xref: /linux/drivers/crypto/hisilicon/qm.c (revision e3234e547a4db0572e271e490d044bdb4cb7233b)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 HiSilicon Limited. */
3 #include <asm/page.h>
4 #include <linux/acpi.h>
5 #include <linux/bitmap.h>
6 #include <linux/dma-mapping.h>
7 #include <linux/idr.h>
8 #include <linux/io.h>
9 #include <linux/irqreturn.h>
10 #include <linux/log2.h>
11 #include <linux/pm_runtime.h>
12 #include <linux/seq_file.h>
13 #include <linux/slab.h>
14 #include <linux/uacce.h>
15 #include <linux/uaccess.h>
16 #include <uapi/misc/uacce/hisi_qm.h>
17 #include <linux/hisi_acc_qm.h>
18 #include "qm_common.h"
19 
20 /* eq/aeq irq enable */
21 #define QM_VF_AEQ_INT_SOURCE		0x0
22 #define QM_VF_AEQ_INT_MASK		0x4
23 #define QM_VF_EQ_INT_SOURCE		0x8
24 #define QM_VF_EQ_INT_MASK		0xc
25 
26 #define QM_IRQ_VECTOR_MASK		GENMASK(15, 0)
27 #define QM_IRQ_TYPE_MASK		GENMASK(15, 0)
28 #define QM_IRQ_TYPE_SHIFT		16
29 #define QM_ABN_IRQ_TYPE_MASK		GENMASK(7, 0)
30 
31 /* mailbox */
32 #define QM_MB_PING_ALL_VFS		0xffff
33 #define QM_MB_CMD_DATA_SHIFT		32
34 #define QM_MB_CMD_DATA_MASK		GENMASK(31, 0)
35 #define QM_MB_STATUS_MASK		GENMASK(12, 9)
36 
37 /* sqc shift */
38 #define QM_SQ_HOP_NUM_SHIFT		0
39 #define QM_SQ_PAGE_SIZE_SHIFT		4
40 #define QM_SQ_BUF_SIZE_SHIFT		8
41 #define QM_SQ_SQE_SIZE_SHIFT		12
42 #define QM_SQ_PRIORITY_SHIFT		0
43 #define QM_SQ_ORDERS_SHIFT		4
44 #define QM_SQ_TYPE_SHIFT		8
45 #define QM_QC_PASID_ENABLE		0x1
46 #define QM_QC_PASID_ENABLE_SHIFT	7
47 
48 #define QM_SQ_TYPE_MASK			GENMASK(3, 0)
49 #define QM_SQ_TAIL_IDX(sqc)		((le16_to_cpu((sqc).w11) >> 6) & 0x1)
50 
51 /* cqc shift */
52 #define QM_CQ_HOP_NUM_SHIFT		0
53 #define QM_CQ_PAGE_SIZE_SHIFT		4
54 #define QM_CQ_BUF_SIZE_SHIFT		8
55 #define QM_CQ_CQE_SIZE_SHIFT		12
56 #define QM_CQ_PHASE_SHIFT		0
57 #define QM_CQ_FLAG_SHIFT		1
58 
59 #define QM_CQE_PHASE(cqe)		(le16_to_cpu((cqe)->w7) & 0x1)
60 #define QM_QC_CQE_SIZE			4
61 #define QM_CQ_TAIL_IDX(cqc)		((le16_to_cpu((cqc).w11) >> 6) & 0x1)
62 
63 /* eqc shift */
64 #define QM_EQE_AEQE_SIZE		(2UL << 12)
65 #define QM_EQC_PHASE_SHIFT		16
66 
67 #define QM_EQE_PHASE(eqe)		((le32_to_cpu((eqe)->dw0) >> 16) & 0x1)
68 #define QM_EQE_CQN_MASK			GENMASK(15, 0)
69 
70 #define QM_AEQE_PHASE(aeqe)		((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1)
71 #define QM_AEQE_TYPE_SHIFT		17
72 #define QM_AEQE_TYPE_MASK		0xf
73 #define QM_AEQE_CQN_MASK		GENMASK(15, 0)
74 #define QM_CQ_OVERFLOW			0
75 #define QM_EQ_OVERFLOW			1
76 #define QM_CQE_ERROR			2
77 
78 #define QM_XQ_DEPTH_SHIFT		16
79 #define QM_XQ_DEPTH_MASK		GENMASK(15, 0)
80 
81 #define QM_DOORBELL_CMD_SQ		0
82 #define QM_DOORBELL_CMD_CQ		1
83 #define QM_DOORBELL_CMD_EQ		2
84 #define QM_DOORBELL_CMD_AEQ		3
85 
86 #define QM_DOORBELL_BASE_V1		0x340
87 #define QM_DB_CMD_SHIFT_V1		16
88 #define QM_DB_INDEX_SHIFT_V1		32
89 #define QM_DB_PRIORITY_SHIFT_V1		48
90 #define QM_PAGE_SIZE			0x0034
91 #define QM_QP_DB_INTERVAL		0x10000
92 #define QM_DB_TIMEOUT_CFG		0x100074
93 #define QM_DB_TIMEOUT_SET		0x1fffff
94 
95 #define QM_MEM_START_INIT		0x100040
96 #define QM_MEM_INIT_DONE		0x100044
97 #define QM_VFT_CFG_RDY			0x10006c
98 #define QM_VFT_CFG_OP_WR		0x100058
99 #define QM_VFT_CFG_TYPE			0x10005c
100 #define QM_VFT_CFG			0x100060
101 #define QM_VFT_CFG_OP_ENABLE		0x100054
102 #define QM_PM_CTRL			0x100148
103 #define QM_IDLE_DISABLE			BIT(9)
104 
105 #define QM_VFT_CFG_DATA_L		0x100064
106 #define QM_VFT_CFG_DATA_H		0x100068
107 #define QM_SQC_VFT_BUF_SIZE		(7ULL << 8)
108 #define QM_SQC_VFT_SQC_SIZE		(5ULL << 12)
109 #define QM_SQC_VFT_INDEX_NUMBER		(1ULL << 16)
110 #define QM_SQC_VFT_START_SQN_SHIFT	28
111 #define QM_SQC_VFT_VALID		(1ULL << 44)
112 #define QM_SQC_VFT_SQN_SHIFT		45
113 #define QM_CQC_VFT_BUF_SIZE		(7ULL << 8)
114 #define QM_CQC_VFT_SQC_SIZE		(5ULL << 12)
115 #define QM_CQC_VFT_INDEX_NUMBER		(1ULL << 16)
116 #define QM_CQC_VFT_VALID		(1ULL << 28)
117 
118 #define QM_SQC_VFT_BASE_SHIFT_V2	28
119 #define QM_SQC_VFT_BASE_MASK_V2		GENMASK(15, 0)
120 #define QM_SQC_VFT_NUM_SHIFT_V2		45
121 #define QM_SQC_VFT_NUM_MASK_V2		GENMASK(9, 0)
122 
123 #define QM_ABNORMAL_INT_SOURCE		0x100000
124 #define QM_ABNORMAL_INT_MASK		0x100004
125 #define QM_ABNORMAL_INT_MASK_VALUE	0x7fff
126 #define QM_ABNORMAL_INT_STATUS		0x100008
127 #define QM_ABNORMAL_INT_SET		0x10000c
128 #define QM_ABNORMAL_INF00		0x100010
129 #define QM_FIFO_OVERFLOW_TYPE		0xc0
130 #define QM_FIFO_OVERFLOW_TYPE_SHIFT	6
131 #define QM_FIFO_OVERFLOW_VF		0x3f
132 #define QM_ABNORMAL_INF01		0x100014
133 #define QM_DB_TIMEOUT_TYPE		0xc0
134 #define QM_DB_TIMEOUT_TYPE_SHIFT	6
135 #define QM_DB_TIMEOUT_VF		0x3f
136 #define QM_RAS_CE_ENABLE		0x1000ec
137 #define QM_RAS_FE_ENABLE		0x1000f0
138 #define QM_RAS_NFE_ENABLE		0x1000f4
139 #define QM_RAS_CE_THRESHOLD		0x1000f8
140 #define QM_RAS_CE_TIMES_PER_IRQ		1
141 #define QM_OOO_SHUTDOWN_SEL		0x1040f8
142 #define QM_ECC_MBIT			BIT(2)
143 #define QM_DB_TIMEOUT			BIT(10)
144 #define QM_OF_FIFO_OF			BIT(11)
145 
146 #define QM_RESET_WAIT_TIMEOUT		400
147 #define QM_PEH_VENDOR_ID		0x1000d8
148 #define ACC_VENDOR_ID_VALUE		0x5a5a
149 #define QM_PEH_DFX_INFO0		0x1000fc
150 #define QM_PEH_DFX_INFO1		0x100100
151 #define QM_PEH_DFX_MASK			(BIT(0) | BIT(2))
152 #define QM_PEH_MSI_FINISH_MASK		GENMASK(19, 16)
153 #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT	3
154 #define ACC_PEH_MSI_DISABLE		GENMASK(31, 0)
155 #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN	0x1
156 #define ACC_MASTER_TRANS_RETURN_RW	3
157 #define ACC_MASTER_TRANS_RETURN		0x300150
158 #define ACC_MASTER_GLOBAL_CTRL		0x300000
159 #define ACC_AM_CFG_PORT_WR_EN		0x30001c
160 #define QM_RAS_NFE_MBIT_DISABLE		~QM_ECC_MBIT
161 #define ACC_AM_ROB_ECC_INT_STS		0x300104
162 #define ACC_ROB_ECC_ERR_MULTPL		BIT(1)
163 #define QM_MSI_CAP_ENABLE		BIT(16)
164 
165 /* interfunction communication */
166 #define QM_IFC_READY_STATUS		0x100128
167 #define QM_IFC_INT_SET_P		0x100130
168 #define QM_IFC_INT_CFG			0x100134
169 #define QM_IFC_INT_SOURCE_P		0x100138
170 #define QM_IFC_INT_SOURCE_V		0x0020
171 #define QM_IFC_INT_MASK			0x0024
172 #define QM_IFC_INT_STATUS		0x0028
173 #define QM_IFC_INT_SET_V		0x002C
174 #define QM_IFC_SEND_ALL_VFS		GENMASK(6, 0)
175 #define QM_IFC_INT_SOURCE_CLR		GENMASK(63, 0)
176 #define QM_IFC_INT_SOURCE_MASK		BIT(0)
177 #define QM_IFC_INT_DISABLE		BIT(0)
178 #define QM_IFC_INT_STATUS_MASK		BIT(0)
179 #define QM_IFC_INT_SET_MASK		BIT(0)
180 #define QM_WAIT_DST_ACK			10
181 #define QM_MAX_PF_WAIT_COUNT		10
182 #define QM_MAX_VF_WAIT_COUNT		40
183 #define QM_VF_RESET_WAIT_US            20000
184 #define QM_VF_RESET_WAIT_CNT           3000
185 #define QM_VF_RESET_WAIT_TIMEOUT_US    \
186 	(QM_VF_RESET_WAIT_US * QM_VF_RESET_WAIT_CNT)
187 
188 #define POLL_PERIOD			10
189 #define POLL_TIMEOUT			1000
190 #define WAIT_PERIOD_US_MAX		200
191 #define WAIT_PERIOD_US_MIN		100
192 #define MAX_WAIT_COUNTS			1000
193 #define QM_CACHE_WB_START		0x204
194 #define QM_CACHE_WB_DONE		0x208
195 #define QM_FUNC_CAPS_REG		0x3100
196 #define QM_CAPBILITY_VERSION		GENMASK(7, 0)
197 
198 #define PCI_BAR_2			2
199 #define PCI_BAR_4			4
200 #define QMC_ALIGN(sz)			ALIGN(sz, 32)
201 
202 #define QM_DBG_READ_LEN		256
203 #define QM_PCI_COMMAND_INVALID		~0
204 #define QM_RESET_STOP_TX_OFFSET		1
205 #define QM_RESET_STOP_RX_OFFSET		2
206 
207 #define WAIT_PERIOD			20
208 #define REMOVE_WAIT_DELAY		10
209 
210 #define QM_QOS_PARAM_NUM		2
211 #define QM_QOS_MAX_VAL			1000
212 #define QM_QOS_RATE			100
213 #define QM_QOS_EXPAND_RATE		1000
214 #define QM_SHAPER_CIR_B_MASK		GENMASK(7, 0)
215 #define QM_SHAPER_CIR_U_MASK		GENMASK(10, 8)
216 #define QM_SHAPER_CIR_S_MASK		GENMASK(14, 11)
217 #define QM_SHAPER_FACTOR_CIR_U_SHIFT	8
218 #define QM_SHAPER_FACTOR_CIR_S_SHIFT	11
219 #define QM_SHAPER_FACTOR_CBS_B_SHIFT	15
220 #define QM_SHAPER_FACTOR_CBS_S_SHIFT	19
221 #define QM_SHAPER_CBS_B			1
222 #define QM_SHAPER_VFT_OFFSET		6
223 #define QM_QOS_MIN_ERROR_RATE		5
224 #define QM_SHAPER_MIN_CBS_S		8
225 #define QM_QOS_TICK			0x300U
226 #define QM_QOS_DIVISOR_CLK		0x1f40U
227 #define QM_QOS_MAX_CIR_B		200
228 #define QM_QOS_MIN_CIR_B		100
229 #define QM_QOS_MAX_CIR_U		6
230 #define QM_AUTOSUSPEND_DELAY		3000
231 
232 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \
233 	(((hop_num) << QM_CQ_HOP_NUM_SHIFT) | \
234 	((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT) | \
235 	((buf_sz) << QM_CQ_BUF_SIZE_SHIFT) | \
236 	((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
237 
238 #define QM_MK_CQC_DW3_V2(cqe_sz, cq_depth) \
239 	((((u32)cq_depth) - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
240 
241 #define QM_MK_SQC_W13(priority, orders, alg_type) \
242 	(((priority) << QM_SQ_PRIORITY_SHIFT) | \
243 	((orders) << QM_SQ_ORDERS_SHIFT) | \
244 	(((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT))
245 
246 #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \
247 	(((hop_num) << QM_SQ_HOP_NUM_SHIFT) | \
248 	((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT) | \
249 	((buf_sz) << QM_SQ_BUF_SIZE_SHIFT) | \
250 	((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
251 
252 #define QM_MK_SQC_DW3_V2(sqe_sz, sq_depth) \
253 	((((u32)sq_depth) - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
254 
255 enum vft_type {
256 	SQC_VFT = 0,
257 	CQC_VFT,
258 	SHAPER_VFT,
259 };
260 
261 enum acc_err_result {
262 	ACC_ERR_NONE,
263 	ACC_ERR_NEED_RESET,
264 	ACC_ERR_RECOVERED,
265 };
266 
267 enum qm_alg_type {
268 	ALG_TYPE_0,
269 	ALG_TYPE_1,
270 };
271 
272 enum qm_mb_cmd {
273 	QM_PF_FLR_PREPARE = 0x01,
274 	QM_PF_SRST_PREPARE,
275 	QM_PF_RESET_DONE,
276 	QM_VF_PREPARE_DONE,
277 	QM_VF_PREPARE_FAIL,
278 	QM_VF_START_DONE,
279 	QM_VF_START_FAIL,
280 	QM_PF_SET_QOS,
281 	QM_VF_GET_QOS,
282 };
283 
284 enum qm_basic_type {
285 	QM_TOTAL_QP_NUM_CAP = 0x0,
286 	QM_FUNC_MAX_QP_CAP,
287 	QM_XEQ_DEPTH_CAP,
288 	QM_QP_DEPTH_CAP,
289 	QM_EQ_IRQ_TYPE_CAP,
290 	QM_AEQ_IRQ_TYPE_CAP,
291 	QM_ABN_IRQ_TYPE_CAP,
292 	QM_PF2VF_IRQ_TYPE_CAP,
293 	QM_PF_IRQ_NUM_CAP,
294 	QM_VF_IRQ_NUM_CAP,
295 };
296 
297 static const struct hisi_qm_cap_info qm_cap_info_comm[] = {
298 	{QM_SUPPORT_DB_ISOLATION, 0x30,   0, BIT(0),  0x0, 0x0, 0x0},
299 	{QM_SUPPORT_FUNC_QOS,     0x3100, 0, BIT(8),  0x0, 0x0, 0x1},
300 	{QM_SUPPORT_STOP_QP,      0x3100, 0, BIT(9),  0x0, 0x0, 0x1},
301 	{QM_SUPPORT_MB_COMMAND,   0x3100, 0, BIT(11), 0x0, 0x0, 0x1},
302 	{QM_SUPPORT_SVA_PREFETCH, 0x3100, 0, BIT(14), 0x0, 0x0, 0x1},
303 };
304 
305 static const struct hisi_qm_cap_info qm_cap_info_pf[] = {
306 	{QM_SUPPORT_RPM, 0x3100, 0, BIT(13), 0x0, 0x0, 0x1},
307 };
308 
309 static const struct hisi_qm_cap_info qm_cap_info_vf[] = {
310 	{QM_SUPPORT_RPM, 0x3100, 0, BIT(12), 0x0, 0x0, 0x0},
311 };
312 
313 static const struct hisi_qm_cap_info qm_basic_info[] = {
314 	{QM_TOTAL_QP_NUM_CAP,   0x100158, 0,  GENMASK(10, 0), 0x1000,    0x400,     0x400},
315 	{QM_FUNC_MAX_QP_CAP,    0x100158, 11, GENMASK(10, 0), 0x1000,    0x400,     0x400},
316 	{QM_XEQ_DEPTH_CAP,      0x3104,   0,  GENMASK(31, 0), 0x800,     0x4000800, 0x4000800},
317 	{QM_QP_DEPTH_CAP,       0x3108,   0,  GENMASK(31, 0), 0x4000400, 0x4000400, 0x4000400},
318 	{QM_EQ_IRQ_TYPE_CAP,    0x310c,   0,  GENMASK(31, 0), 0x10000,   0x10000,   0x10000},
319 	{QM_AEQ_IRQ_TYPE_CAP,   0x3110,   0,  GENMASK(31, 0), 0x0,       0x10001,   0x10001},
320 	{QM_ABN_IRQ_TYPE_CAP,   0x3114,   0,  GENMASK(31, 0), 0x0,       0x10003,   0x10003},
321 	{QM_PF2VF_IRQ_TYPE_CAP, 0x3118,   0,  GENMASK(31, 0), 0x0,       0x0,       0x10002},
322 	{QM_PF_IRQ_NUM_CAP,     0x311c,   16, GENMASK(15, 0), 0x1,       0x4,       0x4},
323 	{QM_VF_IRQ_NUM_CAP,     0x311c,   0,  GENMASK(15, 0), 0x1,       0x2,       0x3},
324 };
325 
326 struct qm_mailbox {
327 	__le16 w0;
328 	__le16 queue_num;
329 	__le32 base_l;
330 	__le32 base_h;
331 	__le32 rsvd;
332 };
333 
334 struct qm_doorbell {
335 	__le16 queue_num;
336 	__le16 cmd;
337 	__le16 index;
338 	__le16 priority;
339 };
340 
341 struct hisi_qm_resource {
342 	struct hisi_qm *qm;
343 	int distance;
344 	struct list_head list;
345 };
346 
347 /**
348  * struct qm_hw_err - Structure describing the device errors
349  * @list: hardware error list
350  * @timestamp: timestamp when the error occurred
351  */
352 struct qm_hw_err {
353 	struct list_head list;
354 	unsigned long long timestamp;
355 };
356 
357 struct hisi_qm_hw_ops {
358 	int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number);
359 	void (*qm_db)(struct hisi_qm *qm, u16 qn,
360 		      u8 cmd, u16 index, u8 priority);
361 	int (*debug_init)(struct hisi_qm *qm);
362 	void (*hw_error_init)(struct hisi_qm *qm);
363 	void (*hw_error_uninit)(struct hisi_qm *qm);
364 	enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm);
365 	int (*set_msi)(struct hisi_qm *qm, bool set);
366 };
367 
368 struct hisi_qm_hw_error {
369 	u32 int_msk;
370 	const char *msg;
371 };
372 
373 static const struct hisi_qm_hw_error qm_hw_error[] = {
374 	{ .int_msk = BIT(0), .msg = "qm_axi_rresp" },
375 	{ .int_msk = BIT(1), .msg = "qm_axi_bresp" },
376 	{ .int_msk = BIT(2), .msg = "qm_ecc_mbit" },
377 	{ .int_msk = BIT(3), .msg = "qm_ecc_1bit" },
378 	{ .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" },
379 	{ .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" },
380 	{ .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" },
381 	{ .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" },
382 	{ .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" },
383 	{ .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" },
384 	{ .int_msk = BIT(10), .msg = "qm_db_timeout" },
385 	{ .int_msk = BIT(11), .msg = "qm_of_fifo_of" },
386 	{ .int_msk = BIT(12), .msg = "qm_db_random_invalid" },
387 	{ .int_msk = BIT(13), .msg = "qm_mailbox_timeout" },
388 	{ .int_msk = BIT(14), .msg = "qm_flr_timeout" },
389 	{ /* sentinel */ }
390 };
391 
392 static const char * const qm_db_timeout[] = {
393 	"sq", "cq", "eq", "aeq",
394 };
395 
396 static const char * const qm_fifo_overflow[] = {
397 	"cq", "eq", "aeq",
398 };
399 
400 static const char * const qp_s[] = {
401 	"none", "init", "start", "stop", "close",
402 };
403 
404 struct qm_typical_qos_table {
405 	u32 start;
406 	u32 end;
407 	u32 val;
408 };
409 
410 /* the qos step is 100 */
411 static struct qm_typical_qos_table shaper_cir_s[] = {
412 	{100, 100, 4},
413 	{200, 200, 3},
414 	{300, 500, 2},
415 	{600, 1000, 1},
416 	{1100, 100000, 0},
417 };
418 
419 static struct qm_typical_qos_table shaper_cbs_s[] = {
420 	{100, 200, 9},
421 	{300, 500, 11},
422 	{600, 1000, 12},
423 	{1100, 10000, 16},
424 	{10100, 25000, 17},
425 	{25100, 50000, 18},
426 	{50100, 100000, 19}
427 };
428 
429 static void qm_irqs_unregister(struct hisi_qm *qm);
430 
431 static bool qm_avail_state(struct hisi_qm *qm, enum qm_state new)
432 {
433 	enum qm_state curr = atomic_read(&qm->status.flags);
434 	bool avail = false;
435 
436 	switch (curr) {
437 	case QM_INIT:
438 		if (new == QM_START || new == QM_CLOSE)
439 			avail = true;
440 		break;
441 	case QM_START:
442 		if (new == QM_STOP)
443 			avail = true;
444 		break;
445 	case QM_STOP:
446 		if (new == QM_CLOSE || new == QM_START)
447 			avail = true;
448 		break;
449 	default:
450 		break;
451 	}
452 
453 	dev_dbg(&qm->pdev->dev, "change qm state from %s to %s\n",
454 		qm_s[curr], qm_s[new]);
455 
456 	if (!avail)
457 		dev_warn(&qm->pdev->dev, "Can not change qm state from %s to %s\n",
458 			 qm_s[curr], qm_s[new]);
459 
460 	return avail;
461 }
462 
463 static bool qm_qp_avail_state(struct hisi_qm *qm, struct hisi_qp *qp,
464 			      enum qp_state new)
465 {
466 	enum qm_state qm_curr = atomic_read(&qm->status.flags);
467 	enum qp_state qp_curr = 0;
468 	bool avail = false;
469 
470 	if (qp)
471 		qp_curr = atomic_read(&qp->qp_status.flags);
472 
473 	switch (new) {
474 	case QP_INIT:
475 		if (qm_curr == QM_START || qm_curr == QM_INIT)
476 			avail = true;
477 		break;
478 	case QP_START:
479 		if ((qm_curr == QM_START && qp_curr == QP_INIT) ||
480 		    (qm_curr == QM_START && qp_curr == QP_STOP))
481 			avail = true;
482 		break;
483 	case QP_STOP:
484 		if ((qm_curr == QM_START && qp_curr == QP_START) ||
485 		    (qp_curr == QP_INIT))
486 			avail = true;
487 		break;
488 	case QP_CLOSE:
489 		if ((qm_curr == QM_START && qp_curr == QP_INIT) ||
490 		    (qm_curr == QM_START && qp_curr == QP_STOP) ||
491 		    (qm_curr == QM_STOP && qp_curr == QP_STOP)  ||
492 		    (qm_curr == QM_STOP && qp_curr == QP_INIT))
493 			avail = true;
494 		break;
495 	default:
496 		break;
497 	}
498 
499 	dev_dbg(&qm->pdev->dev, "change qp state from %s to %s in QM %s\n",
500 		qp_s[qp_curr], qp_s[new], qm_s[qm_curr]);
501 
502 	if (!avail)
503 		dev_warn(&qm->pdev->dev,
504 			 "Can not change qp state from %s to %s in QM %s\n",
505 			 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]);
506 
507 	return avail;
508 }
509 
510 static u32 qm_get_hw_error_status(struct hisi_qm *qm)
511 {
512 	return readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
513 }
514 
515 static u32 qm_get_dev_err_status(struct hisi_qm *qm)
516 {
517 	return qm->err_ini->get_dev_hw_err_status(qm);
518 }
519 
520 /* Check if the error causes the master ooo block */
521 static bool qm_check_dev_error(struct hisi_qm *qm)
522 {
523 	u32 val, dev_val;
524 
525 	if (qm->fun_type == QM_HW_VF)
526 		return false;
527 
528 	val = qm_get_hw_error_status(qm) & qm->err_info.qm_shutdown_mask;
529 	dev_val = qm_get_dev_err_status(qm) & qm->err_info.dev_shutdown_mask;
530 
531 	return val || dev_val;
532 }
533 
534 static int qm_wait_reset_finish(struct hisi_qm *qm)
535 {
536 	int delay = 0;
537 
538 	/* All reset requests need to be queued for processing */
539 	while (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
540 		msleep(++delay);
541 		if (delay > QM_RESET_WAIT_TIMEOUT)
542 			return -EBUSY;
543 	}
544 
545 	return 0;
546 }
547 
548 static int qm_reset_prepare_ready(struct hisi_qm *qm)
549 {
550 	struct pci_dev *pdev = qm->pdev;
551 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
552 
553 	/*
554 	 * PF and VF on host doesnot support resetting at the
555 	 * same time on Kunpeng920.
