xref: /linux/drivers/crypto/hisilicon/qm.c (revision e3966940559d52aa1800a008dcfeec218dd31f88)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 HiSilicon Limited. */
3 #include <asm/page.h>
4 #include <linux/acpi.h>
5 #include <linux/bitmap.h>
6 #include <linux/dma-mapping.h>
7 #include <linux/idr.h>
8 #include <linux/io.h>
9 #include <linux/irqreturn.h>
10 #include <linux/log2.h>
11 #include <linux/pm_runtime.h>
12 #include <linux/seq_file.h>
13 #include <linux/slab.h>
14 #include <linux/uacce.h>
15 #include <linux/uaccess.h>
16 #include <uapi/misc/uacce/hisi_qm.h>
17 #include <linux/hisi_acc_qm.h>
18 #include "qm_common.h"
19 
20 /* eq/aeq irq enable */
21 #define QM_VF_AEQ_INT_SOURCE		0x0
22 #define QM_VF_AEQ_INT_MASK		0x4
23 #define QM_VF_EQ_INT_SOURCE		0x8
24 #define QM_VF_EQ_INT_MASK		0xc
25 
26 #define QM_IRQ_VECTOR_MASK		GENMASK(15, 0)
27 #define QM_IRQ_TYPE_MASK		GENMASK(15, 0)
28 #define QM_IRQ_TYPE_SHIFT		16
29 #define QM_ABN_IRQ_TYPE_MASK		GENMASK(7, 0)
30 
31 /* mailbox */
32 #define QM_MB_PING_ALL_VFS		0xffff
33 #define QM_MB_STATUS_MASK		GENMASK(12, 9)
34 
35 /* sqc shift */
36 #define QM_SQ_HOP_NUM_SHIFT		0
37 #define QM_SQ_PAGE_SIZE_SHIFT		4
38 #define QM_SQ_BUF_SIZE_SHIFT		8
39 #define QM_SQ_SQE_SIZE_SHIFT		12
40 #define QM_SQ_PRIORITY_SHIFT		0
41 #define QM_SQ_ORDERS_SHIFT		4
42 #define QM_SQ_TYPE_SHIFT		8
43 #define QM_QC_PASID_ENABLE		0x1
44 #define QM_QC_PASID_ENABLE_SHIFT	7
45 
46 #define QM_SQ_TYPE_MASK			GENMASK(3, 0)
47 #define QM_SQ_TAIL_IDX(sqc)		((le16_to_cpu((sqc).w11) >> 6) & 0x1)
48 #define QM_SQC_DISABLE_QP		(1U << 6)
49 #define QM_XQC_RANDOM_DATA		0xaaaa
50 
51 /* cqc shift */
52 #define QM_CQ_HOP_NUM_SHIFT		0
53 #define QM_CQ_PAGE_SIZE_SHIFT		4
54 #define QM_CQ_BUF_SIZE_SHIFT		8
55 #define QM_CQ_CQE_SIZE_SHIFT		12
56 #define QM_CQ_PHASE_SHIFT		0
57 #define QM_CQ_FLAG_SHIFT		1
58 
59 #define QM_CQE_PHASE(cqe)		(le16_to_cpu((cqe)->w7) & 0x1)
60 #define QM_QC_CQE_SIZE			4
61 #define QM_CQ_TAIL_IDX(cqc)		((le16_to_cpu((cqc).w11) >> 6) & 0x1)
62 
63 /* eqc shift */
64 #define QM_EQE_AEQE_SIZE		(2UL << 12)
65 #define QM_EQC_PHASE_SHIFT		16
66 
67 #define QM_EQE_PHASE(eqe)		((le32_to_cpu((eqe)->dw0) >> 16) & 0x1)
68 #define QM_EQE_CQN_MASK			GENMASK(15, 0)
69 
70 #define QM_AEQE_PHASE(aeqe)		((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1)
71 #define QM_AEQE_TYPE_SHIFT		17
72 #define QM_AEQE_TYPE_MASK		0xf
73 #define QM_AEQE_CQN_MASK		GENMASK(15, 0)
74 #define QM_CQ_OVERFLOW			0
75 #define QM_EQ_OVERFLOW			1
76 #define QM_CQE_ERROR			2
77 
78 #define QM_XQ_DEPTH_SHIFT		16
79 #define QM_XQ_DEPTH_MASK		GENMASK(15, 0)
80 
81 #define QM_DOORBELL_CMD_SQ		0
82 #define QM_DOORBELL_CMD_CQ		1
83 #define QM_DOORBELL_CMD_EQ		2
84 #define QM_DOORBELL_CMD_AEQ		3
85 
86 #define QM_DOORBELL_BASE_V1		0x340
87 #define QM_DB_CMD_SHIFT_V1		16
88 #define QM_DB_INDEX_SHIFT_V1		32
89 #define QM_DB_PRIORITY_SHIFT_V1		48
90 #define QM_PAGE_SIZE			0x0034
91 #define QM_QP_DB_INTERVAL		0x10000
92 #define QM_DB_TIMEOUT_CFG		0x100074
93 #define QM_DB_TIMEOUT_SET		0x1fffff
94 
95 #define QM_MEM_START_INIT		0x100040
96 #define QM_MEM_INIT_DONE		0x100044
97 #define QM_VFT_CFG_RDY			0x10006c
98 #define QM_VFT_CFG_OP_WR		0x100058
99 #define QM_VFT_CFG_TYPE			0x10005c
100 #define QM_VFT_CFG			0x100060
101 #define QM_VFT_CFG_OP_ENABLE		0x100054
102 #define QM_PM_CTRL			0x100148
103 #define QM_IDLE_DISABLE			BIT(9)
104 
105 #define QM_SUB_VERSION_ID		0x210
106 
107 #define QM_VFT_CFG_DATA_L		0x100064
108 #define QM_VFT_CFG_DATA_H		0x100068
109 #define QM_SQC_VFT_BUF_SIZE		(7ULL << 8)
110 #define QM_SQC_VFT_SQC_SIZE		(5ULL << 12)
111 #define QM_SQC_VFT_INDEX_NUMBER		(1ULL << 16)
112 #define QM_SQC_VFT_START_SQN_SHIFT	28
113 #define QM_SQC_VFT_VALID		(1ULL << 44)
114 #define QM_SQC_VFT_SQN_SHIFT		45
115 #define QM_CQC_VFT_BUF_SIZE		(7ULL << 8)
116 #define QM_CQC_VFT_SQC_SIZE		(5ULL << 12)
117 #define QM_CQC_VFT_INDEX_NUMBER		(1ULL << 16)
118 #define QM_CQC_VFT_VALID		(1ULL << 28)
119 
120 #define QM_SQC_VFT_BASE_SHIFT_V2	28
121 #define QM_SQC_VFT_BASE_MASK_V2		GENMASK(15, 0)
122 #define QM_SQC_VFT_NUM_SHIFT_V2		45
123 #define QM_SQC_VFT_NUM_MASK_V2		GENMASK(9, 0)
124 #define QM_MAX_QC_TYPE                  2
125 
126 #define QM_ABNORMAL_INT_SOURCE		0x100000
127 #define QM_ABNORMAL_INT_MASK		0x100004
128 #define QM_ABNORMAL_INT_MASK_VALUE	0x7fff
129 #define QM_ABNORMAL_INT_STATUS		0x100008
130 #define QM_ABNORMAL_INT_SET		0x10000c
131 #define QM_ABNORMAL_INF00		0x100010
132 #define QM_FIFO_OVERFLOW_TYPE		0xc0
133 #define QM_FIFO_OVERFLOW_TYPE_SHIFT	6
134 #define QM_FIFO_OVERFLOW_VF		0x3f
135 #define QM_FIFO_OVERFLOW_QP_SHIFT	16
136 #define QM_ABNORMAL_INF01		0x100014
137 #define QM_DB_TIMEOUT_TYPE		0xc0
138 #define QM_DB_TIMEOUT_TYPE_SHIFT	6
139 #define QM_DB_TIMEOUT_VF		0x3f
140 #define QM_DB_TIMEOUT_QP_SHIFT		16
141 #define QM_ABNORMAL_INF02		0x100018
142 #define QM_AXI_POISON_ERR		BIT(22)
143 #define QM_RAS_CE_ENABLE		0x1000ec
144 #define QM_RAS_FE_ENABLE		0x1000f0
145 #define QM_RAS_NFE_ENABLE		0x1000f4
146 #define QM_RAS_CE_THRESHOLD		0x1000f8
147 #define QM_RAS_CE_TIMES_PER_IRQ		1
148 #define QM_OOO_SHUTDOWN_SEL		0x1040f8
149 #define QM_AXI_RRESP_ERR		BIT(0)
150 #define QM_DB_TIMEOUT			BIT(10)
151 #define QM_OF_FIFO_OF			BIT(11)
152 #define QM_RAS_AXI_ERROR		(BIT(0) | BIT(1) | BIT(12))
153 
154 #define QM_RESET_WAIT_TIMEOUT		400
155 #define QM_PEH_VENDOR_ID		0x1000d8
156 #define ACC_VENDOR_ID_VALUE		0x5a5a
157 #define QM_PEH_DFX_INFO0		0x1000fc
158 #define QM_PEH_DFX_INFO1		0x100100
159 #define QM_PEH_DFX_MASK			(BIT(0) | BIT(2))
160 #define QM_PEH_MSI_FINISH_MASK		GENMASK(19, 16)
161 #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT	3
162 #define ACC_PEH_MSI_DISABLE		GENMASK(31, 0)
163 #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN	0x1
164 #define ACC_MASTER_TRANS_RETURN_RW	3
165 #define ACC_MASTER_TRANS_RETURN		0x300150
166 #define ACC_MASTER_GLOBAL_CTRL		0x300000
167 #define ACC_AM_CFG_PORT_WR_EN		0x30001c
168 #define ACC_AM_ROB_ECC_INT_STS		0x300104
169 #define ACC_ROB_ECC_ERR_MULTPL		BIT(1)
170 #define QM_MSI_CAP_ENABLE		BIT(16)
171 
172 /* interfunction communication */
173 #define QM_IFC_READY_STATUS		0x100128
174 #define QM_IFC_INT_SET_P		0x100130
175 #define QM_IFC_INT_CFG			0x100134
176 #define QM_IFC_INT_SOURCE_P		0x100138
177 #define QM_IFC_INT_SOURCE_V		0x0020
178 #define QM_IFC_INT_MASK			0x0024
179 #define QM_IFC_INT_STATUS		0x0028
180 #define QM_IFC_INT_SET_V		0x002C
181 #define QM_PF2VF_PF_W			0x104700
182 #define QM_VF2PF_PF_R			0x104800
183 #define QM_VF2PF_VF_W			0x320
184 #define QM_PF2VF_VF_R			0x380
185 #define QM_IFC_SEND_ALL_VFS		GENMASK(6, 0)
186 #define QM_IFC_INT_SOURCE_CLR		GENMASK(63, 0)
187 #define QM_IFC_INT_SOURCE_MASK		BIT(0)
188 #define QM_IFC_INT_DISABLE		BIT(0)
189 #define QM_IFC_INT_STATUS_MASK		BIT(0)
190 #define QM_IFC_INT_SET_MASK		BIT(0)
191 #define QM_WAIT_DST_ACK			10
192 #define QM_MAX_PF_WAIT_COUNT		10
193 #define QM_MAX_VF_WAIT_COUNT		40
194 #define QM_VF_RESET_WAIT_US		20000
195 #define QM_VF_RESET_WAIT_CNT		3000
196 #define QM_VF2PF_REG_SIZE		4
197 #define QM_IFC_CMD_MASK			GENMASK(31, 0)
198 #define QM_IFC_DATA_SHIFT		32
199 #define QM_VF_RESET_WAIT_TIMEOUT_US    \
200 	(QM_VF_RESET_WAIT_US * QM_VF_RESET_WAIT_CNT)
201 
202 #define POLL_PERIOD			10
203 #define POLL_TIMEOUT			1000
204 #define WAIT_PERIOD_US_MAX		200
205 #define WAIT_PERIOD_US_MIN		100
206 #define MAX_WAIT_COUNTS			1000
207 #define QM_CACHE_WB_START		0x204
208 #define QM_CACHE_WB_DONE		0x208
209 #define QM_FUNC_CAPS_REG		0x3100
210 #define QM_CAPBILITY_VERSION		GENMASK(7, 0)
211 
212 #define PCI_BAR_2			2
213 #define PCI_BAR_4			4
214 #define QMC_ALIGN(sz)			ALIGN(sz, 32)
215 
216 #define QM_DBG_READ_LEN		256
217 #define QM_PCI_COMMAND_INVALID		~0
218 #define QM_RESET_STOP_TX_OFFSET		1
219 #define QM_RESET_STOP_RX_OFFSET		2
220 
221 #define WAIT_PERIOD			20
222 #define REMOVE_WAIT_DELAY		10
223 
224 #define QM_QOS_PARAM_NUM		2
225 #define QM_QOS_MAX_VAL			1000
226 #define QM_QOS_RATE			100
227 #define QM_QOS_EXPAND_RATE		1000
228 #define QM_SHAPER_CIR_B_MASK		GENMASK(7, 0)
229 #define QM_SHAPER_CIR_U_MASK		GENMASK(10, 8)
230 #define QM_SHAPER_CIR_S_MASK		GENMASK(14, 11)
231 #define QM_SHAPER_FACTOR_CIR_U_SHIFT	8
232 #define QM_SHAPER_FACTOR_CIR_S_SHIFT	11
233 #define QM_SHAPER_FACTOR_CBS_B_SHIFT	15
234 #define QM_SHAPER_FACTOR_CBS_S_SHIFT	19
235 #define QM_SHAPER_CBS_B			1
236 #define QM_SHAPER_VFT_OFFSET		6
237 #define QM_QOS_MIN_ERROR_RATE		5
238 #define QM_SHAPER_MIN_CBS_S		8
239 #define QM_QOS_TICK			0x300U
240 #define QM_QOS_DIVISOR_CLK		0x1f40U
241 #define QM_QOS_MAX_CIR_B		200
242 #define QM_QOS_MIN_CIR_B		100
243 #define QM_QOS_MAX_CIR_U		6
244 #define QM_AUTOSUSPEND_DELAY		3000
245 
246  /* abnormal status value for stopping queue */
247 #define QM_STOP_QUEUE_FAIL		1
248 #define	QM_DUMP_SQC_FAIL		3
249 #define	QM_DUMP_CQC_FAIL		4
250 #define	QM_FINISH_WAIT			5
251 
252 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \
253 	(((hop_num) << QM_CQ_HOP_NUM_SHIFT) | \
254 	((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT) | \
255 	((buf_sz) << QM_CQ_BUF_SIZE_SHIFT) | \
256 	((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
257 
258 #define QM_MK_CQC_DW3_V2(cqe_sz, cq_depth) \
259 	((((u32)cq_depth) - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
260 
261 #define QM_MK_SQC_W13(priority, orders, alg_type) \
262 	(((priority) << QM_SQ_PRIORITY_SHIFT) | \
263 	((orders) << QM_SQ_ORDERS_SHIFT) | \
264 	(((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT))
265 
266 #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \
267 	(((hop_num) << QM_SQ_HOP_NUM_SHIFT) | \
268 	((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT) | \
269 	((buf_sz) << QM_SQ_BUF_SIZE_SHIFT) | \
270 	((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
271 
272 #define QM_MK_SQC_DW3_V2(sqe_sz, sq_depth) \
273 	((((u32)sq_depth) - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
274 
275 enum vft_type {
276 	SQC_VFT = 0,
277 	CQC_VFT,
278 	SHAPER_VFT,
279 };
280 
281 enum qm_alg_type {
282 	ALG_TYPE_0,
283 	ALG_TYPE_1,
284 };
285 
286 enum qm_ifc_cmd {
287 	QM_PF_FLR_PREPARE = 0x01,
288 	QM_PF_SRST_PREPARE,
289 	QM_PF_RESET_DONE,
290 	QM_VF_PREPARE_DONE,
291 	QM_VF_PREPARE_FAIL,
292 	QM_VF_START_DONE,
293 	QM_VF_START_FAIL,
294 	QM_PF_SET_QOS,
295 	QM_VF_GET_QOS,
296 };
297 
298 enum qm_basic_type {
299 	QM_TOTAL_QP_NUM_CAP = 0x0,
300 	QM_FUNC_MAX_QP_CAP,
301 	QM_XEQ_DEPTH_CAP,
302 	QM_QP_DEPTH_CAP,
303 	QM_EQ_IRQ_TYPE_CAP,
304 	QM_AEQ_IRQ_TYPE_CAP,
305 	QM_ABN_IRQ_TYPE_CAP,
306 	QM_PF2VF_IRQ_TYPE_CAP,
307 	QM_PF_IRQ_NUM_CAP,
308 	QM_VF_IRQ_NUM_CAP,
309 };
310 
311 enum qm_cap_table_type {
312 	QM_CAP_VF  = 0x0,
313 	QM_AEQE_NUM,
314 	QM_SCQE_NUM,
315 	QM_EQ_IRQ,
316 	QM_AEQ_IRQ,
317 	QM_ABNORMAL_IRQ,
318 	QM_MB_IRQ,
319 	MAX_IRQ_NUM,
320 	EXT_BAR_INDEX,
321 };
322 
323 static const struct hisi_qm_cap_query_info qm_cap_query_info[] = {
324 	{QM_CAP_VF, "QM_CAP_VF                   ", 0x3100, 0x0, 0x0, 0x6F01},
325 	{QM_AEQE_NUM, "QM_AEQE_NUM                 ", 0x3104, 0x800, 0x4000800, 0x4000800},
326 	{QM_SCQE_NUM, "QM_SCQE_NUM                 ",
327 						0x3108, 0x4000400, 0x4000400, 0x4000400},
328 	{QM_EQ_IRQ, "QM_EQ_IRQ                   ", 0x310c, 0x10000, 0x10000, 0x10000},
329 	{QM_AEQ_IRQ, "QM_AEQ_IRQ                  ", 0x3110, 0x0, 0x10001, 0x10001},
330 	{QM_ABNORMAL_IRQ, "QM_ABNORMAL_IRQ             ", 0x3114, 0x0, 0x10003, 0x10003},
331 	{QM_MB_IRQ, "QM_MB_IRQ                   ", 0x3118, 0x0, 0x0, 0x10002},
332 	{MAX_IRQ_NUM, "MAX_IRQ_NUM                 ", 0x311c, 0x10001, 0x40002, 0x40003},
333 	{EXT_BAR_INDEX, "EXT_BAR_INDEX               ", 0x3120, 0x0, 0x0, 0x14},
334 };
335 
336 static const struct hisi_qm_cap_info qm_cap_info_comm[] = {
337 	{QM_SUPPORT_DB_ISOLATION, 0x30,   0, BIT(0),  0x0, 0x0, 0x0},
338 	{QM_SUPPORT_FUNC_QOS,     0x3100, 0, BIT(8),  0x0, 0x0, 0x1},
339 	{QM_SUPPORT_STOP_QP,      0x3100, 0, BIT(9),  0x0, 0x0, 0x1},
340 	{QM_SUPPORT_STOP_FUNC,     0x3100, 0, BIT(10), 0x0, 0x0, 0x1},
341 	{QM_SUPPORT_MB_COMMAND,   0x3100, 0, BIT(11), 0x0, 0x0, 0x1},
342 	{QM_SUPPORT_SVA_PREFETCH, 0x3100, 0, BIT(14), 0x0, 0x0, 0x1},
343 	{QM_SUPPORT_DAE,          0x3100, 0, BIT(15), 0x0, 0x0, 0x0},
344 };
345 
346 static const struct hisi_qm_cap_info qm_cap_info_pf[] = {
347 	{QM_SUPPORT_RPM, 0x3100, 0, BIT(13), 0x0, 0x0, 0x1},
348 };
349 
350 static const struct hisi_qm_cap_info qm_cap_info_vf[] = {
351 	{QM_SUPPORT_RPM, 0x3100, 0, BIT(12), 0x0, 0x0, 0x0},
352 };
353 
354 static const struct hisi_qm_cap_info qm_basic_info[] = {
355 	{QM_TOTAL_QP_NUM_CAP,   0x100158, 0,  GENMASK(10, 0), 0x1000,    0x400,     0x400},
356 	{QM_FUNC_MAX_QP_CAP,    0x100158, 11, GENMASK(10, 0), 0x1000,    0x400,     0x400},
357 	{QM_XEQ_DEPTH_CAP,      0x3104,   0,  GENMASK(31, 0), 0x800,     0x4000800, 0x4000800},
358 	{QM_QP_DEPTH_CAP,       0x3108,   0,  GENMASK(31, 0), 0x4000400, 0x4000400, 0x4000400},
359 	{QM_EQ_IRQ_TYPE_CAP,    0x310c,   0,  GENMASK(31, 0), 0x10000,   0x10000,   0x10000},
360 	{QM_AEQ_IRQ_TYPE_CAP,   0x3110,   0,  GENMASK(31, 0), 0x0,       0x10001,   0x10001},
361 	{QM_ABN_IRQ_TYPE_CAP,   0x3114,   0,  GENMASK(31, 0), 0x0,       0x10003,   0x10003},
362 	{QM_PF2VF_IRQ_TYPE_CAP, 0x3118,   0,  GENMASK(31, 0), 0x0,       0x0,       0x10002},
363 	{QM_PF_IRQ_NUM_CAP,     0x311c,   16, GENMASK(15, 0), 0x1,       0x4,       0x4},
364 	{QM_VF_IRQ_NUM_CAP,     0x311c,   0,  GENMASK(15, 0), 0x1,       0x2,       0x3},
365 };
366 
367 struct qm_mailbox {
368 	__le16 w0;
369 	__le16 queue_num;
370 	__le32 base_l;
371 	__le32 base_h;
372 	__le32 rsvd;
373 };
374 
375 struct qm_doorbell {
376 	__le16 queue_num;
377 	__le16 cmd;
378 	__le16 index;
379 	__le16 priority;
380 };
381 
382 struct hisi_qm_resource {
383 	struct hisi_qm *qm;
384 	int distance;
385 	struct list_head list;
386 };
387 
388 /**
389  * struct qm_hw_err - Structure describing the device errors
390  * @list: hardware error list
391  * @timestamp: timestamp when the error occurred
392  */
393 struct qm_hw_err {
394 	struct list_head list;
395 	unsigned long long timestamp;
396 };
397 
398 struct hisi_qm_hw_ops {
399 	int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number);
400 	void (*qm_db)(struct hisi_qm *qm, u16 qn,
401 		      u8 cmd, u16 index, u8 priority);
402 	int (*debug_init)(struct hisi_qm *qm);
403 	void (*hw_error_init)(struct hisi_qm *qm);
404 	void (*hw_error_uninit)(struct hisi_qm *qm);
405 	enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm);
406 	int (*set_msi)(struct hisi_qm *qm, bool set);
407 
408 	/* (u64)msg = (u32)data << 32 | (enum qm_ifc_cmd)cmd */
409 	int (*set_ifc_begin)(struct hisi_qm *qm, enum qm_ifc_cmd cmd, u32 data, u32 fun_num);
410 	void (*set_ifc_end)(struct hisi_qm *qm);
411 	int (*get_ifc)(struct hisi_qm *qm, enum qm_ifc_cmd *cmd, u32 *data, u32 fun_num);
412 };
413 
414 struct hisi_qm_hw_error {
415 	u32 int_msk;
416 	const char *msg;
417 };
418 
419 static const struct hisi_qm_hw_error qm_hw_error[] = {
420 	{ .int_msk = BIT(0), .msg = "qm_axi_rresp" },
421 	{ .int_msk = BIT(1), .msg = "qm_axi_bresp" },
422 	{ .int_msk = BIT(2), .msg = "qm_ecc_mbit" },
423 	{ .int_msk = BIT(3), .msg = "qm_ecc_1bit" },
424 	{ .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" },
425 	{ .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" },
426 	{ .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" },
427 	{ .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" },
428 	{ .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" },
429 	{ .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" },
430 	{ .int_msk = BIT(10), .msg = "qm_db_timeout" },
431 	{ .int_msk = BIT(11), .msg = "qm_of_fifo_of" },
432 	{ .int_msk = BIT(12), .msg = "qm_db_random_invalid" },
433 	{ .int_msk = BIT(13), .msg = "qm_mailbox_timeout" },
434 	{ .int_msk = BIT(14), .msg = "qm_flr_timeout" },
435 };
436 
437 static const char * const qm_db_timeout[] = {
438 	"sq", "cq", "eq", "aeq",
439 };
440 
441 static const char * const qm_fifo_overflow[] = {
442 	"cq", "eq", "aeq",
443 };
444 
445 struct qm_typical_qos_table {
446 	u32 start;
447 	u32 end;
448 	u32 val;
449 };
450 
451 /* the qos step is 100 */
452 static struct qm_typical_qos_table shaper_cir_s[] = {
453 	{100, 100, 4},
454 	{200, 200, 3},
455 	{300, 500, 2},
456 	{600, 1000, 1},
457 	{1100, 100000, 0},
458 };
459 
460 static struct qm_typical_qos_table shaper_cbs_s[] = {
461 	{100, 200, 9},
462 	{300, 500, 11},
463 	{600, 1000, 12},
464 	{1100, 10000, 16},
465 	{10100, 25000, 17},
466 	{25100, 50000, 18},
467 	{50100, 100000, 19}
468 };
469 
470 static void qm_irqs_unregister(struct hisi_qm *qm);
471 static int qm_reset_device(struct hisi_qm *qm);
472 int hisi_qm_q_num_set(const char *val, const struct kernel_param *kp,
473 		      unsigned int device)
474 {
475 	struct pci_dev *pdev;
476 	u32 n, q_num;
477 	int ret;
478 
479 	if (!val)
480 		return -EINVAL;
481 
482 	pdev = pci_get_device(PCI_VENDOR_ID_HUAWEI, device, NULL);
483 	if (!pdev) {
484 		q_num = min_t(u32, QM_QNUM_V1, QM_QNUM_V2);
485 		pr_info("No device found currently, suppose queue number is %u\n",
486 			q_num);
487 	} else {
488 		if (pdev->revision == QM_HW_V1)
489 			q_num = QM_QNUM_V1;
490 		else
491 			q_num = QM_QNUM_V2;
492 
493 		pci_dev_put(pdev);
494 	}
495 
496 	ret = kstrtou32(val, 10, &n);
497 	if (ret || n < QM_MIN_QNUM || n > q_num)
498 		return -EINVAL;
499 
500 	return param_set_int(val, kp);
501 }
502 EXPORT_SYMBOL_GPL(hisi_qm_q_num_set);
503 
504 static u32 qm_get_hw_error_status(struct hisi_qm *qm)
505 {
506 	return readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
507 }
508 
509 static u32 qm_get_dev_err_status(struct hisi_qm *qm)
510 {
511 	return qm->err_ini->get_dev_hw_err_status(qm);
512 }
513 
514 /* Check if the error causes the master ooo block */
515 static bool qm_check_dev_error(struct hisi_qm *qm)
516 {
517 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
518 	u32 err_status;
519 
520 	if (pf_qm->fun_type == QM_HW_VF)
521 		return false;
522 
523 	err_status = qm_get_hw_error_status(pf_qm);
524 	if (err_status & pf_qm->err_info.qm_err.shutdown_mask)
525 		return true;
526 
527 	if (pf_qm->err_ini->dev_is_abnormal)
528 		return pf_qm->err_ini->dev_is_abnormal(pf_qm);
529 
530 	return false;
531 }
532 
533 static int qm_wait_reset_finish(struct hisi_qm *qm)
534 {
535 	int delay = 0;
536 
537 	/* All reset requests need to be queued for processing */
538 	while (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
539 		msleep(++delay);
540 		if (delay > QM_RESET_WAIT_TIMEOUT)
541 			return -EBUSY;
542 	}
543 
544 	return 0;
545 }
546 
547 static int qm_reset_prepare_ready(struct hisi_qm *qm)
548 {
549 	struct pci_dev *pdev = qm->pdev;
550 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
551 
552 	/*
553 	 * PF and VF on host doesnot support resetting at the
554 	 * same time on Kunpeng920.
