xref: /linux/drivers/crypto/hisilicon/qm.c (revision e18655cf35a5958fbf4ae9ca3ebf28871a3a1801)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 HiSilicon Limited. */
3 #include <asm/page.h>
4 #include <linux/acpi.h>
5 #include <linux/bitmap.h>
6 #include <linux/dma-mapping.h>
7 #include <linux/idr.h>
8 #include <linux/io.h>
9 #include <linux/irqreturn.h>
10 #include <linux/log2.h>
11 #include <linux/pm_runtime.h>
12 #include <linux/seq_file.h>
13 #include <linux/slab.h>
14 #include <linux/uacce.h>
15 #include <linux/uaccess.h>
16 #include <uapi/misc/uacce/hisi_qm.h>
17 #include <linux/hisi_acc_qm.h>
18 #include "qm_common.h"
19 
20 /* eq/aeq irq enable */
21 #define QM_VF_AEQ_INT_SOURCE		0x0
22 #define QM_VF_AEQ_INT_MASK		0x4
23 #define QM_VF_EQ_INT_SOURCE		0x8
24 #define QM_VF_EQ_INT_MASK		0xc
25 
26 #define QM_IRQ_VECTOR_MASK		GENMASK(15, 0)
27 #define QM_IRQ_TYPE_MASK		GENMASK(15, 0)
28 #define QM_IRQ_TYPE_SHIFT		16
29 #define QM_ABN_IRQ_TYPE_MASK		GENMASK(7, 0)
30 
31 /* mailbox */
32 #define QM_MB_PING_ALL_VFS		0xffff
33 #define QM_MB_CMD_DATA_SHIFT		32
34 #define QM_MB_CMD_DATA_MASK		GENMASK(31, 0)
35 #define QM_MB_STATUS_MASK		GENMASK(12, 9)
36 
37 /* sqc shift */
38 #define QM_SQ_HOP_NUM_SHIFT		0
39 #define QM_SQ_PAGE_SIZE_SHIFT		4
40 #define QM_SQ_BUF_SIZE_SHIFT		8
41 #define QM_SQ_SQE_SIZE_SHIFT		12
42 #define QM_SQ_PRIORITY_SHIFT		0
43 #define QM_SQ_ORDERS_SHIFT		4
44 #define QM_SQ_TYPE_SHIFT		8
45 #define QM_QC_PASID_ENABLE		0x1
46 #define QM_QC_PASID_ENABLE_SHIFT	7
47 
48 #define QM_SQ_TYPE_MASK			GENMASK(3, 0)
49 #define QM_SQ_TAIL_IDX(sqc)		((le16_to_cpu((sqc).w11) >> 6) & 0x1)
50 
51 /* cqc shift */
52 #define QM_CQ_HOP_NUM_SHIFT		0
53 #define QM_CQ_PAGE_SIZE_SHIFT		4
54 #define QM_CQ_BUF_SIZE_SHIFT		8
55 #define QM_CQ_CQE_SIZE_SHIFT		12
56 #define QM_CQ_PHASE_SHIFT		0
57 #define QM_CQ_FLAG_SHIFT		1
58 
59 #define QM_CQE_PHASE(cqe)		(le16_to_cpu((cqe)->w7) & 0x1)
60 #define QM_QC_CQE_SIZE			4
61 #define QM_CQ_TAIL_IDX(cqc)		((le16_to_cpu((cqc).w11) >> 6) & 0x1)
62 
63 /* eqc shift */
64 #define QM_EQE_AEQE_SIZE		(2UL << 12)
65 #define QM_EQC_PHASE_SHIFT		16
66 
67 #define QM_EQE_PHASE(eqe)		((le32_to_cpu((eqe)->dw0) >> 16) & 0x1)
68 #define QM_EQE_CQN_MASK			GENMASK(15, 0)
69 
70 #define QM_AEQE_PHASE(aeqe)		((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1)
71 #define QM_AEQE_TYPE_SHIFT		17
72 #define QM_AEQE_TYPE_MASK		0xf
73 #define QM_AEQE_CQN_MASK		GENMASK(15, 0)
74 #define QM_CQ_OVERFLOW			0
75 #define QM_EQ_OVERFLOW			1
76 #define QM_CQE_ERROR			2
77 
78 #define QM_XQ_DEPTH_SHIFT		16
79 #define QM_XQ_DEPTH_MASK		GENMASK(15, 0)
80 
81 #define QM_DOORBELL_CMD_SQ		0
82 #define QM_DOORBELL_CMD_CQ		1
83 #define QM_DOORBELL_CMD_EQ		2
84 #define QM_DOORBELL_CMD_AEQ		3
85 
86 #define QM_DOORBELL_BASE_V1		0x340
87 #define QM_DB_CMD_SHIFT_V1		16
88 #define QM_DB_INDEX_SHIFT_V1		32
89 #define QM_DB_PRIORITY_SHIFT_V1		48
90 #define QM_PAGE_SIZE			0x0034
91 #define QM_QP_DB_INTERVAL		0x10000
92 #define QM_DB_TIMEOUT_CFG		0x100074
93 #define QM_DB_TIMEOUT_SET		0x1fffff
94 
95 #define QM_MEM_START_INIT		0x100040
96 #define QM_MEM_INIT_DONE		0x100044
97 #define QM_VFT_CFG_RDY			0x10006c
98 #define QM_VFT_CFG_OP_WR		0x100058
99 #define QM_VFT_CFG_TYPE			0x10005c
100 #define QM_VFT_CFG			0x100060
101 #define QM_VFT_CFG_OP_ENABLE		0x100054
102 #define QM_PM_CTRL			0x100148
103 #define QM_IDLE_DISABLE			BIT(9)
104 
105 #define QM_VFT_CFG_DATA_L		0x100064
106 #define QM_VFT_CFG_DATA_H		0x100068
107 #define QM_SQC_VFT_BUF_SIZE		(7ULL << 8)
108 #define QM_SQC_VFT_SQC_SIZE		(5ULL << 12)
109 #define QM_SQC_VFT_INDEX_NUMBER		(1ULL << 16)
110 #define QM_SQC_VFT_START_SQN_SHIFT	28
111 #define QM_SQC_VFT_VALID		(1ULL << 44)
112 #define QM_SQC_VFT_SQN_SHIFT		45
113 #define QM_CQC_VFT_BUF_SIZE		(7ULL << 8)
114 #define QM_CQC_VFT_SQC_SIZE		(5ULL << 12)
115 #define QM_CQC_VFT_INDEX_NUMBER		(1ULL << 16)
116 #define QM_CQC_VFT_VALID		(1ULL << 28)
117 
118 #define QM_SQC_VFT_BASE_SHIFT_V2	28
119 #define QM_SQC_VFT_BASE_MASK_V2		GENMASK(15, 0)
120 #define QM_SQC_VFT_NUM_SHIFT_V2		45
121 #define QM_SQC_VFT_NUM_MASK_V2		GENMASK(9, 0)
122 
123 #define QM_ABNORMAL_INT_SOURCE		0x100000
124 #define QM_ABNORMAL_INT_MASK		0x100004
125 #define QM_ABNORMAL_INT_MASK_VALUE	0x7fff
126 #define QM_ABNORMAL_INT_STATUS		0x100008
127 #define QM_ABNORMAL_INT_SET		0x10000c
128 #define QM_ABNORMAL_INF00		0x100010
129 #define QM_FIFO_OVERFLOW_TYPE		0xc0
130 #define QM_FIFO_OVERFLOW_TYPE_SHIFT	6
131 #define QM_FIFO_OVERFLOW_VF		0x3f
132 #define QM_FIFO_OVERFLOW_QP_SHIFT	16
133 #define QM_ABNORMAL_INF01		0x100014
134 #define QM_DB_TIMEOUT_TYPE		0xc0
135 #define QM_DB_TIMEOUT_TYPE_SHIFT	6
136 #define QM_DB_TIMEOUT_VF		0x3f
137 #define QM_DB_TIMEOUT_QP_SHIFT		16
138 #define QM_ABNORMAL_INF02		0x100018
139 #define QM_AXI_POISON_ERR		BIT(22)
140 #define QM_RAS_CE_ENABLE		0x1000ec
141 #define QM_RAS_FE_ENABLE		0x1000f0
142 #define QM_RAS_NFE_ENABLE		0x1000f4
143 #define QM_RAS_CE_THRESHOLD		0x1000f8
144 #define QM_RAS_CE_TIMES_PER_IRQ		1
145 #define QM_OOO_SHUTDOWN_SEL		0x1040f8
146 #define QM_AXI_RRESP_ERR		BIT(0)
147 #define QM_ECC_MBIT			BIT(2)
148 #define QM_DB_TIMEOUT			BIT(10)
149 #define QM_OF_FIFO_OF			BIT(11)
150 
151 #define QM_RESET_WAIT_TIMEOUT		400
152 #define QM_PEH_VENDOR_ID		0x1000d8
153 #define ACC_VENDOR_ID_VALUE		0x5a5a
154 #define QM_PEH_DFX_INFO0		0x1000fc
155 #define QM_PEH_DFX_INFO1		0x100100
156 #define QM_PEH_DFX_MASK			(BIT(0) | BIT(2))
157 #define QM_PEH_MSI_FINISH_MASK		GENMASK(19, 16)
158 #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT	3
159 #define ACC_PEH_MSI_DISABLE		GENMASK(31, 0)
160 #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN	0x1
161 #define ACC_MASTER_TRANS_RETURN_RW	3
162 #define ACC_MASTER_TRANS_RETURN		0x300150
163 #define ACC_MASTER_GLOBAL_CTRL		0x300000
164 #define ACC_AM_CFG_PORT_WR_EN		0x30001c
165 #define QM_RAS_NFE_MBIT_DISABLE		~QM_ECC_MBIT
166 #define ACC_AM_ROB_ECC_INT_STS		0x300104
167 #define ACC_ROB_ECC_ERR_MULTPL		BIT(1)
168 #define QM_MSI_CAP_ENABLE		BIT(16)
169 
170 /* interfunction communication */
171 #define QM_IFC_READY_STATUS		0x100128
172 #define QM_IFC_INT_SET_P		0x100130
173 #define QM_IFC_INT_CFG			0x100134
174 #define QM_IFC_INT_SOURCE_P		0x100138
175 #define QM_IFC_INT_SOURCE_V		0x0020
176 #define QM_IFC_INT_MASK			0x0024
177 #define QM_IFC_INT_STATUS		0x0028
178 #define QM_IFC_INT_SET_V		0x002C
179 #define QM_IFC_SEND_ALL_VFS		GENMASK(6, 0)
180 #define QM_IFC_INT_SOURCE_CLR		GENMASK(63, 0)
181 #define QM_IFC_INT_SOURCE_MASK		BIT(0)
182 #define QM_IFC_INT_DISABLE		BIT(0)
183 #define QM_IFC_INT_STATUS_MASK		BIT(0)
184 #define QM_IFC_INT_SET_MASK		BIT(0)
185 #define QM_WAIT_DST_ACK			10
186 #define QM_MAX_PF_WAIT_COUNT		10
187 #define QM_MAX_VF_WAIT_COUNT		40
188 #define QM_VF_RESET_WAIT_US            20000
189 #define QM_VF_RESET_WAIT_CNT           3000
190 #define QM_VF_RESET_WAIT_TIMEOUT_US    \
191 	(QM_VF_RESET_WAIT_US * QM_VF_RESET_WAIT_CNT)
192 
193 #define POLL_PERIOD			10
194 #define POLL_TIMEOUT			1000
195 #define WAIT_PERIOD_US_MAX		200
196 #define WAIT_PERIOD_US_MIN		100
197 #define MAX_WAIT_COUNTS			1000
198 #define QM_CACHE_WB_START		0x204
199 #define QM_CACHE_WB_DONE		0x208
200 #define QM_FUNC_CAPS_REG		0x3100
201 #define QM_CAPBILITY_VERSION		GENMASK(7, 0)
202 
203 #define PCI_BAR_2			2
204 #define PCI_BAR_4			4
205 #define QMC_ALIGN(sz)			ALIGN(sz, 32)
206 
207 #define QM_DBG_READ_LEN		256
208 #define QM_PCI_COMMAND_INVALID		~0
209 #define QM_RESET_STOP_TX_OFFSET		1
210 #define QM_RESET_STOP_RX_OFFSET		2
211 
212 #define WAIT_PERIOD			20
213 #define REMOVE_WAIT_DELAY		10
214 
215 #define QM_QOS_PARAM_NUM		2
216 #define QM_QOS_MAX_VAL			1000
217 #define QM_QOS_RATE			100
218 #define QM_QOS_EXPAND_RATE		1000
219 #define QM_SHAPER_CIR_B_MASK		GENMASK(7, 0)
220 #define QM_SHAPER_CIR_U_MASK		GENMASK(10, 8)
221 #define QM_SHAPER_CIR_S_MASK		GENMASK(14, 11)
222 #define QM_SHAPER_FACTOR_CIR_U_SHIFT	8
223 #define QM_SHAPER_FACTOR_CIR_S_SHIFT	11
224 #define QM_SHAPER_FACTOR_CBS_B_SHIFT	15
225 #define QM_SHAPER_FACTOR_CBS_S_SHIFT	19
226 #define QM_SHAPER_CBS_B			1
227 #define QM_SHAPER_VFT_OFFSET		6
228 #define QM_QOS_MIN_ERROR_RATE		5
229 #define QM_SHAPER_MIN_CBS_S		8
230 #define QM_QOS_TICK			0x300U
231 #define QM_QOS_DIVISOR_CLK		0x1f40U
232 #define QM_QOS_MAX_CIR_B		200
233 #define QM_QOS_MIN_CIR_B		100
234 #define QM_QOS_MAX_CIR_U		6
235 #define QM_AUTOSUSPEND_DELAY		3000
236 
237 #define QM_DEV_ALG_MAX_LEN		256
238 
239  /* abnormal status value for stopping queue */
240 #define QM_STOP_QUEUE_FAIL		1
241 #define	QM_DUMP_SQC_FAIL		3
242 #define	QM_DUMP_CQC_FAIL		4
243 #define	QM_FINISH_WAIT			5
244 
245 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \
246 	(((hop_num) << QM_CQ_HOP_NUM_SHIFT) | \
247 	((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT) | \
248 	((buf_sz) << QM_CQ_BUF_SIZE_SHIFT) | \
249 	((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
250 
251 #define QM_MK_CQC_DW3_V2(cqe_sz, cq_depth) \
252 	((((u32)cq_depth) - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
253 
254 #define QM_MK_SQC_W13(priority, orders, alg_type) \
255 	(((priority) << QM_SQ_PRIORITY_SHIFT) | \
256 	((orders) << QM_SQ_ORDERS_SHIFT) | \
257 	(((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT))
258 
259 #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \
260 	(((hop_num) << QM_SQ_HOP_NUM_SHIFT) | \
261 	((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT) | \
262 	((buf_sz) << QM_SQ_BUF_SIZE_SHIFT) | \
263 	((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
264 
265 #define QM_MK_SQC_DW3_V2(sqe_sz, sq_depth) \
266 	((((u32)sq_depth) - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
267 
268 enum vft_type {
269 	SQC_VFT = 0,
270 	CQC_VFT,
271 	SHAPER_VFT,
272 };
273 
274 enum qm_alg_type {
275 	ALG_TYPE_0,
276 	ALG_TYPE_1,
277 };
278 
279 enum qm_mb_cmd {
280 	QM_PF_FLR_PREPARE = 0x01,
281 	QM_PF_SRST_PREPARE,
282 	QM_PF_RESET_DONE,
283 	QM_VF_PREPARE_DONE,
284 	QM_VF_PREPARE_FAIL,
285 	QM_VF_START_DONE,
286 	QM_VF_START_FAIL,
287 	QM_PF_SET_QOS,
288 	QM_VF_GET_QOS,
289 };
290 
291 enum qm_basic_type {
292 	QM_TOTAL_QP_NUM_CAP = 0x0,
293 	QM_FUNC_MAX_QP_CAP,
294 	QM_XEQ_DEPTH_CAP,
295 	QM_QP_DEPTH_CAP,
296 	QM_EQ_IRQ_TYPE_CAP,
297 	QM_AEQ_IRQ_TYPE_CAP,
298 	QM_ABN_IRQ_TYPE_CAP,
299 	QM_PF2VF_IRQ_TYPE_CAP,
300 	QM_PF_IRQ_NUM_CAP,
301 	QM_VF_IRQ_NUM_CAP,
302 };
303 
304 enum qm_cap_table_type {
305 	QM_CAP_VF  = 0x0,
306 	QM_AEQE_NUM,
307 	QM_SCQE_NUM,
308 	QM_EQ_IRQ,
309 	QM_AEQ_IRQ,
310 	QM_ABNORMAL_IRQ,
311 	QM_MB_IRQ,
312 	MAX_IRQ_NUM,
313 	EXT_BAR_INDEX,
314 };
315 
316 static const struct hisi_qm_cap_query_info qm_cap_query_info[] = {
317 	{QM_CAP_VF, "QM_CAP_VF                   ", 0x3100, 0x0, 0x0, 0x6F01},
318 	{QM_AEQE_NUM, "QM_AEQE_NUM                 ", 0x3104, 0x800, 0x4000800, 0x4000800},
319 	{QM_SCQE_NUM, "QM_SCQE_NUM                 ",
320 						0x3108, 0x4000400, 0x4000400, 0x4000400},
321 	{QM_EQ_IRQ, "QM_EQ_IRQ                   ", 0x310c, 0x10000, 0x10000, 0x10000},
322 	{QM_AEQ_IRQ, "QM_AEQ_IRQ                  ", 0x3110, 0x0, 0x10001, 0x10001},
323 	{QM_ABNORMAL_IRQ, "QM_ABNORMAL_IRQ             ", 0x3114, 0x0, 0x10003, 0x10003},
324 	{QM_MB_IRQ, "QM_MB_IRQ                   ", 0x3118, 0x0, 0x0, 0x10002},
325 	{MAX_IRQ_NUM, "MAX_IRQ_NUM                 ", 0x311c, 0x10001, 0x40002, 0x40003},
326 	{EXT_BAR_INDEX, "EXT_BAR_INDEX               ", 0x3120, 0x0, 0x0, 0x14},
327 };
328 
329 static const struct hisi_qm_cap_info qm_cap_info_comm[] = {
330 	{QM_SUPPORT_DB_ISOLATION, 0x30,   0, BIT(0),  0x0, 0x0, 0x0},
331 	{QM_SUPPORT_FUNC_QOS,     0x3100, 0, BIT(8),  0x0, 0x0, 0x1},
332 	{QM_SUPPORT_STOP_QP,      0x3100, 0, BIT(9),  0x0, 0x0, 0x1},
333 	{QM_SUPPORT_STOP_FUNC,     0x3100, 0, BIT(10), 0x0, 0x0, 0x1},
334 	{QM_SUPPORT_MB_COMMAND,   0x3100, 0, BIT(11), 0x0, 0x0, 0x1},
335 	{QM_SUPPORT_SVA_PREFETCH, 0x3100, 0, BIT(14), 0x0, 0x0, 0x1},
336 };
337 
338 static const struct hisi_qm_cap_info qm_cap_info_pf[] = {
339 	{QM_SUPPORT_RPM, 0x3100, 0, BIT(13), 0x0, 0x0, 0x1},
340 };
341 
342 static const struct hisi_qm_cap_info qm_cap_info_vf[] = {
343 	{QM_SUPPORT_RPM, 0x3100, 0, BIT(12), 0x0, 0x0, 0x0},
344 };
345 
346 static const struct hisi_qm_cap_info qm_basic_info[] = {
347 	{QM_TOTAL_QP_NUM_CAP,   0x100158, 0,  GENMASK(10, 0), 0x1000,    0x400,     0x400},
348 	{QM_FUNC_MAX_QP_CAP,    0x100158, 11, GENMASK(10, 0), 0x1000,    0x400,     0x400},
349 	{QM_XEQ_DEPTH_CAP,      0x3104,   0,  GENMASK(31, 0), 0x800,     0x4000800, 0x4000800},
350 	{QM_QP_DEPTH_CAP,       0x3108,   0,  GENMASK(31, 0), 0x4000400, 0x4000400, 0x4000400},
351 	{QM_EQ_IRQ_TYPE_CAP,    0x310c,   0,  GENMASK(31, 0), 0x10000,   0x10000,   0x10000},
352 	{QM_AEQ_IRQ_TYPE_CAP,   0x3110,   0,  GENMASK(31, 0), 0x0,       0x10001,   0x10001},
353 	{QM_ABN_IRQ_TYPE_CAP,   0x3114,   0,  GENMASK(31, 0), 0x0,       0x10003,   0x10003},
354 	{QM_PF2VF_IRQ_TYPE_CAP, 0x3118,   0,  GENMASK(31, 0), 0x0,       0x0,       0x10002},
355 	{QM_PF_IRQ_NUM_CAP,     0x311c,   16, GENMASK(15, 0), 0x1,       0x4,       0x4},
356 	{QM_VF_IRQ_NUM_CAP,     0x311c,   0,  GENMASK(15, 0), 0x1,       0x2,       0x3},
357 };
358 
359 struct qm_mailbox {
360 	__le16 w0;
361 	__le16 queue_num;
362 	__le32 base_l;
363 	__le32 base_h;
364 	__le32 rsvd;
365 };
366 
367 struct qm_doorbell {
368 	__le16 queue_num;
369 	__le16 cmd;
370 	__le16 index;
371 	__le16 priority;
372 };
373 
374 struct hisi_qm_resource {
375 	struct hisi_qm *qm;
376 	int distance;
377 	struct list_head list;
378 };
379 
380 /**
381  * struct qm_hw_err - Structure describing the device errors
382  * @list: hardware error list
383  * @timestamp: timestamp when the error occurred
384  */
385 struct qm_hw_err {
386 	struct list_head list;
387 	unsigned long long timestamp;
388 };
389 
390 struct hisi_qm_hw_ops {
391 	int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number);
392 	void (*qm_db)(struct hisi_qm *qm, u16 qn,
393 		      u8 cmd, u16 index, u8 priority);
394 	int (*debug_init)(struct hisi_qm *qm);
395 	void (*hw_error_init)(struct hisi_qm *qm);
396 	void (*hw_error_uninit)(struct hisi_qm *qm);
397 	enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm);
398 	int (*set_msi)(struct hisi_qm *qm, bool set);
399 };
400 
401 struct hisi_qm_hw_error {
402 	u32 int_msk;
403 	const char *msg;
404 };
405 
406 static const struct hisi_qm_hw_error qm_hw_error[] = {
407 	{ .int_msk = BIT(0), .msg = "qm_axi_rresp" },
408 	{ .int_msk = BIT(1), .msg = "qm_axi_bresp" },
409 	{ .int_msk = BIT(2), .msg = "qm_ecc_mbit" },
410 	{ .int_msk = BIT(3), .msg = "qm_ecc_1bit" },
411 	{ .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" },
412 	{ .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" },
413 	{ .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" },
414 	{ .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" },
415 	{ .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" },
416 	{ .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" },
417 	{ .int_msk = BIT(10), .msg = "qm_db_timeout" },
418 	{ .int_msk = BIT(11), .msg = "qm_of_fifo_of" },
419 	{ .int_msk = BIT(12), .msg = "qm_db_random_invalid" },
420 	{ .int_msk = BIT(13), .msg = "qm_mailbox_timeout" },
421 	{ .int_msk = BIT(14), .msg = "qm_flr_timeout" },
422 };
423 
424 static const char * const qm_db_timeout[] = {
425 	"sq", "cq", "eq", "aeq",
426 };
427 
428 static const char * const qm_fifo_overflow[] = {
429 	"cq", "eq", "aeq",
430 };
431 
432 struct qm_typical_qos_table {
433 	u32 start;
434 	u32 end;
435 	u32 val;
436 };
437 
438 /* the qos step is 100 */
439 static struct qm_typical_qos_table shaper_cir_s[] = {
440 	{100, 100, 4},
441 	{200, 200, 3},
442 	{300, 500, 2},
443 	{600, 1000, 1},
444 	{1100, 100000, 0},
445 };
446 
447 static struct qm_typical_qos_table shaper_cbs_s[] = {
448 	{100, 200, 9},
449 	{300, 500, 11},
450 	{600, 1000, 12},
451 	{1100, 10000, 16},
452 	{10100, 25000, 17},
453 	{25100, 50000, 18},
454 	{50100, 100000, 19}
455 };
456 
457 static void qm_irqs_unregister(struct hisi_qm *qm);
458 static int qm_reset_device(struct hisi_qm *qm);
459 int hisi_qm_q_num_set(const char *val, const struct kernel_param *kp,
460 		      unsigned int device)
461 {
462 	struct pci_dev *pdev;
463 	u32 n, q_num;
464 	int ret;
465 
466 	if (!val)
467 		return -EINVAL;
468 
469 	pdev = pci_get_device(PCI_VENDOR_ID_HUAWEI, device, NULL);
470 	if (!pdev) {
471 		q_num = min_t(u32, QM_QNUM_V1, QM_QNUM_V2);
472 		pr_info("No device found currently, suppose queue number is %u\n",
473 			q_num);
474 	} else {
475 		if (pdev->revision == QM_HW_V1)
476 			q_num = QM_QNUM_V1;
477 		else
478 			q_num = QM_QNUM_V2;
479 
480 		pci_dev_put(pdev);
481 	}
482 
483 	ret = kstrtou32(val, 10, &n);
484 	if (ret || n < QM_MIN_QNUM || n > q_num)
485 		return -EINVAL;
486 
487 	return param_set_int(val, kp);
488 }
489 EXPORT_SYMBOL_GPL(hisi_qm_q_num_set);
490 
491 static u32 qm_get_hw_error_status(struct hisi_qm *qm)
492 {
493 	return readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
494 }
495 
496 static u32 qm_get_dev_err_status(struct hisi_qm *qm)
497 {
498 	return qm->err_ini->get_dev_hw_err_status(qm);
499 }
500 
501 /* Check if the error causes the master ooo block */
502 static bool qm_check_dev_error(struct hisi_qm *qm)
503 {
504 	u32 val, dev_val;
505 
506 	if (qm->fun_type == QM_HW_VF)
507 		return false;
508 
509 	val = qm_get_hw_error_status(qm) & qm->err_info.qm_shutdown_mask;
510 	dev_val = qm_get_dev_err_status(qm) & qm->err_info.dev_shutdown_mask;
511 
512 	return val || dev_val;
513 }
514 
515 static int qm_wait_reset_finish(struct hisi_qm *qm)
516 {
517 	int delay = 0;
518 
519 	/* All reset requests need to be queued for processing */
520 	while (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
521 		msleep(++delay);
522 		if (delay > QM_RESET_WAIT_TIMEOUT)
523 			return -EBUSY;
524 	}
525 
526 	return 0;
527 }
528 
529 static int qm_reset_prepare_ready(struct hisi_qm *qm)
530 {
531 	struct pci_dev *pdev = qm->pdev;
532 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
533 
534 	/*
535 	 * PF and VF on host doesnot support resetting at the
536 	 * same time on Kunpeng920.
