xref: /linux/drivers/crypto/hisilicon/qm.c (revision c4bbe83d27c2446a033cc0381c3fb6be5e8c41c7)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 HiSilicon Limited. */
3 #include <asm/page.h>
4 #include <linux/acpi.h>
5 #include <linux/bitmap.h>
6 #include <linux/dma-mapping.h>
7 #include <linux/idr.h>
8 #include <linux/io.h>
9 #include <linux/irqreturn.h>
10 #include <linux/log2.h>
11 #include <linux/pm_runtime.h>
12 #include <linux/seq_file.h>
13 #include <linux/slab.h>
14 #include <linux/uacce.h>
15 #include <linux/uaccess.h>
16 #include <uapi/misc/uacce/hisi_qm.h>
17 #include <linux/hisi_acc_qm.h>
18 #include "qm_common.h"
19 
20 /* eq/aeq irq enable */
21 #define QM_VF_AEQ_INT_SOURCE		0x0
22 #define QM_VF_AEQ_INT_MASK		0x4
23 #define QM_VF_EQ_INT_SOURCE		0x8
24 #define QM_VF_EQ_INT_MASK		0xc
25 
26 #define QM_IRQ_VECTOR_MASK		GENMASK(15, 0)
27 #define QM_IRQ_TYPE_MASK		GENMASK(15, 0)
28 #define QM_IRQ_TYPE_SHIFT		16
29 #define QM_ABN_IRQ_TYPE_MASK		GENMASK(7, 0)
30 
31 /* mailbox */
32 #define QM_MB_PING_ALL_VFS		0xffff
33 #define QM_MB_CMD_DATA_SHIFT		32
34 #define QM_MB_CMD_DATA_MASK		GENMASK(31, 0)
35 #define QM_MB_STATUS_MASK		GENMASK(12, 9)
36 
37 /* sqc shift */
38 #define QM_SQ_HOP_NUM_SHIFT		0
39 #define QM_SQ_PAGE_SIZE_SHIFT		4
40 #define QM_SQ_BUF_SIZE_SHIFT		8
41 #define QM_SQ_SQE_SIZE_SHIFT		12
42 #define QM_SQ_PRIORITY_SHIFT		0
43 #define QM_SQ_ORDERS_SHIFT		4
44 #define QM_SQ_TYPE_SHIFT		8
45 #define QM_QC_PASID_ENABLE		0x1
46 #define QM_QC_PASID_ENABLE_SHIFT	7
47 
48 #define QM_SQ_TYPE_MASK			GENMASK(3, 0)
49 #define QM_SQ_TAIL_IDX(sqc)		((le16_to_cpu((sqc).w11) >> 6) & 0x1)
50 
51 /* cqc shift */
52 #define QM_CQ_HOP_NUM_SHIFT		0
53 #define QM_CQ_PAGE_SIZE_SHIFT		4
54 #define QM_CQ_BUF_SIZE_SHIFT		8
55 #define QM_CQ_CQE_SIZE_SHIFT		12
56 #define QM_CQ_PHASE_SHIFT		0
57 #define QM_CQ_FLAG_SHIFT		1
58 
59 #define QM_CQE_PHASE(cqe)		(le16_to_cpu((cqe)->w7) & 0x1)
60 #define QM_QC_CQE_SIZE			4
61 #define QM_CQ_TAIL_IDX(cqc)		((le16_to_cpu((cqc).w11) >> 6) & 0x1)
62 
63 /* eqc shift */
64 #define QM_EQE_AEQE_SIZE		(2UL << 12)
65 #define QM_EQC_PHASE_SHIFT		16
66 
67 #define QM_EQE_PHASE(eqe)		((le32_to_cpu((eqe)->dw0) >> 16) & 0x1)
68 #define QM_EQE_CQN_MASK			GENMASK(15, 0)
69 
70 #define QM_AEQE_PHASE(aeqe)		((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1)
71 #define QM_AEQE_TYPE_SHIFT		17
72 #define QM_AEQE_TYPE_MASK		0xf
73 #define QM_AEQE_CQN_MASK		GENMASK(15, 0)
74 #define QM_CQ_OVERFLOW			0
75 #define QM_EQ_OVERFLOW			1
76 #define QM_CQE_ERROR			2
77 
78 #define QM_XQ_DEPTH_SHIFT		16
79 #define QM_XQ_DEPTH_MASK		GENMASK(15, 0)
80 
81 #define QM_DOORBELL_CMD_SQ		0
82 #define QM_DOORBELL_CMD_CQ		1
83 #define QM_DOORBELL_CMD_EQ		2
84 #define QM_DOORBELL_CMD_AEQ		3
85 
86 #define QM_DOORBELL_BASE_V1		0x340
87 #define QM_DB_CMD_SHIFT_V1		16
88 #define QM_DB_INDEX_SHIFT_V1		32