555 	 */
556 	if (qm->ver < QM_HW_V3)
557 		return qm_wait_reset_finish(pf_qm);
558 
559 	return qm_wait_reset_finish(qm);
560 }
561 
562 static void qm_reset_bit_clear(struct hisi_qm *qm)
563 {
564 	struct pci_dev *pdev = qm->pdev;
565 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
566 
567 	if (qm->ver < QM_HW_V3)
568 		clear_bit(QM_RESETTING, &pf_qm->misc_ctl);
569 
570 	clear_bit(QM_RESETTING, &qm->misc_ctl);
571 }
572 
573 static void qm_mb_pre_init(struct qm_mailbox *mailbox, u8 cmd,
574 			   u64 base, u16 queue, bool op)
575 {
576 	mailbox->w0 = cpu_to_le16((cmd) |
577 		((op) ? 0x1 << QM_MB_OP_SHIFT : 0) |
578 		(0x1 << QM_MB_BUSY_SHIFT));
579 	mailbox->queue_num = cpu_to_le16(queue);
580 	mailbox->base_l = cpu_to_le32(lower_32_bits(base));
581 	mailbox->base_h = cpu_to_le32(upper_32_bits(base));
582 	mailbox->rsvd = 0;
583 }
584 
585 /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */
586 int hisi_qm_wait_mb_ready(struct hisi_qm *qm)
587 {
588 	u32 val;
589 
590 	return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE,
591 					  val, !((val >> QM_MB_BUSY_SHIFT) &
592 					  0x1), POLL_PERIOD, POLL_TIMEOUT);
593 }
594 EXPORT_SYMBOL_GPL(hisi_qm_wait_mb_ready);
595 
596 /* 128 bit should be written to hardware at one time to trigger a mailbox */
597 static void qm_mb_write(struct hisi_qm *qm, const void *src)
598 {
599 	void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE;
600 
601 #if IS_ENABLED(CONFIG_ARM64)
602 	unsigned long tmp0 = 0, tmp1 = 0;
603 #endif
604 
605 	if (!IS_ENABLED(CONFIG_ARM64)) {
606 		memcpy_toio(fun_base, src, 16);
607 		dma_wmb();
608 		return;
609 	}
610 
611 #if IS_ENABLED(CONFIG_ARM64)
612 	asm volatile("ldp %0, %1, %3\n"
613 		     "stp %0, %1, %2\n"
614 		     "dmb oshst\n"
615 		     : "=&r" (tmp0),
616 		       "=&r" (tmp1),
617 		       "+Q" (*((char __iomem *)fun_base))
618 		     : "Q" (*((char *)src))
619 		     : "memory");
620 #endif
621 }
622 
623 static int qm_mb_nolock(struct hisi_qm *qm, struct qm_mailbox *mailbox)
624 {
625 	int ret;
626 	u32 val;
627 
628 	if (unlikely(hisi_qm_wait_mb_ready(qm))) {
629 		dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n");
630 		ret = -EBUSY;
631 		goto mb_busy;
632 	}
633 
634 	qm_mb_write(qm, mailbox);
635 
636 	if (unlikely(hisi_qm_wait_mb_ready(qm))) {
637 		dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n");
638 		ret = -ETIMEDOUT;
639 		goto mb_busy;
640 	}
641 
642 	val = readl(qm->io_base + QM_MB_CMD_SEND_BASE);
643 	if (val & QM_MB_STATUS_MASK) {
644 		dev_err(&qm->pdev->dev, "QM mailbox operation failed!\n");
645 		ret = -EIO;
646 		goto mb_busy;
647 	}
648 
649 	return 0;
650 
651 mb_busy:
652 	atomic64_inc(&qm->debug.dfx.mb_err_cnt);
653 	return ret;
654 }
655 
656 int hisi_qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue,
657 	       bool op)
658 {
659 	struct qm_mailbox mailbox;
660 	int ret;
661 
662 	qm_mb_pre_init(&mailbox, cmd, dma_addr, queue, op);
663 
664 	mutex_lock(&qm->mailbox_lock);
665 	ret = qm_mb_nolock(qm, &mailbox);
666 	mutex_unlock(&qm->mailbox_lock);
667 
668 	return ret;
669 }
670 EXPORT_SYMBOL_GPL(hisi_qm_mb);
671 
672 /* op 0: set xqc information to hardware, 1: get xqc information from hardware. */
673 int qm_set_and_get_xqc(struct hisi_qm *qm, u8 cmd, void *xqc, u32 qp_id, bool op)
674 {
675 	struct qm_mailbox mailbox;
676 	dma_addr_t xqc_dma;
677 	void *tmp_xqc;
678 	size_t size;
679 	int ret;
680 
681 	switch (cmd) {
682 	case QM_MB_CMD_SQC:
683 		size = sizeof(struct qm_sqc);
684 		tmp_xqc = qm->xqc_buf.sqc;
685 		xqc_dma = qm->xqc_buf.sqc_dma;
686 		break;
687 	case QM_MB_CMD_CQC:
688 		size = sizeof(struct qm_cqc);
689 		tmp_xqc = qm->xqc_buf.cqc;
690 		xqc_dma = qm->xqc_buf.cqc_dma;
691 		break;
692 	case QM_MB_CMD_EQC:
693 		size = sizeof(struct qm_eqc);
694 		tmp_xqc = qm->xqc_buf.eqc;
695 		xqc_dma = qm->xqc_buf.eqc_dma;
696 		break;
697 	case QM_MB_CMD_AEQC:
698 		size = sizeof(struct qm_aeqc);
699 		tmp_xqc = qm->xqc_buf.aeqc;
700 		xqc_dma = qm->xqc_buf.aeqc_dma;
701 		break;
702 	default:
703 		dev_err(&qm->pdev->dev, "unknown mailbox cmd %u\n", cmd);
704 		return -EINVAL;
705 	}
706 
707 	/* Setting xqc will fail if master OOO is blocked. */
708 	if (qm_check_dev_error(qm)) {
709 		dev_err(&qm->pdev->dev, "failed to send mailbox since qm is stop!\n");
710 		return -EIO;
711 	}
712 
713 	mutex_lock(&qm->mailbox_lock);
714 	if (!op)
715 		memcpy(tmp_xqc, xqc, size);
716 
717 	qm_mb_pre_init(&mailbox, cmd, xqc_dma, qp_id, op);
718 	ret = qm_mb_nolock(qm, &mailbox);
719 	if (!ret && op)
720 		memcpy(xqc, tmp_xqc, size);
721 
722 	mutex_unlock(&qm->mailbox_lock);
723 
724 	return ret;
725 }
726 
727 static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
728 {
729 	u64 doorbell;
730 
731 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) |
732 		   ((u64)index << QM_DB_INDEX_SHIFT_V1)  |
733 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V1);
734 
735 	writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1);
736 }
737 
738 static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
739 {
740 	void __iomem *io_base = qm->io_base;
741 	u16 randata = 0;
742 	u64 doorbell;
743 
744 	if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ)
745 		io_base = qm->db_io_base + (u64)qn * qm->db_interval +
746 			  QM_DOORBELL_SQ_CQ_BASE_V2;
747 	else
748 		io_base += QM_DOORBELL_EQ_AEQ_BASE_V2;
749 
750 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) |
751 		   ((u64)randata << QM_DB_RAND_SHIFT_V2) |
752 		   ((u64)index << QM_DB_INDEX_SHIFT_V2) |
753 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V2);
754 
755 	writeq(doorbell, io_base);
756 }
757 
758 static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
759 {
760 	dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n",
761 		qn, cmd, index);
762 
763 	qm->ops->qm_db(qm, qn, cmd, index, priority);
764 }
765 
766 static void qm_disable_clock_gate(struct hisi_qm *qm)
767 {
768 	u32 val;
769 
770 	/* if qm enables clock gating in Kunpeng930, qos will be inaccurate. */
771 	if (qm->ver < QM_HW_V3)
772 		return;
773 
774 	val = readl(qm->io_base + QM_PM_CTRL);
775 	val |= QM_IDLE_DISABLE;
776 	writel(val, qm->io_base +  QM_PM_CTRL);
777 }
778 
779 static int qm_dev_mem_reset(struct hisi_qm *qm)
780 {
781 	u32 val;
782 
783 	writel(0x1, qm->io_base + QM_MEM_START_INIT);
784 	return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val,
785 					  val & BIT(0), POLL_PERIOD,
786 					  POLL_TIMEOUT);
787 }
788 
789 /**
790  * hisi_qm_get_hw_info() - Get device information.
791  * @qm: The qm which want to get information.
792  * @info_table: Array for storing device information.
793  * @index: Index in info_table.
794  * @is_read: Whether read from reg, 0: not support read from reg.
795  *
796  * This function returns device information the caller needs.
797  */
798 u32 hisi_qm_get_hw_info(struct hisi_qm *qm,
799 			const struct hisi_qm_cap_info *info_table,
800 			u32 index, bool is_read)
801 {
802 	u32 val;
803 
804 	switch (qm->ver) {
805 	case QM_HW_V1:
806 		return info_table[index].v1_val;
807 	case QM_HW_V2:
808 		return info_table[index].v2_val;
809 	default:
810 		if (!is_read)
811 			return info_table[index].v3_val;
812 
813 		val = readl(qm->io_base + info_table[index].offset);
814 		return (val >> info_table[index].shift) & info_table[index].mask;
815 	}
816 }
817 EXPORT_SYMBOL_GPL(hisi_qm_get_hw_info);
818 
819 u32 hisi_qm_get_cap_value(struct hisi_qm *qm,
820 			const struct hisi_qm_cap_query_info *info_table,
821 			u32 index, bool is_read)
822 {
823 	u32 val;
824 
825 	switch (qm->ver) {
826 	case QM_HW_V1:
827 		return info_table[index].v1_val;
828 	case QM_HW_V2:
829 		return info_table[index].v2_val;
830 	default:
831 		if (!is_read)
832 			return info_table[index].v3_val;
833 
834 		val = readl(qm->io_base + info_table[index].offset);
835 		return val;
836 	}
837 }
838 EXPORT_SYMBOL_GPL(hisi_qm_get_cap_value);
839 
840 static void qm_get_xqc_depth(struct hisi_qm *qm, u16 *low_bits,
841 			     u16 *high_bits, enum qm_basic_type type)
842 {
843 	u32 depth;
844 
845 	depth = hisi_qm_get_hw_info(qm, qm_basic_info, type, qm->cap_ver);
846 	*low_bits = depth & QM_XQ_DEPTH_MASK;
847 	*high_bits = (depth >> QM_XQ_DEPTH_SHIFT) & QM_XQ_DEPTH_MASK;
848 }
849 
850 int hisi_qm_set_algs(struct hisi_qm *qm, u64 alg_msk, const struct qm_dev_alg *dev_algs,
851 		     u32 dev_algs_size)
852 {
853 	struct device *dev = &qm->pdev->dev;
854 	char *algs, *ptr;
855 	int i;
856 
857 	if (!qm->uacce)
858 		return 0;
859 
860 	if (dev_algs_size >= QM_DEV_ALG_MAX_LEN) {
861 		dev_err(dev, "algs size %u is equal or larger than %d.\n",
862 			dev_algs_size, QM_DEV_ALG_MAX_LEN);
863 		return -EINVAL;
864 	}
865 
866 	algs = devm_kzalloc(dev, QM_DEV_ALG_MAX_LEN, GFP_KERNEL);
867 	if (!algs)
868 		return -ENOMEM;
869 
870 	for (i = 0; i < dev_algs_size; i++)
871 		if (alg_msk & dev_algs[i].alg_msk)
872 			strcat(algs, dev_algs[i].alg);
873 
874 	ptr = strrchr(algs, '\n');
875 	if (ptr)
876 		*ptr = '\0';
877 
878 	qm->uacce->algs = algs;
879 
880 	return 0;
881 }
882 EXPORT_SYMBOL_GPL(hisi_qm_set_algs);
883 
884 static u32 qm_get_irq_num(struct hisi_qm *qm)
885 {
886 	if (qm->fun_type == QM_HW_PF)
887 		return hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF_IRQ_NUM_CAP, qm->cap_ver);
888 
889 	return hisi_qm_get_hw_info(qm, qm_basic_info, QM_VF_IRQ_NUM_CAP, qm->cap_ver);
890 }
891 
892 static int qm_pm_get_sync(struct hisi_qm *qm)
893 {
894 	struct device *dev = &qm->pdev->dev;
895 	int ret;
896 
897 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
898 		return 0;
899 
900 	ret = pm_runtime_resume_and_get(dev);
901 	if (ret < 0) {
902 		dev_err(dev, "failed to get_sync(%d).\n", ret);
903 		return ret;
904 	}
905 
906 	return 0;
907 }
908 
909 static void qm_pm_put_sync(struct hisi_qm *qm)
910 {
911 	struct device *dev = &qm->pdev->dev;
912 
913 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
914 		return;
915 
916 	pm_runtime_put_autosuspend(dev);
917 }
918 
919 static void qm_cq_head_update(struct hisi_qp *qp)
920 {
921 	if (qp->qp_status.cq_head == qp->cq_depth - 1) {
922 		qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase;
923 		qp->qp_status.cq_head = 0;
924 	} else {
925 		qp->qp_status.cq_head++;
926 	}
927 }
928 
929 static void qm_poll_req_cb(struct hisi_qp *qp)
930 {
931 	struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
932 	struct hisi_qm *qm = qp->qm;
933 
934 	while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
935 		dma_rmb();
936 		qp->req_cb(qp, qp->sqe + qm->sqe_size *
937 			   le16_to_cpu(cqe->sq_head));
938 		qm_cq_head_update(qp);
939 		cqe = qp->cqe + qp->qp_status.cq_head;
940 		qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ,
941 		      qp->qp_status.cq_head, 0);
942 		atomic_dec(&qp->qp_status.used);
943 
944 		cond_resched();
945 	}
946 
947 	/* set c_flag */
948 	qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, qp->qp_status.cq_head, 1);
949 }
950 
951 static void qm_work_process(struct work_struct *work)
952 {
953 	struct hisi_qm_poll_data *poll_data =
954 		container_of(work, struct hisi_qm_poll_data, work);
955 	struct hisi_qm *qm = poll_data->qm;
956 	u16 eqe_num = poll_data->eqe_num;
957 	struct hisi_qp *qp;
958 	int i;
959 
960 	for (i = eqe_num - 1; i >= 0; i--) {
961 		qp = &qm->qp_array[poll_data->qp_finish_id[i]];
962 		if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP))
963 			continue;
964 
965 		if (qp->event_cb) {
966 			qp->event_cb(qp);
967 			continue;
968 		}
969 
970 		if (likely(qp->req_cb))
971 			qm_poll_req_cb(qp);
972 	}
973 }
974 
975 static void qm_get_complete_eqe_num(struct hisi_qm *qm)
976 {
977 	struct qm_eqe *eqe = qm->eqe + qm->status.eq_head;
978 	struct hisi_qm_poll_data *poll_data = NULL;
979 	u16 eq_depth = qm->eq_depth;
980 	u16 cqn, eqe_num = 0;
981 
982 	if (QM_EQE_PHASE(eqe) != qm->status.eqc_phase) {
983 		atomic64_inc(&qm->debug.dfx.err_irq_cnt);
984 		qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
985 		return;
986 	}
987 
988 	cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK;
989 	if (unlikely(cqn >= qm->qp_num))
990 		return;
991 	poll_data = &qm->poll_data[cqn];
992 
993 	while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) {
994 		cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK;
995 		poll_data->qp_finish_id[eqe_num] = cqn;
996 		eqe_num++;
997 
998 		if (qm->status.eq_head == eq_depth - 1) {
999 			qm->status.eqc_phase = !qm->status.eqc_phase;
1000 			eqe = qm->eqe;
1001 			qm->status.eq_head = 0;
1002 		} else {
1003 			eqe++;
1004 			qm->status.eq_head++;
1005 		}
1006 
1007 		if (eqe_num == (eq_depth >> 1) - 1)
1008 			break;
1009 	}
1010 
1011 	poll_data->eqe_num = eqe_num;
1012 	queue_work(qm->wq, &poll_data->work);
1013 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
1014 }
1015 
1016 static irqreturn_t qm_eq_irq(int irq, void *data)
1017 {
1018 	struct hisi_qm *qm = data;
1019 
1020 	/* Get qp id of completed tasks and re-enable the interrupt */
1021 	qm_get_complete_eqe_num(qm);
1022 
1023 	return IRQ_HANDLED;
1024 }
1025 
1026 static irqreturn_t qm_mb_cmd_irq(int irq, void *data)
1027 {
1028 	struct hisi_qm *qm = data;
1029 	u32 val;
1030 
1031 	val = readl(qm->io_base + QM_IFC_INT_STATUS);
1032 	val &= QM_IFC_INT_STATUS_MASK;
1033 	if (!val)
1034 		return IRQ_NONE;
1035 
1036 	if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl)) {
1037 		dev_warn(&qm->pdev->dev, "Driver is down, message cannot be processed!\n");
1038 		return IRQ_HANDLED;
1039 	}
1040 
1041 	schedule_work(&qm->cmd_process);
1042 
1043 	return IRQ_HANDLED;
1044 }
1045 
1046 static void qm_set_qp_disable(struct hisi_qp *qp, int offset)
1047 {
1048 	u32 *addr;
1049 
1050 	if (qp->is_in_kernel)
1051 		return;
1052 
1053 	addr = (u32 *)(qp->qdma.va + qp->qdma.size) - offset;
1054 	*addr = 1;
1055 
1056 	/* make sure setup is completed */
1057 	smp_wmb();
1058 }
1059 
1060 static void qm_disable_qp(struct hisi_qm *qm, u32 qp_id)
1061 {
1062 	struct hisi_qp *qp = &qm->qp_array[qp_id];
1063 
1064 	qm_set_qp_disable(qp, QM_RESET_STOP_TX_OFFSET);
1065 	hisi_qm_stop_qp(qp);
1066 	qm_set_qp_disable(qp, QM_RESET_STOP_RX_OFFSET);
1067 }
1068 
1069 static void qm_reset_function(struct hisi_qm *qm)
1070 {
1071 	struct device *dev = &qm->pdev->dev;
1072 	int ret;
1073 
1074 	if (qm_check_dev_error(qm))
1075 		return;
1076 
1077 	ret = qm_reset_prepare_ready(qm);
1078 	if (ret) {
1079 		dev_err(dev, "reset function not ready\n");
1080 		return;
1081 	}
1082 
1083 	ret = hisi_qm_stop(qm, QM_DOWN);
1084 	if (ret) {
1085 		dev_err(dev, "failed to stop qm when reset function\n");
1086 		goto clear_bit;
1087 	}
1088 
1089 	ret = hisi_qm_start(qm);
1090 	if (ret)
1091 		dev_err(dev, "failed to start qm when reset function\n");
1092 
1093 clear_bit:
1094 	qm_reset_bit_clear(qm);
1095 }
1096 
1097 static irqreturn_t qm_aeq_thread(int irq, void *data)
1098 {
1099 	struct hisi_qm *qm = data;
1100 	struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head;
1101 	u16 aeq_depth = qm->aeq_depth;
1102 	u32 type, qp_id;
1103 
1104 	atomic64_inc(&qm->debug.dfx.aeq_irq_cnt);
1105 
1106 	while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) {
1107 		type = (le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT) &
1108 			QM_AEQE_TYPE_MASK;
1109 		qp_id = le32_to_cpu(aeqe->dw0) & QM_AEQE_CQN_MASK;
1110 
1111 		switch (type) {
1112 		case QM_EQ_OVERFLOW:
1113 			dev_err(&qm->pdev->dev, "eq overflow, reset function\n");
1114 			qm_reset_function(qm);
1115 			return IRQ_HANDLED;
1116 		case QM_CQ_OVERFLOW:
1117 			dev_err(&qm->pdev->dev, "cq overflow, stop qp(%u)\n",
1118 				qp_id);
1119 			fallthrough;
1120 		case QM_CQE_ERROR:
1121 			qm_disable_qp(qm, qp_id);
1122 			break;
1123 		default:
1124 			dev_err(&qm->pdev->dev, "unknown error type %u\n",
1125 				type);
1126 			break;
1127 		}
1128 
1129 		if (qm->status.aeq_head == aeq_depth - 1) {
1130 			qm->status.aeqc_phase = !qm->status.aeqc_phase;
1131 			aeqe = qm->aeqe;
1132 			qm->status.aeq_head = 0;
1133 		} else {
1134 			aeqe++;
1135 			qm->status.aeq_head++;
1136 		}
1137 	}
1138 
1139 	qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
1140 
1141 	return IRQ_HANDLED;
1142 }
1143 
1144 static void qm_init_qp_status(struct hisi_qp *qp)
1145 {
1146 	struct hisi_qp_status *qp_status = &qp->qp_status;
1147 
1148 	qp_status->sq_tail = 0;
1149 	qp_status->cq_head = 0;
1150 	qp_status->cqc_phase = true;
1151 	atomic_set(&qp_status->used, 0);
1152 }
1153 
1154 static void qm_init_prefetch(struct hisi_qm *qm)
1155 {
1156 	struct device *dev = &qm->pdev->dev;
1157 	u32 page_type = 0x0;
1158 
1159 	if (!test_bit(QM_SUPPORT_SVA_PREFETCH, &qm->caps))
1160 		return;
1161 
1162 	switch (PAGE_SIZE) {
1163 	case SZ_4K:
1164 		page_type = 0x0;
1165 		break;
1166 	case SZ_16K:
1167 		page_type = 0x1;
1168 		break;
1169 	case SZ_64K:
1170 		page_type = 0x2;
1171 		break;
1172 	default:
1173 		dev_err(dev, "system page size is not support: %lu, default set to 4KB",
1174 			PAGE_SIZE);
1175 	}
1176 
1177 	writel(page_type, qm->io_base + QM_PAGE_SIZE);
1178 }
1179 
1180 /*
1181  * acc_shaper_para_calc() Get the IR value by the qos formula, the return value
1182  * is the expected qos calculated.
