 190 { 191 struct sec_sqe3 *bd3 = resp; 192 193 status->done = le16_to_cpu(bd3->done_flag) & SEC_DONE_MASK; 194 status->icv = (le16_to_cpu(bd3->done_flag) & SEC_ICV_MASK) >> 1; 195 status->flag = (le16_to_cpu(bd3->done_flag) & 196 SEC_FLAG_MASK) >> SEC_FLAG_OFFSET; 197 status->tag = le64_to_cpu(bd3->tag); 198 status->err_type = bd3->error_type; 199 200 return le32_to_cpu(bd3->bd_param) & SEC_TYPE_MASK; 201 } 202 203 static int sec_cb_status_check(struct sec_req *req, 204 struct bd_status *status) 205 { 206 struct sec_ctx *ctx = req->ctx; 207 208 if (unlikely(req->err_type || status->done != SEC_SQE_DONE)) { 209 dev_err_ratelimited(ctx->dev, "err_type[%d], done[%u]\n", 210 req->err_type, status->done); 211 return -EIO; 212 } 213 214 if (unlikely(ctx->alg_type == SEC_SKCIPHER)) { 215 if (unlikely(status->flag != SEC_SQE_CFLAG)) { 216 dev_err_ratelimited(ctx->dev, "flag[%u]\n", 217 status->flag); 218 return -EIO; 219 } 220 } else if (unlikely(ctx->alg_type == SEC_AEAD)) { 221 if (unlikely(status->flag != SEC_SQE_AEAD_FLAG || 222 status->icv == SEC_ICV_ERR)) { 223 dev_err_ratelimited(ctx->dev, 224 "flag[%u], icv[%u]\n", 225 status->flag, status->icv); 226 return -EBADMSG; 227 } 228 } 229 230 return 0; 231 } 232 233 static void sec_req_cb(struct hisi_qp *qp, void *resp) 234 { 235 struct sec_qp_ctx *qp_ctx = qp->qp_ctx; 236 struct sec_dfx *dfx = &qp_ctx->ctx->sec->debug.dfx; 237 u8 type_supported = qp_ctx->ctx->type_supported; 238 struct bd_status status; 239 struct sec_ctx *ctx; 240 struct sec_req *req; 241 int err; 242 u8 type; 243 244 if (type_supported == SEC_BD_TYPE2) { 245 type = pre_parse_finished_bd(&status, resp); 246 req = qp_ctx->req_list[status.tag]; 247 } else { 248 type = pre_parse_finished_bd3(&status, resp); 249 req = (void *)(uintptr_t)status.tag; 250 } 251 252 if (unlikely(type != type_supported)) { 253 atomic64_inc(&dfx->err_bd_cnt); 254 pr_err("err bd type [%u]\n", type); 255 return; 256 } 257 258 if (unlikely(!req)) { 259 atomic64_inc(&dfx->invalid_req_cnt); 260 atomic_inc(&qp->qp_status.used); 261 return; 262 } 263 264 req->err_type = status.err_type; 265 ctx = req->ctx; 266 err = sec_cb_status_check(req, &status); 267 if (err) 268 atomic64_inc(&dfx->done_flag_cnt); 269 270 atomic64_inc(&dfx->recv_cnt); 271 272 ctx->req_op->buf_unmap(ctx, req); 273 274 ctx->req_op->callback(ctx, req, err); 275 } 276 277 static int sec_bd_send(struct sec_ctx *ctx, struct sec_req *req) 278 { 279 struct sec_qp_ctx *qp_ctx = req->qp_ctx; 280 int ret; 281 282 if (ctx->fake_req_limit <= 283 atomic_read(&qp_ctx->qp->qp_status.used) && 284 !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG)) 285 return -EBUSY; 286 287 spin_lock_bh(&qp_ctx->req_lock); 288 ret = hisi_qp_send(qp_ctx->qp, &req->sec_sqe); 289 if (ctx->fake_req_limit <= 290 atomic_read(&qp_ctx->qp->qp_status.used) && !ret) { 291 list_add_tail(&req->backlog_head, &qp_ctx->backlog); 292 atomic64_inc(&ctx->sec->debug.dfx.send_cnt); 293 atomic64_inc(&ctx->sec->debug.dfx.send_busy_cnt); 294 spin_unlock_bh(&qp_ctx->req_lock); 295 return -EBUSY; 296 } 297 spin_unlock_bh(&qp_ctx->req_lock); 298 299 if (unlikely(ret == -EBUSY)) 300 return -ENOBUFS; 301 302 if (likely(!ret)) { 303 ret = -EINPROGRESS; 304 atomic64_inc(&ctx->sec->debug.dfx.send_cnt); 305 } 306 307 return ret; 308 } 309 310 /* Get DMA memory resources */ 311 static int sec_alloc_civ_resource(struct device *dev, struct sec_alg_res *res) 312 { 313 u16 q_depth = res->depth; 314 int i; 315 316 res->c_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ(q_depth), 317 &res->c_ivin_dma, GFP_KERNEL); 318 if (!res->c_ivin) 319 return -ENOMEM; 320 321 for (i = 1; i < q_depth; i++) { 322 res[i].c_ivin_dma = res->c_ivin_dma + i * SEC_IV_SIZE; 323 res[i].c_ivin = res->c_ivin + i * SEC_IV_SIZE; 324 } 325 326 return 0; 327 } 328 329 static void sec_free_civ_resource(struct device *dev, struct sec_alg_res *res) 330 { 331 if (res->c_ivin) 332 dma_free_coherent(dev, SEC_TOTAL_IV_SZ(res->depth), 333 res->c_ivin, res->c_ivin_dma); 334 } 335 336 static int sec_alloc_aiv_resource(struct device *dev, struct sec_alg_res *res) 337 { 338 u16 q_depth = res->depth; 339 int i; 340 341 res->a_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ(q_depth), 342 &res->a_ivin_dma, GFP_KERNEL); 343 if (!res->a_ivin) 344 return -ENOMEM; 345 346 for (i = 1; i < q_depth; i++) { 347 res[i].a_ivin_dma = res->a_ivin_dma + i * SEC_IV_SIZE; 348 res[i].a_ivin = res->a_ivin + i * SEC_IV_SIZE; 349 } 350 351 return 0; 352 } 353 354 static void sec_free_aiv_resource(struct device *dev, struct sec_alg_res *res) 355 { 356 if (res->a_ivin) 357 dma_free_coherent(dev, SEC_TOTAL_IV_SZ(res->depth), 358 res->a_ivin, res->a_ivin_dma); 359 } 360 361 static int sec_alloc_mac_resource(struct device *dev, struct sec_alg_res *res) 362 { 363 u16 q_depth = res->depth; 364 int i; 365 366 res->out_mac = dma_alloc_coherent(dev, SEC_TOTAL_MAC_SZ(q_depth) << 1, 367 &res->out_mac_dma, GFP_KERNEL); 368 if (!res->out_mac) 369 return -ENOMEM; 370 371 for (i = 1; i < q_depth; i++) { 372 res[i].out_mac_dma = res->out_mac_dma + 373 i * (SEC_MAX_MAC_LEN << 1); 374 res[i].out_mac = res->out_mac + i * (SEC_MAX_MAC_LEN << 1); 375 } 376 377 return 0; 378 } 379 380 static void sec_free_mac_resource(struct device *dev, struct sec_alg_res *res) 381 { 382 if (res->out_mac) 383 dma_free_coherent(dev, SEC_TOTAL_MAC_SZ(res->depth) << 1, 384 res->out_mac, res->out_mac_dma); 385 } 386 387 static void sec_free_pbuf_resource(struct device *dev, struct sec_alg_res *res) 388 { 389 if (res->pbuf) 390 dma_free_coherent(dev, SEC_TOTAL_PBUF_SZ(res->depth), 391 res->pbuf, res->pbuf_dma); 392 } 393 394 /* 395 * To improve performance, pbuffer is used for 396 * small packets (< 512Bytes) as IOMMU translation using. 397 */ 398 static int sec_alloc_pbuf_resource(struct device *dev, struct sec_alg_res *res) 399 { 400 u16 q_depth = res->depth; 401 int size = SEC_PBUF_PAGE_NUM(q_depth); 402 int pbuf_page_offset; 403 int i, j, k; 404 405 res->pbuf = dma_alloc_coherent(dev, SEC_TOTAL_PBUF_SZ(q_depth), 406 &res->pbuf_dma, GFP_KERNEL); 407 if (!res->pbuf) 408 return -ENOMEM; 409 410 /* 411 * SEC_PBUF_PKG contains data pbuf, iv and 412 * out_mac : <SEC_PBUF|SEC_IV|SEC_MAC> 413 * Every PAGE contains six SEC_PBUF_PKG 414 * The sec_qp_ctx contains QM_Q_DEPTH numbers of SEC_PBUF_PKG 415 * So we need SEC_PBUF_PAGE_NUM numbers of PAGE 416 * for the SEC_TOTAL_PBUF_SZ 417 */ 418 for (i = 0; i <= size; i++) { 419 pbuf_page_offset = PAGE_SIZE * i; 420 for (j = 0; j < SEC_PBUF_NUM; j++) { 421 k = i * SEC_PBUF_NUM + j; 422 if (k == q_depth) 423 break; 424 res[k].pbuf = res->pbuf + 425 j * SEC_PBUF_PKG + pbuf_page_offset; 426 res[k].pbuf_dma = res->pbuf_dma + 427 j * SEC_PBUF_PKG + pbuf_page_offset; 428 } 429 } 430 431 return 0; 432 } 433 434 static int sec_alg_resource_alloc(struct sec_ctx *ctx, 435 struct sec_qp_ctx *qp_ctx) 436 { 437 struct sec_alg_res *res = qp_ctx->res; 438 struct device *dev = ctx->dev; 439 int ret; 440 441 ret = sec_alloc_civ_resource(dev, res); 442 if (ret) 443 return ret; 444 445 if (ctx->alg_type == SEC_AEAD) { 446 ret = sec_alloc_aiv_resource(dev, res); 447 if (ret) 448 goto alloc_aiv_fail; 449 450 ret = sec_alloc_mac_resource(dev, res); 451 if (ret) 452 goto alloc_mac_fail; 453 } 454 if (ctx->pbuf_supported) { 455 ret = sec_alloc_pbuf_resource(dev, res); 456 if (ret) { 457 dev_err(dev, "fail to alloc pbuf dma resource!\n"); 458 goto alloc_pbuf_fail; 459 } 460 } 461 462 return 0; 463 464 alloc_pbuf_fail: 465 if (ctx->alg_type == SEC_AEAD) 466 sec_free_mac_resource(dev, qp_ctx->res); 467 alloc_mac_fail: 468 if (ctx->alg_type == SEC_AEAD) 469 sec_free_aiv_resource(dev, res); 470 alloc_aiv_fail: 471 sec_free_civ_resource(dev, res); 472 return ret; 473 } 474 475 static void sec_alg_resource_free(struct sec_ctx *ctx, 476 struct sec_qp_ctx *qp_ctx) 477 { 478 struct device *dev = ctx->dev; 479 480 sec_free_civ_resource(dev, qp_ctx->res); 481 482 if (ctx->pbuf_supported) 483 sec_free_pbuf_resource(dev, qp_ctx->res); 484 if (ctx->alg_type == SEC_AEAD) { 485 sec_free_mac_resource(dev, qp_ctx->res); 486 sec_free_aiv_resource(dev, qp_ctx->res); 487 } 488 } 489 490 static int sec_alloc_qp_ctx_resource(struct sec_ctx *ctx, struct sec_qp_ctx *qp_ctx) 491 { 492 u16 q_depth = qp_ctx->qp->sq_depth; 493 struct device *dev = ctx->dev; 494 int ret = -ENOMEM; 495 496 qp_ctx->req_list = kcalloc(q_depth, sizeof(struct sec_req *), GFP_KERNEL); 497 if (!qp_ctx->req_list) 498 return ret; 499 500 qp_ctx->res = kcalloc(q_depth, sizeof(struct sec_alg_res), GFP_KERNEL); 501 if (!qp_ctx->res) 502 goto err_free_req_list; 503 qp_ctx->res->depth = q_depth; 504 505 qp_ctx->c_in_pool = hisi_acc_create_sgl_pool(dev, q_depth, SEC_SGL_SGE_NR); 506 if (IS_ERR(qp_ctx->c_in_pool)) { 507 dev_err(dev, "fail to create sgl pool for input!