556 	 */
557 	if (qm->ver < QM_HW_V3)
558 		return qm_wait_reset_finish(pf_qm);
559 
560 	return qm_wait_reset_finish(qm);
561 }
562 
563 static void qm_reset_bit_clear(struct hisi_qm *qm)
564 {
565 	struct pci_dev *pdev = qm->pdev;
566 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
567 
568 	if (qm->ver < QM_HW_V3)
569 		clear_bit(QM_RESETTING, &pf_qm->misc_ctl);
570 
571 	clear_bit(QM_RESETTING, &qm->misc_ctl);
572 }
573 
574 static void qm_mb_pre_init(struct qm_mailbox *mailbox, u8 cmd,
575 			   u64 base, u16 queue, bool op)
576 {
577 	mailbox->w0 = cpu_to_le16((cmd) |
578 		((op) ? 0x1 << QM_MB_OP_SHIFT : 0) |
579 		(0x1 << QM_MB_BUSY_SHIFT));
580 	mailbox->queue_num = cpu_to_le16(queue);
581 	mailbox->base_l = cpu_to_le32(lower_32_bits(base));
582 	mailbox->base_h = cpu_to_le32(upper_32_bits(base));
583 	mailbox->rsvd = 0;
584 }
585 
586 /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */
587 int hisi_qm_wait_mb_ready(struct hisi_qm *qm)
588 {
589 	u32 val;
590 
591 	return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE,
592 					  val, !((val >> QM_MB_BUSY_SHIFT) &
593 					  0x1), POLL_PERIOD, POLL_TIMEOUT);
594 }
595 EXPORT_SYMBOL_GPL(hisi_qm_wait_mb_ready);
596 
597 /* 128 bit should be written to hardware at one time to trigger a mailbox */
598 static void qm_mb_write(struct hisi_qm *qm, const void *src)
599 {
600 	void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE;
601 
602 #if IS_ENABLED(CONFIG_ARM64)
603 	unsigned long tmp0 = 0, tmp1 = 0;
604 #endif
605 
606 	if (!IS_ENABLED(CONFIG_ARM64)) {
607 		memcpy_toio(fun_base, src, 16);
608 		dma_wmb();
609 		return;
610 	}
611 
612 #if IS_ENABLED(CONFIG_ARM64)
613 	asm volatile("ldp %0, %1, %3\n"
614 		     "stp %0, %1, %2\n"
615 		     "dmb oshst\n"
616 		     : "=&r" (tmp0),
617 		       "=&r" (tmp1),
618 		       "+Q" (*((char __iomem *)fun_base))
619 		     : "Q" (*((char *)src))
620 		     : "memory");
621 #endif
622 }
623 
624 static int qm_mb_nolock(struct hisi_qm *qm, struct qm_mailbox *mailbox)
625 {
626 	int ret;
627 	u32 val;
628 
629 	if (unlikely(hisi_qm_wait_mb_ready(qm))) {
630 		dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n");
631 		ret = -EBUSY;
632 		goto mb_busy;
633 	}
634 
635 	qm_mb_write(qm, mailbox);
636 
637 	if (unlikely(hisi_qm_wait_mb_ready(qm))) {
638 		dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n");
639 		ret = -ETIMEDOUT;
640 		goto mb_busy;
641 	}
642 
643 	val = readl(qm->io_base + QM_MB_CMD_SEND_BASE);
644 	if (val & QM_MB_STATUS_MASK) {
645 		dev_err(&qm->pdev->dev, "QM mailbox operation failed!\n");
646 		ret = -EIO;
647 		goto mb_busy;
648 	}
649 
650 	return 0;
651 
652 mb_busy:
653 	atomic64_inc(&qm->debug.dfx.mb_err_cnt);
654 	return ret;
655 }
656 
657 int hisi_qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue,
658 	       bool op)
659 {
660 	struct qm_mailbox mailbox;
661 	int ret;
662 
663 	dev_dbg(&qm->pdev->dev, "QM mailbox request to q%u: %u-%llx\n",
664 		queue, cmd, (unsigned long long)dma_addr);
665 
666 	qm_mb_pre_init(&mailbox, cmd, dma_addr, queue, op);
667 
668 	mutex_lock(&qm->mailbox_lock);
669 	ret = qm_mb_nolock(qm, &mailbox);
670 	mutex_unlock(&qm->mailbox_lock);
671 
672 	return ret;
673 }
674 EXPORT_SYMBOL_GPL(hisi_qm_mb);
675 
676 /* op 0: set xqc information to hardware, 1: get xqc information from hardware. */
677 int qm_set_and_get_xqc(struct hisi_qm *qm, u8 cmd, void *xqc, u32 qp_id, bool op)
678 {
679 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
680 	struct qm_mailbox mailbox;
681 	dma_addr_t xqc_dma;
682 	void *tmp_xqc;
683 	size_t size;
684 	int ret;
685 
686 	switch (cmd) {
687 	case QM_MB_CMD_SQC:
688 		size = sizeof(struct qm_sqc);
689 		tmp_xqc = qm->xqc_buf.sqc;
690 		xqc_dma = qm->xqc_buf.sqc_dma;
691 		break;
692 	case QM_MB_CMD_CQC:
693 		size = sizeof(struct qm_cqc);
694 		tmp_xqc = qm->xqc_buf.cqc;
695 		xqc_dma = qm->xqc_buf.cqc_dma;
696 		break;
697 	case QM_MB_CMD_EQC:
698 		size = sizeof(struct qm_eqc);
699 		tmp_xqc = qm->xqc_buf.eqc;
700 		xqc_dma = qm->xqc_buf.eqc_dma;
701 		break;
702 	case QM_MB_CMD_AEQC:
703 		size = sizeof(struct qm_aeqc);
704 		tmp_xqc = qm->xqc_buf.aeqc;
705 		xqc_dma = qm->xqc_buf.aeqc_dma;
706 		break;
707 	}
708 
709 	/* Setting xqc will fail if master OOO is blocked. */
710 	if (qm_check_dev_error(pf_qm)) {
711 		dev_err(&qm->pdev->dev, "failed to send mailbox since qm is stop!\n");
712 		return -EIO;
713 	}
714 
715 	mutex_lock(&qm->mailbox_lock);
716 	if (!op)
717 		memcpy(tmp_xqc, xqc, size);
718 
719 	qm_mb_pre_init(&mailbox, cmd, xqc_dma, qp_id, op);
720 	ret = qm_mb_nolock(qm, &mailbox);
721 	if (!ret && op)
722 		memcpy(xqc, tmp_xqc, size);
723 
724 	mutex_unlock(&qm->mailbox_lock);
725 
726 	return ret;
727 }
728 
729 static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
730 {
731 	u64 doorbell;
732 
733 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) |
734 		   ((u64)index << QM_DB_INDEX_SHIFT_V1)  |
735 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V1);
736 
737 	writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1);
738 }
739 
740 static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
741 {
742 	void __iomem *io_base = qm->io_base;
743 	u16 randata = 0;
744 	u64 doorbell;
745 
746 	if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ)
747 		io_base = qm->db_io_base + (u64)qn * qm->db_interval +
748 			  QM_DOORBELL_SQ_CQ_BASE_V2;
749 	else
750 		io_base += QM_DOORBELL_EQ_AEQ_BASE_V2;
751 
752 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) |
753 		   ((u64)randata << QM_DB_RAND_SHIFT_V2) |
754 		   ((u64)index << QM_DB_INDEX_SHIFT_V2) |
755 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V2);
756 
757 	writeq(doorbell, io_base);
758 }
759 
760 static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
761 {
762 	dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n",
763 		qn, cmd, index);
764 
765 	qm->ops->qm_db(qm, qn, cmd, index, priority);
766 }
767 
768 static void qm_disable_clock_gate(struct hisi_qm *qm)
769 {
770 	u32 val;
771 
772 	/* if qm enables clock gating in Kunpeng930, qos will be inaccurate. */
773 	if (qm->ver < QM_HW_V3)
774 		return;
775 
776 	val = readl(qm->io_base + QM_PM_CTRL);
777 	val |= QM_IDLE_DISABLE;
778 	writel(val, qm->io_base +  QM_PM_CTRL);
779 }
780 
781 static int qm_dev_mem_reset(struct hisi_qm *qm)
782 {
783 	u32 val;
784 
785 	writel(0x1, qm->io_base + QM_MEM_START_INIT);
786 	return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val,
787 					  val & BIT(0), POLL_PERIOD,
788 					  POLL_TIMEOUT);
789 }
790 
791 /**
792  * hisi_qm_get_hw_info() - Get device information.
793  * @qm: The qm which want to get information.
794  * @info_table: Array for storing device information.
795  * @index: Index in info_table.
796  * @is_read: Whether read from reg, 0: not support read from reg.
797  *
798  * This function returns device information the caller needs.
799  */
800 u32 hisi_qm_get_hw_info(struct hisi_qm *qm,
801 			const struct hisi_qm_cap_info *info_table,
802 			u32 index, bool is_read)
803 {
804 	u32 val;
805 
806 	switch (qm->ver) {
807 	case QM_HW_V1:
808 		return info_table[index].v1_val;
809 	case QM_HW_V2:
810 		return info_table[index].v2_val;
811 	default:
812 		if (!is_read)
813 			return info_table[index].v3_val;
814 
815 		val = readl(qm->io_base + info_table[index].offset);
816 		return (val >> info_table[index].shift) & info_table[index].mask;
817 	}
818 }
819 EXPORT_SYMBOL_GPL(hisi_qm_get_hw_info);
820 
821 static void qm_get_xqc_depth(struct hisi_qm *qm, u16 *low_bits,
822 			     u16 *high_bits, enum qm_basic_type type)
823 {
824 	u32 depth;
825 
826 	depth = hisi_qm_get_hw_info(qm, qm_basic_info, type, qm->cap_ver);
827 	*low_bits = depth & QM_XQ_DEPTH_MASK;
828 	*high_bits = (depth >> QM_XQ_DEPTH_SHIFT) & QM_XQ_DEPTH_MASK;
829 }
830 
831 static u32 qm_get_irq_num(struct hisi_qm *qm)
832 {
833 	if (qm->fun_type == QM_HW_PF)
834 		return hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF_IRQ_NUM_CAP, qm->cap_ver);
835 
836 	return hisi_qm_get_hw_info(qm, qm_basic_info, QM_VF_IRQ_NUM_CAP, qm->cap_ver);
837 }
838 
839 static int qm_pm_get_sync(struct hisi_qm *qm)
840 {
841 	struct device *dev = &qm->pdev->dev;
842 	int ret;
843 
844 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
845 		return 0;
846 
847 	ret = pm_runtime_resume_and_get(dev);
848 	if (ret < 0) {
849 		dev_err(dev, "failed to get_sync(%d).\n", ret);
850 		return ret;
851 	}
852 
853 	return 0;
854 }
855 
856 static void qm_pm_put_sync(struct hisi_qm *qm)
857 {
858 	struct device *dev = &qm->pdev->dev;
859 
860 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
861 		return;
862 
863 	pm_runtime_mark_last_busy(dev);
864 	pm_runtime_put_autosuspend(dev);
865 }
866 
867 static void qm_cq_head_update(struct hisi_qp *qp)
868 {
869 	if (qp->qp_status.cq_head == qp->cq_depth - 1) {
870 		qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase;
871 		qp->qp_status.cq_head = 0;
872 	} else {
873 		qp->qp_status.cq_head++;
874 	}
875 }
876 
877 static void qm_poll_req_cb(struct hisi_qp *qp)
878 {
879 	struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
880 	struct hisi_qm *qm = qp->qm;
881 
882 	while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
883 		dma_rmb();
884 		qp->req_cb(qp, qp->sqe + qm->sqe_size *
885 			   le16_to_cpu(cqe->sq_head));
886 		qm_cq_head_update(qp);
887 		cqe = qp->cqe + qp->qp_status.cq_head;
888 		qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ,
889 		      qp->qp_status.cq_head, 0);
890 		atomic_dec(&qp->qp_status.used);
891 
892 		cond_resched();
893 	}
894 
895 	/* set c_flag */
896 	qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, qp->qp_status.cq_head, 1);
897 }
898 
899 static void qm_work_process(struct work_struct *work)
900 {
901 	struct hisi_qm_poll_data *poll_data =
902 		container_of(work, struct hisi_qm_poll_data, work);
903 	struct hisi_qm *qm = poll_data->qm;
904 	u16 eqe_num = poll_data->eqe_num;
905 	struct hisi_qp *qp;
906 	int i;
907 
908 	for (i = eqe_num - 1; i >= 0; i--) {
909 		qp = &qm->qp_array[poll_data->qp_finish_id[i]];
910 		if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP))
911 			continue;
912 
913 		if (qp->event_cb) {
914 			qp->event_cb(qp);
915 			continue;
916 		}
917 
918 		if (likely(qp->req_cb))
919 			qm_poll_req_cb(qp);
920 	}
921 }
922 
923 static void qm_get_complete_eqe_num(struct hisi_qm *qm)
924 {
925 	struct qm_eqe *eqe = qm->eqe + qm->status.eq_head;
926 	struct hisi_qm_poll_data *poll_data = NULL;
927 	u16 eq_depth = qm->eq_depth;
928 	u16 cqn, eqe_num = 0;
929 
930 	if (QM_EQE_PHASE(eqe) != qm->status.eqc_phase) {
931 		atomic64_inc(&qm->debug.dfx.err_irq_cnt);
932 		qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
933 		return;
934 	}
935 
936 	cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK;
937 	if (unlikely(cqn >= qm->qp_num))
938 		return;
939 	poll_data = &qm->poll_data[cqn];
940 
941 	while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) {
942 		cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK;
943 		poll_data->qp_finish_id[eqe_num] = cqn;
944 		eqe_num++;
945 
946 		if (qm->status.eq_head == eq_depth - 1) {
947 			qm->status.eqc_phase = !qm->status.eqc_phase;
948 			eqe = qm->eqe;
949 			qm->status.eq_head = 0;
950 		} else {
951 			eqe++;
952 			qm->status.eq_head++;
953 		}
954 
955 		if (eqe_num == (eq_depth >> 1) - 1)
956 			break;
957 	}
958 
959 	poll_data->eqe_num = eqe_num;
960 	queue_work(qm->wq, &poll_data->work);
961 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
962 }
963 
964 static irqreturn_t qm_eq_irq(int irq, void *data)
965 {
966 	struct hisi_qm *qm = data;
967 
968 	/* Get qp id of completed tasks and re-enable the interrupt */
969 	qm_get_complete_eqe_num(qm);
970 
971 	return IRQ_HANDLED;
972 }
973 
974 static irqreturn_t qm_mb_cmd_irq(int irq, void *data)
975 {
976 	struct hisi_qm *qm = data;
977 	u32 val;
978 
979 	val = readl(qm->io_base + QM_IFC_INT_STATUS);
980 	val &= QM_IFC_INT_STATUS_MASK;
981 	if (!val)
982 		return IRQ_NONE;
983 
984 	if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl)) {
985 		dev_warn(&qm->pdev->dev, "Driver is down, message cannot be processed!\n");
986 		return IRQ_HANDLED;
987 	}
988 
989 	schedule_work(&qm->cmd_process);
990 
991 	return IRQ_HANDLED;
992 }
993 
994 static void qm_set_qp_disable(struct hisi_qp *qp, int offset)
995 {
996 	u32 *addr;
997 
998 	if (qp->is_in_kernel)
999 		return;
1000 
1001 	addr = (u32 *)(qp->qdma.va + qp->qdma.size) - offset;
1002 	*addr = 1;
1003 
1004 	/* make sure setup is completed */
1005 	smp_wmb();
1006 }
1007 
1008 static void qm_disable_qp(struct hisi_qm *qm, u32 qp_id)
1009 {
1010 	struct hisi_qp *qp = &qm->qp_array[qp_id];
1011 
1012 	qm_set_qp_disable(qp, QM_RESET_STOP_TX_OFFSET);
1013 	hisi_qm_stop_qp(qp);
1014 	qm_set_qp_disable(qp, QM_RESET_STOP_RX_OFFSET);
1015 }
1016 
1017 static void qm_reset_function(struct hisi_qm *qm)
1018 {
1019 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
1020 	struct device *dev = &qm->pdev->dev;
1021 	int ret;
1022 
1023 	if (qm_check_dev_error(pf_qm))
1024 		return;
1025 
1026 	ret = qm_reset_prepare_ready(qm);
1027 	if (ret) {
1028 		dev_err(dev, "reset function not ready\n");
1029 		return;
1030 	}
1031 
1032 	ret = hisi_qm_stop(qm, QM_DOWN);
1033 	if (ret) {
1034 		dev_err(dev, "failed to stop qm when reset function\n");
1035 		goto clear_bit;
1036 	}
1037 
1038 	ret = hisi_qm_start(qm);
1039 	if (ret)
1040 		dev_err(dev, "failed to start qm when reset function\n");
1041 
1042 clear_bit:
1043 	qm_reset_bit_clear(qm);
1044 }
1045 
1046 static irqreturn_t qm_aeq_thread(int irq, void *data)
1047 {
1048 	struct hisi_qm *qm = data;
1049 	struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head;
1050 	u16 aeq_depth = qm->aeq_depth;
1051 	u32 type, qp_id;
1052 
1053 	atomic64_inc(&qm->debug.dfx.aeq_irq_cnt);
1054 
1055 	while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) {
1056 		type = (le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT) &
1057 			QM_AEQE_TYPE_MASK;
1058 		qp_id = le32_to_cpu(aeqe->dw0) & QM_AEQE_CQN_MASK;
1059 
1060 		switch (type) {
1061 		case QM_EQ_OVERFLOW:
1062 			dev_err(&qm->pdev->dev, "eq overflow, reset function\n");
1063 			qm_reset_function(qm);
1064 			return IRQ_HANDLED;
1065 		case QM_CQ_OVERFLOW:
1066 			dev_err(&qm->pdev->dev, "cq overflow, stop qp(%u)\n",
1067 				qp_id);
1068 			fallthrough;
1069 		case QM_CQE_ERROR:
1070 			qm_disable_qp(qm, qp_id);
1071 			break;
1072 		default:
1073 			dev_err(&qm->pdev->dev, "unknown error type %u\n",
1074 				type);
1075 			break;
1076 		}
1077 
1078 		if (qm->status.aeq_head == aeq_depth - 1) {
1079 			qm->status.aeqc_phase = !qm->status.aeqc_phase;
1080 			aeqe = qm->aeqe;
1081 			qm->status.aeq_head = 0;
1082 		} else {
1083 			aeqe++;
1084 			qm->status.aeq_head++;
1085 		}
1086 	}
1087 
1088 	qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
1089 
1090 	return IRQ_HANDLED;
1091 }
1092 
1093 static void qm_init_qp_status(struct hisi_qp *qp)
1094 {
1095 	struct hisi_qp_status *qp_status = &qp->qp_status;
1096 
1097 	qp_status->sq_tail = 0;
1098 	qp_status->cq_head = 0;
1099 	qp_status->cqc_phase = true;
1100 	atomic_set(&qp_status->used, 0);
1101 }
1102 
1103 static void qm_init_prefetch(struct hisi_qm *qm)
1104 {
1105 	struct device *dev = &qm->pdev->dev;
1106 	u32 page_type = 0x0;
1107 
1108 	if (!test_bit(QM_SUPPORT_SVA_PREFETCH, &qm->caps))
1109 		return;
1110 
1111 	switch (PAGE_SIZE) {
1112 	case SZ_4K:
1113 		page_type = 0x0;
1114 		break;
1115 	case SZ_16K:
1116 		page_type = 0x1;
1117 		break;
1118 	case SZ_64K:
1119 		page_type = 0x2;
1120 		break;
1121 	default:
1122 		dev_err(dev, "system page size is not support: %lu, default set to 4KB",
1123 			PAGE_SIZE);
1124 	}
1125 
1126 	writel(page_type, qm->io_base + QM_PAGE_SIZE);
1127 }
1128 
1129 /*
1130  * acc_shaper_para_calc() Get the IR value by the qos formula, the return value
1131  * is the expected qos calculated.