1183  * the formula:
1184  * IR = X Mbps if ir = 1 means IR = 100 Mbps, if ir = 10000 means = 10Gbps
1185  *
1186  *		IR_b * (2 ^ IR_u) * 8000
1187  * IR(Mbps) = -------------------------
1188  *		  Tick * (2 ^ IR_s)
1189  */
1190 static u32 acc_shaper_para_calc(u64 cir_b, u64 cir_u, u64 cir_s)
1191 {
1192 	return ((cir_b * QM_QOS_DIVISOR_CLK) * (1 << cir_u)) /
1193 					(QM_QOS_TICK * (1 << cir_s));
1194 }
1195 
1196 static u32 acc_shaper_calc_cbs_s(u32 ir)
1197 {
1198 	int table_size = ARRAY_SIZE(shaper_cbs_s);
1199 	int i;
1200 
1201 	for (i = 0; i < table_size; i++) {
1202 		if (ir >= shaper_cbs_s[i].start && ir <= shaper_cbs_s[i].end)
1203 			return shaper_cbs_s[i].val;
1204 	}
1205 
1206 	return QM_SHAPER_MIN_CBS_S;
1207 }
1208 
1209 static u32 acc_shaper_calc_cir_s(u32 ir)
1210 {
1211 	int table_size = ARRAY_SIZE(shaper_cir_s);
1212 	int i;
1213 
1214 	for (i = 0; i < table_size; i++) {
1215 		if (ir >= shaper_cir_s[i].start && ir <= shaper_cir_s[i].end)
1216 			return shaper_cir_s[i].val;
1217 	}
1218 
1219 	return 0;
1220 }
1221 
1222 static int qm_get_shaper_para(u32 ir, struct qm_shaper_factor *factor)
1223 {
1224 	u32 cir_b, cir_u, cir_s, ir_calc;
1225 	u32 error_rate;
1226 
1227 	factor->cbs_s = acc_shaper_calc_cbs_s(ir);
1228 	cir_s = acc_shaper_calc_cir_s(ir);
1229 
1230 	for (cir_b = QM_QOS_MIN_CIR_B; cir_b <= QM_QOS_MAX_CIR_B; cir_b++) {
1231 		for (cir_u = 0; cir_u <= QM_QOS_MAX_CIR_U; cir_u++) {
1232 			ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s);
1233 
1234 			error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir;
1235 			if (error_rate <= QM_QOS_MIN_ERROR_RATE) {
1236 				factor->cir_b = cir_b;
1237 				factor->cir_u = cir_u;
1238 				factor->cir_s = cir_s;
1239 				return 0;
1240 			}
1241 		}
1242 	}
1243 
1244 	return -EINVAL;
1245 }
1246 
1247 static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base,
1248 			    u32 number, struct qm_shaper_factor *factor)
1249 {
1250 	u64 tmp = 0;
1251 
1252 	if (number > 0) {
1253 		switch (type) {
1254 		case SQC_VFT:
1255 			if (qm->ver == QM_HW_V1) {
1256 				tmp = QM_SQC_VFT_BUF_SIZE	|
1257 				      QM_SQC_VFT_SQC_SIZE	|
1258 				      QM_SQC_VFT_INDEX_NUMBER	|
1259 				      QM_SQC_VFT_VALID		|
1260 				      (u64)base << QM_SQC_VFT_START_SQN_SHIFT;
1261 			} else {
1262 				tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT |
1263 				      QM_SQC_VFT_VALID |
1264 				      (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT;
1265 			}
1266 			break;
1267 		case CQC_VFT:
1268 			if (qm->ver == QM_HW_V1) {
1269 				tmp = QM_CQC_VFT_BUF_SIZE	|
1270 				      QM_CQC_VFT_SQC_SIZE	|
1271 				      QM_CQC_VFT_INDEX_NUMBER	|
1272 				      QM_CQC_VFT_VALID;
1273 			} else {
1274 				tmp = QM_CQC_VFT_VALID;
1275 			}
1276 			break;
1277 		case SHAPER_VFT:
1278 			if (factor) {
1279 				tmp = factor->cir_b |
1280 				(factor->cir_u << QM_SHAPER_FACTOR_CIR_U_SHIFT) |
1281 				(factor->cir_s << QM_SHAPER_FACTOR_CIR_S_SHIFT) |
1282 				(QM_SHAPER_CBS_B << QM_SHAPER_FACTOR_CBS_B_SHIFT) |
1283 				(factor->cbs_s << QM_SHAPER_FACTOR_CBS_S_SHIFT);
1284 			}
1285 			break;
1286 		}
1287 	}
1288 
1289 	writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L);
1290 	writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H);
1291 }
1292 
1293 static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type,
1294 			     u32 fun_num, u32 base, u32 number)
1295 {
1296 	struct qm_shaper_factor *factor = NULL;
1297 	unsigned int val;
1298 	int ret;
1299 
1300 	if (type == SHAPER_VFT && test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
1301 		factor = &qm->factor[fun_num];
1302 
1303 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
1304 					 val & BIT(0), POLL_PERIOD,
1305 					 POLL_TIMEOUT);
1306 	if (ret)
1307 		return ret;
1308 
1309 	writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR);
1310 	writel(type, qm->io_base + QM_VFT_CFG_TYPE);
1311 	if (type == SHAPER_VFT)
1312 		fun_num |= base << QM_SHAPER_VFT_OFFSET;
1313 
1314 	writel(fun_num, qm->io_base + QM_VFT_CFG);
1315 
1316 	qm_vft_data_cfg(qm, type, base, number, factor);
1317 
1318 	writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
1319 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
1320 
1321 	return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
1322 					  val & BIT(0), POLL_PERIOD,
1323 					  POLL_TIMEOUT);
1324 }
1325 
1326 static int qm_shaper_init_vft(struct hisi_qm *qm, u32 fun_num)
1327 {
1328 	u32 qos = qm->factor[fun_num].func_qos;
1329 	int ret, i;
1330 
1331 	ret = qm_get_shaper_para(qos * QM_QOS_RATE, &qm->factor[fun_num]);
1332 	if (ret) {
1333 		dev_err(&qm->pdev->dev, "failed to calculate shaper parameter!\n");
1334 		return ret;
1335 	}
1336 	writel(qm->type_rate, qm->io_base + QM_SHAPER_CFG);
1337 	for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) {
1338 		/* The base number of queue reuse for different alg type */
1339 		ret = qm_set_vft_common(qm, SHAPER_VFT, fun_num, i, 1);
1340 		if (ret)
1341 			return ret;
1342 	}
1343 
1344 	return 0;
1345 }
1346 
1347 /* The config should be conducted after qm_dev_mem_reset() */
1348 static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
1349 			      u32 number)
1350 {
1351 	int ret, i;
1352 
1353 	for (i = SQC_VFT; i <= CQC_VFT; i++) {
1354 		ret = qm_set_vft_common(qm, i, fun_num, base, number);
1355 		if (ret)
1356 			return ret;
1357 	}
1358 
1359 	/* init default shaper qos val */
1360 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) {
1361 		ret = qm_shaper_init_vft(qm, fun_num);
1362 		if (ret)
1363 			goto back_sqc_cqc;
1364 	}
1365 
1366 	return 0;
1367 back_sqc_cqc:
1368 	for (i = SQC_VFT; i <= CQC_VFT; i++)
1369 		qm_set_vft_common(qm, i, fun_num, 0, 0);
1370 
1371 	return ret;
1372 }
1373 
1374 static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number)
1375 {
1376 	u64 sqc_vft;
1377 	int ret;
1378 
1379 	ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1);
1380 	if (ret)
1381 		return ret;
1382 
1383 	sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
1384 		  ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
1385 	*base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2);
1386 	*number = (QM_SQC_VFT_NUM_MASK_V2 &
1387 		   (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1;
1388 
1389 	return 0;
1390 }
1391 
1392 static void qm_hw_error_init_v1(struct hisi_qm *qm)
1393 {
1394 	writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK);
1395 }
1396 
1397 static void qm_hw_error_cfg(struct hisi_qm *qm)
1398 {
1399 	struct hisi_qm_err_mask *qm_err = &qm->err_info.qm_err;
1400 
1401 	qm->error_mask = qm_err->nfe | qm_err->ce | qm_err->fe;
1402 	/* clear QM hw residual error source */
1403 	writel(qm->error_mask, qm->io_base + QM_ABNORMAL_INT_SOURCE);
1404 
1405 	/* configure error type */
1406 	writel(qm_err->ce, qm->io_base + QM_RAS_CE_ENABLE);
1407 	writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD);
1408 	writel(qm_err->nfe, qm->io_base + QM_RAS_NFE_ENABLE);
1409 	writel(qm_err->fe, qm->io_base + QM_RAS_FE_ENABLE);
1410 }
1411 
1412 static void qm_hw_error_init_v2(struct hisi_qm *qm)
1413 {
1414 	u32 irq_unmask;
1415 
1416 	qm_hw_error_cfg(qm);
1417 
1418 	irq_unmask = ~qm->error_mask;
1419 	irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1420 	writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
1421 }
1422 
1423 static void qm_hw_error_uninit_v2(struct hisi_qm *qm)
1424 {
1425 	u32 irq_mask = qm->error_mask;
1426 
1427 	irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1428 	writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK);
1429 }
1430 
1431 static void qm_hw_error_init_v3(struct hisi_qm *qm)
1432 {
1433 	u32 irq_unmask;
1434 
1435 	qm_hw_error_cfg(qm);
1436 
1437 	/* enable close master ooo when hardware error happened */
1438 	writel(qm->err_info.qm_err.shutdown_mask, qm->io_base + QM_OOO_SHUTDOWN_SEL);
1439 
1440 	irq_unmask = ~qm->error_mask;
1441 	irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1442 	writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
1443 }
1444 
1445 static void qm_hw_error_uninit_v3(struct hisi_qm *qm)
1446 {
1447 	u32 irq_mask = qm->error_mask;
1448 
1449 	irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1450 	writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK);
1451 
1452 	/* disable close master ooo when hardware error happened */
1453 	writel(0x0, qm->io_base + QM_OOO_SHUTDOWN_SEL);
1454 }
1455 
1456 static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status)
1457 {
1458 	const struct hisi_qm_hw_error *err;
1459 	struct device *dev = &qm->pdev->dev;
1460 	u32 reg_val, type, vf_num, qp_id;
1461 	int i;
1462 
1463 	for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) {
1464 		err = &qm_hw_error[i];
1465 		if (!(err->int_msk & error_status))
1466 			continue;
1467 
1468 		dev_err(dev, "%s [error status=0x%x] found\n",
1469 			err->msg, err->int_msk);
1470 
1471 		if (err->int_msk & QM_DB_TIMEOUT) {
1472 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF01);
1473 			type = (reg_val & QM_DB_TIMEOUT_TYPE) >>
1474 			       QM_DB_TIMEOUT_TYPE_SHIFT;
1475 			vf_num = reg_val & QM_DB_TIMEOUT_VF;
1476 			qp_id = reg_val >> QM_DB_TIMEOUT_QP_SHIFT;
1477 			dev_err(dev, "qm %s doorbell timeout in function %u qp %u\n",
1478 				qm_db_timeout[type], vf_num, qp_id);
1479 		} else if (err->int_msk & QM_OF_FIFO_OF) {
1480 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF00);
1481 			type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >>
1482 			       QM_FIFO_OVERFLOW_TYPE_SHIFT;
1483 			vf_num = reg_val & QM_FIFO_OVERFLOW_VF;
1484 			qp_id = reg_val >> QM_FIFO_OVERFLOW_QP_SHIFT;
1485 			if (type < ARRAY_SIZE(qm_fifo_overflow))
1486 				dev_err(dev, "qm %s fifo overflow in function %u qp %u\n",
1487 					qm_fifo_overflow[type], vf_num, qp_id);
1488 			else
1489 				dev_err(dev, "unknown error type\n");
1490 		} else if (err->int_msk & QM_AXI_RRESP_ERR) {
1491 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF02);
1492 			if (reg_val & QM_AXI_POISON_ERR)
1493 				dev_err(dev, "qm axi poison error happened\n");
1494 		}
1495 	}
1496 }
1497 
1498 static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm)
1499 {
1500 	struct hisi_qm_err_mask *qm_err = &qm->err_info.qm_err;
1501 	u32 error_status;
1502 
1503 	error_status = qm_get_hw_error_status(qm);
1504 	if (error_status & qm->error_mask) {
1505 		if (error_status & QM_ECC_MBIT)
1506 			qm->err_status.is_qm_ecc_mbit = true;
1507 
1508 		qm_log_hw_error(qm, error_status);
1509 		if (error_status & qm_err->reset_mask) {
1510 			/* Disable the same error reporting until device is recovered. */
1511 			writel(qm_err->nfe & (~error_status), qm->io_base + QM_RAS_NFE_ENABLE);
1512 			return ACC_ERR_NEED_RESET;
1513 		}
1514 
1515 		/* Clear error source if not need reset. */
1516 		writel(error_status, qm->io_base + QM_ABNORMAL_INT_SOURCE);
1517 		writel(qm_err->nfe, qm->io_base + QM_RAS_NFE_ENABLE);
1518 		writel(qm_err->ce, qm->io_base + QM_RAS_CE_ENABLE);
1519 	}
1520 
1521 	return ACC_ERR_RECOVERED;
1522 }
1523 
1524 static int qm_get_mb_cmd(struct hisi_qm *qm, u64 *msg, u16 fun_num)
1525 {
1526 	struct qm_mailbox mailbox;
1527 	int ret;
1528 
1529 	qm_mb_pre_init(&mailbox, QM_MB_CMD_DST, 0, fun_num, 0);
1530 	mutex_lock(&qm->mailbox_lock);
1531 	ret = qm_mb_nolock(qm, &mailbox);
1532 	if (ret)
1533 		goto err_unlock;
1534 
1535 	*msg = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
1536 		  ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
1537 
1538 err_unlock:
1539 	mutex_unlock(&qm->mailbox_lock);
1540 	return ret;
1541 }
1542 
1543 static void qm_clear_cmd_interrupt(struct hisi_qm *qm, u64 vf_mask)
1544 {
1545 	u32 val;
1546 
1547 	if (qm->fun_type == QM_HW_PF)
1548 		writeq(vf_mask, qm->io_base + QM_IFC_INT_SOURCE_P);
1549 
1550 	val = readl(qm->io_base + QM_IFC_INT_SOURCE_V);
1551 	val |= QM_IFC_INT_SOURCE_MASK;
1552 	writel(val, qm->io_base + QM_IFC_INT_SOURCE_V);
1553 }
1554 
1555 static void qm_handle_vf_msg(struct hisi_qm *qm, u32 vf_id)
1556 {
1557 	struct device *dev = &qm->pdev->dev;
1558 	enum qm_ifc_cmd cmd;
1559 	int ret;
1560 
1561 	ret = qm->ops->get_ifc(qm, &cmd, NULL, vf_id);
1562 	if (ret) {
1563 		dev_err(dev, "failed to get command from VF(%u)!\n", vf_id);
1564 		return;
1565 	}
1566 
1567 	switch (cmd) {
1568 	case QM_VF_PREPARE_FAIL:
1569 		dev_err(dev, "failed to stop VF(%u)!\n", vf_id);
1570 		break;
1571 	case QM_VF_START_FAIL:
1572 		dev_err(dev, "failed to start VF(%u)!\n", vf_id);
1573 		break;
1574 	case QM_VF_PREPARE_DONE:
1575 	case QM_VF_START_DONE:
1576 		break;
1577 	default:
1578 		dev_err(dev, "unsupported command(0x%x) sent by VF(%u)!\n", cmd, vf_id);
1579 		break;
1580 	}
1581 }
1582 
1583 static int qm_wait_vf_prepare_finish(struct hisi_qm *qm)
1584 {
1585 	struct device *dev = &qm->pdev->dev;
1586 	u32 vfs_num = qm->vfs_num;
1587 	int cnt = 0;
1588 	int ret = 0;
1589 	u64 val;
1590 	u32 i;
1591 
1592 	if (!qm->vfs_num || !test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
1593 		return 0;
1594 
1595 	while (true) {
1596 		val = readq(qm->io_base + QM_IFC_INT_SOURCE_P);
1597 		/* All VFs send command to PF, break */
1598 		if ((val & GENMASK(vfs_num, 1)) == GENMASK(vfs_num, 1))
1599 			break;
1600 
1601 		if (++cnt > QM_MAX_PF_WAIT_COUNT) {
1602 			ret = -EBUSY;
1603 			break;
1604 		}
1605 
1606 		msleep(QM_WAIT_DST_ACK);
1607 	}
1608 
1609 	/* PF check VFs msg */
1610 	for (i = 1; i <= vfs_num; i++) {
1611 		if (val & BIT(i))
1612 			qm_handle_vf_msg(qm, i);
1613 		else
1614 			dev_err(dev, "VF(%u) not ping PF!\n", i);
1615 	}
1616 
1617 	/* PF clear interrupt to ack VFs */
1618 	qm_clear_cmd_interrupt(qm, val);
1619 
1620 	return ret;
1621 }
1622 
1623 static void qm_trigger_vf_interrupt(struct hisi_qm *qm, u32 fun_num)
1624 {
1625 	u32 val;
1626 
1627 	val = readl(qm->io_base + QM_IFC_INT_CFG);
1628 	val &= ~QM_IFC_SEND_ALL_VFS;
1629 	val |= fun_num;
1630 	writel(val, qm->io_base + QM_IFC_INT_CFG);
1631 
1632 	val = readl(qm->io_base + QM_IFC_INT_SET_P);
1633 	val |= QM_IFC_INT_SET_MASK;
1634 	writel(val, qm->io_base + QM_IFC_INT_SET_P);
1635 }
1636 
1637 static void qm_trigger_pf_interrupt(struct hisi_qm *qm)
1638 {
1639 	u32 val;
1640 
1641 	val = readl(qm->io_base + QM_IFC_INT_SET_V);
1642 	val |= QM_IFC_INT_SET_MASK;
1643 	writel(val, qm->io_base + QM_IFC_INT_SET_V);
1644 }
1645 
1646 static int qm_ping_single_vf(struct hisi_qm *qm, enum qm_ifc_cmd cmd, u32 data, u32 fun_num)
1647 {
1648 	struct device *dev = &qm->pdev->dev;
1649 	int cnt = 0;
1650 	u64 val;
1651 	int ret;
1652 
1653 	ret = qm->ops->set_ifc_begin(qm, cmd, data, fun_num);
1654 	if (ret) {
1655 		dev_err(dev, "failed to send command to vf(%u)!\n", fun_num);
1656 		goto err_unlock;
1657 	}
1658 
1659 	qm_trigger_vf_interrupt(qm, fun_num);
1660 	while (true) {
1661 		msleep(QM_WAIT_DST_ACK);
1662 		val = readq(qm->io_base + QM_IFC_READY_STATUS);
1663 		/* if VF respond, PF notifies VF successfully. */
1664 		if (!(val & BIT(fun_num)))
1665 			goto err_unlock;
1666 
1667 		if (++cnt > QM_MAX_PF_WAIT_COUNT) {
1668 			dev_err(dev, "failed to get response from VF(%u)!\n", fun_num);
1669 			ret = -ETIMEDOUT;
1670 			break;
1671 		}
1672 	}
1673 
1674 err_unlock:
1675 	qm->ops->set_ifc_end(qm);
1676 	return ret;
1677 }
1678 
1679 static int qm_ping_all_vfs(struct hisi_qm *qm, enum qm_ifc_cmd cmd)
1680 {
1681 	struct device *dev = &qm->pdev->dev;
1682 	u32 vfs_num = qm->vfs_num;
1683 	u64 val = 0;
1684 	int cnt = 0;
1685 	int ret;
1686 	u32 i;
1687 
1688 	ret = qm->ops->set_ifc_begin(qm, cmd, 0, QM_MB_PING_ALL_VFS);
1689 	if (ret) {
1690 		dev_err(dev, "failed to send command(0x%x) to all vfs!\n", cmd);
1691 		qm->ops->set_ifc_end(qm);
1692 		return ret;
1693 	}
1694 
1695 	qm_trigger_vf_interrupt(qm, QM_IFC_SEND_ALL_VFS);
1696 	while (true) {
1697 		msleep(QM_WAIT_DST_ACK);
1698 		val = readq(qm->io_base + QM_IFC_READY_STATUS);
1699 		/* If all VFs acked, PF notifies VFs successfully. */
1700 		if (!(val & GENMASK(vfs_num, 1))) {
1701 			qm->ops->set_ifc_end(qm);
1702 			return 0;
1703 		}
1704 
1705 		if (++cnt > QM_MAX_PF_WAIT_COUNT)
1706 			break;
1707 	}
1708 
1709 	qm->ops->set_ifc_end(qm);
1710 
1711 	/* Check which vf respond timeout. */
1712 	for (i = 1; i <= vfs_num; i++) {
1713 		if (val & BIT(i))
1714 			dev_err(dev, "failed to get response from VF(%u)!\n", i);
1715 	}
1716 
1717 	return -ETIMEDOUT;
1718 }
1719 
1720 static int qm_ping_pf(struct hisi_qm *qm, enum qm_ifc_cmd cmd)
1721 {
1722 	int cnt = 0;
1723 	u32 val;
1724 	int ret;
1725 
1726 	ret = qm->ops->set_ifc_begin(qm, cmd, 0, 0);
1727 	if (ret) {
1728 		dev_err(&qm->pdev->dev, "failed to send command(0x%x) to PF!\n", cmd);
1729 		goto unlock;
1730 	}
1731 
1732 	qm_trigger_pf_interrupt(qm);
1733 	/* Waiting for PF response */
1734 	while (true) {
1735 		msleep(QM_WAIT_DST_ACK);
1736 		val = readl(qm->io_base + QM_IFC_INT_SET_V);
1737 		if (!(val & QM_IFC_INT_STATUS_MASK))
1738 			break;
1739 
1740 		if (++cnt > QM_MAX_VF_WAIT_COUNT) {
1741 			ret = -ETIMEDOUT;
1742 			break;
1743 		}
1744 	}
1745 
1746 unlock:
1747 	qm->ops->set_ifc_end(qm);
1748 
1749 	return ret;
1750 }
1751 
1752 static int qm_drain_qm(struct hisi_qm *qm)
1753 {
1754 	return hisi_qm_mb(qm, QM_MB_CMD_FLUSH_QM, 0, 0, 0);
1755 }
1756 
1757 static int qm_stop_qp(struct hisi_qp *qp)
1758 {
1759 	return hisi_qm_mb(qp->qm, QM_MB_CMD_STOP_QP, 0, qp->qp_id, 0);
1760 }
1761 
1762 static int qm_set_msi(struct hisi_qm *qm, bool set)
1763 {
1764 	struct pci_dev *pdev = qm->pdev;
1765 
1766 	if (set) {
1767 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
1768 				       0);
1769 	} else {
1770 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
1771 				       ACC_PEH_MSI_DISABLE);
1772 		if (qm->err_status.is_qm_ecc_mbit ||
1773 		    qm->err_status.is_dev_ecc_mbit)
1774 			return 0;
1775 
1776 		mdelay(1);
1777 		if (readl(qm->io_base + QM_PEH_DFX_INFO0))
1778 			return -EFAULT;
1779 	}
1780 
1781 	return 0;
1782 }
1783 
1784 static void qm_wait_msi_finish(struct hisi_qm *qm)
1785 {
1786 	struct pci_dev *pdev = qm->pdev;
1787 	u32 cmd = ~0;
1788 	int cnt = 0;
1789 	u32 val;
1790 	int ret;
1791 
1792 	while (true) {
1793 		pci_read_config_dword(pdev, pdev->msi_cap +
1794 				      PCI_MSI_PENDING_64, &cmd);
1795 		if (!cmd)
1796 			break;
1797 
1798 		if (++cnt > MAX_WAIT_COUNTS) {
1799 			pci_warn(pdev, "failed to empty MSI PENDING!\n");
1800 			break;
1801 		}
1802 
1803 		udelay(1);
1804 	}
1805 
1806 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO0,
1807 					 val, !(val & QM_PEH_DFX_MASK),
1808 					 POLL_PERIOD, POLL_TIMEOUT);
1809 	if (ret)
1810 		pci_warn(pdev, "failed to empty PEH MSI!\n");
1811 
1812 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO1,
1813 					 val, !(val & QM_PEH_MSI_FINISH_MASK),
1814 					 POLL_PERIOD, POLL_TIMEOUT);
1815 	if (ret)
1816 		pci_warn(pdev, "failed to finish MSI operation!\n");
1817 }
1818 
1819 static int qm_set_msi_v3(struct hisi_qm *qm, bool set)
1820 {
1821 	struct pci_dev *pdev = qm->pdev;
1822 	int ret = -ETIMEDOUT;
1823 	u32 cmd, i;
1824 
1825 	pci_read_config_dword(pdev, pdev->msi_cap, &cmd);
1826 	if (set)
1827 		cmd |= QM_MSI_CAP_ENABLE;
1828 	else
1829 		cmd &= ~QM_MSI_CAP_ENABLE;
1830 
1831 	pci_write_config_dword(pdev, pdev->msi_cap, cmd);
1832 	if (set) {
1833 		for (i = 0; i < MAX_WAIT_COUNTS; i++) {
1834 			pci_read_config_dword(pdev, pdev->msi_cap, &cmd);
1835 			if (cmd & QM_MSI_CAP_ENABLE)
1836 				return 0;
1837 
1838 			udelay(1);
1839 		}
1840 	} else {
1841 		udelay(WAIT_PERIOD_US_MIN);
1842 		qm_wait_msi_finish(qm);
1843 		ret = 0;
1844 	}
1845 
1846 	return ret;
1847 }
1848 
1849 static int qm_set_ifc_begin_v3(struct hisi_qm *qm, enum qm_ifc_cmd cmd, u32 data, u32 fun_num)
1850 {
1851 	struct qm_mailbox mailbox;
1852 	u64 msg;
1853 
1854 	msg = cmd | (u64)data << QM_IFC_DATA_SHIFT;
1855 
1856 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, msg, fun_num, 0);
1857 	mutex_lock(&qm->mailbox_lock);
1858 	return qm_mb_nolock(qm, &mailbox);
1859 }
1860 
1861 static void qm_set_ifc_end_v3(struct hisi_qm *qm)
1862 {
1863 	mutex_unlock(&qm->mailbox_lock);
1864 }
1865 
1866 static int qm_get_ifc_v3(struct hisi_qm *qm, enum qm_ifc_cmd *cmd, u32 *data, u32 fun_num)
1867 {
1868 	u64 msg;
1869 	int ret;
1870 
1871 	ret = qm_get_mb_cmd(qm, &msg, fun_num);
1872 	if (ret)
1873 		return ret;
1874 
1875 	*cmd = msg & QM_IFC_CMD_MASK;
1876 
1877 	if (data)
1878 		*data = msg >> QM_IFC_DATA_SHIFT;
1879 
1880 	return 0;
1881 }
1882 
1883 static int qm_set_ifc_begin_v4(struct hisi_qm *qm, enum qm_ifc_cmd cmd, u32 data, u32 fun_num)
1884 {
1885 	uintptr_t offset;
1886 	u64 msg;
1887 
1888 	if (qm->fun_type == QM_HW_PF)
1889 		offset = QM_PF2VF_PF_W;
1890 	else
1891 		offset = QM_VF2PF_VF_W;
1892 
1893 	msg = cmd | (u64)data << QM_IFC_DATA_SHIFT;
1894 
1895 	mutex_lock(&qm->ifc_lock);
1896 	writeq(msg, qm->io_base + offset);
1897 
1898 	return 0;
1899 }
1900 
1901 static void qm_set_ifc_end_v4(struct hisi_qm *qm)
1902 {
1903 	mutex_unlock(&qm->ifc_lock);
1904 }
1905 
1906 static u64 qm_get_ifc_pf(struct hisi_qm *qm, u32 fun_num)
1907 {
1908 	uintptr_t offset;
1909 
1910 	offset = QM_VF2PF_PF_R + QM_VF2PF_REG_SIZE * fun_num;
1911 
1912 	return (u64)readl(qm->io_base + offset);
1913 }
1914 
1915 static u64 qm_get_ifc_vf(struct hisi_qm *qm)
1916 {
1917 	return readq(qm->io_base + QM_PF2VF_VF_R);
1918 }
1919 
1920 static int qm_get_ifc_v4(struct hisi_qm *qm, enum qm_ifc_cmd *cmd, u32 *data, u32 fun_num)
1921 {
1922 	u64 msg;
1923 
1924 	if (qm->fun_type == QM_HW_PF)
1925 		msg = qm_get_ifc_pf(qm, fun_num);
1926 	else
1927 		msg = qm_get_ifc_vf(qm);
1928 
1929 	*cmd = msg & QM_IFC_CMD_MASK;
1930 
1931 	if (data)
1932 		*data = msg >> QM_IFC_DATA_SHIFT;
1933 
1934 	return 0;
1935 }
1936 
1937 static const struct hisi_qm_hw_ops qm_hw_ops_v1 = {
1938 	.qm_db = qm_db_v1,
1939 	.hw_error_init = qm_hw_error_init_v1,
1940 	.set_msi = qm_set_msi,
1941 };
1942 
1943 static const struct hisi_qm_hw_ops qm_hw_ops_v2 = {
1944 	.get_vft = qm_get_vft_v2,
1945 	.qm_db = qm_db_v2,
1946 	.hw_error_init = qm_hw_error_init_v2,
1947 	.hw_error_uninit = qm_hw_error_uninit_v2,
1948 	.hw_error_handle = qm_hw_error_handle_v2,
1949 	.set_msi = qm_set_msi,
1950 };
1951 
1952 static const struct hisi_qm_hw_ops qm_hw_ops_v3 = {
1953 	.get_vft = qm_get_vft_v2,
1954 	.qm_db = qm_db_v2,
1955 	.hw_error_init = qm_hw_error_init_v3,
1956 	.hw_error_uninit = qm_hw_error_uninit_v3,
1957 	.hw_error_handle = qm_hw_error_handle_v2,
1958 	.set_msi = qm_set_msi_v3,
1959 	.set_ifc_begin = qm_set_ifc_begin_v3,
1960 	.set_ifc_end = qm_set_ifc_end_v3,
1961 	.get_ifc = qm_get_ifc_v3,
1962 };
1963 
1964 static const struct hisi_qm_hw_ops qm_hw_ops_v4 = {
1965 	.get_vft = qm_get_vft_v2,
1966 	.qm_db = qm_db_v2,
1967 	.hw_error_init = qm_hw_error_init_v3,
1968 	.hw_error_uninit = qm_hw_error_uninit_v3,
1969 	.hw_error_handle = qm_hw_error_handle_v2,
1970 	.set_msi = qm_set_msi_v3,
1971 	.set_ifc_begin = qm_set_ifc_begin_v4,
1972 	.set_ifc_end = qm_set_ifc_end_v4,
1973 	.get_ifc = qm_get_ifc_v4,
1974 };
1975 
1976 static void *qm_get_avail_sqe(struct hisi_qp *qp)
1977 {
1978 	struct hisi_qp_status *qp_status = &qp->qp_status;
1979 	u16 sq_tail = qp_status->sq_tail;
1980 
1981 	if (unlikely(atomic_read(&qp->qp_status.used) == qp->sq_depth - 1))
1982 		return NULL;
1983 
1984 	return qp->sqe + sq_tail * qp->qm->sqe_size;
1985 }
1986 
1987 static void hisi_qm_unset_hw_reset(struct hisi_qp *qp)
1988 {
1989 	u64 *addr;
1990 
1991 	/* Use last 64 bits of DUS to reset status. */
1992 	addr = (u64 *)(qp->qdma.va + qp->qdma.size) - QM_RESET_STOP_TX_OFFSET;
1993 	*addr = 0;
1994 }
1995 
1996 static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type)
1997 {
1998 	struct device *dev = &qm->pdev->dev;
1999 	struct hisi_qp *qp;
2000 	int qp_id;
2001 
2002 	if (atomic_read(&qm->status.flags) == QM_STOP) {
2003 		dev_info_ratelimited(dev, "failed to create qp as qm is stop!\n");
2004 		return ERR_PTR(-EPERM);
2005 	}
2006 
2007 	if (qm->qp_in_used == qm->qp_num) {
2008 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
2009 				     qm->qp_num);
2010 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
2011 		return ERR_PTR(-EBUSY);
2012 	}
2013 
2014 	qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC);
2015 	if (qp_id < 0) {
2016 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
2017 				    qm->qp_num);
2018 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
2019 		return ERR_PTR(-EBUSY);
2020 	}
2021 
2022 	qp = &qm->qp_array[qp_id];
2023 	hisi_qm_unset_hw_reset(qp);
2024 	memset(qp->cqe, 0, sizeof(struct qm_cqe) * qp->cq_depth);
2025 
2026 	qp->event_cb = NULL;
2027 	qp->req_cb = NULL;
2028 	qp->qp_id = qp_id;
2029 	qp->alg_type = alg_type;
2030 	qp->is_in_kernel = true;
2031 	qm->qp_in_used++;
2032 
2033 	return qp;
2034 }
2035 
2036 /**
2037  * hisi_qm_create_qp() - Create a queue pair from qm.
2038  * @qm: The qm we create a qp from.
2039  * @alg_type: Accelerator specific algorithm type in sqc.
2040  *
2041  * Return created qp, negative error code if failed.
2042  */
2043 static struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type)
2044 {
2045 	struct hisi_qp *qp;
2046 	int ret;
2047 
2048 	ret = qm_pm_get_sync(qm);
2049 	if (ret)
2050 		return ERR_PTR(ret);
2051 
2052 	down_write(&qm->qps_lock);
2053 	qp = qm_create_qp_nolock(qm, alg_type);
2054 	up_write(&qm->qps_lock);
2055 
2056 	if (IS_ERR(qp))
2057 		qm_pm_put_sync(qm);
2058 
2059 	return qp;
2060 }
2061 
2062 /**
2063  * hisi_qm_release_qp() - Release a qp back to its qm.
2064  * @qp: The qp we want to release.
2065  *
2066  * This function releases the resource of a qp.