537 	 */
538 	if (qm->ver < QM_HW_V3)
539 		return qm_wait_reset_finish(pf_qm);
540 
541 	return qm_wait_reset_finish(qm);
542 }
543 
544 static void qm_reset_bit_clear(struct hisi_qm *qm)
545 {
546 	struct pci_dev *pdev = qm->pdev;
547 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
548 
549 	if (qm->ver < QM_HW_V3)
550 		clear_bit(QM_RESETTING, &pf_qm->misc_ctl);
551 
552 	clear_bit(QM_RESETTING, &qm->misc_ctl);
553 }
554 
555 static void qm_mb_pre_init(struct qm_mailbox *mailbox, u8 cmd,
556 			   u64 base, u16 queue, bool op)
557 {
558 	mailbox->w0 = cpu_to_le16((cmd) |
559 		((op) ? 0x1 << QM_MB_OP_SHIFT : 0) |
560 		(0x1 << QM_MB_BUSY_SHIFT));
561 	mailbox->queue_num = cpu_to_le16(queue);
562 	mailbox->base_l = cpu_to_le32(lower_32_bits(base));
563 	mailbox->base_h = cpu_to_le32(upper_32_bits(base));
564 	mailbox->rsvd = 0;
565 }
566 
567 /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */
568 int hisi_qm_wait_mb_ready(struct hisi_qm *qm)
569 {
570 	u32 val;
571 
572 	return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE,
573 					  val, !((val >> QM_MB_BUSY_SHIFT) &
574 					  0x1), POLL_PERIOD, POLL_TIMEOUT);
575 }
576 EXPORT_SYMBOL_GPL(hisi_qm_wait_mb_ready);
577 
578 /* 128 bit should be written to hardware at one time to trigger a mailbox */
579 static void qm_mb_write(struct hisi_qm *qm, const void *src)
580 {
581 	void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE;
582 
583 #if IS_ENABLED(CONFIG_ARM64)
584 	unsigned long tmp0 = 0, tmp1 = 0;
585 #endif
586 
587 	if (!IS_ENABLED(CONFIG_ARM64)) {
588 		memcpy_toio(fun_base, src, 16);
589 		dma_wmb();
590 		return;
591 	}
592 
593 #if IS_ENABLED(CONFIG_ARM64)
594 	asm volatile("ldp %0, %1, %3\n"
595 		     "stp %0, %1, %2\n"
596 		     "dmb oshst\n"
597 		     : "=&r" (tmp0),
598 		       "=&r" (tmp1),
599 		       "+Q" (*((char __iomem *)fun_base))
600 		     : "Q" (*((char *)src))
601 		     : "memory");
602 #endif
603 }
604 
605 static int qm_mb_nolock(struct hisi_qm *qm, struct qm_mailbox *mailbox)
606 {
607 	int ret;
608 	u32 val;
609 
610 	if (unlikely(hisi_qm_wait_mb_ready(qm))) {
611 		dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n");
612 		ret = -EBUSY;
613 		goto mb_busy;
614 	}
615 
616 	qm_mb_write(qm, mailbox);
617 
618 	if (unlikely(hisi_qm_wait_mb_ready(qm))) {
619 		dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n");
620 		ret = -ETIMEDOUT;
621 		goto mb_busy;
622 	}
623 
624 	val = readl(qm->io_base + QM_MB_CMD_SEND_BASE);
625 	if (val & QM_MB_STATUS_MASK) {
626 		dev_err(&qm->pdev->dev, "QM mailbox operation failed!\n");
627 		ret = -EIO;
628 		goto mb_busy;
629 	}
630 
631 	return 0;
632 
633 mb_busy:
634 	atomic64_inc(&qm->debug.dfx.mb_err_cnt);
635 	return ret;
636 }
637 
638 int hisi_qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue,
639 	       bool op)
640 {
641 	struct qm_mailbox mailbox;
642 	int ret;
643 
644 	qm_mb_pre_init(&mailbox, cmd, dma_addr, queue, op);
645 
646 	mutex_lock(&qm->mailbox_lock);
647 	ret = qm_mb_nolock(qm, &mailbox);
648 	mutex_unlock(&qm->mailbox_lock);
649 
650 	return ret;
651 }
652 EXPORT_SYMBOL_GPL(hisi_qm_mb);
653 
654 /* op 0: set xqc information to hardware, 1: get xqc information from hardware. */
655 int qm_set_and_get_xqc(struct hisi_qm *qm, u8 cmd, void *xqc, u32 qp_id, bool op)
656 {
657 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
658 	struct qm_mailbox mailbox;
659 	dma_addr_t xqc_dma;
660 	void *tmp_xqc;
661 	size_t size;
662 	int ret;
663 
664 	switch (cmd) {
665 	case QM_MB_CMD_SQC:
666 		size = sizeof(struct qm_sqc);
667 		tmp_xqc = qm->xqc_buf.sqc;
668 		xqc_dma = qm->xqc_buf.sqc_dma;
669 		break;
670 	case QM_MB_CMD_CQC:
671 		size = sizeof(struct qm_cqc);
672 		tmp_xqc = qm->xqc_buf.cqc;
673 		xqc_dma = qm->xqc_buf.cqc_dma;
674 		break;
675 	case QM_MB_CMD_EQC:
676 		size = sizeof(struct qm_eqc);
677 		tmp_xqc = qm->xqc_buf.eqc;
678 		xqc_dma = qm->xqc_buf.eqc_dma;
679 		break;
680 	case QM_MB_CMD_AEQC:
681 		size = sizeof(struct qm_aeqc);
682 		tmp_xqc = qm->xqc_buf.aeqc;
683 		xqc_dma = qm->xqc_buf.aeqc_dma;
684 		break;
685 	default:
686 		dev_err(&qm->pdev->dev, "unknown mailbox cmd %u\n", cmd);
687 		return -EINVAL;
688 	}
689 
690 	/* Setting xqc will fail if master OOO is blocked. */
691 	if (qm_check_dev_error(pf_qm)) {
692 		dev_err(&qm->pdev->dev, "failed to send mailbox since qm is stop!\n");
693 		return -EIO;
694 	}
695 
696 	mutex_lock(&qm->mailbox_lock);
697 	if (!op)
698 		memcpy(tmp_xqc, xqc, size);
699 
700 	qm_mb_pre_init(&mailbox, cmd, xqc_dma, qp_id, op);
701 	ret = qm_mb_nolock(qm, &mailbox);
702 	if (!ret && op)
703 		memcpy(xqc, tmp_xqc, size);
704 
705 	mutex_unlock(&qm->mailbox_lock);
706 
707 	return ret;
708 }
709 
710 static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
711 {
712 	u64 doorbell;
713 
714 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) |
715 		   ((u64)index << QM_DB_INDEX_SHIFT_V1)  |
716 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V1);
717 
718 	writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1);
719 }
720 
721 static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
722 {
723 	void __iomem *io_base = qm->io_base;
724 	u16 randata = 0;
725 	u64 doorbell;
726 
727 	if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ)
728 		io_base = qm->db_io_base + (u64)qn * qm->db_interval +
729 			  QM_DOORBELL_SQ_CQ_BASE_V2;
730 	else
731 		io_base += QM_DOORBELL_EQ_AEQ_BASE_V2;
732 
733 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) |
734 		   ((u64)randata << QM_DB_RAND_SHIFT_V2) |
735 		   ((u64)index << QM_DB_INDEX_SHIFT_V2) |
736 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V2);
737 
738 	writeq(doorbell, io_base);
739 }
740 
741 static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
742 {
743 	dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n",
744 		qn, cmd, index);
745 
746 	qm->ops->qm_db(qm, qn, cmd, index, priority);
747 }
748 
749 static void qm_disable_clock_gate(struct hisi_qm *qm)
750 {
751 	u32 val;
752 
753 	/* if qm enables clock gating in Kunpeng930, qos will be inaccurate. */
754 	if (qm->ver < QM_HW_V3)
755 		return;
756 
757 	val = readl(qm->io_base + QM_PM_CTRL);
758 	val |= QM_IDLE_DISABLE;
759 	writel(val, qm->io_base +  QM_PM_CTRL);
760 }
761 
762 static int qm_dev_mem_reset(struct hisi_qm *qm)
763 {
764 	u32 val;
765 
766 	writel(0x1, qm->io_base + QM_MEM_START_INIT);
767 	return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val,
768 					  val & BIT(0), POLL_PERIOD,
769 					  POLL_TIMEOUT);
770 }
771 
772 /**
773  * hisi_qm_get_hw_info() - Get device information.
774  * @qm: The qm which want to get information.
775  * @info_table: Array for storing device information.
776  * @index: Index in info_table.
777  * @is_read: Whether read from reg, 0: not support read from reg.
778  *
779  * This function returns device information the caller needs.
780  */
781 u32 hisi_qm_get_hw_info(struct hisi_qm *qm,
782 			const struct hisi_qm_cap_info *info_table,
783 			u32 index, bool is_read)
784 {
785 	u32 val;
786 
787 	switch (qm->ver) {
788 	case QM_HW_V1:
789 		return info_table[index].v1_val;
790 	case QM_HW_V2:
791 		return info_table[index].v2_val;
792 	default:
793 		if (!is_read)
794 			return info_table[index].v3_val;
795 
796 		val = readl(qm->io_base + info_table[index].offset);
797 		return (val >> info_table[index].shift) & info_table[index].mask;
798 	}
799 }
800 EXPORT_SYMBOL_GPL(hisi_qm_get_hw_info);
801 
802 u32 hisi_qm_get_cap_value(struct hisi_qm *qm,
803 			const struct hisi_qm_cap_query_info *info_table,
804 			u32 index, bool is_read)
805 {
806 	u32 val;
807 
808 	switch (qm->ver) {
809 	case QM_HW_V1:
810 		return info_table[index].v1_val;
811 	case QM_HW_V2:
812 		return info_table[index].v2_val;
813 	default:
814 		if (!is_read)
815 			return info_table[index].v3_val;
816 
817 		val = readl(qm->io_base + info_table[index].offset);
818 		return val;
819 	}
820 }
821 EXPORT_SYMBOL_GPL(hisi_qm_get_cap_value);
822 
823 static void qm_get_xqc_depth(struct hisi_qm *qm, u16 *low_bits,
824 			     u16 *high_bits, enum qm_basic_type type)
825 {
826 	u32 depth;
827 
828 	depth = hisi_qm_get_hw_info(qm, qm_basic_info, type, qm->cap_ver);
829 	*low_bits = depth & QM_XQ_DEPTH_MASK;
830 	*high_bits = (depth >> QM_XQ_DEPTH_SHIFT) & QM_XQ_DEPTH_MASK;
831 }
832 
833 int hisi_qm_set_algs(struct hisi_qm *qm, u64 alg_msk, const struct qm_dev_alg *dev_algs,
834 		     u32 dev_algs_size)
835 {
836 	struct device *dev = &qm->pdev->dev;
837 	char *algs, *ptr;
838 	int i;
839 
840 	if (!qm->uacce)
841 		return 0;
842 
843 	if (dev_algs_size >= QM_DEV_ALG_MAX_LEN) {
844 		dev_err(dev, "algs size %u is equal or larger than %d.\n",
845 			dev_algs_size, QM_DEV_ALG_MAX_LEN);
846 		return -EINVAL;
847 	}
848 
849 	algs = devm_kzalloc(dev, QM_DEV_ALG_MAX_LEN * sizeof(char), GFP_KERNEL);
850 	if (!algs)
851 		return -ENOMEM;
852 
853 	for (i = 0; i < dev_algs_size; i++)
854 		if (alg_msk & dev_algs[i].alg_msk)
855 			strcat(algs, dev_algs[i].alg);
856 
857 	ptr = strrchr(algs, '\n');
858 	if (ptr) {
859 		*ptr = '\0';
860 		qm->uacce->algs = algs;
861 	}
862 
863 	return 0;
864 }
865 EXPORT_SYMBOL_GPL(hisi_qm_set_algs);
866 
867 static u32 qm_get_irq_num(struct hisi_qm *qm)
868 {
869 	if (qm->fun_type == QM_HW_PF)
870 		return hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF_IRQ_NUM_CAP, qm->cap_ver);
871 
872 	return hisi_qm_get_hw_info(qm, qm_basic_info, QM_VF_IRQ_NUM_CAP, qm->cap_ver);
873 }
874 
875 static int qm_pm_get_sync(struct hisi_qm *qm)
876 {
877 	struct device *dev = &qm->pdev->dev;
878 	int ret;
879 
880 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
881 		return 0;
882 
883 	ret = pm_runtime_resume_and_get(dev);
884 	if (ret < 0) {
885 		dev_err(dev, "failed to get_sync(%d).\n", ret);
886 		return ret;
887 	}
888 
889 	return 0;
890 }
891 
892 static void qm_pm_put_sync(struct hisi_qm *qm)
893 {
894 	struct device *dev = &qm->pdev->dev;
895 
896 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
897 		return;
898 
899 	pm_runtime_mark_last_busy(dev);
900 	pm_runtime_put_autosuspend(dev);
901 }
902 
903 static void qm_cq_head_update(struct hisi_qp *qp)
904 {
905 	if (qp->qp_status.cq_head == qp->cq_depth - 1) {
906 		qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase;
907 		qp->qp_status.cq_head = 0;
908 	} else {
909 		qp->qp_status.cq_head++;
910 	}
911 }
912 
913 static void qm_poll_req_cb(struct hisi_qp *qp)
914 {
915 	struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
916 	struct hisi_qm *qm = qp->qm;
917 
918 	while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
919 		dma_rmb();
920 		qp->req_cb(qp, qp->sqe + qm->sqe_size *
921 			   le16_to_cpu(cqe->sq_head));
922 		qm_cq_head_update(qp);
923 		cqe = qp->cqe + qp->qp_status.cq_head;
924 		qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ,
925 		      qp->qp_status.cq_head, 0);
926 		atomic_dec(&qp->qp_status.used);
927 
928 		cond_resched();
929 	}
930 
931 	/* set c_flag */
932 	qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, qp->qp_status.cq_head, 1);
933 }
934 
935 static void qm_work_process(struct work_struct *work)
936 {
937 	struct hisi_qm_poll_data *poll_data =
938 		container_of(work, struct hisi_qm_poll_data, work);
939 	struct hisi_qm *qm = poll_data->qm;
940 	u16 eqe_num = poll_data->eqe_num;
941 	struct hisi_qp *qp;
942 	int i;
943 
944 	for (i = eqe_num - 1; i >= 0; i--) {
945 		qp = &qm->qp_array[poll_data->qp_finish_id[i]];
946 		if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP))
947 			continue;
948 
949 		if (qp->event_cb) {
950 			qp->event_cb(qp);
951 			continue;
952 		}
953 
954 		if (likely(qp->req_cb))
955 			qm_poll_req_cb(qp);
956 	}
957 }
958 
959 static void qm_get_complete_eqe_num(struct hisi_qm *qm)
960 {
961 	struct qm_eqe *eqe = qm->eqe + qm->status.eq_head;
962 	struct hisi_qm_poll_data *poll_data = NULL;
963 	u16 eq_depth = qm->eq_depth;
964 	u16 cqn, eqe_num = 0;
965 
966 	if (QM_EQE_PHASE(eqe) != qm->status.eqc_phase) {
967 		atomic64_inc(&qm->debug.dfx.err_irq_cnt);
968 		qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
969 		return;
970 	}
971 
972 	cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK;
973 	if (unlikely(cqn >= qm->qp_num))
974 		return;
975 	poll_data = &qm->poll_data[cqn];
976 
977 	while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) {
978 		cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK;
979 		poll_data->qp_finish_id[eqe_num] = cqn;
980 		eqe_num++;
981 
982 		if (qm->status.eq_head == eq_depth - 1) {
983 			qm->status.eqc_phase = !qm->status.eqc_phase;
984 			eqe = qm->eqe;
985 			qm->status.eq_head = 0;
986 		} else {
987 			eqe++;
988 			qm->status.eq_head++;
989 		}
990 
991 		if (eqe_num == (eq_depth >> 1) - 1)
992 			break;
993 	}
994 
995 	poll_data->eqe_num = eqe_num;
996 	queue_work(qm->wq, &poll_data->work);
997 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
998 }
999 
1000 static irqreturn_t qm_eq_irq(int irq, void *data)
1001 {
1002 	struct hisi_qm *qm = data;
1003 
1004 	/* Get qp id of completed tasks and re-enable the interrupt */
1005 	qm_get_complete_eqe_num(qm);
1006 
1007 	return IRQ_HANDLED;
1008 }
1009 
1010 static irqreturn_t qm_mb_cmd_irq(int irq, void *data)
1011 {
1012 	struct hisi_qm *qm = data;
1013 	u32 val;
1014 
1015 	val = readl(qm->io_base + QM_IFC_INT_STATUS);
1016 	val &= QM_IFC_INT_STATUS_MASK;
1017 	if (!val)
1018 		return IRQ_NONE;
1019 
1020 	if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl)) {
1021 		dev_warn(&qm->pdev->dev, "Driver is down, message cannot be processed!\n");
1022 		return IRQ_HANDLED;
1023 	}
1024 
1025 	schedule_work(&qm->cmd_process);
1026 
1027 	return IRQ_HANDLED;
1028 }
1029 
1030 static void qm_set_qp_disable(struct hisi_qp *qp, int offset)
1031 {
1032 	u32 *addr;
1033 
1034 	if (qp->is_in_kernel)
1035 		return;
1036 
1037 	addr = (u32 *)(qp->qdma.va + qp->qdma.size) - offset;
1038 	*addr = 1;
1039 
1040 	/* make sure setup is completed */
1041 	smp_wmb();
1042 }
1043 
1044 static void qm_disable_qp(struct hisi_qm *qm, u32 qp_id)
1045 {
1046 	struct hisi_qp *qp = &qm->qp_array[qp_id];
1047 
1048 	qm_set_qp_disable(qp, QM_RESET_STOP_TX_OFFSET);
1049 	hisi_qm_stop_qp(qp);
1050 	qm_set_qp_disable(qp, QM_RESET_STOP_RX_OFFSET);
1051 }
1052 
1053 static void qm_reset_function(struct hisi_qm *qm)
1054 {
1055 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
1056 	struct device *dev = &qm->pdev->dev;
1057 	int ret;
1058 
1059 	if (qm_check_dev_error(pf_qm))
1060 		return;
1061 
1062 	ret = qm_reset_prepare_ready(qm);
1063 	if (ret) {
1064 		dev_err(dev, "reset function not ready\n");
1065 		return;
1066 	}
1067 
1068 	ret = hisi_qm_stop(qm, QM_DOWN);
1069 	if (ret) {
1070 		dev_err(dev, "failed to stop qm when reset function\n");
1071 		goto clear_bit;
1072 	}
1073 
1074 	ret = hisi_qm_start(qm);
1075 	if (ret)
1076 		dev_err(dev, "failed to start qm when reset function\n");
1077 
1078 clear_bit:
1079 	qm_reset_bit_clear(qm);
1080 }
1081 
1082 static irqreturn_t qm_aeq_thread(int irq, void *data)
1083 {
1084 	struct hisi_qm *qm = data;
1085 	struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head;
1086 	u16 aeq_depth = qm->aeq_depth;
1087 	u32 type, qp_id;
1088 
1089 	atomic64_inc(&qm->debug.dfx.aeq_irq_cnt);
1090 
1091 	while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) {
1092 		type = (le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT) &
1093 			QM_AEQE_TYPE_MASK;
1094 		qp_id = le32_to_cpu(aeqe->dw0) & QM_AEQE_CQN_MASK;
1095 
1096 		switch (type) {
1097 		case QM_EQ_OVERFLOW:
1098 			dev_err(&qm->pdev->dev, "eq overflow, reset function\n");
1099 			qm_reset_function(qm);
1100 			return IRQ_HANDLED;
1101 		case QM_CQ_OVERFLOW:
1102 			dev_err(&qm->pdev->dev, "cq overflow, stop qp(%u)\n",
1103 				qp_id);
1104 			fallthrough;
1105 		case QM_CQE_ERROR:
1106 			qm_disable_qp(qm, qp_id);
1107 			break;
1108 		default:
1109 			dev_err(&qm->pdev->dev, "unknown error type %u\n",
1110 				type);
1111 			break;
1112 		}
1113 
1114 		if (qm->status.aeq_head == aeq_depth - 1) {
1115 			qm->status.aeqc_phase = !qm->status.aeqc_phase;
1116 			aeqe = qm->aeqe;
1117 			qm->status.aeq_head = 0;
1118 		} else {
1119 			aeqe++;
1120 			qm->status.aeq_head++;
1121 		}
1122 	}
1123 
1124 	qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
1125 
1126 	return IRQ_HANDLED;
1127 }
1128 
1129 static void qm_init_qp_status(struct hisi_qp *qp)
1130 {
1131 	struct hisi_qp_status *qp_status = &qp->qp_status;
1132 
1133 	qp_status->sq_tail = 0;
1134 	qp_status->cq_head = 0;
1135 	qp_status->cqc_phase = true;
1136 	atomic_set(&qp_status->used, 0);
1137 }
1138 
1139 static void qm_init_prefetch(struct hisi_qm *qm)
1140 {
1141 	struct device *dev = &qm->pdev->dev;
1142 	u32 page_type = 0x0;
1143 
1144 	if (!test_bit(QM_SUPPORT_SVA_PREFETCH, &qm->caps))
1145 		return;
1146 
1147 	switch (PAGE_SIZE) {
1148 	case SZ_4K:
1149 		page_type = 0x0;
1150 		break;
1151 	case SZ_16K:
1152 		page_type = 0x1;
1153 		break;
1154 	case SZ_64K:
1155 		page_type = 0x2;
1156 		break;
1157 	default:
1158 		dev_err(dev, "system page size is not support: %lu, default set to 4KB",
1159 			PAGE_SIZE);
1160 	}
1161 
1162 	writel(page_type, qm->io_base + QM_PAGE_SIZE);
1163 }
1164 
1165 /*
1166  * acc_shaper_para_calc() Get the IR value by the qos formula, the return value
1167  * is the expected qos calculated.