1132  * the formula:
1133  * IR = X Mbps if ir = 1 means IR = 100 Mbps, if ir = 10000 means = 10Gbps
1134  *
1135  *		IR_b * (2 ^ IR_u) * 8000
1136  * IR(Mbps) = -------------------------
1137  *		  Tick * (2 ^ IR_s)
1138  */
1139 static u32 acc_shaper_para_calc(u64 cir_b, u64 cir_u, u64 cir_s)
1140 {
1141 	return ((cir_b * QM_QOS_DIVISOR_CLK) * (1 << cir_u)) /
1142 					(QM_QOS_TICK * (1 << cir_s));
1143 }
1144 
1145 static u32 acc_shaper_calc_cbs_s(u32 ir)
1146 {
1147 	int table_size = ARRAY_SIZE(shaper_cbs_s);
1148 	int i;
1149 
1150 	for (i = 0; i < table_size; i++) {
1151 		if (ir >= shaper_cbs_s[i].start && ir <= shaper_cbs_s[i].end)
1152 			return shaper_cbs_s[i].val;
1153 	}
1154 
1155 	return QM_SHAPER_MIN_CBS_S;
1156 }
1157 
1158 static u32 acc_shaper_calc_cir_s(u32 ir)
1159 {
1160 	int table_size = ARRAY_SIZE(shaper_cir_s);
1161 	int i;
1162 
1163 	for (i = 0; i < table_size; i++) {
1164 		if (ir >= shaper_cir_s[i].start && ir <= shaper_cir_s[i].end)
1165 			return shaper_cir_s[i].val;
1166 	}
1167 
1168 	return 0;
1169 }
1170 
1171 static int qm_get_shaper_para(u32 ir, struct qm_shaper_factor *factor)
1172 {
1173 	u32 cir_b, cir_u, cir_s, ir_calc;
1174 	u32 error_rate;
1175 
1176 	factor->cbs_s = acc_shaper_calc_cbs_s(ir);
1177 	cir_s = acc_shaper_calc_cir_s(ir);
1178 
1179 	for (cir_b = QM_QOS_MIN_CIR_B; cir_b <= QM_QOS_MAX_CIR_B; cir_b++) {
1180 		for (cir_u = 0; cir_u <= QM_QOS_MAX_CIR_U; cir_u++) {
1181 			ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s);
1182 
1183 			error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir;
1184 			if (error_rate <= QM_QOS_MIN_ERROR_RATE) {
1185 				factor->cir_b = cir_b;
1186 				factor->cir_u = cir_u;
1187 				factor->cir_s = cir_s;
1188 				return 0;
1189 			}
1190 		}
1191 	}
1192 
1193 	return -EINVAL;
1194 }
1195 
1196 static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base,
1197 			    u32 number, struct qm_shaper_factor *factor)
1198 {
1199 	u64 tmp = 0;
1200 
1201 	if (number > 0) {
1202 		switch (type) {
1203 		case SQC_VFT:
1204 			if (qm->ver == QM_HW_V1) {
1205 				tmp = QM_SQC_VFT_BUF_SIZE	|
1206 				      QM_SQC_VFT_SQC_SIZE	|
1207 				      QM_SQC_VFT_INDEX_NUMBER	|
1208 				      QM_SQC_VFT_VALID		|
1209 				      (u64)base << QM_SQC_VFT_START_SQN_SHIFT;
1210 			} else {
1211 				tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT |
1212 				      QM_SQC_VFT_VALID |
1213 				      (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT;
1214 			}
1215 			break;
1216 		case CQC_VFT:
1217 			if (qm->ver == QM_HW_V1) {
1218 				tmp = QM_CQC_VFT_BUF_SIZE	|
1219 				      QM_CQC_VFT_SQC_SIZE	|
1220 				      QM_CQC_VFT_INDEX_NUMBER	|
1221 				      QM_CQC_VFT_VALID;
1222 			} else {
1223 				tmp = QM_CQC_VFT_VALID;
1224 			}
1225 			break;
1226 		case SHAPER_VFT:
1227 			if (factor) {
1228 				tmp = factor->cir_b |
1229 				(factor->cir_u << QM_SHAPER_FACTOR_CIR_U_SHIFT) |
1230 				(factor->cir_s << QM_SHAPER_FACTOR_CIR_S_SHIFT) |
1231 				(QM_SHAPER_CBS_B << QM_SHAPER_FACTOR_CBS_B_SHIFT) |
1232 				(factor->cbs_s << QM_SHAPER_FACTOR_CBS_S_SHIFT);
1233 			}
1234 			break;
1235 		}
1236 	}
1237 
1238 	writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L);
1239 	writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H);
1240 }
1241 
1242 static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type,
1243 			     u32 fun_num, u32 base, u32 number)
1244 {
1245 	struct qm_shaper_factor *factor = NULL;
1246 	unsigned int val;
1247 	int ret;
1248 
1249 	if (type == SHAPER_VFT && test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
1250 		factor = &qm->factor[fun_num];
1251 
1252 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
1253 					 val & BIT(0), POLL_PERIOD,
1254 					 POLL_TIMEOUT);
1255 	if (ret)
1256 		return ret;
1257 
1258 	writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR);
1259 	writel(type, qm->io_base + QM_VFT_CFG_TYPE);
1260 	if (type == SHAPER_VFT)
1261 		fun_num |= base << QM_SHAPER_VFT_OFFSET;
1262 
1263 	writel(fun_num, qm->io_base + QM_VFT_CFG);
1264 
1265 	qm_vft_data_cfg(qm, type, base, number, factor);
1266 
1267 	writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
1268 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
1269 
1270 	return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
1271 					  val & BIT(0), POLL_PERIOD,
1272 					  POLL_TIMEOUT);
1273 }
1274 
1275 static int qm_shaper_init_vft(struct hisi_qm *qm, u32 fun_num)
1276 {
1277 	u32 qos = qm->factor[fun_num].func_qos;
1278 	int ret, i;
1279 
1280 	ret = qm_get_shaper_para(qos * QM_QOS_RATE, &qm->factor[fun_num]);
1281 	if (ret) {
1282 		dev_err(&qm->pdev->dev, "failed to calculate shaper parameter!\n");
1283 		return ret;
1284 	}
1285 	writel(qm->type_rate, qm->io_base + QM_SHAPER_CFG);
1286 	for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) {
1287 		/* The base number of queue reuse for different alg type */
1288 		ret = qm_set_vft_common(qm, SHAPER_VFT, fun_num, i, 1);
1289 		if (ret)
1290 			return ret;
1291 	}
1292 
1293 	return 0;
1294 }
1295 
1296 /* The config should be conducted after qm_dev_mem_reset() */
1297 static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
1298 			      u32 number)
1299 {
1300 	int ret, i;
1301 
1302 	for (i = SQC_VFT; i <= CQC_VFT; i++) {
1303 		ret = qm_set_vft_common(qm, i, fun_num, base, number);
1304 		if (ret)
1305 			return ret;
1306 	}
1307 
1308 	/* init default shaper qos val */
1309 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) {
1310 		ret = qm_shaper_init_vft(qm, fun_num);
1311 		if (ret)
1312 			goto back_sqc_cqc;
1313 	}
1314 
1315 	return 0;
1316 back_sqc_cqc:
1317 	for (i = SQC_VFT; i <= CQC_VFT; i++)
1318 		qm_set_vft_common(qm, i, fun_num, 0, 0);
1319 
1320 	return ret;
1321 }
1322 
1323 static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number)
1324 {
1325 	u64 sqc_vft;
1326 	int ret;
1327 
1328 	ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1);
1329 	if (ret)
1330 		return ret;
1331 
1332 	sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
1333 		  ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
1334 	*base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2);
1335 	*number = (QM_SQC_VFT_NUM_MASK_V2 &
1336 		   (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1;
1337 
1338 	return 0;
1339 }
1340 
1341 static void qm_hw_error_init_v1(struct hisi_qm *qm)
1342 {
1343 	writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK);
1344 }
1345 
1346 static void qm_hw_error_cfg(struct hisi_qm *qm)
1347 {
1348 	struct hisi_qm_err_info *err_info = &qm->err_info;
1349 
1350 	qm->error_mask = err_info->nfe | err_info->ce | err_info->fe;
1351 	/* clear QM hw residual error source */
1352 	writel(qm->error_mask, qm->io_base + QM_ABNORMAL_INT_SOURCE);
1353 
1354 	/* configure error type */
1355 	writel(err_info->ce, qm->io_base + QM_RAS_CE_ENABLE);
1356 	writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD);
1357 	writel(err_info->nfe, qm->io_base + QM_RAS_NFE_ENABLE);
1358 	writel(err_info->fe, qm->io_base + QM_RAS_FE_ENABLE);
1359 }
1360 
1361 static void qm_hw_error_init_v2(struct hisi_qm *qm)
1362 {
1363 	u32 irq_unmask;
1364 
1365 	qm_hw_error_cfg(qm);
1366 
1367 	irq_unmask = ~qm->error_mask;
1368 	irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1369 	writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
1370 }
1371 
1372 static void qm_hw_error_uninit_v2(struct hisi_qm *qm)
1373 {
1374 	u32 irq_mask = qm->error_mask;
1375 
1376 	irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1377 	writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK);
1378 }
1379 
1380 static void qm_hw_error_init_v3(struct hisi_qm *qm)
1381 {
1382 	u32 irq_unmask;
1383 
1384 	qm_hw_error_cfg(qm);
1385 
1386 	/* enable close master ooo when hardware error happened */
1387 	writel(qm->err_info.qm_shutdown_mask, qm->io_base + QM_OOO_SHUTDOWN_SEL);
1388 
1389 	irq_unmask = ~qm->error_mask;
1390 	irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1391 	writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
1392 }
1393 
1394 static void qm_hw_error_uninit_v3(struct hisi_qm *qm)
1395 {
1396 	u32 irq_mask = qm->error_mask;
1397 
1398 	irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1399 	writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK);
1400 
1401 	/* disable close master ooo when hardware error happened */
1402 	writel(0x0, qm->io_base + QM_OOO_SHUTDOWN_SEL);
1403 }
1404 
1405 static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status)
1406 {
1407 	const struct hisi_qm_hw_error *err;
1408 	struct device *dev = &qm->pdev->dev;
1409 	u32 reg_val, type, vf_num;
1410 	int i;
1411 
1412 	for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) {
1413 		err = &qm_hw_error[i];
1414 		if (!(err->int_msk & error_status))
1415 			continue;
1416 
1417 		dev_err(dev, "%s [error status=0x%x] found\n",
1418 			err->msg, err->int_msk);
1419 
1420 		if (err->int_msk & QM_DB_TIMEOUT) {
1421 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF01);
1422 			type = (reg_val & QM_DB_TIMEOUT_TYPE) >>
1423 			       QM_DB_TIMEOUT_TYPE_SHIFT;
1424 			vf_num = reg_val & QM_DB_TIMEOUT_VF;
1425 			dev_err(dev, "qm %s doorbell timeout in function %u\n",
1426 				qm_db_timeout[type], vf_num);
1427 		} else if (err->int_msk & QM_OF_FIFO_OF) {
1428 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF00);
1429 			type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >>
1430 			       QM_FIFO_OVERFLOW_TYPE_SHIFT;
1431 			vf_num = reg_val & QM_FIFO_OVERFLOW_VF;
1432 
1433 			if (type < ARRAY_SIZE(qm_fifo_overflow))
1434 				dev_err(dev, "qm %s fifo overflow in function %u\n",
1435 					qm_fifo_overflow[type], vf_num);
1436 			else
1437 				dev_err(dev, "unknown error type\n");
1438 		}
1439 	}
1440 }
1441 
1442 static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm)
1443 {
1444 	u32 error_status, tmp;
1445 
1446 	/* read err sts */
1447 	tmp = readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
1448 	error_status = qm->error_mask & tmp;
1449 
1450 	if (error_status) {
1451 		if (error_status & QM_ECC_MBIT)
1452 			qm->err_status.is_qm_ecc_mbit = true;
1453 
1454 		qm_log_hw_error(qm, error_status);
1455 		if (error_status & qm->err_info.qm_reset_mask)
1456 			return ACC_ERR_NEED_RESET;
1457 
1458 		writel(error_status, qm->io_base + QM_ABNORMAL_INT_SOURCE);
1459 		writel(qm->err_info.nfe, qm->io_base + QM_RAS_NFE_ENABLE);
1460 	}
1461 
1462 	return ACC_ERR_RECOVERED;
1463 }
1464 
1465 static int qm_get_mb_cmd(struct hisi_qm *qm, u64 *msg, u16 fun_num)
1466 {
1467 	struct qm_mailbox mailbox;
1468 	int ret;
1469 
1470 	qm_mb_pre_init(&mailbox, QM_MB_CMD_DST, 0, fun_num, 0);
1471 	mutex_lock(&qm->mailbox_lock);
1472 	ret = qm_mb_nolock(qm, &mailbox);
1473 	if (ret)
1474 		goto err_unlock;
1475 
1476 	*msg = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
1477 		  ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
1478 
1479 err_unlock:
1480 	mutex_unlock(&qm->mailbox_lock);
1481 	return ret;
1482 }
1483 
1484 static void qm_clear_cmd_interrupt(struct hisi_qm *qm, u64 vf_mask)
1485 {
1486 	u32 val;
1487 
1488 	if (qm->fun_type == QM_HW_PF)
1489 		writeq(vf_mask, qm->io_base + QM_IFC_INT_SOURCE_P);
1490 
1491 	val = readl(qm->io_base + QM_IFC_INT_SOURCE_V);
1492 	val |= QM_IFC_INT_SOURCE_MASK;
1493 	writel(val, qm->io_base + QM_IFC_INT_SOURCE_V);
1494 }
1495 
1496 static void qm_handle_vf_msg(struct hisi_qm *qm, u32 vf_id)
1497 {
1498 	struct device *dev = &qm->pdev->dev;
1499 	u32 cmd;
1500 	u64 msg;
1501 	int ret;
1502 
1503 	ret = qm_get_mb_cmd(qm, &msg, vf_id);
1504 	if (ret) {
1505 		dev_err(dev, "failed to get msg from VF(%u)!\n", vf_id);
1506 		return;
1507 	}
1508 
1509 	cmd = msg & QM_MB_CMD_DATA_MASK;
1510 	switch (cmd) {
1511 	case QM_VF_PREPARE_FAIL:
1512 		dev_err(dev, "failed to stop VF(%u)!\n", vf_id);
1513 		break;
1514 	case QM_VF_START_FAIL:
1515 		dev_err(dev, "failed to start VF(%u)!\n", vf_id);
1516 		break;
1517 	case QM_VF_PREPARE_DONE:
1518 	case QM_VF_START_DONE:
1519 		break;
1520 	default:
1521 		dev_err(dev, "unsupported cmd %u sent by VF(%u)!\n", cmd, vf_id);
1522 		break;
1523 	}
1524 }
1525 
1526 static int qm_wait_vf_prepare_finish(struct hisi_qm *qm)
1527 {
1528 	struct device *dev = &qm->pdev->dev;
1529 	u32 vfs_num = qm->vfs_num;
1530 	int cnt = 0;
1531 	int ret = 0;
1532 	u64 val;
1533 	u32 i;
1534 
1535 	if (!qm->vfs_num || !test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
1536 		return 0;
1537 
1538 	while (true) {
1539 		val = readq(qm->io_base + QM_IFC_INT_SOURCE_P);
1540 		/* All VFs send command to PF, break */
1541 		if ((val & GENMASK(vfs_num, 1)) == GENMASK(vfs_num, 1))
1542 			break;
1543 
1544 		if (++cnt > QM_MAX_PF_WAIT_COUNT) {
1545 			ret = -EBUSY;
1546 			break;
1547 		}
1548 
1549 		msleep(QM_WAIT_DST_ACK);
1550 	}
1551 
1552 	/* PF check VFs msg */
1553 	for (i = 1; i <= vfs_num; i++) {
1554 		if (val & BIT(i))
1555 			qm_handle_vf_msg(qm, i);
1556 		else
1557 			dev_err(dev, "VF(%u) not ping PF!\n", i);
1558 	}
1559 
1560 	/* PF clear interrupt to ack VFs */
1561 	qm_clear_cmd_interrupt(qm, val);
1562 
1563 	return ret;
1564 }
1565 
1566 static void qm_trigger_vf_interrupt(struct hisi_qm *qm, u32 fun_num)
1567 {
1568 	u32 val;
1569 
1570 	val = readl(qm->io_base + QM_IFC_INT_CFG);
1571 	val &= ~QM_IFC_SEND_ALL_VFS;
1572 	val |= fun_num;
1573 	writel(val, qm->io_base + QM_IFC_INT_CFG);
1574 
1575 	val = readl(qm->io_base + QM_IFC_INT_SET_P);
1576 	val |= QM_IFC_INT_SET_MASK;
1577 	writel(val, qm->io_base + QM_IFC_INT_SET_P);
1578 }
1579 
1580 static void qm_trigger_pf_interrupt(struct hisi_qm *qm)
1581 {
1582 	u32 val;
1583 
1584 	val = readl(qm->io_base + QM_IFC_INT_SET_V);
1585 	val |= QM_IFC_INT_SET_MASK;
1586 	writel(val, qm->io_base + QM_IFC_INT_SET_V);
1587 }
1588 
1589 static int qm_ping_single_vf(struct hisi_qm *qm, u64 cmd, u32 fun_num)
1590 {
1591 	struct device *dev = &qm->pdev->dev;
1592 	struct qm_mailbox mailbox;
1593 	int cnt = 0;
1594 	u64 val;
1595 	int ret;
1596 
1597 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, fun_num, 0);
1598 	mutex_lock(&qm->mailbox_lock);
1599 	ret = qm_mb_nolock(qm, &mailbox);
1600 	if (ret) {
1601 		dev_err(dev, "failed to send command to vf(%u)!\n", fun_num);
1602 		goto err_unlock;
1603 	}
1604 
1605 	qm_trigger_vf_interrupt(qm, fun_num);
1606 	while (true) {
1607 		msleep(QM_WAIT_DST_ACK);
1608 		val = readq(qm->io_base + QM_IFC_READY_STATUS);
1609 		/* if VF respond, PF notifies VF successfully. */
1610 		if (!(val & BIT(fun_num)))
1611 			goto err_unlock;
1612 
1613 		if (++cnt > QM_MAX_PF_WAIT_COUNT) {
1614 			dev_err(dev, "failed to get response from VF(%u)!\n", fun_num);
1615 			ret = -ETIMEDOUT;
1616 			break;
1617 		}
1618 	}
1619 
1620 err_unlock:
1621 	mutex_unlock(&qm->mailbox_lock);
1622 	return ret;
1623 }
1624 
1625 static int qm_ping_all_vfs(struct hisi_qm *qm, u64 cmd)
1626 {
1627 	struct device *dev = &qm->pdev->dev;
1628 	u32 vfs_num = qm->vfs_num;
1629 	struct qm_mailbox mailbox;
1630 	u64 val = 0;
1631 	int cnt = 0;
1632 	int ret;
1633 	u32 i;
1634 
1635 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, QM_MB_PING_ALL_VFS, 0);
1636 	mutex_lock(&qm->mailbox_lock);
1637 	/* PF sends command to all VFs by mailbox */
1638 	ret = qm_mb_nolock(qm, &mailbox);
1639 	if (ret) {
1640 		dev_err(dev, "failed to send command to VFs!\n");
1641 		mutex_unlock(&qm->mailbox_lock);
1642 		return ret;
1643 	}
1644 
1645 	qm_trigger_vf_interrupt(qm, QM_IFC_SEND_ALL_VFS);
1646 	while (true) {
1647 		msleep(QM_WAIT_DST_ACK);
1648 		val = readq(qm->io_base + QM_IFC_READY_STATUS);
1649 		/* If all VFs acked, PF notifies VFs successfully. */
1650 		if (!(val & GENMASK(vfs_num, 1))) {
1651 			mutex_unlock(&qm->mailbox_lock);
1652 			return 0;
1653 		}
1654 
1655 		if (++cnt > QM_MAX_PF_WAIT_COUNT)
1656 			break;
1657 	}
1658 
1659 	mutex_unlock(&qm->mailbox_lock);
1660 
1661 	/* Check which vf respond timeout. */
1662 	for (i = 1; i <= vfs_num; i++) {
1663 		if (val & BIT(i))
1664 			dev_err(dev, "failed to get response from VF(%u)!\n", i);
1665 	}
1666 
1667 	return -ETIMEDOUT;
1668 }
1669 
1670 static int qm_ping_pf(struct hisi_qm *qm, u64 cmd)
1671 {
1672 	struct qm_mailbox mailbox;
1673 	int cnt = 0;
1674 	u32 val;
1675 	int ret;
1676 
1677 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, 0, 0);
1678 	mutex_lock(&qm->mailbox_lock);
1679 	ret = qm_mb_nolock(qm, &mailbox);
1680 	if (ret) {
1681 		dev_err(&qm->pdev->dev, "failed to send command to PF!\n");
1682 		goto unlock;
1683 	}
1684 
1685 	qm_trigger_pf_interrupt(qm);
1686 	/* Waiting for PF response */
1687 	while (true) {
1688 		msleep(QM_WAIT_DST_ACK);
1689 		val = readl(qm->io_base + QM_IFC_INT_SET_V);
1690 		if (!(val & QM_IFC_INT_STATUS_MASK))
1691 			break;
1692 
1693 		if (++cnt > QM_MAX_VF_WAIT_COUNT) {
1694 			ret = -ETIMEDOUT;
1695 			break;
1696 		}
1697 	}
1698 
1699 unlock:
1700 	mutex_unlock(&qm->mailbox_lock);
1701 	return ret;
1702 }
1703 
1704 static int qm_stop_qp(struct hisi_qp *qp)
1705 {
1706 	return hisi_qm_mb(qp->qm, QM_MB_CMD_STOP_QP, 0, qp->qp_id, 0);
1707 }
1708 
1709 static int qm_set_msi(struct hisi_qm *qm, bool set)
1710 {
1711 	struct pci_dev *pdev = qm->pdev;
1712 
1713 	if (set) {
1714 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
1715 				       0);
1716 	} else {
1717 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
1718 				       ACC_PEH_MSI_DISABLE);
1719 		if (qm->err_status.is_qm_ecc_mbit ||
1720 		    qm->err_status.is_dev_ecc_mbit)
1721 			return 0;
1722 
1723 		mdelay(1);
1724 		if (readl(qm->io_base + QM_PEH_DFX_INFO0))
1725 			return -EFAULT;
1726 	}
1727 
1728 	return 0;
1729 }
1730 
1731 static void qm_wait_msi_finish(struct hisi_qm *qm)
1732 {
1733 	struct pci_dev *pdev = qm->pdev;
1734 	u32 cmd = ~0;
1735 	int cnt = 0;
1736 	u32 val;
1737 	int ret;
1738 
1739 	while (true) {
1740 		pci_read_config_dword(pdev, pdev->msi_cap +
1741 				      PCI_MSI_PENDING_64, &cmd);
1742 		if (!cmd)
1743 			break;
1744 
1745 		if (++cnt > MAX_WAIT_COUNTS) {
1746 			pci_warn(pdev, "failed to empty MSI PENDING!\n");
1747 			break;
1748 		}
1749 
1750 		udelay(1);
1751 	}
1752 
1753 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO0,
1754 					 val, !(val & QM_PEH_DFX_MASK),
1755 					 POLL_PERIOD, POLL_TIMEOUT);
1756 	if (ret)
1757 		pci_warn(pdev, "failed to empty PEH MSI!\n");
1758 
1759 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO1,
1760 					 val, !(val & QM_PEH_MSI_FINISH_MASK),
1761 					 POLL_PERIOD, POLL_TIMEOUT);
1762 	if (ret)
1763 		pci_warn(pdev, "failed to finish MSI operation!\n");
1764 }
1765 
1766 static int qm_set_msi_v3(struct hisi_qm *qm, bool set)
1767 {
1768 	struct pci_dev *pdev = qm->pdev;
1769 	int ret = -ETIMEDOUT;
1770 	u32 cmd, i;
1771 
1772 	pci_read_config_dword(pdev, pdev->msi_cap, &cmd);
1773 	if (set)
1774 		cmd |= QM_MSI_CAP_ENABLE;
1775 	else
1776 		cmd &= ~QM_MSI_CAP_ENABLE;
1777 
1778 	pci_write_config_dword(pdev, pdev->msi_cap, cmd);
1779 	if (set) {
1780 		for (i = 0; i < MAX_WAIT_COUNTS; i++) {
1781 			pci_read_config_dword(pdev, pdev->msi_cap, &cmd);
1782 			if (cmd & QM_MSI_CAP_ENABLE)
1783 				return 0;
1784 
1785 			udelay(1);
1786 		}
1787 	} else {
1788 		udelay(WAIT_PERIOD_US_MIN);
1789 		qm_wait_msi_finish(qm);
1790 		ret = 0;
1791 	}
1792 
1793 	return ret;
1794 }
1795 
1796 static const struct hisi_qm_hw_ops qm_hw_ops_v1 = {
1797 	.qm_db = qm_db_v1,
1798 	.hw_error_init = qm_hw_error_init_v1,
1799 	.set_msi = qm_set_msi,
1800 };
1801 
1802 static const struct hisi_qm_hw_ops qm_hw_ops_v2 = {
1803 	.get_vft = qm_get_vft_v2,
1804 	.qm_db = qm_db_v2,
1805 	.hw_error_init = qm_hw_error_init_v2,
1806 	.hw_error_uninit = qm_hw_error_uninit_v2,
1807 	.hw_error_handle = qm_hw_error_handle_v2,
1808 	.set_msi = qm_set_msi,
1809 };
1810 
1811 static const struct hisi_qm_hw_ops qm_hw_ops_v3 = {
1812 	.get_vft = qm_get_vft_v2,
1813 	.qm_db = qm_db_v2,
1814 	.hw_error_init = qm_hw_error_init_v3,
1815 	.hw_error_uninit = qm_hw_error_uninit_v3,
1816 	.hw_error_handle = qm_hw_error_handle_v2,
1817 	.set_msi = qm_set_msi_v3,
1818 };
1819 
1820 static void *qm_get_avail_sqe(struct hisi_qp *qp)
1821 {
1822 	struct hisi_qp_status *qp_status = &qp->qp_status;
1823 	u16 sq_tail = qp_status->sq_tail;
1824 
1825 	if (unlikely(atomic_read(&qp->qp_status.used) == qp->sq_depth - 1))
1826 		return NULL;
1827 
1828 	return qp->sqe + sq_tail * qp->qm->sqe_size;
1829 }
1830 
1831 static void hisi_qm_unset_hw_reset(struct hisi_qp *qp)
1832 {
1833 	u64 *addr;
1834 
1835 	/* Use last 64 bits of DUS to reset status. */
1836 	addr = (u64 *)(qp->qdma.va + qp->qdma.size) - QM_RESET_STOP_TX_OFFSET;
1837 	*addr = 0;
1838 }
1839 
1840 static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type)
1841 {
1842 	struct device *dev = &qm->pdev->dev;
1843 	struct hisi_qp *qp;
1844 	int qp_id;
1845 
1846 	if (!qm_qp_avail_state(qm, NULL, QP_INIT))
1847 		return ERR_PTR(-EPERM);
1848 
1849 	if (qm->qp_in_used == qm->qp_num) {
1850 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
1851 				     qm->qp_num);
1852 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
1853 		return ERR_PTR(-EBUSY);
1854 	}
1855 
1856 	qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC);
1857 	if (qp_id < 0) {
1858 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
1859 				    qm->qp_num);
1860 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
1861 		return ERR_PTR(-EBUSY);
1862 	}
1863 
1864 	qp = &qm->qp_array[qp_id];
1865 	hisi_qm_unset_hw_reset(qp);
1866 	memset(qp->cqe, 0, sizeof(struct qm_cqe) * qp->cq_depth);
1867 
1868 	qp->event_cb = NULL;
1869 	qp->req_cb = NULL;
1870 	qp->qp_id = qp_id;
1871 	qp->alg_type = alg_type;
1872 	qp->is_in_kernel = true;
1873 	qm->qp_in_used++;
1874 	atomic_set(&qp->qp_status.flags, QP_INIT);
1875 
1876 	return qp;
1877 }
1878 
1879 /**
1880  * hisi_qm_create_qp() - Create a queue pair from qm.
1881  * @qm: The qm we create a qp from.
1882  * @alg_type: Accelerator specific algorithm type in sqc.
1883  *
1884  * Return created qp, negative error code if failed.
1885  */
1886 static struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type)
1887 {
1888 	struct hisi_qp *qp;
1889 	int ret;
1890 
1891 	ret = qm_pm_get_sync(qm);
1892 	if (ret)
1893 		return ERR_PTR(ret);
1894 
1895 	down_write(&qm->qps_lock);
1896 	qp = qm_create_qp_nolock(qm, alg_type);
1897 	up_write(&qm->qps_lock);
1898 
1899 	if (IS_ERR(qp))
1900 		qm_pm_put_sync(qm);
1901 
1902 	return qp;
1903 }
1904 
1905 /**
1906  * hisi_qm_release_qp() - Release a qp back to its qm.
1907  * @qp: The qp we want to release.
1908  *
1909  * This function releases the resource of a qp.