89 #define QM_DB_PRIORITY_SHIFT_V1		48
90 #define QM_PAGE_SIZE			0x0034
91 #define QM_QP_DB_INTERVAL		0x10000
92 #define QM_DB_TIMEOUT_CFG		0x100074
93 #define QM_DB_TIMEOUT_SET		0x1fffff
94 
95 #define QM_MEM_START_INIT		0x100040
96 #define QM_MEM_INIT_DONE		0x100044
97 #define QM_VFT_CFG_RDY			0x10006c
98 #define QM_VFT_CFG_OP_WR		0x100058
99 #define QM_VFT_CFG_TYPE			0x10005c
100 #define QM_VFT_CFG			0x100060
101 #define QM_VFT_CFG_OP_ENABLE		0x100054
102 #define QM_PM_CTRL			0x100148
103 #define QM_IDLE_DISABLE			BIT(9)
104 
105 #define QM_VFT_CFG_DATA_L		0x100064
106 #define QM_VFT_CFG_DATA_H		0x100068
107 #define QM_SQC_VFT_BUF_SIZE		(7ULL << 8)
108 #define QM_SQC_VFT_SQC_SIZE		(5ULL << 12)
109 #define QM_SQC_VFT_INDEX_NUMBER		(1ULL << 16)
110 #define QM_SQC_VFT_START_SQN_SHIFT	28
111 #define QM_SQC_VFT_VALID		(1ULL << 44)
112 #define QM_SQC_VFT_SQN_SHIFT		45
113 #define QM_CQC_VFT_BUF_SIZE		(7ULL << 8)
114 #define QM_CQC_VFT_SQC_SIZE		(5ULL << 12)
115 #define QM_CQC_VFT_INDEX_NUMBER		(1ULL << 16)
116 #define QM_CQC_VFT_VALID		(1ULL << 28)
117 
118 #define QM_SQC_VFT_BASE_SHIFT_V2	28
119 #define QM_SQC_VFT_BASE_MASK_V2		GENMASK(15, 0)
120 #define QM_SQC_VFT_NUM_SHIFT_V2		45
121 #define QM_SQC_VFT_NUM_MASK_V2		GENMASK(9, 0)
122 
123 #define QM_ABNORMAL_INT_SOURCE		0x100000
124 #define QM_ABNORMAL_INT_MASK		0x100004
125 #define QM_ABNORMAL_INT_MASK_VALUE	0x7fff
126 #define QM_ABNORMAL_INT_STATUS		0x100008
127 #define QM_ABNORMAL_INT_SET		0x10000c
128 #define QM_ABNORMAL_INF00		0x100010
129 #define QM_FIFO_OVERFLOW_TYPE		0xc0
130 #define QM_FIFO_OVERFLOW_TYPE_SHIFT	6
131 #define QM_FIFO_OVERFLOW_VF		0x3f
132 #define QM_FIFO_OVERFLOW_QP_SHIFT	16
133 #define QM_ABNORMAL_INF01		0x100014
134 #define QM_DB_TIMEOUT_TYPE		0xc0
135 #define QM_DB_TIMEOUT_TYPE_SHIFT	6
136 #define QM_DB_TIMEOUT_VF		0x3f
137 #define QM_DB_TIMEOUT_QP_SHIFT		16
138 #define QM_ABNORMAL_INF02		0x100018
139 #define QM_AXI_POISON_ERR		BIT(22)
140 #define QM_RAS_CE_ENABLE		0x1000ec
141 #define QM_RAS_FE_ENABLE		0x1000f0
142 #define QM_RAS_NFE_ENABLE		0x1000f4
143 #define QM_RAS_CE_THRESHOLD		0x1000f8
144 #define QM_RAS_CE_TIMES_PER_IRQ		1
145 #define QM_OOO_SHUTDOWN_SEL		0x1040f8
146 #define QM_AXI_RRESP_ERR		BIT(0)
147 #define QM_ECC_MBIT			BIT(2)
148 #define QM_DB_TIMEOUT			BIT(10)
149 #define QM_OF_FIFO_OF			BIT(11)
150 
151 #define QM_RESET_WAIT_TIMEOUT		400
152 #define QM_PEH_VENDOR_ID		0x1000d8
153 #define ACC_VENDOR_ID_VALUE		0x5a5a
154 #define QM_PEH_DFX_INFO0		0x1000fc
155 #define QM_PEH_DFX_INFO1		0x100100
156 #define QM_PEH_DFX_MASK			(BIT(0) | BIT(2))
157 #define QM_PEH_MSI_FINISH_MASK		GENMASK(19, 16)
158 #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT	3
159 #define ACC_PEH_MSI_DISABLE		GENMASK(31, 0)
160 #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN	0x1
161 #define ACC_MASTER_TRANS_RETURN_RW	3