\n"); 508 goto err_free_res; 509 } 510 511 qp_ctx->c_out_pool = hisi_acc_create_sgl_pool(dev, q_depth, SEC_SGL_SGE_NR); 512 if (IS_ERR(qp_ctx->c_out_pool)) { 513 dev_err(dev, "fail to create sgl pool for output!\n"); 514 goto err_free_c_in_pool; 515 } 516 517 ret = sec_alg_resource_alloc(ctx, qp_ctx); 518 if (ret) 519 goto err_free_c_out_pool; 520 521 return 0; 522 523 err_free_c_out_pool: 524 hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool); 525 err_free_c_in_pool: 526 hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool); 527 err_free_res: 528 kfree(qp_ctx->res); 529 err_free_req_list: 530 kfree(qp_ctx->req_list); 531 return ret; 532 } 533 534 static void sec_free_qp_ctx_resource(struct sec_ctx *ctx, struct sec_qp_ctx *qp_ctx) 535 { 536 struct device *dev = ctx->dev; 537 538 sec_alg_resource_free(ctx, qp_ctx); 539 hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool); 540 hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool); 541 kfree(qp_ctx->res); 542 kfree(qp_ctx->req_list); 543 } 544 545 static int sec_create_qp_ctx(struct sec_ctx *ctx, int qp_ctx_id) 546 { 547 struct sec_qp_ctx *qp_ctx; 548 struct hisi_qp *qp; 549 int ret; 550 551 qp_ctx = &ctx->qp_ctx[qp_ctx_id]; 552 qp = ctx->qps[qp_ctx_id]; 553 qp->req_type = 0; 554 qp->qp_ctx = qp_ctx; 555 qp_ctx->qp = qp; 556 qp_ctx->ctx = ctx; 557 558 qp->req_cb = sec_req_cb; 559 560 spin_lock_init(&qp_ctx->req_lock); 561 idr_init(&qp_ctx->req_idr); 562 INIT_LIST_HEAD(&qp_ctx->backlog); 563 564 ret = sec_alloc_qp_ctx_resource(ctx, qp_ctx); 565 if (ret) 566 goto err_destroy_idr; 567 568 ret = hisi_qm_start_qp(qp, 0); 569 if (ret < 0) 570 goto err_resource_free; 571 572 return 0; 573 574 err_resource_free: 575 sec_free_qp_ctx_resource(ctx, qp_ctx); 576 err_destroy_idr: 577 idr_destroy(&qp_ctx->req_idr); 578 return ret; 579 } 580 581 static void sec_release_qp_ctx(struct sec_ctx *ctx, 582 struct sec_qp_ctx *qp_ctx) 583 { 584 hisi_qm_stop_qp(qp_ctx->qp); 585 sec_free_qp_ctx_resource(ctx, qp_ctx); 586 idr_destroy(&qp_ctx->req_idr); 587 } 588 589 static int sec_ctx_base_init(struct sec_ctx *ctx) 590 { 591 struct sec_dev *sec; 592 int i, ret; 593 594 ctx->qps = sec_create_qps(); 595 if (!ctx->qps) { 596 pr_err("Can not create sec qps!\n"); 597 return -ENODEV; 598 } 599 600 sec = container_of(ctx->qps[0]->qm, struct sec_dev, qm); 601 ctx->sec = sec; 602 ctx->dev = &sec->qm.pdev->dev; 603 ctx->hlf_q_num = sec->ctx_q_num >> 1; 604 605 ctx->pbuf_supported = ctx->sec->iommu_used; 606 607 /* Half of queue depth is taken as fake requests limit in the queue. */ 608 ctx->fake_req_limit = ctx->qps[0]->sq_depth >> 1; 609 ctx->qp_ctx = kcalloc(sec->ctx_q_num, sizeof(struct sec_qp_ctx), 610 GFP_KERNEL); 611 if (!ctx->qp_ctx) { 612 ret = -ENOMEM; 613 goto err_destroy_qps; 614 } 615 616 for (i = 0; i < sec->ctx_q_num; i++) { 617 ret = sec_create_qp_ctx(ctx, i); 618 if (ret) 619 goto err_sec_release_qp_ctx; 620 } 621 622 return 0; 623 624 err_sec_release_qp_ctx: 625 for (i = i - 1; i >= 0; i--) 626 sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]); 627 kfree(ctx->qp_ctx); 628 err_destroy_qps: 629 sec_destroy_qps(ctx->qps, sec->ctx_q_num); 630 return ret; 631 } 632 633 static void sec_ctx_base_uninit(struct sec_ctx *ctx) 634 { 635 int i; 636 637 for (i = 0; i < ctx->sec->ctx_q_num; i++) 638 sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]); 639 640 sec_destroy_qps(ctx->qps, ctx->sec->ctx_q_num); 641 kfree(ctx->qp_ctx); 642 } 643 644 static int sec_cipher_init(struct sec_ctx *ctx) 645 { 646 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx; 647 648 c_ctx->c_key = dma_alloc_coherent(ctx->dev, SEC_MAX_KEY_SIZE, 649 &c_ctx->c_key_dma, GFP_KERNEL); 650 if (!c_ctx->c_key) 651 return -ENOMEM; 652 653 return 0; 654 } 655 656 static void sec_cipher_uninit(struct sec_ctx *ctx) 657 { 658 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx; 659 660 memzero_explicit(c_ctx->c_key, SEC_MAX_KEY_SIZE); 661 dma_free_coherent(ctx->dev, SEC_MAX_KEY_SIZE, 662 c_ctx->c_key, c_ctx->c_key_dma); 663 } 664 665 static int sec_auth_init(struct sec_ctx *ctx) 666 { 667 struct sec_auth_ctx *a_ctx = &ctx->a_ctx; 668 669 a_ctx->a_key = dma_alloc_coherent(ctx->dev, SEC_MAX_AKEY_SIZE, 670 &a_ctx->a_key_dma, GFP_KERNEL); 671 if (!a_ctx->a_key) 672 return -ENOMEM; 673 674 return 0; 675 } 676 677 static void sec_auth_uninit(struct sec_ctx *ctx) 678 { 679 struct sec_auth_ctx *a_ctx = &ctx->a_ctx; 680 681 memzero_explicit(a_ctx->a_key, SEC_MAX_AKEY_SIZE); 682 dma_free_coherent(ctx->dev, SEC_MAX_AKEY_SIZE, 683 a_ctx->a_key, a_ctx->a_key_dma); 684 } 685 686 static int sec_skcipher_fbtfm_init(struct crypto_skcipher *tfm) 687 { 688 const char *alg = crypto_tfm_alg_name(&tfm->base); 689 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm); 690 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx; 691 692 c_ctx->fallback = false; 693 694 /* Currently, only XTS mode need fallback tfm when using 192bit key */ 695 if (likely(strncmp(alg, "xts", SEC_XTS_NAME_SZ))) 696 return 0; 697 698 c_ctx->fbtfm = crypto_alloc_sync_skcipher(alg, 0, 699 CRYPTO_ALG_NEED_FALLBACK); 700 if (IS_ERR(c_ctx->fbtfm)) { 701 pr_err("failed to alloc xts mode fallback tfm!\n"); 702 return PTR_ERR(c_ctx->fbtfm); 703 } 704 705 return 0; 706 } 707 708 static int sec_skcipher_init(struct crypto_skcipher *tfm) 709 { 710 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm); 711 int ret; 712 713 ctx->alg_type = SEC_SKCIPHER; 714 crypto_skcipher_set_reqsize(tfm, sizeof(struct sec_req)); 715 ctx->c_ctx.ivsize = crypto_skcipher_ivsize(tfm); 716 if (ctx->c_ctx.ivsize > SEC_IV_SIZE) { 717 pr_err("get error skcipher iv size!\n"); 718 return -EINVAL; 719 } 720 721 ret = sec_ctx_base_init(ctx); 722 if (ret) 723 return ret; 724 725 ret = sec_cipher_init(ctx); 726 if (ret) 727 goto err_cipher_init; 728 729 ret = sec_skcipher_fbtfm_init(tfm); 730 if (ret) 731 goto err_fbtfm_init; 732 733 return 0; 734 735 err_fbtfm_init: 736 sec_cipher_uninit(ctx); 737 err_cipher_init: 738 sec_ctx_base_uninit(ctx); 739 return ret; 740 } 741 742 static void sec_skcipher_uninit(struct crypto_skcipher *tfm) 743 { 744 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm); 745 746 if (ctx->c_ctx.fbtfm) 747 crypto_free_sync_skcipher(ctx->c_ctx.fbtfm); 748 749 sec_cipher_uninit(ctx); 750 sec_ctx_base_uninit(ctx); 751 } 752 753 static int sec_skcipher_3des_setkey(struct crypto_skcipher *tfm, const u8 *key, const u32 keylen) 754 { 755 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm); 756 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx; 757 int ret; 758 759 ret = verify_skcipher_des3_key(tfm, key); 760 if (ret) 761 return ret; 762 763 switch (keylen) { 764 case SEC_DES3_2KEY_SIZE: 765 c_ctx->c_key_len = SEC_CKEY_3DES_2KEY; 766 break; 767 case SEC_DES3_3KEY_SIZE: 768 c_ctx->c_key_len = SEC_CKEY_3DES_3KEY; 769 break; 770 default: 771 return -EINVAL; 772 } 773 774 return 0; 775 } 776 777 static int sec_skcipher_aes_sm4_setkey(struct sec_cipher_ctx *c_ctx, 778 const u32 keylen, 779 const enum sec_cmode c_mode) 780 { 781 if (c_mode == SEC_CMODE_XTS) { 782 switch (keylen) { 783 case SEC_XTS_MIN_KEY_SIZE: 784 c_ctx->c_key_len = SEC_CKEY_128BIT; 785 break; 786 case SEC_XTS_MID_KEY_SIZE: 787 c_ctx->fallback = true; 788 break; 789 case SEC_XTS_MAX_KEY_SIZE: 790 c_ctx->c_key_len = SEC_CKEY_256BIT; 791 break; 792 default: 793 pr_err("hisi_sec2: xts mode key error!\n"); 794 return -EINVAL; 795 } 796 } else { 797 if (c_ctx->c_alg == SEC_CALG_SM4 && 798 keylen != AES_KEYSIZE_128) { 799 pr_err("hisi_sec2: sm4 key error!\n"); 800 return -EINVAL; 801 } else { 802 switch (keylen) { 803 case AES_KEYSIZE_128: 804 c_ctx->c_key_len = SEC_CKEY_128BIT; 805 break; 806 case AES_KEYSIZE_192: 807 c_ctx->c_key_len = SEC_CKEY_192BIT; 808 break; 809 case AES_KEYSIZE_256: 810 c_ctx->c_key_len = SEC_CKEY_256BIT; 811 break; 812 default: 813 pr_err("hisi_sec2: aes key error!\n"); 814 return -EINVAL; 815 } 816 } 817 } 818 819 return 0; 820 } 821 822 static int sec_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key, 823 const u32 keylen, const enum sec_calg c_alg, 824 const enum sec_cmode c_mode) 825 { 826 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm); 827 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx; 828 struct device *dev = ctx->dev; 829 int ret; 830 831 if (c_mode == SEC_CMODE_XTS) { 832 ret = xts_verify_key(tfm, key, keylen); 833 if (ret) { 834 dev_err(dev, "xts mode key err!\n"); 835 return ret; 836 } 837 } 838 839 c_ctx->c_alg = c_alg; 840 c_ctx->c_mode = c_mode; 841 842 switch (c_alg) { 843 case SEC_CALG_3DES: 844 ret = sec_skcipher_3des_setkey(tfm, key, keylen); 845 break; 846 case SEC_CALG_AES: 847 case SEC_CALG_SM4: 848 ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode); 849 break; 850 default: 851 dev_err(dev, "sec c_alg err!