1168  * the formula:
1169  * IR = X Mbps if ir = 1 means IR = 100 Mbps, if ir = 10000 means = 10Gbps
1170  *
1171  *		IR_b * (2 ^ IR_u) * 8000
1172  * IR(Mbps) = -------------------------
1173  *		  Tick * (2 ^ IR_s)
1174  */
1175 static u32 acc_shaper_para_calc(u64 cir_b, u64 cir_u, u64 cir_s)
1176 {
1177 	return ((cir_b * QM_QOS_DIVISOR_CLK) * (1 << cir_u)) /
1178 					(QM_QOS_TICK * (1 << cir_s));
1179 }
1180 
1181 static u32 acc_shaper_calc_cbs_s(u32 ir)
1182 {
1183 	int table_size = ARRAY_SIZE(shaper_cbs_s);
1184 	int i;
1185 
1186 	for (i = 0; i < table_size; i++) {
1187 		if (ir >= shaper_cbs_s[i].start && ir <= shaper_cbs_s[i].end)
1188 			return shaper_cbs_s[i].val;
1189 	}
1190 
1191 	return QM_SHAPER_MIN_CBS_S;
1192 }
1193 
1194 static u32 acc_shaper_calc_cir_s(u32 ir)
1195 {
1196 	int table_size = ARRAY_SIZE(shaper_cir_s);
1197 	int i;
1198 
1199 	for (i = 0; i < table_size; i++) {
1200 		if (ir >= shaper_cir_s[i].start && ir <= shaper_cir_s[i].end)
1201 			return shaper_cir_s[i].val;
1202 	}
1203 
1204 	return 0;
1205 }
1206 
1207 static int qm_get_shaper_para(u32 ir, struct qm_shaper_factor *factor)
1208 {
1209 	u32 cir_b, cir_u, cir_s, ir_calc;
1210 	u32 error_rate;
1211 
1212 	factor->cbs_s = acc_shaper_calc_cbs_s(ir);
1213 	cir_s = acc_shaper_calc_cir_s(ir);
1214 
1215 	for (cir_b = QM_QOS_MIN_CIR_B; cir_b <= QM_QOS_MAX_CIR_B; cir_b++) {
1216 		for (cir_u = 0; cir_u <= QM_QOS_MAX_CIR_U; cir_u++) {
1217 			ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s);
1218 
1219 			error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir;
1220 			if (error_rate <= QM_QOS_MIN_ERROR_RATE) {
1221 				factor->cir_b = cir_b;
1222 				factor->cir_u = cir_u;
1223 				factor->cir_s = cir_s;
1224 				return 0;
1225 			}
1226 		}
1227 	}
1228 
1229 	return -EINVAL;
1230 }
1231 
1232 static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base,
1233 			    u32 number, struct qm_shaper_factor *factor)
1234 {
1235 	u64 tmp = 0;
1236 
1237 	if (number > 0) {
1238 		switch (type) {
1239 		case SQC_VFT:
1240 			if (qm->ver == QM_HW_V1) {
1241 				tmp = QM_SQC_VFT_BUF_SIZE	|
1242 				      QM_SQC_VFT_SQC_SIZE	|
1243 				      QM_SQC_VFT_INDEX_NUMBER	|
1244 				      QM_SQC_VFT_VALID		|
1245 				      (u64)base << QM_SQC_VFT_START_SQN_SHIFT;
1246 			} else {
1247 				tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT |
1248 				      QM_SQC_VFT_VALID |
1249 				      (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT;
1250 			}
1251 			break;
1252 		case CQC_VFT:
1253 			if (qm->ver == QM_HW_V1) {
1254 				tmp = QM_CQC_VFT_BUF_SIZE	|
1255 				      QM_CQC_VFT_SQC_SIZE	|
1256 				      QM_CQC_VFT_INDEX_NUMBER	|
1257 				      QM_CQC_VFT_VALID;
1258 			} else {
1259 				tmp = QM_CQC_VFT_VALID;
1260 			}
1261 			break;
1262 		case SHAPER_VFT:
1263 			if (factor) {
1264 				tmp = factor->cir_b |
1265 				(factor->cir_u << QM_SHAPER_FACTOR_CIR_U_SHIFT) |
1266 				(factor->cir_s << QM_SHAPER_FACTOR_CIR_S_SHIFT) |
1267 				(QM_SHAPER_CBS_B << QM_SHAPER_FACTOR_CBS_B_SHIFT) |
1268 				(factor->cbs_s << QM_SHAPER_FACTOR_CBS_S_SHIFT);
1269 			}
1270 			break;
1271 		}
1272 	}
1273 
1274 	writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L);
1275 	writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H);
1276 }
1277 
1278 static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type,
1279 			     u32 fun_num, u32 base, u32 number)
1280 {
1281 	struct qm_shaper_factor *factor = NULL;
1282 	unsigned int val;
1283 	int ret;
1284 
1285 	if (type == SHAPER_VFT && test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
1286 		factor = &qm->factor[fun_num];
1287 
1288 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
1289 					 val & BIT(0), POLL_PERIOD,
1290 					 POLL_TIMEOUT);
1291 	if (ret)
1292 		return ret;
1293 
1294 	writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR);
1295 	writel(type, qm->io_base + QM_VFT_CFG_TYPE);
1296 	if (type == SHAPER_VFT)
1297 		fun_num |= base << QM_SHAPER_VFT_OFFSET;
1298 
1299 	writel(fun_num, qm->io_base + QM_VFT_CFG);
1300 
1301 	qm_vft_data_cfg(qm, type, base, number, factor);
1302 
1303 	writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
1304 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
1305 
1306 	return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
1307 					  val & BIT(0), POLL_PERIOD,
1308 					  POLL_TIMEOUT);
1309 }
1310 
1311 static int qm_shaper_init_vft(struct hisi_qm *qm, u32 fun_num)
1312 {
1313 	u32 qos = qm->factor[fun_num].func_qos;
1314 	int ret, i;
1315 
1316 	ret = qm_get_shaper_para(qos * QM_QOS_RATE, &qm->factor[fun_num]);
1317 	if (ret) {
1318 		dev_err(&qm->pdev->dev, "failed to calculate shaper parameter!\n");
1319 		return ret;
1320 	}
1321 	writel(qm->type_rate, qm->io_base + QM_SHAPER_CFG);
1322 	for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) {
1323 		/* The base number of queue reuse for different alg type */
1324 		ret = qm_set_vft_common(qm, SHAPER_VFT, fun_num, i, 1);
1325 		if (ret)
1326 			return ret;
1327 	}
1328 
1329 	return 0;
1330 }
1331 
1332 /* The config should be conducted after qm_dev_mem_reset() */
1333 static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
1334 			      u32 number)
1335 {
1336 	int ret, i;
1337 
1338 	for (i = SQC_VFT; i <= CQC_VFT; i++) {
1339 		ret = qm_set_vft_common(qm, i, fun_num, base, number);
1340 		if (ret)
1341 			return ret;
1342 	}
1343 
1344 	/* init default shaper qos val */
1345 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) {
1346 		ret = qm_shaper_init_vft(qm, fun_num);
1347 		if (ret)
1348 			goto back_sqc_cqc;
1349 	}
1350 
1351 	return 0;
1352 back_sqc_cqc:
1353 	for (i = SQC_VFT; i <= CQC_VFT; i++)
1354 		qm_set_vft_common(qm, i, fun_num, 0, 0);
1355 
1356 	return ret;
1357 }
1358 
1359 static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number)
1360 {
1361 	u64 sqc_vft;
1362 	int ret;
1363 
1364 	ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1);
1365 	if (ret)
1366 		return ret;
1367 
1368 	sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
1369 		  ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
1370 	*base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2);
1371 	*number = (QM_SQC_VFT_NUM_MASK_V2 &
1372 		   (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1;
1373 
1374 	return 0;
1375 }
1376 
1377 static void qm_hw_error_init_v1(struct hisi_qm *qm)
1378 {
1379 	writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK);
1380 }
1381 
1382 static void qm_hw_error_cfg(struct hisi_qm *qm)
1383 {
1384 	struct hisi_qm_err_info *err_info = &qm->err_info;
1385 
1386 	qm->error_mask = err_info->nfe | err_info->ce | err_info->fe;
1387 	/* clear QM hw residual error source */
1388 	writel(qm->error_mask, qm->io_base + QM_ABNORMAL_INT_SOURCE);
1389 
1390 	/* configure error type */
1391 	writel(err_info->ce, qm->io_base + QM_RAS_CE_ENABLE);
1392 	writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD);
1393 	writel(err_info->nfe, qm->io_base + QM_RAS_NFE_ENABLE);
1394 	writel(err_info->fe, qm->io_base + QM_RAS_FE_ENABLE);
1395 }
1396 
1397 static void qm_hw_error_init_v2(struct hisi_qm *qm)
1398 {
1399 	u32 irq_unmask;
1400 
1401 	qm_hw_error_cfg(qm);
1402 
1403 	irq_unmask = ~qm->error_mask;
1404 	irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1405 	writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
1406 }
1407 
1408 static void qm_hw_error_uninit_v2(struct hisi_qm *qm)
1409 {
1410 	u32 irq_mask = qm->error_mask;
1411 
1412 	irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1413 	writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK);
1414 }
1415 
1416 static void qm_hw_error_init_v3(struct hisi_qm *qm)
1417 {
1418 	u32 irq_unmask;
1419 
1420 	qm_hw_error_cfg(qm);
1421 
1422 	/* enable close master ooo when hardware error happened */
1423 	writel(qm->err_info.qm_shutdown_mask, qm->io_base + QM_OOO_SHUTDOWN_SEL);
1424 
1425 	irq_unmask = ~qm->error_mask;
1426 	irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1427 	writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
1428 }
1429 
1430 static void qm_hw_error_uninit_v3(struct hisi_qm *qm)
1431 {
1432 	u32 irq_mask = qm->error_mask;
1433 
1434 	irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1435 	writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK);
1436 
1437 	/* disable close master ooo when hardware error happened */
1438 	writel(0x0, qm->io_base + QM_OOO_SHUTDOWN_SEL);
1439 }
1440 
1441 static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status)
1442 {
1443 	const struct hisi_qm_hw_error *err;
1444 	struct device *dev = &qm->pdev->dev;
1445 	u32 reg_val, type, vf_num, qp_id;
1446 	int i;
1447 
1448 	for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) {
1449 		err = &qm_hw_error[i];
1450 		if (!(err->int_msk & error_status))
1451 			continue;
1452 
1453 		dev_err(dev, "%s [error status=0x%x] found\n",
1454 			err->msg, err->int_msk);
1455 
1456 		if (err->int_msk & QM_DB_TIMEOUT) {
1457 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF01);
1458 			type = (reg_val & QM_DB_TIMEOUT_TYPE) >>
1459 			       QM_DB_TIMEOUT_TYPE_SHIFT;
1460 			vf_num = reg_val & QM_DB_TIMEOUT_VF;
1461 			qp_id = reg_val >> QM_DB_TIMEOUT_QP_SHIFT;
1462 			dev_err(dev, "qm %s doorbell timeout in function %u qp %u\n",
1463 				qm_db_timeout[type], vf_num, qp_id);
1464 		} else if (err->int_msk & QM_OF_FIFO_OF) {
1465 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF00);
1466 			type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >>
1467 			       QM_FIFO_OVERFLOW_TYPE_SHIFT;
1468 			vf_num = reg_val & QM_FIFO_OVERFLOW_VF;
1469 			qp_id = reg_val >> QM_FIFO_OVERFLOW_QP_SHIFT;
1470 			if (type < ARRAY_SIZE(qm_fifo_overflow))
1471 				dev_err(dev, "qm %s fifo overflow in function %u qp %u\n",
1472 					qm_fifo_overflow[type], vf_num, qp_id);
1473 			else
1474 				dev_err(dev, "unknown error type\n");
1475 		} else if (err->int_msk & QM_AXI_RRESP_ERR) {
1476 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF02);
1477 			if (reg_val & QM_AXI_POISON_ERR)
1478 				dev_err(dev, "qm axi poison error happened\n");
1479 		}
1480 	}
1481 }
1482 
1483 static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm)
1484 {
1485 	u32 error_status;
1486 
1487 	error_status = qm_get_hw_error_status(qm);
1488 	if (error_status & qm->error_mask) {
1489 		if (error_status & QM_ECC_MBIT)
1490 			qm->err_status.is_qm_ecc_mbit = true;
1491 
1492 		qm_log_hw_error(qm, error_status);
1493 		if (error_status & qm->err_info.qm_reset_mask) {
1494 			/* Disable the same error reporting until device is recovered. */
1495 			writel(qm->err_info.nfe & (~error_status),
1496 			       qm->io_base + QM_RAS_NFE_ENABLE);
1497 			return ACC_ERR_NEED_RESET;
1498 		}
1499 
1500 		/* Clear error source if not need reset. */
1501 		writel(error_status, qm->io_base + QM_ABNORMAL_INT_SOURCE);
1502 		writel(qm->err_info.nfe, qm->io_base + QM_RAS_NFE_ENABLE);
1503 		writel(qm->err_info.ce, qm->io_base + QM_RAS_CE_ENABLE);
1504 	}
1505 
1506 	return ACC_ERR_RECOVERED;
1507 }
1508 
1509 static int qm_get_mb_cmd(struct hisi_qm *qm, u64 *msg, u16 fun_num)
1510 {
1511 	struct qm_mailbox mailbox;
1512 	int ret;
1513 
1514 	qm_mb_pre_init(&mailbox, QM_MB_CMD_DST, 0, fun_num, 0);
1515 	mutex_lock(&qm->mailbox_lock);
1516 	ret = qm_mb_nolock(qm, &mailbox);
1517 	if (ret)
1518 		goto err_unlock;
1519 
1520 	*msg = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
1521 		  ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
1522 
1523 err_unlock:
1524 	mutex_unlock(&qm->mailbox_lock);
1525 	return ret;
1526 }
1527 
1528 static void qm_clear_cmd_interrupt(struct hisi_qm *qm, u64 vf_mask)
1529 {
1530 	u32 val;
1531 
1532 	if (qm->fun_type == QM_HW_PF)
1533 		writeq(vf_mask, qm->io_base + QM_IFC_INT_SOURCE_P);
1534 
1535 	val = readl(qm->io_base + QM_IFC_INT_SOURCE_V);
1536 	val |= QM_IFC_INT_SOURCE_MASK;
1537 	writel(val, qm->io_base + QM_IFC_INT_SOURCE_V);
1538 }
1539 
1540 static void qm_handle_vf_msg(struct hisi_qm *qm, u32 vf_id)
1541 {
1542 	struct device *dev = &qm->pdev->dev;
1543 	u32 cmd;
1544 	u64 msg;
1545 	int ret;
1546 
1547 	ret = qm_get_mb_cmd(qm, &msg, vf_id);
1548 	if (ret) {
1549 		dev_err(dev, "failed to get msg from VF(%u)!\n", vf_id);
1550 		return;
1551 	}
1552 
1553 	cmd = msg & QM_MB_CMD_DATA_MASK;
1554 	switch (cmd) {
1555 	case QM_VF_PREPARE_FAIL:
1556 		dev_err(dev, "failed to stop VF(%u)!\n", vf_id);
1557 		break;
1558 	case QM_VF_START_FAIL:
1559 		dev_err(dev, "failed to start VF(%u)!\n", vf_id);
1560 		break;
1561 	case QM_VF_PREPARE_DONE:
1562 	case QM_VF_START_DONE:
1563 		break;
1564 	default:
1565 		dev_err(dev, "unsupported cmd %u sent by VF(%u)!\n", cmd, vf_id);
1566 		break;
1567 	}
1568 }
1569 
1570 static int qm_wait_vf_prepare_finish(struct hisi_qm *qm)
1571 {
1572 	struct device *dev = &qm->pdev->dev;
1573 	u32 vfs_num = qm->vfs_num;
1574 	int cnt = 0;
1575 	int ret = 0;
1576 	u64 val;
1577 	u32 i;
1578 
1579 	if (!qm->vfs_num || !test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
1580 		return 0;
1581 
1582 	while (true) {
1583 		val = readq(qm->io_base + QM_IFC_INT_SOURCE_P);
1584 		/* All VFs send command to PF, break */
1585 		if ((val & GENMASK(vfs_num, 1)) == GENMASK(vfs_num, 1))
1586 			break;
1587 
1588 		if (++cnt > QM_MAX_PF_WAIT_COUNT) {
1589 			ret = -EBUSY;
1590 			break;
1591 		}
1592 
1593 		msleep(QM_WAIT_DST_ACK);
1594 	}
1595 
1596 	/* PF check VFs msg */
1597 	for (i = 1; i <= vfs_num; i++) {
1598 		if (val & BIT(i))
1599 			qm_handle_vf_msg(qm, i);
1600 		else
1601 			dev_err(dev, "VF(%u) not ping PF!\n", i);
1602 	}
1603 
1604 	/* PF clear interrupt to ack VFs */
1605 	qm_clear_cmd_interrupt(qm, val);
1606 
1607 	return ret;
1608 }
1609 
1610 static void qm_trigger_vf_interrupt(struct hisi_qm *qm, u32 fun_num)
1611 {
1612 	u32 val;
1613 
1614 	val = readl(qm->io_base + QM_IFC_INT_CFG);
1615 	val &= ~QM_IFC_SEND_ALL_VFS;
1616 	val |= fun_num;
1617 	writel(val, qm->io_base + QM_IFC_INT_CFG);
1618 
1619 	val = readl(qm->io_base + QM_IFC_INT_SET_P);
1620 	val |= QM_IFC_INT_SET_MASK;
1621 	writel(val, qm->io_base + QM_IFC_INT_SET_P);
1622 }
1623 
1624 static void qm_trigger_pf_interrupt(struct hisi_qm *qm)
1625 {
1626 	u32 val;
1627 
1628 	val = readl(qm->io_base + QM_IFC_INT_SET_V);
1629 	val |= QM_IFC_INT_SET_MASK;
1630 	writel(val, qm->io_base + QM_IFC_INT_SET_V);
1631 }
1632 
1633 static int qm_ping_single_vf(struct hisi_qm *qm, u64 cmd, u32 fun_num)
1634 {
1635 	struct device *dev = &qm->pdev->dev;
1636 	struct qm_mailbox mailbox;
1637 	int cnt = 0;
1638 	u64 val;
1639 	int ret;
1640 
1641 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, fun_num, 0);
1642 	mutex_lock(&qm->mailbox_lock);
1643 	ret = qm_mb_nolock(qm, &mailbox);
1644 	if (ret) {
1645 		dev_err(dev, "failed to send command to vf(%u)!\n", fun_num);
1646 		goto err_unlock;
1647 	}
1648 
1649 	qm_trigger_vf_interrupt(qm, fun_num);
1650 	while (true) {
1651 		msleep(QM_WAIT_DST_ACK);
1652 		val = readq(qm->io_base + QM_IFC_READY_STATUS);
1653 		/* if VF respond, PF notifies VF successfully. */
1654 		if (!(val & BIT(fun_num)))
1655 			goto err_unlock;
1656 
1657 		if (++cnt > QM_MAX_PF_WAIT_COUNT) {
1658 			dev_err(dev, "failed to get response from VF(%u)!\n", fun_num);
1659 			ret = -ETIMEDOUT;
1660 			break;
1661 		}
1662 	}
1663 
1664 err_unlock:
1665 	mutex_unlock(&qm->mailbox_lock);
1666 	return ret;
1667 }
1668 
1669 static int qm_ping_all_vfs(struct hisi_qm *qm, u64 cmd)
1670 {
1671 	struct device *dev = &qm->pdev->dev;
1672 	u32 vfs_num = qm->vfs_num;
1673 	struct qm_mailbox mailbox;
1674 	u64 val = 0;
1675 	int cnt = 0;
1676 	int ret;
1677 	u32 i;
1678 
1679 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, QM_MB_PING_ALL_VFS, 0);
1680 	mutex_lock(&qm->mailbox_lock);
1681 	/* PF sends command to all VFs by mailbox */
1682 	ret = qm_mb_nolock(qm, &mailbox);
1683 	if (ret) {
1684 		dev_err(dev, "failed to send command to VFs!\n");
1685 		mutex_unlock(&qm->mailbox_lock);
1686 		return ret;
1687 	}
1688 
1689 	qm_trigger_vf_interrupt(qm, QM_IFC_SEND_ALL_VFS);
1690 	while (true) {
1691 		msleep(QM_WAIT_DST_ACK);
1692 		val = readq(qm->io_base + QM_IFC_READY_STATUS);
1693 		/* If all VFs acked, PF notifies VFs successfully. */
1694 		if (!(val & GENMASK(vfs_num, 1))) {
1695 			mutex_unlock(&qm->mailbox_lock);
1696 			return 0;
1697 		}
1698 
1699 		if (++cnt > QM_MAX_PF_WAIT_COUNT)
1700 			break;
1701 	}
1702 
1703 	mutex_unlock(&qm->mailbox_lock);
1704 
1705 	/* Check which vf respond timeout. */
1706 	for (i = 1; i <= vfs_num; i++) {
1707 		if (val & BIT(i))
1708 			dev_err(dev, "failed to get response from VF(%u)!\n", i);
1709 	}
1710 
1711 	return -ETIMEDOUT;
1712 }
1713 
1714 static int qm_ping_pf(struct hisi_qm *qm, u64 cmd)
1715 {
1716 	struct qm_mailbox mailbox;
1717 	int cnt = 0;
1718 	u32 val;
1719 	int ret;
1720 
1721 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, 0, 0);
1722 	mutex_lock(&qm->mailbox_lock);
1723 	ret = qm_mb_nolock(qm, &mailbox);
1724 	if (ret) {
1725 		dev_err(&qm->pdev->dev, "failed to send command to PF!\n");
1726 		goto unlock;
1727 	}
1728 
1729 	qm_trigger_pf_interrupt(qm);
1730 	/* Waiting for PF response */
1731 	while (true) {
1732 		msleep(QM_WAIT_DST_ACK);
1733 		val = readl(qm->io_base + QM_IFC_INT_SET_V);
1734 		if (!(val & QM_IFC_INT_STATUS_MASK))
1735 			break;
1736 
1737 		if (++cnt > QM_MAX_VF_WAIT_COUNT) {
1738 			ret = -ETIMEDOUT;
1739 			break;
1740 		}
1741 	}
1742 
1743 unlock:
1744 	mutex_unlock(&qm->mailbox_lock);
1745 	return ret;
1746 }
1747 
1748 static int qm_drain_qm(struct hisi_qm *qm)
1749 {
1750 	return hisi_qm_mb(qm, QM_MB_CMD_FLUSH_QM, 0, 0, 0);
1751 }
1752 
1753 static int qm_stop_qp(struct hisi_qp *qp)
1754 {
1755 	return hisi_qm_mb(qp->qm, QM_MB_CMD_STOP_QP, 0, qp->qp_id, 0);
1756 }
1757 
1758 static int qm_set_msi(struct hisi_qm *qm, bool set)
1759 {
1760 	struct pci_dev *pdev = qm->pdev;
1761 
1762 	if (set) {
1763 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
1764 				       0);
1765 	} else {
1766 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
1767 				       ACC_PEH_MSI_DISABLE);
1768 		if (qm->err_status.is_qm_ecc_mbit ||
1769 		    qm->err_status.is_dev_ecc_mbit)
1770 			return 0;
1771 
1772 		mdelay(1);
1773 		if (readl(qm->io_base + QM_PEH_DFX_INFO0))
1774 			return -EFAULT;
1775 	}
1776 
1777 	return 0;
1778 }
1779 
1780 static void qm_wait_msi_finish(struct hisi_qm *qm)
1781 {
1782 	struct pci_dev *pdev = qm->pdev;
1783 	u32 cmd = ~0;
1784 	int cnt = 0;
1785 	u32 val;
1786 	int ret;
1787 
1788 	while (true) {
1789 		pci_read_config_dword(pdev, pdev->msi_cap +
1790 				      PCI_MSI_PENDING_64, &cmd);
1791 		if (!cmd)
1792 			break;
1793 
1794 		if (++cnt > MAX_WAIT_COUNTS) {
1795 			pci_warn(pdev, "failed to empty MSI PENDING!\n");
1796 			break;
1797 		}
1798 
1799 		udelay(1);
1800 	}
1801 
1802 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO0,
1803 					 val, !(val & QM_PEH_DFX_MASK),
1804 					 POLL_PERIOD, POLL_TIMEOUT);
1805 	if (ret)
1806 		pci_warn(pdev, "failed to empty PEH MSI!\n");
1807 
1808 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO1,
1809 					 val, !(val & QM_PEH_MSI_FINISH_MASK),
1810 					 POLL_PERIOD, POLL_TIMEOUT);
1811 	if (ret)
1812 		pci_warn(pdev, "failed to finish MSI operation!\n");
1813 }
1814 
1815 static int qm_set_msi_v3(struct hisi_qm *qm, bool set)
1816 {
1817 	struct pci_dev *pdev = qm->pdev;
1818 	int ret = -ETIMEDOUT;
1819 	u32 cmd, i;
1820 
1821 	pci_read_config_dword(pdev, pdev->msi_cap, &cmd);
1822 	if (set)
1823 		cmd |= QM_MSI_CAP_ENABLE;
1824 	else
1825 		cmd &= ~QM_MSI_CAP_ENABLE;
1826 
1827 	pci_write_config_dword(pdev, pdev->msi_cap, cmd);
1828 	if (set) {
1829 		for (i = 0; i < MAX_WAIT_COUNTS; i++) {
1830 			pci_read_config_dword(pdev, pdev->msi_cap, &cmd);
1831 			if (cmd & QM_MSI_CAP_ENABLE)
1832 				return 0;
1833 
1834 			udelay(1);
1835 		}
1836 	} else {
1837 		udelay(WAIT_PERIOD_US_MIN);
1838 		qm_wait_msi_finish(qm);
1839 		ret = 0;
1840 	}
1841 
1842 	return ret;
1843 }
1844 
1845 static const struct hisi_qm_hw_ops qm_hw_ops_v1 = {
1846 	.qm_db = qm_db_v1,
1847 	.hw_error_init = qm_hw_error_init_v1,
1848 	.set_msi = qm_set_msi,
1849 };
1850 
1851 static const struct hisi_qm_hw_ops qm_hw_ops_v2 = {
1852 	.get_vft = qm_get_vft_v2,
1853 	.qm_db = qm_db_v2,
1854 	.hw_error_init = qm_hw_error_init_v2,
1855 	.hw_error_uninit = qm_hw_error_uninit_v2,
1856 	.hw_error_handle = qm_hw_error_handle_v2,
1857 	.set_msi = qm_set_msi,
1858 };
1859 
1860 static const struct hisi_qm_hw_ops qm_hw_ops_v3 = {
1861 	.get_vft = qm_get_vft_v2,
1862 	.qm_db = qm_db_v2,
1863 	.hw_error_init = qm_hw_error_init_v3,
1864 	.hw_error_uninit = qm_hw_error_uninit_v3,
1865 	.hw_error_handle = qm_hw_error_handle_v2,
1866 	.set_msi = qm_set_msi_v3,
1867 };
1868 
1869 static void *qm_get_avail_sqe(struct hisi_qp *qp)
1870 {
1871 	struct hisi_qp_status *qp_status = &qp->qp_status;
1872 	u16 sq_tail = qp_status->sq_tail;
1873 
1874 	if (unlikely(atomic_read(&qp->qp_status.used) == qp->sq_depth - 1))
1875 		return NULL;
1876 
1877 	return qp->sqe + sq_tail * qp->qm->sqe_size;
1878 }
1879 
1880 static void hisi_qm_unset_hw_reset(struct hisi_qp *qp)
1881 {
1882 	u64 *addr;
1883 
1884 	/* Use last 64 bits of DUS to reset status. */
1885 	addr = (u64 *)(qp->qdma.va + qp->qdma.size) - QM_RESET_STOP_TX_OFFSET;
1886 	*addr = 0;
1887 }
1888 
1889 static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type)
1890 {
1891 	struct device *dev = &qm->pdev->dev;
1892 	struct hisi_qp *qp;
1893 	int qp_id;
1894 
1895 	if (atomic_read(&qm->status.flags) == QM_STOP) {
1896 		dev_info_ratelimited(dev, "failed to create qp as qm is stop!\n");
1897 		return ERR_PTR(-EPERM);
1898 	}
1899 
1900 	if (qm->qp_in_used == qm->qp_num) {
1901 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
1902 				     qm->qp_num);
1903 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
1904 		return ERR_PTR(-EBUSY);
1905 	}
1906 
1907 	qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC);
1908 	if (qp_id < 0) {
1909 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
1910 				    qm->qp_num);
1911 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
1912 		return ERR_PTR(-EBUSY);
1913 	}
1914 
1915 	qp = &qm->qp_array[qp_id];
1916 	hisi_qm_unset_hw_reset(qp);
1917 	memset(qp->cqe, 0, sizeof(struct qm_cqe) * qp->cq_depth);
1918 
1919 	qp->event_cb = NULL;
1920 	qp->req_cb = NULL;
1921 	qp->qp_id = qp_id;
1922 	qp->alg_type = alg_type;
1923 	qp->is_in_kernel = true;
1924 	qm->qp_in_used++;
1925 
1926 	return qp;
1927 }
1928 
1929 /**
1930  * hisi_qm_create_qp() - Create a queue pair from qm.
1931  * @qm: The qm we create a qp from.
1932  * @alg_type: Accelerator specific algorithm type in sqc.
1933  *
1934  * Return created qp, negative error code if failed.
1935  */
1936 static struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type)
1937 {
1938 	struct hisi_qp *qp;
1939 	int ret;
1940 
1941 	ret = qm_pm_get_sync(qm);
1942 	if (ret)
1943 		return ERR_PTR(ret);
1944 
1945 	down_write(&qm->qps_lock);
1946 	qp = qm_create_qp_nolock(qm, alg_type);
1947 	up_write(&qm->qps_lock);
1948 
1949 	if (IS_ERR(qp))
1950 		qm_pm_put_sync(qm);
1951 
1952 	return qp;
1953 }
1954 
1955 /**
1956  * hisi_qm_release_qp() - Release a qp back to its qm.
1957  * @qp: The qp we want to release.
1958  *
1959  * This function releases the resource of a qp.