162 #define ACC_MASTER_TRANS_RETURN		0x300150
163 #define ACC_MASTER_GLOBAL_CTRL		0x300000
164 #define ACC_AM_CFG_PORT_WR_EN		0x30001c
165 #define QM_RAS_NFE_MBIT_DISABLE		~QM_ECC_MBIT
166 #define ACC_AM_ROB_ECC_INT_STS		0x300104
167 #define ACC_ROB_ECC_ERR_MULTPL		BIT(1)
168 #define QM_MSI_CAP_ENABLE		BIT(16)
169 
170 /* interfunction communication */
171 #define QM_IFC_READY_STATUS		0x100128
172 #define QM_IFC_INT_SET_P		0x100130
173 #define QM_IFC_INT_CFG			0x100134
174 #define QM_IFC_INT_SOURCE_P		0x100138
175 #define QM_IFC_INT_SOURCE_V		0x0020
176 #define QM_IFC_INT_MASK			0x0024
177 #define QM_IFC_INT_STATUS		0x0028
178 #define QM_IFC_INT_SET_V		0x002C
179 #define QM_IFC_SEND_ALL_VFS		GENMASK(6, 0)
180 #define QM_IFC_INT_SOURCE_CLR		GENMASK(63, 0)
181 #define QM_IFC_INT_SOURCE_MASK		BIT(0)
182 #define QM_IFC_INT_DISABLE		BIT(0)
183 #define QM_IFC_INT_STATUS_MASK		BIT(0)
184 #define QM_IFC_INT_SET_MASK		BIT(0)
185 #define QM_WAIT_DST_ACK			10
186 #define QM_MAX_PF_WAIT_COUNT		10
187 #define QM_MAX_VF_WAIT_COUNT		40
188 #define QM_VF_RESET_WAIT_US            20000
189 #define QM_VF_RESET_WAIT_CNT           3000
190 #define QM_VF_RESET_WAIT_TIMEOUT_US    \
191 	(QM_VF_RESET_WAIT_US * QM_VF_RESET_WAIT_CNT)
192 
193 #define POLL_PERIOD			10
194 #define POLL_TIMEOUT			1000
195 #define WAIT_PERIOD_US_MAX		200
196 #define WAIT_PERIOD_US_MIN		100
197 #define MAX_WAIT_COUNTS			1000
198 #define QM_CACHE_WB_START		0x204
199 #define QM_CACHE_WB_DONE		0x208
200 #define QM_FUNC_CAPS_REG		0x3100
201 #define QM_CAPBILITY_VERSION		GENMASK(7, 0)
202 
203 #define PCI_BAR_2			2
204 #define PCI_BAR_4			4
205 #define QMC_ALIGN(sz)			ALIGN(sz, 32)
206 
207 #define QM_DBG_READ_LEN		256
208 #define QM_PCI_COMMAND_INVALID		~0
209 #define QM_RESET_STOP_TX_OFFSET		1
210 #define QM_RESET_STOP_RX_OFFSET		2
211 
212 #define WAIT_PERIOD			20
213 #define REMOVE_WAIT_DELAY		10
214 
215 #define QM_QOS_PARAM_NUM		2
216 #define QM_QOS_MAX_VAL			1000
217 #define QM_QOS_RATE			100
218 #define QM_QOS_EXPAND_RATE		1000
219 #define QM_SHAPER_CIR_B_MASK		GENMASK(7, 0)
220 #define QM_SHAPER_CIR_U_MASK		GENMASK(10, 8)
221 #define QM_SHAPER_CIR_S_MASK		GENMASK(14, 11)
222 #define QM_SHAPER_FACTOR_CIR_U_SHIFT	8
223 #define QM_SHAPER_FACTOR_CIR_S_SHIFT	11
224 #define QM_SHAPER_FACTOR_CBS_B_SHIFT	15
225 #define QM_SHAPER_FACTOR_CBS_S_SHIFT	19
226 #define QM_SHAPER_CBS_B			1
227 #define QM_SHAPER_VFT_OFFSET		6
228 #define QM_QOS_MIN_ERROR_RATE		5
229 #define QM_SHAPER_MIN_CBS_S		8
230 #define QM_QOS_TICK			0x300U
231 #define QM_QOS_DIVISOR_CLK		0x1f40U
232 #define QM_QOS_MAX_CIR_B		200
233 #define QM_QOS_MIN_CIR_B		100
234 #define QM_QOS_MAX_CIR_U		6
235 #define QM_AUTOSUSPEND_DELAY		3000
236 
237 #define QM_DEV_ALG_MAX_LEN		256
238 
239 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \
240 	(((hop_num) << QM_CQ_HOP_NUM_SHIFT) | \