\n"); 852 return -EINVAL; 853 } 854 855 if (ret) { 856 dev_err(dev, "set sec key err!\n"); 857 return ret; 858 } 859 860 memcpy(c_ctx->c_key, key, keylen); 861 if (c_ctx->fallback && c_ctx->fbtfm) { 862 ret = crypto_sync_skcipher_setkey(c_ctx->fbtfm, key, keylen); 863 if (ret) { 864 dev_err(dev, "failed to set fallback skcipher key!\n"); 865 return ret; 866 } 867 } 868 return 0; 869 } 870 871 #define GEN_SEC_SETKEY_FUNC(name, c_alg, c_mode) \ 872 static int sec_setkey_##name(struct crypto_skcipher *tfm, const u8 *key,\ 873 u32 keylen) \ 874 { \ 875 return sec_skcipher_setkey(tfm, key, keylen, c_alg, c_mode); \ 876 } 877 878 GEN_SEC_SETKEY_FUNC(aes_ecb, SEC_CALG_AES, SEC_CMODE_ECB) 879 GEN_SEC_SETKEY_FUNC(aes_cbc, SEC_CALG_AES, SEC_CMODE_CBC) 880 GEN_SEC_SETKEY_FUNC(aes_xts, SEC_CALG_AES, SEC_CMODE_XTS) 881 GEN_SEC_SETKEY_FUNC(aes_ctr, SEC_CALG_AES, SEC_CMODE_CTR) 882 GEN_SEC_SETKEY_FUNC(3des_ecb, SEC_CALG_3DES, SEC_CMODE_ECB) 883 GEN_SEC_SETKEY_FUNC(3des_cbc, SEC_CALG_3DES, SEC_CMODE_CBC) 884 GEN_SEC_SETKEY_FUNC(sm4_xts, SEC_CALG_SM4, SEC_CMODE_XTS) 885 GEN_SEC_SETKEY_FUNC(sm4_cbc, SEC_CALG_SM4, SEC_CMODE_CBC) 886 GEN_SEC_SETKEY_FUNC(sm4_ctr, SEC_CALG_SM4, SEC_CMODE_CTR) 887 888 static int sec_cipher_pbuf_map(struct sec_ctx *ctx, struct sec_req *req, 889 struct scatterlist *src) 890 { 891 struct sec_aead_req *a_req = &req->aead_req; 892 struct aead_request *aead_req = a_req->aead_req; 893 struct sec_cipher_req *c_req = &req->c_req; 894 struct sec_qp_ctx *qp_ctx = req->qp_ctx; 895 struct device *dev = ctx->dev; 896 int copy_size, pbuf_length; 897 int req_id = req->req_id; 898 struct crypto_aead *tfm; 899 size_t authsize; 900 u8 *mac_offset; 901 902 if (ctx->alg_type == SEC_AEAD) 903 copy_size = aead_req->cryptlen + aead_req->assoclen; 904 else 905 copy_size = c_req->c_len; 906 907 pbuf_length = sg_copy_to_buffer(src, sg_nents(src), 908 qp_ctx->res[req_id].pbuf, copy_size); 909 if (unlikely(pbuf_length != copy_size)) { 910 dev_err(dev, "copy src data to pbuf error!\n"); 911 return -EINVAL; 912 } 913 if (!c_req->encrypt && ctx->alg_type == SEC_AEAD) { 914 tfm = crypto_aead_reqtfm(aead_req); 915 authsize = crypto_aead_authsize(tfm); 916 mac_offset = qp_ctx->res[req_id].pbuf + copy_size - authsize; 917 memcpy(a_req->out_mac, mac_offset, authsize); 918 } 919 920 req->in_dma = qp_ctx->res[req_id].pbuf_dma; 921 c_req->c_out_dma = req->in_dma; 922 923 return 0; 924 } 925 926 static void sec_cipher_pbuf_unmap(struct sec_ctx *ctx, struct sec_req *req, 927 struct scatterlist *dst) 928 { 929 struct aead_request *aead_req = req->aead_req.aead_req; 930 struct sec_cipher_req *c_req = &req->c_req; 931 struct sec_qp_ctx *qp_ctx = req->qp_ctx; 932 int copy_size, pbuf_length; 933 int req_id = req->req_id; 934 935 if (ctx->alg_type == SEC_AEAD) 936 copy_size = c_req->c_len + aead_req->assoclen; 937 else 938 copy_size = c_req->c_len; 939 940 pbuf_length = sg_copy_from_buffer(dst, sg_nents(dst), 941 qp_ctx->res[req_id].pbuf, copy_size); 942 if (unlikely(pbuf_length != copy_size)) 943 dev_err(ctx->dev, "copy pbuf data to dst error!\n"); 944 } 945 946 static int sec_aead_mac_init(struct sec_aead_req *req) 947 { 948 struct aead_request *aead_req = req->aead_req; 949 struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req); 950 size_t authsize = crypto_aead_authsize(tfm); 951 u8 *mac_out = req->out_mac; 952 struct scatterlist *sgl = aead_req->src; 953 size_t copy_size; 954 off_t skip_size; 955 956 /* Copy input mac */ 957 skip_size = aead_req->assoclen + aead_req->cryptlen - authsize; 958 copy_size = sg_pcopy_to_buffer(sgl, sg_nents(sgl), mac_out, 959 authsize, skip_size); 960 if (unlikely(copy_size != authsize)) 961 return -EINVAL; 962 963 return 0; 964 } 965 966 static int sec_cipher_map(struct sec_ctx *ctx, struct sec_req *req, 967 struct scatterlist *src, struct scatterlist *dst) 968 { 969 struct sec_cipher_req *c_req = &req->c_req; 970 struct sec_aead_req *a_req = &req->aead_req; 971 struct sec_qp_ctx *qp_ctx = req->qp_ctx; 972 struct sec_alg_res *res = &qp_ctx->res[req->req_id]; 973 struct device *dev = ctx->dev; 974 int ret; 975 976 if (req->use_pbuf) { 977 c_req->c_ivin = res->pbuf + SEC_PBUF_IV_OFFSET; 978 c_req->c_ivin_dma = res->pbuf_dma + SEC_PBUF_IV_OFFSET; 979 if (ctx->alg_type == SEC_AEAD) { 980 a_req->a_ivin = res->a_ivin; 981 a_req->a_ivin_dma = res->a_ivin_dma; 982 a_req->out_mac = res->pbuf + SEC_PBUF_MAC_OFFSET; 983 a_req->out_mac_dma = res->pbuf_dma + 984 SEC_PBUF_MAC_OFFSET; 985 } 986 ret = sec_cipher_pbuf_map(ctx, req, src); 987 988 return ret; 989 } 990 c_req->c_ivin = res->c_ivin; 991 c_req->c_ivin_dma = res->c_ivin_dma; 992 if (ctx->alg_type == SEC_AEAD) { 993 a_req->a_ivin = res->a_ivin; 994 a_req->a_ivin_dma = res->a_ivin_dma; 995 a_req->out_mac = res->out_mac; 996 a_req->out_mac_dma = res->out_mac_dma; 997 } 998 999 req->in = hisi_acc_sg_buf_map_to_hw_sgl(dev, src, 1000 qp_ctx->c_in_pool, 1001 req->req_id, 1002 &req->in_dma); 1003 if (IS_ERR(req->in)) { 1004 dev_err(dev, "fail to dma map input sgl buffers!\n"); 1005 return PTR_ERR(req->in); 1006 } 1007 1008 if (!c_req->encrypt && ctx->alg_type == SEC_AEAD) { 1009 ret = sec_aead_mac_init(a_req); 1010 if (unlikely(ret)) { 1011 dev_err(dev, "fail to init mac data for ICV!\n"); 1012 hisi_acc_sg_buf_unmap(dev, src, req->in); 1013 return ret; 1014 } 1015 } 1016 1017 if (dst == src) { 1018 c_req->c_out = req->in; 1019 c_req->c_out_dma = req->in_dma; 1020 } else { 1021 c_req->c_out = hisi_acc_sg_buf_map_to_hw_sgl(dev, dst, 1022 qp_ctx->c_out_pool, 1023 req->req_id, 1024 &c_req->c_out_dma); 1025 1026 if (IS_ERR(c_req->c_out)) { 1027 dev_err(dev, "fail to dma map output sgl buffers!\n"); 1028 hisi_acc_sg_buf_unmap(dev, src, req->in); 1029 return PTR_ERR(c_req->c_out); 1030 } 1031 } 1032 1033 return 0; 1034 } 1035 1036 static void sec_cipher_unmap(struct sec_ctx *ctx, struct sec_req *req, 1037 struct scatterlist *src, struct scatterlist *dst) 1038 { 1039 struct sec_cipher_req *c_req = &req->c_req; 1040 struct device *dev = ctx->dev; 1041 1042 if (req->use_pbuf) { 1043 sec_cipher_pbuf_unmap(ctx, req, dst); 1044 } else { 1045 if (dst != src) 1046 hisi_acc_sg_buf_unmap(dev, src, req->in); 1047 1048 hisi_acc_sg_buf_unmap(dev, dst, c_req->c_out); 1049 } 1050 } 1051 1052 static int sec_skcipher_sgl_map(struct sec_ctx *ctx, struct sec_req *req) 1053 { 1054 struct skcipher_request *sq = req->c_req.sk_req; 1055 1056 return sec_cipher_map(ctx, req, sq->src, sq->dst); 1057 } 1058 1059 static void sec_skcipher_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req) 1060 { 1061 struct skcipher_request *sq = req->c_req.sk_req; 1062 1063 sec_cipher_unmap(ctx, req, sq->src, sq->dst); 1064 } 1065 1066 static int sec_aead_aes_set_key(struct sec_cipher_ctx *c_ctx, 1067 struct crypto_authenc_keys *keys) 1068 { 1069 switch (keys->enckeylen) { 1070 case AES_KEYSIZE_128: 1071 c_ctx->c_key_len = SEC_CKEY_128BIT; 1072 break; 1073 case AES_KEYSIZE_192: 1074 c_ctx->c_key_len = SEC_CKEY_192BIT; 1075 break; 1076 case AES_KEYSIZE_256: 1077 c_ctx->c_key_len = SEC_CKEY_256BIT; 1078 break; 1079 default: 1080 pr_err("hisi_sec2: aead aes key error!\n"); 1081 return -EINVAL; 1082 } 1083 memcpy(c_ctx->c_key, keys->enckey, keys->enckeylen); 1084 1085 return 0; 1086 } 1087 1088 static int sec_aead_auth_set_key(struct sec_auth_ctx *ctx, 1089 struct crypto_authenc_keys *keys) 1090 { 1091 struct crypto_shash *hash_tfm = ctx->hash_tfm; 1092 int blocksize, digestsize, ret; 1093 1094 if (!keys->authkeylen) { 1095 pr_err("hisi_sec2: aead auth key error!\n"); 1096 return -EINVAL; 1097 } 1098 1099 blocksize = crypto_shash_blocksize(hash_tfm); 1100 digestsize = crypto_shash_digestsize(hash_tfm); 1101 if (keys->authkeylen > blocksize) { 1102 ret = crypto_shash_tfm_digest(hash_tfm, keys->authkey, 1103 keys->authkeylen, ctx->a_key); 1104 if (ret) { 1105 pr_err("hisi_sec2: aead auth digest error!