1910  */
1911 static void hisi_qm_release_qp(struct hisi_qp *qp)
1912 {
1913 	struct hisi_qm *qm = qp->qm;
1914 
1915 	down_write(&qm->qps_lock);
1916 
1917 	if (!qm_qp_avail_state(qm, qp, QP_CLOSE)) {
1918 		up_write(&qm->qps_lock);
1919 		return;
1920 	}
1921 
1922 	qm->qp_in_used--;
1923 	idr_remove(&qm->qp_idr, qp->qp_id);
1924 
1925 	up_write(&qm->qps_lock);
1926 
1927 	qm_pm_put_sync(qm);
1928 }
1929 
1930 static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
1931 {
1932 	struct hisi_qm *qm = qp->qm;
1933 	enum qm_hw_ver ver = qm->ver;
1934 	struct qm_sqc sqc = {0};
1935 
1936 	if (ver == QM_HW_V1) {
1937 		sqc.dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size));
1938 		sqc.w8 = cpu_to_le16(qp->sq_depth - 1);
1939 	} else {
1940 		sqc.dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size, qp->sq_depth));
1941 		sqc.w8 = 0; /* rand_qc */
1942 	}
1943 	sqc.w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type));
1944 	sqc.base_l = cpu_to_le32(lower_32_bits(qp->sqe_dma));
1945 	sqc.base_h = cpu_to_le32(upper_32_bits(qp->sqe_dma));
1946 	sqc.cq_num = cpu_to_le16(qp_id);
1947 	sqc.pasid = cpu_to_le16(pasid);
1948 
1949 	if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
1950 		sqc.w11 = cpu_to_le16(QM_QC_PASID_ENABLE <<
1951 				      QM_QC_PASID_ENABLE_SHIFT);
1952 
1953 	return qm_set_and_get_xqc(qm, QM_MB_CMD_SQC, &sqc, qp_id, 0);
1954 }
1955 
1956 static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
1957 {
1958 	struct hisi_qm *qm = qp->qm;
1959 	enum qm_hw_ver ver = qm->ver;
1960 	struct qm_cqc cqc = {0};
1961 
1962 	if (ver == QM_HW_V1) {
1963 		cqc.dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0, QM_QC_CQE_SIZE));
1964 		cqc.w8 = cpu_to_le16(qp->cq_depth - 1);
1965 	} else {
1966 		cqc.dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE, qp->cq_depth));
1967 		cqc.w8 = 0; /* rand_qc */
1968 	}
1969 	cqc.dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT);
1970 	cqc.base_l = cpu_to_le32(lower_32_bits(qp->cqe_dma));
1971 	cqc.base_h = cpu_to_le32(upper_32_bits(qp->cqe_dma));
1972 	cqc.pasid = cpu_to_le16(pasid);
1973 
1974 	if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
1975 		cqc.w11 = cpu_to_le16(QM_QC_PASID_ENABLE);
1976 
1977 	return qm_set_and_get_xqc(qm, QM_MB_CMD_CQC, &cqc, qp_id, 0);
1978 }
1979 
1980 static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
1981 {
1982 	int ret;
1983 
1984 	qm_init_qp_status(qp);
1985 
1986 	ret = qm_sq_ctx_cfg(qp, qp_id, pasid);
1987 	if (ret)
1988 		return ret;
1989 
1990 	return qm_cq_ctx_cfg(qp, qp_id, pasid);
1991 }
1992 
1993 static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg)
1994 {
1995 	struct hisi_qm *qm = qp->qm;
1996 	struct device *dev = &qm->pdev->dev;
1997 	int qp_id = qp->qp_id;
1998 	u32 pasid = arg;
1999 	int ret;
2000 
2001 	if (!qm_qp_avail_state(qm, qp, QP_START))
2002 		return -EPERM;
2003 
2004 	ret = qm_qp_ctx_cfg(qp, qp_id, pasid);
2005 	if (ret)
2006 		return ret;
2007 
2008 	atomic_set(&qp->qp_status.flags, QP_START);
2009 	dev_dbg(dev, "queue %d started\n", qp_id);
2010 
2011 	return 0;
2012 }
2013 
2014 /**
2015  * hisi_qm_start_qp() - Start a qp into running.
2016  * @qp: The qp we want to start to run.
2017  * @arg: Accelerator specific argument.
2018  *
2019  * After this function, qp can receive request from user. Return 0 if
2020  * successful, negative error code if failed.
2021  */
2022 int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg)
2023 {
2024 	struct hisi_qm *qm = qp->qm;
2025 	int ret;
2026 
2027 	down_write(&qm->qps_lock);
2028 	ret = qm_start_qp_nolock(qp, arg);
2029 	up_write(&qm->qps_lock);
2030 
2031 	return ret;
2032 }
2033 EXPORT_SYMBOL_GPL(hisi_qm_start_qp);
2034 
2035 /**
2036  * qp_stop_fail_cb() - call request cb.
2037  * @qp: stopped failed qp.
2038  *
2039  * Callback function should be called whether task completed or not.
2040  */
2041 static void qp_stop_fail_cb(struct hisi_qp *qp)
2042 {
2043 	int qp_used = atomic_read(&qp->qp_status.used);
2044 	u16 cur_tail = qp->qp_status.sq_tail;
2045 	u16 sq_depth = qp->sq_depth;
2046 	u16 cur_head = (cur_tail + sq_depth - qp_used) % sq_depth;
2047 	struct hisi_qm *qm = qp->qm;
2048 	u16 pos;
2049 	int i;
2050 
2051 	for (i = 0; i < qp_used; i++) {
2052 		pos = (i + cur_head) % sq_depth;
2053 		qp->req_cb(qp, qp->sqe + (u32)(qm->sqe_size * pos));
2054 		atomic_dec(&qp->qp_status.used);
2055 	}
2056 }
2057 
2058 /**
2059  * qm_drain_qp() - Drain a qp.
2060  * @qp: The qp we want to drain.
2061  *
2062  * Determine whether the queue is cleared by judging the tail pointers of
2063  * sq and cq.
2064  */
2065 static int qm_drain_qp(struct hisi_qp *qp)
2066 {
2067 	struct hisi_qm *qm = qp->qm;
2068 	struct device *dev = &qm->pdev->dev;
2069 	struct qm_sqc sqc;
2070 	struct qm_cqc cqc;
2071 	int ret, i = 0;
2072 
2073 	/* No need to judge if master OOO is blocked. */
2074 	if (qm_check_dev_error(qm))
2075 		return 0;
2076 
2077 	/* Kunpeng930 supports drain qp by device */
2078 	if (test_bit(QM_SUPPORT_STOP_QP, &qm->caps)) {
2079 		ret = qm_stop_qp(qp);
2080 		if (ret)
2081 			dev_err(dev, "Failed to stop qp(%u)!\n", qp->qp_id);
2082 		return ret;
2083 	}
2084 
2085 	while (++i) {
2086 		ret = qm_set_and_get_xqc(qm, QM_MB_CMD_SQC, &sqc, qp->qp_id, 1);
2087 		if (ret) {
2088 			dev_err_ratelimited(dev, "Failed to dump sqc!\n");
2089 			return ret;
2090 		}
2091 
2092 		ret = qm_set_and_get_xqc(qm, QM_MB_CMD_CQC, &cqc, qp->qp_id, 1);
2093 		if (ret) {
2094 			dev_err_ratelimited(dev, "Failed to dump cqc!\n");
2095 			return ret;
2096 		}
2097 
2098 		if ((sqc.tail == cqc.tail) &&
2099 		    (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc)))
2100 			break;
2101 
2102 		if (i == MAX_WAIT_COUNTS) {
2103 			dev_err(dev, "Fail to empty queue %u!\n", qp->qp_id);
2104 			return -EBUSY;
2105 		}
2106 
2107 		usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX);
2108 	}
2109 
2110 	return 0;
2111 }
2112 
2113 static int qm_stop_qp_nolock(struct hisi_qp *qp)
2114 {
2115 	struct device *dev = &qp->qm->pdev->dev;
2116 	int ret;
2117 
2118 	/*
2119 	 * It is allowed to stop and release qp when reset, If the qp is
2120 	 * stopped when reset but still want to be released then, the
2121 	 * is_resetting flag should be set negative so that this qp will not
2122 	 * be restarted after reset.
2123 	 */
2124 	if (atomic_read(&qp->qp_status.flags) == QP_STOP) {
2125 		qp->is_resetting = false;
2126 		return 0;
2127 	}
2128 
2129 	if (!qm_qp_avail_state(qp->qm, qp, QP_STOP))
2130 		return -EPERM;
2131 
2132 	atomic_set(&qp->qp_status.flags, QP_STOP);
2133 
2134 	ret = qm_drain_qp(qp);
2135 	if (ret)
2136 		dev_err(dev, "Failed to drain out data for stopping!\n");
2137 
2138 
2139 	flush_workqueue(qp->qm->wq);
2140 	if (unlikely(qp->is_resetting && atomic_read(&qp->qp_status.used)))
2141 		qp_stop_fail_cb(qp);
2142 
2143 	dev_dbg(dev, "stop queue %u!", qp->qp_id);
2144 
2145 	return 0;
2146 }
2147 
2148 /**
2149  * hisi_qm_stop_qp() - Stop a qp in qm.
2150  * @qp: The qp we want to stop.
2151  *
2152  * This function is reverse of hisi_qm_start_qp. Return 0 if successful.
2153  */
2154 int hisi_qm_stop_qp(struct hisi_qp *qp)
2155 {
2156 	int ret;
2157 
2158 	down_write(&qp->qm->qps_lock);
2159 	ret = qm_stop_qp_nolock(qp);
2160 	up_write(&qp->qm->qps_lock);
2161 
2162 	return ret;
2163 }
2164 EXPORT_SYMBOL_GPL(hisi_qm_stop_qp);
2165 
2166 /**
2167  * hisi_qp_send() - Queue up a task in the hardware queue.
2168  * @qp: The qp in which to put the message.
2169  * @msg: The message.
2170  *
2171  * This function will return -EBUSY if qp is currently full, and -EAGAIN
2172  * if qp related qm is resetting.
2173  *
2174  * Note: This function may run with qm_irq_thread and ACC reset at same time.
2175  *       It has no race with qm_irq_thread. However, during hisi_qp_send, ACC
2176  *       reset may happen, we have no lock here considering performance. This
2177  *       causes current qm_db sending fail or can not receive sended sqe. QM
2178  *       sync/async receive function should handle the error sqe. ACC reset
2179  *       done function should clear used sqe to 0.
2180  */
2181 int hisi_qp_send(struct hisi_qp *qp, const void *msg)
2182 {
2183 	struct hisi_qp_status *qp_status = &qp->qp_status;
2184 	u16 sq_tail = qp_status->sq_tail;
2185 	u16 sq_tail_next = (sq_tail + 1) % qp->sq_depth;
2186 	void *sqe = qm_get_avail_sqe(qp);
2187 
2188 	if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP ||
2189 		     atomic_read(&qp->qm->status.flags) == QM_STOP ||
2190 		     qp->is_resetting)) {
2191 		dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n");
2192 		return -EAGAIN;
2193 	}
2194 
2195 	if (!sqe)
2196 		return -EBUSY;
2197 
2198 	memcpy(sqe, msg, qp->qm->sqe_size);
2199 
2200 	qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0);
2201 	atomic_inc(&qp->qp_status.used);
2202 	qp_status->sq_tail = sq_tail_next;
2203 
2204 	return 0;
2205 }
2206 EXPORT_SYMBOL_GPL(hisi_qp_send);
2207 
2208 static void hisi_qm_cache_wb(struct hisi_qm *qm)
2209 {
2210 	unsigned int val;
2211 
2212 	if (qm->ver == QM_HW_V1)
2213 		return;
2214 
2215 	writel(0x1, qm->io_base + QM_CACHE_WB_START);
2216 	if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE,
2217 				       val, val & BIT(0), POLL_PERIOD,
2218 				       POLL_TIMEOUT))
2219 		dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n");
2220 }
2221 
2222 static void qm_qp_event_notifier(struct hisi_qp *qp)
2223 {
2224 	wake_up_interruptible(&qp->uacce_q->wait);
2225 }
2226 
2227  /* This function returns free number of qp in qm. */
2228 static int hisi_qm_get_available_instances(struct uacce_device *uacce)
2229 {
2230 	struct hisi_qm *qm = uacce->priv;
2231 	int ret;
2232 
2233 	down_read(&qm->qps_lock);
2234 	ret = qm->qp_num - qm->qp_in_used;
2235 	up_read(&qm->qps_lock);
2236 
2237 	return ret;
2238 }
2239 
2240 static void hisi_qm_set_hw_reset(struct hisi_qm *qm, int offset)
2241 {
2242 	int i;
2243 
2244 	for (i = 0; i < qm->qp_num; i++)
2245 		qm_set_qp_disable(&qm->qp_array[i], offset);
2246 }
2247 
2248 static int hisi_qm_uacce_get_queue(struct uacce_device *uacce,
2249 				   unsigned long arg,
2250 				   struct uacce_queue *q)
2251 {
2252 	struct hisi_qm *qm = uacce->priv;
2253 	struct hisi_qp *qp;
2254 	u8 alg_type = 0;
2255 
2256 	qp = hisi_qm_create_qp(qm, alg_type);
2257 	if (IS_ERR(qp))
2258 		return PTR_ERR(qp);
2259 
2260 	q->priv = qp;
2261 	q->uacce = uacce;
2262 	qp->uacce_q = q;
2263 	qp->event_cb = qm_qp_event_notifier;
2264 	qp->pasid = arg;
2265 	qp->is_in_kernel = false;
2266 
2267 	return 0;
2268 }
2269 
2270 static void hisi_qm_uacce_put_queue(struct uacce_queue *q)
2271 {
2272 	struct hisi_qp *qp = q->priv;
2273 
2274 	hisi_qm_release_qp(qp);
2275 }
2276 
2277 /* map sq/cq/doorbell to user space */
2278 static int hisi_qm_uacce_mmap(struct uacce_queue *q,
2279 			      struct vm_area_struct *vma,
2280 			      struct uacce_qfile_region *qfr)
2281 {
2282 	struct hisi_qp *qp = q->priv;
2283 	struct hisi_qm *qm = qp->qm;
2284 	resource_size_t phys_base = qm->db_phys_base +
2285 				    qp->qp_id * qm->db_interval;
2286 	size_t sz = vma->vm_end - vma->vm_start;
2287 	struct pci_dev *pdev = qm->pdev;
2288 	struct device *dev = &pdev->dev;
2289 	unsigned long vm_pgoff;
2290 	int ret;
2291 
2292 	switch (qfr->type) {
2293 	case UACCE_QFRT_MMIO:
2294 		if (qm->ver == QM_HW_V1) {
2295 			if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR)
2296 				return -EINVAL;
2297 		} else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) {
2298 			if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR +
2299 			    QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE))
2300 				return -EINVAL;
2301 		} else {
2302 			if (sz > qm->db_interval)
2303 				return -EINVAL;
2304 		}
2305 
2306 		vm_flags_set(vma, VM_IO);
2307 
2308 		return remap_pfn_range(vma, vma->vm_start,
2309 				       phys_base >> PAGE_SHIFT,
2310 				       sz, pgprot_noncached(vma->vm_page_prot));
2311 	case UACCE_QFRT_DUS:
2312 		if (sz != qp->qdma.size)
2313 			return -EINVAL;
2314 
2315 		/*
2316 		 * dma_mmap_coherent() requires vm_pgoff as 0
2317 		 * restore vm_pfoff to initial value for mmap()
2318 		 */
2319 		vm_pgoff = vma->vm_pgoff;
2320 		vma->vm_pgoff = 0;
2321 		ret = dma_mmap_coherent(dev, vma, qp->qdma.va,
2322 					qp->qdma.dma, sz);
2323 		vma->vm_pgoff = vm_pgoff;
2324 		return ret;
2325 
2326 	default:
2327 		return -EINVAL;
2328 	}
2329 }
2330 
2331 static int hisi_qm_uacce_start_queue(struct uacce_queue *q)
2332 {
2333 	struct hisi_qp *qp = q->priv;
2334 
2335 	return hisi_qm_start_qp(qp, qp->pasid);
2336 }
2337 
2338 static void hisi_qm_uacce_stop_queue(struct uacce_queue *q)
2339 {
2340 	hisi_qm_stop_qp(q->priv);
2341 }
2342 
2343 static int hisi_qm_is_q_updated(struct uacce_queue *q)
2344 {
2345 	struct hisi_qp *qp = q->priv;
2346 	struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
2347 	int updated = 0;
2348 
2349 	while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
2350 		/* make sure to read data from memory */
2351 		dma_rmb();
2352 		qm_cq_head_update(qp);
2353 		cqe = qp->cqe + qp->qp_status.cq_head;
2354 		updated = 1;
2355 	}
2356 
2357 	return updated;
2358 }
2359 
2360 static void qm_set_sqctype(struct uacce_queue *q, u16 type)
2361 {
2362 	struct hisi_qm *qm = q->uacce->priv;
2363 	struct hisi_qp *qp = q->priv;
2364 
2365 	down_write(&qm->qps_lock);
2366 	qp->alg_type = type;
2367 	up_write(&qm->qps_lock);
2368 }
2369 
2370 static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd,
2371 				unsigned long arg)
2372 {
2373 	struct hisi_qp *qp = q->priv;
2374 	struct hisi_qp_info qp_info;
2375 	struct hisi_qp_ctx qp_ctx;
2376 
2377 	if (cmd == UACCE_CMD_QM_SET_QP_CTX) {
2378 		if (copy_from_user(&qp_ctx, (void __user *)arg,
2379 				   sizeof(struct hisi_qp_ctx)))
2380 			return -EFAULT;
2381 
2382 		if (qp_ctx.qc_type != 0 && qp_ctx.qc_type != 1)
2383 			return -EINVAL;
2384 
2385 		qm_set_sqctype(q, qp_ctx.qc_type);
2386 		qp_ctx.id = qp->qp_id;
2387 
2388 		if (copy_to_user((void __user *)arg, &qp_ctx,
2389 				 sizeof(struct hisi_qp_ctx)))
2390 			return -EFAULT;
2391 
2392 		return 0;
2393 	} else if (cmd == UACCE_CMD_QM_SET_QP_INFO) {
2394 		if (copy_from_user(&qp_info, (void __user *)arg,
2395 				   sizeof(struct hisi_qp_info)))
2396 			return -EFAULT;
2397 
2398 		qp_info.sqe_size = qp->qm->sqe_size;
2399 		qp_info.sq_depth = qp->sq_depth;
2400 		qp_info.cq_depth = qp->cq_depth;
2401 
2402 		if (copy_to_user((void __user *)arg, &qp_info,
2403 				  sizeof(struct hisi_qp_info)))
2404 			return -EFAULT;
2405 
2406 		return 0;
2407 	}
2408 
2409 	return -EINVAL;
2410 }
2411 
2412 /**
2413  * qm_hw_err_isolate() - Try to set the isolation status of the uacce device
2414  * according to user's configuration of error threshold.
2415  * @qm: the uacce device
2416  */
2417 static int qm_hw_err_isolate(struct hisi_qm *qm)
2418 {
2419 	struct qm_hw_err *err, *tmp, *hw_err;
2420 	struct qm_err_isolate *isolate;
2421 	u32 count = 0;
2422 
2423 	isolate = &qm->isolate_data;
2424 
2425 #define SECONDS_PER_HOUR	3600
2426 
2427 	/* All the hw errs are processed by PF driver */
2428 	if (qm->uacce->is_vf || isolate->is_isolate || !isolate->err_threshold)
2429 		return 0;
2430 
2431 	hw_err = kzalloc(sizeof(*hw_err), GFP_KERNEL);
2432 	if (!hw_err)
2433 		return -ENOMEM;
2434 
2435 	/*
2436 	 * Time-stamp every slot AER error. Then check the AER error log when the
2437 	 * next device AER error occurred. if the device slot AER error count exceeds
2438 	 * the setting error threshold in one hour, the isolated state will be set
2439 	 * to true. And the AER error logs that exceed one hour will be cleared.
2440 	 */
2441 	mutex_lock(&isolate->isolate_lock);
2442 	hw_err->timestamp = jiffies;
2443 	list_for_each_entry_safe(err, tmp, &isolate->qm_hw_errs, list) {
2444 		if ((hw_err->timestamp - err->timestamp) / HZ >
2445 		    SECONDS_PER_HOUR) {
2446 			list_del(&err->list);
2447 			kfree(err);
2448 		} else {
2449 			count++;
2450 		}
2451 	}
2452 	list_add(&hw_err->list, &isolate->qm_hw_errs);
2453 	mutex_unlock(&isolate->isolate_lock);
2454 
2455 	if (count >= isolate->err_threshold)
2456 		isolate->is_isolate = true;
2457 
2458 	return 0;
2459 }
2460 
2461 static void qm_hw_err_destroy(struct hisi_qm *qm)
2462 {
2463 	struct qm_hw_err *err, *tmp;
2464 
2465 	mutex_lock(&qm->isolate_data.isolate_lock);
2466 	list_for_each_entry_safe(err, tmp, &qm->isolate_data.qm_hw_errs, list) {
2467 		list_del(&err->list);
2468 		kfree(err);
2469 	}
2470 	mutex_unlock(&qm->isolate_data.isolate_lock);
2471 }
2472 
2473 static enum uacce_dev_state hisi_qm_get_isolate_state(struct uacce_device *uacce)
2474 {
2475 	struct hisi_qm *qm = uacce->priv;
2476 	struct hisi_qm *pf_qm;
2477 
2478 	if (uacce->is_vf)
2479 		pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
2480 	else
2481 		pf_qm = qm;
2482 
2483 	return pf_qm->isolate_data.is_isolate ?
2484 			UACCE_DEV_ISOLATE : UACCE_DEV_NORMAL;
2485 }
2486 
2487 static int hisi_qm_isolate_threshold_write(struct uacce_device *uacce, u32 num)
2488 {
2489 	struct hisi_qm *qm = uacce->priv;
2490 
2491 	/* Must be set by PF */
2492 	if (uacce->is_vf)
2493 		return -EPERM;
2494 
2495 	if (qm->isolate_data.is_isolate)
2496 		return -EPERM;
2497 
2498 	qm->isolate_data.err_threshold = num;
2499 
2500 	/* After the policy is updated, need to reset the hardware err list */
2501 	qm_hw_err_destroy(qm);
2502 
2503 	return 0;
2504 }
2505 
2506 static u32 hisi_qm_isolate_threshold_read(struct uacce_device *uacce)
2507 {
2508 	struct hisi_qm *qm = uacce->priv;
2509 	struct hisi_qm *pf_qm;
2510 
2511 	if (uacce->is_vf) {
2512 		pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
2513 		return pf_qm->isolate_data.err_threshold;
2514 	}
2515 
2516 	return qm->isolate_data.err_threshold;
2517 }
2518 
2519 static const struct uacce_ops uacce_qm_ops = {
2520 	.get_available_instances = hisi_qm_get_available_instances,
2521 	.get_queue = hisi_qm_uacce_get_queue,
2522 	.put_queue = hisi_qm_uacce_put_queue,
2523 	.start_queue = hisi_qm_uacce_start_queue,
2524 	.stop_queue = hisi_qm_uacce_stop_queue,
2525 	.mmap = hisi_qm_uacce_mmap,
2526 	.ioctl = hisi_qm_uacce_ioctl,
2527 	.is_q_updated = hisi_qm_is_q_updated,
2528 	.get_isolate_state = hisi_qm_get_isolate_state,
2529 	.isolate_err_threshold_write = hisi_qm_isolate_threshold_write,
2530 	.isolate_err_threshold_read = hisi_qm_isolate_threshold_read,
2531 };
2532 
2533 static void qm_remove_uacce(struct hisi_qm *qm)
2534 {
2535 	struct uacce_device *uacce = qm->uacce;
2536 
2537 	if (qm->use_sva) {
2538 		qm_hw_err_destroy(qm);
2539 		uacce_remove(uacce);
2540 		qm->uacce = NULL;
2541 	}
2542 }
2543 
2544 static int qm_alloc_uacce(struct hisi_qm *qm)
2545 {
2546 	struct pci_dev *pdev = qm->pdev;
2547 	struct uacce_device *uacce;
2548 	unsigned long mmio_page_nr;
2549 	unsigned long dus_page_nr;
2550 	u16 sq_depth, cq_depth;
2551 	struct uacce_interface interface = {
2552 		.flags = UACCE_DEV_SVA,
2553 		.ops = &uacce_qm_ops,
2554 	};
2555 	int ret;
2556 
2557 	ret = strscpy(interface.name, dev_driver_string(&pdev->dev),
2558 		      sizeof(interface.name));
2559 	if (ret < 0)
2560 		return -ENAMETOOLONG;
2561 
2562 	uacce = uacce_alloc(&pdev->dev, &interface);
2563 	if (IS_ERR(uacce))
2564 		return PTR_ERR(uacce);
2565 
2566 	if (uacce->flags & UACCE_DEV_SVA) {
2567 		qm->use_sva = true;
2568 	} else {
2569 		/* only consider sva case */
2570 		qm_remove_uacce(qm);
2571 		return -EINVAL;
2572 	}
2573 
2574 	uacce->is_vf = pdev->is_virtfn;
2575 	uacce->priv = qm;
2576 
2577 	if (qm->ver == QM_HW_V1)
2578 		uacce->api_ver = HISI_QM_API_VER_BASE;
2579 	else if (qm->ver == QM_HW_V2)
2580 		uacce->api_ver = HISI_QM_API_VER2_BASE;
2581 	else
2582 		uacce->api_ver = HISI_QM_API_VER3_BASE;
2583 
2584 	if (qm->ver == QM_HW_V1)
2585 		mmio_page_nr = QM_DOORBELL_PAGE_NR;
2586 	else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
2587 		mmio_page_nr = QM_DOORBELL_PAGE_NR +
2588 			QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE;
2589 	else
2590 		mmio_page_nr = qm->db_interval / PAGE_SIZE;
2591 
2592 	qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP);
2593 
2594 	/* Add one more page for device or qp status */
2595 	dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * sq_depth +
2596 		       sizeof(struct qm_cqe) * cq_depth  + PAGE_SIZE) >>
2597 					 PAGE_SHIFT;
2598 
2599 	uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr;
2600 	uacce->qf_pg_num[UACCE_QFRT_DUS]  = dus_page_nr;
2601 
2602 	qm->uacce = uacce;
2603 	INIT_LIST_HEAD(&qm->isolate_data.qm_hw_errs);
2604 	mutex_init(&qm->isolate_data.isolate_lock);
2605 
2606 	return 0;
2607 }
2608 
2609 /**
2610  * qm_frozen() - Try to froze QM to cut continuous queue request. If
2611  * there is user on the QM, return failure without doing anything.
2612  * @qm: The qm needed to be fronzen.
2613  *
2614  * This function frozes QM, then we can do SRIOV disabling.