241 	((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT) | \
242 	((buf_sz) << QM_CQ_BUF_SIZE_SHIFT) | \
243 	((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
244 
245 #define QM_MK_CQC_DW3_V2(cqe_sz, cq_depth) \
246 	((((u32)cq_depth) - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
247 
248 #define QM_MK_SQC_W13(priority, orders, alg_type) \
249 	(((priority) << QM_SQ_PRIORITY_SHIFT) | \
250 	((orders) << QM_SQ_ORDERS_SHIFT) | \
251 	(((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT))
252 
253 #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \
254 	(((hop_num) << QM_SQ_HOP_NUM_SHIFT) | \
255 	((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT) | \
256 	((buf_sz) << QM_SQ_BUF_SIZE_SHIFT) | \
257 	((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
258 
259 #define QM_MK_SQC_DW3_V2(sqe_sz, sq_depth) \
260 	((((u32)sq_depth) - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
261 
262 enum vft_type {
263 	SQC_VFT = 0,
264 	CQC_VFT,
265 	SHAPER_VFT,
266 };
267 
268 enum acc_err_result {
269 	ACC_ERR_NONE,
270 	ACC_ERR_NEED_RESET,
271 	ACC_ERR_RECOVERED,
272 };
273 
274 enum qm_alg_type {
275 	ALG_TYPE_0,
276 	ALG_TYPE_1,
277 };
278 
279 enum qm_mb_cmd {
280 	QM_PF_FLR_PREPARE = 0x01,
281 	QM_PF_SRST_PREPARE,
282 	QM_PF_RESET_DONE,
283 	QM_VF_PREPARE_DONE,
284 	QM_VF_PREPARE_FAIL,
285 	QM_VF_START_DONE,
286 	QM_VF_START_FAIL,
287 	QM_PF_SET_QOS,
288 	QM_VF_GET_QOS,
289 };
290 
291 enum qm_basic_type {
292 	QM_TOTAL_QP_NUM_CAP = 0x0,
293 	QM_FUNC_MAX_QP_CAP,
294 	QM_XEQ_DEPTH_CAP,
295 	QM_QP_DEPTH_CAP,
296 	QM_EQ_IRQ_TYPE_CAP,
297 	QM_AEQ_IRQ_TYPE_CAP,
298 	QM_ABN_IRQ_TYPE_CAP,
299 	QM_PF2VF_IRQ_TYPE_CAP,
300 	QM_PF_IRQ_NUM_CAP,
301 	QM_VF_IRQ_NUM_CAP,
302 };
303 
304 enum qm_pre_store_cap_idx {
305 	QM_EQ_IRQ_TYPE_CAP_IDX = 0x0,
306 	QM_AEQ_IRQ_TYPE_CAP_IDX,
307 	QM_ABN_IRQ_TYPE_CAP_IDX,
308 	QM_PF2VF_IRQ_TYPE_CAP_IDX,
309 };
310 
311 static const struct hisi_qm_cap_info qm_cap_info_comm[] = {
312 	{QM_SUPPORT_DB_ISOLATION, 0x30,   0, BIT(0),  0x0, 0x0, 0x0},
313 	{QM_SUPPORT_FUNC_QOS,     0x3100, 0, BIT(8),  0x0, 0x0, 0x1},
314 	{QM_SUPPORT_STOP_QP,      0x3100, 0, BIT(9),  0x0, 0x0, 0x1},
315 	{QM_SUPPORT_MB_COMMAND,   0x3100, 0, BIT(11), 0x0, 0x0, 0x1},
316 	{QM_SUPPORT_SVA_PREFETCH, 0x3100, 0, BIT(14), 0x0, 0x0, 0x1},
317 };
318 
319 static const struct hisi_qm_cap_info qm_cap_info_pf[] = {
320 	{QM_SUPPORT_RPM, 0x3100, 0, BIT(13), 0x0, 0x0, 0x1},
321 };
322 
323 static const struct hisi_qm_cap_info qm_cap_info_vf[] = {
324 	{QM_SUPPORT_RPM, 0x3100, 0, BIT(12), 0x0, 0x0, 0x0},
325 };
326 
327 static const struct hisi_qm_cap_info qm_basic_info[] = {
328 	{QM_TOTAL_QP_NUM_CAP,   0x100158, 0,  GENMASK(10, 0), 0x1000,    0x400,     0x400},
329 	{QM_FUNC_MAX_QP_CAP,    0x100158, 11, GENMASK(10, 0), 0x1000,    0x400,     0x400},