\n"); 1106 return -EINVAL; 1107 } 1108 ctx->a_key_len = digestsize; 1109 } else { 1110 memcpy(ctx->a_key, keys->authkey, keys->authkeylen); 1111 ctx->a_key_len = keys->authkeylen; 1112 } 1113 1114 return 0; 1115 } 1116 1117 static int sec_aead_setauthsize(struct crypto_aead *aead, unsigned int authsize) 1118 { 1119 struct crypto_tfm *tfm = crypto_aead_tfm(aead); 1120 struct sec_ctx *ctx = crypto_tfm_ctx(tfm); 1121 struct sec_auth_ctx *a_ctx = &ctx->a_ctx; 1122 1123 if (unlikely(a_ctx->fallback_aead_tfm)) 1124 return crypto_aead_setauthsize(a_ctx->fallback_aead_tfm, authsize); 1125 1126 return 0; 1127 } 1128 1129 static int sec_aead_fallback_setkey(struct sec_auth_ctx *a_ctx, 1130 struct crypto_aead *tfm, const u8 *key, 1131 unsigned int keylen) 1132 { 1133 crypto_aead_clear_flags(a_ctx->fallback_aead_tfm, CRYPTO_TFM_REQ_MASK); 1134 crypto_aead_set_flags(a_ctx->fallback_aead_tfm, 1135 crypto_aead_get_flags(tfm) & CRYPTO_TFM_REQ_MASK); 1136 return crypto_aead_setkey(a_ctx->fallback_aead_tfm, key, keylen); 1137 } 1138 1139 static int sec_aead_setkey(struct crypto_aead *tfm, const u8 *key, 1140 const u32 keylen, const enum sec_hash_alg a_alg, 1141 const enum sec_calg c_alg, 1142 const enum sec_mac_len mac_len, 1143 const enum sec_cmode c_mode) 1144 { 1145 struct sec_ctx *ctx = crypto_aead_ctx(tfm); 1146 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx; 1147 struct sec_auth_ctx *a_ctx = &ctx->a_ctx; 1148 struct device *dev = ctx->dev; 1149 struct crypto_authenc_keys keys; 1150 int ret; 1151 1152 ctx->a_ctx.a_alg = a_alg; 1153 ctx->c_ctx.c_alg = c_alg; 1154 ctx->a_ctx.mac_len = mac_len; 1155 c_ctx->c_mode = c_mode; 1156 1157 if (c_mode == SEC_CMODE_CCM || c_mode == SEC_CMODE_GCM) { 1158 ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode); 1159 if (ret) { 1160 dev_err(dev, "set sec aes ccm cipher key err!\n"); 1161 return ret; 1162 } 1163 memcpy(c_ctx->c_key, key, keylen); 1164 1165 if (unlikely(a_ctx->fallback_aead_tfm)) { 1166 ret = sec_aead_fallback_setkey(a_ctx, tfm, key, keylen); 1167 if (ret) 1168 return ret; 1169 } 1170 1171 return 0; 1172 } 1173 1174 ret = crypto_authenc_extractkeys(&keys, key, keylen); 1175 if (ret) 1176 goto bad_key; 1177 1178 ret = sec_aead_aes_set_key(c_ctx, &keys); 1179 if (ret) { 1180 dev_err(dev, "set sec cipher key err!\n"); 1181 goto bad_key; 1182 } 1183 1184 ret = sec_aead_auth_set_key(&ctx->a_ctx, &keys); 1185 if (ret) { 1186 dev_err(dev, "set sec auth key err!\n"); 1187 goto bad_key; 1188 } 1189 1190 if ((ctx->a_ctx.mac_len & SEC_SQE_LEN_RATE_MASK) || 1191 (ctx->a_ctx.a_key_len & SEC_SQE_LEN_RATE_MASK)) { 1192 ret = -EINVAL; 1193 dev_err(dev, "MAC or AUTH key length error!\n"); 1194 goto bad_key; 1195 } 1196 1197 return 0; 1198 1199 bad_key: 1200 memzero_explicit(&keys, sizeof(struct crypto_authenc_keys)); 1201 return ret; 1202 } 1203 1204 1205 #define GEN_SEC_AEAD_SETKEY_FUNC(name, aalg, calg, maclen, cmode) \ 1206 static int sec_setkey_##name(struct crypto_aead *tfm, const u8 *key, \ 1207 u32 keylen) \ 1208 { \ 1209 return sec_aead_setkey(tfm, key, keylen, aalg, calg, maclen, cmode);\ 1210 } 1211 1212 GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha1, SEC_A_HMAC_SHA1, 1213 SEC_CALG_AES, SEC_HMAC_SHA1_MAC, SEC_CMODE_CBC) 1214 GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha256, SEC_A_HMAC_SHA256, 1215 SEC_CALG_AES, SEC_HMAC_SHA256_MAC, SEC_CMODE_CBC) 1216 GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha512, SEC_A_HMAC_SHA512, 1217 SEC_CALG_AES, SEC_HMAC_SHA512_MAC, SEC_CMODE_CBC) 1218 GEN_SEC_AEAD_SETKEY_FUNC(aes_ccm, 0, SEC_CALG_AES, 1219 SEC_HMAC_CCM_MAC, SEC_CMODE_CCM) 1220 GEN_SEC_AEAD_SETKEY_FUNC(aes_gcm, 0, SEC_CALG_AES, 1221 SEC_HMAC_GCM_MAC, SEC_CMODE_GCM) 1222 GEN_SEC_AEAD_SETKEY_FUNC(sm4_ccm, 0, SEC_CALG_SM4, 1223 SEC_HMAC_CCM_MAC, SEC_CMODE_CCM) 1224 GEN_SEC_AEAD_SETKEY_FUNC(sm4_gcm, 0, SEC_CALG_SM4, 1225 SEC_HMAC_GCM_MAC, SEC_CMODE_GCM) 1226 1227 static int sec_aead_sgl_map(struct sec_ctx *ctx, struct sec_req *req) 1228 { 1229 struct aead_request *aq = req->aead_req.aead_req; 1230 1231 return sec_cipher_map(ctx, req, aq->src, aq->dst); 1232 } 1233 1234 static void sec_aead_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req) 1235 { 1236 struct aead_request *aq = req->aead_req.aead_req; 1237 1238 sec_cipher_unmap(ctx, req, aq->src, aq->dst); 1239 } 1240 1241 static int sec_request_transfer(struct sec_ctx *ctx, struct sec_req *req) 1242 { 1243 int ret; 1244 1245 ret = ctx->req_op->buf_map(ctx, req); 1246 if (unlikely(ret)) 1247 return ret; 1248 1249 ctx->req_op->do_transfer(ctx, req); 1250 1251 ret = ctx->req_op->bd_fill(ctx, req); 1252 if (unlikely(ret)) 1253 goto unmap_req_buf; 1254 1255 return ret; 1256 1257 unmap_req_buf: 1258 ctx->req_op->buf_unmap(ctx, req); 1259 return ret; 1260 } 1261 1262 static void sec_request_untransfer(struct sec_ctx *ctx, struct sec_req *req) 1263 { 1264 ctx->req_op->buf_unmap(ctx, req); 1265 } 1266 1267 static void sec_skcipher_copy_iv(struct sec_ctx *ctx, struct sec_req *req) 1268 { 1269 struct skcipher_request *sk_req = req->c_req.sk_req; 1270 struct sec_cipher_req *c_req = &req->c_req; 1271 1272 memcpy(c_req->c_ivin, sk_req->iv, ctx->c_ctx.ivsize); 1273 } 1274 1275 static int sec_skcipher_bd_fill(struct sec_ctx *ctx, struct sec_req *req) 1276 { 1277 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx; 1278 struct sec_cipher_req *c_req = &req->c_req; 1279 struct sec_sqe *sec_sqe = &req->sec_sqe; 1280 u8 scene, sa_type, da_type; 1281 u8 bd_type, cipher; 1282 u8 de = 0; 1283 1284 memset(sec_sqe, 0, sizeof(struct sec_sqe)); 1285 1286 sec_sqe->type2.c_key_addr = cpu_to_le64(c_ctx->c_key_dma); 1287 sec_sqe->type2.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma); 1288 sec_sqe->type2.data_src_addr = cpu_to_le64(req->in_dma); 1289 sec_sqe->type2.data_dst_addr = cpu_to_le64(c_req->c_out_dma); 1290 1291 sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_mode) << 1292 SEC_CMODE_OFFSET); 1293 sec_sqe->type2.c_alg = c_ctx->c_alg; 1294 sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_key_len) << 1295 SEC_CKEY_OFFSET); 1296 1297 bd_type = SEC_BD_TYPE2; 1298 if (c_req->encrypt) 1299 cipher = SEC_CIPHER_ENC << SEC_CIPHER_OFFSET; 1300 else 1301 cipher = SEC_CIPHER_DEC << SEC_CIPHER_OFFSET; 1302 sec_sqe->type_cipher_auth = bd_type | cipher; 1303 1304 /* Set destination and source address type */ 1305 if (req->use_pbuf) { 1306 sa_type = SEC_PBUF << SEC_SRC_SGL_OFFSET; 1307 da_type = SEC_PBUF << SEC_DST_SGL_OFFSET; 1308 } else { 1309 sa_type = SEC_SGL << SEC_SRC_SGL_OFFSET; 1310 da_type = SEC_SGL << SEC_DST_SGL_OFFSET; 1311 } 1312 1313 sec_sqe->sdm_addr_type |= da_type; 1314 scene = SEC_COMM_SCENE << SEC_SCENE_OFFSET; 1315 if (req->in_dma != c_req->c_out_dma) 1316 de = 0x1 << SEC_DE_OFFSET; 1317 1318 sec_sqe->sds_sa_type = (de | scene | sa_type); 1319 1320 sec_sqe->type2.clen_ivhlen |= cpu_to_le32(c_req->c_len); 1321 sec_sqe->type2.tag = cpu_to_le16((u16)req->req_id); 1322 1323 return 0; 1324 } 1325 1326 static int sec_skcipher_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req) 1327 { 1328 struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3; 1329 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx; 1330 struct sec_cipher_req *c_req = &req->c_req; 1331 u32 bd_param = 0; 1332 u16 cipher; 1333 1334 memset(sec_sqe3, 0, sizeof(struct sec_sqe3)); 1335 1336 sec_sqe3->c_key_addr = cpu_to_le64(c_ctx->c_key_dma); 1337 sec_sqe3->no_scene.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma); 1338 sec_sqe3->data_src_addr = cpu_to_le64(req->in_dma); 1339 sec_sqe3->data_dst_addr = cpu_to_le64(c_req->c_out_dma); 1340 1341 sec_sqe3->c_mode_alg = ((u8)c_ctx->c_alg << SEC_CALG_OFFSET_V3) | 1342 c_ctx->c_mode; 1343 sec_sqe3->c_icv_key |= cpu_to_le16(((u16)c_ctx->c_key_len) << 1344 SEC_CKEY_OFFSET_V3); 1345 1346 if (c_req->encrypt) 1347 cipher = SEC_CIPHER_ENC; 1348 else 1349 cipher = SEC_CIPHER_DEC; 1350 sec_sqe3->c_icv_key |= cpu_to_le16(cipher); 1351 1352 /* Set the CTR counter mode is 128bit rollover */ 1353 sec_sqe3->auth_mac_key = cpu_to_le32((u32)SEC_CTR_CNT_ROLLOVER << 1354 SEC_CTR_CNT_OFFSET); 1355 1356 if (req->use_pbuf) { 1357 bd_param |= SEC_PBUF << SEC_SRC_SGL_OFFSET_V3; 1358 bd_param |= SEC_PBUF << SEC_DST_SGL_OFFSET_V3; 1359 } else { 1360 bd_param |= SEC_SGL << SEC_SRC_SGL_OFFSET_V3; 1361 bd_param |= SEC_SGL << SEC_DST_SGL_OFFSET_V3; 1362 } 1363 1364 bd_param |= SEC_COMM_SCENE << SEC_SCENE_OFFSET_V3; 1365 if (req->in_dma != c_req->c_out_dma) 1366 bd_param |= 0x1 << SEC_DE_OFFSET_V3; 1367 1368 bd_param |= SEC_BD_TYPE3; 1369 sec_sqe3->bd_param = cpu_to_le32(bd_param); 1370 1371 sec_sqe3->c_len_ivin |= cpu_to_le32(c_req->c_len); 1372 sec_sqe3->tag = cpu_to_le64((unsigned long)req); 1373 1374 return 0; 1375 } 1376 1377 /* increment counter (128-bit int) */ 1378 static void ctr_iv_inc(__u8 *counter, __u8 bits, __u32 nums) 1379 { 1380 do { 1381 --bits; 1382 nums += counter[bits]; 1383 counter[bits] = nums & BITS_MASK; 1384 nums >>= BYTE_BITS; 1385 } while (bits && nums); 1386 } 1387 1388 static void sec_update_iv(struct sec_req *req, enum sec_alg_type alg_type) 1389 { 1390 struct aead_request *aead_req = req->aead_req.aead_req; 1391 struct skcipher_request *sk_req = req->c_req.sk_req; 1392 u32 iv_size = req->ctx->c_ctx.ivsize; 1393 struct scatterlist *sgl; 1394 unsigned int cryptlen; 1395 size_t sz; 1396 u8 *iv; 1397 1398 if (req->c_req.encrypt) 1399 sgl = alg_type == SEC_SKCIPHER ? sk_req->dst : aead_req->dst; 1400 else 1401 sgl = alg_type == SEC_SKCIPHER ? sk_req->src : aead_req->src; 1402 1403 if (alg_type == SEC_SKCIPHER) { 1404 iv = sk_req->iv; 1405 cryptlen = sk_req->cryptlen; 1406 } else { 1407 iv = aead_req->iv; 1408 cryptlen = aead_req->cryptlen; 1409 } 1410 1411 if (req->ctx->c_ctx.c_mode == SEC_CMODE_CBC) { 1412 sz = sg_pcopy_to_buffer(sgl, sg_nents(sgl), iv, iv_size, 1413 cryptlen - iv_size); 1414 if (unlikely(sz != iv_size)) 1415 dev_err(req->ctx->dev, "copy output iv error!