2067  */
2068 static void hisi_qm_release_qp(struct hisi_qp *qp)
2069 {
2070 	struct hisi_qm *qm = qp->qm;
2071 
2072 	down_write(&qm->qps_lock);
2073 
2074 	qm->qp_in_used--;
2075 	idr_remove(&qm->qp_idr, qp->qp_id);
2076 
2077 	up_write(&qm->qps_lock);
2078 
2079 	qm_pm_put_sync(qm);
2080 }
2081 
2082 static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
2083 {
2084 	struct hisi_qm *qm = qp->qm;
2085 	enum qm_hw_ver ver = qm->ver;
2086 	struct qm_sqc sqc = {0};
2087 
2088 	if (ver == QM_HW_V1) {
2089 		sqc.dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size));
2090 		sqc.w8 = cpu_to_le16(qp->sq_depth - 1);
2091 	} else {
2092 		sqc.dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size, qp->sq_depth));
2093 		sqc.w8 = 0; /* rand_qc */
2094 	}
2095 	sqc.w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type));
2096 	sqc.base_l = cpu_to_le32(lower_32_bits(qp->sqe_dma));
2097 	sqc.base_h = cpu_to_le32(upper_32_bits(qp->sqe_dma));
2098 	sqc.cq_num = cpu_to_le16(qp_id);
2099 	sqc.pasid = cpu_to_le16(pasid);
2100 
2101 	if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
2102 		sqc.w11 = cpu_to_le16(QM_QC_PASID_ENABLE <<
2103 				      QM_QC_PASID_ENABLE_SHIFT);
2104 
2105 	return qm_set_and_get_xqc(qm, QM_MB_CMD_SQC, &sqc, qp_id, 0);
2106 }
2107 
2108 static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
2109 {
2110 	struct hisi_qm *qm = qp->qm;
2111 	enum qm_hw_ver ver = qm->ver;
2112 	struct qm_cqc cqc = {0};
2113 
2114 	if (ver == QM_HW_V1) {
2115 		cqc.dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0, QM_QC_CQE_SIZE));
2116 		cqc.w8 = cpu_to_le16(qp->cq_depth - 1);
2117 	} else {
2118 		cqc.dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE, qp->cq_depth));
2119 		cqc.w8 = 0; /* rand_qc */
2120 	}
2121 	/*
2122 	 * Enable request finishing interrupts defaultly.
2123 	 * So, there will be some interrupts until disabling
2124 	 * this.
2125 	 */
2126 	cqc.dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT);
2127 	cqc.base_l = cpu_to_le32(lower_32_bits(qp->cqe_dma));
2128 	cqc.base_h = cpu_to_le32(upper_32_bits(qp->cqe_dma));
2129 	cqc.pasid = cpu_to_le16(pasid);
2130 
2131 	if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
2132 		cqc.w11 = cpu_to_le16(QM_QC_PASID_ENABLE);
2133 
2134 	return qm_set_and_get_xqc(qm, QM_MB_CMD_CQC, &cqc, qp_id, 0);
2135 }
2136 
2137 static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
2138 {
2139 	int ret;
2140 
2141 	qm_init_qp_status(qp);
2142 
2143 	ret = qm_sq_ctx_cfg(qp, qp_id, pasid);
2144 	if (ret)
2145 		return ret;
2146 
2147 	return qm_cq_ctx_cfg(qp, qp_id, pasid);
2148 }
2149 
2150 static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg)
2151 {
2152 	struct hisi_qm *qm = qp->qm;
2153 	struct device *dev = &qm->pdev->dev;
2154 	int qp_id = qp->qp_id;
2155 	u32 pasid = arg;
2156 	int ret;
2157 
2158 	if (atomic_read(&qm->status.flags) == QM_STOP) {
2159 		dev_info_ratelimited(dev, "failed to start qp as qm is stop!\n");
2160 		return -EPERM;
2161 	}
2162 
2163 	ret = qm_qp_ctx_cfg(qp, qp_id, pasid);
2164 	if (ret)
2165 		return ret;
2166 
2167 	atomic_set(&qp->qp_status.flags, QP_START);
2168 	dev_dbg(dev, "queue %d started\n", qp_id);
2169 
2170 	return 0;
2171 }
2172 
2173 /**
2174  * hisi_qm_start_qp() - Start a qp into running.
2175  * @qp: The qp we want to start to run.
2176  * @arg: Accelerator specific argument.
2177  *
2178  * After this function, qp can receive request from user. Return 0 if
2179  * successful, negative error code if failed.
2180  */
2181 int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg)
2182 {
2183 	struct hisi_qm *qm = qp->qm;
2184 	int ret;
2185 
2186 	down_write(&qm->qps_lock);
2187 	ret = qm_start_qp_nolock(qp, arg);
2188 	up_write(&qm->qps_lock);
2189 
2190 	return ret;
2191 }
2192 EXPORT_SYMBOL_GPL(hisi_qm_start_qp);
2193 
2194 /**
2195  * qp_stop_fail_cb() - call request cb.
2196  * @qp: stopped failed qp.
2197  *
2198  * Callback function should be called whether task completed or not.
2199  */
2200 static void qp_stop_fail_cb(struct hisi_qp *qp)
2201 {
2202 	int qp_used = atomic_read(&qp->qp_status.used);
2203 	u16 cur_tail = qp->qp_status.sq_tail;
2204 	u16 sq_depth = qp->sq_depth;
2205 	u16 cur_head = (cur_tail + sq_depth - qp_used) % sq_depth;
2206 	struct hisi_qm *qm = qp->qm;
2207 	u16 pos;
2208 	int i;
2209 
2210 	for (i = 0; i < qp_used; i++) {
2211 		pos = (i + cur_head) % sq_depth;
2212 		qp->req_cb(qp, qp->sqe + (u32)(qm->sqe_size * pos));
2213 		atomic_dec(&qp->qp_status.used);
2214 	}
2215 }
2216 
2217 static int qm_wait_qp_empty(struct hisi_qm *qm, u32 *state, u32 qp_id)
2218 {
2219 	struct device *dev = &qm->pdev->dev;
2220 	struct qm_sqc sqc;
2221 	struct qm_cqc cqc;
2222 	int ret, i = 0;
2223 
2224 	while (++i) {
2225 		ret = qm_set_and_get_xqc(qm, QM_MB_CMD_SQC, &sqc, qp_id, 1);
2226 		if (ret) {
2227 			dev_err_ratelimited(dev, "Failed to dump sqc!\n");
2228 			*state = QM_DUMP_SQC_FAIL;
2229 			return ret;
2230 		}
2231 
2232 		ret = qm_set_and_get_xqc(qm, QM_MB_CMD_CQC, &cqc, qp_id, 1);
2233 		if (ret) {
2234 			dev_err_ratelimited(dev, "Failed to dump cqc!\n");
2235 			*state = QM_DUMP_CQC_FAIL;
2236 			return ret;
2237 		}
2238 
2239 		if ((sqc.tail == cqc.tail) &&
2240 		    (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc)))
2241 			break;
2242 
2243 		if (i == MAX_WAIT_COUNTS) {
2244 			dev_err(dev, "Fail to empty queue %u!\n", qp_id);
2245 			*state = QM_STOP_QUEUE_FAIL;
2246 			return -ETIMEDOUT;
2247 		}
2248 
2249 		usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX);
2250 	}
2251 
2252 	return 0;
2253 }
2254 
2255 /**
2256  * qm_drain_qp() - Drain a qp.
2257  * @qp: The qp we want to drain.
2258  *
2259  * If the device does not support stopping queue by sending mailbox,
2260  * determine whether the queue is cleared by judging the tail pointers of
2261  * sq and cq.
2262  */
2263 static int qm_drain_qp(struct hisi_qp *qp)
2264 {
2265 	struct hisi_qm *qm = qp->qm;
2266 	u32 state = 0;
2267 	int ret;
2268 
2269 	/* No need to judge if master OOO is blocked. */
2270 	if (qm_check_dev_error(qm))
2271 		return 0;
2272 
2273 	/* HW V3 supports drain qp by device */
2274 	if (test_bit(QM_SUPPORT_STOP_QP, &qm->caps)) {
2275 		ret = qm_stop_qp(qp);
2276 		if (ret) {
2277 			dev_err(&qm->pdev->dev, "Failed to stop qp!\n");
2278 			state = QM_STOP_QUEUE_FAIL;
2279 			goto set_dev_state;
2280 		}
2281 		return ret;
2282 	}
2283 
2284 	ret = qm_wait_qp_empty(qm, &state, qp->qp_id);
2285 	if (ret)
2286 		goto set_dev_state;
2287 
2288 	return 0;
2289 
2290 set_dev_state:
2291 	if (qm->debug.dev_dfx.dev_timeout)
2292 		qm->debug.dev_dfx.dev_state = state;
2293 
2294 	return ret;
2295 }
2296 
2297 static void qm_stop_qp_nolock(struct hisi_qp *qp)
2298 {
2299 	struct hisi_qm *qm = qp->qm;
2300 	struct device *dev = &qm->pdev->dev;
2301 	int ret;
2302 
2303 	/*
2304 	 * It is allowed to stop and release qp when reset, If the qp is
2305 	 * stopped when reset but still want to be released then, the
2306 	 * is_resetting flag should be set negative so that this qp will not
2307 	 * be restarted after reset.
2308 	 */
2309 	if (atomic_read(&qp->qp_status.flags) != QP_START) {
2310 		qp->is_resetting = false;
2311 		return;
2312 	}
2313 
2314 	atomic_set(&qp->qp_status.flags, QP_STOP);
2315 
2316 	/* V3 supports direct stop function when FLR prepare */
2317 	if (qm->ver < QM_HW_V3 || qm->status.stop_reason == QM_NORMAL) {
2318 		ret = qm_drain_qp(qp);
2319 		if (ret)
2320 			dev_err(dev, "Failed to drain out data for stopping qp(%u)!\n", qp->qp_id);
2321 	}
2322 
2323 	flush_workqueue(qm->wq);
2324 	if (unlikely(qp->is_resetting && atomic_read(&qp->qp_status.used)))
2325 		qp_stop_fail_cb(qp);
2326 
2327 	dev_dbg(dev, "stop queue %u!", qp->qp_id);
2328 }
2329 
2330 /**
2331  * hisi_qm_stop_qp() - Stop a qp in qm.
2332  * @qp: The qp we want to stop.
2333  *
2334  * This function is reverse of hisi_qm_start_qp.
2335  */
2336 void hisi_qm_stop_qp(struct hisi_qp *qp)
2337 {
2338 	down_write(&qp->qm->qps_lock);
2339 	qm_stop_qp_nolock(qp);
2340 	up_write(&qp->qm->qps_lock);
2341 }
2342 EXPORT_SYMBOL_GPL(hisi_qm_stop_qp);
2343 
2344 /**
2345  * hisi_qp_send() - Queue up a task in the hardware queue.
2346  * @qp: The qp in which to put the message.
2347  * @msg: The message.
2348  *
2349  * This function will return -EBUSY if qp is currently full, and -EAGAIN
2350  * if qp related qm is resetting.
2351  *
2352  * Note: This function may run with qm_irq_thread and ACC reset at same time.
2353  *       It has no race with qm_irq_thread. However, during hisi_qp_send, ACC
2354  *       reset may happen, we have no lock here considering performance. This
2355  *       causes current qm_db sending fail or can not receive sended sqe. QM
2356  *       sync/async receive function should handle the error sqe. ACC reset
2357  *       done function should clear used sqe to 0.
2358  */
2359 int hisi_qp_send(struct hisi_qp *qp, const void *msg)
2360 {
2361 	struct hisi_qp_status *qp_status = &qp->qp_status;
2362 	u16 sq_tail = qp_status->sq_tail;
2363 	u16 sq_tail_next = (sq_tail + 1) % qp->sq_depth;
2364 	void *sqe = qm_get_avail_sqe(qp);
2365 
2366 	if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP ||
2367 		     atomic_read(&qp->qm->status.flags) == QM_STOP ||
2368 		     qp->is_resetting)) {
2369 		dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n");
2370 		return -EAGAIN;
2371 	}
2372 
2373 	if (!sqe)
2374 		return -EBUSY;
2375 
2376 	memcpy(sqe, msg, qp->qm->sqe_size);
2377 
2378 	qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0);
2379 	atomic_inc(&qp->qp_status.used);
2380 	qp_status->sq_tail = sq_tail_next;
2381 
2382 	return 0;
2383 }
2384 EXPORT_SYMBOL_GPL(hisi_qp_send);
2385 
2386 static void hisi_qm_cache_wb(struct hisi_qm *qm)
2387 {
2388 	unsigned int val;
2389 
2390 	if (qm->ver == QM_HW_V1)
2391 		return;
2392 
2393 	writel(0x1, qm->io_base + QM_CACHE_WB_START);
2394 	if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE,
2395 				       val, val & BIT(0), POLL_PERIOD,
2396 				       POLL_TIMEOUT))
2397 		dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n");
2398 }
2399 
2400 static void qm_qp_event_notifier(struct hisi_qp *qp)
2401 {
2402 	wake_up_interruptible(&qp->uacce_q->wait);
2403 }
2404 
2405  /* This function returns free number of qp in qm. */
2406 static int hisi_qm_get_available_instances(struct uacce_device *uacce)
2407 {
2408 	struct hisi_qm *qm = uacce->priv;
2409 	int ret;
2410 
2411 	down_read(&qm->qps_lock);
2412 	ret = qm->qp_num - qm->qp_in_used;
2413 	up_read(&qm->qps_lock);
2414 
2415 	return ret;
2416 }
2417 
2418 static void hisi_qm_set_hw_reset(struct hisi_qm *qm, int offset)
2419 {
2420 	int i;
2421 
2422 	for (i = 0; i < qm->qp_num; i++)
2423 		qm_set_qp_disable(&qm->qp_array[i], offset);
2424 }
2425 
2426 static int hisi_qm_uacce_get_queue(struct uacce_device *uacce,
2427 				   unsigned long arg,
2428 				   struct uacce_queue *q)
2429 {
2430 	struct hisi_qm *qm = uacce->priv;
2431 	struct hisi_qp *qp;
2432 	u8 alg_type = 0;
2433 
2434 	qp = hisi_qm_create_qp(qm, alg_type);
2435 	if (IS_ERR(qp))
2436 		return PTR_ERR(qp);
2437 
2438 	q->priv = qp;
2439 	q->uacce = uacce;
2440 	qp->uacce_q = q;
2441 	qp->event_cb = qm_qp_event_notifier;
2442 	qp->pasid = arg;
2443 	qp->is_in_kernel = false;
2444 
2445 	return 0;
2446 }
2447 
2448 static void hisi_qm_uacce_put_queue(struct uacce_queue *q)
2449 {
2450 	struct hisi_qp *qp = q->priv;
2451 
2452 	hisi_qm_release_qp(qp);
2453 }
2454 
2455 /* map sq/cq/doorbell to user space */
2456 static int hisi_qm_uacce_mmap(struct uacce_queue *q,
2457 			      struct vm_area_struct *vma,
2458 			      struct uacce_qfile_region *qfr)
2459 {
2460 	struct hisi_qp *qp = q->priv;
2461 	struct hisi_qm *qm = qp->qm;
2462 	resource_size_t phys_base = qm->db_phys_base +
2463 				    qp->qp_id * qm->db_interval;
2464 	size_t sz = vma->vm_end - vma->vm_start;
2465 	struct pci_dev *pdev = qm->pdev;
2466 	struct device *dev = &pdev->dev;
2467 	unsigned long vm_pgoff;
2468 	int ret;
2469 
2470 	switch (qfr->type) {
2471 	case UACCE_QFRT_MMIO:
2472 		if (qm->ver == QM_HW_V1) {
2473 			if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR)
2474 				return -EINVAL;
2475 		} else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) {
2476 			if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR +
2477 			    QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE))
2478 				return -EINVAL;
2479 		} else {
2480 			if (sz > qm->db_interval)
2481 				return -EINVAL;
2482 		}
2483 
2484 		vm_flags_set(vma, VM_IO);
2485 
2486 		return remap_pfn_range(vma, vma->vm_start,
2487 				       phys_base >> PAGE_SHIFT,
2488 				       sz, pgprot_noncached(vma->vm_page_prot));
2489 	case UACCE_QFRT_DUS:
2490 		if (sz != qp->qdma.size)
2491 			return -EINVAL;
2492 
2493 		/*
2494 		 * dma_mmap_coherent() requires vm_pgoff as 0
2495 		 * restore vm_pfoff to initial value for mmap()
2496 		 */
2497 		vm_pgoff = vma->vm_pgoff;
2498 		vma->vm_pgoff = 0;
2499 		ret = dma_mmap_coherent(dev, vma, qp->qdma.va,
2500 					qp->qdma.dma, sz);
2501 		vma->vm_pgoff = vm_pgoff;
2502 		return ret;
2503 
2504 	default:
2505 		return -EINVAL;
2506 	}
2507 }
2508 
2509 static int hisi_qm_uacce_start_queue(struct uacce_queue *q)
2510 {
2511 	struct hisi_qp *qp = q->priv;
2512 
2513 	return hisi_qm_start_qp(qp, qp->pasid);
2514 }
2515 
2516 static void hisi_qm_uacce_stop_queue(struct uacce_queue *q)
2517 {
2518 	struct hisi_qp *qp = q->priv;
2519 	struct hisi_qm *qm = qp->qm;
2520 	struct qm_dev_dfx *dev_dfx = &qm->debug.dev_dfx;
2521 	u32 i = 0;
2522 
2523 	hisi_qm_stop_qp(qp);
2524 
2525 	if (!dev_dfx->dev_timeout || !dev_dfx->dev_state)
2526 		return;
2527 
2528 	/*
2529 	 * After the queue fails to be stopped,
2530 	 * wait for a period of time before releasing the queue.
2531 	 */
2532 	while (++i) {
2533 		msleep(WAIT_PERIOD);
2534 
2535 		/* Since dev_timeout maybe modified, check i >= dev_timeout */
2536 		if (i >= dev_dfx->dev_timeout) {
2537 			dev_err(&qm->pdev->dev, "Stop q %u timeout, state %u\n",
2538 			       qp->qp_id, dev_dfx->dev_state);
2539 			dev_dfx->dev_state = QM_FINISH_WAIT;
2540 			break;
2541 		}
2542 	}
2543 }
2544 
2545 static int hisi_qm_is_q_updated(struct uacce_queue *q)
2546 {
2547 	struct hisi_qp *qp = q->priv;
2548 	struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
2549 	int updated = 0;
2550 
2551 	while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
2552 		/* make sure to read data from memory */
2553 		dma_rmb();
2554 		qm_cq_head_update(qp);
2555 		cqe = qp->cqe + qp->qp_status.cq_head;
2556 		updated = 1;
2557 	}
2558 
2559 	return updated;
2560 }
2561 
2562 static void qm_set_sqctype(struct uacce_queue *q, u16 type)
2563 {
2564 	struct hisi_qm *qm = q->uacce->priv;
2565 	struct hisi_qp *qp = q->priv;
2566 
2567 	down_write(&qm->qps_lock);
2568 	qp->alg_type = type;
2569 	up_write(&qm->qps_lock);
2570 }
2571 
2572 static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd,
2573 				unsigned long arg)
2574 {
2575 	struct hisi_qp *qp = q->priv;
2576 	struct hisi_qp_info qp_info;
2577 	struct hisi_qp_ctx qp_ctx;
2578 
2579 	if (cmd == UACCE_CMD_QM_SET_QP_CTX) {
2580 		if (copy_from_user(&qp_ctx, (void __user *)arg,
2581 				   sizeof(struct hisi_qp_ctx)))
2582 			return -EFAULT;
2583 
2584 		if (qp_ctx.qc_type > QM_MAX_QC_TYPE)
2585 			return -EINVAL;
2586 
2587 		qm_set_sqctype(q, qp_ctx.qc_type);
2588 		qp_ctx.id = qp->qp_id;
2589 
2590 		if (copy_to_user((void __user *)arg, &qp_ctx,
2591 				 sizeof(struct hisi_qp_ctx)))
2592 			return -EFAULT;
2593 
2594 		return 0;
2595 	} else if (cmd == UACCE_CMD_QM_SET_QP_INFO) {
2596 		if (copy_from_user(&qp_info, (void __user *)arg,
2597 				   sizeof(struct hisi_qp_info)))
2598 			return -EFAULT;
2599 
2600 		qp_info.sqe_size = qp->qm->sqe_size;
2601 		qp_info.sq_depth = qp->sq_depth;
2602 		qp_info.cq_depth = qp->cq_depth;
2603 
2604 		if (copy_to_user((void __user *)arg, &qp_info,
2605 				  sizeof(struct hisi_qp_info)))
2606 			return -EFAULT;
2607 
2608 		return 0;
2609 	}
2610 
2611 	return -EINVAL;
2612 }
2613 
2614 /**
2615  * qm_hw_err_isolate() - Try to set the isolation status of the uacce device
2616  * according to user's configuration of error threshold.
2617  * @qm: the uacce device
2618  */
2619 static int qm_hw_err_isolate(struct hisi_qm *qm)
2620 {
2621 	struct qm_hw_err *err, *tmp, *hw_err;
2622 	struct qm_err_isolate *isolate;
2623 	u32 count = 0;
2624 
2625 	isolate = &qm->isolate_data;
2626 
2627 #define SECONDS_PER_HOUR	3600
2628 
2629 	/* All the hw errs are processed by PF driver */
2630 	if (qm->uacce->is_vf || isolate->is_isolate || !isolate->err_threshold)
2631 		return 0;
2632 
2633 	hw_err = kzalloc(sizeof(*hw_err), GFP_KERNEL);
2634 	if (!hw_err)
2635 		return -ENOMEM;
2636 
2637 	/*
2638 	 * Time-stamp every slot AER error. Then check the AER error log when the
2639 	 * next device AER error occurred. if the device slot AER error count exceeds
2640 	 * the setting error threshold in one hour, the isolated state will be set
2641 	 * to true. And the AER error logs that exceed one hour will be cleared.
2642 	 */
2643 	mutex_lock(&isolate->isolate_lock);
2644 	hw_err->timestamp = jiffies;
2645 	list_for_each_entry_safe(err, tmp, &isolate->qm_hw_errs, list) {
2646 		if ((hw_err->timestamp - err->timestamp) / HZ >
2647 		    SECONDS_PER_HOUR) {
2648 			list_del(&err->list);
2649 			kfree(err);
2650 		} else {
2651 			count++;
2652 		}
2653 	}
2654 	list_add(&hw_err->list, &isolate->qm_hw_errs);
2655 	mutex_unlock(&isolate->isolate_lock);
2656 
2657 	if (count >= isolate->err_threshold)
2658 		isolate->is_isolate = true;
2659 
2660 	return 0;
2661 }
2662 
2663 static void qm_hw_err_destroy(struct hisi_qm *qm)
2664 {
2665 	struct qm_hw_err *err, *tmp;
2666 
2667 	mutex_lock(&qm->isolate_data.isolate_lock);
2668 	list_for_each_entry_safe(err, tmp, &qm->isolate_data.qm_hw_errs, list) {
2669 		list_del(&err->list);
2670 		kfree(err);
2671 	}
2672 	mutex_unlock(&qm->isolate_data.isolate_lock);
2673 }
2674 
2675 static enum uacce_dev_state hisi_qm_get_isolate_state(struct uacce_device *uacce)
2676 {
2677 	struct hisi_qm *qm = uacce->priv;
2678 	struct hisi_qm *pf_qm;
2679 
2680 	if (uacce->is_vf)
2681 		pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
2682 	else
2683 		pf_qm = qm;
2684 
2685 	return pf_qm->isolate_data.is_isolate ?
2686 			UACCE_DEV_ISOLATE : UACCE_DEV_NORMAL;
2687 }
2688 
2689 static int hisi_qm_isolate_threshold_write(struct uacce_device *uacce, u32 num)
2690 {
2691 	struct hisi_qm *qm = uacce->priv;
2692 
2693 	/* Must be set by PF */
2694 	if (uacce->is_vf)
2695 		return -EPERM;
2696 
2697 	if (qm->isolate_data.is_isolate)
2698 		return -EPERM;
2699 
2700 	qm->isolate_data.err_threshold = num;
2701 
2702 	/* After the policy is updated, need to reset the hardware err list */
2703 	qm_hw_err_destroy(qm);
2704 
2705 	return 0;
2706 }
2707 
2708 static u32 hisi_qm_isolate_threshold_read(struct uacce_device *uacce)
2709 {
2710 	struct hisi_qm *qm = uacce->priv;
2711 	struct hisi_qm *pf_qm;
2712 
2713 	if (uacce->is_vf) {
2714 		pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
2715 		return pf_qm->isolate_data.err_threshold;
2716 	}
2717 
2718 	return qm->isolate_data.err_threshold;
2719 }
2720 
2721 static const struct uacce_ops uacce_qm_ops = {
2722 	.get_available_instances = hisi_qm_get_available_instances,
2723 	.get_queue = hisi_qm_uacce_get_queue,
2724 	.put_queue = hisi_qm_uacce_put_queue,
2725 	.start_queue = hisi_qm_uacce_start_queue,
2726 	.stop_queue = hisi_qm_uacce_stop_queue,
2727 	.mmap = hisi_qm_uacce_mmap,
2728 	.ioctl = hisi_qm_uacce_ioctl,
2729 	.is_q_updated = hisi_qm_is_q_updated,
2730 	.get_isolate_state = hisi_qm_get_isolate_state,
2731 	.isolate_err_threshold_write = hisi_qm_isolate_threshold_write,
2732 	.isolate_err_threshold_read = hisi_qm_isolate_threshold_read,
2733 };
2734 
2735 static void qm_remove_uacce(struct hisi_qm *qm)
2736 {
2737 	struct uacce_device *uacce = qm->uacce;
2738 
2739 	if (qm->use_sva) {
2740 		qm_hw_err_destroy(qm);
2741 		uacce_remove(uacce);
2742 		qm->uacce = NULL;
2743 	}
2744 }
2745 
2746 static void qm_uacce_api_ver_init(struct hisi_qm *qm)
2747 {
2748 	struct uacce_device *uacce = qm->uacce;
2749 
2750 	switch (qm->ver) {
2751 	case QM_HW_V1:
2752 		uacce->api_ver = HISI_QM_API_VER_BASE;
2753 		break;
2754 	case QM_HW_V2:
2755 		uacce->api_ver = HISI_QM_API_VER2_BASE;
2756 		break;
2757 	case QM_HW_V3:
2758 	case QM_HW_V4:
2759 		uacce->api_ver = HISI_QM_API_VER3_BASE;
2760 		break;
2761 	default:
2762 		uacce->api_ver = HISI_QM_API_VER5_BASE;
2763 		break;
2764 	}
2765 }
2766 
2767 static int qm_alloc_uacce(struct hisi_qm *qm)
2768 {
2769 	struct pci_dev *pdev = qm->pdev;
2770 	struct uacce_device *uacce;
2771 	unsigned long mmio_page_nr;
2772 	unsigned long dus_page_nr;
2773 	u16 sq_depth, cq_depth;
2774 	struct uacce_interface interface = {
2775 		.flags = UACCE_DEV_SVA,
2776 		.ops = &uacce_qm_ops,
2777 	};
2778 	int ret;
2779 
2780 	ret = strscpy(interface.name, dev_driver_string(&pdev->dev),
2781 		      sizeof(interface.name));
2782 	if (ret < 0)
2783 		return -ENAMETOOLONG;
2784 
2785 	uacce = uacce_alloc(&pdev->dev, &interface);
2786 	if (IS_ERR(uacce))
2787 		return PTR_ERR(uacce);
2788 
2789 	if (uacce->flags & UACCE_DEV_SVA) {
2790 		qm->use_sva = true;
2791 	} else {
2792 		/* only consider sva case */
2793 		qm_remove_uacce(qm);
2794 		return -EINVAL;
2795 	}
2796 
2797 	uacce->is_vf = pdev->is_virtfn;
2798 	uacce->priv = qm;
2799 
2800 	if (qm->ver == QM_HW_V1)
2801 		mmio_page_nr = QM_DOORBELL_PAGE_NR;
2802 	else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
2803 		mmio_page_nr = QM_DOORBELL_PAGE_NR +
2804 			QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE;
2805 	else
2806 		mmio_page_nr = qm->db_interval / PAGE_SIZE;
2807 
2808 	qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP);
2809 
2810 	/* Add one more page for device or qp status */
2811 	dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * sq_depth +
2812 		       sizeof(struct qm_cqe) * cq_depth  + PAGE_SIZE) >>
2813 					 PAGE_SHIFT;
2814 
2815 	uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr;
2816 	uacce->qf_pg_num[UACCE_QFRT_DUS]  = dus_page_nr;
2817 
2818 	qm->uacce = uacce;
2819 	qm_uacce_api_ver_init(qm);
2820 	INIT_LIST_HEAD(&qm->isolate_data.qm_hw_errs);
2821 	mutex_init(&qm->isolate_data.isolate_lock);
2822 
2823 	return 0;
2824 }
2825 
2826 /**
2827  * qm_frozen() - Try to froze QM to cut continuous queue request. If
2828  * there is user on the QM, return failure without doing anything.