1960  */
1961 static void hisi_qm_release_qp(struct hisi_qp *qp)
1962 {
1963 	struct hisi_qm *qm = qp->qm;
1964 
1965 	down_write(&qm->qps_lock);
1966 
1967 	qm->qp_in_used--;
1968 	idr_remove(&qm->qp_idr, qp->qp_id);
1969 
1970 	up_write(&qm->qps_lock);
1971 
1972 	qm_pm_put_sync(qm);
1973 }
1974 
1975 static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
1976 {
1977 	struct hisi_qm *qm = qp->qm;
1978 	enum qm_hw_ver ver = qm->ver;
1979 	struct qm_sqc sqc = {0};
1980 
1981 	if (ver == QM_HW_V1) {
1982 		sqc.dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size));
1983 		sqc.w8 = cpu_to_le16(qp->sq_depth - 1);
1984 	} else {
1985 		sqc.dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size, qp->sq_depth));
1986 		sqc.w8 = 0; /* rand_qc */
1987 	}
1988 	sqc.w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type));
1989 	sqc.base_l = cpu_to_le32(lower_32_bits(qp->sqe_dma));
1990 	sqc.base_h = cpu_to_le32(upper_32_bits(qp->sqe_dma));
1991 	sqc.cq_num = cpu_to_le16(qp_id);
1992 	sqc.pasid = cpu_to_le16(pasid);
1993 
1994 	if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
1995 		sqc.w11 = cpu_to_le16(QM_QC_PASID_ENABLE <<
1996 				      QM_QC_PASID_ENABLE_SHIFT);
1997 
1998 	return qm_set_and_get_xqc(qm, QM_MB_CMD_SQC, &sqc, qp_id, 0);
1999 }
2000 
2001 static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
2002 {
2003 	struct hisi_qm *qm = qp->qm;
2004 	enum qm_hw_ver ver = qm->ver;
2005 	struct qm_cqc cqc = {0};
2006 
2007 	if (ver == QM_HW_V1) {
2008 		cqc.dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0, QM_QC_CQE_SIZE));
2009 		cqc.w8 = cpu_to_le16(qp->cq_depth - 1);
2010 	} else {
2011 		cqc.dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE, qp->cq_depth));
2012 		cqc.w8 = 0; /* rand_qc */
2013 	}
2014 	/*
2015 	 * Enable request finishing interrupts defaultly.
2016 	 * So, there will be some interrupts until disabling
2017 	 * this.
2018 	 */
2019 	cqc.dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT);
2020 	cqc.base_l = cpu_to_le32(lower_32_bits(qp->cqe_dma));
2021 	cqc.base_h = cpu_to_le32(upper_32_bits(qp->cqe_dma));
2022 	cqc.pasid = cpu_to_le16(pasid);
2023 
2024 	if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
2025 		cqc.w11 = cpu_to_le16(QM_QC_PASID_ENABLE);
2026 
2027 	return qm_set_and_get_xqc(qm, QM_MB_CMD_CQC, &cqc, qp_id, 0);
2028 }
2029 
2030 static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
2031 {
2032 	int ret;
2033 
2034 	qm_init_qp_status(qp);
2035 
2036 	ret = qm_sq_ctx_cfg(qp, qp_id, pasid);
2037 	if (ret)
2038 		return ret;
2039 
2040 	return qm_cq_ctx_cfg(qp, qp_id, pasid);
2041 }
2042 
2043 static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg)
2044 {
2045 	struct hisi_qm *qm = qp->qm;
2046 	struct device *dev = &qm->pdev->dev;
2047 	int qp_id = qp->qp_id;
2048 	u32 pasid = arg;
2049 	int ret;
2050 
2051 	if (atomic_read(&qm->status.flags) == QM_STOP) {
2052 		dev_info_ratelimited(dev, "failed to start qp as qm is stop!\n");
2053 		return -EPERM;
2054 	}
2055 
2056 	ret = qm_qp_ctx_cfg(qp, qp_id, pasid);
2057 	if (ret)
2058 		return ret;
2059 
2060 	atomic_set(&qp->qp_status.flags, QP_START);
2061 	dev_dbg(dev, "queue %d started\n", qp_id);
2062 
2063 	return 0;
2064 }
2065 
2066 /**
2067  * hisi_qm_start_qp() - Start a qp into running.
2068  * @qp: The qp we want to start to run.
2069  * @arg: Accelerator specific argument.
2070  *
2071  * After this function, qp can receive request from user. Return 0 if
2072  * successful, negative error code if failed.
2073  */
2074 int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg)
2075 {
2076 	struct hisi_qm *qm = qp->qm;
2077 	int ret;
2078 
2079 	down_write(&qm->qps_lock);
2080 	ret = qm_start_qp_nolock(qp, arg);
2081 	up_write(&qm->qps_lock);
2082 
2083 	return ret;
2084 }
2085 EXPORT_SYMBOL_GPL(hisi_qm_start_qp);
2086 
2087 /**
2088  * qp_stop_fail_cb() - call request cb.
2089  * @qp: stopped failed qp.
2090  *
2091  * Callback function should be called whether task completed or not.
2092  */
2093 static void qp_stop_fail_cb(struct hisi_qp *qp)
2094 {
2095 	int qp_used = atomic_read(&qp->qp_status.used);
2096 	u16 cur_tail = qp->qp_status.sq_tail;
2097 	u16 sq_depth = qp->sq_depth;
2098 	u16 cur_head = (cur_tail + sq_depth - qp_used) % sq_depth;
2099 	struct hisi_qm *qm = qp->qm;
2100 	u16 pos;
2101 	int i;
2102 
2103 	for (i = 0; i < qp_used; i++) {
2104 		pos = (i + cur_head) % sq_depth;
2105 		qp->req_cb(qp, qp->sqe + (u32)(qm->sqe_size * pos));
2106 		atomic_dec(&qp->qp_status.used);
2107 	}
2108 }
2109 
2110 static int qm_wait_qp_empty(struct hisi_qm *qm, u32 *state, u32 qp_id)
2111 {
2112 	struct device *dev = &qm->pdev->dev;
2113 	struct qm_sqc sqc;
2114 	struct qm_cqc cqc;
2115 	int ret, i = 0;
2116 
2117 	while (++i) {
2118 		ret = qm_set_and_get_xqc(qm, QM_MB_CMD_SQC, &sqc, qp_id, 1);
2119 		if (ret) {
2120 			dev_err_ratelimited(dev, "Failed to dump sqc!\n");
2121 			*state = QM_DUMP_SQC_FAIL;
2122 			return ret;
2123 		}
2124 
2125 		ret = qm_set_and_get_xqc(qm, QM_MB_CMD_CQC, &cqc, qp_id, 1);
2126 		if (ret) {
2127 			dev_err_ratelimited(dev, "Failed to dump cqc!\n");
2128 			*state = QM_DUMP_CQC_FAIL;
2129 			return ret;
2130 		}
2131 
2132 		if ((sqc.tail == cqc.tail) &&
2133 		    (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc)))
2134 			break;
2135 
2136 		if (i == MAX_WAIT_COUNTS) {
2137 			dev_err(dev, "Fail to empty queue %u!\n", qp_id);
2138 			*state = QM_STOP_QUEUE_FAIL;
2139 			return -ETIMEDOUT;
2140 		}
2141 
2142 		usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX);
2143 	}
2144 
2145 	return 0;
2146 }
2147 
2148 /**
2149  * qm_drain_qp() - Drain a qp.
2150  * @qp: The qp we want to drain.
2151  *
2152  * If the device does not support stopping queue by sending mailbox,
2153  * determine whether the queue is cleared by judging the tail pointers of
2154  * sq and cq.
2155  */
2156 static int qm_drain_qp(struct hisi_qp *qp)
2157 {
2158 	struct hisi_qm *qm = qp->qm;
2159 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
2160 	u32 state = 0;
2161 	int ret;
2162 
2163 	/* No need to judge if master OOO is blocked. */
2164 	if (qm_check_dev_error(pf_qm))
2165 		return 0;
2166 
2167 	/* HW V3 supports drain qp by device */
2168 	if (test_bit(QM_SUPPORT_STOP_QP, &qm->caps)) {
2169 		ret = qm_stop_qp(qp);
2170 		if (ret) {
2171 			dev_err(&qm->pdev->dev, "Failed to stop qp!\n");
2172 			state = QM_STOP_QUEUE_FAIL;
2173 			goto set_dev_state;
2174 		}
2175 		return ret;
2176 	}
2177 
2178 	ret = qm_wait_qp_empty(qm, &state, qp->qp_id);
2179 	if (ret)
2180 		goto set_dev_state;
2181 
2182 	return 0;
2183 
2184 set_dev_state:
2185 	if (qm->debug.dev_dfx.dev_timeout)
2186 		qm->debug.dev_dfx.dev_state = state;
2187 
2188 	return ret;
2189 }
2190 
2191 static void qm_stop_qp_nolock(struct hisi_qp *qp)
2192 {
2193 	struct hisi_qm *qm = qp->qm;
2194 	struct device *dev = &qm->pdev->dev;
2195 	int ret;
2196 
2197 	/*
2198 	 * It is allowed to stop and release qp when reset, If the qp is
2199 	 * stopped when reset but still want to be released then, the
2200 	 * is_resetting flag should be set negative so that this qp will not
2201 	 * be restarted after reset.
2202 	 */
2203 	if (atomic_read(&qp->qp_status.flags) != QP_START) {
2204 		qp->is_resetting = false;
2205 		return;
2206 	}
2207 
2208 	atomic_set(&qp->qp_status.flags, QP_STOP);
2209 
2210 	/* V3 supports direct stop function when FLR prepare */
2211 	if (qm->ver < QM_HW_V3 || qm->status.stop_reason == QM_NORMAL) {
2212 		ret = qm_drain_qp(qp);
2213 		if (ret)
2214 			dev_err(dev, "Failed to drain out data for stopping qp(%u)!\n", qp->qp_id);
2215 	}
2216 
2217 	flush_workqueue(qm->wq);
2218 	if (unlikely(qp->is_resetting && atomic_read(&qp->qp_status.used)))
2219 		qp_stop_fail_cb(qp);
2220 
2221 	dev_dbg(dev, "stop queue %u!", qp->qp_id);
2222 }
2223 
2224 /**
2225  * hisi_qm_stop_qp() - Stop a qp in qm.
2226  * @qp: The qp we want to stop.
2227  *
2228  * This function is reverse of hisi_qm_start_qp.
2229  */
2230 void hisi_qm_stop_qp(struct hisi_qp *qp)
2231 {
2232 	down_write(&qp->qm->qps_lock);
2233 	qm_stop_qp_nolock(qp);
2234 	up_write(&qp->qm->qps_lock);
2235 }
2236 EXPORT_SYMBOL_GPL(hisi_qm_stop_qp);
2237 
2238 /**
2239  * hisi_qp_send() - Queue up a task in the hardware queue.
2240  * @qp: The qp in which to put the message.
2241  * @msg: The message.
2242  *
2243  * This function will return -EBUSY if qp is currently full, and -EAGAIN
2244  * if qp related qm is resetting.
2245  *
2246  * Note: This function may run with qm_irq_thread and ACC reset at same time.
2247  *       It has no race with qm_irq_thread. However, during hisi_qp_send, ACC
2248  *       reset may happen, we have no lock here considering performance. This
2249  *       causes current qm_db sending fail or can not receive sended sqe. QM
2250  *       sync/async receive function should handle the error sqe. ACC reset
2251  *       done function should clear used sqe to 0.
2252  */
2253 int hisi_qp_send(struct hisi_qp *qp, const void *msg)
2254 {
2255 	struct hisi_qp_status *qp_status = &qp->qp_status;
2256 	u16 sq_tail = qp_status->sq_tail;
2257 	u16 sq_tail_next = (sq_tail + 1) % qp->sq_depth;
2258 	void *sqe = qm_get_avail_sqe(qp);
2259 
2260 	if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP ||
2261 		     atomic_read(&qp->qm->status.flags) == QM_STOP ||
2262 		     qp->is_resetting)) {
2263 		dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n");
2264 		return -EAGAIN;
2265 	}
2266 
2267 	if (!sqe)
2268 		return -EBUSY;
2269 
2270 	memcpy(sqe, msg, qp->qm->sqe_size);
2271 
2272 	qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0);
2273 	atomic_inc(&qp->qp_status.used);
2274 	qp_status->sq_tail = sq_tail_next;
2275 
2276 	return 0;
2277 }
2278 EXPORT_SYMBOL_GPL(hisi_qp_send);
2279 
2280 static void hisi_qm_cache_wb(struct hisi_qm *qm)
2281 {
2282 	unsigned int val;
2283 
2284 	if (qm->ver == QM_HW_V1)
2285 		return;
2286 
2287 	writel(0x1, qm->io_base + QM_CACHE_WB_START);
2288 	if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE,
2289 				       val, val & BIT(0), POLL_PERIOD,
2290 				       POLL_TIMEOUT))
2291 		dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n");
2292 }
2293 
2294 static void qm_qp_event_notifier(struct hisi_qp *qp)
2295 {
2296 	wake_up_interruptible(&qp->uacce_q->wait);
2297 }
2298 
2299  /* This function returns free number of qp in qm. */
2300 static int hisi_qm_get_available_instances(struct uacce_device *uacce)
2301 {
2302 	struct hisi_qm *qm = uacce->priv;
2303 	int ret;
2304 
2305 	down_read(&qm->qps_lock);
2306 	ret = qm->qp_num - qm->qp_in_used;
2307 	up_read(&qm->qps_lock);
2308 
2309 	return ret;
2310 }
2311 
2312 static void hisi_qm_set_hw_reset(struct hisi_qm *qm, int offset)
2313 {
2314 	int i;
2315 
2316 	for (i = 0; i < qm->qp_num; i++)
2317 		qm_set_qp_disable(&qm->qp_array[i], offset);
2318 }
2319 
2320 static int hisi_qm_uacce_get_queue(struct uacce_device *uacce,
2321 				   unsigned long arg,
2322 				   struct uacce_queue *q)
2323 {
2324 	struct hisi_qm *qm = uacce->priv;
2325 	struct hisi_qp *qp;
2326 	u8 alg_type = 0;
2327 
2328 	qp = hisi_qm_create_qp(qm, alg_type);
2329 	if (IS_ERR(qp))
2330 		return PTR_ERR(qp);
2331 
2332 	q->priv = qp;
2333 	q->uacce = uacce;
2334 	qp->uacce_q = q;
2335 	qp->event_cb = qm_qp_event_notifier;
2336 	qp->pasid = arg;
2337 	qp->is_in_kernel = false;
2338 
2339 	return 0;
2340 }
2341 
2342 static void hisi_qm_uacce_put_queue(struct uacce_queue *q)
2343 {
2344 	struct hisi_qp *qp = q->priv;
2345 
2346 	hisi_qm_release_qp(qp);
2347 }
2348 
2349 /* map sq/cq/doorbell to user space */
2350 static int hisi_qm_uacce_mmap(struct uacce_queue *q,
2351 			      struct vm_area_struct *vma,
2352 			      struct uacce_qfile_region *qfr)
2353 {
2354 	struct hisi_qp *qp = q->priv;
2355 	struct hisi_qm *qm = qp->qm;
2356 	resource_size_t phys_base = qm->db_phys_base +
2357 				    qp->qp_id * qm->db_interval;
2358 	size_t sz = vma->vm_end - vma->vm_start;
2359 	struct pci_dev *pdev = qm->pdev;
2360 	struct device *dev = &pdev->dev;
2361 	unsigned long vm_pgoff;
2362 	int ret;
2363 
2364 	switch (qfr->type) {
2365 	case UACCE_QFRT_MMIO:
2366 		if (qm->ver == QM_HW_V1) {
2367 			if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR)
2368 				return -EINVAL;
2369 		} else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) {
2370 			if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR +
2371 			    QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE))
2372 				return -EINVAL;
2373 		} else {
2374 			if (sz > qm->db_interval)
2375 				return -EINVAL;
2376 		}
2377 
2378 		vm_flags_set(vma, VM_IO);
2379 
2380 		return remap_pfn_range(vma, vma->vm_start,
2381 				       phys_base >> PAGE_SHIFT,
2382 				       sz, pgprot_noncached(vma->vm_page_prot));
2383 	case UACCE_QFRT_DUS:
2384 		if (sz != qp->qdma.size)
2385 			return -EINVAL;
2386 
2387 		/*
2388 		 * dma_mmap_coherent() requires vm_pgoff as 0
2389 		 * restore vm_pfoff to initial value for mmap()
2390 		 */
2391 		vm_pgoff = vma->vm_pgoff;
2392 		vma->vm_pgoff = 0;
2393 		ret = dma_mmap_coherent(dev, vma, qp->qdma.va,
2394 					qp->qdma.dma, sz);
2395 		vma->vm_pgoff = vm_pgoff;
2396 		return ret;
2397 
2398 	default:
2399 		return -EINVAL;
2400 	}
2401 }
2402 
2403 static int hisi_qm_uacce_start_queue(struct uacce_queue *q)
2404 {
2405 	struct hisi_qp *qp = q->priv;
2406 
2407 	return hisi_qm_start_qp(qp, qp->pasid);
2408 }
2409 
2410 static void hisi_qm_uacce_stop_queue(struct uacce_queue *q)
2411 {
2412 	struct hisi_qp *qp = q->priv;
2413 	struct hisi_qm *qm = qp->qm;
2414 	struct qm_dev_dfx *dev_dfx = &qm->debug.dev_dfx;
2415 	u32 i = 0;
2416 
2417 	hisi_qm_stop_qp(qp);
2418 
2419 	if (!dev_dfx->dev_timeout || !dev_dfx->dev_state)
2420 		return;
2421 
2422 	/*
2423 	 * After the queue fails to be stopped,
2424 	 * wait for a period of time before releasing the queue.
2425 	 */
2426 	while (++i) {
2427 		msleep(WAIT_PERIOD);
2428 
2429 		/* Since dev_timeout maybe modified, check i >= dev_timeout */
2430 		if (i >= dev_dfx->dev_timeout) {
2431 			dev_err(&qm->pdev->dev, "Stop q %u timeout, state %u\n",
2432 			       qp->qp_id, dev_dfx->dev_state);
2433 			dev_dfx->dev_state = QM_FINISH_WAIT;
2434 			break;
2435 		}
2436 	}
2437 }
2438 
2439 static int hisi_qm_is_q_updated(struct uacce_queue *q)
2440 {
2441 	struct hisi_qp *qp = q->priv;
2442 	struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
2443 	int updated = 0;
2444 
2445 	while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
2446 		/* make sure to read data from memory */
2447 		dma_rmb();
2448 		qm_cq_head_update(qp);
2449 		cqe = qp->cqe + qp->qp_status.cq_head;
2450 		updated = 1;
2451 	}
2452 
2453 	return updated;
2454 }
2455 
2456 static void qm_set_sqctype(struct uacce_queue *q, u16 type)
2457 {
2458 	struct hisi_qm *qm = q->uacce->priv;
2459 	struct hisi_qp *qp = q->priv;
2460 
2461 	down_write(&qm->qps_lock);
2462 	qp->alg_type = type;
2463 	up_write(&qm->qps_lock);
2464 }
2465 
2466 static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd,
2467 				unsigned long arg)
2468 {
2469 	struct hisi_qp *qp = q->priv;
2470 	struct hisi_qp_info qp_info;
2471 	struct hisi_qp_ctx qp_ctx;
2472 
2473 	if (cmd == UACCE_CMD_QM_SET_QP_CTX) {
2474 		if (copy_from_user(&qp_ctx, (void __user *)arg,
2475 				   sizeof(struct hisi_qp_ctx)))
2476 			return -EFAULT;
2477 
2478 		if (qp_ctx.qc_type != 0 && qp_ctx.qc_type != 1)
2479 			return -EINVAL;
2480 
2481 		qm_set_sqctype(q, qp_ctx.qc_type);
2482 		qp_ctx.id = qp->qp_id;
2483 
2484 		if (copy_to_user((void __user *)arg, &qp_ctx,
2485 				 sizeof(struct hisi_qp_ctx)))
2486 			return -EFAULT;
2487 
2488 		return 0;
2489 	} else if (cmd == UACCE_CMD_QM_SET_QP_INFO) {
2490 		if (copy_from_user(&qp_info, (void __user *)arg,
2491 				   sizeof(struct hisi_qp_info)))
2492 			return -EFAULT;
2493 
2494 		qp_info.sqe_size = qp->qm->sqe_size;
2495 		qp_info.sq_depth = qp->sq_depth;
2496 		qp_info.cq_depth = qp->cq_depth;
2497 
2498 		if (copy_to_user((void __user *)arg, &qp_info,
2499 				  sizeof(struct hisi_qp_info)))
2500 			return -EFAULT;
2501 
2502 		return 0;
2503 	}
2504 
2505 	return -EINVAL;
2506 }
2507 
2508 /**
2509  * qm_hw_err_isolate() - Try to set the isolation status of the uacce device
2510  * according to user's configuration of error threshold.
2511  * @qm: the uacce device
2512  */
2513 static int qm_hw_err_isolate(struct hisi_qm *qm)
2514 {
2515 	struct qm_hw_err *err, *tmp, *hw_err;
2516 	struct qm_err_isolate *isolate;
2517 	u32 count = 0;
2518 
2519 	isolate = &qm->isolate_data;
2520 
2521 #define SECONDS_PER_HOUR	3600
2522 
2523 	/* All the hw errs are processed by PF driver */
2524 	if (qm->uacce->is_vf || isolate->is_isolate || !isolate->err_threshold)
2525 		return 0;
2526 
2527 	hw_err = kzalloc(sizeof(*hw_err), GFP_KERNEL);
2528 	if (!hw_err)
2529 		return -ENOMEM;
2530 
2531 	/*
2532 	 * Time-stamp every slot AER error. Then check the AER error log when the
2533 	 * next device AER error occurred. if the device slot AER error count exceeds
2534 	 * the setting error threshold in one hour, the isolated state will be set
2535 	 * to true. And the AER error logs that exceed one hour will be cleared.
2536 	 */
2537 	mutex_lock(&isolate->isolate_lock);
2538 	hw_err->timestamp = jiffies;
2539 	list_for_each_entry_safe(err, tmp, &isolate->qm_hw_errs, list) {
2540 		if ((hw_err->timestamp - err->timestamp) / HZ >
2541 		    SECONDS_PER_HOUR) {
2542 			list_del(&err->list);
2543 			kfree(err);
2544 		} else {
2545 			count++;
2546 		}
2547 	}
2548 	list_add(&hw_err->list, &isolate->qm_hw_errs);
2549 	mutex_unlock(&isolate->isolate_lock);
2550 
2551 	if (count >= isolate->err_threshold)
2552 		isolate->is_isolate = true;
2553 
2554 	return 0;
2555 }
2556 
2557 static void qm_hw_err_destroy(struct hisi_qm *qm)
2558 {
2559 	struct qm_hw_err *err, *tmp;
2560 
2561 	mutex_lock(&qm->isolate_data.isolate_lock);
2562 	list_for_each_entry_safe(err, tmp, &qm->isolate_data.qm_hw_errs, list) {
2563 		list_del(&err->list);
2564 		kfree(err);
2565 	}
2566 	mutex_unlock(&qm->isolate_data.isolate_lock);
2567 }
2568 
2569 static enum uacce_dev_state hisi_qm_get_isolate_state(struct uacce_device *uacce)
2570 {
2571 	struct hisi_qm *qm = uacce->priv;
2572 	struct hisi_qm *pf_qm;
2573 
2574 	if (uacce->is_vf)
2575 		pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
2576 	else
2577 		pf_qm = qm;
2578 
2579 	return pf_qm->isolate_data.is_isolate ?
2580 			UACCE_DEV_ISOLATE : UACCE_DEV_NORMAL;
2581 }
2582 
2583 static int hisi_qm_isolate_threshold_write(struct uacce_device *uacce, u32 num)
2584 {
2585 	struct hisi_qm *qm = uacce->priv;
2586 
2587 	/* Must be set by PF */
2588 	if (uacce->is_vf)
2589 		return -EPERM;
2590 
2591 	if (qm->isolate_data.is_isolate)
2592 		return -EPERM;
2593 
2594 	qm->isolate_data.err_threshold = num;
2595 
2596 	/* After the policy is updated, need to reset the hardware err list */
2597 	qm_hw_err_destroy(qm);
2598 
2599 	return 0;
2600 }
2601 
2602 static u32 hisi_qm_isolate_threshold_read(struct uacce_device *uacce)
2603 {
2604 	struct hisi_qm *qm = uacce->priv;
2605 	struct hisi_qm *pf_qm;
2606 
2607 	if (uacce->is_vf) {
2608 		pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
2609 		return pf_qm->isolate_data.err_threshold;
2610 	}
2611 
2612 	return qm->isolate_data.err_threshold;
2613 }
2614 
2615 static const struct uacce_ops uacce_qm_ops = {
2616 	.get_available_instances = hisi_qm_get_available_instances,
2617 	.get_queue = hisi_qm_uacce_get_queue,
2618 	.put_queue = hisi_qm_uacce_put_queue,
2619 	.start_queue = hisi_qm_uacce_start_queue,
2620 	.stop_queue = hisi_qm_uacce_stop_queue,
2621 	.mmap = hisi_qm_uacce_mmap,
2622 	.ioctl = hisi_qm_uacce_ioctl,
2623 	.is_q_updated = hisi_qm_is_q_updated,
2624 	.get_isolate_state = hisi_qm_get_isolate_state,
2625 	.isolate_err_threshold_write = hisi_qm_isolate_threshold_write,
2626 	.isolate_err_threshold_read = hisi_qm_isolate_threshold_read,
2627 };
2628 
2629 static void qm_remove_uacce(struct hisi_qm *qm)
2630 {
2631 	struct uacce_device *uacce = qm->uacce;
2632 
2633 	if (qm->use_sva) {
2634 		qm_hw_err_destroy(qm);
2635 		uacce_remove(uacce);
2636 		qm->uacce = NULL;
2637 	}
2638 }
2639 
2640 static int qm_alloc_uacce(struct hisi_qm *qm)
2641 {
2642 	struct pci_dev *pdev = qm->pdev;
2643 	struct uacce_device *uacce;
2644 	unsigned long mmio_page_nr;
2645 	unsigned long dus_page_nr;
2646 	u16 sq_depth, cq_depth;
2647 	struct uacce_interface interface = {
2648 		.flags = UACCE_DEV_SVA,
2649 		.ops = &uacce_qm_ops,
2650 	};
2651 	int ret;
2652 
2653 	ret = strscpy(interface.name, dev_driver_string(&pdev->dev),
2654 		      sizeof(interface.name));
2655 	if (ret < 0)
2656 		return -ENAMETOOLONG;
2657 
2658 	uacce = uacce_alloc(&pdev->dev, &interface);
2659 	if (IS_ERR(uacce))
2660 		return PTR_ERR(uacce);
2661 
2662 	if (uacce->flags & UACCE_DEV_SVA) {
2663 		qm->use_sva = true;
2664 	} else {
2665 		/* only consider sva case */
2666 		qm_remove_uacce(qm);
2667 		return -EINVAL;
2668 	}
2669 
2670 	uacce->is_vf = pdev->is_virtfn;
2671 	uacce->priv = qm;
2672 
2673 	if (qm->ver == QM_HW_V1)
2674 		uacce->api_ver = HISI_QM_API_VER_BASE;
2675 	else if (qm->ver == QM_HW_V2)
2676 		uacce->api_ver = HISI_QM_API_VER2_BASE;
2677 	else
2678 		uacce->api_ver = HISI_QM_API_VER3_BASE;
2679 
2680 	if (qm->ver == QM_HW_V1)
2681 		mmio_page_nr = QM_DOORBELL_PAGE_NR;
2682 	else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
2683 		mmio_page_nr = QM_DOORBELL_PAGE_NR +
2684 			QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE;
2685 	else
2686 		mmio_page_nr = qm->db_interval / PAGE_SIZE;
2687 
2688 	qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP);
2689 
2690 	/* Add one more page for device or qp status */
2691 	dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * sq_depth +
2692 		       sizeof(struct qm_cqe) * cq_depth  + PAGE_SIZE) >>
2693 					 PAGE_SHIFT;
2694 
2695 	uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr;
2696 	uacce->qf_pg_num[UACCE_QFRT_DUS]  = dus_page_nr;
2697 
2698 	qm->uacce = uacce;
2699 	INIT_LIST_HEAD(&qm->isolate_data.qm_hw_errs);
2700 	mutex_init(&qm->isolate_data.isolate_lock);
2701 
2702 	return 0;
2703 }
2704 
2705 /**
2706  * qm_frozen() - Try to froze QM to cut continuous queue request. If
2707  * there is user on the QM, return failure without doing anything.