\n"); 1416 } else { 1417 sz = cryptlen / iv_size; 1418 if (cryptlen % iv_size) 1419 sz += 1; 1420 ctr_iv_inc(iv, iv_size, sz); 1421 } 1422 } 1423 1424 static struct sec_req *sec_back_req_clear(struct sec_ctx *ctx, 1425 struct sec_qp_ctx *qp_ctx) 1426 { 1427 struct sec_req *backlog_req = NULL; 1428 1429 spin_lock_bh(&qp_ctx->req_lock); 1430 if (ctx->fake_req_limit >= 1431 atomic_read(&qp_ctx->qp->qp_status.used) && 1432 !list_empty(&qp_ctx->backlog)) { 1433 backlog_req = list_first_entry(&qp_ctx->backlog, 1434 typeof(*backlog_req), backlog_head); 1435 list_del(&backlog_req->backlog_head); 1436 } 1437 spin_unlock_bh(&qp_ctx->req_lock); 1438 1439 return backlog_req; 1440 } 1441 1442 static void sec_skcipher_callback(struct sec_ctx *ctx, struct sec_req *req, 1443 int err) 1444 { 1445 struct skcipher_request *sk_req = req->c_req.sk_req; 1446 struct sec_qp_ctx *qp_ctx = req->qp_ctx; 1447 struct skcipher_request *backlog_sk_req; 1448 struct sec_req *backlog_req; 1449 1450 sec_free_req_id(req); 1451 1452 /* IV output at encrypto of CBC/CTR mode */ 1453 if (!err && (ctx->c_ctx.c_mode == SEC_CMODE_CBC || 1454 ctx->c_ctx.c_mode == SEC_CMODE_CTR) && req->c_req.encrypt) 1455 sec_update_iv(req, SEC_SKCIPHER); 1456 1457 while (1) { 1458 backlog_req = sec_back_req_clear(ctx, qp_ctx); 1459 if (!backlog_req) 1460 break; 1461 1462 backlog_sk_req = backlog_req->c_req.sk_req; 1463 skcipher_request_complete(backlog_sk_req, -EINPROGRESS); 1464 atomic64_inc(&ctx->sec->debug.dfx.recv_busy_cnt); 1465 } 1466 1467 skcipher_request_complete(sk_req, err); 1468 } 1469 1470 static void set_aead_auth_iv(struct sec_ctx *ctx, struct sec_req *req) 1471 { 1472 struct aead_request *aead_req = req->aead_req.aead_req; 1473 struct sec_cipher_req *c_req = &req->c_req; 1474 struct sec_aead_req *a_req = &req->aead_req; 1475 size_t authsize = ctx->a_ctx.mac_len; 1476 u32 data_size = aead_req->cryptlen; 1477 u8 flage = 0; 1478 u8 cm, cl; 1479 1480 /* the specification has been checked in aead_iv_demension_check() */ 1481 cl = c_req->c_ivin[0] + 1; 1482 c_req->c_ivin[ctx->c_ctx.ivsize - cl] = 0x00; 1483 memset(&c_req->c_ivin[ctx->c_ctx.ivsize - cl], 0, cl); 1484 c_req->c_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE1] = IV_CTR_INIT; 1485 1486 /* the last 3bit is L' */ 1487 flage |= c_req->c_ivin[0] & IV_CL_MASK; 1488 1489 /* the M' is bit3~bit5, the Flags is bit6 */ 1490 cm = (authsize - IV_CM_CAL_NUM) / IV_CM_CAL_NUM; 1491 flage |= cm << IV_CM_OFFSET; 1492 if (aead_req->assoclen) 1493 flage |= 0x01 << IV_FLAGS_OFFSET; 1494 1495 memcpy(a_req->a_ivin, c_req->c_ivin, ctx->c_ctx.ivsize); 1496 a_req->a_ivin[0] = flage; 1497 1498 /* 1499 * the last 32bit is counter's initial number, 1500 * but the nonce uses the first 16bit 1501 * the tail 16bit fill with the cipher length 1502 */ 1503 if (!c_req->encrypt) 1504 data_size = aead_req->cryptlen - authsize; 1505 1506 a_req->a_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE1] = 1507 data_size & IV_LAST_BYTE_MASK; 1508 data_size >>= IV_BYTE_OFFSET; 1509 a_req->a_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE2] = 1510 data_size & IV_LAST_BYTE_MASK; 1511 } 1512 1513 static void sec_aead_set_iv(struct sec_ctx *ctx, struct sec_req *req) 1514 { 1515 struct aead_request *aead_req = req->aead_req.aead_req; 1516 struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req); 1517 size_t authsize = crypto_aead_authsize(tfm); 1518 struct sec_cipher_req *c_req = &req->c_req; 1519 struct sec_aead_req *a_req = &req->aead_req; 1520 1521 memcpy(c_req->c_ivin, aead_req->iv, ctx->c_ctx.ivsize); 1522 1523 if (ctx->c_ctx.c_mode == SEC_CMODE_CCM) { 1524 /* 1525 * CCM 16Byte Cipher_IV: {1B_Flage,13B_IV,2B_counter}, 1526 * the counter must set to 0x01 1527 */ 1528 ctx->a_ctx.mac_len = authsize; 1529 /* CCM 16Byte Auth_IV: {1B_AFlage,13B_IV,2B_Ptext_length} */ 1530 set_aead_auth_iv(ctx, req); 1531 } 1532 1533 /* GCM 12Byte Cipher_IV == Auth_IV */ 1534 if (ctx->c_ctx.c_mode == SEC_CMODE_GCM) { 1535 ctx->a_ctx.mac_len = authsize; 1536 memcpy(a_req->a_ivin, c_req->c_ivin, SEC_AIV_SIZE); 1537 } 1538 } 1539 1540 static void sec_auth_bd_fill_xcm(struct sec_auth_ctx *ctx, int dir, 1541 struct sec_req *req, struct sec_sqe *sec_sqe) 1542 { 1543 struct sec_aead_req *a_req = &req->aead_req; 1544 struct aead_request *aq = a_req->aead_req; 1545 1546 /* C_ICV_Len is MAC size, 0x4 ~ 0x10 */ 1547 sec_sqe->type2.icvw_kmode |= cpu_to_le16((u16)ctx->mac_len); 1548 1549 /* mode set to CCM/GCM, don't set {A_Alg, AKey_Len, MAC_Len} */ 1550 sec_sqe->type2.a_key_addr = sec_sqe->type2.c_key_addr; 1551 sec_sqe->type2.a_ivin_addr = cpu_to_le64(a_req->a_ivin_dma); 1552 sec_sqe->type_cipher_auth |= SEC_NO_AUTH << SEC_AUTH_OFFSET; 1553 1554 if (dir) 1555 sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH; 1556 else 1557 sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER; 1558 1559 sec_sqe->type2.alen_ivllen = cpu_to_le32(aq->assoclen); 1560 sec_sqe->type2.auth_src_offset = cpu_to_le16(0x0); 1561 sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen); 1562 1563 sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma); 1564 } 1565 1566 static void sec_auth_bd_fill_xcm_v3(struct sec_auth_ctx *ctx, int dir, 1567 struct sec_req *req, struct sec_sqe3 *sqe3) 1568 { 1569 struct sec_aead_req *a_req = &req->aead_req; 1570 struct aead_request *aq = a_req->aead_req; 1571 1572 /* C_ICV_Len is MAC size, 0x4 ~ 0x10 */ 1573 sqe3->c_icv_key |= cpu_to_le16((u16)ctx->mac_len << SEC_MAC_OFFSET_V3); 1574 1575 /* mode set to CCM/GCM, don't set {A_Alg, AKey_Len, MAC_Len} */ 1576 sqe3->a_key_addr = sqe3->c_key_addr; 1577 sqe3->auth_ivin.a_ivin_addr = cpu_to_le64(a_req->a_ivin_dma); 1578 sqe3->auth_mac_key |= SEC_NO_AUTH; 1579 1580 if (dir) 1581 sqe3->huk_iv_seq &= SEC_CIPHER_AUTH_V3; 1582 else 1583 sqe3->huk_iv_seq |= SEC_AUTH_CIPHER_V3; 1584 1585 sqe3->a_len_key = cpu_to_le32(aq->assoclen); 1586 sqe3->auth_src_offset = cpu_to_le16(0x0); 1587 sqe3->cipher_src_offset = cpu_to_le16((u16)aq->assoclen); 1588 sqe3->mac_addr = cpu_to_le64(a_req->out_mac_dma); 1589 } 1590 1591 static void sec_auth_bd_fill_ex(struct sec_auth_ctx *ctx, int dir, 1592 struct sec_req *req, struct sec_sqe *sec_sqe) 1593 { 1594 struct sec_aead_req *a_req = &req->aead_req; 1595 struct sec_cipher_req *c_req = &req->c_req; 1596 struct aead_request *aq = a_req->aead_req; 1597 1598 sec_sqe->type2.a_key_addr = cpu_to_le64(ctx->a_key_dma); 1599 1600 sec_sqe->type2.mac_key_alg = 1601 cpu_to_le32(ctx->mac_len / SEC_SQE_LEN_RATE); 1602 1603 sec_sqe->type2.mac_key_alg |= 1604 cpu_to_le32((u32)((ctx->a_key_len) / 1605 SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET); 1606 1607 sec_sqe->type2.mac_key_alg |= 1608 cpu_to_le32((u32)(ctx->a_alg) << SEC_AEAD_ALG_OFFSET); 1609 1610 if (dir) { 1611 sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE1 << SEC_AUTH_OFFSET; 1612 sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH; 1613 } else { 1614 sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE2 << SEC_AUTH_OFFSET; 1615 sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER; 1616 } 1617 sec_sqe->type2.alen_ivllen = cpu_to_le32(c_req->c_len + aq->assoclen); 1618 1619 sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen); 1620 1621 sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma); 1622 } 1623 1624 static int sec_aead_bd_fill(struct sec_ctx *ctx, struct sec_req *req) 1625 { 1626 struct sec_auth_ctx *auth_ctx = &ctx->a_ctx; 1627 struct sec_sqe *sec_sqe = &req->sec_sqe; 1628 int ret; 1629 1630 ret = sec_skcipher_bd_fill(ctx, req); 1631 if (unlikely(ret)) { 1632 dev_err(ctx->dev, "skcipher bd fill is error!