2829  * @qm: The qm needed to be fronzen.
2830  *
2831  * This function frozes QM, then we can do SRIOV disabling.
2832  */
2833 static int qm_frozen(struct hisi_qm *qm)
2834 {
2835 	if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl))
2836 		return 0;
2837 
2838 	down_write(&qm->qps_lock);
2839 
2840 	if (!qm->qp_in_used) {
2841 		qm->qp_in_used = qm->qp_num;
2842 		up_write(&qm->qps_lock);
2843 		set_bit(QM_DRIVER_REMOVING, &qm->misc_ctl);
2844 		return 0;
2845 	}
2846 
2847 	up_write(&qm->qps_lock);
2848 
2849 	return -EBUSY;
2850 }
2851 
2852 static int qm_try_frozen_vfs(struct pci_dev *pdev,
2853 			     struct hisi_qm_list *qm_list)
2854 {
2855 	struct hisi_qm *qm, *vf_qm;
2856 	struct pci_dev *dev;
2857 	int ret = 0;
2858 
2859 	if (!qm_list || !pdev)
2860 		return -EINVAL;
2861 
2862 	/* Try to frozen all the VFs as disable SRIOV */
2863 	mutex_lock(&qm_list->lock);
2864 	list_for_each_entry(qm, &qm_list->list, list) {
2865 		dev = qm->pdev;
2866 		if (dev == pdev)
2867 			continue;
2868 		if (pci_physfn(dev) == pdev) {
2869 			vf_qm = pci_get_drvdata(dev);
2870 			ret = qm_frozen(vf_qm);
2871 			if (ret)
2872 				goto frozen_fail;
2873 		}
2874 	}
2875 
2876 frozen_fail:
2877 	mutex_unlock(&qm_list->lock);
2878 
2879 	return ret;
2880 }
2881 
2882 /**
2883  * hisi_qm_wait_task_finish() - Wait until the task is finished
2884  * when removing the driver.
2885  * @qm: The qm needed to wait for the task to finish.
2886  * @qm_list: The list of all available devices.
2887  */
2888 void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
2889 {
2890 	while (qm_frozen(qm) ||
2891 	       ((qm->fun_type == QM_HW_PF) &&
2892 	       qm_try_frozen_vfs(qm->pdev, qm_list))) {
2893 		msleep(WAIT_PERIOD);
2894 	}
2895 
2896 	while (test_bit(QM_RST_SCHED, &qm->misc_ctl) ||
2897 	       test_bit(QM_RESETTING, &qm->misc_ctl))
2898 		msleep(WAIT_PERIOD);
2899 
2900 	if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
2901 		flush_work(&qm->cmd_process);
2902 
2903 	udelay(REMOVE_WAIT_DELAY);
2904 }
2905 EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish);
2906 
2907 static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num)
2908 {
2909 	struct device *dev = &qm->pdev->dev;
2910 	struct qm_dma *qdma;
2911 	int i;
2912 
2913 	for (i = num - 1; i >= 0; i--) {
2914 		qdma = &qm->qp_array[i].qdma;
2915 		dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma);
2916 		kfree(qm->poll_data[i].qp_finish_id);
2917 	}
2918 
2919 	kfree(qm->poll_data);
2920 	kfree(qm->qp_array);
2921 }
2922 
2923 static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id,
2924 			       u16 sq_depth, u16 cq_depth)
2925 {
2926 	struct device *dev = &qm->pdev->dev;
2927 	size_t off = qm->sqe_size * sq_depth;
2928 	struct hisi_qp *qp;
2929 	int ret = -ENOMEM;
2930 
2931 	qm->poll_data[id].qp_finish_id = kcalloc(qm->qp_num, sizeof(u16),
2932 						 GFP_KERNEL);
2933 	if (!qm->poll_data[id].qp_finish_id)
2934 		return -ENOMEM;
2935 
2936 	qp = &qm->qp_array[id];
2937 	qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma,
2938 					 GFP_KERNEL);
2939 	if (!qp->qdma.va)
2940 		goto err_free_qp_finish_id;
2941 
2942 	qp->sqe = qp->qdma.va;
2943 	qp->sqe_dma = qp->qdma.dma;
2944 	qp->cqe = qp->qdma.va + off;
2945 	qp->cqe_dma = qp->qdma.dma + off;
2946 	qp->qdma.size = dma_size;
2947 	qp->sq_depth = sq_depth;
2948 	qp->cq_depth = cq_depth;
2949 	qp->qm = qm;
2950 	qp->qp_id = id;
2951 
2952 	return 0;
2953 
2954 err_free_qp_finish_id:
2955 	kfree(qm->poll_data[id].qp_finish_id);
2956 	return ret;
2957 }
2958 
2959 static void hisi_qm_pre_init(struct hisi_qm *qm)
2960 {
2961 	struct pci_dev *pdev = qm->pdev;
2962 
2963 	if (qm->ver == QM_HW_V1)
2964 		qm->ops = &qm_hw_ops_v1;
2965 	else if (qm->ver == QM_HW_V2)
2966 		qm->ops = &qm_hw_ops_v2;
2967 	else if (qm->ver == QM_HW_V3)
2968 		qm->ops = &qm_hw_ops_v3;
2969 	else
2970 		qm->ops = &qm_hw_ops_v4;
2971 
2972 	pci_set_drvdata(pdev, qm);
2973 	mutex_init(&qm->mailbox_lock);
2974 	mutex_init(&qm->ifc_lock);
2975 	init_rwsem(&qm->qps_lock);
2976 	qm->qp_in_used = 0;
2977 	if (test_bit(QM_SUPPORT_RPM, &qm->caps)) {
2978 		if (!acpi_device_power_manageable(ACPI_COMPANION(&pdev->dev)))
2979 			dev_info(&pdev->dev, "_PS0 and _PR0 are not defined");
2980 	}
2981 }
2982 
2983 static void qm_cmd_uninit(struct hisi_qm *qm)
2984 {
2985 	u32 val;
2986 
2987 	if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
2988 		return;
2989 
2990 	val = readl(qm->io_base + QM_IFC_INT_MASK);
2991 	val |= QM_IFC_INT_DISABLE;
2992 	writel(val, qm->io_base + QM_IFC_INT_MASK);
2993 }
2994 
2995 static void qm_cmd_init(struct hisi_qm *qm)
2996 {
2997 	u32 val;
2998 
2999 	if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
3000 		return;
3001 
3002 	/* Clear communication interrupt source */
3003 	qm_clear_cmd_interrupt(qm, QM_IFC_INT_SOURCE_CLR);
3004 
3005 	/* Enable pf to vf communication reg. */
3006 	val = readl(qm->io_base + QM_IFC_INT_MASK);
3007 	val &= ~QM_IFC_INT_DISABLE;
3008 	writel(val, qm->io_base + QM_IFC_INT_MASK);
3009 }
3010 
3011 static void qm_put_pci_res(struct hisi_qm *qm)
3012 {
3013 	struct pci_dev *pdev = qm->pdev;
3014 
3015 	if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
3016 		iounmap(qm->db_io_base);
3017 
3018 	iounmap(qm->io_base);
3019 	pci_release_mem_regions(pdev);
3020 }
3021 
3022 static void hisi_qm_pci_uninit(struct hisi_qm *qm)
3023 {
3024 	struct pci_dev *pdev = qm->pdev;
3025 
3026 	pci_free_irq_vectors(pdev);
3027 	qm_put_pci_res(qm);
3028 	pci_disable_device(pdev);
3029 }
3030 
3031 static void hisi_qm_set_state(struct hisi_qm *qm, u8 state)
3032 {
3033 	if (qm->ver > QM_HW_V2 && qm->fun_type == QM_HW_VF)
3034 		writel(state, qm->io_base + QM_VF_STATE);
3035 }
3036 
3037 static void hisi_qm_unint_work(struct hisi_qm *qm)
3038 {
3039 	destroy_workqueue(qm->wq);
3040 }
3041 
3042 static void hisi_qm_free_rsv_buf(struct hisi_qm *qm)
3043 {
3044 	struct qm_dma *xqc_dma = &qm->xqc_buf.qcdma;
3045 	struct device *dev = &qm->pdev->dev;
3046 
3047 	dma_free_coherent(dev, xqc_dma->size, xqc_dma->va, xqc_dma->dma);
3048 }
3049 
3050 static void hisi_qm_memory_uninit(struct hisi_qm *qm)
3051 {
3052 	struct device *dev = &qm->pdev->dev;
3053 
3054 	hisi_qp_memory_uninit(qm, qm->qp_num);
3055 	hisi_qm_free_rsv_buf(qm);
3056 	if (qm->qdma.va) {
3057 		hisi_qm_cache_wb(qm);
3058 		dma_free_coherent(dev, qm->qdma.size,
3059 				  qm->qdma.va, qm->qdma.dma);
3060 	}
3061 
3062 	idr_destroy(&qm->qp_idr);
3063 
3064 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
3065 		kfree(qm->factor);
3066 }
3067 
3068 /**
3069  * hisi_qm_uninit() - Uninitialize qm.
3070  * @qm: The qm needed uninit.
3071  *
3072  * This function uninits qm related device resources.
3073  */
3074 void hisi_qm_uninit(struct hisi_qm *qm)
3075 {
3076 	qm_cmd_uninit(qm);
3077 	hisi_qm_unint_work(qm);
3078 
3079 	down_write(&qm->qps_lock);
3080 	hisi_qm_memory_uninit(qm);
3081 	hisi_qm_set_state(qm, QM_NOT_READY);
3082 	up_write(&qm->qps_lock);
3083 
3084 	qm_remove_uacce(qm);
3085 	qm_irqs_unregister(qm);
3086 	hisi_qm_pci_uninit(qm);
3087 }
3088 EXPORT_SYMBOL_GPL(hisi_qm_uninit);
3089 
3090 /**
3091  * hisi_qm_get_vft() - Get vft from a qm.
3092  * @qm: The qm we want to get its vft.
3093  * @base: The base number of queue in vft.
3094  * @number: The number of queues in vft.
3095  *
3096  * We can allocate multiple queues to a qm by configuring virtual function
3097  * table. We get related configures by this function. Normally, we call this
3098  * function in VF driver to get the queue information.
3099  *
3100  * qm hw v1 does not support this interface.
3101  */
3102 static int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number)
3103 {
3104 	if (!base || !number)
3105 		return -EINVAL;
3106 
3107 	if (!qm->ops->get_vft) {
3108 		dev_err(&qm->pdev->dev, "Don't support vft read!\n");
3109 		return -EINVAL;
3110 	}
3111 
3112 	return qm->ops->get_vft(qm, base, number);
3113 }
3114 
3115 /**
3116  * hisi_qm_set_vft() - Set vft to a qm.
3117  * @qm: The qm we want to set its vft.
3118  * @fun_num: The function number.
3119  * @base: The base number of queue in vft.
3120  * @number: The number of queues in vft.
3121  *
3122  * This function is alway called in PF driver, it is used to assign queues
3123  * among PF and VFs.
3124  *
3125  * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1)
3126  * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1)
3127  * (VF function number 0x2)
3128  */
3129 static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
3130 		    u32 number)
3131 {
3132 	u32 max_q_num = qm->ctrl_qp_num;
3133 
3134 	if (base >= max_q_num || number > max_q_num ||
3135 	    (base + number) > max_q_num)
3136 		return -EINVAL;
3137 
3138 	return qm_set_sqc_cqc_vft(qm, fun_num, base, number);
3139 }
3140 
3141 static void qm_init_eq_aeq_status(struct hisi_qm *qm)
3142 {
3143 	struct hisi_qm_status *status = &qm->status;
3144 
3145 	status->eq_head = 0;
3146 	status->aeq_head = 0;
3147 	status->eqc_phase = true;
3148 	status->aeqc_phase = true;
3149 }
3150 
3151 static void qm_enable_eq_aeq_interrupts(struct hisi_qm *qm)
3152 {
3153 	/* Clear eq/aeq interrupt source */
3154 	qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
3155 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
3156 
3157 	writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK);
3158 	writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK);
3159 }
3160 
3161 static void qm_disable_eq_aeq_interrupts(struct hisi_qm *qm)
3162 {
3163 	writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK);
3164 	writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK);
3165 }
3166 
3167 static int qm_eq_ctx_cfg(struct hisi_qm *qm)
3168 {
3169 	struct qm_eqc eqc = {0};
3170 
3171 	eqc.base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma));
3172 	eqc.base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma));
3173 	if (qm->ver == QM_HW_V1)
3174 		eqc.dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE);
3175 	eqc.dw6 = cpu_to_le32(((u32)qm->eq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT));
3176 
3177 	return qm_set_and_get_xqc(qm, QM_MB_CMD_EQC, &eqc, 0, 0);
3178 }
3179 
3180 static int qm_aeq_ctx_cfg(struct hisi_qm *qm)
3181 {
3182 	struct qm_aeqc aeqc = {0};
3183 
3184 	aeqc.base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma));
3185 	aeqc.base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma));
3186 	aeqc.dw6 = cpu_to_le32(((u32)qm->aeq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT));
3187 
3188 	return qm_set_and_get_xqc(qm, QM_MB_CMD_AEQC, &aeqc, 0, 0);
3189 }
3190 
3191 static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm)
3192 {
3193 	struct device *dev = &qm->pdev->dev;
3194 	int ret;
3195 
3196 	qm_init_eq_aeq_status(qm);
3197 
3198 	/* Before starting the dev, clear the memory and then configure to device using. */
3199 	memset(qm->qdma.va, 0, qm->qdma.size);
3200 
3201 	ret = qm_eq_ctx_cfg(qm);
3202 	if (ret) {
3203 		dev_err(dev, "Set eqc failed!\n");
3204 		return ret;
3205 	}
3206 
3207 	return qm_aeq_ctx_cfg(qm);
3208 }
3209 
3210 static int __hisi_qm_start(struct hisi_qm *qm)
3211 {
3212 	struct device *dev = &qm->pdev->dev;
3213 	int ret;
3214 
3215 	if (!qm->qdma.va) {
3216 		dev_err(dev, "qm qdma is NULL!\n");
3217 		return -EINVAL;
3218 	}
3219 
3220 	if (qm->fun_type == QM_HW_PF) {
3221 		ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num);
3222 		if (ret)
3223 			return ret;
3224 	}
3225 
3226 	ret = qm_eq_aeq_ctx_cfg(qm);
3227 	if (ret)
3228 		return ret;
3229 
3230 	ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0);
3231 	if (ret)
3232 		return ret;
3233 
3234 	ret = hisi_qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0);
3235 	if (ret)
3236 		return ret;
3237 
3238 	qm_init_prefetch(qm);
3239 	qm_enable_eq_aeq_interrupts(qm);
3240 
3241 	return 0;
3242 }
3243 
3244 /**
3245  * hisi_qm_start() - start qm
3246  * @qm: The qm to be started.
3247  *
3248  * This function starts a qm, then we can allocate qp from this qm.
3249  */
3250 int hisi_qm_start(struct hisi_qm *qm)
3251 {
3252 	struct device *dev = &qm->pdev->dev;
3253 	int ret = 0;
3254 
3255 	down_write(&qm->qps_lock);
3256 
3257 	dev_dbg(dev, "qm start with %u queue pairs\n", qm->qp_num);
3258 
3259 	if (!qm->qp_num) {
3260 		dev_err(dev, "qp_num should not be 0\n");
3261 		ret = -EINVAL;
3262 		goto err_unlock;
3263 	}
3264 
3265 	ret = __hisi_qm_start(qm);
3266 	if (ret)
3267 		goto err_unlock;
3268 
3269 	atomic_set(&qm->status.flags, QM_WORK);
3270 	hisi_qm_set_state(qm, QM_READY);
3271 
3272 err_unlock:
3273 	up_write(&qm->qps_lock);
3274 	return ret;
3275 }
3276 EXPORT_SYMBOL_GPL(hisi_qm_start);
3277 
3278 static int qm_restart(struct hisi_qm *qm)
3279 {
3280 	struct device *dev = &qm->pdev->dev;
3281 	struct hisi_qp *qp;
3282 	int ret, i;
3283 
3284 	ret = hisi_qm_start(qm);
3285 	if (ret < 0)
3286 		return ret;
3287 
3288 	down_write(&qm->qps_lock);
3289 	for (i = 0; i < qm->qp_num; i++) {
3290 		qp = &qm->qp_array[i];
3291 		if (atomic_read(&qp->qp_status.flags) == QP_STOP &&
3292 		    qp->is_resetting == true && qp->is_in_kernel == true) {
3293 			ret = qm_start_qp_nolock(qp, 0);
3294 			if (ret < 0) {
3295 				dev_err(dev, "Failed to start qp%d!\n", i);
3296 
3297 				up_write(&qm->qps_lock);
3298 				return ret;
3299 			}
3300 			qp->is_resetting = false;
3301 		}
3302 	}
3303 	up_write(&qm->qps_lock);
3304 
3305 	return 0;
3306 }
3307 
3308 /* Stop started qps in reset flow */
3309 static void qm_stop_started_qp(struct hisi_qm *qm)
3310 {
3311 	struct hisi_qp *qp;
3312 	int i;
3313 
3314 	for (i = 0; i < qm->qp_num; i++) {
3315 		qp = &qm->qp_array[i];
3316 		if (atomic_read(&qp->qp_status.flags) == QP_START) {
3317 			qp->is_resetting = true;
3318 			qm_stop_qp_nolock(qp);
3319 		}
3320 	}
3321 }
3322 
3323 /**
3324  * qm_invalid_queues() - invalid all queues in use.
3325  * @qm: The qm in which the queues will be invalidated.
3326  *
3327  * This function invalid all queues in use. If the doorbell command is sent
3328  * to device in user space after the device is reset, the device discards
3329  * the doorbell command.
3330  */
3331 static void qm_invalid_queues(struct hisi_qm *qm)
3332 {
3333 	struct hisi_qp *qp;
3334 	struct qm_sqc *sqc;
3335 	struct qm_cqc *cqc;
3336 	int i;
3337 
3338 	/*
3339 	 * Normal stop queues is no longer used and does not need to be
3340 	 * invalid queues.
3341 	 */
3342 	if (qm->status.stop_reason == QM_NORMAL)
3343 		return;
3344 
3345 	if (qm->status.stop_reason == QM_DOWN)
3346 		hisi_qm_cache_wb(qm);
3347 
3348 	for (i = 0; i < qm->qp_num; i++) {
3349 		qp = &qm->qp_array[i];
3350 		if (!qp->is_resetting)
3351 			continue;
3352 
3353 		/* Modify random data and set sqc close bit to invalid queue. */
3354 		sqc = qm->sqc + i;
3355 		cqc = qm->cqc + i;
3356 		sqc->w8 = cpu_to_le16(QM_XQC_RANDOM_DATA);
3357 		sqc->w13 = cpu_to_le16(QM_SQC_DISABLE_QP);
3358 		cqc->w8 = cpu_to_le16(QM_XQC_RANDOM_DATA);
3359 		if (qp->is_in_kernel)
3360 			memset(qp->qdma.va, 0, qp->qdma.size);
3361 	}
3362 }
3363 
3364 /**
3365  * hisi_qm_stop() - Stop a qm.
3366  * @qm: The qm which will be stopped.
3367  * @r: The reason to stop qm.
3368  *
3369  * This function stops qm and its qps, then qm can not accept request.
3370  * Related resources are not released at this state, we can use hisi_qm_start
3371  * to let qm start again.
3372  */
3373 int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r)
3374 {
3375 	struct device *dev = &qm->pdev->dev;
3376 	int ret = 0;
3377 
3378 	down_write(&qm->qps_lock);
3379 
3380 	if (atomic_read(&qm->status.flags) == QM_STOP)
3381 		goto err_unlock;
3382 
3383 	/* Stop all the request sending at first. */
3384 	atomic_set(&qm->status.flags, QM_STOP);
3385 	qm->status.stop_reason = r;
3386 
3387 	if (qm->status.stop_reason != QM_NORMAL) {
3388 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
3389 		/*
3390 		 * When performing soft reset, the hardware will no longer
3391 		 * do tasks, and the tasks in the device will be flushed
3392 		 * out directly since the master ooo is closed.
3393 		 */
3394 		if (test_bit(QM_SUPPORT_STOP_FUNC, &qm->caps) &&
3395 		    r != QM_SOFT_RESET) {
3396 			ret = qm_drain_qm(qm);
3397 			if (ret) {
3398 				dev_err(dev, "failed to drain qm!\n");
3399 				goto err_unlock;
3400 			}
3401 		}
3402 
3403 		qm_stop_started_qp(qm);
3404 
3405 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
3406 	}
3407 
3408 	qm_disable_eq_aeq_interrupts(qm);
3409 	if (qm->fun_type == QM_HW_PF) {
3410 		ret = hisi_qm_set_vft(qm, 0, 0, 0);
3411 		if (ret < 0) {
3412 			dev_err(dev, "Failed to set vft!\n");
3413 			ret = -EBUSY;
3414 			goto err_unlock;
3415 		}
3416 	}
3417 
3418 	qm_invalid_queues(qm);
3419 	qm->status.stop_reason = QM_NORMAL;
3420 
3421 err_unlock:
3422 	up_write(&qm->qps_lock);
3423 	return ret;
3424 }
3425 EXPORT_SYMBOL_GPL(hisi_qm_stop);
3426 
3427 static void qm_hw_error_init(struct hisi_qm *qm)
3428 {
3429 	if (!qm->ops->hw_error_init) {
3430 		dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n");
3431 		return;
3432 	}
3433 
3434 	qm->ops->hw_error_init(qm);
3435 }
3436 
3437 static void qm_hw_error_uninit(struct hisi_qm *qm)
3438 {
3439 	if (!qm->ops->hw_error_uninit) {
3440 		dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n");
3441 		return;
3442 	}
3443 
3444 	qm->ops->hw_error_uninit(qm);
3445 }
3446 
3447 static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm)
3448 {
3449 	if (!qm->ops->hw_error_handle) {
3450 		dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n");
3451 		return ACC_ERR_NONE;
3452 	}
3453 
3454 	return qm->ops->hw_error_handle(qm);
3455 }
3456 
3457 /**
3458  * hisi_qm_dev_err_init() - Initialize device error configuration.
3459  * @qm: The qm for which we want to do error initialization.
3460  *
3461  * Initialize QM and device error related configuration.
3462  */
3463 void hisi_qm_dev_err_init(struct hisi_qm *qm)
3464 {
3465 	if (qm->fun_type == QM_HW_VF)
3466 		return;
3467 
3468 	qm_hw_error_init(qm);
3469 
3470 	if (!qm->err_ini->hw_err_enable) {
3471 		dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n");
3472 		return;
3473 	}
3474 	qm->err_ini->hw_err_enable(qm);
3475 }
3476 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init);
3477 
3478 /**
3479  * hisi_qm_dev_err_uninit() - Uninitialize device error configuration.
3480  * @qm: The qm for which we want to do error uninitialization.
3481  *
3482  * Uninitialize QM and device error related configuration.
3483  */
3484 void hisi_qm_dev_err_uninit(struct hisi_qm *qm)
3485 {
3486 	if (qm->fun_type == QM_HW_VF)
3487 		return;
3488 
3489 	qm_hw_error_uninit(qm);
3490 
3491 	if (!qm->err_ini->hw_err_disable) {
3492 		dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n");
3493 		return;
3494 	}
3495 	qm->err_ini->hw_err_disable(qm);
3496 }
3497 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit);
3498 
3499 /**
3500  * hisi_qm_free_qps() - free multiple queue pairs.
3501  * @qps: The queue pairs need to be freed.
3502  * @qp_num: The num of queue pairs.
3503  */
3504 void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num)
3505 {
3506 	int i;
3507 
3508 	if (!qps || qp_num <= 0)
3509 		return;
3510 
3511 	for (i = qp_num - 1; i >= 0; i--)
3512 		hisi_qm_release_qp(qps[i]);
3513 }
3514 EXPORT_SYMBOL_GPL(hisi_qm_free_qps);
3515 
3516 static void free_list(struct list_head *head)
3517 {
3518 	struct hisi_qm_resource *res, *tmp;
3519 
3520 	list_for_each_entry_safe(res, tmp, head, list) {
3521 		list_del(&res->list);
3522 		kfree(res);
3523 	}
3524 }
3525 
3526 static int hisi_qm_sort_devices(int node, struct list_head *head,
3527 				struct hisi_qm_list *qm_list)
3528 {
3529 	struct hisi_qm_resource *res, *tmp;
3530 	struct hisi_qm *qm;
3531 	struct list_head *n;
3532 	struct device *dev;
3533 	int dev_node;
3534 
3535 	list_for_each_entry(qm, &qm_list->list, list) {
3536 		dev = &qm->pdev->dev;
3537 
3538 		dev_node = dev_to_node(dev);
3539 		if (dev_node < 0)
3540 			dev_node = 0;
3541 
3542 		res = kzalloc(sizeof(*res), GFP_KERNEL);
3543 		if (!res)
3544 			return -ENOMEM;
3545 
3546 		res->qm = qm;
3547 		res->distance = node_distance(dev_node, node);
3548 		n = head;
3549 		list_for_each_entry(tmp, head, list) {
3550 			if (res->distance < tmp->distance) {
3551 				n = &tmp->list;
3552 				break;
3553 			}
3554 		}
3555 		list_add_tail(&res->list, n);
3556 	}
3557 
3558 	return 0;
3559 }
3560 
3561 /**
3562  * hisi_qm_alloc_qps_node() - Create multiple queue pairs.
3563  * @qm_list: The list of all available devices.
3564  * @qp_num: The number of queue pairs need created.
3565  * @alg_type: The algorithm type.
3566  * @node: The numa node.
3567  * @qps: The queue pairs need created.
3568  *
3569  * This function will sort all available device according to numa distance.
3570  * Then try to create all queue pairs from one device, if all devices do
3571  * not meet the requirements will return error.
3572  */
3573 int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num,
3574 			   u8 alg_type, int node, struct hisi_qp **qps)
3575 {
3576 	struct hisi_qm_resource *tmp;
3577 	int ret = -ENODEV;
3578 	LIST_HEAD(head);
3579 	int i;
3580 
3581 	if (!qps || !qm_list || qp_num <= 0)
3582 		return -EINVAL;
3583 
3584 	mutex_lock(&qm_list->lock);
3585 	if (hisi_qm_sort_devices(node, &head, qm_list)) {
3586 		mutex_unlock(&qm_list->lock);
3587 		goto err;
3588 	}
3589 
3590 	list_for_each_entry(tmp, &head, list) {
3591 		for (i = 0; i < qp_num; i++) {
3592 			qps[i] = hisi_qm_create_qp(tmp->qm, alg_type);
3593 			if (IS_ERR(qps[i])) {
3594 				hisi_qm_free_qps(qps, i);
3595 				break;
3596 			}
3597 		}
3598 
3599 		if (i == qp_num) {
3600 			ret = 0;
3601 			break;
3602 		}
3603 	}
3604 
3605 	mutex_unlock(&qm_list->lock);
3606 	if (ret)
3607 		pr_info("Failed to create qps, node[%d], alg[%u], qp[%d]!\n",
3608 			node, alg_type, qp_num);
3609 
3610 err:
3611 	free_list(&head);
3612 	return ret;
3613 }
3614 EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node);
3615 
3616 static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs)
3617 {
3618 	u32 remain_q_num, vfs_q_num, act_q_num, q_num, i, j;
3619 	u32 max_qp_num = qm->max_qp_num;
3620 	u32 q_base = qm->qp_num;
3621 	int ret;
3622 
3623 	if (!num_vfs)
3624 		return -EINVAL;
3625 
3626 	vfs_q_num = qm->ctrl_qp_num - qm->qp_num;
3627 
3628 	/* If vfs_q_num is less than num_vfs, return error. */
3629 	if (vfs_q_num < num_vfs)
3630 		return -EINVAL;
3631 
3632 	q_num = vfs_q_num / num_vfs;
3633 	remain_q_num = vfs_q_num % num_vfs;
3634 
3635 	for (i = num_vfs; i > 0; i--) {
3636 		/*
3637 		 * if q_num + remain_q_num > max_qp_num in last vf, divide the
3638 		 * remaining queues equally.