2708  * @qm: The qm needed to be fronzen.
2709  *
2710  * This function frozes QM, then we can do SRIOV disabling.
2711  */
2712 static int qm_frozen(struct hisi_qm *qm)
2713 {
2714 	if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl))
2715 		return 0;
2716 
2717 	down_write(&qm->qps_lock);
2718 
2719 	if (!qm->qp_in_used) {
2720 		qm->qp_in_used = qm->qp_num;
2721 		up_write(&qm->qps_lock);
2722 		set_bit(QM_DRIVER_REMOVING, &qm->misc_ctl);
2723 		return 0;
2724 	}
2725 
2726 	up_write(&qm->qps_lock);
2727 
2728 	return -EBUSY;
2729 }
2730 
2731 static int qm_try_frozen_vfs(struct pci_dev *pdev,
2732 			     struct hisi_qm_list *qm_list)
2733 {
2734 	struct hisi_qm *qm, *vf_qm;
2735 	struct pci_dev *dev;
2736 	int ret = 0;
2737 
2738 	if (!qm_list || !pdev)
2739 		return -EINVAL;
2740 
2741 	/* Try to frozen all the VFs as disable SRIOV */
2742 	mutex_lock(&qm_list->lock);
2743 	list_for_each_entry(qm, &qm_list->list, list) {
2744 		dev = qm->pdev;
2745 		if (dev == pdev)
2746 			continue;
2747 		if (pci_physfn(dev) == pdev) {
2748 			vf_qm = pci_get_drvdata(dev);
2749 			ret = qm_frozen(vf_qm);
2750 			if (ret)
2751 				goto frozen_fail;
2752 		}
2753 	}
2754 
2755 frozen_fail:
2756 	mutex_unlock(&qm_list->lock);
2757 
2758 	return ret;
2759 }
2760 
2761 /**
2762  * hisi_qm_wait_task_finish() - Wait until the task is finished
2763  * when removing the driver.
2764  * @qm: The qm needed to wait for the task to finish.
2765  * @qm_list: The list of all available devices.
2766  */
2767 void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
2768 {
2769 	while (qm_frozen(qm) ||
2770 	       ((qm->fun_type == QM_HW_PF) &&
2771 	       qm_try_frozen_vfs(qm->pdev, qm_list))) {
2772 		msleep(WAIT_PERIOD);
2773 	}
2774 
2775 	while (test_bit(QM_RST_SCHED, &qm->misc_ctl) ||
2776 	       test_bit(QM_RESETTING, &qm->misc_ctl))
2777 		msleep(WAIT_PERIOD);
2778 
2779 	if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
2780 		flush_work(&qm->cmd_process);
2781 
2782 	udelay(REMOVE_WAIT_DELAY);
2783 }
2784 EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish);
2785 
2786 static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num)
2787 {
2788 	struct device *dev = &qm->pdev->dev;
2789 	struct qm_dma *qdma;
2790 	int i;
2791 
2792 	for (i = num - 1; i >= 0; i--) {
2793 		qdma = &qm->qp_array[i].qdma;
2794 		dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma);
2795 		kfree(qm->poll_data[i].qp_finish_id);
2796 	}
2797 
2798 	kfree(qm->poll_data);
2799 	kfree(qm->qp_array);
2800 }
2801 
2802 static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id,
2803 			       u16 sq_depth, u16 cq_depth)
2804 {
2805 	struct device *dev = &qm->pdev->dev;
2806 	size_t off = qm->sqe_size * sq_depth;
2807 	struct hisi_qp *qp;
2808 	int ret = -ENOMEM;
2809 
2810 	qm->poll_data[id].qp_finish_id = kcalloc(qm->qp_num, sizeof(u16),
2811 						 GFP_KERNEL);
2812 	if (!qm->poll_data[id].qp_finish_id)
2813 		return -ENOMEM;
2814 
2815 	qp = &qm->qp_array[id];
2816 	qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma,
2817 					 GFP_KERNEL);
2818 	if (!qp->qdma.va)
2819 		goto err_free_qp_finish_id;
2820 
2821 	qp->sqe = qp->qdma.va;
2822 	qp->sqe_dma = qp->qdma.dma;
2823 	qp->cqe = qp->qdma.va + off;
2824 	qp->cqe_dma = qp->qdma.dma + off;
2825 	qp->qdma.size = dma_size;
2826 	qp->sq_depth = sq_depth;
2827 	qp->cq_depth = cq_depth;
2828 	qp->qm = qm;
2829 	qp->qp_id = id;
2830 
2831 	return 0;
2832 
2833 err_free_qp_finish_id:
2834 	kfree(qm->poll_data[id].qp_finish_id);
2835 	return ret;
2836 }
2837 
2838 static void hisi_qm_pre_init(struct hisi_qm *qm)
2839 {
2840 	struct pci_dev *pdev = qm->pdev;
2841 
2842 	if (qm->ver == QM_HW_V1)
2843 		qm->ops = &qm_hw_ops_v1;
2844 	else if (qm->ver == QM_HW_V2)
2845 		qm->ops = &qm_hw_ops_v2;
2846 	else
2847 		qm->ops = &qm_hw_ops_v3;
2848 
2849 	pci_set_drvdata(pdev, qm);
2850 	mutex_init(&qm->mailbox_lock);
2851 	init_rwsem(&qm->qps_lock);
2852 	qm->qp_in_used = 0;
2853 	if (test_bit(QM_SUPPORT_RPM, &qm->caps)) {
2854 		if (!acpi_device_power_manageable(ACPI_COMPANION(&pdev->dev)))
2855 			dev_info(&pdev->dev, "_PS0 and _PR0 are not defined");
2856 	}
2857 }
2858 
2859 static void qm_cmd_uninit(struct hisi_qm *qm)
2860 {
2861 	u32 val;
2862 
2863 	if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
2864 		return;
2865 
2866 	val = readl(qm->io_base + QM_IFC_INT_MASK);
2867 	val |= QM_IFC_INT_DISABLE;
2868 	writel(val, qm->io_base + QM_IFC_INT_MASK);
2869 }
2870 
2871 static void qm_cmd_init(struct hisi_qm *qm)
2872 {
2873 	u32 val;
2874 
2875 	if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
2876 		return;
2877 
2878 	/* Clear communication interrupt source */
2879 	qm_clear_cmd_interrupt(qm, QM_IFC_INT_SOURCE_CLR);
2880 
2881 	/* Enable pf to vf communication reg. */
2882 	val = readl(qm->io_base + QM_IFC_INT_MASK);
2883 	val &= ~QM_IFC_INT_DISABLE;
2884 	writel(val, qm->io_base + QM_IFC_INT_MASK);
2885 }
2886 
2887 static void qm_put_pci_res(struct hisi_qm *qm)
2888 {
2889 	struct pci_dev *pdev = qm->pdev;
2890 
2891 	if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
2892 		iounmap(qm->db_io_base);
2893 
2894 	iounmap(qm->io_base);
2895 	pci_release_mem_regions(pdev);
2896 }
2897 
2898 static void hisi_qm_pci_uninit(struct hisi_qm *qm)
2899 {
2900 	struct pci_dev *pdev = qm->pdev;
2901 
2902 	pci_free_irq_vectors(pdev);
2903 	qm_put_pci_res(qm);
2904 	pci_disable_device(pdev);
2905 }
2906 
2907 static void hisi_qm_set_state(struct hisi_qm *qm, u8 state)
2908 {
2909 	if (qm->ver > QM_HW_V2 && qm->fun_type == QM_HW_VF)
2910 		writel(state, qm->io_base + QM_VF_STATE);
2911 }
2912 
2913 static void hisi_qm_unint_work(struct hisi_qm *qm)
2914 {
2915 	destroy_workqueue(qm->wq);
2916 }
2917 
2918 static void hisi_qm_free_rsv_buf(struct hisi_qm *qm)
2919 {
2920 	struct qm_dma *xqc_dma = &qm->xqc_buf.qcdma;
2921 	struct device *dev = &qm->pdev->dev;
2922 
2923 	dma_free_coherent(dev, xqc_dma->size, xqc_dma->va, xqc_dma->dma);
2924 }
2925 
2926 static void hisi_qm_memory_uninit(struct hisi_qm *qm)
2927 {
2928 	struct device *dev = &qm->pdev->dev;
2929 
2930 	hisi_qp_memory_uninit(qm, qm->qp_num);
2931 	hisi_qm_free_rsv_buf(qm);
2932 	if (qm->qdma.va) {
2933 		hisi_qm_cache_wb(qm);
2934 		dma_free_coherent(dev, qm->qdma.size,
2935 				  qm->qdma.va, qm->qdma.dma);
2936 	}
2937 
2938 	idr_destroy(&qm->qp_idr);
2939 
2940 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
2941 		kfree(qm->factor);
2942 }
2943 
2944 /**
2945  * hisi_qm_uninit() - Uninitialize qm.
2946  * @qm: The qm needed uninit.
2947  *
2948  * This function uninits qm related device resources.
2949  */
2950 void hisi_qm_uninit(struct hisi_qm *qm)
2951 {
2952 	qm_cmd_uninit(qm);
2953 	hisi_qm_unint_work(qm);
2954 
2955 	down_write(&qm->qps_lock);
2956 	hisi_qm_memory_uninit(qm);
2957 	hisi_qm_set_state(qm, QM_NOT_READY);
2958 	up_write(&qm->qps_lock);
2959 
2960 	qm_remove_uacce(qm);
2961 	qm_irqs_unregister(qm);
2962 	hisi_qm_pci_uninit(qm);
2963 }
2964 EXPORT_SYMBOL_GPL(hisi_qm_uninit);
2965 
2966 /**
2967  * hisi_qm_get_vft() - Get vft from a qm.
2968  * @qm: The qm we want to get its vft.
2969  * @base: The base number of queue in vft.
2970  * @number: The number of queues in vft.
2971  *
2972  * We can allocate multiple queues to a qm by configuring virtual function
2973  * table. We get related configures by this function. Normally, we call this
2974  * function in VF driver to get the queue information.
2975  *
2976  * qm hw v1 does not support this interface.
2977  */
2978 static int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number)
2979 {
2980 	if (!base || !number)
2981 		return -EINVAL;
2982 
2983 	if (!qm->ops->get_vft) {
2984 		dev_err(&qm->pdev->dev, "Don't support vft read!\n");
2985 		return -EINVAL;
2986 	}
2987 
2988 	return qm->ops->get_vft(qm, base, number);
2989 }
2990 
2991 /**
2992  * hisi_qm_set_vft() - Set vft to a qm.
2993  * @qm: The qm we want to set its vft.
2994  * @fun_num: The function number.
2995  * @base: The base number of queue in vft.
2996  * @number: The number of queues in vft.
2997  *
2998  * This function is alway called in PF driver, it is used to assign queues
2999  * among PF and VFs.
3000  *
3001  * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1)
3002  * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1)
3003  * (VF function number 0x2)
3004  */
3005 static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
3006 		    u32 number)
3007 {
3008 	u32 max_q_num = qm->ctrl_qp_num;
3009 
3010 	if (base >= max_q_num || number > max_q_num ||
3011 	    (base + number) > max_q_num)
3012 		return -EINVAL;
3013 
3014 	return qm_set_sqc_cqc_vft(qm, fun_num, base, number);
3015 }
3016 
3017 static void qm_init_eq_aeq_status(struct hisi_qm *qm)
3018 {
3019 	struct hisi_qm_status *status = &qm->status;
3020 
3021 	status->eq_head = 0;
3022 	status->aeq_head = 0;
3023 	status->eqc_phase = true;
3024 	status->aeqc_phase = true;
3025 }
3026 
3027 static void qm_enable_eq_aeq_interrupts(struct hisi_qm *qm)
3028 {
3029 	/* Clear eq/aeq interrupt source */
3030 	qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
3031 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
3032 
3033 	writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK);
3034 	writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK);
3035 }
3036 
3037 static void qm_disable_eq_aeq_interrupts(struct hisi_qm *qm)
3038 {
3039 	writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK);
3040 	writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK);
3041 }
3042 
3043 static int qm_eq_ctx_cfg(struct hisi_qm *qm)
3044 {
3045 	struct qm_eqc eqc = {0};
3046 
3047 	eqc.base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma));
3048 	eqc.base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma));
3049 	if (qm->ver == QM_HW_V1)
3050 		eqc.dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE);
3051 	eqc.dw6 = cpu_to_le32(((u32)qm->eq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT));
3052 
3053 	return qm_set_and_get_xqc(qm, QM_MB_CMD_EQC, &eqc, 0, 0);
3054 }
3055 
3056 static int qm_aeq_ctx_cfg(struct hisi_qm *qm)
3057 {
3058 	struct qm_aeqc aeqc = {0};
3059 
3060 	aeqc.base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma));
3061 	aeqc.base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma));
3062 	aeqc.dw6 = cpu_to_le32(((u32)qm->aeq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT));
3063 
3064 	return qm_set_and_get_xqc(qm, QM_MB_CMD_AEQC, &aeqc, 0, 0);
3065 }
3066 
3067 static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm)
3068 {
3069 	struct device *dev = &qm->pdev->dev;
3070 	int ret;
3071 
3072 	qm_init_eq_aeq_status(qm);
3073 
3074 	ret = qm_eq_ctx_cfg(qm);
3075 	if (ret) {
3076 		dev_err(dev, "Set eqc failed!\n");
3077 		return ret;
3078 	}
3079 
3080 	return qm_aeq_ctx_cfg(qm);
3081 }
3082 
3083 static int __hisi_qm_start(struct hisi_qm *qm)
3084 {
3085 	int ret;
3086 
3087 	WARN_ON(!qm->qdma.va);
3088 
3089 	if (qm->fun_type == QM_HW_PF) {
3090 		ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num);
3091 		if (ret)
3092 			return ret;
3093 	}
3094 
3095 	ret = qm_eq_aeq_ctx_cfg(qm);
3096 	if (ret)
3097 		return ret;
3098 
3099 	ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0);
3100 	if (ret)
3101 		return ret;
3102 
3103 	ret = hisi_qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0);
3104 	if (ret)
3105 		return ret;
3106 
3107 	qm_init_prefetch(qm);
3108 	qm_enable_eq_aeq_interrupts(qm);
3109 
3110 	return 0;
3111 }
3112 
3113 /**
3114  * hisi_qm_start() - start qm
3115  * @qm: The qm to be started.
3116  *
3117  * This function starts a qm, then we can allocate qp from this qm.
3118  */
3119 int hisi_qm_start(struct hisi_qm *qm)
3120 {
3121 	struct device *dev = &qm->pdev->dev;
3122 	int ret = 0;
3123 
3124 	down_write(&qm->qps_lock);
3125 
3126 	dev_dbg(dev, "qm start with %u queue pairs\n", qm->qp_num);
3127 
3128 	if (!qm->qp_num) {
3129 		dev_err(dev, "qp_num should not be 0\n");
3130 		ret = -EINVAL;
3131 		goto err_unlock;
3132 	}
3133 
3134 	ret = __hisi_qm_start(qm);
3135 	if (ret)
3136 		goto err_unlock;
3137 
3138 	atomic_set(&qm->status.flags, QM_WORK);
3139 	hisi_qm_set_state(qm, QM_READY);
3140 
3141 err_unlock:
3142 	up_write(&qm->qps_lock);
3143 	return ret;
3144 }
3145 EXPORT_SYMBOL_GPL(hisi_qm_start);
3146 
3147 static int qm_restart(struct hisi_qm *qm)
3148 {
3149 	struct device *dev = &qm->pdev->dev;
3150 	struct hisi_qp *qp;
3151 	int ret, i;
3152 
3153 	ret = hisi_qm_start(qm);
3154 	if (ret < 0)
3155 		return ret;
3156 
3157 	down_write(&qm->qps_lock);
3158 	for (i = 0; i < qm->qp_num; i++) {
3159 		qp = &qm->qp_array[i];
3160 		if (atomic_read(&qp->qp_status.flags) == QP_STOP &&
3161 		    qp->is_resetting == true) {
3162 			ret = qm_start_qp_nolock(qp, 0);
3163 			if (ret < 0) {
3164 				dev_err(dev, "Failed to start qp%d!\n", i);
3165 
3166 				up_write(&qm->qps_lock);
3167 				return ret;
3168 			}
3169 			qp->is_resetting = false;
3170 		}
3171 	}
3172 	up_write(&qm->qps_lock);
3173 
3174 	return 0;
3175 }
3176 
3177 /* Stop started qps in reset flow */
3178 static void qm_stop_started_qp(struct hisi_qm *qm)
3179 {
3180 	struct hisi_qp *qp;
3181 	int i;
3182 
3183 	for (i = 0; i < qm->qp_num; i++) {
3184 		qp = &qm->qp_array[i];
3185 		if (atomic_read(&qp->qp_status.flags) == QP_START) {
3186 			qp->is_resetting = true;
3187 			qm_stop_qp_nolock(qp);
3188 		}
3189 	}
3190 }
3191 
3192 /**
3193  * qm_clear_queues() - Clear all queues memory in a qm.
3194  * @qm: The qm in which the queues will be cleared.
3195  *
3196  * This function clears all queues memory in a qm. Reset of accelerator can
3197  * use this to clear queues.
3198  */
3199 static void qm_clear_queues(struct hisi_qm *qm)
3200 {
3201 	struct hisi_qp *qp;
3202 	int i;
3203 
3204 	for (i = 0; i < qm->qp_num; i++) {
3205 		qp = &qm->qp_array[i];
3206 		if (qp->is_in_kernel && qp->is_resetting)
3207 			memset(qp->qdma.va, 0, qp->qdma.size);
3208 	}
3209 
3210 	memset(qm->qdma.va, 0, qm->qdma.size);
3211 }
3212 
3213 /**
3214  * hisi_qm_stop() - Stop a qm.
3215  * @qm: The qm which will be stopped.
3216  * @r: The reason to stop qm.
3217  *
3218  * This function stops qm and its qps, then qm can not accept request.
3219  * Related resources are not released at this state, we can use hisi_qm_start
3220  * to let qm start again.
3221  */
3222 int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r)
3223 {
3224 	struct device *dev = &qm->pdev->dev;
3225 	int ret = 0;
3226 
3227 	down_write(&qm->qps_lock);
3228 
3229 	if (atomic_read(&qm->status.flags) == QM_STOP)
3230 		goto err_unlock;
3231 
3232 	/* Stop all the request sending at first. */
3233 	atomic_set(&qm->status.flags, QM_STOP);
3234 	qm->status.stop_reason = r;
3235 
3236 	if (qm->status.stop_reason != QM_NORMAL) {
3237 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
3238 		/*
3239 		 * When performing soft reset, the hardware will no longer
3240 		 * do tasks, and the tasks in the device will be flushed
3241 		 * out directly since the master ooo is closed.
3242 		 */
3243 		if (test_bit(QM_SUPPORT_STOP_FUNC, &qm->caps) &&
3244 		    r != QM_SOFT_RESET) {
3245 			ret = qm_drain_qm(qm);
3246 			if (ret) {
3247 				dev_err(dev, "failed to drain qm!\n");
3248 				goto err_unlock;
3249 			}
3250 		}
3251 
3252 		qm_stop_started_qp(qm);
3253 
3254 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
3255 	}
3256 
3257 	qm_disable_eq_aeq_interrupts(qm);
3258 	if (qm->fun_type == QM_HW_PF) {
3259 		ret = hisi_qm_set_vft(qm, 0, 0, 0);
3260 		if (ret < 0) {
3261 			dev_err(dev, "Failed to set vft!\n");
3262 			ret = -EBUSY;
3263 			goto err_unlock;
3264 		}
3265 	}
3266 
3267 	qm_clear_queues(qm);
3268 	qm->status.stop_reason = QM_NORMAL;
3269 
3270 err_unlock:
3271 	up_write(&qm->qps_lock);
3272 	return ret;
3273 }
3274 EXPORT_SYMBOL_GPL(hisi_qm_stop);
3275 
3276 static void qm_hw_error_init(struct hisi_qm *qm)
3277 {
3278 	if (!qm->ops->hw_error_init) {
3279 		dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n");
3280 		return;
3281 	}
3282 
3283 	qm->ops->hw_error_init(qm);
3284 }
3285 
3286 static void qm_hw_error_uninit(struct hisi_qm *qm)
3287 {
3288 	if (!qm->ops->hw_error_uninit) {
3289 		dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n");
3290 		return;
3291 	}
3292 
3293 	qm->ops->hw_error_uninit(qm);
3294 }
3295 
3296 static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm)
3297 {
3298 	if (!qm->ops->hw_error_handle) {
3299 		dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n");
3300 		return ACC_ERR_NONE;
3301 	}
3302 
3303 	return qm->ops->hw_error_handle(qm);
3304 }
3305 
3306 /**
3307  * hisi_qm_dev_err_init() - Initialize device error configuration.
3308  * @qm: The qm for which we want to do error initialization.
3309  *
3310  * Initialize QM and device error related configuration.
3311  */
3312 void hisi_qm_dev_err_init(struct hisi_qm *qm)
3313 {
3314 	if (qm->fun_type == QM_HW_VF)
3315 		return;
3316 
3317 	qm_hw_error_init(qm);
3318 
3319 	if (!qm->err_ini->hw_err_enable) {
3320 		dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n");
3321 		return;
3322 	}
3323 	qm->err_ini->hw_err_enable(qm);
3324 }
3325 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init);
3326 
3327 /**
3328  * hisi_qm_dev_err_uninit() - Uninitialize device error configuration.
3329  * @qm: The qm for which we want to do error uninitialization.
3330  *
3331  * Uninitialize QM and device error related configuration.
3332  */
3333 void hisi_qm_dev_err_uninit(struct hisi_qm *qm)
3334 {
3335 	if (qm->fun_type == QM_HW_VF)
3336 		return;
3337 
3338 	qm_hw_error_uninit(qm);
3339 
3340 	if (!qm->err_ini->hw_err_disable) {
3341 		dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n");
3342 		return;
3343 	}
3344 	qm->err_ini->hw_err_disable(qm);
3345 }
3346 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit);
3347 
3348 /**
3349  * hisi_qm_free_qps() - free multiple queue pairs.
3350  * @qps: The queue pairs need to be freed.
3351  * @qp_num: The num of queue pairs.
3352  */
3353 void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num)
3354 {
3355 	int i;
3356 
3357 	if (!qps || qp_num <= 0)
3358 		return;
3359 
3360 	for (i = qp_num - 1; i >= 0; i--)
3361 		hisi_qm_release_qp(qps[i]);
3362 }
3363 EXPORT_SYMBOL_GPL(hisi_qm_free_qps);
3364 
3365 static void free_list(struct list_head *head)
3366 {
3367 	struct hisi_qm_resource *res, *tmp;
3368 
3369 	list_for_each_entry_safe(res, tmp, head, list) {
3370 		list_del(&res->list);
3371 		kfree(res);
3372 	}
3373 }
3374 
3375 static int hisi_qm_sort_devices(int node, struct list_head *head,
3376 				struct hisi_qm_list *qm_list)
3377 {
3378 	struct hisi_qm_resource *res, *tmp;
3379 	struct hisi_qm *qm;
3380 	struct list_head *n;
3381 	struct device *dev;
3382 	int dev_node;
3383 
3384 	list_for_each_entry(qm, &qm_list->list, list) {
3385 		dev = &qm->pdev->dev;
3386 
3387 		dev_node = dev_to_node(dev);
3388 		if (dev_node < 0)
3389 			dev_node = 0;
3390 
3391 		res = kzalloc(sizeof(*res), GFP_KERNEL);
3392 		if (!res)
3393 			return -ENOMEM;
3394 
3395 		res->qm = qm;
3396 		res->distance = node_distance(dev_node, node);
3397 		n = head;
3398 		list_for_each_entry(tmp, head, list) {
3399 			if (res->distance < tmp->distance) {
3400 				n = &tmp->list;
3401 				break;
3402 			}
3403 		}
3404 		list_add_tail(&res->list, n);
3405 	}
3406 
3407 	return 0;
3408 }
3409 
3410 /**
3411  * hisi_qm_alloc_qps_node() - Create multiple queue pairs.
3412  * @qm_list: The list of all available devices.
3413  * @qp_num: The number of queue pairs need created.
3414  * @alg_type: The algorithm type.
3415  * @node: The numa node.
3416  * @qps: The queue pairs need created.
3417  *
3418  * This function will sort all available device according to numa distance.
3419  * Then try to create all queue pairs from one device, if all devices do
3420  * not meet the requirements will return error.
3421  */
3422 int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num,
3423 			   u8 alg_type, int node, struct hisi_qp **qps)
3424 {
3425 	struct hisi_qm_resource *tmp;
3426 	int ret = -ENODEV;
3427 	LIST_HEAD(head);
3428 	int i;
3429 
3430 	if (!qps || !qm_list || qp_num <= 0)
3431 		return -EINVAL;
3432 
3433 	mutex_lock(&qm_list->lock);
3434 	if (hisi_qm_sort_devices(node, &head, qm_list)) {
3435 		mutex_unlock(&qm_list->lock);
3436 		goto err;
3437 	}
3438 
3439 	list_for_each_entry(tmp, &head, list) {
3440 		for (i = 0; i < qp_num; i++) {
3441 			qps[i] = hisi_qm_create_qp(tmp->qm, alg_type);
3442 			if (IS_ERR(qps[i])) {
3443 				hisi_qm_free_qps(qps, i);
3444 				break;
3445 			}
3446 		}
3447 
3448 		if (i == qp_num) {
3449 			ret = 0;
3450 			break;
3451 		}
3452 	}
3453 
3454 	mutex_unlock(&qm_list->lock);
3455 	if (ret)
3456 		pr_info("Failed to create qps, node[%d], alg[%u], qp[%d]!\n",
3457 			node, alg_type, qp_num);
3458 
3459 err:
3460 	free_list(&head);
3461 	return ret;
3462 }
3463 EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node);
3464 
3465 static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs)
3466 {
3467 	u32 remain_q_num, vfs_q_num, act_q_num, q_num, i, j;
3468 	u32 max_qp_num = qm->max_qp_num;
3469 	u32 q_base = qm->qp_num;
3470 	int ret;
3471 
3472 	if (!num_vfs)
3473 		return -EINVAL;
3474 
3475 	vfs_q_num = qm->ctrl_qp_num - qm->qp_num;
3476 
3477 	/* If vfs_q_num is less than num_vfs, return error. */
3478 	if (vfs_q_num < num_vfs)
3479 		return -EINVAL;
3480 
3481 	q_num = vfs_q_num / num_vfs;
3482 	remain_q_num = vfs_q_num % num_vfs;
3483 
3484 	for (i = num_vfs; i > 0; i--) {
3485 		/*
3486 		 * if q_num + remain_q_num > max_qp_num in last vf, divide the
3487 		 * remaining queues equally.