\n"); 1633 return ret; 1634 } 1635 1636 if (ctx->c_ctx.c_mode == SEC_CMODE_CCM || 1637 ctx->c_ctx.c_mode == SEC_CMODE_GCM) 1638 sec_auth_bd_fill_xcm(auth_ctx, req->c_req.encrypt, req, sec_sqe); 1639 else 1640 sec_auth_bd_fill_ex(auth_ctx, req->c_req.encrypt, req, sec_sqe); 1641 1642 return 0; 1643 } 1644 1645 static void sec_auth_bd_fill_ex_v3(struct sec_auth_ctx *ctx, int dir, 1646 struct sec_req *req, struct sec_sqe3 *sqe3) 1647 { 1648 struct sec_aead_req *a_req = &req->aead_req; 1649 struct sec_cipher_req *c_req = &req->c_req; 1650 struct aead_request *aq = a_req->aead_req; 1651 1652 sqe3->a_key_addr = cpu_to_le64(ctx->a_key_dma); 1653 1654 sqe3->auth_mac_key |= 1655 cpu_to_le32((u32)(ctx->mac_len / 1656 SEC_SQE_LEN_RATE) << SEC_MAC_OFFSET_V3); 1657 1658 sqe3->auth_mac_key |= 1659 cpu_to_le32((u32)(ctx->a_key_len / 1660 SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET_V3); 1661 1662 sqe3->auth_mac_key |= 1663 cpu_to_le32((u32)(ctx->a_alg) << SEC_AUTH_ALG_OFFSET_V3); 1664 1665 if (dir) { 1666 sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE1); 1667 sqe3->huk_iv_seq &= SEC_CIPHER_AUTH_V3; 1668 } else { 1669 sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE2); 1670 sqe3->huk_iv_seq |= SEC_AUTH_CIPHER_V3; 1671 } 1672 sqe3->a_len_key = cpu_to_le32(c_req->c_len + aq->assoclen); 1673 1674 sqe3->cipher_src_offset = cpu_to_le16((u16)aq->assoclen); 1675 1676 sqe3->mac_addr = cpu_to_le64(a_req->out_mac_dma); 1677 } 1678 1679 static int sec_aead_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req) 1680 { 1681 struct sec_auth_ctx *auth_ctx = &ctx->a_ctx; 1682 struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3; 1683 int ret; 1684 1685 ret = sec_skcipher_bd_fill_v3(ctx, req); 1686 if (unlikely(ret)) { 1687 dev_err(ctx->dev, "skcipher bd3 fill is error!\n"); 1688 return ret; 1689 } 1690 1691 if (ctx->c_ctx.c_mode == SEC_CMODE_CCM || 1692 ctx->c_ctx.c_mode == SEC_CMODE_GCM) 1693 sec_auth_bd_fill_xcm_v3(auth_ctx, req->c_req.encrypt, 1694 req, sec_sqe3); 1695 else 1696 sec_auth_bd_fill_ex_v3(auth_ctx, req->c_req.encrypt, 1697 req, sec_sqe3); 1698 1699 return 0; 1700 } 1701 1702 static void sec_aead_callback(struct sec_ctx *c, struct sec_req *req, int err) 1703 { 1704 struct aead_request *a_req = req->aead_req.aead_req; 1705 struct crypto_aead *tfm = crypto_aead_reqtfm(a_req); 1706 struct sec_aead_req *aead_req = &req->aead_req; 1707 struct sec_cipher_req *c_req = &req->c_req; 1708 size_t authsize = crypto_aead_authsize(tfm); 1709 struct sec_qp_ctx *qp_ctx = req->qp_ctx; 1710 struct aead_request *backlog_aead_req; 1711 struct sec_req *backlog_req; 1712 size_t sz; 1713 1714 if (!err && c->c_ctx.c_mode == SEC_CMODE_CBC && c_req->encrypt) 1715 sec_update_iv(req, SEC_AEAD); 1716 1717 /* Copy output mac */ 1718 if (!err && c_req->encrypt) { 1719 struct scatterlist *sgl = a_req->dst; 1720 1721 sz = sg_pcopy_from_buffer(sgl, sg_nents(sgl), 1722 aead_req->out_mac, 1723 authsize, a_req->cryptlen + 1724 a_req->assoclen); 1725 if (unlikely(sz != authsize)) { 1726 dev_err(c->dev, "copy out mac err!\n"); 1727 err = -EINVAL; 1728 } 1729 } 1730 1731 sec_free_req_id(req); 1732 1733 while (1) { 1734 backlog_req = sec_back_req_clear(c, qp_ctx); 1735 if (!backlog_req) 1736 break; 1737 1738 backlog_aead_req = backlog_req->aead_req.aead_req; 1739 aead_request_complete(backlog_aead_req, -EINPROGRESS); 1740 atomic64_inc(&c->sec->debug.dfx.recv_busy_cnt); 1741 } 1742 1743 aead_request_complete(a_req, err); 1744 } 1745 1746 static void sec_request_uninit(struct sec_ctx *ctx, struct sec_req *req) 1747 { 1748 sec_free_req_id(req); 1749 sec_free_queue_id(ctx, req); 1750 } 1751 1752 static int sec_request_init(struct sec_ctx *ctx, struct sec_req *req) 1753 { 1754 struct sec_qp_ctx *qp_ctx; 1755 int queue_id; 1756 1757 /* To load balance */ 1758 queue_id = sec_alloc_queue_id(ctx, req); 1759 qp_ctx = &ctx->qp_ctx[queue_id]; 1760 1761 req->req_id = sec_alloc_req_id(req, qp_ctx); 1762 if (unlikely(req->req_id < 0)) { 1763 sec_free_queue_id(ctx, req); 1764 return req->req_id; 1765 } 1766 1767 return 0; 1768 } 1769 1770 static int sec_process(struct sec_ctx *ctx, struct sec_req *req) 1771 { 1772 struct sec_cipher_req *c_req = &req->c_req; 1773 int ret; 1774 1775 ret = sec_request_init(ctx, req); 1776 if (unlikely(ret)) 1777 return ret; 1778 1779 ret = sec_request_transfer(ctx, req); 1780 if (unlikely(ret)) 1781 goto err_uninit_req; 1782 1783 /* Output IV as decrypto */ 1784 if (!req->c_req.encrypt && (ctx->c_ctx.c_mode == SEC_CMODE_CBC || 1785 ctx->c_ctx.c_mode == SEC_CMODE_CTR)) 1786 sec_update_iv(req, ctx->alg_type); 1787 1788 ret = ctx->req_op->bd_send(ctx, req); 1789 if (unlikely((ret != -EBUSY && ret != -EINPROGRESS) || 1790 (ret == -EBUSY && !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG)))) { 1791 dev_err_ratelimited(ctx->dev, "send sec request failed!\n"); 1792 goto err_send_req; 1793 } 1794 1795 return ret; 1796 1797 err_send_req: 1798 /* As failing, restore the IV from user */ 1799 if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt) { 1800 if (ctx->alg_type == SEC_SKCIPHER) 1801 memcpy(req->c_req.sk_req->iv, c_req->c_ivin, 1802 ctx->c_ctx.ivsize); 1803 else 1804 memcpy(req->aead_req.aead_req->iv, c_req->c_ivin, 1805 ctx->c_ctx.ivsize); 1806 } 1807 1808 sec_request_untransfer(ctx, req); 1809 err_uninit_req: 1810 sec_request_uninit(ctx, req); 1811 return ret; 1812 } 1813 1814 static const struct sec_req_op sec_skcipher_req_ops = { 1815 .buf_map = sec_skcipher_sgl_map, 1816 .buf_unmap = sec_skcipher_sgl_unmap, 1817 .do_transfer = sec_skcipher_copy_iv, 1818 .bd_fill = sec_skcipher_bd_fill, 1819 .bd_send = sec_bd_send, 1820 .callback = sec_skcipher_callback, 1821 .process = sec_process, 1822 }; 1823 1824 static const struct sec_req_op sec_aead_req_ops = { 1825 .buf_map = sec_aead_sgl_map, 1826 .buf_unmap = sec_aead_sgl_unmap, 1827 .do_transfer = sec_aead_set_iv, 1828 .bd_fill = sec_aead_bd_fill, 1829 .bd_send = sec_bd_send, 1830 .callback = sec_aead_callback, 1831 .process = sec_process, 1832 }; 1833 1834 static const struct sec_req_op sec_skcipher_req_ops_v3 = { 1835 .buf_map = sec_skcipher_sgl_map, 1836 .buf_unmap = sec_skcipher_sgl_unmap, 1837 .do_transfer = sec_skcipher_copy_iv, 1838 .bd_fill = sec_skcipher_bd_fill_v3, 1839 .bd_send = sec_bd_send, 1840 .callback = sec_skcipher_callback, 1841 .process = sec_process, 1842 }; 1843 1844 static const struct sec_req_op sec_aead_req_ops_v3 = { 1845 .buf_map = sec_aead_sgl_map, 1846 .buf_unmap = sec_aead_sgl_unmap, 1847 .do_transfer = sec_aead_set_iv, 1848 .bd_fill = sec_aead_bd_fill_v3, 1849 .bd_send = sec_bd_send, 1850 .callback = sec_aead_callback, 1851 .process = sec_process, 1852 }; 1853 1854 static int sec_skcipher_ctx_init(struct crypto_skcipher *tfm) 1855 { 1856 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm); 1857 int ret; 1858 1859 ret = sec_skcipher_init(tfm); 1860 if (ret) 1861 return ret; 1862 1863 if (ctx->sec->qm.ver < QM_HW_V3) { 1864 ctx->type_supported = SEC_BD_TYPE2; 1865 ctx->req_op = &sec_skcipher_req_ops; 1866 } else { 1867 ctx->type_supported = SEC_BD_TYPE3; 1868 ctx->req_op = &sec_skcipher_req_ops_v3; 1869 } 1870 1871 return ret; 1872 } 1873 1874 static void sec_skcipher_ctx_exit(struct crypto_skcipher *tfm) 1875 { 1876 sec_skcipher_uninit(tfm); 1877 } 1878 1879 static int sec_aead_init(struct crypto_aead *tfm) 1880 { 1881 struct sec_ctx *ctx = crypto_aead_ctx(tfm); 1882 int ret; 1883 1884 crypto_aead_set_reqsize(tfm, sizeof(struct sec_req)); 1885 ctx->alg_type = SEC_AEAD; 1886 ctx->c_ctx.ivsize = crypto_aead_ivsize(tfm); 1887 if (ctx->c_ctx.ivsize < SEC_AIV_SIZE || 1888 ctx->c_ctx.ivsize > SEC_IV_SIZE) { 1889 pr_err("get error aead iv size!\n"); 1890 return -EINVAL; 1891 } 1892 1893 ret = sec_ctx_base_init(ctx); 1894 if (ret) 1895 return ret; 1896 if (ctx->sec->qm.ver < QM_HW_V3) { 1897 ctx->type_supported = SEC_BD_TYPE2; 1898 ctx->req_op = &sec_aead_req_ops; 1899 } else { 1900 ctx->type_supported = SEC_BD_TYPE3; 1901 ctx->req_op = &sec_aead_req_ops_v3; 1902 } 1903 1904 ret = sec_auth_init(ctx); 1905 if (ret) 1906 goto err_auth_init; 1907 1908 ret = sec_cipher_init(ctx); 1909 if (ret) 1910 goto err_cipher_init; 1911 1912 return ret; 1913 1914 err_cipher_init: 1915 sec_auth_uninit(ctx); 1916 err_auth_init: 1917 sec_ctx_base_uninit(ctx); 1918 return ret; 1919 } 1920 1921 static void sec_aead_exit(struct crypto_aead *tfm) 1922 { 1923 struct sec_ctx *ctx = crypto_aead_ctx(tfm); 1924 1925 sec_cipher_uninit(ctx); 1926 sec_auth_uninit(ctx); 1927 sec_ctx_base_uninit(ctx); 1928 } 1929 1930 static int sec_aead_ctx_init(struct crypto_aead *tfm, const char *hash_name) 1931 { 1932 struct sec_ctx *ctx = crypto_aead_ctx(tfm); 1933 struct sec_auth_ctx *auth_ctx = &ctx->a_ctx; 1934 int ret; 1935 1936 ret = sec_aead_init(tfm); 1937 if (ret) { 1938 pr_err("hisi_sec2: aead init error!\n"); 1939 return ret; 1940 } 1941 1942 auth_ctx->hash_tfm = crypto_alloc_shash(hash_name, 0, 0); 1943 if (IS_ERR(auth_ctx->hash_tfm)) { 1944 dev_err(ctx->dev, "aead alloc shash error!\n"); 1945 sec_aead_exit(tfm); 1946 return PTR_ERR(auth_ctx->hash_tfm); 1947 } 1948 1949 return 0; 1950 } 1951 1952 static void sec_aead_ctx_exit(struct crypto_aead *tfm) 1953 { 1954 struct sec_ctx *ctx = crypto_aead_ctx(tfm); 1955 1956 crypto_free_shash(ctx->a_ctx.hash_tfm); 1957 sec_aead_exit(tfm); 1958 } 1959 1960 static int sec_aead_xcm_ctx_init(struct crypto_aead *tfm) 1961 { 1962 struct aead_alg *alg = crypto_aead_alg(tfm); 1963 struct sec_ctx *ctx = crypto_aead_ctx(tfm); 1964 struct sec_auth_ctx *a_ctx = &ctx->a_ctx; 1965 const char *aead_name = alg->base.cra_name; 1966 int ret; 1967 1968 ret = sec_aead_init(tfm); 1969 if (ret) { 1970 dev_err(ctx->dev, "hisi_sec2: aead xcm init error!