3639 		 */
3640 		if (i == num_vfs && q_num + remain_q_num <= max_qp_num) {
3641 			act_q_num = q_num + remain_q_num;
3642 			remain_q_num = 0;
3643 		} else if (remain_q_num > 0) {
3644 			act_q_num = q_num + 1;
3645 			remain_q_num--;
3646 		} else {
3647 			act_q_num = q_num;
3648 		}
3649 
3650 		act_q_num = min(act_q_num, max_qp_num);
3651 		ret = hisi_qm_set_vft(qm, i, q_base, act_q_num);
3652 		if (ret) {
3653 			for (j = num_vfs; j > i; j--)
3654 				hisi_qm_set_vft(qm, j, 0, 0);
3655 			return ret;
3656 		}
3657 		q_base += act_q_num;
3658 	}
3659 
3660 	return 0;
3661 }
3662 
3663 static void qm_clear_vft_config(struct hisi_qm *qm)
3664 {
3665 	u32 i;
3666 
3667 	/*
3668 	 * When disabling SR-IOV, clear the configuration of each VF in the hardware
3669 	 * sequentially. Failure to clear a single VF should not affect the clearing
3670 	 * operation of other VFs.
3671 	 */
3672 	for (i = 1; i <= qm->vfs_num; i++)
3673 		(void)hisi_qm_set_vft(qm, i, 0, 0);
3674 
3675 	qm->vfs_num = 0;
3676 }
3677 
3678 static int qm_func_shaper_enable(struct hisi_qm *qm, u32 fun_index, u32 qos)
3679 {
3680 	struct device *dev = &qm->pdev->dev;
3681 	u32 ir = qos * QM_QOS_RATE;
3682 	int ret, total_vfs, i;
3683 
3684 	total_vfs = pci_sriov_get_totalvfs(qm->pdev);
3685 	if (fun_index > total_vfs)
3686 		return -EINVAL;
3687 
3688 	qm->factor[fun_index].func_qos = qos;
3689 
3690 	ret = qm_get_shaper_para(ir, &qm->factor[fun_index]);
3691 	if (ret) {
3692 		dev_err(dev, "failed to calculate shaper parameter!\n");
3693 		return -EINVAL;
3694 	}
3695 
3696 	for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) {
3697 		/* The base number of queue reuse for different alg type */
3698 		ret = qm_set_vft_common(qm, SHAPER_VFT, fun_index, i, 1);
3699 		if (ret) {
3700 			dev_err(dev, "type: %d, failed to set shaper vft!\n", i);
3701 			return -EINVAL;
3702 		}
3703 	}
3704 
3705 	return 0;
3706 }
3707 
3708 static u32 qm_get_shaper_vft_qos(struct hisi_qm *qm, u32 fun_index)
3709 {
3710 	u64 cir_u = 0, cir_b = 0, cir_s = 0;
3711 	u64 shaper_vft, ir_calc, ir;
3712 	unsigned int val;
3713 	u32 error_rate;
3714 	int ret;
3715 
3716 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
3717 					 val & BIT(0), POLL_PERIOD,
3718 					 POLL_TIMEOUT);
3719 	if (ret)
3720 		return 0;
3721 
3722 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_WR);
3723 	writel(SHAPER_VFT, qm->io_base + QM_VFT_CFG_TYPE);
3724 	writel(fun_index, qm->io_base + QM_VFT_CFG);
3725 
3726 	writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
3727 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
3728 
3729 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
3730 					 val & BIT(0), POLL_PERIOD,
3731 					 POLL_TIMEOUT);
3732 	if (ret)
3733 		return 0;
3734 
3735 	shaper_vft = readl(qm->io_base + QM_VFT_CFG_DATA_L) |
3736 		  ((u64)readl(qm->io_base + QM_VFT_CFG_DATA_H) << 32);
3737 
3738 	cir_b = shaper_vft & QM_SHAPER_CIR_B_MASK;
3739 	cir_u = shaper_vft & QM_SHAPER_CIR_U_MASK;
3740 	cir_u = cir_u >> QM_SHAPER_FACTOR_CIR_U_SHIFT;
3741 
3742 	cir_s = shaper_vft & QM_SHAPER_CIR_S_MASK;
3743 	cir_s = cir_s >> QM_SHAPER_FACTOR_CIR_S_SHIFT;
3744 
3745 	ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s);
3746 
3747 	ir = qm->factor[fun_index].func_qos * QM_QOS_RATE;
3748 
3749 	error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir;
3750 	if (error_rate > QM_QOS_MIN_ERROR_RATE) {
3751 		pci_err(qm->pdev, "error_rate: %u, get function qos is error!\n", error_rate);
3752 		return 0;
3753 	}
3754 
3755 	return ir;
3756 }
3757 
3758 static void qm_vf_get_qos(struct hisi_qm *qm, u32 fun_num)
3759 {
3760 	struct device *dev = &qm->pdev->dev;
3761 	u32 qos;
3762 	int ret;
3763 
3764 	qos = qm_get_shaper_vft_qos(qm, fun_num);
3765 	if (!qos) {
3766 		dev_err(dev, "function(%u) failed to get qos by PF!\n", fun_num);
3767 		return;
3768 	}
3769 
3770 	ret = qm_ping_single_vf(qm, QM_PF_SET_QOS, qos, fun_num);
3771 	if (ret)
3772 		dev_err(dev, "failed to send command(0x%x) to VF(%u)!\n", QM_PF_SET_QOS, fun_num);
3773 }
3774 
3775 static int qm_vf_read_qos(struct hisi_qm *qm)
3776 {
3777 	int cnt = 0;
3778 	int ret = -EINVAL;
3779 
3780 	/* reset mailbox qos val */
3781 	qm->mb_qos = 0;
3782 
3783 	/* vf ping pf to get function qos */
3784 	ret = qm_ping_pf(qm, QM_VF_GET_QOS);
3785 	if (ret) {
3786 		pci_err(qm->pdev, "failed to send cmd to PF to get qos!\n");
3787 		return ret;
3788 	}
3789 
3790 	while (true) {
3791 		msleep(QM_WAIT_DST_ACK);
3792 		if (qm->mb_qos)
3793 			break;
3794 
3795 		if (++cnt > QM_MAX_VF_WAIT_COUNT) {
3796 			pci_err(qm->pdev, "PF ping VF timeout!\n");
3797 			return  -ETIMEDOUT;
3798 		}
3799 	}
3800 
3801 	return ret;
3802 }
3803 
3804 static ssize_t qm_algqos_read(struct file *filp, char __user *buf,
3805 			       size_t count, loff_t *pos)
3806 {
3807 	struct hisi_qm *qm = filp->private_data;
3808 	char tbuf[QM_DBG_READ_LEN];
3809 	u32 qos_val, ir;
3810 	int ret;
3811 
3812 	ret = hisi_qm_get_dfx_access(qm);
3813 	if (ret)
3814 		return ret;
3815 
3816 	/* Mailbox and reset cannot be operated at the same time */
3817 	if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
3818 		pci_err(qm->pdev, "dev resetting, read alg qos failed!\n");
3819 		ret = -EAGAIN;
3820 		goto err_put_dfx_access;
3821 	}
3822 
3823 	if (qm->fun_type == QM_HW_PF) {
3824 		ir = qm_get_shaper_vft_qos(qm, 0);
3825 	} else {
3826 		ret = qm_vf_read_qos(qm);
3827 		if (ret)
3828 			goto err_get_status;
3829 		ir = qm->mb_qos;
3830 	}
3831 
3832 	qos_val = ir / QM_QOS_RATE;
3833 	ret = scnprintf(tbuf, QM_DBG_READ_LEN, "%u\n", qos_val);
3834 
3835 	ret = simple_read_from_buffer(buf, count, pos, tbuf, ret);
3836 
3837 err_get_status:
3838 	clear_bit(QM_RESETTING, &qm->misc_ctl);
3839 err_put_dfx_access:
3840 	hisi_qm_put_dfx_access(qm);
3841 	return ret;
3842 }
3843 
3844 static ssize_t qm_get_qos_value(struct hisi_qm *qm, const char *buf,
3845 			       unsigned long *val,
3846 			       unsigned int *fun_index)
3847 {
3848 	const struct bus_type *bus_type = qm->pdev->dev.bus;
3849 	char tbuf_bdf[QM_DBG_READ_LEN] = {0};
3850 	char val_buf[QM_DBG_READ_LEN] = {0};
3851 	struct pci_dev *pdev;
3852 	struct device *dev;
3853 	int ret;
3854 
3855 	ret = sscanf(buf, "%s %s", tbuf_bdf, val_buf);
3856 	if (ret != QM_QOS_PARAM_NUM)
3857 		return -EINVAL;
3858 
3859 	ret = kstrtoul(val_buf, 10, val);
3860 	if (ret || *val == 0 || *val > QM_QOS_MAX_VAL) {
3861 		pci_err(qm->pdev, "input qos value is error, please set 1~1000!\n");
3862 		return -EINVAL;
3863 	}
3864 
3865 	dev = bus_find_device_by_name(bus_type, NULL, tbuf_bdf);
3866 	if (!dev) {
3867 		pci_err(qm->pdev, "input pci bdf number is error!\n");
3868 		return -ENODEV;
3869 	}
3870 
3871 	pdev = container_of(dev, struct pci_dev, dev);
3872 	if (pci_physfn(pdev) != qm->pdev) {
3873 		pci_err(qm->pdev, "the pdev input does not match the pf!\n");
3874 		return -EINVAL;
3875 	}
3876 
3877 	*fun_index = pdev->devfn;
3878 
3879 	return 0;
3880 }
3881 
3882 static ssize_t qm_algqos_write(struct file *filp, const char __user *buf,
3883 			       size_t count, loff_t *pos)
3884 {
3885 	struct hisi_qm *qm = filp->private_data;
3886 	char tbuf[QM_DBG_READ_LEN];
3887 	unsigned int fun_index;
3888 	unsigned long val;
3889 	int len, ret;
3890 
3891 	if (*pos != 0)
3892 		return 0;
3893 
3894 	if (count >= QM_DBG_READ_LEN)
3895 		return -ENOSPC;
3896 
3897 	len = simple_write_to_buffer(tbuf, QM_DBG_READ_LEN - 1, pos, buf, count);
3898 	if (len < 0)
3899 		return len;
3900 
3901 	tbuf[len] = '\0';
3902 	ret = qm_get_qos_value(qm, tbuf, &val, &fun_index);
3903 	if (ret)
3904 		return ret;
3905 
3906 	/* Mailbox and reset cannot be operated at the same time */
3907 	if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
3908 		pci_err(qm->pdev, "dev resetting, write alg qos failed!\n");
3909 		return -EAGAIN;
3910 	}
3911 
3912 	ret = qm_pm_get_sync(qm);
3913 	if (ret) {
3914 		ret = -EINVAL;
3915 		goto err_get_status;
3916 	}
3917 
3918 	ret = qm_func_shaper_enable(qm, fun_index, val);
3919 	if (ret) {
3920 		pci_err(qm->pdev, "failed to enable function shaper!\n");
3921 		ret = -EINVAL;
3922 		goto err_put_sync;
3923 	}
3924 
3925 	pci_info(qm->pdev, "the qos value of function%u is set to %lu.\n",
3926 		 fun_index, val);
3927 	ret = count;
3928 
3929 err_put_sync:
3930 	qm_pm_put_sync(qm);
3931 err_get_status:
3932 	clear_bit(QM_RESETTING, &qm->misc_ctl);
3933 	return ret;
3934 }
3935 
3936 static const struct file_operations qm_algqos_fops = {
3937 	.owner = THIS_MODULE,
3938 	.open = simple_open,
3939 	.read = qm_algqos_read,
3940 	.write = qm_algqos_write,
3941 };
3942 
3943 /**
3944  * hisi_qm_set_algqos_init() - Initialize function qos debugfs files.
3945  * @qm: The qm for which we want to add debugfs files.
3946  *
3947  * Create function qos debugfs files, VF ping PF to get function qos.
3948  */
3949 void hisi_qm_set_algqos_init(struct hisi_qm *qm)
3950 {
3951 	if (qm->fun_type == QM_HW_PF)
3952 		debugfs_create_file("alg_qos", 0644, qm->debug.debug_root,
3953 				    qm, &qm_algqos_fops);
3954 	else if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
3955 		debugfs_create_file("alg_qos", 0444, qm->debug.debug_root,
3956 				    qm, &qm_algqos_fops);
3957 }
3958 
3959 static void hisi_qm_init_vf_qos(struct hisi_qm *qm, int total_func)
3960 {
3961 	int i;
3962 
3963 	for (i = 1; i <= total_func; i++)
3964 		qm->factor[i].func_qos = QM_QOS_MAX_VAL;
3965 }
3966 
3967 /**
3968  * hisi_qm_sriov_enable() - enable virtual functions
3969  * @pdev: the PCIe device
3970  * @max_vfs: the number of virtual functions to enable
3971  *
3972  * Returns the number of enabled VFs. If there are VFs enabled already or
3973  * max_vfs is more than the total number of device can be enabled, returns
3974  * failure.
3975  */
3976 int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs)
3977 {
3978 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3979 	int pre_existing_vfs, num_vfs, total_vfs, ret;
3980 
3981 	ret = qm_pm_get_sync(qm);
3982 	if (ret)
3983 		return ret;
3984 
3985 	total_vfs = pci_sriov_get_totalvfs(pdev);
3986 	pre_existing_vfs = pci_num_vf(pdev);
3987 	if (pre_existing_vfs) {
3988 		pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n",
3989 			pre_existing_vfs);
3990 		goto err_put_sync;
3991 	}
3992 
3993 	if (max_vfs > total_vfs) {
3994 		pci_err(pdev, "%d VFs is more than total VFs %d!\n", max_vfs, total_vfs);
3995 		ret = -ERANGE;
3996 		goto err_put_sync;
3997 	}
3998 
3999 	num_vfs = max_vfs;
4000 
4001 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
4002 		hisi_qm_init_vf_qos(qm, num_vfs);
4003 
4004 	ret = qm_vf_q_assign(qm, num_vfs);
4005 	if (ret) {
4006 		pci_err(pdev, "Can't assign queues for VF!\n");
4007 		goto err_put_sync;
4008 	}
4009 
4010 	qm->vfs_num = num_vfs;
4011 	ret = pci_enable_sriov(pdev, num_vfs);
4012 	if (ret) {
4013 		pci_err(pdev, "Can't enable VF!\n");
4014 		qm_clear_vft_config(qm);
4015 		goto err_put_sync;
4016 	}
4017 
4018 	pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs);
4019 
4020 	return num_vfs;
4021 
4022 err_put_sync:
4023 	qm_pm_put_sync(qm);
4024 	return ret;
4025 }
4026 EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable);
4027 
4028 /**
4029  * hisi_qm_sriov_disable - disable virtual functions
4030  * @pdev: the PCI device.
4031  * @is_frozen: true when all the VFs are frozen.
4032  *
4033  * Return failure if there are VFs assigned already or VF is in used.
4034  */
4035 int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen)
4036 {
4037 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4038 
4039 	if (pci_vfs_assigned(pdev)) {
4040 		pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n");
4041 		return -EPERM;
4042 	}
4043 
4044 	/* While VF is in used, SRIOV cannot be disabled. */
4045 	if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) {
4046 		pci_err(pdev, "Task is using its VF!\n");
4047 		return -EBUSY;
4048 	}
4049 
4050 	pci_disable_sriov(pdev);
4051 	qm_clear_vft_config(qm);
4052 	qm_pm_put_sync(qm);
4053 
4054 	return 0;
4055 }
4056 EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable);
4057 
4058 /**
4059  * hisi_qm_sriov_configure - configure the number of VFs
4060  * @pdev: The PCI device
4061  * @num_vfs: The number of VFs need enabled
4062  *
4063  * Enable SR-IOV according to num_vfs, 0 means disable.
4064  */
4065 int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs)
4066 {
4067 	if (num_vfs == 0)
4068 		return hisi_qm_sriov_disable(pdev, false);
4069 	else
4070 		return hisi_qm_sriov_enable(pdev, num_vfs);
4071 }
4072 EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure);
4073 
4074 static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm)
4075 {
4076 	if (!qm->err_ini->get_err_result) {
4077 		dev_err(&qm->pdev->dev, "Device doesn't support reset!\n");
4078 		return ACC_ERR_NONE;
4079 	}
4080 
4081 	return qm->err_ini->get_err_result(qm);
4082 }
4083 
4084 static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm)
4085 {
4086 	enum acc_err_result qm_ret, dev_ret;
4087 
4088 	/* log qm error */
4089 	qm_ret = qm_hw_error_handle(qm);
4090 
4091 	/* log device error */
4092 	dev_ret = qm_dev_err_handle(qm);
4093 
4094 	return (qm_ret == ACC_ERR_NEED_RESET ||
4095 		dev_ret == ACC_ERR_NEED_RESET) ?
4096 		ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED;
4097 }
4098 
4099 /**
4100  * hisi_qm_dev_err_detected() - Get device and qm error status then log it.
4101  * @pdev: The PCI device which need report error.
4102  * @state: The connectivity between CPU and device.
4103  *
4104  * We register this function into PCIe AER handlers, It will report device or
4105  * qm hardware error status when error occur.
4106  */
4107 pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev,
4108 					  pci_channel_state_t state)
4109 {
4110 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4111 	enum acc_err_result ret;
4112 
4113 	if (pdev->is_virtfn)
4114 		return PCI_ERS_RESULT_NONE;
4115 
4116 	pci_info(pdev, "PCI error detected, state(=%u)!!\n", state);
4117 	if (state == pci_channel_io_perm_failure)
4118 		return PCI_ERS_RESULT_DISCONNECT;
4119 
4120 	ret = qm_process_dev_error(qm);
4121 	if (ret == ACC_ERR_NEED_RESET)
4122 		return PCI_ERS_RESULT_NEED_RESET;
4123 
4124 	return PCI_ERS_RESULT_RECOVERED;
4125 }
4126 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected);
4127 
4128 static int qm_check_req_recv(struct hisi_qm *qm)
4129 {
4130 	struct pci_dev *pdev = qm->pdev;
4131 	int ret;
4132 	u32 val;
4133 
4134 	if (qm->ver >= QM_HW_V3)
4135 		return 0;
4136 
4137 	writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID);
4138 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
4139 					 (val == ACC_VENDOR_ID_VALUE),
4140 					 POLL_PERIOD, POLL_TIMEOUT);
4141 	if (ret) {
4142 		dev_err(&pdev->dev, "Fails to read QM reg!\n");
4143 		return ret;
4144 	}
4145 
4146 	writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID);
4147 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
4148 					 (val == PCI_VENDOR_ID_HUAWEI),
4149 					 POLL_PERIOD, POLL_TIMEOUT);
4150 	if (ret)
4151 		dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n");
4152 
4153 	return ret;
4154 }
4155 
4156 static int qm_set_pf_mse(struct hisi_qm *qm, bool set)
4157 {
4158 	struct pci_dev *pdev = qm->pdev;
4159 	u16 cmd;
4160 	int i;
4161 
4162 	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
4163 	if (set)
4164 		cmd |= PCI_COMMAND_MEMORY;
4165 	else
4166 		cmd &= ~PCI_COMMAND_MEMORY;
4167 
4168 	pci_write_config_word(pdev, PCI_COMMAND, cmd);
4169 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
4170 		pci_read_config_word(pdev, PCI_COMMAND, &cmd);
4171 		if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1))
4172 			return 0;
4173 
4174 		udelay(1);
4175 	}
4176 
4177 	return -ETIMEDOUT;
4178 }
4179 
4180 static int qm_set_vf_mse(struct hisi_qm *qm, bool set)
4181 {
4182 	struct pci_dev *pdev = qm->pdev;
4183 	u16 sriov_ctrl;
4184 	int pos;
4185 	int i;
4186 
4187 	/*
4188 	 * Since function qm_set_vf_mse is called only after SRIOV is enabled,
4189 	 * pci_find_ext_capability cannot return 0, pos does not need to be
4190 	 * checked.