2615  */
2616 static int qm_frozen(struct hisi_qm *qm)
2617 {
2618 	if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl))
2619 		return 0;
2620 
2621 	down_write(&qm->qps_lock);
2622 
2623 	if (!qm->qp_in_used) {
2624 		qm->qp_in_used = qm->qp_num;
2625 		up_write(&qm->qps_lock);
2626 		set_bit(QM_DRIVER_REMOVING, &qm->misc_ctl);
2627 		return 0;
2628 	}
2629 
2630 	up_write(&qm->qps_lock);
2631 
2632 	return -EBUSY;
2633 }
2634 
2635 static int qm_try_frozen_vfs(struct pci_dev *pdev,
2636 			     struct hisi_qm_list *qm_list)
2637 {
2638 	struct hisi_qm *qm, *vf_qm;
2639 	struct pci_dev *dev;
2640 	int ret = 0;
2641 
2642 	if (!qm_list || !pdev)
2643 		return -EINVAL;
2644 
2645 	/* Try to frozen all the VFs as disable SRIOV */
2646 	mutex_lock(&qm_list->lock);
2647 	list_for_each_entry(qm, &qm_list->list, list) {
2648 		dev = qm->pdev;
2649 		if (dev == pdev)
2650 			continue;
2651 		if (pci_physfn(dev) == pdev) {
2652 			vf_qm = pci_get_drvdata(dev);
2653 			ret = qm_frozen(vf_qm);
2654 			if (ret)
2655 				goto frozen_fail;
2656 		}
2657 	}
2658 
2659 frozen_fail:
2660 	mutex_unlock(&qm_list->lock);
2661 
2662 	return ret;
2663 }
2664 
2665 /**
2666  * hisi_qm_wait_task_finish() - Wait until the task is finished
2667  * when removing the driver.
2668  * @qm: The qm needed to wait for the task to finish.
2669  * @qm_list: The list of all available devices.
2670  */
2671 void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
2672 {
2673 	while (qm_frozen(qm) ||
2674 	       ((qm->fun_type == QM_HW_PF) &&
2675 	       qm_try_frozen_vfs(qm->pdev, qm_list))) {
2676 		msleep(WAIT_PERIOD);
2677 	}
2678 
2679 	while (test_bit(QM_RST_SCHED, &qm->misc_ctl) ||
2680 	       test_bit(QM_RESETTING, &qm->misc_ctl))
2681 		msleep(WAIT_PERIOD);
2682 
2683 	if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
2684 		flush_work(&qm->cmd_process);
2685 
2686 	udelay(REMOVE_WAIT_DELAY);
2687 }
2688 EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish);
2689 
2690 static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num)
2691 {
2692 	struct device *dev = &qm->pdev->dev;
2693 	struct qm_dma *qdma;
2694 	int i;
2695 
2696 	for (i = num - 1; i >= 0; i--) {
2697 		qdma = &qm->qp_array[i].qdma;
2698 		dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma);
2699 		kfree(qm->poll_data[i].qp_finish_id);
2700 	}
2701 
2702 	kfree(qm->poll_data);
2703 	kfree(qm->qp_array);
2704 }
2705 
2706 static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id,
2707 			       u16 sq_depth, u16 cq_depth)
2708 {
2709 	struct device *dev = &qm->pdev->dev;
2710 	size_t off = qm->sqe_size * sq_depth;
2711 	struct hisi_qp *qp;
2712 	int ret = -ENOMEM;
2713 
2714 	qm->poll_data[id].qp_finish_id = kcalloc(qm->qp_num, sizeof(u16),
2715 						 GFP_KERNEL);
2716 	if (!qm->poll_data[id].qp_finish_id)
2717 		return -ENOMEM;
2718 
2719 	qp = &qm->qp_array[id];
2720 	qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma,
2721 					 GFP_KERNEL);
2722 	if (!qp->qdma.va)
2723 		goto err_free_qp_finish_id;
2724 
2725 	qp->sqe = qp->qdma.va;
2726 	qp->sqe_dma = qp->qdma.dma;
2727 	qp->cqe = qp->qdma.va + off;
2728 	qp->cqe_dma = qp->qdma.dma + off;
2729 	qp->qdma.size = dma_size;
2730 	qp->sq_depth = sq_depth;
2731 	qp->cq_depth = cq_depth;
2732 	qp->qm = qm;
2733 	qp->qp_id = id;
2734 
2735 	return 0;
2736 
2737 err_free_qp_finish_id:
2738 	kfree(qm->poll_data[id].qp_finish_id);
2739 	return ret;
2740 }
2741 
2742 static void hisi_qm_pre_init(struct hisi_qm *qm)
2743 {
2744 	struct pci_dev *pdev = qm->pdev;
2745 
2746 	if (qm->ver == QM_HW_V1)
2747 		qm->ops = &qm_hw_ops_v1;
2748 	else if (qm->ver == QM_HW_V2)
2749 		qm->ops = &qm_hw_ops_v2;
2750 	else
2751 		qm->ops = &qm_hw_ops_v3;
2752 
2753 	pci_set_drvdata(pdev, qm);
2754 	mutex_init(&qm->mailbox_lock);
2755 	init_rwsem(&qm->qps_lock);
2756 	qm->qp_in_used = 0;
2757 	if (test_bit(QM_SUPPORT_RPM, &qm->caps)) {
2758 		if (!acpi_device_power_manageable(ACPI_COMPANION(&pdev->dev)))
2759 			dev_info(&pdev->dev, "_PS0 and _PR0 are not defined");
2760 	}
2761 }
2762 
2763 static void qm_cmd_uninit(struct hisi_qm *qm)
2764 {
2765 	u32 val;
2766 
2767 	if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
2768 		return;
2769 
2770 	val = readl(qm->io_base + QM_IFC_INT_MASK);
2771 	val |= QM_IFC_INT_DISABLE;
2772 	writel(val, qm->io_base + QM_IFC_INT_MASK);
2773 }
2774 
2775 static void qm_cmd_init(struct hisi_qm *qm)
2776 {
2777 	u32 val;
2778 
2779 	if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
2780 		return;
2781 
2782 	/* Clear communication interrupt source */
2783 	qm_clear_cmd_interrupt(qm, QM_IFC_INT_SOURCE_CLR);
2784 
2785 	/* Enable pf to vf communication reg. */
2786 	val = readl(qm->io_base + QM_IFC_INT_MASK);
2787 	val &= ~QM_IFC_INT_DISABLE;
2788 	writel(val, qm->io_base + QM_IFC_INT_MASK);
2789 }
2790 
2791 static void qm_put_pci_res(struct hisi_qm *qm)
2792 {
2793 	struct pci_dev *pdev = qm->pdev;
2794 
2795 	if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
2796 		iounmap(qm->db_io_base);
2797 
2798 	iounmap(qm->io_base);
2799 	pci_release_mem_regions(pdev);
2800 }
2801 
2802 static void hisi_qm_pci_uninit(struct hisi_qm *qm)
2803 {
2804 	struct pci_dev *pdev = qm->pdev;
2805 
2806 	pci_free_irq_vectors(pdev);
2807 	qm_put_pci_res(qm);
2808 	pci_disable_device(pdev);
2809 }
2810 
2811 static void hisi_qm_set_state(struct hisi_qm *qm, u8 state)
2812 {
2813 	if (qm->ver > QM_HW_V2 && qm->fun_type == QM_HW_VF)
2814 		writel(state, qm->io_base + QM_VF_STATE);
2815 }
2816 
2817 static void hisi_qm_unint_work(struct hisi_qm *qm)
2818 {
2819 	destroy_workqueue(qm->wq);
2820 }
2821 
2822 static void hisi_qm_free_rsv_buf(struct hisi_qm *qm)
2823 {
2824 	struct qm_dma *xqc_dma = &qm->xqc_buf.qcdma;
2825 	struct device *dev = &qm->pdev->dev;
2826 
2827 	dma_free_coherent(dev, xqc_dma->size, xqc_dma->va, xqc_dma->dma);
2828 }
2829 
2830 static void hisi_qm_memory_uninit(struct hisi_qm *qm)
2831 {
2832 	struct device *dev = &qm->pdev->dev;
2833 
2834 	hisi_qp_memory_uninit(qm, qm->qp_num);
2835 	hisi_qm_free_rsv_buf(qm);
2836 	if (qm->qdma.va) {
2837 		hisi_qm_cache_wb(qm);
2838 		dma_free_coherent(dev, qm->qdma.size,
2839 				  qm->qdma.va, qm->qdma.dma);
2840 	}
2841 
2842 	idr_destroy(&qm->qp_idr);
2843 
2844 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
2845 		kfree(qm->factor);
2846 }
2847 
2848 /**
2849  * hisi_qm_uninit() - Uninitialize qm.
2850  * @qm: The qm needed uninit.
2851  *
2852  * This function uninits qm related device resources.
2853  */
2854 void hisi_qm_uninit(struct hisi_qm *qm)
2855 {
2856 	qm_cmd_uninit(qm);
2857 	hisi_qm_unint_work(qm);
2858 	down_write(&qm->qps_lock);
2859 
2860 	if (!qm_avail_state(qm, QM_CLOSE)) {
2861 		up_write(&qm->qps_lock);
2862 		return;
2863 	}
2864 
2865 	hisi_qm_memory_uninit(qm);
2866 	hisi_qm_set_state(qm, QM_NOT_READY);
2867 	up_write(&qm->qps_lock);
2868 
2869 	qm_irqs_unregister(qm);
2870 	hisi_qm_pci_uninit(qm);
2871 	if (qm->use_sva) {
2872 		uacce_remove(qm->uacce);
2873 		qm->uacce = NULL;
2874 	}
2875 }
2876 EXPORT_SYMBOL_GPL(hisi_qm_uninit);
2877 
2878 /**
2879  * hisi_qm_get_vft() - Get vft from a qm.
2880  * @qm: The qm we want to get its vft.
2881  * @base: The base number of queue in vft.
2882  * @number: The number of queues in vft.
2883  *
2884  * We can allocate multiple queues to a qm by configuring virtual function
2885  * table. We get related configures by this function. Normally, we call this
2886  * function in VF driver to get the queue information.
2887  *
2888  * qm hw v1 does not support this interface.
2889  */
2890 static int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number)
2891 {
2892 	if (!base || !number)
2893 		return -EINVAL;
2894 
2895 	if (!qm->ops->get_vft) {
2896 		dev_err(&qm->pdev->dev, "Don't support vft read!\n");
2897 		return -EINVAL;
2898 	}
2899 
2900 	return qm->ops->get_vft(qm, base, number);
2901 }
2902 
2903 /**
2904  * hisi_qm_set_vft() - Set vft to a qm.
2905  * @qm: The qm we want to set its vft.
2906  * @fun_num: The function number.
2907  * @base: The base number of queue in vft.
2908  * @number: The number of queues in vft.
2909  *
2910  * This function is alway called in PF driver, it is used to assign queues
2911  * among PF and VFs.
2912  *
2913  * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1)
2914  * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1)
2915  * (VF function number 0x2)
2916  */
2917 static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
2918 		    u32 number)
2919 {
2920 	u32 max_q_num = qm->ctrl_qp_num;
2921 
2922 	if (base >= max_q_num || number > max_q_num ||
2923 	    (base + number) > max_q_num)
2924 		return -EINVAL;
2925 
2926 	return qm_set_sqc_cqc_vft(qm, fun_num, base, number);
2927 }
2928 
2929 static void qm_init_eq_aeq_status(struct hisi_qm *qm)
2930 {
2931 	struct hisi_qm_status *status = &qm->status;
2932 
2933 	status->eq_head = 0;
2934 	status->aeq_head = 0;
2935 	status->eqc_phase = true;
2936 	status->aeqc_phase = true;
2937 }
2938 
2939 static void qm_enable_eq_aeq_interrupts(struct hisi_qm *qm)
2940 {
2941 	/* Clear eq/aeq interrupt source */
2942 	qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
2943 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
2944 
2945 	writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK);
2946 	writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK);
2947 }
2948 
2949 static void qm_disable_eq_aeq_interrupts(struct hisi_qm *qm)
2950 {
2951 	writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK);
2952 	writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK);
2953 }
2954 
2955 static int qm_eq_ctx_cfg(struct hisi_qm *qm)
2956 {
2957 	struct qm_eqc eqc = {0};
2958 
2959 	eqc.base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma));
2960 	eqc.base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma));
2961 	if (qm->ver == QM_HW_V1)
2962 		eqc.dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE);
2963 	eqc.dw6 = cpu_to_le32(((u32)qm->eq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT));
2964 
2965 	return qm_set_and_get_xqc(qm, QM_MB_CMD_EQC, &eqc, 0, 0);
2966 }
2967 
2968 static int qm_aeq_ctx_cfg(struct hisi_qm *qm)
2969 {
2970 	struct qm_aeqc aeqc = {0};
2971 
2972 	aeqc.base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma));
2973 	aeqc.base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma));
2974 	aeqc.dw6 = cpu_to_le32(((u32)qm->aeq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT));
2975 
2976 	return qm_set_and_get_xqc(qm, QM_MB_CMD_AEQC, &aeqc, 0, 0);
2977 }
2978 
2979 static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm)
2980 {
2981 	struct device *dev = &qm->pdev->dev;
2982 	int ret;
2983 
2984 	qm_init_eq_aeq_status(qm);
2985 
2986 	ret = qm_eq_ctx_cfg(qm);
2987 	if (ret) {
2988 		dev_err(dev, "Set eqc failed!\n");
2989 		return ret;
2990 	}
2991 
2992 	return qm_aeq_ctx_cfg(qm);
2993 }
2994 
2995 static int __hisi_qm_start(struct hisi_qm *qm)
2996 {
2997 	int ret;
2998 
2999 	WARN_ON(!qm->qdma.va);
3000 
3001 	if (qm->fun_type == QM_HW_PF) {
3002 		ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num);
3003 		if (ret)
3004 			return ret;
3005 	}
3006 
3007 	ret = qm_eq_aeq_ctx_cfg(qm);
3008 	if (ret)
3009 		return ret;
3010 
3011 	ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0);
3012 	if (ret)
3013 		return ret;
3014 
3015 	ret = hisi_qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0);
3016 	if (ret)
3017 		return ret;
3018 
3019 	qm_init_prefetch(qm);
3020 	qm_enable_eq_aeq_interrupts(qm);
3021 
3022 	return 0;
3023 }
3024 
3025 /**
3026  * hisi_qm_start() - start qm
3027  * @qm: The qm to be started.
3028  *
3029  * This function starts a qm, then we can allocate qp from this qm.
3030  */
3031 int hisi_qm_start(struct hisi_qm *qm)
3032 {
3033 	struct device *dev = &qm->pdev->dev;
3034 	int ret = 0;
3035 
3036 	down_write(&qm->qps_lock);
3037 
3038 	if (!qm_avail_state(qm, QM_START)) {
3039 		up_write(&qm->qps_lock);
3040 		return -EPERM;
3041 	}
3042 
3043 	dev_dbg(dev, "qm start with %u queue pairs\n", qm->qp_num);
3044 
3045 	if (!qm->qp_num) {
3046 		dev_err(dev, "qp_num should not be 0\n");
3047 		ret = -EINVAL;
3048 		goto err_unlock;
3049 	}
3050 
3051 	ret = __hisi_qm_start(qm);
3052 	if (!ret)
3053 		atomic_set(&qm->status.flags, QM_START);
3054 
3055 	hisi_qm_set_state(qm, QM_READY);
3056 err_unlock:
3057 	up_write(&qm->qps_lock);
3058 	return ret;
3059 }
3060 EXPORT_SYMBOL_GPL(hisi_qm_start);
3061 
3062 static int qm_restart(struct hisi_qm *qm)
3063 {
3064 	struct device *dev = &qm->pdev->dev;
3065 	struct hisi_qp *qp;
3066 	int ret, i;
3067 
3068 	ret = hisi_qm_start(qm);
3069 	if (ret < 0)
3070 		return ret;
3071 
3072 	down_write(&qm->qps_lock);
3073 	for (i = 0; i < qm->qp_num; i++) {
3074 		qp = &qm->qp_array[i];
3075 		if (atomic_read(&qp->qp_status.flags) == QP_STOP &&
3076 		    qp->is_resetting == true) {
3077 			ret = qm_start_qp_nolock(qp, 0);
3078 			if (ret < 0) {
3079 				dev_err(dev, "Failed to start qp%d!\n", i);
3080 
3081 				up_write(&qm->qps_lock);
3082 				return ret;
3083 			}
3084 			qp->is_resetting = false;
3085 		}
3086 	}
3087 	up_write(&qm->qps_lock);
3088 
3089 	return 0;
3090 }
3091 
3092 /* Stop started qps in reset flow */
3093 static int qm_stop_started_qp(struct hisi_qm *qm)
3094 {
3095 	struct device *dev = &qm->pdev->dev;
3096 	struct hisi_qp *qp;
3097 	int i, ret;
3098 
3099 	for (i = 0; i < qm->qp_num; i++) {
3100 		qp = &qm->qp_array[i];
3101 		if (qp && atomic_read(&qp->qp_status.flags) == QP_START) {
3102 			qp->is_resetting = true;
3103 			ret = qm_stop_qp_nolock(qp);
3104 			if (ret < 0) {
3105 				dev_err(dev, "Failed to stop qp%d!\n", i);
3106 				return ret;
3107 			}
3108 		}
3109 	}
3110 
3111 	return 0;
3112 }
3113 
3114 /**
3115  * qm_clear_queues() - Clear all queues memory in a qm.
3116  * @qm: The qm in which the queues will be cleared.
3117  *
3118  * This function clears all queues memory in a qm. Reset of accelerator can
3119  * use this to clear queues.
3120  */
3121 static void qm_clear_queues(struct hisi_qm *qm)
3122 {
3123 	struct hisi_qp *qp;
3124 	int i;
3125 
3126 	for (i = 0; i < qm->qp_num; i++) {
3127 		qp = &qm->qp_array[i];
3128 		if (qp->is_in_kernel && qp->is_resetting)
3129 			memset(qp->qdma.va, 0, qp->qdma.size);
3130 	}
3131 
3132 	memset(qm->qdma.va, 0, qm->qdma.size);
3133 }
3134 
3135 /**
3136  * hisi_qm_stop() - Stop a qm.
3137  * @qm: The qm which will be stopped.
3138  * @r: The reason to stop qm.
3139  *
3140  * This function stops qm and its qps, then qm can not accept request.
3141  * Related resources are not released at this state, we can use hisi_qm_start
3142  * to let qm start again.
3143  */
3144 int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r)
3145 {
3146 	struct device *dev = &qm->pdev->dev;
3147 	int ret = 0;
3148 
3149 	down_write(&qm->qps_lock);
3150 
3151 	qm->status.stop_reason = r;
3152 	if (!qm_avail_state(qm, QM_STOP)) {
3153 		ret = -EPERM;
3154 		goto err_unlock;
3155 	}
3156 
3157 	if (qm->status.stop_reason == QM_SOFT_RESET ||
3158 	    qm->status.stop_reason == QM_DOWN) {
3159 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
3160 		ret = qm_stop_started_qp(qm);
3161 		if (ret < 0) {
3162 			dev_err(dev, "Failed to stop started qp!\n");
3163 			goto err_unlock;
3164 		}
3165 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
3166 	}
3167 
3168 	qm_disable_eq_aeq_interrupts(qm);
3169 	if (qm->fun_type == QM_HW_PF) {
3170 		ret = hisi_qm_set_vft(qm, 0, 0, 0);
3171 		if (ret < 0) {
3172 			dev_err(dev, "Failed to set vft!\n");
3173 			ret = -EBUSY;
3174 			goto err_unlock;
3175 		}
3176 	}
3177 
3178 	qm_clear_queues(qm);
3179 	atomic_set(&qm->status.flags, QM_STOP);
3180 
3181 err_unlock:
3182 	up_write(&qm->qps_lock);
3183 	return ret;
3184 }
3185 EXPORT_SYMBOL_GPL(hisi_qm_stop);
3186 
3187 static void qm_hw_error_init(struct hisi_qm *qm)
3188 {
3189 	if (!qm->ops->hw_error_init) {
3190 		dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n");
3191 		return;
3192 	}
3193 
3194 	qm->ops->hw_error_init(qm);
3195 }
3196 
3197 static void qm_hw_error_uninit(struct hisi_qm *qm)
3198 {
3199 	if (!qm->ops->hw_error_uninit) {
3200 		dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n");
3201 		return;
3202 	}
3203 
3204 	qm->ops->hw_error_uninit(qm);
3205 }
3206 
3207 static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm)
3208 {
3209 	if (!qm->ops->hw_error_handle) {
3210 		dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n");
3211 		return ACC_ERR_NONE;
3212 	}
3213 
3214 	return qm->ops->hw_error_handle(qm);
3215 }
3216 
3217 /**
3218  * hisi_qm_dev_err_init() - Initialize device error configuration.
3219  * @qm: The qm for which we want to do error initialization.
3220  *
3221  * Initialize QM and device error related configuration.
3222  */
3223 void hisi_qm_dev_err_init(struct hisi_qm *qm)
3224 {
3225 	if (qm->fun_type == QM_HW_VF)
3226 		return;
3227 
3228 	qm_hw_error_init(qm);
3229 
3230 	if (!qm->err_ini->hw_err_enable) {
3231 		dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n");
3232 		return;
3233 	}
3234 	qm->err_ini->hw_err_enable(qm);
3235 }
3236 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init);
3237 
3238 /**
3239  * hisi_qm_dev_err_uninit() - Uninitialize device error configuration.
3240  * @qm: The qm for which we want to do error uninitialization.
3241  *
3242  * Uninitialize QM and device error related configuration.
3243  */
3244 void hisi_qm_dev_err_uninit(struct hisi_qm *qm)
3245 {
3246 	if (qm->fun_type == QM_HW_VF)
3247 		return;
3248 
3249 	qm_hw_error_uninit(qm);
3250 
3251 	if (!qm->err_ini->hw_err_disable) {
3252 		dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n");
3253 		return;
3254 	}
3255 	qm->err_ini->hw_err_disable(qm);
3256 }
3257 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit);
3258 
3259 /**
3260  * hisi_qm_free_qps() - free multiple queue pairs.
3261  * @qps: The queue pairs need to be freed.
3262  * @qp_num: The num of queue pairs.
3263  */
3264 void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num)
3265 {
3266 	int i;
3267 
3268 	if (!qps || qp_num <= 0)
3269 		return;
3270 
3271 	for (i = qp_num - 1; i >= 0; i--)
3272 		hisi_qm_release_qp(qps[i]);
3273 }
3274 EXPORT_SYMBOL_GPL(hisi_qm_free_qps);
3275 
3276 static void free_list(struct list_head *head)
3277 {
3278 	struct hisi_qm_resource *res, *tmp;
3279 
3280 	list_for_each_entry_safe(res, tmp, head, list) {
3281 		list_del(&res->list);
3282 		kfree(res);
3283 	}
3284 }
3285 
3286 static int hisi_qm_sort_devices(int node, struct list_head *head,
3287 				struct hisi_qm_list *qm_list)
3288 {
3289 	struct hisi_qm_resource *res, *tmp;
3290 	struct hisi_qm *qm;
3291 	struct list_head *n;
3292 	struct device *dev;
3293 	int dev_node;
3294 
3295 	list_for_each_entry(qm, &qm_list->list, list) {
3296 		dev = &qm->pdev->dev;
3297 
3298 		dev_node = dev_to_node(dev);
3299 		if (dev_node < 0)
3300 			dev_node = 0;
3301 
3302 		res = kzalloc(sizeof(*res), GFP_KERNEL);
3303 		if (!res)
3304 			return -ENOMEM;
3305 
3306 		res->qm = qm;
3307 		res->distance = node_distance(dev_node, node);
3308 		n = head;
3309 		list_for_each_entry(tmp, head, list) {
3310 			if (res->distance < tmp->distance) {
3311 				n = &tmp->list;
3312 				break;
3313 			}
3314 		}
3315 		list_add_tail(&res->list, n);
3316 	}
3317 
3318 	return 0;
3319 }
3320 
3321 /**
3322  * hisi_qm_alloc_qps_node() - Create multiple queue pairs.
3323  * @qm_list: The list of all available devices.
3324  * @qp_num: The number of queue pairs need created.
3325  * @alg_type: The algorithm type.
3326  * @node: The numa node.
3327  * @qps: The queue pairs need created.
3328  *
3329  * This function will sort all available device according to numa distance.
3330  * Then try to create all queue pairs from one device, if all devices do
3331  * not meet the requirements will return error.
3332  */
3333 int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num,
3334 			   u8 alg_type, int node, struct hisi_qp **qps)
3335 {
3336 	struct hisi_qm_resource *tmp;
3337 	int ret = -ENODEV;
3338 	LIST_HEAD(head);
3339 	int i;
3340 
3341 	if (!qps || !qm_list || qp_num <= 0)
3342 		return -EINVAL;
3343 
3344 	mutex_lock(&qm_list->lock);
3345 	if (hisi_qm_sort_devices(node, &head, qm_list)) {
3346 		mutex_unlock(&qm_list->lock);
3347 		goto err;
3348 	}
3349 
3350 	list_for_each_entry(tmp, &head, list) {
3351 		for (i = 0; i < qp_num; i++) {
3352 			qps[i] = hisi_qm_create_qp(tmp->qm, alg_type);
3353 			if (IS_ERR(qps[i])) {
3354 				hisi_qm_free_qps(qps, i);
3355 				break;
3356 			}
3357 		}
3358 
3359 		if (i == qp_num) {
3360 			ret = 0;
3361 			break;
3362 		}
3363 	}
3364 
3365 	mutex_unlock(&qm_list->lock);
3366 	if (ret)
3367 		pr_info("Failed to create qps, node[%d], alg[%u], qp[%d]!\n",
3368 			node, alg_type, qp_num);
3369 
3370 err:
3371 	free_list(&head);
3372 	return ret;
3373 }
3374 EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node);
3375 
3376 static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs)
3377 {
3378 	u32 remain_q_num, vfs_q_num, act_q_num, q_num, i, j;
3379 	u32 max_qp_num = qm->max_qp_num;
3380 	u32 q_base = qm->qp_num;
3381 	int ret;
3382 
3383 	if (!num_vfs)
3384 		return -EINVAL;
3385 
3386 	vfs_q_num = qm->ctrl_qp_num - qm->qp_num;
3387 
3388 	/* If vfs_q_num is less than num_vfs, return error. */
3389 	if (vfs_q_num < num_vfs)
3390 		return -EINVAL;
3391 
3392 	q_num = vfs_q_num / num_vfs;
3393 	remain_q_num = vfs_q_num % num_vfs;
3394 
3395 	for (i = num_vfs; i > 0; i--) {
3396 		/*
3397 		 * if q_num + remain_q_num > max_qp_num in last vf, divide the
3398 		 * remaining queues equally.