\n"); 1971 return ret; 1972 } 1973 1974 a_ctx->fallback_aead_tfm = crypto_alloc_aead(aead_name, 0, 1975 CRYPTO_ALG_NEED_FALLBACK | 1976 CRYPTO_ALG_ASYNC); 1977 if (IS_ERR(a_ctx->fallback_aead_tfm)) { 1978 dev_err(ctx->dev, "aead driver alloc fallback tfm error!\n"); 1979 sec_aead_exit(tfm); 1980 return PTR_ERR(a_ctx->fallback_aead_tfm); 1981 } 1982 a_ctx->fallback = false; 1983 1984 return 0; 1985 } 1986 1987 static void sec_aead_xcm_ctx_exit(struct crypto_aead *tfm) 1988 { 1989 struct sec_ctx *ctx = crypto_aead_ctx(tfm); 1990 1991 crypto_free_aead(ctx->a_ctx.fallback_aead_tfm); 1992 sec_aead_exit(tfm); 1993 } 1994 1995 static int sec_aead_sha1_ctx_init(struct crypto_aead *tfm) 1996 { 1997 return sec_aead_ctx_init(tfm, "sha1"); 1998 } 1999 2000 static int sec_aead_sha256_ctx_init(struct crypto_aead *tfm) 2001 { 2002 return sec_aead_ctx_init(tfm, "sha256"); 2003 } 2004 2005 static int sec_aead_sha512_ctx_init(struct crypto_aead *tfm) 2006 { 2007 return sec_aead_ctx_init(tfm, "sha512"); 2008 } 2009 2010 static int sec_skcipher_cryptlen_check(struct sec_ctx *ctx, 2011 struct sec_req *sreq) 2012 { 2013 u32 cryptlen = sreq->c_req.sk_req->cryptlen; 2014 struct device *dev = ctx->dev; 2015 u8 c_mode = ctx->c_ctx.c_mode; 2016 int ret = 0; 2017 2018 switch (c_mode) { 2019 case SEC_CMODE_XTS: 2020 if (unlikely(cryptlen < AES_BLOCK_SIZE)) { 2021 dev_err(dev, "skcipher XTS mode input length error!\n"); 2022 ret = -EINVAL; 2023 } 2024 break; 2025 case SEC_CMODE_ECB: 2026 case SEC_CMODE_CBC: 2027 if (unlikely(cryptlen & (AES_BLOCK_SIZE - 1))) { 2028 dev_err(dev, "skcipher AES input length error!\n"); 2029 ret = -EINVAL; 2030 } 2031 break; 2032 case SEC_CMODE_CTR: 2033 if (unlikely(ctx->sec->qm.ver < QM_HW_V3)) { 2034 dev_err(dev, "skcipher HW version error!\n"); 2035 ret = -EINVAL; 2036 } 2037 break; 2038 default: 2039 ret = -EINVAL; 2040 } 2041 2042 return ret; 2043 } 2044 2045 static int sec_skcipher_param_check(struct sec_ctx *ctx, struct sec_req *sreq) 2046 { 2047 struct skcipher_request *sk_req = sreq->c_req.sk_req; 2048 struct device *dev = ctx->dev; 2049 u8 c_alg = ctx->c_ctx.c_alg; 2050 2051 if (unlikely(!sk_req->src || !sk_req->dst || 2052 sk_req->cryptlen > MAX_INPUT_DATA_LEN)) { 2053 dev_err(dev, "skcipher input param error!\n"); 2054 return -EINVAL; 2055 } 2056 sreq->c_req.c_len = sk_req->cryptlen; 2057 2058 if (ctx->pbuf_supported && sk_req->cryptlen <= SEC_PBUF_SZ) 2059 sreq->use_pbuf = true; 2060 else 2061 sreq->use_pbuf = false; 2062 2063 if (c_alg == SEC_CALG_3DES) { 2064 if (unlikely(sk_req->cryptlen & (DES3_EDE_BLOCK_SIZE - 1))) { 2065 dev_err(dev, "skcipher 3des input length error!\n"); 2066 return -EINVAL; 2067 } 2068 return 0; 2069 } else if (c_alg == SEC_CALG_AES || c_alg == SEC_CALG_SM4) { 2070 return sec_skcipher_cryptlen_check(ctx, sreq); 2071 } 2072 2073 dev_err(dev, "skcipher algorithm error!\n"); 2074 2075 return -EINVAL; 2076 } 2077 2078 static int sec_skcipher_soft_crypto(struct sec_ctx *ctx, 2079 struct skcipher_request *sreq, bool encrypt) 2080 { 2081 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx; 2082 SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, c_ctx->fbtfm); 2083 struct device *dev = ctx->dev; 2084 int ret; 2085 2086 if (!c_ctx->fbtfm) { 2087 dev_err_ratelimited(dev, "the soft tfm isn't supported in the current system.\n"); 2088 return -EINVAL; 2089 } 2090 2091 skcipher_request_set_sync_tfm(subreq, c_ctx->fbtfm); 2092 2093 /* software need sync mode to do crypto */ 2094 skcipher_request_set_callback(subreq, sreq->base.flags, 2095 NULL, NULL); 2096 skcipher_request_set_crypt(subreq, sreq->src, sreq->dst, 2097 sreq->cryptlen, sreq->iv); 2098 if (encrypt) 2099 ret = crypto_skcipher_encrypt(subreq); 2100 else 2101 ret = crypto_skcipher_decrypt(subreq); 2102 2103 skcipher_request_zero(subreq); 2104 2105 return ret; 2106 } 2107 2108 static int sec_skcipher_crypto(struct skcipher_request *sk_req, bool encrypt) 2109 { 2110 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(sk_req); 2111 struct sec_req *req = skcipher_request_ctx(sk_req); 2112 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm); 2113 int ret; 2114 2115 if (!sk_req->cryptlen) { 2116 if (ctx->c_ctx.c_mode == SEC_CMODE_XTS) 2117 return -EINVAL; 2118 return 0; 2119 } 2120 2121 req->flag = sk_req->base.flags; 2122 req->c_req.sk_req = sk_req; 2123 req->c_req.encrypt = encrypt; 2124 req->ctx = ctx; 2125 2126 ret = sec_skcipher_param_check(ctx, req); 2127 if (unlikely(ret)) 2128 return -EINVAL; 2129 2130 if (unlikely(ctx->c_ctx.fallback)) 2131 return sec_skcipher_soft_crypto(ctx, sk_req, encrypt); 2132 2133 return ctx->req_op->process(ctx, req); 2134 } 2135 2136 static int sec_skcipher_encrypt(struct skcipher_request *sk_req) 2137 { 2138 return sec_skcipher_crypto(sk_req, true); 2139 } 2140 2141 static int sec_skcipher_decrypt(struct skcipher_request *sk_req) 2142 { 2143 return sec_skcipher_crypto(sk_req, false); 2144 } 2145 2146 #define SEC_SKCIPHER_ALG(sec_cra_name, sec_set_key, \ 2147 sec_min_key_size, sec_max_key_size, blk_size, iv_size)\ 2148 {\ 2149 .base = {\ 2150 .cra_name = sec_cra_name,\ 2151 .cra_driver_name = "hisi_sec_"sec_cra_name,\ 2152 .cra_priority = SEC_PRIORITY,\ 2153 .cra_flags = CRYPTO_ALG_ASYNC |\ 2154 CRYPTO_ALG_NEED_FALLBACK,\ 2155 .cra_blocksize = blk_size,\ 2156 .cra_ctxsize = sizeof(struct sec_ctx),\ 2157 .cra_module = THIS_MODULE,\ 2158 },\ 2159 .init = sec_skcipher_ctx_init,\ 2160 .exit = sec_skcipher_ctx_exit,\ 2161 .setkey = sec_set_key,\ 2162 .decrypt = sec_skcipher_decrypt,\ 2163 .encrypt = sec_skcipher_encrypt,\ 2164 .min_keysize = sec_min_key_size,\ 2165 .max_keysize = sec_max_key_size,\ 2166 .ivsize = iv_size,\ 2167 } 2168 2169 static struct sec_skcipher sec_skciphers[] = { 2170 { 2171 .alg_msk = BIT(0), 2172 .alg = SEC_SKCIPHER_ALG("ecb(aes)", sec_setkey_aes_ecb, AES_MIN_KEY_SIZE, 2173 AES_MAX_KEY_SIZE, AES_BLOCK_SIZE, 0), 2174 }, 2175 { 2176 .alg_msk = BIT(1), 2177 .alg = SEC_SKCIPHER_ALG("cbc(aes)", sec_setkey_aes_cbc, AES_MIN_KEY_SIZE, 2178 AES_MAX_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE), 2179 }, 2180 { 2181 .alg_msk = BIT(2), 2182 .alg = SEC_SKCIPHER_ALG("ctr(aes)", sec_setkey_aes_ctr, AES_MIN_KEY_SIZE, 2183 AES_MAX_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE), 2184 }, 2185 { 2186 .alg_msk = BIT(3), 2187 .alg = SEC_SKCIPHER_ALG("xts(aes)", sec_setkey_aes_xts, SEC_XTS_MIN_KEY_SIZE, 2188 SEC_XTS_MAX_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE), 2189 }, 2190 { 2191 .alg_msk = BIT(12), 2192 .alg = SEC_SKCIPHER_ALG("cbc(sm4)", sec_setkey_sm4_cbc, AES_MIN_KEY_SIZE, 2193 AES_MIN_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE), 2194 }, 2195 { 2196 .alg_msk = BIT(13), 2197 .alg = SEC_SKCIPHER_ALG("ctr(sm4)", sec_setkey_sm4_ctr, AES_MIN_KEY_SIZE, 2198 AES_MIN_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE), 2199 }, 2200 { 2201 .alg_msk = BIT(14), 2202 .alg = SEC_SKCIPHER_ALG("xts(sm4)", sec_setkey_sm4_xts, SEC_XTS_MIN_KEY_SIZE, 2203 SEC_XTS_MIN_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE), 2204 }, 2205 { 2206 .alg_msk = BIT(23), 2207 .alg = SEC_SKCIPHER_ALG("ecb(des3_ede)", sec_setkey_3des_ecb, SEC_DES3_3KEY_SIZE, 2208 SEC_DES3_3KEY_SIZE, DES3_EDE_BLOCK_SIZE, 0), 2209 }, 2210 { 2211 .alg_msk = BIT(24), 2212 .alg = SEC_SKCIPHER_ALG("cbc(des3_ede)", sec_setkey_3des_cbc, SEC_DES3_3KEY_SIZE, 2213 SEC_DES3_3KEY_SIZE, DES3_EDE_BLOCK_SIZE, 2214 DES3_EDE_BLOCK_SIZE), 2215 }, 2216 }; 2217 2218 static int aead_iv_demension_check(struct aead_request *aead_req) 2219 { 2220 u8 cl; 2221 2222 cl = aead_req->iv[0] + 1; 2223 if (cl < IV_CL_MIN || cl > IV_CL_MAX) 2224 return -EINVAL; 2225 2226 if (cl < IV_CL_MID && aead_req->cryptlen >> (BYTE_BITS * cl)) 2227 return -EOVERFLOW; 2228 2229 return 0; 2230 } 2231 2232 static int sec_aead_spec_check(struct sec_ctx *ctx, struct sec_req *sreq) 2233 { 2234 struct aead_request *req = sreq->aead_req.aead_req; 2235 struct crypto_aead *tfm = crypto_aead_reqtfm(req); 2236 size_t authsize = crypto_aead_authsize(tfm); 2237 u8 c_mode = ctx->c_ctx.c_mode; 2238 struct device *dev = ctx->dev; 2239 int ret; 2240 2241 if (unlikely(req->cryptlen + req->assoclen > MAX_INPUT_DATA_LEN || 2242 req->assoclen > SEC_MAX_AAD_LEN)) { 2243 dev_err(dev, "aead input spec error!\n"); 2244 return -EINVAL; 2245 } 2246 2247 if (unlikely((c_mode == SEC_CMODE_GCM && authsize < DES_BLOCK_SIZE) || 2248 (c_mode == SEC_CMODE_CCM && (authsize < MIN_MAC_LEN || 2249 authsize & MAC_LEN_MASK)))) { 2250 dev_err(dev, "aead input mac length error!