4191 	 */
4192 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
4193 	pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
4194 	if (set)
4195 		sriov_ctrl |= PCI_SRIOV_CTRL_MSE;
4196 	else
4197 		sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE;
4198 	pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl);
4199 
4200 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
4201 		pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
4202 		if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >>
4203 		    ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT)
4204 			return 0;
4205 
4206 		udelay(1);
4207 	}
4208 
4209 	return -ETIMEDOUT;
4210 }
4211 
4212 static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm)
4213 {
4214 	u32 nfe_enb = 0;
4215 
4216 	/* Kunpeng930 hardware automatically close master ooo when NFE occurs */
4217 	if (qm->ver >= QM_HW_V3)
4218 		return;
4219 
4220 	if (!qm->err_status.is_dev_ecc_mbit &&
4221 	    qm->err_status.is_qm_ecc_mbit &&
4222 	    qm->err_ini->close_axi_master_ooo) {
4223 		qm->err_ini->close_axi_master_ooo(qm);
4224 	} else if (qm->err_status.is_dev_ecc_mbit &&
4225 		   !qm->err_status.is_qm_ecc_mbit &&
4226 		   !qm->err_ini->close_axi_master_ooo) {
4227 		nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE);
4228 		writel(nfe_enb & ~qm->err_info.qm_err.ecc_2bits_mask,
4229 		       qm->io_base + QM_RAS_NFE_ENABLE);
4230 		writel(qm->err_info.qm_err.ecc_2bits_mask, qm->io_base + QM_ABNORMAL_INT_SET);
4231 	}
4232 }
4233 
4234 static int qm_vf_reset_prepare(struct hisi_qm *qm,
4235 			       enum qm_stop_reason stop_reason)
4236 {
4237 	struct hisi_qm_list *qm_list = qm->qm_list;
4238 	struct pci_dev *pdev = qm->pdev;
4239 	struct pci_dev *virtfn;
4240 	struct hisi_qm *vf_qm;
4241 	int ret = 0;
4242 
4243 	mutex_lock(&qm_list->lock);
4244 	list_for_each_entry(vf_qm, &qm_list->list, list) {
4245 		virtfn = vf_qm->pdev;
4246 		if (virtfn == pdev)
4247 			continue;
4248 
4249 		if (pci_physfn(virtfn) == pdev) {
4250 			/* save VFs PCIE BAR configuration */
4251 			pci_save_state(virtfn);
4252 
4253 			ret = hisi_qm_stop(vf_qm, stop_reason);
4254 			if (ret)
4255 				goto stop_fail;
4256 		}
4257 	}
4258 
4259 stop_fail:
4260 	mutex_unlock(&qm_list->lock);
4261 	return ret;
4262 }
4263 
4264 static int qm_try_stop_vfs(struct hisi_qm *qm, enum qm_ifc_cmd cmd,
4265 			   enum qm_stop_reason stop_reason)
4266 {
4267 	struct pci_dev *pdev = qm->pdev;
4268 	int ret;
4269 
4270 	if (!qm->vfs_num)
4271 		return 0;
4272 
4273 	/* Kunpeng930 supports to notify VFs to stop before PF reset */
4274 	if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) {
4275 		ret = qm_ping_all_vfs(qm, cmd);
4276 		if (ret)
4277 			pci_err(pdev, "failed to send command to all VFs before PF reset!\n");
4278 	} else {
4279 		ret = qm_vf_reset_prepare(qm, stop_reason);
4280 		if (ret)
4281 			pci_err(pdev, "failed to prepare reset, ret = %d.\n", ret);
4282 	}
4283 
4284 	return ret;
4285 }
4286 
4287 static int qm_controller_reset_prepare(struct hisi_qm *qm)
4288 {
4289 	struct pci_dev *pdev = qm->pdev;
4290 	int ret;
4291 
4292 	if (qm->err_ini->set_priv_status) {
4293 		ret = qm->err_ini->set_priv_status(qm);
4294 		if (ret)
4295 			return ret;
4296 	}
4297 
4298 	ret = qm_reset_prepare_ready(qm);
4299 	if (ret) {
4300 		pci_err(pdev, "Controller reset not ready!\n");
4301 		return ret;
4302 	}
4303 
4304 	qm_dev_ecc_mbit_handle(qm);
4305 
4306 	/* PF obtains the information of VF by querying the register. */
4307 	qm_cmd_uninit(qm);
4308 
4309 	/* Whether VFs stop successfully, soft reset will continue. */
4310 	ret = qm_try_stop_vfs(qm, QM_PF_SRST_PREPARE, QM_SOFT_RESET);
4311 	if (ret)
4312 		pci_err(pdev, "failed to stop vfs by pf in soft reset.\n");
4313 
4314 	ret = hisi_qm_stop(qm, QM_SOFT_RESET);
4315 	if (ret) {
4316 		pci_err(pdev, "Fails to stop QM!\n");
4317 		qm_reset_bit_clear(qm);
4318 		return ret;
4319 	}
4320 
4321 	if (qm->use_sva) {
4322 		ret = qm_hw_err_isolate(qm);
4323 		if (ret)
4324 			pci_err(pdev, "failed to isolate hw err!\n");
4325 	}
4326 
4327 	ret = qm_wait_vf_prepare_finish(qm);
4328 	if (ret)
4329 		pci_err(pdev, "failed to stop by vfs in soft reset!\n");
4330 
4331 	clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4332 
4333 	return 0;
4334 }
4335 
4336 static int qm_master_ooo_check(struct hisi_qm *qm)
4337 {
4338 	u32 val;
4339 	int ret;
4340 
4341 	/* Check the ooo register of the device before resetting the device. */
4342 	writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN, qm->io_base + ACC_MASTER_GLOBAL_CTRL);
4343 	ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN,
4344 					 val, (val == ACC_MASTER_TRANS_RETURN_RW),
4345 					 POLL_PERIOD, POLL_TIMEOUT);
4346 	if (ret)
4347 		pci_warn(qm->pdev, "Bus lock! Please reset system.\n");
4348 
4349 	return ret;
4350 }
4351 
4352 static int qm_soft_reset_prepare(struct hisi_qm *qm)
4353 {
4354 	struct pci_dev *pdev = qm->pdev;
4355 	int ret;
4356 
4357 	/* Ensure all doorbells and mailboxes received by QM */
4358 	ret = qm_check_req_recv(qm);
4359 	if (ret)
4360 		return ret;
4361 
4362 	if (qm->vfs_num) {
4363 		ret = qm_set_vf_mse(qm, false);
4364 		if (ret) {
4365 			pci_err(pdev, "Fails to disable vf MSE bit.\n");
4366 			return ret;
4367 		}
4368 	}
4369 
4370 	ret = qm->ops->set_msi(qm, false);
4371 	if (ret) {
4372 		pci_err(pdev, "Fails to disable PEH MSI bit.\n");
4373 		return ret;
4374 	}
4375 
4376 	ret = qm_master_ooo_check(qm);
4377 	if (ret)
4378 		return ret;
4379 
4380 	if (qm->err_ini->close_sva_prefetch)
4381 		qm->err_ini->close_sva_prefetch(qm);
4382 
4383 	ret = qm_set_pf_mse(qm, false);
4384 	if (ret)
4385 		pci_err(pdev, "Fails to disable pf MSE bit.\n");
4386 
4387 	return ret;
4388 }
4389 
4390 static int qm_reset_device(struct hisi_qm *qm)
4391 {
4392 	struct pci_dev *pdev = qm->pdev;
4393 
4394 	/* The reset related sub-control registers are not in PCI BAR */
4395 	if (ACPI_HANDLE(&pdev->dev)) {
4396 		unsigned long long value = 0;
4397 		acpi_status s;
4398 
4399 		s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev),
4400 					  qm->err_info.acpi_rst,
4401 					  NULL, &value);
4402 		if (ACPI_FAILURE(s)) {
4403 			pci_err(pdev, "NO controller reset method!\n");
4404 			return -EIO;
4405 		}
4406 
4407 		if (value) {
4408 			pci_err(pdev, "Reset step %llu failed!\n", value);
4409 			return -EIO;
4410 		}
4411 
4412 		return 0;
4413 	}
4414 
4415 	pci_err(pdev, "No reset method!\n");
4416 	return -EINVAL;
4417 }
4418 
4419 static int qm_soft_reset(struct hisi_qm *qm)
4420 {
4421 	int ret;
4422 
4423 	ret = qm_soft_reset_prepare(qm);
4424 	if (ret)
4425 		return ret;
4426 
4427 	return qm_reset_device(qm);
4428 }
4429 
4430 static int qm_vf_reset_done(struct hisi_qm *qm)
4431 {
4432 	struct hisi_qm_list *qm_list = qm->qm_list;
4433 	struct pci_dev *pdev = qm->pdev;
4434 	struct pci_dev *virtfn;
4435 	struct hisi_qm *vf_qm;
4436 	int ret = 0;
4437 
4438 	mutex_lock(&qm_list->lock);
4439 	list_for_each_entry(vf_qm, &qm_list->list, list) {
4440 		virtfn = vf_qm->pdev;
4441 		if (virtfn == pdev)
4442 			continue;
4443 
4444 		if (pci_physfn(virtfn) == pdev) {
4445 			/* enable VFs PCIE BAR configuration */
4446 			pci_restore_state(virtfn);
4447 
4448 			ret = qm_restart(vf_qm);
4449 			if (ret)
4450 				goto restart_fail;
4451 		}
4452 	}
4453 
4454 restart_fail:
4455 	mutex_unlock(&qm_list->lock);
4456 	return ret;
4457 }
4458 
4459 static int qm_try_start_vfs(struct hisi_qm *qm, enum qm_ifc_cmd cmd)
4460 {
4461 	struct pci_dev *pdev = qm->pdev;
4462 	int ret;
4463 
4464 	if (!qm->vfs_num)
4465 		return 0;
4466 
4467 	ret = qm_vf_q_assign(qm, qm->vfs_num);
4468 	if (ret) {
4469 		pci_err(pdev, "failed to assign VFs, ret = %d.\n", ret);
4470 		return ret;
4471 	}
4472 
4473 	/* Kunpeng930 supports to notify VFs to start after PF reset. */
4474 	if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) {
4475 		ret = qm_ping_all_vfs(qm, cmd);
4476 		if (ret)
4477 			pci_warn(pdev, "failed to send cmd to all VFs after PF reset!\n");
4478 	} else {
4479 		ret = qm_vf_reset_done(qm);
4480 		if (ret)
4481 			pci_warn(pdev, "failed to start vfs, ret = %d.\n", ret);
4482 	}
4483 
4484 	return ret;
4485 }
4486 
4487 static int qm_dev_hw_init(struct hisi_qm *qm)
4488 {
4489 	return qm->err_ini->hw_init(qm);
4490 }
4491 
4492 static void qm_restart_prepare(struct hisi_qm *qm)
4493 {
4494 	u32 value;
4495 
4496 	if (qm->ver >= QM_HW_V3)
4497 		return;
4498 
4499 	if (!qm->err_status.is_qm_ecc_mbit &&
4500 	    !qm->err_status.is_dev_ecc_mbit)
4501 		return;
4502 
4503 	/* temporarily close the OOO port used for PEH to write out MSI */
4504 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4505 	writel(value & ~qm->err_info.msi_wr_port,
4506 	       qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4507 
4508 	/* clear dev ecc 2bit error source if having */
4509 	value = qm_get_dev_err_status(qm) & qm->err_info.dev_err.ecc_2bits_mask;
4510 	if (value && qm->err_ini->clear_dev_hw_err_status)
4511 		qm->err_ini->clear_dev_hw_err_status(qm, value);
4512 
4513 	/* clear QM ecc mbit error source */
4514 	writel(qm->err_info.qm_err.ecc_2bits_mask, qm->io_base + QM_ABNORMAL_INT_SOURCE);
4515 
4516 	/* clear AM Reorder Buffer ecc mbit source */
4517 	writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS);
4518 }
4519 
4520 static void qm_restart_done(struct hisi_qm *qm)
4521 {
4522 	u32 value;
4523 
4524 	if (qm->ver >= QM_HW_V3)
4525 		goto clear_flags;
4526 
4527 	if (!qm->err_status.is_qm_ecc_mbit &&
4528 	    !qm->err_status.is_dev_ecc_mbit)
4529 		return;
4530 
4531 	/* open the OOO port for PEH to write out MSI */
4532 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4533 	value |= qm->err_info.msi_wr_port;
4534 	writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4535 
4536 clear_flags:
4537 	qm->err_status.is_qm_ecc_mbit = false;
4538 	qm->err_status.is_dev_ecc_mbit = false;
4539 }
4540 
4541 static void qm_disable_axi_error(struct hisi_qm *qm)
4542 {
4543 	struct hisi_qm_err_mask *qm_err = &qm->err_info.qm_err;
4544 	u32 val;
4545 
4546 	val = ~(qm->error_mask & (~QM_RAS_AXI_ERROR));
4547 	writel(val, qm->io_base + QM_ABNORMAL_INT_MASK);
4548 	if (qm->ver > QM_HW_V2)
4549 		writel(qm_err->shutdown_mask & (~QM_RAS_AXI_ERROR),
4550 		       qm->io_base + QM_OOO_SHUTDOWN_SEL);
4551 
4552 	if (qm->err_ini->disable_axi_error)
4553 		qm->err_ini->disable_axi_error(qm);
4554 }
4555 
4556 static void qm_enable_axi_error(struct hisi_qm *qm)
4557 {
4558 	/* clear axi error source */
4559 	writel(QM_RAS_AXI_ERROR, qm->io_base + QM_ABNORMAL_INT_SOURCE);
4560 
4561 	writel(~qm->error_mask, qm->io_base + QM_ABNORMAL_INT_MASK);
4562 	if (qm->ver > QM_HW_V2)
4563 		writel(qm->err_info.qm_err.shutdown_mask, qm->io_base + QM_OOO_SHUTDOWN_SEL);
4564 
4565 	if (qm->err_ini->enable_axi_error)
4566 		qm->err_ini->enable_axi_error(qm);
4567 }
4568 
4569 static int qm_controller_reset_done(struct hisi_qm *qm)
4570 {
4571 	struct pci_dev *pdev = qm->pdev;
4572 	int ret;
4573 
4574 	ret = qm->ops->set_msi(qm, true);
4575 	if (ret) {
4576 		pci_err(pdev, "Fails to enable PEH MSI bit!\n");
4577 		return ret;
4578 	}
4579 
4580 	ret = qm_set_pf_mse(qm, true);
4581 	if (ret) {
4582 		pci_err(pdev, "Fails to enable pf MSE bit!\n");
4583 		return ret;
4584 	}
4585 
4586 	if (qm->vfs_num) {
4587 		ret = qm_set_vf_mse(qm, true);
4588 		if (ret) {
4589 			pci_err(pdev, "Fails to enable vf MSE bit!\n");
4590 			return ret;
4591 		}
4592 	}
4593 
4594 	ret = qm_dev_hw_init(qm);
4595 	if (ret) {
4596 		pci_err(pdev, "Failed to init device\n");
4597 		return ret;
4598 	}
4599 
4600 	qm_restart_prepare(qm);
4601 	hisi_qm_dev_err_init(qm);
4602 	qm_disable_axi_error(qm);
4603 	if (qm->err_ini->open_axi_master_ooo)
4604 		qm->err_ini->open_axi_master_ooo(qm);
4605 
4606 	ret = qm_dev_mem_reset(qm);
4607 	if (ret) {
4608 		pci_err(pdev, "failed to reset device memory\n");
4609 		return ret;
4610 	}
4611 
4612 	ret = qm_restart(qm);
4613 	if (ret) {
4614 		pci_err(pdev, "Failed to start QM!\n");
4615 		return ret;
4616 	}
4617 
4618 	ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE);
4619 	if (ret)
4620 		pci_err(pdev, "failed to start vfs by pf in soft reset.\n");
4621 
4622 	ret = qm_wait_vf_prepare_finish(qm);
4623 	if (ret)
4624 		pci_err(pdev, "failed to start by vfs in soft reset!\n");
4625 	qm_enable_axi_error(qm);
4626 	qm_cmd_init(qm);
4627 	qm_restart_done(qm);
4628 
4629 	qm_reset_bit_clear(qm);
4630 
4631 	return 0;
4632 }
4633 
4634 static int qm_controller_reset(struct hisi_qm *qm)
4635 {
4636 	struct pci_dev *pdev = qm->pdev;
4637 	int ret;
4638 
4639 	pci_info(pdev, "Controller resetting...\n");
4640 
4641 	ret = qm_controller_reset_prepare(qm);
4642 	if (ret) {
4643 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4644 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4645 		clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4646 		return ret;
4647 	}
4648 
4649 	hisi_qm_show_last_dfx_regs(qm);
4650 	if (qm->err_ini->show_last_dfx_regs)
4651 		qm->err_ini->show_last_dfx_regs(qm);
4652 
4653 	ret = qm_soft_reset(qm);
4654 	if (ret)
4655 		goto err_reset;
4656 
4657 	ret = qm_controller_reset_done(qm);
4658 	if (ret)
4659 		goto err_reset;
4660 
4661 	pci_info(pdev, "Controller reset complete\n");
4662 
4663 	return 0;
4664 
4665 err_reset:
4666 	pci_err(pdev, "Controller reset failed (%d)\n", ret);
4667 	qm_reset_bit_clear(qm);
4668 
4669 	/* if resetting fails, isolate the device */
4670 	if (qm->use_sva)
4671 		qm->isolate_data.is_isolate = true;
4672 	return ret;
4673 }
4674 
4675 /**
4676  * hisi_qm_dev_slot_reset() - slot reset
4677  * @pdev: the PCIe device
4678  *
4679  * This function offers QM relate PCIe device reset interface. Drivers which
4680  * use QM can use this function as slot_reset in its struct pci_error_handlers.
4681  */
4682 pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev)
4683 {
4684 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4685 	int ret;
4686 
4687 	if (pdev->is_virtfn)
4688 		return PCI_ERS_RESULT_RECOVERED;
4689 
4690 	/* reset pcie device controller */
4691 	ret = qm_controller_reset(qm);
4692 	if (ret) {
4693 		pci_err(pdev, "Controller reset failed (%d)\n", ret);
4694 		return PCI_ERS_RESULT_DISCONNECT;
4695 	}
4696 
4697 	return PCI_ERS_RESULT_RECOVERED;
4698 }
4699 EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset);
4700 
4701 void hisi_qm_reset_prepare(struct pci_dev *pdev)
4702 {
4703 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
4704 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4705 	u32 delay = 0;
4706 	int ret;
4707 
4708 	hisi_qm_dev_err_uninit(pf_qm);
4709 
4710 	/*
4711 	 * Check whether there is an ECC mbit error, If it occurs, need to
4712 	 * wait for soft reset to fix it.
4713 	 */
4714 	while (qm_check_dev_error(qm)) {
4715 		msleep(++delay);
4716 		if (delay > QM_RESET_WAIT_TIMEOUT)
4717 			return;
4718 	}
4719 
4720 	ret = qm_reset_prepare_ready(qm);
4721 	if (ret) {
4722 		pci_err(pdev, "FLR not ready!\n");
4723 		return;
4724 	}
4725 
4726 	/* PF obtains the information of VF by querying the register. */
4727 	if (qm->fun_type == QM_HW_PF)
4728 		qm_cmd_uninit(qm);
4729 
4730 	ret = qm_try_stop_vfs(qm, QM_PF_FLR_PREPARE, QM_DOWN);
4731 	if (ret)
4732 		pci_err(pdev, "failed to stop vfs by pf in FLR.\n");
4733 
4734 	ret = hisi_qm_stop(qm, QM_DOWN);
4735 	if (ret) {
4736 		pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret);
4737 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4738 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4739 		return;
4740 	}
4741 
4742 	ret = qm_wait_vf_prepare_finish(qm);
4743 	if (ret)
4744 		pci_err(pdev, "failed to stop by vfs in FLR!\n");
4745 
4746 	pci_info(pdev, "FLR resetting...\n");
4747 }
4748 EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare);
4749 
4750 static bool qm_flr_reset_complete(struct pci_dev *pdev)
4751 {
4752 	struct pci_dev *pf_pdev = pci_physfn(pdev);
4753 	struct hisi_qm *qm = pci_get_drvdata(pf_pdev);
4754 	u32 id;
4755 
4756 	pci_read_config_dword(qm->pdev, PCI_COMMAND, &id);
4757 	if (id == QM_PCI_COMMAND_INVALID) {
4758 		pci_err(pdev, "Device can not be used!\n");
4759 		return false;
4760 	}
4761 
4762 	return true;
4763 }
4764 
4765 void hisi_qm_reset_done(struct pci_dev *pdev)
4766 {
4767 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
4768 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4769 	int ret;
4770 
4771 	if (qm->fun_type == QM_HW_PF) {
4772 		ret = qm_dev_hw_init(qm);
4773 		if (ret) {
4774 			pci_err(pdev, "Failed to init PF, ret = %d.\n", ret);
4775 			goto flr_done;
4776 		}
4777 	}
4778 
4779 	hisi_qm_dev_err_init(pf_qm);
4780 
4781 	ret = qm_restart(qm);
4782 	if (ret) {
4783 		pci_err(pdev, "Failed to start QM, ret = %d.\n", ret);
4784 		goto flr_done;
4785 	}
4786 
4787 	ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE);
4788 	if (ret)
4789 		pci_err(pdev, "failed to start vfs by pf in FLR.\n");
4790 
4791 	ret = qm_wait_vf_prepare_finish(qm);
4792 	if (ret)
4793 		pci_err(pdev, "failed to start by vfs in FLR!\n");
4794 
4795 flr_done:
4796 	if (qm->fun_type == QM_HW_PF)
4797 		qm_cmd_init(qm);
4798 
4799 	if (qm_flr_reset_complete(pdev))
4800 		pci_info(pdev, "FLR reset complete\n");
4801 
4802 	qm_reset_bit_clear(qm);
4803 }
4804 EXPORT_SYMBOL_GPL(hisi_qm_reset_done);
4805 
4806 static irqreturn_t qm_rsvd_irq(int irq, void *data)
4807 {
4808 	struct hisi_qm *qm = data;
4809 
4810 	dev_info(&qm->pdev->dev, "Reserved interrupt, ignore!\n");
4811 
4812 	return IRQ_HANDLED;
4813 }
4814 
4815 static irqreturn_t qm_abnormal_irq(int irq, void *data)
4816 {
4817 	struct hisi_qm *qm = data;
4818 	enum acc_err_result ret;
4819 
4820 	atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt);
4821 	ret = qm_process_dev_error(qm);
4822 	if (ret == ACC_ERR_NEED_RESET &&
4823 	    !test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl) &&
4824 	    !test_and_set_bit(QM_RST_SCHED, &qm->misc_ctl))
4825 		schedule_work(&qm->rst_work);
4826 
4827 	return IRQ_HANDLED;
4828 }
4829 
4830 /**
4831  * hisi_qm_dev_shutdown() - Shutdown device.
4832  * @pdev: The device will be shutdown.
4833  *
4834  * This function will stop qm when OS shutdown or rebooting.
4835  */
4836 void hisi_qm_dev_shutdown(struct pci_dev *pdev)
4837 {
4838 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4839 	int ret;
4840 
4841 	ret = hisi_qm_stop(qm, QM_DOWN);
4842 	if (ret)
4843 		dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n");
4844 }
4845 EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown);
4846 
4847 static void hisi_qm_controller_reset(struct work_struct *rst_work)
4848 {
4849 	struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work);
4850 	int ret;
4851 
4852 	ret = qm_pm_get_sync(qm);
4853 	if (ret) {
4854 		clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4855 		return;
4856 	}
4857 
4858 	/* reset pcie device controller */
4859 	ret = qm_controller_reset(qm);
4860 	if (ret)
4861 		dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret);
4862 
4863 	qm_pm_put_sync(qm);
4864 }
4865 
4866 static void qm_pf_reset_vf_prepare(struct hisi_qm *qm,
4867 				   enum qm_stop_reason stop_reason)
4868 {
4869 	enum qm_ifc_cmd cmd = QM_VF_PREPARE_DONE;
4870 	struct pci_dev *pdev = qm->pdev;
4871 	int ret;
4872 
4873 	ret = qm_reset_prepare_ready(qm);
4874 	if (ret) {
4875 		dev_err(&pdev->dev, "reset prepare not ready!\n");
4876 		atomic_set(&qm->status.flags, QM_STOP);
4877 		cmd = QM_VF_PREPARE_FAIL;
4878 		goto err_prepare;
4879 	}
4880 
4881 	ret = hisi_qm_stop(qm, stop_reason);
4882 	if (ret) {
4883 		dev_err(&pdev->dev, "failed to stop QM, ret = %d.\n", ret);
4884 		atomic_set(&qm->status.flags, QM_STOP);
4885 		cmd = QM_VF_PREPARE_FAIL;
4886 		goto err_prepare;
4887 	} else {
4888 		goto out;
4889 	}
4890 
4891 err_prepare:
4892 	hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4893 	hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4894 out:
4895 	pci_save_state(pdev);
4896 	ret = qm_ping_pf(qm, cmd);
4897 	if (ret)
4898 		dev_warn(&pdev->dev, "PF responds timeout in reset prepare!\n");
4899 }
4900 
4901 static void qm_pf_reset_vf_done(struct hisi_qm *qm)
4902 {
4903 	enum qm_ifc_cmd cmd = QM_VF_START_DONE;
4904 	struct pci_dev *pdev = qm->pdev;
4905 	int ret;
4906 
4907 	pci_restore_state(pdev);
4908 	ret = hisi_qm_start(qm);
4909 	if (ret) {
4910 		dev_err(&pdev->dev, "failed to start QM, ret = %d.\n", ret);
4911 		cmd = QM_VF_START_FAIL;
4912 	}
4913 
4914 	qm_cmd_init(qm);
4915 	ret = qm_ping_pf(qm, cmd);
4916 	if (ret)
4917 		dev_warn(&pdev->dev, "PF responds timeout in reset done!\n");
4918 
4919 	qm_reset_bit_clear(qm);
4920 }
4921 
4922 static int qm_wait_pf_reset_finish(struct hisi_qm *qm)
4923 {
4924 	struct device *dev = &qm->pdev->dev;
4925 	u32 val, cmd;
4926 	int ret;
4927 
4928 	/* Wait for reset to finish */
4929 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_IFC_INT_SOURCE_V, val,
4930 					 val == BIT(0), QM_VF_RESET_WAIT_US,
4931 					 QM_VF_RESET_WAIT_TIMEOUT_US);
4932 	/* hardware completion status should be available by this time */
4933 	if (ret) {
4934 		dev_err(dev, "couldn't get reset done status from PF, timeout!\n");
4935 		return -ETIMEDOUT;
4936 	}
4937 
4938 	/*
4939 	 * Whether message is got successfully,
4940 	 * VF needs to ack PF by clearing the interrupt.
4941 	 */
4942 	ret = qm->ops->get_ifc(qm, &cmd, NULL, 0);
4943 	qm_clear_cmd_interrupt(qm, 0);
4944 	if (ret) {
4945 		dev_err(dev, "failed to get command from PF in reset done!\n");
4946 		return ret;
4947 	}
4948 
4949 	if (cmd != QM_PF_RESET_DONE) {
4950 		dev_err(dev, "the command(0x%x) is not reset done!\n", cmd);
4951 		ret = -EINVAL;
4952 	}
4953 
4954 	return ret;
4955 }
4956 
4957 static void qm_pf_reset_vf_process(struct hisi_qm *qm,
4958 				   enum qm_stop_reason stop_reason)
4959 {
4960 	struct device *dev = &qm->pdev->dev;
4961 	int ret;
4962 
4963 	dev_info(dev, "device reset start...\n");
4964 
4965 	/* The message is obtained by querying the register during resetting */
4966 	qm_cmd_uninit(qm);
4967 	qm_pf_reset_vf_prepare(qm, stop_reason);
4968 
4969 	ret = qm_wait_pf_reset_finish(qm);
4970 	if (ret)
4971 		goto err_get_status;
4972 
4973 	qm_pf_reset_vf_done(qm);
4974 
4975 	dev_info(dev, "device reset done.\n");
4976 
4977 	return;
4978 
4979 err_get_status:
4980 	qm_cmd_init(qm);
4981 	qm_reset_bit_clear(qm);
4982 }
4983 
4984 static void qm_handle_cmd_msg(struct hisi_qm *qm, u32 fun_num)
4985 {
4986 	struct device *dev = &qm->pdev->dev;
4987 	enum qm_ifc_cmd cmd;
4988 	u32 data;
4989 	int ret;
4990 
4991 	/*
4992 	 * Get the msg from source by sending mailbox. Whether message is got
4993 	 * successfully, destination needs to ack source by clearing the interrupt.
4994 	 */
4995 	ret = qm->ops->get_ifc(qm, &cmd, &data, fun_num);
4996 	qm_clear_cmd_interrupt(qm, BIT(fun_num));
4997 	if (ret) {
4998 		dev_err(dev, "failed to get command from source!\n");
4999 		return;
5000 	}
5001 
5002 	switch (cmd) {
5003 	case QM_PF_FLR_PREPARE:
5004 		qm_pf_reset_vf_process(qm, QM_DOWN);
5005 		break;
5006 	case QM_PF_SRST_PREPARE:
5007 		qm_pf_reset_vf_process(qm, QM_SOFT_RESET);
5008 		break;
5009 	case QM_VF_GET_QOS:
5010 		qm_vf_get_qos(qm, fun_num);
5011 		break;
5012 	case QM_PF_SET_QOS:
5013 		qm->mb_qos = data;
5014 		break;
5015 	default:
5016 		dev_err(dev, "unsupported command(0x%x) sent by function(%u)!\n", cmd, fun_num);
5017 		break;
5018 	}
5019 }
5020 
5021 static void qm_cmd_process(struct work_struct *cmd_process)
5022 {
5023 	struct hisi_qm *qm = container_of(cmd_process,
5024 					struct hisi_qm, cmd_process);
5025 	u32 vfs_num = qm->vfs_num;
5026 	u64 val;
5027 	u32 i;
5028 
5029 	if (qm->fun_type == QM_HW_PF) {
5030 		val = readq(qm->io_base + QM_IFC_INT_SOURCE_P);
5031 		if (!val)
5032 			return;
5033 
5034 		for (i = 1; i <= vfs_num; i++) {
5035 			if (val & BIT(i))
5036 				qm_handle_cmd_msg(qm, i);
5037 		}
5038 
5039 		return;
5040 	}
5041 
5042 	qm_handle_cmd_msg(qm, 0);
5043 }
5044 
5045 /**
5046  * hisi_qm_alg_register() - Register alg to crypto.
5047  * @qm: The qm needs add.
5048  * @qm_list: The qm list.
5049  * @guard: Guard of qp_num.
5050  *
5051  * Register algorithm to crypto when the function is satisfy guard.
5052  */
5053 int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list, int guard)
5054 {
5055 	struct device *dev = &qm->pdev->dev;
5056 
5057 	if (qm->ver <= QM_HW_V2 && qm->use_sva) {
5058 		dev_info(dev, "HW V2 not both use uacce sva mode and hardware crypto algs.\n");
5059 		return 0;
5060 	}
5061 
5062 	if (qm->qp_num < guard) {
5063 		dev_info(dev, "qp_num is less than task need.\n");
5064 		return 0;
5065 	}
5066 
5067 	return qm_list->register_to_crypto(qm);
5068 }
5069 EXPORT_SYMBOL_GPL(hisi_qm_alg_register);
5070 
5071 /**
5072  * hisi_qm_alg_unregister() - Unregister alg from crypto.
5073  * @qm: The qm needs delete.
5074  * @qm_list: The qm list.
5075  * @guard: Guard of qp_num.
5076  *
5077  * Unregister algorithm from crypto when the last function is satisfy guard.