3488 		 */
3489 		if (i == num_vfs && q_num + remain_q_num <= max_qp_num) {
3490 			act_q_num = q_num + remain_q_num;
3491 			remain_q_num = 0;
3492 		} else if (remain_q_num > 0) {
3493 			act_q_num = q_num + 1;
3494 			remain_q_num--;
3495 		} else {
3496 			act_q_num = q_num;
3497 		}
3498 
3499 		act_q_num = min(act_q_num, max_qp_num);
3500 		ret = hisi_qm_set_vft(qm, i, q_base, act_q_num);
3501 		if (ret) {
3502 			for (j = num_vfs; j > i; j--)
3503 				hisi_qm_set_vft(qm, j, 0, 0);
3504 			return ret;
3505 		}
3506 		q_base += act_q_num;
3507 	}
3508 
3509 	return 0;
3510 }
3511 
3512 static int qm_clear_vft_config(struct hisi_qm *qm)
3513 {
3514 	int ret;
3515 	u32 i;
3516 
3517 	for (i = 1; i <= qm->vfs_num; i++) {
3518 		ret = hisi_qm_set_vft(qm, i, 0, 0);
3519 		if (ret)
3520 			return ret;
3521 	}
3522 	qm->vfs_num = 0;
3523 
3524 	return 0;
3525 }
3526 
3527 static int qm_func_shaper_enable(struct hisi_qm *qm, u32 fun_index, u32 qos)
3528 {
3529 	struct device *dev = &qm->pdev->dev;
3530 	u32 ir = qos * QM_QOS_RATE;
3531 	int ret, total_vfs, i;
3532 
3533 	total_vfs = pci_sriov_get_totalvfs(qm->pdev);
3534 	if (fun_index > total_vfs)
3535 		return -EINVAL;
3536 
3537 	qm->factor[fun_index].func_qos = qos;
3538 
3539 	ret = qm_get_shaper_para(ir, &qm->factor[fun_index]);
3540 	if (ret) {
3541 		dev_err(dev, "failed to calculate shaper parameter!\n");
3542 		return -EINVAL;
3543 	}
3544 
3545 	for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) {
3546 		/* The base number of queue reuse for different alg type */
3547 		ret = qm_set_vft_common(qm, SHAPER_VFT, fun_index, i, 1);
3548 		if (ret) {
3549 			dev_err(dev, "type: %d, failed to set shaper vft!\n", i);
3550 			return -EINVAL;
3551 		}
3552 	}
3553 
3554 	return 0;
3555 }
3556 
3557 static u32 qm_get_shaper_vft_qos(struct hisi_qm *qm, u32 fun_index)
3558 {
3559 	u64 cir_u = 0, cir_b = 0, cir_s = 0;
3560 	u64 shaper_vft, ir_calc, ir;
3561 	unsigned int val;
3562 	u32 error_rate;
3563 	int ret;
3564 
3565 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
3566 					 val & BIT(0), POLL_PERIOD,
3567 					 POLL_TIMEOUT);
3568 	if (ret)
3569 		return 0;
3570 
3571 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_WR);
3572 	writel(SHAPER_VFT, qm->io_base + QM_VFT_CFG_TYPE);
3573 	writel(fun_index, qm->io_base + QM_VFT_CFG);
3574 
3575 	writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
3576 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
3577 
3578 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
3579 					 val & BIT(0), POLL_PERIOD,
3580 					 POLL_TIMEOUT);
3581 	if (ret)
3582 		return 0;
3583 
3584 	shaper_vft = readl(qm->io_base + QM_VFT_CFG_DATA_L) |
3585 		  ((u64)readl(qm->io_base + QM_VFT_CFG_DATA_H) << 32);
3586 
3587 	cir_b = shaper_vft & QM_SHAPER_CIR_B_MASK;
3588 	cir_u = shaper_vft & QM_SHAPER_CIR_U_MASK;
3589 	cir_u = cir_u >> QM_SHAPER_FACTOR_CIR_U_SHIFT;
3590 
3591 	cir_s = shaper_vft & QM_SHAPER_CIR_S_MASK;
3592 	cir_s = cir_s >> QM_SHAPER_FACTOR_CIR_S_SHIFT;
3593 
3594 	ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s);
3595 
3596 	ir = qm->factor[fun_index].func_qos * QM_QOS_RATE;
3597 
3598 	error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir;
3599 	if (error_rate > QM_QOS_MIN_ERROR_RATE) {
3600 		pci_err(qm->pdev, "error_rate: %u, get function qos is error!\n", error_rate);
3601 		return 0;
3602 	}
3603 
3604 	return ir;
3605 }
3606 
3607 static void qm_vf_get_qos(struct hisi_qm *qm, u32 fun_num)
3608 {
3609 	struct device *dev = &qm->pdev->dev;
3610 	u64 mb_cmd;
3611 	u32 qos;
3612 	int ret;
3613 
3614 	qos = qm_get_shaper_vft_qos(qm, fun_num);
3615 	if (!qos) {
3616 		dev_err(dev, "function(%u) failed to get qos by PF!\n", fun_num);
3617 		return;
3618 	}
3619 
3620 	mb_cmd = QM_PF_SET_QOS | (u64)qos << QM_MB_CMD_DATA_SHIFT;
3621 	ret = qm_ping_single_vf(qm, mb_cmd, fun_num);
3622 	if (ret)
3623 		dev_err(dev, "failed to send cmd to VF(%u)!\n", fun_num);
3624 }
3625 
3626 static int qm_vf_read_qos(struct hisi_qm *qm)
3627 {
3628 	int cnt = 0;
3629 	int ret = -EINVAL;
3630 
3631 	/* reset mailbox qos val */
3632 	qm->mb_qos = 0;
3633 
3634 	/* vf ping pf to get function qos */
3635 	ret = qm_ping_pf(qm, QM_VF_GET_QOS);
3636 	if (ret) {
3637 		pci_err(qm->pdev, "failed to send cmd to PF to get qos!\n");
3638 		return ret;
3639 	}
3640 
3641 	while (true) {
3642 		msleep(QM_WAIT_DST_ACK);
3643 		if (qm->mb_qos)
3644 			break;
3645 
3646 		if (++cnt > QM_MAX_VF_WAIT_COUNT) {
3647 			pci_err(qm->pdev, "PF ping VF timeout!\n");
3648 			return  -ETIMEDOUT;
3649 		}
3650 	}
3651 
3652 	return ret;
3653 }
3654 
3655 static ssize_t qm_algqos_read(struct file *filp, char __user *buf,
3656 			       size_t count, loff_t *pos)
3657 {
3658 	struct hisi_qm *qm = filp->private_data;
3659 	char tbuf[QM_DBG_READ_LEN];
3660 	u32 qos_val, ir;
3661 	int ret;
3662 
3663 	ret = hisi_qm_get_dfx_access(qm);
3664 	if (ret)
3665 		return ret;
3666 
3667 	/* Mailbox and reset cannot be operated at the same time */
3668 	if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
3669 		pci_err(qm->pdev, "dev resetting, read alg qos failed!\n");
3670 		ret = -EAGAIN;
3671 		goto err_put_dfx_access;
3672 	}
3673 
3674 	if (qm->fun_type == QM_HW_PF) {
3675 		ir = qm_get_shaper_vft_qos(qm, 0);
3676 	} else {
3677 		ret = qm_vf_read_qos(qm);
3678 		if (ret)
3679 			goto err_get_status;
3680 		ir = qm->mb_qos;
3681 	}
3682 
3683 	qos_val = ir / QM_QOS_RATE;
3684 	ret = scnprintf(tbuf, QM_DBG_READ_LEN, "%u\n", qos_val);
3685 
3686 	ret = simple_read_from_buffer(buf, count, pos, tbuf, ret);
3687 
3688 err_get_status:
3689 	clear_bit(QM_RESETTING, &qm->misc_ctl);
3690 err_put_dfx_access:
3691 	hisi_qm_put_dfx_access(qm);
3692 	return ret;
3693 }
3694 
3695 static ssize_t qm_get_qos_value(struct hisi_qm *qm, const char *buf,
3696 			       unsigned long *val,
3697 			       unsigned int *fun_index)
3698 {
3699 	const struct bus_type *bus_type = qm->pdev->dev.bus;
3700 	char tbuf_bdf[QM_DBG_READ_LEN] = {0};
3701 	char val_buf[QM_DBG_READ_LEN] = {0};
3702 	struct pci_dev *pdev;
3703 	struct device *dev;
3704 	int ret;
3705 
3706 	ret = sscanf(buf, "%s %s", tbuf_bdf, val_buf);
3707 	if (ret != QM_QOS_PARAM_NUM)
3708 		return -EINVAL;
3709 
3710 	ret = kstrtoul(val_buf, 10, val);
3711 	if (ret || *val == 0 || *val > QM_QOS_MAX_VAL) {
3712 		pci_err(qm->pdev, "input qos value is error, please set 1~1000!\n");
3713 		return -EINVAL;
3714 	}
3715 
3716 	dev = bus_find_device_by_name(bus_type, NULL, tbuf_bdf);
3717 	if (!dev) {
3718 		pci_err(qm->pdev, "input pci bdf number is error!\n");
3719 		return -ENODEV;
3720 	}
3721 
3722 	pdev = container_of(dev, struct pci_dev, dev);
3723 
3724 	*fun_index = pdev->devfn;
3725 
3726 	return 0;
3727 }
3728 
3729 static ssize_t qm_algqos_write(struct file *filp, const char __user *buf,
3730 			       size_t count, loff_t *pos)
3731 {
3732 	struct hisi_qm *qm = filp->private_data;
3733 	char tbuf[QM_DBG_READ_LEN];
3734 	unsigned int fun_index;
3735 	unsigned long val;
3736 	int len, ret;
3737 
3738 	if (*pos != 0)
3739 		return 0;
3740 
3741 	if (count >= QM_DBG_READ_LEN)
3742 		return -ENOSPC;
3743 
3744 	len = simple_write_to_buffer(tbuf, QM_DBG_READ_LEN - 1, pos, buf, count);
3745 	if (len < 0)
3746 		return len;
3747 
3748 	tbuf[len] = '\0';
3749 	ret = qm_get_qos_value(qm, tbuf, &val, &fun_index);
3750 	if (ret)
3751 		return ret;
3752 
3753 	/* Mailbox and reset cannot be operated at the same time */
3754 	if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
3755 		pci_err(qm->pdev, "dev resetting, write alg qos failed!\n");
3756 		return -EAGAIN;
3757 	}
3758 
3759 	ret = qm_pm_get_sync(qm);
3760 	if (ret) {
3761 		ret = -EINVAL;
3762 		goto err_get_status;
3763 	}
3764 
3765 	ret = qm_func_shaper_enable(qm, fun_index, val);
3766 	if (ret) {
3767 		pci_err(qm->pdev, "failed to enable function shaper!\n");
3768 		ret = -EINVAL;
3769 		goto err_put_sync;
3770 	}
3771 
3772 	pci_info(qm->pdev, "the qos value of function%u is set to %lu.\n",
3773 		 fun_index, val);
3774 	ret = count;
3775 
3776 err_put_sync:
3777 	qm_pm_put_sync(qm);
3778 err_get_status:
3779 	clear_bit(QM_RESETTING, &qm->misc_ctl);
3780 	return ret;
3781 }
3782 
3783 static const struct file_operations qm_algqos_fops = {
3784 	.owner = THIS_MODULE,
3785 	.open = simple_open,
3786 	.read = qm_algqos_read,
3787 	.write = qm_algqos_write,
3788 };
3789 
3790 /**
3791  * hisi_qm_set_algqos_init() - Initialize function qos debugfs files.
3792  * @qm: The qm for which we want to add debugfs files.
3793  *
3794  * Create function qos debugfs files, VF ping PF to get function qos.
3795  */
3796 void hisi_qm_set_algqos_init(struct hisi_qm *qm)
3797 {
3798 	if (qm->fun_type == QM_HW_PF)
3799 		debugfs_create_file("alg_qos", 0644, qm->debug.debug_root,
3800 				    qm, &qm_algqos_fops);
3801 	else if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
3802 		debugfs_create_file("alg_qos", 0444, qm->debug.debug_root,
3803 				    qm, &qm_algqos_fops);
3804 }
3805 
3806 static void hisi_qm_init_vf_qos(struct hisi_qm *qm, int total_func)
3807 {
3808 	int i;
3809 
3810 	for (i = 1; i <= total_func; i++)
3811 		qm->factor[i].func_qos = QM_QOS_MAX_VAL;
3812 }
3813 
3814 /**
3815  * hisi_qm_sriov_enable() - enable virtual functions
3816  * @pdev: the PCIe device
3817  * @max_vfs: the number of virtual functions to enable
3818  *
3819  * Returns the number of enabled VFs. If there are VFs enabled already or
3820  * max_vfs is more than the total number of device can be enabled, returns
3821  * failure.
3822  */
3823 int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs)
3824 {
3825 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3826 	int pre_existing_vfs, num_vfs, total_vfs, ret;
3827 
3828 	ret = qm_pm_get_sync(qm);
3829 	if (ret)
3830 		return ret;
3831 
3832 	total_vfs = pci_sriov_get_totalvfs(pdev);
3833 	pre_existing_vfs = pci_num_vf(pdev);
3834 	if (pre_existing_vfs) {
3835 		pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n",
3836 			pre_existing_vfs);
3837 		goto err_put_sync;
3838 	}
3839 
3840 	if (max_vfs > total_vfs) {
3841 		pci_err(pdev, "%d VFs is more than total VFs %d!\n", max_vfs, total_vfs);
3842 		ret = -ERANGE;
3843 		goto err_put_sync;
3844 	}
3845 
3846 	num_vfs = max_vfs;
3847 
3848 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
3849 		hisi_qm_init_vf_qos(qm, num_vfs);
3850 
3851 	ret = qm_vf_q_assign(qm, num_vfs);
3852 	if (ret) {
3853 		pci_err(pdev, "Can't assign queues for VF!\n");
3854 		goto err_put_sync;
3855 	}
3856 
3857 	ret = pci_enable_sriov(pdev, num_vfs);
3858 	if (ret) {
3859 		pci_err(pdev, "Can't enable VF!\n");
3860 		qm_clear_vft_config(qm);
3861 		goto err_put_sync;
3862 	}
3863 	qm->vfs_num = num_vfs;
3864 
3865 	pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs);
3866 
3867 	return num_vfs;
3868 
3869 err_put_sync:
3870 	qm_pm_put_sync(qm);
3871 	return ret;
3872 }
3873 EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable);
3874 
3875 /**
3876  * hisi_qm_sriov_disable - disable virtual functions
3877  * @pdev: the PCI device.
3878  * @is_frozen: true when all the VFs are frozen.
3879  *
3880  * Return failure if there are VFs assigned already or VF is in used.
3881  */
3882 int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen)
3883 {
3884 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3885 
3886 	if (pci_vfs_assigned(pdev)) {
3887 		pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n");
3888 		return -EPERM;
3889 	}
3890 
3891 	/* While VF is in used, SRIOV cannot be disabled. */
3892 	if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) {
3893 		pci_err(pdev, "Task is using its VF!\n");
3894 		return -EBUSY;
3895 	}
3896 
3897 	pci_disable_sriov(pdev);
3898 
3899 	qm->vfs_num = 0;
3900 	qm_pm_put_sync(qm);
3901 
3902 	return qm_clear_vft_config(qm);
3903 }
3904 EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable);
3905 
3906 /**
3907  * hisi_qm_sriov_configure - configure the number of VFs
3908  * @pdev: The PCI device
3909  * @num_vfs: The number of VFs need enabled
3910  *
3911  * Enable SR-IOV according to num_vfs, 0 means disable.
3912  */
3913 int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs)
3914 {
3915 	if (num_vfs == 0)
3916 		return hisi_qm_sriov_disable(pdev, false);
3917 	else
3918 		return hisi_qm_sriov_enable(pdev, num_vfs);
3919 }
3920 EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure);
3921 
3922 static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm)
3923 {
3924 	if (!qm->err_ini->get_err_result) {
3925 		dev_err(&qm->pdev->dev, "Device doesn't support reset!\n");
3926 		return ACC_ERR_NONE;
3927 	}
3928 
3929 	return qm->err_ini->get_err_result(qm);
3930 }
3931 
3932 static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm)
3933 {
3934 	enum acc_err_result qm_ret, dev_ret;
3935 
3936 	/* log qm error */
3937 	qm_ret = qm_hw_error_handle(qm);
3938 
3939 	/* log device error */
3940 	dev_ret = qm_dev_err_handle(qm);
3941 
3942 	return (qm_ret == ACC_ERR_NEED_RESET ||
3943 		dev_ret == ACC_ERR_NEED_RESET) ?
3944 		ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED;
3945 }
3946 
3947 /**
3948  * hisi_qm_dev_err_detected() - Get device and qm error status then log it.
3949  * @pdev: The PCI device which need report error.
3950  * @state: The connectivity between CPU and device.
3951  *
3952  * We register this function into PCIe AER handlers, It will report device or
3953  * qm hardware error status when error occur.
3954  */
3955 pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev,
3956 					  pci_channel_state_t state)
3957 {
3958 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3959 	enum acc_err_result ret;
3960 
3961 	if (pdev->is_virtfn)
3962 		return PCI_ERS_RESULT_NONE;
3963 
3964 	pci_info(pdev, "PCI error detected, state(=%u)!!\n", state);
3965 	if (state == pci_channel_io_perm_failure)
3966 		return PCI_ERS_RESULT_DISCONNECT;
3967 
3968 	ret = qm_process_dev_error(qm);
3969 	if (ret == ACC_ERR_NEED_RESET)
3970 		return PCI_ERS_RESULT_NEED_RESET;
3971 
3972 	return PCI_ERS_RESULT_RECOVERED;
3973 }
3974 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected);
3975 
3976 static int qm_check_req_recv(struct hisi_qm *qm)
3977 {
3978 	struct pci_dev *pdev = qm->pdev;
3979 	int ret;
3980 	u32 val;
3981 
3982 	if (qm->ver >= QM_HW_V3)
3983 		return 0;
3984 
3985 	writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID);
3986 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
3987 					 (val == ACC_VENDOR_ID_VALUE),
3988 					 POLL_PERIOD, POLL_TIMEOUT);
3989 	if (ret) {
3990 		dev_err(&pdev->dev, "Fails to read QM reg!\n");
3991 		return ret;
3992 	}
3993 
3994 	writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID);
3995 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
3996 					 (val == PCI_VENDOR_ID_HUAWEI),
3997 					 POLL_PERIOD, POLL_TIMEOUT);
3998 	if (ret)
3999 		dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n");
4000 
4001 	return ret;
4002 }
4003 
4004 static int qm_set_pf_mse(struct hisi_qm *qm, bool set)
4005 {
4006 	struct pci_dev *pdev = qm->pdev;
4007 	u16 cmd;
4008 	int i;
4009 
4010 	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
4011 	if (set)
4012 		cmd |= PCI_COMMAND_MEMORY;
4013 	else
4014 		cmd &= ~PCI_COMMAND_MEMORY;
4015 
4016 	pci_write_config_word(pdev, PCI_COMMAND, cmd);
4017 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
4018 		pci_read_config_word(pdev, PCI_COMMAND, &cmd);
4019 		if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1))
4020 			return 0;
4021 
4022 		udelay(1);
4023 	}
4024 
4025 	return -ETIMEDOUT;
4026 }
4027 
4028 static int qm_set_vf_mse(struct hisi_qm *qm, bool set)
4029 {
4030 	struct pci_dev *pdev = qm->pdev;
4031 	u16 sriov_ctrl;
4032 	int pos;
4033 	int i;
4034 
4035 	/*
4036 	 * Since function qm_set_vf_mse is called only after SRIOV is enabled,
4037 	 * pci_find_ext_capability cannot return 0, pos does not need to be
4038 	 * checked.