\n"); 2251 return -EINVAL; 2252 } 2253 2254 if (c_mode == SEC_CMODE_CCM) { 2255 if (unlikely(req->assoclen > SEC_MAX_CCM_AAD_LEN)) { 2256 dev_err_ratelimited(dev, "CCM input aad parameter is too long!\n"); 2257 return -EINVAL; 2258 } 2259 ret = aead_iv_demension_check(req); 2260 if (ret) { 2261 dev_err(dev, "aead input iv param error!\n"); 2262 return ret; 2263 } 2264 } 2265 2266 if (sreq->c_req.encrypt) 2267 sreq->c_req.c_len = req->cryptlen; 2268 else 2269 sreq->c_req.c_len = req->cryptlen - authsize; 2270 if (c_mode == SEC_CMODE_CBC) { 2271 if (unlikely(sreq->c_req.c_len & (AES_BLOCK_SIZE - 1))) { 2272 dev_err(dev, "aead crypto length error!\n"); 2273 return -EINVAL; 2274 } 2275 } 2276 2277 return 0; 2278 } 2279 2280 static int sec_aead_param_check(struct sec_ctx *ctx, struct sec_req *sreq) 2281 { 2282 struct aead_request *req = sreq->aead_req.aead_req; 2283 struct crypto_aead *tfm = crypto_aead_reqtfm(req); 2284 size_t authsize = crypto_aead_authsize(tfm); 2285 struct device *dev = ctx->dev; 2286 u8 c_alg = ctx->c_ctx.c_alg; 2287 2288 if (unlikely(!req->src || !req->dst)) { 2289 dev_err(dev, "aead input param error!\n"); 2290 return -EINVAL; 2291 } 2292 2293 if (ctx->sec->qm.ver == QM_HW_V2) { 2294 if (unlikely(!req->cryptlen || (!sreq->c_req.encrypt && 2295 req->cryptlen <= authsize))) { 2296 ctx->a_ctx.fallback = true; 2297 return -EINVAL; 2298 } 2299 } 2300 2301 /* Support AES or SM4 */ 2302 if (unlikely(c_alg != SEC_CALG_AES && c_alg != SEC_CALG_SM4)) { 2303 dev_err(dev, "aead crypto alg error!\n"); 2304 return -EINVAL; 2305 } 2306 2307 if (unlikely(sec_aead_spec_check(ctx, sreq))) 2308 return -EINVAL; 2309 2310 if (ctx->pbuf_supported && (req->cryptlen + req->assoclen) <= 2311 SEC_PBUF_SZ) 2312 sreq->use_pbuf = true; 2313 else 2314 sreq->use_pbuf = false; 2315 2316 return 0; 2317 } 2318 2319 static int sec_aead_soft_crypto(struct sec_ctx *ctx, 2320 struct aead_request *aead_req, 2321 bool encrypt) 2322 { 2323 struct sec_auth_ctx *a_ctx = &ctx->a_ctx; 2324 struct device *dev = ctx->dev; 2325 struct aead_request *subreq; 2326 int ret; 2327 2328 /* Kunpeng920 aead mode not support input 0 size */ 2329 if (!a_ctx->fallback_aead_tfm) { 2330 dev_err(dev, "aead fallback tfm is NULL!\n"); 2331 return -EINVAL; 2332 } 2333 2334 subreq = aead_request_alloc(a_ctx->fallback_aead_tfm, GFP_KERNEL); 2335 if (!subreq) 2336 return -ENOMEM; 2337 2338 aead_request_set_tfm(subreq, a_ctx->fallback_aead_tfm); 2339 aead_request_set_callback(subreq, aead_req->base.flags, 2340 aead_req->base.complete, aead_req->base.data); 2341 aead_request_set_crypt(subreq, aead_req->src, aead_req->dst, 2342 aead_req->cryptlen, aead_req->iv); 2343 aead_request_set_ad(subreq, aead_req->assoclen); 2344 2345 if (encrypt) 2346 ret = crypto_aead_encrypt(subreq); 2347 else 2348 ret = crypto_aead_decrypt(subreq); 2349 aead_request_free(subreq); 2350 2351 return ret; 2352 } 2353 2354 static int sec_aead_crypto(struct aead_request *a_req, bool encrypt) 2355 { 2356 struct crypto_aead *tfm = crypto_aead_reqtfm(a_req); 2357 struct sec_req *req = aead_request_ctx(a_req); 2358 struct sec_ctx *ctx = crypto_aead_ctx(tfm); 2359 int ret; 2360 2361 req->flag = a_req->base.flags; 2362 req->aead_req.aead_req = a_req; 2363 req->c_req.encrypt = encrypt; 2364 req->ctx = ctx; 2365 2366 ret = sec_aead_param_check(ctx, req); 2367 if (unlikely(ret)) { 2368 if (ctx->a_ctx.fallback) 2369 return sec_aead_soft_crypto(ctx, a_req, encrypt); 2370 return -EINVAL; 2371 } 2372 2373 return ctx->req_op->process(ctx, req); 2374 } 2375 2376 static int sec_aead_encrypt(struct aead_request *a_req) 2377 { 2378 return sec_aead_crypto(a_req, true); 2379 } 2380 2381 static int sec_aead_decrypt(struct aead_request *a_req) 2382 { 2383 return sec_aead_crypto(a_req, false); 2384 } 2385 2386 #define SEC_AEAD_ALG(sec_cra_name, sec_set_key, ctx_init,\ 2387 ctx_exit, blk_size, iv_size, max_authsize)\ 2388 {\ 2389 .base = {\ 2390 .cra_name = sec_cra_name,\ 2391 .cra_driver_name = "hisi_sec_"sec_cra_name,\ 2392 .cra_priority = SEC_PRIORITY,\ 2393 .cra_flags = CRYPTO_ALG_ASYNC |\ 2394 CRYPTO_ALG_NEED_FALLBACK,\ 2395 .cra_blocksize = blk_size,\ 2396 .cra_ctxsize = sizeof(struct sec_ctx),\ 2397 .cra_module = THIS_MODULE,\ 2398 },\ 2399 .init = ctx_init,\ 2400 .exit = ctx_exit,\ 2401 .setkey = sec_set_key,\ 2402 .setauthsize = sec_aead_setauthsize,\ 2403 .decrypt = sec_aead_decrypt,\ 2404 .encrypt = sec_aead_encrypt,\ 2405 .ivsize = iv_size,\ 2406 .maxauthsize = max_authsize,\ 2407 } 2408 2409 static struct sec_aead sec_aeads[] = { 2410 { 2411 .alg_msk = BIT(6), 2412 .alg = SEC_AEAD_ALG("ccm(aes)", sec_setkey_aes_ccm, sec_aead_xcm_ctx_init, 2413 sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE, 2414 AES_BLOCK_SIZE), 2415 }, 2416 { 2417 .alg_msk = BIT(7), 2418 .alg = SEC_AEAD_ALG("gcm(aes)", sec_setkey_aes_gcm, sec_aead_xcm_ctx_init, 2419 sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, SEC_AIV_SIZE, 2420 AES_BLOCK_SIZE), 2421 }, 2422 { 2423 .alg_msk = BIT(17), 2424 .alg = SEC_AEAD_ALG("ccm(sm4)", sec_setkey_sm4_ccm, sec_aead_xcm_ctx_init, 2425 sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE, 2426 AES_BLOCK_SIZE), 2427 }, 2428 { 2429 .alg_msk = BIT(18), 2430 .alg = SEC_AEAD_ALG("gcm(sm4)", sec_setkey_sm4_gcm, sec_aead_xcm_ctx_init, 2431 sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, SEC_AIV_SIZE, 2432 AES_BLOCK_SIZE), 2433 }, 2434 { 2435 .alg_msk = BIT(43), 2436 .alg = SEC_AEAD_ALG("authenc(hmac(sha1),cbc(aes))", sec_setkey_aes_cbc_sha1, 2437 sec_aead_sha1_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE, 2438 AES_BLOCK_SIZE, SHA1_DIGEST_SIZE), 2439 }, 2440 { 2441 .alg_msk = BIT(44), 2442 .alg = SEC_AEAD_ALG("authenc(hmac(sha256),cbc(aes))", sec_setkey_aes_cbc_sha256, 2443 sec_aead_sha256_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE, 2444 AES_BLOCK_SIZE, SHA256_DIGEST_SIZE), 2445 }, 2446 { 2447 .alg_msk = BIT(45), 2448 .alg = SEC_AEAD_ALG("authenc(hmac(sha512),cbc(aes))", sec_setkey_aes_cbc_sha512, 2449 sec_aead_sha512_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE, 2450 AES_BLOCK_SIZE, SHA512_DIGEST_SIZE), 2451 }, 2452 }; 2453 2454 static void sec_unregister_skcipher(u64 alg_mask, int end) 2455 { 2456 int i; 2457 2458 for (i = 0; i < end; i++) 2459 if (sec_skciphers[i].alg_msk & alg_mask) 2460 crypto_unregister_skcipher(&sec_skciphers[i].alg); 2461 } 2462 2463 static int sec_register_skcipher(u64 alg_mask) 2464 { 2465 int i, ret, count; 2466 2467 count = ARRAY_SIZE(sec_skciphers); 2468 2469 for (i = 0; i < count; i++) { 2470 if (!(sec_skciphers[i].alg_msk & alg_mask)) 2471 continue; 2472 2473 ret = crypto_register_skcipher(&sec_skciphers[i].alg); 2474 if (ret) 2475 goto err; 2476 } 2477 2478 return 0; 2479 2480 err: 2481 sec_unregister_skcipher(alg_mask, i); 2482 2483 return ret; 2484 } 2485 2486 static void sec_unregister_aead(u64 alg_mask, int end) 2487 { 2488 int i; 2489 2490 for (i = 0; i < end; i++) 2491 if (sec_aeads[i].alg_msk & alg_mask) 2492 crypto_unregister_aead(&sec_aeads[i].alg); 2493 } 2494 2495 static int sec_register_aead(u64 alg_mask) 2496 { 2497 int i, ret, count; 2498 2499 count = ARRAY_SIZE(sec_aeads); 2500 2501 for (i = 0; i < count; i++) { 2502 if (!(sec_aeads[i].alg_msk & alg_mask)) 2503 continue; 2504 2505 ret = crypto_register_aead(&sec_aeads[i].alg); 2506 if (ret) 2507 goto err; 2508 } 2509 2510 return 0; 2511 2512 err: 2513 sec_unregister_aead(alg_mask, i); 2514 2515 return ret; 2516 } 2517 2518 int sec_register_to_crypto(struct hisi_qm *qm) 2519 { 2520 u64 alg_mask; 2521 int ret = 0; 2522 2523 alg_mask = sec_get_alg_bitmap(qm, SEC_DRV_ALG_BITMAP_HIGH_IDX, 2524 SEC_DRV_ALG_BITMAP_LOW_IDX); 2525 2526 mutex_lock(&sec_algs_lock); 2527 if (sec_available_devs) { 2528 sec_available_devs++; 2529 goto unlock; 2530 } 2531 2532 ret = sec_register_skcipher(alg_mask); 2533 if (ret) 2534 goto unlock; 2535 2536 ret = sec_register_aead(alg_mask); 2537 if (ret) 2538 goto unreg_skcipher; 2539 2540 sec_available_devs++; 2541 mutex_unlock(&sec_algs_lock); 2542 2543 return 0; 2544 2545 unreg_skcipher: 2546 sec_unregister_skcipher(alg_mask, ARRAY_SIZE(sec_skciphers)); 2547 unlock: 2548 mutex_unlock(&sec_algs_lock); 2549 return ret; 2550 } 2551 2552 void sec_unregister_from_crypto(struct hisi_qm *qm) 2553 { 2554 u64 alg_mask; 2555 2556 alg_mask = sec_get_alg_bitmap(qm, SEC_DRV_ALG_BITMAP_HIGH_IDX, 2557 SEC_DRV_ALG_BITMAP_LOW_IDX); 2558 2559 mutex_lock(&sec_algs_lock); 2560 if (--sec_available_devs) 2561 goto unlock; 2562 2563 sec_unregister_aead(alg_mask, ARRAY_SIZE(sec_aeads)); 2564 sec_unregister_skcipher(alg_mask, ARRAY_SIZE(sec_skciphers)); 2565 2566 unlock: 2567 mutex_unlock(&sec_algs_lock); 2568 } 2569