3399 		 */
3400 		if (i == num_vfs && q_num + remain_q_num <= max_qp_num) {
3401 			act_q_num = q_num + remain_q_num;
3402 			remain_q_num = 0;
3403 		} else if (remain_q_num > 0) {
3404 			act_q_num = q_num + 1;
3405 			remain_q_num--;
3406 		} else {
3407 			act_q_num = q_num;
3408 		}
3409 
3410 		act_q_num = min(act_q_num, max_qp_num);
3411 		ret = hisi_qm_set_vft(qm, i, q_base, act_q_num);
3412 		if (ret) {
3413 			for (j = num_vfs; j > i; j--)
3414 				hisi_qm_set_vft(qm, j, 0, 0);
3415 			return ret;
3416 		}
3417 		q_base += act_q_num;
3418 	}
3419 
3420 	return 0;
3421 }
3422 
3423 static int qm_clear_vft_config(struct hisi_qm *qm)
3424 {
3425 	int ret;
3426 	u32 i;
3427 
3428 	for (i = 1; i <= qm->vfs_num; i++) {
3429 		ret = hisi_qm_set_vft(qm, i, 0, 0);
3430 		if (ret)
3431 			return ret;
3432 	}
3433 	qm->vfs_num = 0;
3434 
3435 	return 0;
3436 }
3437 
3438 static int qm_func_shaper_enable(struct hisi_qm *qm, u32 fun_index, u32 qos)
3439 {
3440 	struct device *dev = &qm->pdev->dev;
3441 	u32 ir = qos * QM_QOS_RATE;
3442 	int ret, total_vfs, i;
3443 
3444 	total_vfs = pci_sriov_get_totalvfs(qm->pdev);
3445 	if (fun_index > total_vfs)
3446 		return -EINVAL;
3447 
3448 	qm->factor[fun_index].func_qos = qos;
3449 
3450 	ret = qm_get_shaper_para(ir, &qm->factor[fun_index]);
3451 	if (ret) {
3452 		dev_err(dev, "failed to calculate shaper parameter!\n");
3453 		return -EINVAL;
3454 	}
3455 
3456 	for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) {
3457 		/* The base number of queue reuse for different alg type */
3458 		ret = qm_set_vft_common(qm, SHAPER_VFT, fun_index, i, 1);
3459 		if (ret) {
3460 			dev_err(dev, "type: %d, failed to set shaper vft!\n", i);
3461 			return -EINVAL;
3462 		}
3463 	}
3464 
3465 	return 0;
3466 }
3467 
3468 static u32 qm_get_shaper_vft_qos(struct hisi_qm *qm, u32 fun_index)
3469 {
3470 	u64 cir_u = 0, cir_b = 0, cir_s = 0;
3471 	u64 shaper_vft, ir_calc, ir;
3472 	unsigned int val;
3473 	u32 error_rate;
3474 	int ret;
3475 
3476 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
3477 					 val & BIT(0), POLL_PERIOD,
3478 					 POLL_TIMEOUT);
3479 	if (ret)
3480 		return 0;
3481 
3482 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_WR);
3483 	writel(SHAPER_VFT, qm->io_base + QM_VFT_CFG_TYPE);
3484 	writel(fun_index, qm->io_base + QM_VFT_CFG);
3485 
3486 	writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
3487 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
3488 
3489 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
3490 					 val & BIT(0), POLL_PERIOD,
3491 					 POLL_TIMEOUT);
3492 	if (ret)
3493 		return 0;
3494 
3495 	shaper_vft = readl(qm->io_base + QM_VFT_CFG_DATA_L) |
3496 		  ((u64)readl(qm->io_base + QM_VFT_CFG_DATA_H) << 32);
3497 
3498 	cir_b = shaper_vft & QM_SHAPER_CIR_B_MASK;
3499 	cir_u = shaper_vft & QM_SHAPER_CIR_U_MASK;
3500 	cir_u = cir_u >> QM_SHAPER_FACTOR_CIR_U_SHIFT;
3501 
3502 	cir_s = shaper_vft & QM_SHAPER_CIR_S_MASK;
3503 	cir_s = cir_s >> QM_SHAPER_FACTOR_CIR_S_SHIFT;
3504 
3505 	ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s);
3506 
3507 	ir = qm->factor[fun_index].func_qos * QM_QOS_RATE;
3508 
3509 	error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir;
3510 	if (error_rate > QM_QOS_MIN_ERROR_RATE) {
3511 		pci_err(qm->pdev, "error_rate: %u, get function qos is error!\n", error_rate);
3512 		return 0;
3513 	}
3514 
3515 	return ir;
3516 }
3517 
3518 static void qm_vf_get_qos(struct hisi_qm *qm, u32 fun_num)
3519 {
3520 	struct device *dev = &qm->pdev->dev;
3521 	u64 mb_cmd;
3522 	u32 qos;
3523 	int ret;
3524 
3525 	qos = qm_get_shaper_vft_qos(qm, fun_num);
3526 	if (!qos) {
3527 		dev_err(dev, "function(%u) failed to get qos by PF!\n", fun_num);
3528 		return;
3529 	}
3530 
3531 	mb_cmd = QM_PF_SET_QOS | (u64)qos << QM_MB_CMD_DATA_SHIFT;
3532 	ret = qm_ping_single_vf(qm, mb_cmd, fun_num);
3533 	if (ret)
3534 		dev_err(dev, "failed to send cmd to VF(%u)!\n", fun_num);
3535 }
3536 
3537 static int qm_vf_read_qos(struct hisi_qm *qm)
3538 {
3539 	int cnt = 0;
3540 	int ret = -EINVAL;
3541 
3542 	/* reset mailbox qos val */
3543 	qm->mb_qos = 0;
3544 
3545 	/* vf ping pf to get function qos */
3546 	ret = qm_ping_pf(qm, QM_VF_GET_QOS);
3547 	if (ret) {
3548 		pci_err(qm->pdev, "failed to send cmd to PF to get qos!\n");
3549 		return ret;
3550 	}
3551 
3552 	while (true) {
3553 		msleep(QM_WAIT_DST_ACK);
3554 		if (qm->mb_qos)
3555 			break;
3556 
3557 		if (++cnt > QM_MAX_VF_WAIT_COUNT) {
3558 			pci_err(qm->pdev, "PF ping VF timeout!\n");
3559 			return  -ETIMEDOUT;
3560 		}
3561 	}
3562 
3563 	return ret;
3564 }
3565 
3566 static ssize_t qm_algqos_read(struct file *filp, char __user *buf,
3567 			       size_t count, loff_t *pos)
3568 {
3569 	struct hisi_qm *qm = filp->private_data;
3570 	char tbuf[QM_DBG_READ_LEN];
3571 	u32 qos_val, ir;
3572 	int ret;
3573 
3574 	ret = hisi_qm_get_dfx_access(qm);
3575 	if (ret)
3576 		return ret;
3577 
3578 	/* Mailbox and reset cannot be operated at the same time */
3579 	if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
3580 		pci_err(qm->pdev, "dev resetting, read alg qos failed!\n");
3581 		ret = -EAGAIN;
3582 		goto err_put_dfx_access;
3583 	}
3584 
3585 	if (qm->fun_type == QM_HW_PF) {
3586 		ir = qm_get_shaper_vft_qos(qm, 0);
3587 	} else {
3588 		ret = qm_vf_read_qos(qm);
3589 		if (ret)
3590 			goto err_get_status;
3591 		ir = qm->mb_qos;
3592 	}
3593 
3594 	qos_val = ir / QM_QOS_RATE;
3595 	ret = scnprintf(tbuf, QM_DBG_READ_LEN, "%u\n", qos_val);
3596 
3597 	ret = simple_read_from_buffer(buf, count, pos, tbuf, ret);
3598 
3599 err_get_status:
3600 	clear_bit(QM_RESETTING, &qm->misc_ctl);
3601 err_put_dfx_access:
3602 	hisi_qm_put_dfx_access(qm);
3603 	return ret;
3604 }
3605 
3606 static ssize_t qm_get_qos_value(struct hisi_qm *qm, const char *buf,
3607 			       unsigned long *val,
3608 			       unsigned int *fun_index)
3609 {
3610 	const struct bus_type *bus_type = qm->pdev->dev.bus;
3611 	char tbuf_bdf[QM_DBG_READ_LEN] = {0};
3612 	char val_buf[QM_DBG_READ_LEN] = {0};
3613 	struct pci_dev *pdev;
3614 	struct device *dev;
3615 	int ret;
3616 
3617 	ret = sscanf(buf, "%s %s", tbuf_bdf, val_buf);
3618 	if (ret != QM_QOS_PARAM_NUM)
3619 		return -EINVAL;
3620 
3621 	ret = kstrtoul(val_buf, 10, val);
3622 	if (ret || *val == 0 || *val > QM_QOS_MAX_VAL) {
3623 		pci_err(qm->pdev, "input qos value is error, please set 1~1000!\n");
3624 		return -EINVAL;
3625 	}
3626 
3627 	dev = bus_find_device_by_name(bus_type, NULL, tbuf_bdf);
3628 	if (!dev) {
3629 		pci_err(qm->pdev, "input pci bdf number is error!\n");
3630 		return -ENODEV;
3631 	}
3632 
3633 	pdev = container_of(dev, struct pci_dev, dev);
3634 
3635 	*fun_index = pdev->devfn;
3636 
3637 	return 0;
3638 }
3639 
3640 static ssize_t qm_algqos_write(struct file *filp, const char __user *buf,
3641 			       size_t count, loff_t *pos)
3642 {
3643 	struct hisi_qm *qm = filp->private_data;
3644 	char tbuf[QM_DBG_READ_LEN];
3645 	unsigned int fun_index;
3646 	unsigned long val;
3647 	int len, ret;
3648 
3649 	if (*pos != 0)
3650 		return 0;
3651 
3652 	if (count >= QM_DBG_READ_LEN)
3653 		return -ENOSPC;
3654 
3655 	len = simple_write_to_buffer(tbuf, QM_DBG_READ_LEN - 1, pos, buf, count);
3656 	if (len < 0)
3657 		return len;
3658 
3659 	tbuf[len] = '\0';
3660 	ret = qm_get_qos_value(qm, tbuf, &val, &fun_index);
3661 	if (ret)
3662 		return ret;
3663 
3664 	/* Mailbox and reset cannot be operated at the same time */
3665 	if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
3666 		pci_err(qm->pdev, "dev resetting, write alg qos failed!\n");
3667 		return -EAGAIN;
3668 	}
3669 
3670 	ret = qm_pm_get_sync(qm);
3671 	if (ret) {
3672 		ret = -EINVAL;
3673 		goto err_get_status;
3674 	}
3675 
3676 	ret = qm_func_shaper_enable(qm, fun_index, val);
3677 	if (ret) {
3678 		pci_err(qm->pdev, "failed to enable function shaper!\n");
3679 		ret = -EINVAL;
3680 		goto err_put_sync;
3681 	}
3682 
3683 	pci_info(qm->pdev, "the qos value of function%u is set to %lu.\n",
3684 		 fun_index, val);
3685 	ret = count;
3686 
3687 err_put_sync:
3688 	qm_pm_put_sync(qm);
3689 err_get_status:
3690 	clear_bit(QM_RESETTING, &qm->misc_ctl);
3691 	return ret;
3692 }
3693 
3694 static const struct file_operations qm_algqos_fops = {
3695 	.owner = THIS_MODULE,
3696 	.open = simple_open,
3697 	.read = qm_algqos_read,
3698 	.write = qm_algqos_write,
3699 };
3700 
3701 /**
3702  * hisi_qm_set_algqos_init() - Initialize function qos debugfs files.
3703  * @qm: The qm for which we want to add debugfs files.
3704  *
3705  * Create function qos debugfs files, VF ping PF to get function qos.
3706  */
3707 void hisi_qm_set_algqos_init(struct hisi_qm *qm)
3708 {
3709 	if (qm->fun_type == QM_HW_PF)
3710 		debugfs_create_file("alg_qos", 0644, qm->debug.debug_root,
3711 				    qm, &qm_algqos_fops);
3712 	else if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
3713 		debugfs_create_file("alg_qos", 0444, qm->debug.debug_root,
3714 				    qm, &qm_algqos_fops);
3715 }
3716 
3717 static void hisi_qm_init_vf_qos(struct hisi_qm *qm, int total_func)
3718 {
3719 	int i;
3720 
3721 	for (i = 1; i <= total_func; i++)
3722 		qm->factor[i].func_qos = QM_QOS_MAX_VAL;
3723 }
3724 
3725 /**
3726  * hisi_qm_sriov_enable() - enable virtual functions
3727  * @pdev: the PCIe device
3728  * @max_vfs: the number of virtual functions to enable
3729  *
3730  * Returns the number of enabled VFs. If there are VFs enabled already or
3731  * max_vfs is more than the total number of device can be enabled, returns
3732  * failure.
3733  */
3734 int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs)
3735 {
3736 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3737 	int pre_existing_vfs, num_vfs, total_vfs, ret;
3738 
3739 	ret = qm_pm_get_sync(qm);
3740 	if (ret)
3741 		return ret;
3742 
3743 	total_vfs = pci_sriov_get_totalvfs(pdev);
3744 	pre_existing_vfs = pci_num_vf(pdev);
3745 	if (pre_existing_vfs) {
3746 		pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n",
3747 			pre_existing_vfs);
3748 		goto err_put_sync;
3749 	}
3750 
3751 	if (max_vfs > total_vfs) {
3752 		pci_err(pdev, "%d VFs is more than total VFs %d!\n", max_vfs, total_vfs);
3753 		ret = -ERANGE;
3754 		goto err_put_sync;
3755 	}
3756 
3757 	num_vfs = max_vfs;
3758 
3759 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
3760 		hisi_qm_init_vf_qos(qm, num_vfs);
3761 
3762 	ret = qm_vf_q_assign(qm, num_vfs);
3763 	if (ret) {
3764 		pci_err(pdev, "Can't assign queues for VF!\n");
3765 		goto err_put_sync;
3766 	}
3767 
3768 	qm->vfs_num = num_vfs;
3769 
3770 	ret = pci_enable_sriov(pdev, num_vfs);
3771 	if (ret) {
3772 		pci_err(pdev, "Can't enable VF!\n");
3773 		qm_clear_vft_config(qm);
3774 		goto err_put_sync;
3775 	}
3776 
3777 	pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs);
3778 
3779 	return num_vfs;
3780 
3781 err_put_sync:
3782 	qm_pm_put_sync(qm);
3783 	return ret;
3784 }
3785 EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable);
3786 
3787 /**
3788  * hisi_qm_sriov_disable - disable virtual functions
3789  * @pdev: the PCI device.
3790  * @is_frozen: true when all the VFs are frozen.
3791  *
3792  * Return failure if there are VFs assigned already or VF is in used.
3793  */
3794 int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen)
3795 {
3796 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3797 	int ret;
3798 
3799 	if (pci_vfs_assigned(pdev)) {
3800 		pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n");
3801 		return -EPERM;
3802 	}
3803 
3804 	/* While VF is in used, SRIOV cannot be disabled. */
3805 	if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) {
3806 		pci_err(pdev, "Task is using its VF!\n");
3807 		return -EBUSY;
3808 	}
3809 
3810 	pci_disable_sriov(pdev);
3811 
3812 	ret = qm_clear_vft_config(qm);
3813 	if (ret)
3814 		return ret;
3815 
3816 	qm_pm_put_sync(qm);
3817 
3818 	return 0;
3819 }
3820 EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable);
3821 
3822 /**
3823  * hisi_qm_sriov_configure - configure the number of VFs
3824  * @pdev: The PCI device
3825  * @num_vfs: The number of VFs need enabled
3826  *
3827  * Enable SR-IOV according to num_vfs, 0 means disable.
3828  */
3829 int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs)
3830 {
3831 	if (num_vfs == 0)
3832 		return hisi_qm_sriov_disable(pdev, false);
3833 	else
3834 		return hisi_qm_sriov_enable(pdev, num_vfs);
3835 }
3836 EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure);
3837 
3838 static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm)
3839 {
3840 	u32 err_sts;
3841 
3842 	if (!qm->err_ini->get_dev_hw_err_status) {
3843 		dev_err(&qm->pdev->dev, "Device doesn't support get hw error status!\n");
3844 		return ACC_ERR_NONE;
3845 	}
3846 
3847 	/* get device hardware error status */
3848 	err_sts = qm->err_ini->get_dev_hw_err_status(qm);
3849 	if (err_sts) {
3850 		if (err_sts & qm->err_info.ecc_2bits_mask)
3851 			qm->err_status.is_dev_ecc_mbit = true;
3852 
3853 		if (qm->err_ini->log_dev_hw_err)
3854 			qm->err_ini->log_dev_hw_err(qm, err_sts);
3855 
3856 		if (err_sts & qm->err_info.dev_reset_mask)
3857 			return ACC_ERR_NEED_RESET;
3858 
3859 		if (qm->err_ini->clear_dev_hw_err_status)
3860 			qm->err_ini->clear_dev_hw_err_status(qm, err_sts);
3861 	}
3862 
3863 	return ACC_ERR_RECOVERED;
3864 }
3865 
3866 static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm)
3867 {
3868 	enum acc_err_result qm_ret, dev_ret;
3869 
3870 	/* log qm error */
3871 	qm_ret = qm_hw_error_handle(qm);
3872 
3873 	/* log device error */
3874 	dev_ret = qm_dev_err_handle(qm);
3875 
3876 	return (qm_ret == ACC_ERR_NEED_RESET ||
3877 		dev_ret == ACC_ERR_NEED_RESET) ?
3878 		ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED;
3879 }
3880 
3881 /**
3882  * hisi_qm_dev_err_detected() - Get device and qm error status then log it.
3883  * @pdev: The PCI device which need report error.
3884  * @state: The connectivity between CPU and device.
3885  *
3886  * We register this function into PCIe AER handlers, It will report device or
3887  * qm hardware error status when error occur.
3888  */
3889 pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev,
3890 					  pci_channel_state_t state)
3891 {
3892 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3893 	enum acc_err_result ret;
3894 
3895 	if (pdev->is_virtfn)
3896 		return PCI_ERS_RESULT_NONE;
3897 
3898 	pci_info(pdev, "PCI error detected, state(=%u)!!\n", state);
3899 	if (state == pci_channel_io_perm_failure)
3900 		return PCI_ERS_RESULT_DISCONNECT;
3901 
3902 	ret = qm_process_dev_error(qm);
3903 	if (ret == ACC_ERR_NEED_RESET)
3904 		return PCI_ERS_RESULT_NEED_RESET;
3905 
3906 	return PCI_ERS_RESULT_RECOVERED;
3907 }
3908 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected);
3909 
3910 static int qm_check_req_recv(struct hisi_qm *qm)
3911 {
3912 	struct pci_dev *pdev = qm->pdev;
3913 	int ret;
3914 	u32 val;
3915 
3916 	if (qm->ver >= QM_HW_V3)
3917 		return 0;
3918 
3919 	writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID);
3920 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
3921 					 (val == ACC_VENDOR_ID_VALUE),
3922 					 POLL_PERIOD, POLL_TIMEOUT);
3923 	if (ret) {
3924 		dev_err(&pdev->dev, "Fails to read QM reg!\n");
3925 		return ret;
3926 	}
3927 
3928 	writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID);
3929 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
3930 					 (val == PCI_VENDOR_ID_HUAWEI),
3931 					 POLL_PERIOD, POLL_TIMEOUT);
3932 	if (ret)
3933 		dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n");
3934 
3935 	return ret;
3936 }
3937 
3938 static int qm_set_pf_mse(struct hisi_qm *qm, bool set)
3939 {
3940 	struct pci_dev *pdev = qm->pdev;
3941 	u16 cmd;
3942 	int i;
3943 
3944 	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
3945 	if (set)
3946 		cmd |= PCI_COMMAND_MEMORY;
3947 	else
3948 		cmd &= ~PCI_COMMAND_MEMORY;
3949 
3950 	pci_write_config_word(pdev, PCI_COMMAND, cmd);
3951 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
3952 		pci_read_config_word(pdev, PCI_COMMAND, &cmd);
3953 		if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1))
3954 			return 0;
3955 
3956 		udelay(1);
3957 	}
3958 
3959 	return -ETIMEDOUT;
3960 }
3961 
3962 static int qm_set_vf_mse(struct hisi_qm *qm, bool set)
3963 {
3964 	struct pci_dev *pdev = qm->pdev;
3965 	u16 sriov_ctrl;
3966 	int pos;
3967 	int i;
3968 
3969 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
3970 	pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
3971 	if (set)
3972 		sriov_ctrl |= PCI_SRIOV_CTRL_MSE;
3973 	else
3974 		sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE;
3975 	pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl);
3976 
3977 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
3978 		pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
3979 		if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >>
3980 		    ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT)
3981 			return 0;
3982 
3983 		udelay(1);
3984 	}
3985 
3986 	return -ETIMEDOUT;
3987 }
3988 
3989 static int qm_vf_reset_prepare(struct hisi_qm *qm,
3990 			       enum qm_stop_reason stop_reason)
3991 {
3992 	struct hisi_qm_list *qm_list = qm->qm_list;
3993 	struct pci_dev *pdev = qm->pdev;
3994 	struct pci_dev *virtfn;
3995 	struct hisi_qm *vf_qm;
3996 	int ret = 0;
3997 
3998 	mutex_lock(&qm_list->lock);
3999 	list_for_each_entry(vf_qm, &qm_list->list, list) {
4000 		virtfn = vf_qm->pdev;
4001 		if (virtfn == pdev)
4002 			continue;
4003 
4004 		if (pci_physfn(virtfn) == pdev) {
4005 			/* save VFs PCIE BAR configuration */
4006 			pci_save_state(virtfn);
4007 
4008 			ret = hisi_qm_stop(vf_qm, stop_reason);
4009 			if (ret)
4010 				goto stop_fail;
4011 		}
4012 	}
4013 
4014 stop_fail:
4015 	mutex_unlock(&qm_list->lock);
4016 	return ret;
4017 }
4018 
4019 static int qm_try_stop_vfs(struct hisi_qm *qm, u64 cmd,
4020 			   enum qm_stop_reason stop_reason)
4021 {
4022 	struct pci_dev *pdev = qm->pdev;
4023 	int ret;
4024 
4025 	if (!qm->vfs_num)
4026 		return 0;
4027 
4028 	/* Kunpeng930 supports to notify VFs to stop before PF reset */
4029 	if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) {
4030 		ret = qm_ping_all_vfs(qm, cmd);
4031 		if (ret)
4032 			pci_err(pdev, "failed to send cmd to all VFs before PF reset!\n");
4033 	} else {
4034 		ret = qm_vf_reset_prepare(qm, stop_reason);
4035 		if (ret)
4036 			pci_err(pdev, "failed to prepare reset, ret = %d.\n", ret);
4037 	}
4038 
4039 	return ret;
4040 }
4041 
4042 static int qm_controller_reset_prepare(struct hisi_qm *qm)
4043 {
4044 	struct pci_dev *pdev = qm->pdev;
4045 	int ret;
4046 
4047 	ret = qm_reset_prepare_ready(qm);
4048 	if (ret) {
4049 		pci_err(pdev, "Controller reset not ready!\n");
4050 		return ret;
4051 	}
4052 
4053 	/* PF obtains the information of VF by querying the register. */
4054 	qm_cmd_uninit(qm);
4055 
4056 	/* Whether VFs stop successfully, soft reset will continue. */
4057 	ret = qm_try_stop_vfs(qm, QM_PF_SRST_PREPARE, QM_SOFT_RESET);
4058 	if (ret)
4059 		pci_err(pdev, "failed to stop vfs by pf in soft reset.\n");
4060 
4061 	ret = hisi_qm_stop(qm, QM_SOFT_RESET);
4062 	if (ret) {
4063 		pci_err(pdev, "Fails to stop QM!\n");
4064 		qm_reset_bit_clear(qm);
4065 		return ret;
4066 	}
4067 
4068 	if (qm->use_sva) {
4069 		ret = qm_hw_err_isolate(qm);
4070 		if (ret)
4071 			pci_err(pdev, "failed to isolate hw err!\n");
4072 	}
4073 
4074 	ret = qm_wait_vf_prepare_finish(qm);
4075 	if (ret)
4076 		pci_err(pdev, "failed to stop by vfs in soft reset!\n");
4077 
4078 	clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4079 
4080 	return 0;
4081 }
4082 
4083 static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm)
4084 {
4085 	u32 nfe_enb = 0;
4086 
4087 	/* Kunpeng930 hardware automatically close master ooo when NFE occurs */
4088 	if (qm->ver >= QM_HW_V3)
4089 		return;
4090 