5078  */
5079 void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list, int guard)
5080 {
5081 	if (qm->ver <= QM_HW_V2 && qm->use_sva)
5082 		return;
5083 
5084 	if (qm->qp_num < guard)
5085 		return;
5086 
5087 	qm_list->unregister_from_crypto(qm);
5088 }
5089 EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister);
5090 
5091 static void qm_unregister_abnormal_irq(struct hisi_qm *qm)
5092 {
5093 	struct pci_dev *pdev = qm->pdev;
5094 	u32 irq_vector, val;
5095 
5096 	if (qm->fun_type == QM_HW_VF && qm->ver < QM_HW_V3)
5097 		return;
5098 
5099 	val = qm->cap_tables.qm_cap_table[QM_ABNORMAL_IRQ].cap_val;
5100 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK))
5101 		return;
5102 
5103 	irq_vector = val & QM_IRQ_VECTOR_MASK;
5104 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
5105 }
5106 
5107 static int qm_register_abnormal_irq(struct hisi_qm *qm)
5108 {
5109 	struct pci_dev *pdev = qm->pdev;
5110 	u32 irq_vector, val;
5111 	int ret;
5112 
5113 	val = qm->cap_tables.qm_cap_table[QM_ABNORMAL_IRQ].cap_val;
5114 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK))
5115 		return 0;
5116 	irq_vector = val & QM_IRQ_VECTOR_MASK;
5117 
5118 	/* For VF, this is a reserved interrupt in V3 version. */
5119 	if (qm->fun_type == QM_HW_VF) {
5120 		if (qm->ver < QM_HW_V3)
5121 			return 0;
5122 
5123 		ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_rsvd_irq,
5124 				  IRQF_NO_AUTOEN, qm->dev_name, qm);
5125 		if (ret) {
5126 			dev_err(&pdev->dev, "failed to request reserved irq, ret = %d!\n", ret);
5127 			return ret;
5128 		}
5129 		return 0;
5130 	}
5131 
5132 	ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_abnormal_irq, 0, qm->dev_name, qm);
5133 	if (ret)
5134 		dev_err(&qm->pdev->dev, "failed to request abnormal irq, ret = %d!\n", ret);
5135 
5136 	return ret;
5137 }
5138 
5139 static void qm_unregister_mb_cmd_irq(struct hisi_qm *qm)
5140 {
5141 	struct pci_dev *pdev = qm->pdev;
5142 	u32 irq_vector, val;
5143 
5144 	val = qm->cap_tables.qm_cap_table[QM_MB_IRQ].cap_val;
5145 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
5146 		return;
5147 
5148 	irq_vector = val & QM_IRQ_VECTOR_MASK;
5149 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
5150 }
5151 
5152 static int qm_register_mb_cmd_irq(struct hisi_qm *qm)
5153 {
5154 	struct pci_dev *pdev = qm->pdev;
5155 	u32 irq_vector, val;
5156 	int ret;
5157 
5158 	val = qm->cap_tables.qm_cap_table[QM_MB_IRQ].cap_val;
5159 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
5160 		return 0;
5161 
5162 	irq_vector = val & QM_IRQ_VECTOR_MASK;
5163 	ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_mb_cmd_irq, 0, qm->dev_name, qm);
5164 	if (ret)
5165 		dev_err(&pdev->dev, "failed to request function communication irq, ret = %d", ret);
5166 
5167 	return ret;
5168 }
5169 
5170 static void qm_unregister_aeq_irq(struct hisi_qm *qm)
5171 {
5172 	struct pci_dev *pdev = qm->pdev;
5173 	u32 irq_vector, val;
5174 
5175 	val = qm->cap_tables.qm_cap_table[QM_AEQ_IRQ].cap_val;
5176 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
5177 		return;
5178 
5179 	irq_vector = val & QM_IRQ_VECTOR_MASK;
5180 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
5181 }
5182 
5183 static int qm_register_aeq_irq(struct hisi_qm *qm)
5184 {
5185 	struct pci_dev *pdev = qm->pdev;
5186 	u32 irq_vector, val;
5187 	int ret;
5188 
5189 	val = qm->cap_tables.qm_cap_table[QM_AEQ_IRQ].cap_val;
5190 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
5191 		return 0;
5192 
5193 	irq_vector = val & QM_IRQ_VECTOR_MASK;
5194 	ret = request_threaded_irq(pci_irq_vector(pdev, irq_vector), NULL,
5195 						   qm_aeq_thread, IRQF_ONESHOT, qm->dev_name, qm);
5196 	if (ret)
5197 		dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret);
5198 
5199 	return ret;
5200 }
5201 
5202 static void qm_unregister_eq_irq(struct hisi_qm *qm)
5203 {
5204 	struct pci_dev *pdev = qm->pdev;
5205 	u32 irq_vector, val;
5206 
5207 	val = qm->cap_tables.qm_cap_table[QM_EQ_IRQ].cap_val;
5208 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
5209 		return;
5210 
5211 	irq_vector = val & QM_IRQ_VECTOR_MASK;
5212 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
5213 }
5214 
5215 static int qm_register_eq_irq(struct hisi_qm *qm)
5216 {
5217 	struct pci_dev *pdev = qm->pdev;
5218 	u32 irq_vector, val;
5219 	int ret;
5220 
5221 	val = qm->cap_tables.qm_cap_table[QM_EQ_IRQ].cap_val;
5222 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
5223 		return 0;
5224 
5225 	irq_vector = val & QM_IRQ_VECTOR_MASK;
5226 	ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_eq_irq, 0, qm->dev_name, qm);
5227 	if (ret)
5228 		dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret);
5229 
5230 	return ret;
5231 }
5232 
5233 static void qm_irqs_unregister(struct hisi_qm *qm)
5234 {
5235 	qm_unregister_mb_cmd_irq(qm);
5236 	qm_unregister_abnormal_irq(qm);
5237 	qm_unregister_aeq_irq(qm);
5238 	qm_unregister_eq_irq(qm);
5239 }
5240 
5241 static int qm_irqs_register(struct hisi_qm *qm)
5242 {
5243 	int ret;
5244 
5245 	ret = qm_register_eq_irq(qm);
5246 	if (ret)
5247 		return ret;
5248 
5249 	ret = qm_register_aeq_irq(qm);
5250 	if (ret)
5251 		goto free_eq_irq;
5252 
5253 	ret = qm_register_abnormal_irq(qm);
5254 	if (ret)
5255 		goto free_aeq_irq;
5256 
5257 	ret = qm_register_mb_cmd_irq(qm);
5258 	if (ret)
5259 		goto free_abnormal_irq;
5260 
5261 	return 0;
5262 
5263 free_abnormal_irq:
5264 	qm_unregister_abnormal_irq(qm);
5265 free_aeq_irq:
5266 	qm_unregister_aeq_irq(qm);
5267 free_eq_irq:
5268 	qm_unregister_eq_irq(qm);
5269 	return ret;
5270 }
5271 
5272 static int qm_get_qp_num(struct hisi_qm *qm)
5273 {
5274 	struct device *dev = &qm->pdev->dev;
5275 	bool is_db_isolation;
5276 
5277 	/* VF's qp_num assigned by PF in v2, and VF can get qp_num by vft. */
5278 	if (qm->fun_type == QM_HW_VF) {
5279 		if (qm->ver != QM_HW_V1)
5280 			/* v2 starts to support get vft by mailbox */
5281 			return hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num);
5282 
5283 		return 0;
5284 	}
5285 
5286 	is_db_isolation = test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps);
5287 	qm->ctrl_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, QM_TOTAL_QP_NUM_CAP, true);
5288 	qm->max_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info,
5289 					     QM_FUNC_MAX_QP_CAP, is_db_isolation);
5290 
5291 	if (qm->qp_num <= qm->max_qp_num)
5292 		return 0;
5293 
5294 	if (test_bit(QM_MODULE_PARAM, &qm->misc_ctl)) {
5295 		/* Check whether the set qp number is valid */
5296 		dev_err(dev, "qp num(%u) is more than max qp num(%u)!\n",
5297 			qm->qp_num, qm->max_qp_num);
5298 		return -EINVAL;
5299 	}
5300 
5301 	dev_info(dev, "Default qp num(%u) is too big, reset it to Function's max qp num(%u)!\n",
5302 		 qm->qp_num, qm->max_qp_num);
5303 	qm->qp_num = qm->max_qp_num;
5304 	qm->debug.curr_qm_qp_num = qm->qp_num;
5305 
5306 	return 0;
5307 }
5308 
5309 static int qm_pre_store_caps(struct hisi_qm *qm)
5310 {
5311 	struct hisi_qm_cap_record *qm_cap;
5312 	struct pci_dev *pdev = qm->pdev;
5313 	size_t i, size;
5314 
5315 	size = ARRAY_SIZE(qm_cap_query_info);
5316 	qm_cap = devm_kcalloc(&pdev->dev, sizeof(*qm_cap), size, GFP_KERNEL);
5317 	if (!qm_cap)
5318 		return -ENOMEM;
5319 
5320 	for (i = 0; i < size; i++) {
5321 		qm_cap[i].type = qm_cap_query_info[i].type;
5322 		qm_cap[i].name = qm_cap_query_info[i].name;
5323 		qm_cap[i].cap_val = hisi_qm_get_cap_value(qm, qm_cap_query_info,
5324 							i, qm->cap_ver);
5325 	}
5326 
5327 	qm->cap_tables.qm_cap_table = qm_cap;
5328 	qm->cap_tables.qm_cap_size = size;
5329 
5330 	return 0;
5331 }
5332 
5333 static int qm_get_hw_caps(struct hisi_qm *qm)
5334 {
5335 	const struct hisi_qm_cap_info *cap_info = qm->fun_type == QM_HW_PF ?
5336 						  qm_cap_info_pf : qm_cap_info_vf;
5337 	u32 size = qm->fun_type == QM_HW_PF ? ARRAY_SIZE(qm_cap_info_pf) :
5338 				   ARRAY_SIZE(qm_cap_info_vf);
5339 	u32 val, i;
5340 
5341 	/* Doorbell isolate register is a independent register. */
5342 	val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, QM_SUPPORT_DB_ISOLATION, true);
5343 	if (val)
5344 		set_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps);
5345 
5346 	if (qm->ver >= QM_HW_V3) {
5347 		val = readl(qm->io_base + QM_FUNC_CAPS_REG);
5348 		qm->cap_ver = val & QM_CAPBILITY_VERSION;
5349 	}
5350 
5351 	/* Get PF/VF common capbility */
5352 	for (i = 1; i < ARRAY_SIZE(qm_cap_info_comm); i++) {
5353 		val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, i, qm->cap_ver);
5354 		if (val)
5355 			set_bit(qm_cap_info_comm[i].type, &qm->caps);
5356 	}
5357 
5358 	/* Get PF/VF different capbility */
5359 	for (i = 0; i < size; i++) {
5360 		val = hisi_qm_get_hw_info(qm, cap_info, i, qm->cap_ver);
5361 		if (val)
5362 			set_bit(cap_info[i].type, &qm->caps);
5363 	}
5364 
5365 	/* Fetch and save the value of qm capability registers */
5366 	return qm_pre_store_caps(qm);
5367 }
5368 
5369 static void qm_get_version(struct hisi_qm *qm)
5370 {
5371 	struct pci_dev *pdev = qm->pdev;
5372 	u32 sub_version_id;
5373 
5374 	qm->ver = pdev->revision;
5375 
5376 	if (pdev->revision == QM_HW_V3) {
5377 		sub_version_id = readl(qm->io_base + QM_SUB_VERSION_ID);
5378 		if (sub_version_id)
5379 			qm->ver = sub_version_id;
5380 	}
5381 }
5382 
5383 static int qm_get_pci_res(struct hisi_qm *qm)
5384 {
5385 	struct pci_dev *pdev = qm->pdev;
5386 	struct device *dev = &pdev->dev;
5387 	int ret;
5388 
5389 	ret = pci_request_mem_regions(pdev, qm->dev_name);
5390 	if (ret < 0) {
5391 		dev_err(dev, "Failed to request mem regions!\n");
5392 		return ret;
5393 	}
5394 
5395 	qm->phys_base = pci_resource_start(pdev, PCI_BAR_2);
5396 	qm->io_base = ioremap(qm->phys_base, pci_resource_len(pdev, PCI_BAR_2));
5397 	if (!qm->io_base) {
5398 		ret = -EIO;
5399 		goto err_request_mem_regions;
5400 	}
5401 
5402 	qm_get_version(qm);
5403 
5404 	ret = qm_get_hw_caps(qm);
5405 	if (ret)
5406 		goto err_ioremap;
5407 
5408 	if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) {
5409 		qm->db_interval = QM_QP_DB_INTERVAL;
5410 		qm->db_phys_base = pci_resource_start(pdev, PCI_BAR_4);
5411 		qm->db_io_base = ioremap(qm->db_phys_base,
5412 					 pci_resource_len(pdev, PCI_BAR_4));
5413 		if (!qm->db_io_base) {
5414 			ret = -EIO;
5415 			goto err_ioremap;
5416 		}
5417 	} else {
5418 		qm->db_phys_base = qm->phys_base;
5419 		qm->db_io_base = qm->io_base;
5420 		qm->db_interval = 0;
5421 	}
5422 
5423 	hisi_qm_pre_init(qm);
5424 	ret = qm_get_qp_num(qm);
5425 	if (ret)
5426 		goto err_db_ioremap;
5427 
5428 	return 0;
5429 
5430 err_db_ioremap:
5431 	if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
5432 		iounmap(qm->db_io_base);
5433 err_ioremap:
5434 	iounmap(qm->io_base);
5435 err_request_mem_regions:
5436 	pci_release_mem_regions(pdev);
5437 	return ret;
5438 }
5439 
5440 static int qm_clear_device(struct hisi_qm *qm)
5441 {
5442 	acpi_handle handle = ACPI_HANDLE(&qm->pdev->dev);
5443 	int ret;
5444 
5445 	if (qm->fun_type == QM_HW_VF)
5446 		return 0;
5447 
5448 	/* Device does not support reset, return */
5449 	if (!qm->err_ini->err_info_init)
5450 		return 0;
5451 	qm->err_ini->err_info_init(qm);
5452 
5453 	if (!handle)
5454 		return 0;
5455 
5456 	/* No reset method, return */
5457 	if (!acpi_has_method(handle, qm->err_info.acpi_rst))
5458 		return 0;
5459 
5460 	ret = qm_master_ooo_check(qm);
5461 	if (ret) {
5462 		writel(0x0, qm->io_base + ACC_MASTER_GLOBAL_CTRL);
5463 		return ret;
5464 	}
5465 
5466 	if (qm->err_ini->set_priv_status) {
5467 		ret = qm->err_ini->set_priv_status(qm);
5468 		if (ret) {
5469 			writel(0x0, qm->io_base + ACC_MASTER_GLOBAL_CTRL);
5470 			return ret;
5471 		}
5472 	}
5473 
5474 	return qm_reset_device(qm);
5475 }
5476 
5477 static int hisi_qm_pci_init(struct hisi_qm *qm)
5478 {
5479 	struct pci_dev *pdev = qm->pdev;
5480 	struct device *dev = &pdev->dev;
5481 	unsigned int num_vec;
5482 	int ret;
5483 
5484 	ret = pci_enable_device_mem(pdev);
5485 	if (ret < 0) {
5486 		dev_err(dev, "Failed to enable device mem!\n");
5487 		return ret;
5488 	}
5489 
5490 	ret = qm_get_pci_res(qm);
5491 	if (ret)
5492 		goto err_disable_pcidev;
5493 
5494 	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
5495 	if (ret < 0)
5496 		goto err_get_pci_res;
5497 	pci_set_master(pdev);
5498 
5499 	num_vec = qm_get_irq_num(qm);
5500 	if (!num_vec) {
5501 		dev_err(dev, "Device irq num is zero!\n");
5502 		ret = -EINVAL;
5503 		goto err_get_pci_res;
5504 	}
5505 	num_vec = roundup_pow_of_two(num_vec);
5506 	ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI);
5507 	if (ret < 0) {
5508 		dev_err(dev, "Failed to enable MSI vectors!\n");
5509 		goto err_get_pci_res;
5510 	}
5511 
5512 	ret = qm_clear_device(qm);
5513 	if (ret)
5514 		goto err_free_vectors;
5515 
5516 	return 0;
5517 
5518 err_free_vectors:
5519 	pci_free_irq_vectors(pdev);
5520 err_get_pci_res:
5521 	qm_put_pci_res(qm);
5522 err_disable_pcidev:
5523 	pci_disable_device(pdev);
5524 	return ret;
5525 }
5526 
5527 static int hisi_qm_init_work(struct hisi_qm *qm)
5528 {
5529 	int i;
5530 
5531 	for (i = 0; i < qm->qp_num; i++)
5532 		INIT_WORK(&qm->poll_data[i].work, qm_work_process);
5533 
5534 	if (qm->fun_type == QM_HW_PF)
5535 		INIT_WORK(&qm->rst_work, hisi_qm_controller_reset);
5536 
5537 	if (qm->ver > QM_HW_V2)
5538 		INIT_WORK(&qm->cmd_process, qm_cmd_process);
5539 
5540 	qm->wq = alloc_workqueue("%s", WQ_HIGHPRI | WQ_MEM_RECLAIM |
5541 				 WQ_UNBOUND, num_online_cpus(),
5542 				 pci_name(qm->pdev));
5543 	if (!qm->wq) {
5544 		pci_err(qm->pdev, "failed to alloc workqueue!\n");
5545 		return -ENOMEM;
5546 	}
5547 
5548 	return 0;
5549 }
5550 
5551 static int hisi_qp_alloc_memory(struct hisi_qm *qm)
5552 {
5553 	struct device *dev = &qm->pdev->dev;
5554 	u16 sq_depth, cq_depth;
5555 	size_t qp_dma_size;
5556 	int i, ret;
5557 
5558 	qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL);
5559 	if (!qm->qp_array)
5560 		return -ENOMEM;
5561 
5562 	qm->poll_data = kcalloc(qm->qp_num, sizeof(struct hisi_qm_poll_data), GFP_KERNEL);
5563 	if (!qm->poll_data) {
5564 		kfree(qm->qp_array);
5565 		return -ENOMEM;
5566 	}
5567 
5568 	qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP);
5569 
5570 	/* one more page for device or qp statuses */
5571 	qp_dma_size = qm->sqe_size * sq_depth + sizeof(struct qm_cqe) * cq_depth;
5572 	qp_dma_size = PAGE_ALIGN(qp_dma_size) + PAGE_SIZE;
5573 	for (i = 0; i < qm->qp_num; i++) {
5574 		qm->poll_data[i].qm = qm;
5575 		ret = hisi_qp_memory_init(qm, qp_dma_size, i, sq_depth, cq_depth);
5576 		if (ret)
5577 			goto err_init_qp_mem;
5578 
5579 		dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size);
5580 	}
5581 
5582 	return 0;
5583 err_init_qp_mem:
5584 	hisi_qp_memory_uninit(qm, i);
5585 
5586 	return ret;
5587 }
5588 
5589 static int hisi_qm_alloc_rsv_buf(struct hisi_qm *qm)
5590 {
5591 	struct qm_rsv_buf *xqc_buf = &qm->xqc_buf;
5592 	struct qm_dma *xqc_dma = &xqc_buf->qcdma;
5593 	struct device *dev = &qm->pdev->dev;
5594 	size_t off = 0;
5595 
5596 #define QM_XQC_BUF_INIT(xqc_buf, type) do { \
5597 	(xqc_buf)->type = ((xqc_buf)->qcdma.va + (off)); \
5598 	(xqc_buf)->type##_dma = (xqc_buf)->qcdma.dma + (off); \
5599 	off += QMC_ALIGN(sizeof(struct qm_##type)); \
5600 } while (0)
5601 
5602 	xqc_dma->size = QMC_ALIGN(sizeof(struct qm_eqc)) +
5603 			QMC_ALIGN(sizeof(struct qm_aeqc)) +
5604 			QMC_ALIGN(sizeof(struct qm_sqc)) +
5605 			QMC_ALIGN(sizeof(struct qm_cqc));
5606 	xqc_dma->va = dma_alloc_coherent(dev, xqc_dma->size,
5607 					 &xqc_dma->dma, GFP_KERNEL);
5608 	if (!xqc_dma->va)
5609 		return -ENOMEM;
5610 
5611 	QM_XQC_BUF_INIT(xqc_buf, eqc);
5612 	QM_XQC_BUF_INIT(xqc_buf, aeqc);
5613 	QM_XQC_BUF_INIT(xqc_buf, sqc);
5614 	QM_XQC_BUF_INIT(xqc_buf, cqc);
5615 
5616 	return 0;
5617 }
5618 
5619 static int hisi_qm_memory_init(struct hisi_qm *qm)
5620 {
5621 	struct device *dev = &qm->pdev->dev;
5622 	int ret, total_func;
5623 	size_t off = 0;
5624 
5625 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) {
5626 		total_func = pci_sriov_get_totalvfs(qm->pdev) + 1;
5627 		qm->factor = kcalloc(total_func, sizeof(struct qm_shaper_factor), GFP_KERNEL);
5628 		if (!qm->factor)
5629 			return -ENOMEM;
5630 
5631 		/* Only the PF value needs to be initialized */
5632 		qm->factor[0].func_qos = QM_QOS_MAX_VAL;
5633 	}
5634 
5635 #define QM_INIT_BUF(qm, type, num) do { \
5636 	(qm)->type = ((qm)->qdma.va + (off)); \
5637 	(qm)->type##_dma = (qm)->qdma.dma + (off); \
5638 	off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \
5639 } while (0)
5640 
5641 	idr_init(&qm->qp_idr);
5642 	qm_get_xqc_depth(qm, &qm->eq_depth, &qm->aeq_depth, QM_XEQ_DEPTH_CAP);
5643 	qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * qm->eq_depth) +
5644 			QMC_ALIGN(sizeof(struct qm_aeqe) * qm->aeq_depth) +
5645 			QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) +
5646 			QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num);
5647 	qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma,
5648 					 GFP_ATOMIC);
5649 	dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size);
5650 	if (!qm->qdma.va) {
5651 		ret = -ENOMEM;
5652 		goto err_destroy_idr;
5653 	}
5654 
5655 	QM_INIT_BUF(qm, eqe, qm->eq_depth);
5656 	QM_INIT_BUF(qm, aeqe, qm->aeq_depth);
5657 	QM_INIT_BUF(qm, sqc, qm->qp_num);
5658 	QM_INIT_BUF(qm, cqc, qm->qp_num);
5659 
5660 	ret = hisi_qm_alloc_rsv_buf(qm);
5661 	if (ret)
5662 		goto err_free_qdma;
5663 
5664 	ret = hisi_qp_alloc_memory(qm);
5665 	if (ret)
5666 		goto err_free_reserve_buf;
5667 
5668 	return 0;
5669 
5670 err_free_reserve_buf:
5671 	hisi_qm_free_rsv_buf(qm);
5672 err_free_qdma:
5673 	dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma);
5674 err_destroy_idr:
5675 	idr_destroy(&qm->qp_idr);
5676 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
5677 		kfree(qm->factor);
5678 
5679 	return ret;
5680 }
5681 
5682 /**
5683  * hisi_qm_init() - Initialize configures about qm.
5684  * @qm: The qm needing init.
5685  *
5686  * This function init qm, then we can call hisi_qm_start to put qm into work.
5687  */
5688 int hisi_qm_init(struct hisi_qm *qm)
5689 {
5690 	struct pci_dev *pdev = qm->pdev;
5691 	struct device *dev = &pdev->dev;
5692 	int ret;
5693 
5694 	ret = hisi_qm_pci_init(qm);
5695 	if (ret)
5696 		return ret;
5697 
5698 	ret = qm_irqs_register(qm);
5699 	if (ret)
5700 		goto err_pci_init;
5701 
5702 	if (qm->fun_type == QM_HW_PF) {
5703 		/* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */
5704 		writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG);
5705 		qm_disable_clock_gate(qm);
5706 		ret = qm_dev_mem_reset(qm);
5707 		if (ret) {
5708 			dev_err(dev, "failed to reset device memory\n");
5709 			goto err_irq_register;
5710 		}
5711 	}
5712 
5713 	if (qm->mode == UACCE_MODE_SVA) {
5714 		ret = qm_alloc_uacce(qm);
5715 		if (ret < 0)
5716 			dev_warn(dev, "fail to alloc uacce (%d)\n", ret);
5717 	}
5718 
5719 	ret = hisi_qm_memory_init(qm);
5720 	if (ret)
5721 		goto err_alloc_uacce;
5722 
5723 	ret = hisi_qm_init_work(qm);
5724 	if (ret)
5725 		goto err_free_qm_memory;
5726 
5727 	qm_cmd_init(qm);
5728 
5729 	return 0;
5730 
5731 err_free_qm_memory:
5732 	hisi_qm_memory_uninit(qm);
5733 err_alloc_uacce:
5734 	qm_remove_uacce(qm);
5735 err_irq_register:
5736 	qm_irqs_unregister(qm);
5737 err_pci_init:
5738 	hisi_qm_pci_uninit(qm);
5739 	return ret;
5740 }
5741 EXPORT_SYMBOL_GPL(hisi_qm_init);
5742 
5743 /**
5744  * hisi_qm_get_dfx_access() - Try to get dfx access.
5745  * @qm: pointer to accelerator device.
5746  *
5747  * Try to get dfx access, then user can get message.
5748  *
5749  * If device is in suspended, return failure, otherwise
5750  * bump up the runtime PM usage counter.
5751  */
5752 int hisi_qm_get_dfx_access(struct hisi_qm *qm)
5753 {
5754 	struct device *dev = &qm->pdev->dev;
5755 
5756 	if (pm_runtime_suspended(dev)) {
5757 		dev_info(dev, "can not read/write - device in suspended.\n");
5758 		return -EAGAIN;
5759 	}
5760 
5761 	return qm_pm_get_sync(qm);
5762 }
5763 EXPORT_SYMBOL_GPL(hisi_qm_get_dfx_access);
5764 
5765 /**
5766  * hisi_qm_put_dfx_access() - Put dfx access.
5767  * @qm: pointer to accelerator device.
5768  *
5769  * Put dfx access, drop runtime PM usage counter.
5770  */
5771 void hisi_qm_put_dfx_access(struct hisi_qm *qm)
5772 {
5773 	qm_pm_put_sync(qm);
5774 }
5775 EXPORT_SYMBOL_GPL(hisi_qm_put_dfx_access);
5776 
5777 /**
5778  * hisi_qm_pm_init() - Initialize qm runtime PM.
5779  * @qm: pointer to accelerator device.
5780  *
5781  * Function that initialize qm runtime PM.
5782  */
5783 void hisi_qm_pm_init(struct hisi_qm *qm)
5784 {
5785 	struct device *dev = &qm->pdev->dev;
5786 
5787 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
5788 		return;
5789 
5790 	pm_runtime_set_autosuspend_delay(dev, QM_AUTOSUSPEND_DELAY);
5791 	pm_runtime_use_autosuspend(dev);
5792 	pm_runtime_put_noidle(dev);
5793 }
5794 EXPORT_SYMBOL_GPL(hisi_qm_pm_init);
5795 
5796 /**
5797  * hisi_qm_pm_uninit() - Uninitialize qm runtime PM.
5798  * @qm: pointer to accelerator device.
5799  *
5800  * Function that uninitialize qm runtime PM.
5801  */
5802 void hisi_qm_pm_uninit(struct hisi_qm *qm)
5803 {
5804 	struct device *dev = &qm->pdev->dev;
5805 
5806 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
5807 		return;
5808 
5809 	pm_runtime_get_noresume(dev);
5810 	pm_runtime_dont_use_autosuspend(dev);
5811 }
5812 EXPORT_SYMBOL_GPL(hisi_qm_pm_uninit);
5813 
5814 static int qm_prepare_for_suspend(struct hisi_qm *qm)
5815 {
5816 	struct pci_dev *pdev = qm->pdev;
5817 	int ret;
5818 
5819 	ret = qm->ops->set_msi(qm, false);
5820 	if (ret) {
5821 		pci_err(pdev, "failed to disable MSI before suspending!\n");
5822 		return ret;
5823 	}
5824 
5825 	ret = qm_master_ooo_check(qm);
5826 	if (ret)
5827 		return ret;
5828 
5829 	if (qm->err_ini->set_priv_status) {
5830 		ret = qm->err_ini->set_priv_status(qm);
5831 		if (ret)
5832 			return ret;
5833 	}
5834 
5835 	ret = qm_set_pf_mse(qm, false);
5836 	if (ret)
5837 		pci_err(pdev, "failed to disable MSE before suspending!\n");
5838 
5839 	return ret;
5840 }
5841 
5842 static int qm_rebuild_for_resume(struct hisi_qm *qm)
5843 {
5844 	struct pci_dev *pdev = qm->pdev;
5845 	int ret;
5846 
5847 	ret = qm_set_pf_mse(qm, true);
5848 	if (ret) {
5849 		pci_err(pdev, "failed to enable MSE after resuming!\n");
5850 		return ret;
5851 	}
5852 
5853 	ret = qm->ops->set_msi(qm, true);
5854 	if (ret) {
5855 		pci_err(pdev, "failed to enable MSI after resuming!\n");
5856 		return ret;
5857 	}
5858 
5859 	ret = qm_dev_hw_init(qm);
5860 	if (ret) {
5861 		pci_err(pdev, "failed to init device after resuming\n");
5862 		return ret;
5863 	}
5864 
5865 	qm_cmd_init(qm);
5866 	hisi_qm_dev_err_init(qm);
5867 	/* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */
5868 	writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG);
5869 	qm_disable_clock_gate(qm);
5870 	ret = qm_dev_mem_reset(qm);
5871 	if (ret)
5872 		pci_err(pdev, "failed to reset device memory\n");
5873 
5874 	return ret;
5875 }
5876 
5877 /**
5878  * hisi_qm_suspend() - Runtime suspend of given device.
5879  * @dev: device to suspend.
5880  *
5881  * Function that suspend the device.
5882  */
5883 int hisi_qm_suspend(struct device *dev)
5884 {
5885 	struct pci_dev *pdev = to_pci_dev(dev);
5886 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5887 	int ret;
5888 
5889 	pci_info(pdev, "entering suspended state\n");
5890 
5891 	ret = hisi_qm_stop(qm, QM_NORMAL);
5892 	if (ret) {
5893 		pci_err(pdev, "failed to stop qm(%d)\n", ret);
5894 		return ret;
5895 	}
5896 
5897 	ret = qm_prepare_for_suspend(qm);
5898 	if (ret)
5899 		pci_err(pdev, "failed to prepare suspended(%d)\n", ret);
5900 
5901 	return ret;
5902 }
5903 EXPORT_SYMBOL_GPL(hisi_qm_suspend);
5904 
5905 /**
5906  * hisi_qm_resume() - Runtime resume of given device.
5907  * @dev: device to resume.
5908  *
5909  * Function that resume the device.
5910  */
5911 int hisi_qm_resume(struct device *dev)
5912 {
5913 	struct pci_dev *pdev = to_pci_dev(dev);
5914 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5915 	int ret;
5916 
5917 	pci_info(pdev, "resuming from suspend state\n");
5918 
5919 	ret = qm_rebuild_for_resume(qm);
5920 	if (ret) {
5921 		pci_err(pdev, "failed to rebuild resume(%d)\n", ret);
5922 		return ret;
5923 	}
5924 
5925 	ret = hisi_qm_start(qm);
5926 	if (ret) {
5927 		if (qm_check_dev_error(qm)) {
5928 			pci_info(pdev, "failed to start qm due to device error, device will be reset!\n");
5929 			return 0;
5930 		}
5931 
5932 		pci_err(pdev, "failed to start qm(%d)!\n", ret);
5933 	}
5934 
5935 	return ret;
5936 }
5937 EXPORT_SYMBOL_GPL(hisi_qm_resume);
5938 
5939 MODULE_LICENSE("GPL v2");
5940 MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>");
5941 MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver");
5942