330 	{QM_XEQ_DEPTH_CAP,      0x3104,   0,  GENMASK(31, 0), 0x800,     0x4000800, 0x4000800},
331 	{QM_QP_DEPTH_CAP,       0x3108,   0,  GENMASK(31, 0), 0x4000400, 0x4000400, 0x4000400},
332 	{QM_EQ_IRQ_TYPE_CAP,    0x310c,   0,  GENMASK(31, 0), 0x10000,   0x10000,   0x10000},
333 	{QM_AEQ_IRQ_TYPE_CAP,   0x3110,   0,  GENMASK(31, 0), 0x0,       0x10001,   0x10001},
334 	{QM_ABN_IRQ_TYPE_CAP,   0x3114,   0,  GENMASK(31, 0), 0x0,       0x10003,   0x10003},
335 	{QM_PF2VF_IRQ_TYPE_CAP, 0x3118,   0,  GENMASK(31, 0), 0x0,       0x0,       0x10002},
336 	{QM_PF_IRQ_NUM_CAP,     0x311c,   16, GENMASK(15, 0), 0x1,       0x4,       0x4},
337 	{QM_VF_IRQ_NUM_CAP,     0x311c,   0,  GENMASK(15, 0), 0x1,       0x2,       0x3},
338 };
339 
340 static const u32 qm_pre_store_caps[] = {
341 	QM_EQ_IRQ_TYPE_CAP,
342 	QM_AEQ_IRQ_TYPE_CAP,
343 	QM_ABN_IRQ_TYPE_CAP,
344 	QM_PF2VF_IRQ_TYPE_CAP,
345 };
346 
347 struct qm_mailbox {
348 	__le16 w0;
349 	__le16 queue_num;
350 	__le32 base_l;
351 	__le32 base_h;
352 	__le32 rsvd;
353 };
354 
355 struct qm_doorbell {
356 	__le16 queue_num;
357 	__le16 cmd;
358 	__le16 index;
359 	__le16 priority;
360 };
361 
362 struct hisi_qm_resource {
363 	struct hisi_qm *qm;
364 	int distance;
365 	struct list_head list;
366 };
367 
368 /**
369  * struct qm_hw_err - Structure describing the device errors
370  * @list: hardware error list
371  * @timestamp: timestamp when the error occurred
372  */
373 struct qm_hw_err {
374 	struct list_head list;
375 	unsigned long long timestamp;
376 };
377 
378 struct hisi_qm_hw_ops {
379 	int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number);
380 	void (*qm_db)(struct hisi_qm *qm, u16 qn,
381 		      u8 cmd, u16 index, u8 priority);
382 	int (*debug_init)(struct hisi_qm *qm);
383 	void (*hw_error_init)(struct hisi_qm *qm);
384 	void (*hw_error_uninit)(struct hisi_qm *qm);
385 	enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm);
386 	int (*set_msi)(struct hisi_qm *qm, bool set);
387 };
388 
389 struct hisi_qm_hw_error {
390 	u32 int_msk;
391 	const char *msg;
392 };
393 
394 static const struct hisi_qm_hw_error qm_hw_error[] = {
395 	{ .int_msk = BIT(0), .msg = "qm_axi_rresp" },
396 	{ .int_msk = BIT(1), .msg = "qm_axi_bresp" },
397 	{ .int_msk = BIT(2), .msg = "qm_ecc_mbit" },
398 	{ .int_msk = BIT(3), .msg = "qm_ecc_1bit" },
399 	{ .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" },
400 	{ .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" },
401 	{ .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" },
402 	{ .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" },
403 	{ .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" },
404 	{ .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" },
405 	{ .int_msk = BIT(10), .msg = "qm_db_timeout" },
406 	{ .int_msk = BIT(11), .msg = "qm_of_fifo_of" },
407 	{ .int_msk = BIT(12), .msg = "qm_db_random_invalid" },