4091 	if (!qm->err_status.is_dev_ecc_mbit &&
4092 	    qm->err_status.is_qm_ecc_mbit &&
4093 	    qm->err_ini->close_axi_master_ooo) {
4094 		qm->err_ini->close_axi_master_ooo(qm);
4095 	} else if (qm->err_status.is_dev_ecc_mbit &&
4096 		   !qm->err_status.is_qm_ecc_mbit &&
4097 		   !qm->err_ini->close_axi_master_ooo) {
4098 		nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE);
4099 		writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE,
4100 		       qm->io_base + QM_RAS_NFE_ENABLE);
4101 		writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET);
4102 	}
4103 }
4104 
4105 static int qm_soft_reset(struct hisi_qm *qm)
4106 {
4107 	struct pci_dev *pdev = qm->pdev;
4108 	int ret;
4109 	u32 val;
4110 
4111 	/* Ensure all doorbells and mailboxes received by QM */
4112 	ret = qm_check_req_recv(qm);
4113 	if (ret)
4114 		return ret;
4115 
4116 	if (qm->vfs_num) {
4117 		ret = qm_set_vf_mse(qm, false);
4118 		if (ret) {
4119 			pci_err(pdev, "Fails to disable vf MSE bit.\n");
4120 			return ret;
4121 		}
4122 	}
4123 
4124 	ret = qm->ops->set_msi(qm, false);
4125 	if (ret) {
4126 		pci_err(pdev, "Fails to disable PEH MSI bit.\n");
4127 		return ret;
4128 	}
4129 
4130 	qm_dev_ecc_mbit_handle(qm);
4131 
4132 	/* OOO register set and check */
4133 	writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN,
4134 	       qm->io_base + ACC_MASTER_GLOBAL_CTRL);
4135 
4136 	/* If bus lock, reset chip */
4137 	ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN,
4138 					 val,
4139 					 (val == ACC_MASTER_TRANS_RETURN_RW),
4140 					 POLL_PERIOD, POLL_TIMEOUT);
4141 	if (ret) {
4142 		pci_emerg(pdev, "Bus lock! Please reset system.\n");
4143 		return ret;
4144 	}
4145 
4146 	if (qm->err_ini->close_sva_prefetch)
4147 		qm->err_ini->close_sva_prefetch(qm);
4148 
4149 	ret = qm_set_pf_mse(qm, false);
4150 	if (ret) {
4151 		pci_err(pdev, "Fails to disable pf MSE bit.\n");
4152 		return ret;
4153 	}
4154 
4155 	/* The reset related sub-control registers are not in PCI BAR */
4156 	if (ACPI_HANDLE(&pdev->dev)) {
4157 		unsigned long long value = 0;
4158 		acpi_status s;
4159 
4160 		s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev),
4161 					  qm->err_info.acpi_rst,
4162 					  NULL, &value);
4163 		if (ACPI_FAILURE(s)) {
4164 			pci_err(pdev, "NO controller reset method!\n");
4165 			return -EIO;
4166 		}
4167 
4168 		if (value) {
4169 			pci_err(pdev, "Reset step %llu failed!\n", value);
4170 			return -EIO;
4171 		}
4172 	} else {
4173 		pci_err(pdev, "No reset method!\n");
4174 		return -EINVAL;
4175 	}
4176 
4177 	return 0;
4178 }
4179 
4180 static int qm_vf_reset_done(struct hisi_qm *qm)
4181 {
4182 	struct hisi_qm_list *qm_list = qm->qm_list;
4183 	struct pci_dev *pdev = qm->pdev;
4184 	struct pci_dev *virtfn;
4185 	struct hisi_qm *vf_qm;
4186 	int ret = 0;
4187 
4188 	mutex_lock(&qm_list->lock);
4189 	list_for_each_entry(vf_qm, &qm_list->list, list) {
4190 		virtfn = vf_qm->pdev;
4191 		if (virtfn == pdev)
4192 			continue;
4193 
4194 		if (pci_physfn(virtfn) == pdev) {
4195 			/* enable VFs PCIE BAR configuration */
4196 			pci_restore_state(virtfn);
4197 
4198 			ret = qm_restart(vf_qm);
4199 			if (ret)
4200 				goto restart_fail;
4201 		}
4202 	}
4203 
4204 restart_fail:
4205 	mutex_unlock(&qm_list->lock);
4206 	return ret;
4207 }
4208 
4209 static int qm_try_start_vfs(struct hisi_qm *qm, enum qm_mb_cmd cmd)
4210 {
4211 	struct pci_dev *pdev = qm->pdev;
4212 	int ret;
4213 
4214 	if (!qm->vfs_num)
4215 		return 0;
4216 
4217 	ret = qm_vf_q_assign(qm, qm->vfs_num);
4218 	if (ret) {
4219 		pci_err(pdev, "failed to assign VFs, ret = %d.\n", ret);
4220 		return ret;
4221 	}
4222 
4223 	/* Kunpeng930 supports to notify VFs to start after PF reset. */
4224 	if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) {
4225 		ret = qm_ping_all_vfs(qm, cmd);
4226 		if (ret)
4227 			pci_warn(pdev, "failed to send cmd to all VFs after PF reset!\n");
4228 	} else {
4229 		ret = qm_vf_reset_done(qm);
4230 		if (ret)
4231 			pci_warn(pdev, "failed to start vfs, ret = %d.\n", ret);
4232 	}
4233 
4234 	return ret;
4235 }
4236 
4237 static int qm_dev_hw_init(struct hisi_qm *qm)
4238 {
4239 	return qm->err_ini->hw_init(qm);
4240 }
4241 
4242 static void qm_restart_prepare(struct hisi_qm *qm)
4243 {
4244 	u32 value;
4245 
4246 	if (qm->err_ini->open_sva_prefetch)
4247 		qm->err_ini->open_sva_prefetch(qm);
4248 
4249 	if (qm->ver >= QM_HW_V3)
4250 		return;
4251 
4252 	if (!qm->err_status.is_qm_ecc_mbit &&
4253 	    !qm->err_status.is_dev_ecc_mbit)
4254 		return;
4255 
4256 	/* temporarily close the OOO port used for PEH to write out MSI */
4257 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4258 	writel(value & ~qm->err_info.msi_wr_port,
4259 	       qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4260 
4261 	/* clear dev ecc 2bit error source if having */
4262 	value = qm_get_dev_err_status(qm) & qm->err_info.ecc_2bits_mask;
4263 	if (value && qm->err_ini->clear_dev_hw_err_status)
4264 		qm->err_ini->clear_dev_hw_err_status(qm, value);
4265 
4266 	/* clear QM ecc mbit error source */
4267 	writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE);
4268 
4269 	/* clear AM Reorder Buffer ecc mbit source */
4270 	writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS);
4271 }
4272 
4273 static void qm_restart_done(struct hisi_qm *qm)
4274 {
4275 	u32 value;
4276 
4277 	if (qm->ver >= QM_HW_V3)
4278 		goto clear_flags;
4279 
4280 	if (!qm->err_status.is_qm_ecc_mbit &&
4281 	    !qm->err_status.is_dev_ecc_mbit)
4282 		return;
4283 
4284 	/* open the OOO port for PEH to write out MSI */
4285 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4286 	value |= qm->err_info.msi_wr_port;
4287 	writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4288 
4289 clear_flags:
4290 	qm->err_status.is_qm_ecc_mbit = false;
4291 	qm->err_status.is_dev_ecc_mbit = false;
4292 }
4293 
4294 static int qm_controller_reset_done(struct hisi_qm *qm)
4295 {
4296 	struct pci_dev *pdev = qm->pdev;
4297 	int ret;
4298 
4299 	ret = qm->ops->set_msi(qm, true);
4300 	if (ret) {
4301 		pci_err(pdev, "Fails to enable PEH MSI bit!\n");
4302 		return ret;
4303 	}
4304 
4305 	ret = qm_set_pf_mse(qm, true);
4306 	if (ret) {
4307 		pci_err(pdev, "Fails to enable pf MSE bit!\n");
4308 		return ret;
4309 	}
4310 
4311 	if (qm->vfs_num) {
4312 		ret = qm_set_vf_mse(qm, true);
4313 		if (ret) {
4314 			pci_err(pdev, "Fails to enable vf MSE bit!\n");
4315 			return ret;
4316 		}
4317 	}
4318 
4319 	ret = qm_dev_hw_init(qm);
4320 	if (ret) {
4321 		pci_err(pdev, "Failed to init device\n");
4322 		return ret;
4323 	}
4324 
4325 	qm_restart_prepare(qm);
4326 	hisi_qm_dev_err_init(qm);
4327 	if (qm->err_ini->open_axi_master_ooo)
4328 		qm->err_ini->open_axi_master_ooo(qm);
4329 
4330 	ret = qm_dev_mem_reset(qm);
4331 	if (ret) {
4332 		pci_err(pdev, "failed to reset device memory\n");
4333 		return ret;
4334 	}
4335 
4336 	ret = qm_restart(qm);
4337 	if (ret) {
4338 		pci_err(pdev, "Failed to start QM!\n");
4339 		return ret;
4340 	}
4341 
4342 	ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE);
4343 	if (ret)
4344 		pci_err(pdev, "failed to start vfs by pf in soft reset.\n");
4345 
4346 	ret = qm_wait_vf_prepare_finish(qm);
4347 	if (ret)
4348 		pci_err(pdev, "failed to start by vfs in soft reset!\n");
4349 
4350 	qm_cmd_init(qm);
4351 	qm_restart_done(qm);
4352 
4353 	qm_reset_bit_clear(qm);
4354 
4355 	return 0;
4356 }
4357 
4358 static int qm_controller_reset(struct hisi_qm *qm)
4359 {
4360 	struct pci_dev *pdev = qm->pdev;
4361 	int ret;
4362 
4363 	pci_info(pdev, "Controller resetting...\n");
4364 
4365 	ret = qm_controller_reset_prepare(qm);
4366 	if (ret) {
4367 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4368 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4369 		clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4370 		return ret;
4371 	}
4372 
4373 	hisi_qm_show_last_dfx_regs(qm);
4374 	if (qm->err_ini->show_last_dfx_regs)
4375 		qm->err_ini->show_last_dfx_regs(qm);
4376 
4377 	ret = qm_soft_reset(qm);
4378 	if (ret)
4379 		goto err_reset;
4380 
4381 	ret = qm_controller_reset_done(qm);
4382 	if (ret)
4383 		goto err_reset;
4384 
4385 	pci_info(pdev, "Controller reset complete\n");
4386 
4387 	return 0;
4388 
4389 err_reset:
4390 	pci_err(pdev, "Controller reset failed (%d)\n", ret);
4391 	qm_reset_bit_clear(qm);
4392 
4393 	/* if resetting fails, isolate the device */
4394 	if (qm->use_sva)
4395 		qm->isolate_data.is_isolate = true;
4396 	return ret;
4397 }
4398 
4399 /**
4400  * hisi_qm_dev_slot_reset() - slot reset
4401  * @pdev: the PCIe device
4402  *
4403  * This function offers QM relate PCIe device reset interface. Drivers which
4404  * use QM can use this function as slot_reset in its struct pci_error_handlers.
4405  */
4406 pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev)
4407 {
4408 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4409 	int ret;
4410 
4411 	if (pdev->is_virtfn)
4412 		return PCI_ERS_RESULT_RECOVERED;
4413 
4414 	/* reset pcie device controller */
4415 	ret = qm_controller_reset(qm);
4416 	if (ret) {
4417 		pci_err(pdev, "Controller reset failed (%d)\n", ret);
4418 		return PCI_ERS_RESULT_DISCONNECT;
4419 	}
4420 
4421 	return PCI_ERS_RESULT_RECOVERED;
4422 }
4423 EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset);
4424 
4425 void hisi_qm_reset_prepare(struct pci_dev *pdev)
4426 {
4427 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
4428 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4429 	u32 delay = 0;
4430 	int ret;
4431 
4432 	hisi_qm_dev_err_uninit(pf_qm);
4433 
4434 	/*
4435 	 * Check whether there is an ECC mbit error, If it occurs, need to
4436 	 * wait for soft reset to fix it.
4437 	 */
4438 	while (qm_check_dev_error(pf_qm)) {
4439 		msleep(++delay);
4440 		if (delay > QM_RESET_WAIT_TIMEOUT)
4441 			return;
4442 	}
4443 
4444 	ret = qm_reset_prepare_ready(qm);
4445 	if (ret) {
4446 		pci_err(pdev, "FLR not ready!\n");
4447 		return;
4448 	}
4449 
4450 	/* PF obtains the information of VF by querying the register. */
4451 	if (qm->fun_type == QM_HW_PF)
4452 		qm_cmd_uninit(qm);
4453 
4454 	ret = qm_try_stop_vfs(qm, QM_PF_FLR_PREPARE, QM_DOWN);
4455 	if (ret)
4456 		pci_err(pdev, "failed to stop vfs by pf in FLR.\n");
4457 
4458 	ret = hisi_qm_stop(qm, QM_DOWN);
4459 	if (ret) {
4460 		pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret);
4461 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4462 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4463 		return;
4464 	}
4465 
4466 	ret = qm_wait_vf_prepare_finish(qm);
4467 	if (ret)
4468 		pci_err(pdev, "failed to stop by vfs in FLR!\n");
4469 
4470 	pci_info(pdev, "FLR resetting...\n");
4471 }
4472 EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare);
4473 
4474 static bool qm_flr_reset_complete(struct pci_dev *pdev)
4475 {
4476 	struct pci_dev *pf_pdev = pci_physfn(pdev);
4477 	struct hisi_qm *qm = pci_get_drvdata(pf_pdev);
4478 	u32 id;
4479 
4480 	pci_read_config_dword(qm->pdev, PCI_COMMAND, &id);
4481 	if (id == QM_PCI_COMMAND_INVALID) {
4482 		pci_err(pdev, "Device can not be used!\n");
4483 		return false;
4484 	}
4485 
4486 	return true;
4487 }
4488 
4489 void hisi_qm_reset_done(struct pci_dev *pdev)
4490 {
4491 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
4492 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4493 	int ret;
4494 
4495 	if (qm->fun_type == QM_HW_PF) {
4496 		ret = qm_dev_hw_init(qm);
4497 		if (ret) {
4498 			pci_err(pdev, "Failed to init PF, ret = %d.\n", ret);
4499 			goto flr_done;
4500 		}
4501 	}
4502 
4503 	hisi_qm_dev_err_init(pf_qm);
4504 
4505 	ret = qm_restart(qm);
4506 	if (ret) {
4507 		pci_err(pdev, "Failed to start QM, ret = %d.\n", ret);
4508 		goto flr_done;
4509 	}
4510 
4511 	ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE);
4512 	if (ret)
4513 		pci_err(pdev, "failed to start vfs by pf in FLR.\n");
4514 
4515 	ret = qm_wait_vf_prepare_finish(qm);
4516 	if (ret)
4517 		pci_err(pdev, "failed to start by vfs in FLR!\n");
4518 
4519 flr_done:
4520 	if (qm->fun_type == QM_HW_PF)
4521 		qm_cmd_init(qm);
4522 
4523 	if (qm_flr_reset_complete(pdev))
4524 		pci_info(pdev, "FLR reset complete\n");
4525 
4526 	qm_reset_bit_clear(qm);
4527 }
4528 EXPORT_SYMBOL_GPL(hisi_qm_reset_done);
4529 
4530 static irqreturn_t qm_abnormal_irq(int irq, void *data)
4531 {
4532 	struct hisi_qm *qm = data;
4533 	enum acc_err_result ret;
4534 
4535 	atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt);
4536 	ret = qm_process_dev_error(qm);
4537 	if (ret == ACC_ERR_NEED_RESET &&
4538 	    !test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl) &&
4539 	    !test_and_set_bit(QM_RST_SCHED, &qm->misc_ctl))
4540 		schedule_work(&qm->rst_work);
4541 
4542 	return IRQ_HANDLED;
4543 }
4544 
4545 /**
4546  * hisi_qm_dev_shutdown() - Shutdown device.
4547  * @pdev: The device will be shutdown.
4548  *
4549  * This function will stop qm when OS shutdown or rebooting.
4550  */
4551 void hisi_qm_dev_shutdown(struct pci_dev *pdev)
4552 {
4553 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4554 	int ret;
4555 
4556 	ret = hisi_qm_stop(qm, QM_DOWN);
4557 	if (ret)
4558 		dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n");
4559 
4560 	hisi_qm_cache_wb(qm);
4561 }
4562 EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown);
4563 
4564 static void hisi_qm_controller_reset(struct work_struct *rst_work)
4565 {
4566 	struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work);
4567 	int ret;
4568 
4569 	ret = qm_pm_get_sync(qm);
4570 	if (ret) {
4571 		clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4572 		return;
4573 	}
4574 
4575 	/* reset pcie device controller */
4576 	ret = qm_controller_reset(qm);
4577 	if (ret)
4578 		dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret);
4579 
4580 	qm_pm_put_sync(qm);
4581 }
4582 
4583 static void qm_pf_reset_vf_prepare(struct hisi_qm *qm,
4584 				   enum qm_stop_reason stop_reason)
4585 {
4586 	enum qm_mb_cmd cmd = QM_VF_PREPARE_DONE;
4587 	struct pci_dev *pdev = qm->pdev;
4588 	int ret;
4589 
4590 	ret = qm_reset_prepare_ready(qm);
4591 	if (ret) {
4592 		dev_err(&pdev->dev, "reset prepare not ready!\n");
4593 		atomic_set(&qm->status.flags, QM_STOP);
4594 		cmd = QM_VF_PREPARE_FAIL;
4595 		goto err_prepare;
4596 	}
4597 
4598 	ret = hisi_qm_stop(qm, stop_reason);
4599 	if (ret) {
4600 		dev_err(&pdev->dev, "failed to stop QM, ret = %d.\n", ret);
4601 		atomic_set(&qm->status.flags, QM_STOP);
4602 		cmd = QM_VF_PREPARE_FAIL;
4603 		goto err_prepare;
4604 	} else {
4605 		goto out;
4606 	}
4607 
4608 err_prepare:
4609 	hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4610 	hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4611 out:
4612 	pci_save_state(pdev);
4613 	ret = qm_ping_pf(qm, cmd);
4614 	if (ret)
4615 		dev_warn(&pdev->dev, "PF responds timeout in reset prepare!\n");
4616 }
4617 
4618 static void qm_pf_reset_vf_done(struct hisi_qm *qm)
4619 {
4620 	enum qm_mb_cmd cmd = QM_VF_START_DONE;
4621 	struct pci_dev *pdev = qm->pdev;
4622 	int ret;
4623 
4624 	pci_restore_state(pdev);
4625 	ret = hisi_qm_start(qm);
4626 	if (ret) {
4627 		dev_err(&pdev->dev, "failed to start QM, ret = %d.\n", ret);
4628 		cmd = QM_VF_START_FAIL;
4629 	}
4630 
4631 	qm_cmd_init(qm);
4632 	ret = qm_ping_pf(qm, cmd);
4633 	if (ret)
4634 		dev_warn(&pdev->dev, "PF responds timeout in reset done!\n");
4635 
4636 	qm_reset_bit_clear(qm);
4637 }
4638 
4639 static int qm_wait_pf_reset_finish(struct hisi_qm *qm)
4640 {
4641 	struct device *dev = &qm->pdev->dev;
4642 	u32 val, cmd;
4643 	u64 msg;
4644 	int ret;
4645 
4646 	/* Wait for reset to finish */
4647 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_IFC_INT_SOURCE_V, val,
4648 					 val == BIT(0), QM_VF_RESET_WAIT_US,
4649 					 QM_VF_RESET_WAIT_TIMEOUT_US);
4650 	/* hardware completion status should be available by this time */
4651 	if (ret) {
4652 		dev_err(dev, "couldn't get reset done status from PF, timeout!\n");
4653 		return -ETIMEDOUT;
4654 	}
4655 
4656 	/*
4657 	 * Whether message is got successfully,
4658 	 * VF needs to ack PF by clearing the interrupt.
4659 	 */
4660 	ret = qm_get_mb_cmd(qm, &msg, 0);
4661 	qm_clear_cmd_interrupt(qm, 0);
4662 	if (ret) {
4663 		dev_err(dev, "failed to get msg from PF in reset done!\n");
4664 		return ret;
4665 	}
4666 
4667 	cmd = msg & QM_MB_CMD_DATA_MASK;
4668 	if (cmd != QM_PF_RESET_DONE) {
4669 		dev_err(dev, "the cmd(%u) is not reset done!\n", cmd);
4670 		ret = -EINVAL;
4671 	}
4672 
4673 	return ret;
4674 }
4675 
4676 static void qm_pf_reset_vf_process(struct hisi_qm *qm,
4677 				   enum qm_stop_reason stop_reason)
4678 {
4679 	struct device *dev = &qm->pdev->dev;
4680 	int ret;
4681 
4682 	dev_info(dev, "device reset start...\n");
4683 
4684 	/* The message is obtained by querying the register during resetting */
4685 	qm_cmd_uninit(qm);
4686 	qm_pf_reset_vf_prepare(qm, stop_reason);
4687 
4688 	ret = qm_wait_pf_reset_finish(qm);
4689 	if (ret)
4690 		goto err_get_status;
4691 
4692 	qm_pf_reset_vf_done(qm);
4693 
4694 	dev_info(dev, "device reset done.\n");
4695 
4696 	return;
4697 
4698 err_get_status:
4699 	qm_cmd_init(qm);
4700 	qm_reset_bit_clear(qm);
4701 }
4702 
4703 static void qm_handle_cmd_msg(struct hisi_qm *qm, u32 fun_num)
4704 {
4705 	struct device *dev = &qm->pdev->dev;
4706 	u64 msg;
4707 	u32 cmd;
4708 	int ret;
4709 
4710 	/*
4711 	 * Get the msg from source by sending mailbox. Whether message is got
4712 	 * successfully, destination needs to ack source by clearing the interrupt.
4713 	 */
4714 	ret = qm_get_mb_cmd(qm, &msg, fun_num);
4715 	qm_clear_cmd_interrupt(qm, BIT(fun_num));
4716 	if (ret) {
4717 		dev_err(dev, "failed to get msg from source!\n");
4718 		return;
4719 	}
4720 
4721 	cmd = msg & QM_MB_CMD_DATA_MASK;
4722 	switch (cmd) {
4723 	case QM_PF_FLR_PREPARE:
4724 		qm_pf_reset_vf_process(qm, QM_DOWN);
4725 		break;
4726 	case QM_PF_SRST_PREPARE:
4727 		qm_pf_reset_vf_process(qm, QM_SOFT_RESET);
4728 		break;
4729 	case QM_VF_GET_QOS:
4730 		qm_vf_get_qos(qm, fun_num);
4731 		break;
4732 	case QM_PF_SET_QOS:
4733 		qm->mb_qos = msg >> QM_MB_CMD_DATA_SHIFT;
4734 		break;
4735 	default:
4736 		dev_err(dev, "unsupported cmd %u sent by function(%u)!\n", cmd, fun_num);
4737 		break;
4738 	}
4739 }
4740 
4741 static void qm_cmd_process(struct work_struct *cmd_process)
4742 {
4743 	struct hisi_qm *qm = container_of(cmd_process,
4744 					struct hisi_qm, cmd_process);
4745 	u32 vfs_num = qm->vfs_num;
4746 	u64 val;
4747 	u32 i;
4748 
4749 	if (qm->fun_type == QM_HW_PF) {
4750 		val = readq(qm->io_base + QM_IFC_INT_SOURCE_P);
4751 		if (!val)
4752 			return;
4753 
4754 		for (i = 1; i <= vfs_num; i++) {
4755 			if (val & BIT(i))
4756 				qm_handle_cmd_msg(qm, i);
4757 		}
4758 
4759 		return;
4760 	}
4761 
4762 	qm_handle_cmd_msg(qm, 0);
4763 }
4764 
4765 /**
4766  * hisi_qm_alg_register() - Register alg to crypto.
4767  * @qm: The qm needs add.
4768  * @qm_list: The qm list.
4769  * @guard: Guard of qp_num.
4770  *
4771  * Register algorithm to crypto when the function is satisfy guard.
4772  */
4773 int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list, int guard)
4774 {
4775 	struct device *dev = &qm->pdev->dev;
4776 
4777 	if (qm->ver <= QM_HW_V2 && qm->use_sva) {
4778 		dev_info(dev, "HW V2 not both use uacce sva mode and hardware crypto algs.\n");
4779 		return 0;
4780 	}
4781 
4782 	if (qm->qp_num < guard) {
4783 		dev_info(dev, "qp_num is less than task need.\n");
4784 		return 0;
4785 	}
4786 
4787 	return qm_list->register_to_crypto(qm);
4788 }
4789 EXPORT_SYMBOL_GPL(hisi_qm_alg_register);
4790 
4791 /**
4792  * hisi_qm_alg_unregister() - Unregister alg from crypto.
4793  * @qm: The qm needs delete.
4794  * @qm_list: The qm list.
4795  * @guard: Guard of qp_num.
4796  *
4797  * Unregister algorithm from crypto when the last function is satisfy guard.