4039 	 */
4040 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
4041 	pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
4042 	if (set)
4043 		sriov_ctrl |= PCI_SRIOV_CTRL_MSE;
4044 	else
4045 		sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE;
4046 	pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl);
4047 
4048 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
4049 		pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
4050 		if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >>
4051 		    ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT)
4052 			return 0;
4053 
4054 		udelay(1);
4055 	}
4056 
4057 	return -ETIMEDOUT;
4058 }
4059 
4060 static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm)
4061 {
4062 	u32 nfe_enb = 0;
4063 
4064 	/* Kunpeng930 hardware automatically close master ooo when NFE occurs */
4065 	if (qm->ver >= QM_HW_V3)
4066 		return;
4067 
4068 	if (!qm->err_status.is_dev_ecc_mbit &&
4069 	    qm->err_status.is_qm_ecc_mbit &&
4070 	    qm->err_ini->close_axi_master_ooo) {
4071 		qm->err_ini->close_axi_master_ooo(qm);
4072 	} else if (qm->err_status.is_dev_ecc_mbit &&
4073 		   !qm->err_status.is_qm_ecc_mbit &&
4074 		   !qm->err_ini->close_axi_master_ooo) {
4075 		nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE);
4076 		writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE,
4077 		       qm->io_base + QM_RAS_NFE_ENABLE);
4078 		writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET);
4079 	}
4080 }
4081 
4082 static int qm_vf_reset_prepare(struct hisi_qm *qm,
4083 			       enum qm_stop_reason stop_reason)
4084 {
4085 	struct hisi_qm_list *qm_list = qm->qm_list;
4086 	struct pci_dev *pdev = qm->pdev;
4087 	struct pci_dev *virtfn;
4088 	struct hisi_qm *vf_qm;
4089 	int ret = 0;
4090 
4091 	mutex_lock(&qm_list->lock);
4092 	list_for_each_entry(vf_qm, &qm_list->list, list) {
4093 		virtfn = vf_qm->pdev;
4094 		if (virtfn == pdev)
4095 			continue;
4096 
4097 		if (pci_physfn(virtfn) == pdev) {
4098 			/* save VFs PCIE BAR configuration */
4099 			pci_save_state(virtfn);
4100 
4101 			ret = hisi_qm_stop(vf_qm, stop_reason);
4102 			if (ret)
4103 				goto stop_fail;
4104 		}
4105 	}
4106 
4107 stop_fail:
4108 	mutex_unlock(&qm_list->lock);
4109 	return ret;
4110 }
4111 
4112 static int qm_try_stop_vfs(struct hisi_qm *qm, u64 cmd,
4113 			   enum qm_stop_reason stop_reason)
4114 {
4115 	struct pci_dev *pdev = qm->pdev;
4116 	int ret;
4117 
4118 	if (!qm->vfs_num)
4119 		return 0;
4120 
4121 	/* Kunpeng930 supports to notify VFs to stop before PF reset */
4122 	if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) {
4123 		ret = qm_ping_all_vfs(qm, cmd);
4124 		if (ret)
4125 			pci_err(pdev, "failed to send cmd to all VFs before PF reset!\n");
4126 	} else {
4127 		ret = qm_vf_reset_prepare(qm, stop_reason);
4128 		if (ret)
4129 			pci_err(pdev, "failed to prepare reset, ret = %d.\n", ret);
4130 	}
4131 
4132 	return ret;
4133 }
4134 
4135 static int qm_controller_reset_prepare(struct hisi_qm *qm)
4136 {
4137 	struct pci_dev *pdev = qm->pdev;
4138 	int ret;
4139 
4140 	ret = qm_reset_prepare_ready(qm);
4141 	if (ret) {
4142 		pci_err(pdev, "Controller reset not ready!\n");
4143 		return ret;
4144 	}
4145 
4146 	qm_dev_ecc_mbit_handle(qm);
4147 
4148 	/* PF obtains the information of VF by querying the register. */
4149 	qm_cmd_uninit(qm);
4150 
4151 	/* Whether VFs stop successfully, soft reset will continue. */
4152 	ret = qm_try_stop_vfs(qm, QM_PF_SRST_PREPARE, QM_SOFT_RESET);
4153 	if (ret)
4154 		pci_err(pdev, "failed to stop vfs by pf in soft reset.\n");
4155 
4156 	ret = hisi_qm_stop(qm, QM_SOFT_RESET);
4157 	if (ret) {
4158 		pci_err(pdev, "Fails to stop QM!\n");
4159 		qm_reset_bit_clear(qm);
4160 		return ret;
4161 	}
4162 
4163 	if (qm->use_sva) {
4164 		ret = qm_hw_err_isolate(qm);
4165 		if (ret)
4166 			pci_err(pdev, "failed to isolate hw err!\n");
4167 	}
4168 
4169 	ret = qm_wait_vf_prepare_finish(qm);
4170 	if (ret)
4171 		pci_err(pdev, "failed to stop by vfs in soft reset!\n");
4172 
4173 	clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4174 
4175 	return 0;
4176 }
4177 
4178 static int qm_master_ooo_check(struct hisi_qm *qm)
4179 {
4180 	u32 val;
4181 	int ret;
4182 
4183 	/* Check the ooo register of the device before resetting the device. */
4184 	writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN, qm->io_base + ACC_MASTER_GLOBAL_CTRL);
4185 	ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN,
4186 					 val, (val == ACC_MASTER_TRANS_RETURN_RW),
4187 					 POLL_PERIOD, POLL_TIMEOUT);
4188 	if (ret)
4189 		pci_warn(qm->pdev, "Bus lock! Please reset system.\n");
4190 
4191 	return ret;
4192 }
4193 
4194 static int qm_soft_reset_prepare(struct hisi_qm *qm)
4195 {
4196 	struct pci_dev *pdev = qm->pdev;
4197 	int ret;
4198 
4199 	/* Ensure all doorbells and mailboxes received by QM */
4200 	ret = qm_check_req_recv(qm);
4201 	if (ret)
4202 		return ret;
4203 
4204 	if (qm->vfs_num) {
4205 		ret = qm_set_vf_mse(qm, false);
4206 		if (ret) {
4207 			pci_err(pdev, "Fails to disable vf MSE bit.\n");
4208 			return ret;
4209 		}
4210 	}
4211 
4212 	ret = qm->ops->set_msi(qm, false);
4213 	if (ret) {
4214 		pci_err(pdev, "Fails to disable PEH MSI bit.\n");
4215 		return ret;
4216 	}
4217 
4218 	ret = qm_master_ooo_check(qm);
4219 	if (ret)
4220 		return ret;
4221 
4222 	if (qm->err_ini->close_sva_prefetch)
4223 		qm->err_ini->close_sva_prefetch(qm);
4224 
4225 	ret = qm_set_pf_mse(qm, false);
4226 	if (ret)
4227 		pci_err(pdev, "Fails to disable pf MSE bit.\n");
4228 
4229 	return ret;
4230 }
4231 
4232 static int qm_reset_device(struct hisi_qm *qm)
4233 {
4234 	struct pci_dev *pdev = qm->pdev;
4235 
4236 	/* The reset related sub-control registers are not in PCI BAR */
4237 	if (ACPI_HANDLE(&pdev->dev)) {
4238 		unsigned long long value = 0;
4239 		acpi_status s;
4240 
4241 		s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev),
4242 					  qm->err_info.acpi_rst,
4243 					  NULL, &value);
4244 		if (ACPI_FAILURE(s)) {
4245 			pci_err(pdev, "NO controller reset method!\n");
4246 			return -EIO;
4247 		}
4248 
4249 		if (value) {
4250 			pci_err(pdev, "Reset step %llu failed!\n", value);
4251 			return -EIO;
4252 		}
4253 
4254 		return 0;
4255 	}
4256 
4257 	pci_err(pdev, "No reset method!\n");
4258 	return -EINVAL;
4259 }
4260 
4261 static int qm_soft_reset(struct hisi_qm *qm)
4262 {
4263 	int ret;
4264 
4265 	ret = qm_soft_reset_prepare(qm);
4266 	if (ret)
4267 		return ret;
4268 
4269 	return qm_reset_device(qm);
4270 }
4271 
4272 static int qm_vf_reset_done(struct hisi_qm *qm)
4273 {
4274 	struct hisi_qm_list *qm_list = qm->qm_list;
4275 	struct pci_dev *pdev = qm->pdev;
4276 	struct pci_dev *virtfn;
4277 	struct hisi_qm *vf_qm;
4278 	int ret = 0;
4279 
4280 	mutex_lock(&qm_list->lock);
4281 	list_for_each_entry(vf_qm, &qm_list->list, list) {
4282 		virtfn = vf_qm->pdev;
4283 		if (virtfn == pdev)
4284 			continue;
4285 
4286 		if (pci_physfn(virtfn) == pdev) {
4287 			/* enable VFs PCIE BAR configuration */
4288 			pci_restore_state(virtfn);
4289 
4290 			ret = qm_restart(vf_qm);
4291 			if (ret)
4292 				goto restart_fail;
4293 		}
4294 	}
4295 
4296 restart_fail:
4297 	mutex_unlock(&qm_list->lock);
4298 	return ret;
4299 }
4300 
4301 static int qm_try_start_vfs(struct hisi_qm *qm, enum qm_mb_cmd cmd)
4302 {
4303 	struct pci_dev *pdev = qm->pdev;
4304 	int ret;
4305 
4306 	if (!qm->vfs_num)
4307 		return 0;
4308 
4309 	ret = qm_vf_q_assign(qm, qm->vfs_num);
4310 	if (ret) {
4311 		pci_err(pdev, "failed to assign VFs, ret = %d.\n", ret);
4312 		return ret;
4313 	}
4314 
4315 	/* Kunpeng930 supports to notify VFs to start after PF reset. */
4316 	if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) {
4317 		ret = qm_ping_all_vfs(qm, cmd);
4318 		if (ret)
4319 			pci_warn(pdev, "failed to send cmd to all VFs after PF reset!\n");
4320 	} else {
4321 		ret = qm_vf_reset_done(qm);
4322 		if (ret)
4323 			pci_warn(pdev, "failed to start vfs, ret = %d.\n", ret);
4324 	}
4325 
4326 	return ret;
4327 }
4328 
4329 static int qm_dev_hw_init(struct hisi_qm *qm)
4330 {
4331 	return qm->err_ini->hw_init(qm);
4332 }
4333 
4334 static void qm_restart_prepare(struct hisi_qm *qm)
4335 {
4336 	u32 value;
4337 
4338 	if (qm->err_ini->open_sva_prefetch)
4339 		qm->err_ini->open_sva_prefetch(qm);
4340 
4341 	if (qm->ver >= QM_HW_V3)
4342 		return;
4343 
4344 	if (!qm->err_status.is_qm_ecc_mbit &&
4345 	    !qm->err_status.is_dev_ecc_mbit)
4346 		return;
4347 
4348 	/* temporarily close the OOO port used for PEH to write out MSI */
4349 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4350 	writel(value & ~qm->err_info.msi_wr_port,
4351 	       qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4352 
4353 	/* clear dev ecc 2bit error source if having */
4354 	value = qm_get_dev_err_status(qm) & qm->err_info.ecc_2bits_mask;
4355 	if (value && qm->err_ini->clear_dev_hw_err_status)
4356 		qm->err_ini->clear_dev_hw_err_status(qm, value);
4357 
4358 	/* clear QM ecc mbit error source */
4359 	writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE);
4360 
4361 	/* clear AM Reorder Buffer ecc mbit source */
4362 	writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS);
4363 }
4364 
4365 static void qm_restart_done(struct hisi_qm *qm)
4366 {
4367 	u32 value;
4368 
4369 	if (qm->ver >= QM_HW_V3)
4370 		goto clear_flags;
4371 
4372 	if (!qm->err_status.is_qm_ecc_mbit &&
4373 	    !qm->err_status.is_dev_ecc_mbit)
4374 		return;
4375 
4376 	/* open the OOO port for PEH to write out MSI */
4377 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4378 	value |= qm->err_info.msi_wr_port;
4379 	writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4380 
4381 clear_flags:
4382 	qm->err_status.is_qm_ecc_mbit = false;
4383 	qm->err_status.is_dev_ecc_mbit = false;
4384 }
4385 
4386 static int qm_controller_reset_done(struct hisi_qm *qm)
4387 {
4388 	struct pci_dev *pdev = qm->pdev;
4389 	int ret;
4390 
4391 	ret = qm->ops->set_msi(qm, true);
4392 	if (ret) {
4393 		pci_err(pdev, "Fails to enable PEH MSI bit!\n");
4394 		return ret;
4395 	}
4396 
4397 	ret = qm_set_pf_mse(qm, true);
4398 	if (ret) {
4399 		pci_err(pdev, "Fails to enable pf MSE bit!\n");
4400 		return ret;
4401 	}
4402 
4403 	if (qm->vfs_num) {
4404 		ret = qm_set_vf_mse(qm, true);
4405 		if (ret) {
4406 			pci_err(pdev, "Fails to enable vf MSE bit!\n");
4407 			return ret;
4408 		}
4409 	}
4410 
4411 	ret = qm_dev_hw_init(qm);
4412 	if (ret) {
4413 		pci_err(pdev, "Failed to init device\n");
4414 		return ret;
4415 	}
4416 
4417 	qm_restart_prepare(qm);
4418 	hisi_qm_dev_err_init(qm);
4419 	if (qm->err_ini->open_axi_master_ooo)
4420 		qm->err_ini->open_axi_master_ooo(qm);
4421 
4422 	ret = qm_dev_mem_reset(qm);
4423 	if (ret) {
4424 		pci_err(pdev, "failed to reset device memory\n");
4425 		return ret;
4426 	}
4427 
4428 	ret = qm_restart(qm);
4429 	if (ret) {
4430 		pci_err(pdev, "Failed to start QM!\n");
4431 		return ret;
4432 	}
4433 
4434 	ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE);
4435 	if (ret)
4436 		pci_err(pdev, "failed to start vfs by pf in soft reset.\n");
4437 
4438 	ret = qm_wait_vf_prepare_finish(qm);
4439 	if (ret)
4440 		pci_err(pdev, "failed to start by vfs in soft reset!\n");
4441 
4442 	qm_cmd_init(qm);
4443 	qm_restart_done(qm);
4444 
4445 	qm_reset_bit_clear(qm);
4446 
4447 	return 0;
4448 }
4449 
4450 static int qm_controller_reset(struct hisi_qm *qm)
4451 {
4452 	struct pci_dev *pdev = qm->pdev;
4453 	int ret;
4454 
4455 	pci_info(pdev, "Controller resetting...\n");
4456 
4457 	ret = qm_controller_reset_prepare(qm);
4458 	if (ret) {
4459 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4460 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4461 		clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4462 		return ret;
4463 	}
4464 
4465 	hisi_qm_show_last_dfx_regs(qm);
4466 	if (qm->err_ini->show_last_dfx_regs)
4467 		qm->err_ini->show_last_dfx_regs(qm);
4468 
4469 	ret = qm_soft_reset(qm);
4470 	if (ret)
4471 		goto err_reset;
4472 
4473 	ret = qm_controller_reset_done(qm);
4474 	if (ret)
4475 		goto err_reset;
4476 
4477 	pci_info(pdev, "Controller reset complete\n");
4478 
4479 	return 0;
4480 
4481 err_reset:
4482 	pci_err(pdev, "Controller reset failed (%d)\n", ret);
4483 	qm_reset_bit_clear(qm);
4484 
4485 	/* if resetting fails, isolate the device */
4486 	if (qm->use_sva)
4487 		qm->isolate_data.is_isolate = true;
4488 	return ret;
4489 }
4490 
4491 /**
4492  * hisi_qm_dev_slot_reset() - slot reset
4493  * @pdev: the PCIe device
4494  *
4495  * This function offers QM relate PCIe device reset interface. Drivers which
4496  * use QM can use this function as slot_reset in its struct pci_error_handlers.
4497  */
4498 pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev)
4499 {
4500 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4501 	int ret;
4502 
4503 	if (pdev->is_virtfn)
4504 		return PCI_ERS_RESULT_RECOVERED;
4505 
4506 	/* reset pcie device controller */
4507 	ret = qm_controller_reset(qm);
4508 	if (ret) {
4509 		pci_err(pdev, "Controller reset failed (%d)\n", ret);
4510 		return PCI_ERS_RESULT_DISCONNECT;
4511 	}
4512 
4513 	return PCI_ERS_RESULT_RECOVERED;
4514 }
4515 EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset);
4516 
4517 void hisi_qm_reset_prepare(struct pci_dev *pdev)
4518 {
4519 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
4520 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4521 	u32 delay = 0;
4522 	int ret;
4523 
4524 	hisi_qm_dev_err_uninit(pf_qm);
4525 
4526 	/*
4527 	 * Check whether there is an ECC mbit error, If it occurs, need to
4528 	 * wait for soft reset to fix it.
4529 	 */
4530 	while (qm_check_dev_error(pf_qm)) {
4531 		msleep(++delay);
4532 		if (delay > QM_RESET_WAIT_TIMEOUT)
4533 			return;
4534 	}
4535 
4536 	ret = qm_reset_prepare_ready(qm);
4537 	if (ret) {
4538 		pci_err(pdev, "FLR not ready!\n");
4539 		return;
4540 	}
4541 
4542 	/* PF obtains the information of VF by querying the register. */
4543 	if (qm->fun_type == QM_HW_PF)
4544 		qm_cmd_uninit(qm);
4545 
4546 	ret = qm_try_stop_vfs(qm, QM_PF_FLR_PREPARE, QM_DOWN);
4547 	if (ret)
4548 		pci_err(pdev, "failed to stop vfs by pf in FLR.\n");
4549 
4550 	ret = hisi_qm_stop(qm, QM_DOWN);
4551 	if (ret) {
4552 		pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret);
4553 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4554 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4555 		return;
4556 	}
4557 
4558 	ret = qm_wait_vf_prepare_finish(qm);
4559 	if (ret)
4560 		pci_err(pdev, "failed to stop by vfs in FLR!\n");
4561 
4562 	pci_info(pdev, "FLR resetting...\n");
4563 }
4564 EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare);
4565 
4566 static bool qm_flr_reset_complete(struct pci_dev *pdev)
4567 {
4568 	struct pci_dev *pf_pdev = pci_physfn(pdev);
4569 	struct hisi_qm *qm = pci_get_drvdata(pf_pdev);
4570 	u32 id;
4571 
4572 	pci_read_config_dword(qm->pdev, PCI_COMMAND, &id);
4573 	if (id == QM_PCI_COMMAND_INVALID) {
4574 		pci_err(pdev, "Device can not be used!\n");
4575 		return false;
4576 	}
4577 
4578 	return true;
4579 }
4580 
4581 void hisi_qm_reset_done(struct pci_dev *pdev)
4582 {
4583 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
4584 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4585 	int ret;
4586 
4587 	if (qm->fun_type == QM_HW_PF) {
4588 		ret = qm_dev_hw_init(qm);
4589 		if (ret) {
4590 			pci_err(pdev, "Failed to init PF, ret = %d.\n", ret);
4591 			goto flr_done;
4592 		}
4593 	}
4594 
4595 	hisi_qm_dev_err_init(pf_qm);
4596 
4597 	ret = qm_restart(qm);
4598 	if (ret) {
4599 		pci_err(pdev, "Failed to start QM, ret = %d.\n", ret);
4600 		goto flr_done;
4601 	}
4602 
4603 	ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE);
4604 	if (ret)
4605 		pci_err(pdev, "failed to start vfs by pf in FLR.\n");
4606 
4607 	ret = qm_wait_vf_prepare_finish(qm);
4608 	if (ret)
4609 		pci_err(pdev, "failed to start by vfs in FLR!\n");
4610 
4611 flr_done:
4612 	if (qm->fun_type == QM_HW_PF)
4613 		qm_cmd_init(qm);
4614 
4615 	if (qm_flr_reset_complete(pdev))
4616 		pci_info(pdev, "FLR reset complete\n");
4617 
4618 	qm_reset_bit_clear(qm);
4619 }
4620 EXPORT_SYMBOL_GPL(hisi_qm_reset_done);
4621 
4622 static irqreturn_t qm_abnormal_irq(int irq, void *data)
4623 {
4624 	struct hisi_qm *qm = data;
4625 	enum acc_err_result ret;
4626 
4627 	atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt);
4628 	ret = qm_process_dev_error(qm);
4629 	if (ret == ACC_ERR_NEED_RESET &&
4630 	    !test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl) &&
4631 	    !test_and_set_bit(QM_RST_SCHED, &qm->misc_ctl))
4632 		schedule_work(&qm->rst_work);
4633 
4634 	return IRQ_HANDLED;
4635 }
4636 
4637 /**
4638  * hisi_qm_dev_shutdown() - Shutdown device.
4639  * @pdev: The device will be shutdown.
4640  *
4641  * This function will stop qm when OS shutdown or rebooting.
4642  */
4643 void hisi_qm_dev_shutdown(struct pci_dev *pdev)
4644 {
4645 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4646 	int ret;
4647 
4648 	ret = hisi_qm_stop(qm, QM_DOWN);
4649 	if (ret)
4650 		dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n");
4651 
4652 	hisi_qm_cache_wb(qm);
4653 }
4654 EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown);
4655 
4656 static void hisi_qm_controller_reset(struct work_struct *rst_work)
4657 {
4658 	struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work);
4659 	int ret;
4660 
4661 	ret = qm_pm_get_sync(qm);
4662 	if (ret) {
4663 		clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4664 		return;
4665 	}
4666 
4667 	/* reset pcie device controller */
4668 	ret = qm_controller_reset(qm);
4669 	if (ret)
4670 		dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret);
4671 
4672 	qm_pm_put_sync(qm);
4673 }
4674 
4675 static void qm_pf_reset_vf_prepare(struct hisi_qm *qm,
4676 				   enum qm_stop_reason stop_reason)
4677 {
4678 	enum qm_mb_cmd cmd = QM_VF_PREPARE_DONE;
4679 	struct pci_dev *pdev = qm->pdev;
4680 	int ret;
4681 
4682 	ret = qm_reset_prepare_ready(qm);
4683 	if (ret) {
4684 		dev_err(&pdev->dev, "reset prepare not ready!\n");
4685 		atomic_set(&qm->status.flags, QM_STOP);
4686 		cmd = QM_VF_PREPARE_FAIL;
4687 		goto err_prepare;
4688 	}
4689 
4690 	ret = hisi_qm_stop(qm, stop_reason);
4691 	if (ret) {
4692 		dev_err(&pdev->dev, "failed to stop QM, ret = %d.\n", ret);
4693 		atomic_set(&qm->status.flags, QM_STOP);
4694 		cmd = QM_VF_PREPARE_FAIL;
4695 		goto err_prepare;
4696 	} else {
4697 		goto out;
4698 	}
4699 
4700 err_prepare:
4701 	hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4702 	hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4703 out:
4704 	pci_save_state(pdev);
4705 	ret = qm_ping_pf(qm, cmd);
4706 	if (ret)
4707 		dev_warn(&pdev->dev, "PF responds timeout in reset prepare!\n");
4708 }
4709 
4710 static void qm_pf_reset_vf_done(struct hisi_qm *qm)
4711 {
4712 	enum qm_mb_cmd cmd = QM_VF_START_DONE;
4713 	struct pci_dev *pdev = qm->pdev;
4714 	int ret;
4715 
4716 	pci_restore_state(pdev);
4717 	ret = hisi_qm_start(qm);
4718 	if (ret) {
4719 		dev_err(&pdev->dev, "failed to start QM, ret = %d.\n", ret);
4720 		cmd = QM_VF_START_FAIL;
4721 	}
4722 
4723 	qm_cmd_init(qm);
4724 	ret = qm_ping_pf(qm, cmd);
4725 	if (ret)
4726 		dev_warn(&pdev->dev, "PF responds timeout in reset done!\n");
4727 
4728 	qm_reset_bit_clear(qm);
4729 }
4730 
4731 static int qm_wait_pf_reset_finish(struct hisi_qm *qm)
4732 {
4733 	struct device *dev = &qm->pdev->dev;
4734 	u32 val, cmd;
4735 	u64 msg;
4736 	int ret;
4737 
4738 	/* Wait for reset to finish */
4739 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_IFC_INT_SOURCE_V, val,
4740 					 val == BIT(0), QM_VF_RESET_WAIT_US,
4741 					 QM_VF_RESET_WAIT_TIMEOUT_US);
4742 	/* hardware completion status should be available by this time */
4743 	if (ret) {
4744 		dev_err(dev, "couldn't get reset done status from PF, timeout!\n");
4745 		return -ETIMEDOUT;
4746 	}
4747 
4748 	/*
4749 	 * Whether message is got successfully,
4750 	 * VF needs to ack PF by clearing the interrupt.
4751 	 */
4752 	ret = qm_get_mb_cmd(qm, &msg, 0);
4753 	qm_clear_cmd_interrupt(qm, 0);
4754 	if (ret) {
4755 		dev_err(dev, "failed to get msg from PF in reset done!\n");
4756 		return ret;
4757 	}
4758 
4759 	cmd = msg & QM_MB_CMD_DATA_MASK;
4760 	if (cmd != QM_PF_RESET_DONE) {
4761 		dev_err(dev, "the cmd(%u) is not reset done!\n", cmd);
4762 		ret = -EINVAL;
4763 	}
4764 
4765 	return ret;
4766 }
4767 
4768 static void qm_pf_reset_vf_process(struct hisi_qm *qm,
4769 				   enum qm_stop_reason stop_reason)
4770 {
4771 	struct device *dev = &qm->pdev->dev;
4772 	int ret;
4773 
4774 	dev_info(dev, "device reset start...\n");
4775 
4776 	/* The message is obtained by querying the register during resetting */
4777 	qm_cmd_uninit(qm);
4778 	qm_pf_reset_vf_prepare(qm, stop_reason);
4779 
4780 	ret = qm_wait_pf_reset_finish(qm);
4781 	if (ret)
4782 		goto err_get_status;
4783 
4784 	qm_pf_reset_vf_done(qm);
4785 
4786 	dev_info(dev, "device reset done.\n");
4787 
4788 	return;
4789 
4790 err_get_status:
4791 	qm_cmd_init(qm);
4792 	qm_reset_bit_clear(qm);
4793 }
4794 
4795 static void qm_handle_cmd_msg(struct hisi_qm *qm, u32 fun_num)
4796 {
4797 	struct device *dev = &qm->pdev->dev;
4798 	u64 msg;
4799 	u32 cmd;
4800 	int ret;
4801 
4802 	/*
4803 	 * Get the msg from source by sending mailbox. Whether message is got
4804 	 * successfully, destination needs to ack source by clearing the interrupt.
4805 	 */
4806 	ret = qm_get_mb_cmd(qm, &msg, fun_num);
4807 	qm_clear_cmd_interrupt(qm, BIT(fun_num));
4808 	if (ret) {
4809 		dev_err(dev, "failed to get msg from source!\n");
4810 		return;
4811 	}
4812 
4813 	cmd = msg & QM_MB_CMD_DATA_MASK;
4814 	switch (cmd) {
4815 	case QM_PF_FLR_PREPARE:
4816 		qm_pf_reset_vf_process(qm, QM_DOWN);
4817 		break;
4818 	case QM_PF_SRST_PREPARE:
4819 		qm_pf_reset_vf_process(qm, QM_SOFT_RESET);
4820 		break;
4821 	case QM_VF_GET_QOS:
4822 		qm_vf_get_qos(qm, fun_num);
4823 		break;
4824 	case QM_PF_SET_QOS:
4825 		qm->mb_qos = msg >> QM_MB_CMD_DATA_SHIFT;
4826 		break;
4827 	default:
4828 		dev_err(dev, "unsupported cmd %u sent by function(%u)!\n", cmd, fun_num);
4829 		break;
4830 	}
4831 }
4832 
4833 static void qm_cmd_process(struct work_struct *cmd_process)
4834 {
4835 	struct hisi_qm *qm = container_of(cmd_process,
4836 					struct hisi_qm, cmd_process);
4837 	u32 vfs_num = qm->vfs_num;
4838 	u64 val;
4839 	u32 i;
4840 
4841 	if (qm->fun_type == QM_HW_PF) {
4842 		val = readq(qm->io_base + QM_IFC_INT_SOURCE_P);
4843 		if (!val)
4844 			return;
4845 
4846 		for (i = 1; i <= vfs_num; i++) {
4847 			if (val & BIT(i))
4848 				qm_handle_cmd_msg(qm, i);
4849 		}
4850 
4851 		return;
4852 	}
4853 
4854 	qm_handle_cmd_msg(qm, 0);
4855 }
4856 
4857 /**
4858  * hisi_qm_alg_register() - Register alg to crypto.
4859  * @qm: The qm needs add.
4860  * @qm_list: The qm list.
4861  * @guard: Guard of qp_num.
4862  *
4863  * Register algorithm to crypto when the function is satisfy guard.
4864  */
4865 int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list, int guard)
4866 {
4867 	struct device *dev = &qm->pdev->dev;
4868 
4869 	if (qm->ver <= QM_HW_V2 && qm->use_sva) {
4870 		dev_info(dev, "HW V2 not both use uacce sva mode and hardware crypto algs.\n");
4871 		return 0;
4872 	}
4873 
4874 	if (qm->qp_num < guard) {
4875 		dev_info(dev, "qp_num is less than task need.\n");
4876 		return 0;
4877 	}
4878 
4879 	return qm_list->register_to_crypto(qm);
4880 }
4881 EXPORT_SYMBOL_GPL(hisi_qm_alg_register);
4882 
4883 /**
4884  * hisi_qm_alg_unregister() - Unregister alg from crypto.
4885  * @qm: The qm needs delete.
4886  * @qm_list: The qm list.
4887  * @guard: Guard of qp_num.
4888  *
4889  * Unregister algorithm from crypto when the last function is satisfy guard.