4798  */
4799 void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list, int guard)
4800 {
4801 	if (qm->ver <= QM_HW_V2 && qm->use_sva)
4802 		return;
4803 
4804 	if (qm->qp_num < guard)
4805 		return;
4806 
4807 	qm_list->unregister_from_crypto(qm);
4808 }
4809 EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister);
4810 
4811 static void qm_unregister_abnormal_irq(struct hisi_qm *qm)
4812 {
4813 	struct pci_dev *pdev = qm->pdev;
4814 	u32 irq_vector, val;
4815 
4816 	if (qm->fun_type == QM_HW_VF)
4817 		return;
4818 
4819 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_ABN_IRQ_TYPE_CAP, qm->cap_ver);
4820 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK))
4821 		return;
4822 
4823 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4824 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
4825 }
4826 
4827 static int qm_register_abnormal_irq(struct hisi_qm *qm)
4828 {
4829 	struct pci_dev *pdev = qm->pdev;
4830 	u32 irq_vector, val;
4831 	int ret;
4832 
4833 	if (qm->fun_type == QM_HW_VF)
4834 		return 0;
4835 
4836 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_ABN_IRQ_TYPE_CAP, qm->cap_ver);
4837 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK))
4838 		return 0;
4839 
4840 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4841 	ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_abnormal_irq, 0, qm->dev_name, qm);
4842 	if (ret)
4843 		dev_err(&qm->pdev->dev, "failed to request abnormal irq, ret = %d", ret);
4844 
4845 	return ret;
4846 }
4847 
4848 static void qm_unregister_mb_cmd_irq(struct hisi_qm *qm)
4849 {
4850 	struct pci_dev *pdev = qm->pdev;
4851 	u32 irq_vector, val;
4852 
4853 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF2VF_IRQ_TYPE_CAP, qm->cap_ver);
4854 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4855 		return;
4856 
4857 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4858 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
4859 }
4860 
4861 static int qm_register_mb_cmd_irq(struct hisi_qm *qm)
4862 {
4863 	struct pci_dev *pdev = qm->pdev;
4864 	u32 irq_vector, val;
4865 	int ret;
4866 
4867 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF2VF_IRQ_TYPE_CAP, qm->cap_ver);
4868 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4869 		return 0;
4870 
4871 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4872 	ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_mb_cmd_irq, 0, qm->dev_name, qm);
4873 	if (ret)
4874 		dev_err(&pdev->dev, "failed to request function communication irq, ret = %d", ret);
4875 
4876 	return ret;
4877 }
4878 
4879 static void qm_unregister_aeq_irq(struct hisi_qm *qm)
4880 {
4881 	struct pci_dev *pdev = qm->pdev;
4882 	u32 irq_vector, val;
4883 
4884 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_AEQ_IRQ_TYPE_CAP, qm->cap_ver);
4885 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4886 		return;
4887 
4888 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4889 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
4890 }
4891 
4892 static int qm_register_aeq_irq(struct hisi_qm *qm)
4893 {
4894 	struct pci_dev *pdev = qm->pdev;
4895 	u32 irq_vector, val;
4896 	int ret;
4897 
4898 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_AEQ_IRQ_TYPE_CAP, qm->cap_ver);
4899 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4900 		return 0;
4901 
4902 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4903 	ret = request_threaded_irq(pci_irq_vector(pdev, irq_vector), NULL,
4904 						   qm_aeq_thread, IRQF_ONESHOT, qm->dev_name, qm);
4905 	if (ret)
4906 		dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret);
4907 
4908 	return ret;
4909 }
4910 
4911 static void qm_unregister_eq_irq(struct hisi_qm *qm)
4912 {
4913 	struct pci_dev *pdev = qm->pdev;
4914 	u32 irq_vector, val;
4915 
4916 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_EQ_IRQ_TYPE_CAP, qm->cap_ver);
4917 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4918 		return;
4919 
4920 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4921 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
4922 }
4923 
4924 static int qm_register_eq_irq(struct hisi_qm *qm)
4925 {
4926 	struct pci_dev *pdev = qm->pdev;
4927 	u32 irq_vector, val;
4928 	int ret;
4929 
4930 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_EQ_IRQ_TYPE_CAP, qm->cap_ver);
4931 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4932 		return 0;
4933 
4934 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4935 	ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_eq_irq, 0, qm->dev_name, qm);
4936 	if (ret)
4937 		dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret);
4938 
4939 	return ret;
4940 }
4941 
4942 static void qm_irqs_unregister(struct hisi_qm *qm)
4943 {
4944 	qm_unregister_mb_cmd_irq(qm);
4945 	qm_unregister_abnormal_irq(qm);
4946 	qm_unregister_aeq_irq(qm);
4947 	qm_unregister_eq_irq(qm);
4948 }
4949 
4950 static int qm_irqs_register(struct hisi_qm *qm)
4951 {
4952 	int ret;
4953 
4954 	ret = qm_register_eq_irq(qm);
4955 	if (ret)
4956 		return ret;
4957 
4958 	ret = qm_register_aeq_irq(qm);
4959 	if (ret)
4960 		goto free_eq_irq;
4961 
4962 	ret = qm_register_abnormal_irq(qm);
4963 	if (ret)
4964 		goto free_aeq_irq;
4965 
4966 	ret = qm_register_mb_cmd_irq(qm);
4967 	if (ret)
4968 		goto free_abnormal_irq;
4969 
4970 	return 0;
4971 
4972 free_abnormal_irq:
4973 	qm_unregister_abnormal_irq(qm);
4974 free_aeq_irq:
4975 	qm_unregister_aeq_irq(qm);
4976 free_eq_irq:
4977 	qm_unregister_eq_irq(qm);
4978 	return ret;
4979 }
4980 
4981 static int qm_get_qp_num(struct hisi_qm *qm)
4982 {
4983 	struct device *dev = &qm->pdev->dev;
4984 	bool is_db_isolation;
4985 
4986 	/* VF's qp_num assigned by PF in v2, and VF can get qp_num by vft. */
4987 	if (qm->fun_type == QM_HW_VF) {
4988 		if (qm->ver != QM_HW_V1)
4989 			/* v2 starts to support get vft by mailbox */
4990 			return hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num);
4991 
4992 		return 0;
4993 	}
4994 
4995 	is_db_isolation = test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps);
4996 	qm->ctrl_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, QM_TOTAL_QP_NUM_CAP, true);
4997 	qm->max_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info,
4998 					     QM_FUNC_MAX_QP_CAP, is_db_isolation);
4999 
5000 	if (qm->qp_num <= qm->max_qp_num)
5001 		return 0;
5002 
5003 	if (test_bit(QM_MODULE_PARAM, &qm->misc_ctl)) {
5004 		/* Check whether the set qp number is valid */
5005 		dev_err(dev, "qp num(%u) is more than max qp num(%u)!\n",
5006 			qm->qp_num, qm->max_qp_num);
5007 		return -EINVAL;
5008 	}
5009 
5010 	dev_info(dev, "Default qp num(%u) is too big, reset it to Function's max qp num(%u)!\n",
5011 		 qm->qp_num, qm->max_qp_num);
5012 	qm->qp_num = qm->max_qp_num;
5013 	qm->debug.curr_qm_qp_num = qm->qp_num;
5014 
5015 	return 0;
5016 }
5017 
5018 static void qm_get_hw_caps(struct hisi_qm *qm)
5019 {
5020 	const struct hisi_qm_cap_info *cap_info = qm->fun_type == QM_HW_PF ?
5021 						  qm_cap_info_pf : qm_cap_info_vf;
5022 	u32 size = qm->fun_type == QM_HW_PF ? ARRAY_SIZE(qm_cap_info_pf) :
5023 				   ARRAY_SIZE(qm_cap_info_vf);
5024 	u32 val, i;
5025 
5026 	/* Doorbell isolate register is a independent register. */
5027 	val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, QM_SUPPORT_DB_ISOLATION, true);
5028 	if (val)
5029 		set_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps);
5030 
5031 	if (qm->ver >= QM_HW_V3) {
5032 		val = readl(qm->io_base + QM_FUNC_CAPS_REG);
5033 		qm->cap_ver = val & QM_CAPBILITY_VERSION;
5034 	}
5035 
5036 	/* Get PF/VF common capbility */
5037 	for (i = 1; i < ARRAY_SIZE(qm_cap_info_comm); i++) {
5038 		val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, i, qm->cap_ver);
5039 		if (val)
5040 			set_bit(qm_cap_info_comm[i].type, &qm->caps);
5041 	}
5042 
5043 	/* Get PF/VF different capbility */
5044 	for (i = 0; i < size; i++) {
5045 		val = hisi_qm_get_hw_info(qm, cap_info, i, qm->cap_ver);
5046 		if (val)
5047 			set_bit(cap_info[i].type, &qm->caps);
5048 	}
5049 }
5050 
5051 static int qm_get_pci_res(struct hisi_qm *qm)
5052 {
5053 	struct pci_dev *pdev = qm->pdev;
5054 	struct device *dev = &pdev->dev;
5055 	int ret;
5056 
5057 	ret = pci_request_mem_regions(pdev, qm->dev_name);
5058 	if (ret < 0) {
5059 		dev_err(dev, "Failed to request mem regions!\n");
5060 		return ret;
5061 	}
5062 
5063 	qm->phys_base = pci_resource_start(pdev, PCI_BAR_2);
5064 	qm->io_base = ioremap(qm->phys_base, pci_resource_len(pdev, PCI_BAR_2));
5065 	if (!qm->io_base) {
5066 		ret = -EIO;
5067 		goto err_request_mem_regions;
5068 	}
5069 
5070 	qm_get_hw_caps(qm);
5071 	if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) {
5072 		qm->db_interval = QM_QP_DB_INTERVAL;
5073 		qm->db_phys_base = pci_resource_start(pdev, PCI_BAR_4);
5074 		qm->db_io_base = ioremap(qm->db_phys_base,
5075 					 pci_resource_len(pdev, PCI_BAR_4));
5076 		if (!qm->db_io_base) {
5077 			ret = -EIO;
5078 			goto err_ioremap;
5079 		}
5080 	} else {
5081 		qm->db_phys_base = qm->phys_base;
5082 		qm->db_io_base = qm->io_base;
5083 		qm->db_interval = 0;
5084 	}
5085 
5086 	ret = qm_get_qp_num(qm);
5087 	if (ret)
5088 		goto err_db_ioremap;
5089 
5090 	return 0;
5091 
5092 err_db_ioremap:
5093 	if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
5094 		iounmap(qm->db_io_base);
5095 err_ioremap:
5096 	iounmap(qm->io_base);
5097 err_request_mem_regions:
5098 	pci_release_mem_regions(pdev);
5099 	return ret;
5100 }
5101 
5102 static int hisi_qm_pci_init(struct hisi_qm *qm)
5103 {
5104 	struct pci_dev *pdev = qm->pdev;
5105 	struct device *dev = &pdev->dev;
5106 	unsigned int num_vec;
5107 	int ret;
5108 
5109 	ret = pci_enable_device_mem(pdev);
5110 	if (ret < 0) {
5111 		dev_err(dev, "Failed to enable device mem!\n");
5112 		return ret;
5113 	}
5114 
5115 	ret = qm_get_pci_res(qm);
5116 	if (ret)
5117 		goto err_disable_pcidev;
5118 
5119 	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
5120 	if (ret < 0)
5121 		goto err_get_pci_res;
5122 	pci_set_master(pdev);
5123 
5124 	num_vec = qm_get_irq_num(qm);
5125 	ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI);
5126 	if (ret < 0) {
5127 		dev_err(dev, "Failed to enable MSI vectors!\n");
5128 		goto err_get_pci_res;
5129 	}
5130 
5131 	return 0;
5132 
5133 err_get_pci_res:
5134 	qm_put_pci_res(qm);
5135 err_disable_pcidev:
5136 	pci_disable_device(pdev);
5137 	return ret;
5138 }
5139 
5140 static int hisi_qm_init_work(struct hisi_qm *qm)
5141 {
5142 	int i;
5143 
5144 	for (i = 0; i < qm->qp_num; i++)
5145 		INIT_WORK(&qm->poll_data[i].work, qm_work_process);
5146 
5147 	if (qm->fun_type == QM_HW_PF)
5148 		INIT_WORK(&qm->rst_work, hisi_qm_controller_reset);
5149 
5150 	if (qm->ver > QM_HW_V2)
5151 		INIT_WORK(&qm->cmd_process, qm_cmd_process);
5152 
5153 	qm->wq = alloc_workqueue("%s", WQ_HIGHPRI | WQ_MEM_RECLAIM |
5154 				 WQ_UNBOUND, num_online_cpus(),
5155 				 pci_name(qm->pdev));
5156 	if (!qm->wq) {
5157 		pci_err(qm->pdev, "failed to alloc workqueue!\n");
5158 		return -ENOMEM;
5159 	}
5160 
5161 	return 0;
5162 }
5163 
5164 static int hisi_qp_alloc_memory(struct hisi_qm *qm)
5165 {
5166 	struct device *dev = &qm->pdev->dev;
5167 	u16 sq_depth, cq_depth;
5168 	size_t qp_dma_size;
5169 	int i, ret;
5170 
5171 	qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL);
5172 	if (!qm->qp_array)
5173 		return -ENOMEM;
5174 
5175 	qm->poll_data = kcalloc(qm->qp_num, sizeof(struct hisi_qm_poll_data), GFP_KERNEL);
5176 	if (!qm->poll_data) {
5177 		kfree(qm->qp_array);
5178 		return -ENOMEM;
5179 	}
5180 
5181 	qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP);
5182 
5183 	/* one more page for device or qp statuses */
5184 	qp_dma_size = qm->sqe_size * sq_depth + sizeof(struct qm_cqe) * cq_depth;
5185 	qp_dma_size = PAGE_ALIGN(qp_dma_size) + PAGE_SIZE;
5186 	for (i = 0; i < qm->qp_num; i++) {
5187 		qm->poll_data[i].qm = qm;
5188 		ret = hisi_qp_memory_init(qm, qp_dma_size, i, sq_depth, cq_depth);
5189 		if (ret)
5190 			goto err_init_qp_mem;
5191 
5192 		dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size);
5193 	}
5194 
5195 	return 0;
5196 err_init_qp_mem:
5197 	hisi_qp_memory_uninit(qm, i);
5198 
5199 	return ret;
5200 }
5201 
5202 static int hisi_qm_alloc_rsv_buf(struct hisi_qm *qm)
5203 {
5204 	struct qm_rsv_buf *xqc_buf = &qm->xqc_buf;
5205 	struct qm_dma *xqc_dma = &xqc_buf->qcdma;
5206 	struct device *dev = &qm->pdev->dev;
5207 	size_t off = 0;
5208 
5209 #define QM_XQC_BUF_INIT(xqc_buf, type) do { \
5210 	(xqc_buf)->type = ((xqc_buf)->qcdma.va + (off)); \
5211 	(xqc_buf)->type##_dma = (xqc_buf)->qcdma.dma + (off); \
5212 	off += QMC_ALIGN(sizeof(struct qm_##type)); \
5213 } while (0)
5214 
5215 	xqc_dma->size = QMC_ALIGN(sizeof(struct qm_eqc)) +
5216 			QMC_ALIGN(sizeof(struct qm_aeqc)) +
5217 			QMC_ALIGN(sizeof(struct qm_sqc)) +
5218 			QMC_ALIGN(sizeof(struct qm_cqc));
5219 	xqc_dma->va = dma_alloc_coherent(dev, xqc_dma->size,
5220 					 &xqc_dma->dma, GFP_KERNEL);
5221 	if (!xqc_dma->va)
5222 		return -ENOMEM;
5223 
5224 	QM_XQC_BUF_INIT(xqc_buf, eqc);
5225 	QM_XQC_BUF_INIT(xqc_buf, aeqc);
5226 	QM_XQC_BUF_INIT(xqc_buf, sqc);
5227 	QM_XQC_BUF_INIT(xqc_buf, cqc);
5228 
5229 	return 0;
5230 }
5231 
5232 static int hisi_qm_memory_init(struct hisi_qm *qm)
5233 {
5234 	struct device *dev = &qm->pdev->dev;
5235 	int ret, total_func;
5236 	size_t off = 0;
5237 
5238 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) {
5239 		total_func = pci_sriov_get_totalvfs(qm->pdev) + 1;
5240 		qm->factor = kcalloc(total_func, sizeof(struct qm_shaper_factor), GFP_KERNEL);
5241 		if (!qm->factor)
5242 			return -ENOMEM;
5243 
5244 		/* Only the PF value needs to be initialized */
5245 		qm->factor[0].func_qos = QM_QOS_MAX_VAL;
5246 	}
5247 
5248 #define QM_INIT_BUF(qm, type, num) do { \
5249 	(qm)->type = ((qm)->qdma.va + (off)); \
5250 	(qm)->type##_dma = (qm)->qdma.dma + (off); \
5251 	off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \
5252 } while (0)
5253 
5254 	idr_init(&qm->qp_idr);
5255 	qm_get_xqc_depth(qm, &qm->eq_depth, &qm->aeq_depth, QM_XEQ_DEPTH_CAP);
5256 	qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * qm->eq_depth) +
5257 			QMC_ALIGN(sizeof(struct qm_aeqe) * qm->aeq_depth) +
5258 			QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) +
5259 			QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num);
5260 	qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma,
5261 					 GFP_ATOMIC);
5262 	dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size);
5263 	if (!qm->qdma.va) {
5264 		ret = -ENOMEM;
5265 		goto err_destroy_idr;
5266 	}
5267 
5268 	QM_INIT_BUF(qm, eqe, qm->eq_depth);
5269 	QM_INIT_BUF(qm, aeqe, qm->aeq_depth);
5270 	QM_INIT_BUF(qm, sqc, qm->qp_num);
5271 	QM_INIT_BUF(qm, cqc, qm->qp_num);
5272 
5273 	ret = hisi_qm_alloc_rsv_buf(qm);
5274 	if (ret)
5275 		goto err_free_qdma;
5276 
5277 	ret = hisi_qp_alloc_memory(qm);
5278 	if (ret)
5279 		goto err_free_reserve_buf;
5280 
5281 	return 0;
5282 
5283 err_free_reserve_buf:
5284 	hisi_qm_free_rsv_buf(qm);
5285 err_free_qdma:
5286 	dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma);
5287 err_destroy_idr:
5288 	idr_destroy(&qm->qp_idr);
5289 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
5290 		kfree(qm->factor);
5291 
5292 	return ret;
5293 }
5294 
5295 /**
5296  * hisi_qm_init() - Initialize configures about qm.
5297  * @qm: The qm needing init.
5298  *
5299  * This function init qm, then we can call hisi_qm_start to put qm into work.
5300  */
5301 int hisi_qm_init(struct hisi_qm *qm)
5302 {
5303 	struct pci_dev *pdev = qm->pdev;
5304 	struct device *dev = &pdev->dev;
5305 	int ret;
5306 
5307 	hisi_qm_pre_init(qm);
5308 
5309 	ret = hisi_qm_pci_init(qm);
5310 	if (ret)
5311 		return ret;
5312 
5313 	ret = qm_irqs_register(qm);
5314 	if (ret)
5315 		goto err_pci_init;
5316 
5317 	if (qm->fun_type == QM_HW_PF) {
5318 		/* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */
5319 		writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG);
5320 		qm_disable_clock_gate(qm);
5321 		ret = qm_dev_mem_reset(qm);
5322 		if (ret) {
5323 			dev_err(dev, "failed to reset device memory\n");
5324 			goto err_irq_register;
5325 		}
5326 	}
5327 
5328 	if (qm->mode == UACCE_MODE_SVA) {
5329 		ret = qm_alloc_uacce(qm);
5330 		if (ret < 0)
5331 			dev_warn(dev, "fail to alloc uacce (%d)\n", ret);
5332 	}
5333 
5334 	ret = hisi_qm_memory_init(qm);
5335 	if (ret)
5336 		goto err_alloc_uacce;
5337 
5338 	ret = hisi_qm_init_work(qm);
5339 	if (ret)
5340 		goto err_free_qm_memory;
5341 
5342 	qm_cmd_init(qm);
5343 	atomic_set(&qm->status.flags, QM_INIT);
5344 
5345 	return 0;
5346 
5347 err_free_qm_memory:
5348 	hisi_qm_memory_uninit(qm);
5349 err_alloc_uacce:
5350 	qm_remove_uacce(qm);
5351 err_irq_register:
5352 	qm_irqs_unregister(qm);
5353 err_pci_init:
5354 	hisi_qm_pci_uninit(qm);
5355 	return ret;
5356 }
5357 EXPORT_SYMBOL_GPL(hisi_qm_init);
5358 
5359 /**
5360  * hisi_qm_get_dfx_access() - Try to get dfx access.
5361  * @qm: pointer to accelerator device.
5362  *
5363  * Try to get dfx access, then user can get message.
5364  *
5365  * If device is in suspended, return failure, otherwise
5366  * bump up the runtime PM usage counter.
5367  */
5368 int hisi_qm_get_dfx_access(struct hisi_qm *qm)
5369 {
5370 	struct device *dev = &qm->pdev->dev;
5371 
5372 	if (pm_runtime_suspended(dev)) {
5373 		dev_info(dev, "can not read/write - device in suspended.\n");
5374 		return -EAGAIN;
5375 	}
5376 
5377 	return qm_pm_get_sync(qm);
5378 }
5379 EXPORT_SYMBOL_GPL(hisi_qm_get_dfx_access);
5380 
5381 /**
5382  * hisi_qm_put_dfx_access() - Put dfx access.
5383  * @qm: pointer to accelerator device.
5384  *
5385  * Put dfx access, drop runtime PM usage counter.
5386  */
5387 void hisi_qm_put_dfx_access(struct hisi_qm *qm)
5388 {
5389 	qm_pm_put_sync(qm);
5390 }
5391 EXPORT_SYMBOL_GPL(hisi_qm_put_dfx_access);
5392 
5393 /**
5394  * hisi_qm_pm_init() - Initialize qm runtime PM.
5395  * @qm: pointer to accelerator device.
5396  *
5397  * Function that initialize qm runtime PM.
5398  */
5399 void hisi_qm_pm_init(struct hisi_qm *qm)
5400 {
5401 	struct device *dev = &qm->pdev->dev;
5402 
5403 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
5404 		return;
5405 
5406 	pm_runtime_set_autosuspend_delay(dev, QM_AUTOSUSPEND_DELAY);
5407 	pm_runtime_use_autosuspend(dev);
5408 	pm_runtime_put_noidle(dev);
5409 }
5410 EXPORT_SYMBOL_GPL(hisi_qm_pm_init);
5411 
5412 /**
5413  * hisi_qm_pm_uninit() - Uninitialize qm runtime PM.
5414  * @qm: pointer to accelerator device.
5415  *
5416  * Function that uninitialize qm runtime PM.
5417  */
5418 void hisi_qm_pm_uninit(struct hisi_qm *qm)
5419 {
5420 	struct device *dev = &qm->pdev->dev;
5421 
5422 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
5423 		return;
5424 
5425 	pm_runtime_get_noresume(dev);
5426 	pm_runtime_dont_use_autosuspend(dev);
5427 }
5428 EXPORT_SYMBOL_GPL(hisi_qm_pm_uninit);
5429 
5430 static int qm_prepare_for_suspend(struct hisi_qm *qm)
5431 {
5432 	struct pci_dev *pdev = qm->pdev;
5433 	int ret;
5434 	u32 val;
5435 
5436 	ret = qm->ops->set_msi(qm, false);
5437 	if (ret) {
5438 		pci_err(pdev, "failed to disable MSI before suspending!\n");
5439 		return ret;
5440 	}
5441 
5442 	/* shutdown OOO register */
5443 	writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN,
5444 	       qm->io_base + ACC_MASTER_GLOBAL_CTRL);
5445 
5446 	ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN,
5447 					 val,
5448 					 (val == ACC_MASTER_TRANS_RETURN_RW),
5449 					 POLL_PERIOD, POLL_TIMEOUT);
5450 	if (ret) {
5451 		pci_emerg(pdev, "Bus lock! Please reset system.\n");
5452 		return ret;
5453 	}
5454 
5455 	ret = qm_set_pf_mse(qm, false);
5456 	if (ret)
5457 		pci_err(pdev, "failed to disable MSE before suspending!\n");
5458 
5459 	return ret;
5460 }
5461 
5462 static int qm_rebuild_for_resume(struct hisi_qm *qm)
5463 {
5464 	struct pci_dev *pdev = qm->pdev;
5465 	int ret;
5466 
5467 	ret = qm_set_pf_mse(qm, true);
5468 	if (ret) {
5469 		pci_err(pdev, "failed to enable MSE after resuming!\n");
5470 		return ret;
5471 	}
5472 
5473 	ret = qm->ops->set_msi(qm, true);
5474 	if (ret) {
5475 		pci_err(pdev, "failed to enable MSI after resuming!\n");
5476 		return ret;
5477 	}
5478 
5479 	ret = qm_dev_hw_init(qm);
5480 	if (ret) {
5481 		pci_err(pdev, "failed to init device after resuming\n");
5482 		return ret;
5483 	}
5484 
5485 	qm_cmd_init(qm);
5486 	hisi_qm_dev_err_init(qm);
5487 	/* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */
5488 	writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG);
5489 	qm_disable_clock_gate(qm);
5490 	ret = qm_dev_mem_reset(qm);
5491 	if (ret)
5492 		pci_err(pdev, "failed to reset device memory\n");
5493 
5494 	return ret;
5495 }
5496 
5497 /**
5498  * hisi_qm_suspend() - Runtime suspend of given device.
5499  * @dev: device to suspend.
5500  *
5501  * Function that suspend the device.
5502  */
5503 int hisi_qm_suspend(struct device *dev)
5504 {
5505 	struct pci_dev *pdev = to_pci_dev(dev);
5506 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5507 	int ret;
5508 
5509 	pci_info(pdev, "entering suspended state\n");
5510 
5511 	ret = hisi_qm_stop(qm, QM_NORMAL);
5512 	if (ret) {
5513 		pci_err(pdev, "failed to stop qm(%d)\n", ret);
5514 		return ret;
5515 	}
5516 
5517 	ret = qm_prepare_for_suspend(qm);
5518 	if (ret)
5519 		pci_err(pdev, "failed to prepare suspended(%d)\n", ret);
5520 
5521 	return ret;
5522 }
5523 EXPORT_SYMBOL_GPL(hisi_qm_suspend);
5524 
5525 /**
5526  * hisi_qm_resume() - Runtime resume of given device.
5527  * @dev: device to resume.
5528  *
5529  * Function that resume the device.
5530  */
5531 int hisi_qm_resume(struct device *dev)
5532 {
5533 	struct pci_dev *pdev = to_pci_dev(dev);
5534 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5535 	int ret;
5536 
5537 	pci_info(pdev, "resuming from suspend state\n");
5538 
5539 	ret = qm_rebuild_for_resume(qm);
5540 	if (ret) {
5541 		pci_err(pdev, "failed to rebuild resume(%d)\n", ret);
5542 		return ret;
5543 	}
5544 
5545 	ret = hisi_qm_start(qm);
5546 	if (ret) {
5547 		if (qm_check_dev_error(qm)) {
5548 			pci_info(pdev, "failed to start qm due to device error, device will be reset!\n");
5549 			return 0;
5550 		}
5551 
5552 		pci_err(pdev, "failed to start qm(%d)!\n", ret);
5553 	}
5554 
5555 	return ret;
5556 }
5557 EXPORT_SYMBOL_GPL(hisi_qm_resume);
5558 
5559 MODULE_LICENSE("GPL v2");
5560 MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>");
5561 MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver");
5562