4890  */
4891 void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list, int guard)
4892 {
4893 	if (qm->ver <= QM_HW_V2 && qm->use_sva)
4894 		return;
4895 
4896 	if (qm->qp_num < guard)
4897 		return;
4898 
4899 	qm_list->unregister_from_crypto(qm);
4900 }
4901 EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister);
4902 
4903 static void qm_unregister_abnormal_irq(struct hisi_qm *qm)
4904 {
4905 	struct pci_dev *pdev = qm->pdev;
4906 	u32 irq_vector, val;
4907 
4908 	if (qm->fun_type == QM_HW_VF)
4909 		return;
4910 
4911 	val = qm->cap_tables.qm_cap_table[QM_ABNORMAL_IRQ].cap_val;
4912 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK))
4913 		return;
4914 
4915 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4916 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
4917 }
4918 
4919 static int qm_register_abnormal_irq(struct hisi_qm *qm)
4920 {
4921 	struct pci_dev *pdev = qm->pdev;
4922 	u32 irq_vector, val;
4923 	int ret;
4924 
4925 	if (qm->fun_type == QM_HW_VF)
4926 		return 0;
4927 
4928 	val = qm->cap_tables.qm_cap_table[QM_ABNORMAL_IRQ].cap_val;
4929 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK))
4930 		return 0;
4931 
4932 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4933 	ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_abnormal_irq, 0, qm->dev_name, qm);
4934 	if (ret)
4935 		dev_err(&qm->pdev->dev, "failed to request abnormal irq, ret = %d", ret);
4936 
4937 	return ret;
4938 }
4939 
4940 static void qm_unregister_mb_cmd_irq(struct hisi_qm *qm)
4941 {
4942 	struct pci_dev *pdev = qm->pdev;
4943 	u32 irq_vector, val;
4944 
4945 	val = qm->cap_tables.qm_cap_table[QM_MB_IRQ].cap_val;
4946 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4947 		return;
4948 
4949 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4950 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
4951 }
4952 
4953 static int qm_register_mb_cmd_irq(struct hisi_qm *qm)
4954 {
4955 	struct pci_dev *pdev = qm->pdev;
4956 	u32 irq_vector, val;
4957 	int ret;
4958 
4959 	val = qm->cap_tables.qm_cap_table[QM_MB_IRQ].cap_val;
4960 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4961 		return 0;
4962 
4963 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4964 	ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_mb_cmd_irq, 0, qm->dev_name, qm);
4965 	if (ret)
4966 		dev_err(&pdev->dev, "failed to request function communication irq, ret = %d", ret);
4967 
4968 	return ret;
4969 }
4970 
4971 static void qm_unregister_aeq_irq(struct hisi_qm *qm)
4972 {
4973 	struct pci_dev *pdev = qm->pdev;
4974 	u32 irq_vector, val;
4975 
4976 	val = qm->cap_tables.qm_cap_table[QM_AEQ_IRQ].cap_val;
4977 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4978 		return;
4979 
4980 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4981 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
4982 }
4983 
4984 static int qm_register_aeq_irq(struct hisi_qm *qm)
4985 {
4986 	struct pci_dev *pdev = qm->pdev;
4987 	u32 irq_vector, val;
4988 	int ret;
4989 
4990 	val = qm->cap_tables.qm_cap_table[QM_AEQ_IRQ].cap_val;
4991 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4992 		return 0;
4993 
4994 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4995 	ret = request_threaded_irq(pci_irq_vector(pdev, irq_vector), NULL,
4996 						   qm_aeq_thread, IRQF_ONESHOT, qm->dev_name, qm);
4997 	if (ret)
4998 		dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret);
4999 
5000 	return ret;
5001 }
5002 
5003 static void qm_unregister_eq_irq(struct hisi_qm *qm)
5004 {
5005 	struct pci_dev *pdev = qm->pdev;
5006 	u32 irq_vector, val;
5007 
5008 	val = qm->cap_tables.qm_cap_table[QM_EQ_IRQ].cap_val;
5009 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
5010 		return;
5011 
5012 	irq_vector = val & QM_IRQ_VECTOR_MASK;
5013 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
5014 }
5015 
5016 static int qm_register_eq_irq(struct hisi_qm *qm)
5017 {
5018 	struct pci_dev *pdev = qm->pdev;
5019 	u32 irq_vector, val;
5020 	int ret;
5021 
5022 	val = qm->cap_tables.qm_cap_table[QM_EQ_IRQ].cap_val;
5023 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
5024 		return 0;
5025 
5026 	irq_vector = val & QM_IRQ_VECTOR_MASK;
5027 	ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_eq_irq, 0, qm->dev_name, qm);
5028 	if (ret)
5029 		dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret);
5030 
5031 	return ret;
5032 }
5033 
5034 static void qm_irqs_unregister(struct hisi_qm *qm)
5035 {
5036 	qm_unregister_mb_cmd_irq(qm);
5037 	qm_unregister_abnormal_irq(qm);
5038 	qm_unregister_aeq_irq(qm);
5039 	qm_unregister_eq_irq(qm);
5040 }
5041 
5042 static int qm_irqs_register(struct hisi_qm *qm)
5043 {
5044 	int ret;
5045 
5046 	ret = qm_register_eq_irq(qm);
5047 	if (ret)
5048 		return ret;
5049 
5050 	ret = qm_register_aeq_irq(qm);
5051 	if (ret)
5052 		goto free_eq_irq;
5053 
5054 	ret = qm_register_abnormal_irq(qm);
5055 	if (ret)
5056 		goto free_aeq_irq;
5057 
5058 	ret = qm_register_mb_cmd_irq(qm);
5059 	if (ret)
5060 		goto free_abnormal_irq;
5061 
5062 	return 0;
5063 
5064 free_abnormal_irq:
5065 	qm_unregister_abnormal_irq(qm);
5066 free_aeq_irq:
5067 	qm_unregister_aeq_irq(qm);
5068 free_eq_irq:
5069 	qm_unregister_eq_irq(qm);
5070 	return ret;
5071 }
5072 
5073 static int qm_get_qp_num(struct hisi_qm *qm)
5074 {
5075 	struct device *dev = &qm->pdev->dev;
5076 	bool is_db_isolation;
5077 
5078 	/* VF's qp_num assigned by PF in v2, and VF can get qp_num by vft. */
5079 	if (qm->fun_type == QM_HW_VF) {
5080 		if (qm->ver != QM_HW_V1)
5081 			/* v2 starts to support get vft by mailbox */
5082 			return hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num);
5083 
5084 		return 0;
5085 	}
5086 
5087 	is_db_isolation = test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps);
5088 	qm->ctrl_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, QM_TOTAL_QP_NUM_CAP, true);
5089 	qm->max_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info,
5090 					     QM_FUNC_MAX_QP_CAP, is_db_isolation);
5091 
5092 	if (qm->qp_num <= qm->max_qp_num)
5093 		return 0;
5094 
5095 	if (test_bit(QM_MODULE_PARAM, &qm->misc_ctl)) {
5096 		/* Check whether the set qp number is valid */
5097 		dev_err(dev, "qp num(%u) is more than max qp num(%u)!\n",
5098 			qm->qp_num, qm->max_qp_num);
5099 		return -EINVAL;
5100 	}
5101 
5102 	dev_info(dev, "Default qp num(%u) is too big, reset it to Function's max qp num(%u)!\n",
5103 		 qm->qp_num, qm->max_qp_num);
5104 	qm->qp_num = qm->max_qp_num;
5105 	qm->debug.curr_qm_qp_num = qm->qp_num;
5106 
5107 	return 0;
5108 }
5109 
5110 static int qm_pre_store_caps(struct hisi_qm *qm)
5111 {
5112 	struct hisi_qm_cap_record *qm_cap;
5113 	struct pci_dev *pdev = qm->pdev;
5114 	size_t i, size;
5115 
5116 	size = ARRAY_SIZE(qm_cap_query_info);
5117 	qm_cap = devm_kzalloc(&pdev->dev, sizeof(*qm_cap) * size, GFP_KERNEL);
5118 	if (!qm_cap)
5119 		return -ENOMEM;
5120 
5121 	for (i = 0; i < size; i++) {
5122 		qm_cap[i].type = qm_cap_query_info[i].type;
5123 		qm_cap[i].name = qm_cap_query_info[i].name;
5124 		qm_cap[i].cap_val = hisi_qm_get_cap_value(qm, qm_cap_query_info,
5125 							i, qm->cap_ver);
5126 	}
5127 
5128 	qm->cap_tables.qm_cap_table = qm_cap;
5129 	qm->cap_tables.qm_cap_size = size;
5130 
5131 	return 0;
5132 }
5133 
5134 static int qm_get_hw_caps(struct hisi_qm *qm)
5135 {
5136 	const struct hisi_qm_cap_info *cap_info = qm->fun_type == QM_HW_PF ?
5137 						  qm_cap_info_pf : qm_cap_info_vf;
5138 	u32 size = qm->fun_type == QM_HW_PF ? ARRAY_SIZE(qm_cap_info_pf) :
5139 				   ARRAY_SIZE(qm_cap_info_vf);
5140 	u32 val, i;
5141 
5142 	/* Doorbell isolate register is a independent register. */
5143 	val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, QM_SUPPORT_DB_ISOLATION, true);
5144 	if (val)
5145 		set_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps);
5146 
5147 	if (qm->ver >= QM_HW_V3) {
5148 		val = readl(qm->io_base + QM_FUNC_CAPS_REG);
5149 		qm->cap_ver = val & QM_CAPBILITY_VERSION;
5150 	}
5151 
5152 	/* Get PF/VF common capbility */
5153 	for (i = 1; i < ARRAY_SIZE(qm_cap_info_comm); i++) {
5154 		val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, i, qm->cap_ver);
5155 		if (val)
5156 			set_bit(qm_cap_info_comm[i].type, &qm->caps);
5157 	}
5158 
5159 	/* Get PF/VF different capbility */
5160 	for (i = 0; i < size; i++) {
5161 		val = hisi_qm_get_hw_info(qm, cap_info, i, qm->cap_ver);
5162 		if (val)
5163 			set_bit(cap_info[i].type, &qm->caps);
5164 	}
5165 
5166 	/* Fetch and save the value of qm capability registers */
5167 	return qm_pre_store_caps(qm);
5168 }
5169 
5170 static int qm_get_pci_res(struct hisi_qm *qm)
5171 {
5172 	struct pci_dev *pdev = qm->pdev;
5173 	struct device *dev = &pdev->dev;
5174 	int ret;
5175 
5176 	ret = pci_request_mem_regions(pdev, qm->dev_name);
5177 	if (ret < 0) {
5178 		dev_err(dev, "Failed to request mem regions!\n");
5179 		return ret;
5180 	}
5181 
5182 	qm->phys_base = pci_resource_start(pdev, PCI_BAR_2);
5183 	qm->io_base = ioremap(qm->phys_base, pci_resource_len(pdev, PCI_BAR_2));
5184 	if (!qm->io_base) {
5185 		ret = -EIO;
5186 		goto err_request_mem_regions;
5187 	}
5188 
5189 	ret = qm_get_hw_caps(qm);
5190 	if (ret)
5191 		goto err_ioremap;
5192 
5193 	if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) {
5194 		qm->db_interval = QM_QP_DB_INTERVAL;
5195 		qm->db_phys_base = pci_resource_start(pdev, PCI_BAR_4);
5196 		qm->db_io_base = ioremap(qm->db_phys_base,
5197 					 pci_resource_len(pdev, PCI_BAR_4));
5198 		if (!qm->db_io_base) {
5199 			ret = -EIO;
5200 			goto err_ioremap;
5201 		}
5202 	} else {
5203 		qm->db_phys_base = qm->phys_base;
5204 		qm->db_io_base = qm->io_base;
5205 		qm->db_interval = 0;
5206 	}
5207 
5208 	ret = qm_get_qp_num(qm);
5209 	if (ret)
5210 		goto err_db_ioremap;
5211 
5212 	return 0;
5213 
5214 err_db_ioremap:
5215 	if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
5216 		iounmap(qm->db_io_base);
5217 err_ioremap:
5218 	iounmap(qm->io_base);
5219 err_request_mem_regions:
5220 	pci_release_mem_regions(pdev);
5221 	return ret;
5222 }
5223 
5224 static int qm_clear_device(struct hisi_qm *qm)
5225 {
5226 	acpi_handle handle = ACPI_HANDLE(&qm->pdev->dev);
5227 	int ret;
5228 
5229 	if (qm->fun_type == QM_HW_VF)
5230 		return 0;
5231 
5232 	/* Device does not support reset, return */
5233 	if (!qm->err_ini->err_info_init)
5234 		return 0;
5235 	qm->err_ini->err_info_init(qm);
5236 
5237 	if (!handle)
5238 		return 0;
5239 
5240 	/* No reset method, return */
5241 	if (!acpi_has_method(handle, qm->err_info.acpi_rst))
5242 		return 0;
5243 
5244 	ret = qm_master_ooo_check(qm);
5245 	if (ret) {
5246 		writel(0x0, qm->io_base + ACC_MASTER_GLOBAL_CTRL);
5247 		return ret;
5248 	}
5249 
5250 	return qm_reset_device(qm);
5251 }
5252 
5253 static int hisi_qm_pci_init(struct hisi_qm *qm)
5254 {
5255 	struct pci_dev *pdev = qm->pdev;
5256 	struct device *dev = &pdev->dev;
5257 	unsigned int num_vec;
5258 	int ret;
5259 
5260 	ret = pci_enable_device_mem(pdev);
5261 	if (ret < 0) {
5262 		dev_err(dev, "Failed to enable device mem!\n");
5263 		return ret;
5264 	}
5265 
5266 	ret = qm_get_pci_res(qm);
5267 	if (ret)
5268 		goto err_disable_pcidev;
5269 
5270 	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
5271 	if (ret < 0)
5272 		goto err_get_pci_res;
5273 	pci_set_master(pdev);
5274 
5275 	num_vec = qm_get_irq_num(qm);
5276 	ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI);
5277 	if (ret < 0) {
5278 		dev_err(dev, "Failed to enable MSI vectors!\n");
5279 		goto err_get_pci_res;
5280 	}
5281 
5282 	ret = qm_clear_device(qm);
5283 	if (ret)
5284 		goto err_free_vectors;
5285 
5286 	return 0;
5287 
5288 err_free_vectors:
5289 	pci_free_irq_vectors(pdev);
5290 err_get_pci_res:
5291 	qm_put_pci_res(qm);
5292 err_disable_pcidev:
5293 	pci_disable_device(pdev);
5294 	return ret;
5295 }
5296 
5297 static int hisi_qm_init_work(struct hisi_qm *qm)
5298 {
5299 	int i;
5300 
5301 	for (i = 0; i < qm->qp_num; i++)
5302 		INIT_WORK(&qm->poll_data[i].work, qm_work_process);
5303 
5304 	if (qm->fun_type == QM_HW_PF)
5305 		INIT_WORK(&qm->rst_work, hisi_qm_controller_reset);
5306 
5307 	if (qm->ver > QM_HW_V2)
5308 		INIT_WORK(&qm->cmd_process, qm_cmd_process);
5309 
5310 	qm->wq = alloc_workqueue("%s", WQ_HIGHPRI | WQ_MEM_RECLAIM |
5311 				 WQ_UNBOUND, num_online_cpus(),
5312 				 pci_name(qm->pdev));
5313 	if (!qm->wq) {
5314 		pci_err(qm->pdev, "failed to alloc workqueue!\n");
5315 		return -ENOMEM;
5316 	}
5317 
5318 	return 0;
5319 }
5320 
5321 static int hisi_qp_alloc_memory(struct hisi_qm *qm)
5322 {
5323 	struct device *dev = &qm->pdev->dev;
5324 	u16 sq_depth, cq_depth;
5325 	size_t qp_dma_size;
5326 	int i, ret;
5327 
5328 	qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL);
5329 	if (!qm->qp_array)
5330 		return -ENOMEM;
5331 
5332 	qm->poll_data = kcalloc(qm->qp_num, sizeof(struct hisi_qm_poll_data), GFP_KERNEL);
5333 	if (!qm->poll_data) {
5334 		kfree(qm->qp_array);
5335 		return -ENOMEM;
5336 	}
5337 
5338 	qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP);
5339 
5340 	/* one more page for device or qp statuses */
5341 	qp_dma_size = qm->sqe_size * sq_depth + sizeof(struct qm_cqe) * cq_depth;
5342 	qp_dma_size = PAGE_ALIGN(qp_dma_size) + PAGE_SIZE;
5343 	for (i = 0; i < qm->qp_num; i++) {
5344 		qm->poll_data[i].qm = qm;
5345 		ret = hisi_qp_memory_init(qm, qp_dma_size, i, sq_depth, cq_depth);
5346 		if (ret)
5347 			goto err_init_qp_mem;
5348 
5349 		dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size);
5350 	}
5351 
5352 	return 0;
5353 err_init_qp_mem:
5354 	hisi_qp_memory_uninit(qm, i);
5355 
5356 	return ret;
5357 }
5358 
5359 static int hisi_qm_alloc_rsv_buf(struct hisi_qm *qm)
5360 {
5361 	struct qm_rsv_buf *xqc_buf = &qm->xqc_buf;
5362 	struct qm_dma *xqc_dma = &xqc_buf->qcdma;
5363 	struct device *dev = &qm->pdev->dev;
5364 	size_t off = 0;
5365 
5366 #define QM_XQC_BUF_INIT(xqc_buf, type) do { \
5367 	(xqc_buf)->type = ((xqc_buf)->qcdma.va + (off)); \
5368 	(xqc_buf)->type##_dma = (xqc_buf)->qcdma.dma + (off); \
5369 	off += QMC_ALIGN(sizeof(struct qm_##type)); \
5370 } while (0)
5371 
5372 	xqc_dma->size = QMC_ALIGN(sizeof(struct qm_eqc)) +
5373 			QMC_ALIGN(sizeof(struct qm_aeqc)) +
5374 			QMC_ALIGN(sizeof(struct qm_sqc)) +
5375 			QMC_ALIGN(sizeof(struct qm_cqc));
5376 	xqc_dma->va = dma_alloc_coherent(dev, xqc_dma->size,
5377 					 &xqc_dma->dma, GFP_KERNEL);
5378 	if (!xqc_dma->va)
5379 		return -ENOMEM;
5380 
5381 	QM_XQC_BUF_INIT(xqc_buf, eqc);
5382 	QM_XQC_BUF_INIT(xqc_buf, aeqc);
5383 	QM_XQC_BUF_INIT(xqc_buf, sqc);
5384 	QM_XQC_BUF_INIT(xqc_buf, cqc);
5385 
5386 	return 0;
5387 }
5388 
5389 static int hisi_qm_memory_init(struct hisi_qm *qm)
5390 {
5391 	struct device *dev = &qm->pdev->dev;
5392 	int ret, total_func;
5393 	size_t off = 0;
5394 
5395 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) {
5396 		total_func = pci_sriov_get_totalvfs(qm->pdev) + 1;
5397 		qm->factor = kcalloc(total_func, sizeof(struct qm_shaper_factor), GFP_KERNEL);
5398 		if (!qm->factor)
5399 			return -ENOMEM;
5400 
5401 		/* Only the PF value needs to be initialized */
5402 		qm->factor[0].func_qos = QM_QOS_MAX_VAL;
5403 	}
5404 
5405 #define QM_INIT_BUF(qm, type, num) do { \
5406 	(qm)->type = ((qm)->qdma.va + (off)); \
5407 	(qm)->type##_dma = (qm)->qdma.dma + (off); \
5408 	off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \
5409 } while (0)
5410 
5411 	idr_init(&qm->qp_idr);
5412 	qm_get_xqc_depth(qm, &qm->eq_depth, &qm->aeq_depth, QM_XEQ_DEPTH_CAP);
5413 	qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * qm->eq_depth) +
5414 			QMC_ALIGN(sizeof(struct qm_aeqe) * qm->aeq_depth) +
5415 			QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) +
5416 			QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num);
5417 	qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma,
5418 					 GFP_ATOMIC);
5419 	dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size);
5420 	if (!qm->qdma.va) {
5421 		ret = -ENOMEM;
5422 		goto err_destroy_idr;
5423 	}
5424 
5425 	QM_INIT_BUF(qm, eqe, qm->eq_depth);
5426 	QM_INIT_BUF(qm, aeqe, qm->aeq_depth);
5427 	QM_INIT_BUF(qm, sqc, qm->qp_num);
5428 	QM_INIT_BUF(qm, cqc, qm->qp_num);
5429 
5430 	ret = hisi_qm_alloc_rsv_buf(qm);
5431 	if (ret)
5432 		goto err_free_qdma;
5433 
5434 	ret = hisi_qp_alloc_memory(qm);
5435 	if (ret)
5436 		goto err_free_reserve_buf;
5437 
5438 	return 0;
5439 
5440 err_free_reserve_buf:
5441 	hisi_qm_free_rsv_buf(qm);
5442 err_free_qdma:
5443 	dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma);
5444 err_destroy_idr:
5445 	idr_destroy(&qm->qp_idr);
5446 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
5447 		kfree(qm->factor);
5448 
5449 	return ret;
5450 }
5451 
5452 /**
5453  * hisi_qm_init() - Initialize configures about qm.
5454  * @qm: The qm needing init.
5455  *
5456  * This function init qm, then we can call hisi_qm_start to put qm into work.
5457  */
5458 int hisi_qm_init(struct hisi_qm *qm)
5459 {
5460 	struct pci_dev *pdev = qm->pdev;
5461 	struct device *dev = &pdev->dev;
5462 	int ret;
5463 
5464 	hisi_qm_pre_init(qm);
5465 
5466 	ret = hisi_qm_pci_init(qm);
5467 	if (ret)
5468 		return ret;
5469 
5470 	ret = qm_irqs_register(qm);
5471 	if (ret)
5472 		goto err_pci_init;
5473 
5474 	if (qm->fun_type == QM_HW_PF) {
5475 		/* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */
5476 		writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG);
5477 		qm_disable_clock_gate(qm);
5478 		ret = qm_dev_mem_reset(qm);
5479 		if (ret) {
5480 			dev_err(dev, "failed to reset device memory\n");
5481 			goto err_irq_register;
5482 		}
5483 	}
5484 
5485 	if (qm->mode == UACCE_MODE_SVA) {
5486 		ret = qm_alloc_uacce(qm);
5487 		if (ret < 0)
5488 			dev_warn(dev, "fail to alloc uacce (%d)\n", ret);
5489 	}
5490 
5491 	ret = hisi_qm_memory_init(qm);
5492 	if (ret)
5493 		goto err_alloc_uacce;
5494 
5495 	ret = hisi_qm_init_work(qm);
5496 	if (ret)
5497 		goto err_free_qm_memory;
5498 
5499 	qm_cmd_init(qm);
5500 
5501 	return 0;
5502 
5503 err_free_qm_memory:
5504 	hisi_qm_memory_uninit(qm);
5505 err_alloc_uacce:
5506 	qm_remove_uacce(qm);
5507 err_irq_register:
5508 	qm_irqs_unregister(qm);
5509 err_pci_init:
5510 	hisi_qm_pci_uninit(qm);
5511 	return ret;
5512 }
5513 EXPORT_SYMBOL_GPL(hisi_qm_init);
5514 
5515 /**
5516  * hisi_qm_get_dfx_access() - Try to get dfx access.
5517  * @qm: pointer to accelerator device.
5518  *
5519  * Try to get dfx access, then user can get message.
5520  *
5521  * If device is in suspended, return failure, otherwise
5522  * bump up the runtime PM usage counter.
5523  */
5524 int hisi_qm_get_dfx_access(struct hisi_qm *qm)
5525 {
5526 	struct device *dev = &qm->pdev->dev;
5527 
5528 	if (pm_runtime_suspended(dev)) {
5529 		dev_info(dev, "can not read/write - device in suspended.\n");
5530 		return -EAGAIN;
5531 	}
5532 
5533 	return qm_pm_get_sync(qm);
5534 }
5535 EXPORT_SYMBOL_GPL(hisi_qm_get_dfx_access);
5536 
5537 /**
5538  * hisi_qm_put_dfx_access() - Put dfx access.
5539  * @qm: pointer to accelerator device.
5540  *
5541  * Put dfx access, drop runtime PM usage counter.
5542  */
5543 void hisi_qm_put_dfx_access(struct hisi_qm *qm)
5544 {
5545 	qm_pm_put_sync(qm);
5546 }
5547 EXPORT_SYMBOL_GPL(hisi_qm_put_dfx_access);
5548 
5549 /**
5550  * hisi_qm_pm_init() - Initialize qm runtime PM.
5551  * @qm: pointer to accelerator device.
5552  *
5553  * Function that initialize qm runtime PM.
5554  */
5555 void hisi_qm_pm_init(struct hisi_qm *qm)
5556 {
5557 	struct device *dev = &qm->pdev->dev;
5558 
5559 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
5560 		return;
5561 
5562 	pm_runtime_set_autosuspend_delay(dev, QM_AUTOSUSPEND_DELAY);
5563 	pm_runtime_use_autosuspend(dev);
5564 	pm_runtime_put_noidle(dev);
5565 }
5566 EXPORT_SYMBOL_GPL(hisi_qm_pm_init);
5567 
5568 /**
5569  * hisi_qm_pm_uninit() - Uninitialize qm runtime PM.
5570  * @qm: pointer to accelerator device.
5571  *
5572  * Function that uninitialize qm runtime PM.
5573  */
5574 void hisi_qm_pm_uninit(struct hisi_qm *qm)
5575 {
5576 	struct device *dev = &qm->pdev->dev;
5577 
5578 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
5579 		return;
5580 
5581 	pm_runtime_get_noresume(dev);
5582 	pm_runtime_dont_use_autosuspend(dev);
5583 }
5584 EXPORT_SYMBOL_GPL(hisi_qm_pm_uninit);
5585 
5586 static int qm_prepare_for_suspend(struct hisi_qm *qm)
5587 {
5588 	struct pci_dev *pdev = qm->pdev;
5589 	int ret;
5590 
5591 	ret = qm->ops->set_msi(qm, false);
5592 	if (ret) {
5593 		pci_err(pdev, "failed to disable MSI before suspending!\n");
5594 		return ret;
5595 	}
5596 
5597 	ret = qm_master_ooo_check(qm);
5598 	if (ret)
5599 		return ret;
5600 
5601 	ret = qm_set_pf_mse(qm, false);
5602 	if (ret)
5603 		pci_err(pdev, "failed to disable MSE before suspending!\n");
5604 
5605 	return ret;
5606 }
5607 
5608 static int qm_rebuild_for_resume(struct hisi_qm *qm)
5609 {
5610 	struct pci_dev *pdev = qm->pdev;
5611 	int ret;
5612 
5613 	ret = qm_set_pf_mse(qm, true);
5614 	if (ret) {
5615 		pci_err(pdev, "failed to enable MSE after resuming!\n");
5616 		return ret;
5617 	}
5618 
5619 	ret = qm->ops->set_msi(qm, true);
5620 	if (ret) {
5621 		pci_err(pdev, "failed to enable MSI after resuming!\n");
5622 		return ret;
5623 	}
5624 
5625 	ret = qm_dev_hw_init(qm);
5626 	if (ret) {
5627 		pci_err(pdev, "failed to init device after resuming\n");
5628 		return ret;
5629 	}
5630 
5631 	qm_cmd_init(qm);
5632 	hisi_qm_dev_err_init(qm);
5633 	/* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */
5634 	writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG);
5635 	qm_disable_clock_gate(qm);
5636 	ret = qm_dev_mem_reset(qm);
5637 	if (ret)
5638 		pci_err(pdev, "failed to reset device memory\n");
5639 
5640 	return ret;
5641 }
5642 
5643 /**
5644  * hisi_qm_suspend() - Runtime suspend of given device.
5645  * @dev: device to suspend.
5646  *
5647  * Function that suspend the device.
5648  */
5649 int hisi_qm_suspend(struct device *dev)
5650 {
5651 	struct pci_dev *pdev = to_pci_dev(dev);
5652 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5653 	int ret;
5654 
5655 	pci_info(pdev, "entering suspended state\n");
5656 
5657 	ret = hisi_qm_stop(qm, QM_NORMAL);
5658 	if (ret) {
5659 		pci_err(pdev, "failed to stop qm(%d)\n", ret);
5660 		return ret;
5661 	}
5662 
5663 	ret = qm_prepare_for_suspend(qm);
5664 	if (ret)
5665 		pci_err(pdev, "failed to prepare suspended(%d)\n", ret);
5666 
5667 	return ret;
5668 }
5669 EXPORT_SYMBOL_GPL(hisi_qm_suspend);
5670 
5671 /**
5672  * hisi_qm_resume() - Runtime resume of given device.
5673  * @dev: device to resume.
5674  *
5675  * Function that resume the device.
5676  */
5677 int hisi_qm_resume(struct device *dev)
5678 {
5679 	struct pci_dev *pdev = to_pci_dev(dev);
5680 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5681 	int ret;
5682 
5683 	pci_info(pdev, "resuming from suspend state\n");
5684 
5685 	ret = qm_rebuild_for_resume(qm);
5686 	if (ret) {
5687 		pci_err(pdev, "failed to rebuild resume(%d)\n", ret);
5688 		return ret;
5689 	}
5690 
5691 	ret = hisi_qm_start(qm);
5692 	if (ret) {
5693 		if (qm_check_dev_error(qm)) {
5694 			pci_info(pdev, "failed to start qm due to device error, device will be reset!\n");
5695 			return 0;
5696 		}
5697 
5698 		pci_err(pdev, "failed to start qm(%d)!\n", ret);
5699 	}
5700 
5701 	return ret;
5702 }
5703 EXPORT_SYMBOL_GPL(hisi_qm_resume);
5704 
5705 MODULE_LICENSE("GPL v2");
5706 MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>");
5707 MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver");
5708