408 	{ .int_msk = BIT(13), .msg = "qm_mailbox_timeout" },
409 	{ .int_msk = BIT(14), .msg = "qm_flr_timeout" },
410 };
411 
412 static const char * const qm_db_timeout[] = {
413 	"sq", "cq", "eq", "aeq",
414 };
415 
416 static const char * const qm_fifo_overflow[] = {
417 	"cq", "eq", "aeq",
418 };
419 
420 struct qm_typical_qos_table {
421 	u32 start;
422 	u32 end;
423 	u32 val;
424 };
425 
426 /* the qos step is 100 */
427 static struct qm_typical_qos_table shaper_cir_s[] = {
428 	{100, 100, 4},
429 	{200, 200, 3},
430 	{300, 500, 2},
431 	{600, 1000, 1},
432 	{1100, 100000, 0},
433 };
434 
435 static struct qm_typical_qos_table shaper_cbs_s[] = {
436 	{100, 200, 9},
437 	{300, 500, 11},
438 	{600, 1000, 12},
439 	{1100, 10000, 16},
440 	{10100, 25000, 17},
441 	{25100, 50000, 18},
442 	{50100, 100000, 19}
443 };
444 
445 static void qm_irqs_unregister(struct hisi_qm *qm);
446 
447 static u32 qm_get_hw_error_status(struct hisi_qm *qm)
448 {
449 	return readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
450 }
451 
452 static u32 qm_get_dev_err_status(struct hisi_qm *qm)
453 {
454 	return qm->err_ini->get_dev_hw_err_status(qm);
455 }
456 
457 /* Check if the error causes the master ooo block */
458 static bool qm_check_dev_error(struct hisi_qm *qm)
459 {
460 	u32 val, dev_val;
461 
462 	if (qm->fun_type == QM_HW_VF)
463 		return false;
464 
465 	val = qm_get_hw_error_status(qm) & qm->err_info.qm_shutdown_mask;
466 	dev_val = qm_get_dev_err_status(qm) & qm->err_info.dev_shutdown_mask;
467 
468 	return val || dev_val;
469 }
470 
471 static int qm_wait_reset_finish(struct hisi_qm *qm)
472 {
473 	int delay = 0;
474 
475 	/* All reset requests need to be queued for processing */
476 	while (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
477 		msleep(++delay);
478 		if (delay > QM_RESET_WAIT_TIMEOUT)
479 			return -EBUSY;
480 	}
481 
482 	return 0;
483 }
484 
485 static int qm_reset_prepare_ready(struct hisi_qm *qm)
486 {
487 	struct pci_dev *pdev = qm->pdev;
488 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
489 
490 	/*
491 	 * PF and VF on host doesnot support resetting at the
492 	 * same time on Kunpeng920.
493 	 */
494 	if (qm->ver < QM_HW_V3)
495 		return qm_wait_reset_finish(pf_qm);
496 
497 	return qm_wait_reset_finish(qm);
498 }
499 
500 static void qm_reset_bit_clear(struct hisi_qm *qm)
501 {
502 	struct pci_dev *pdev = qm->pdev;
503 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
504 
505 	if (qm->ver < QM_HW_V3)
506 		clear_bit(QM_RESETTING, &pf_qm->misc_ctl);
507 
508 	clear_bit(QM_RESETTING, &qm->misc_ctl);
509 }
510 
511 static void qm_mb_pre_init(struct qm_mailbox *mailbox, u8 cmd,
512 			   u64 base, u16 queue, bool op)
513 {
514 	mailbox->w0 = cpu_to_le16((cmd) |
515 		((op) ? 0x1 << QM_MB_OP_SHIFT : 0) |
516 		(0x1 << QM_MB_BUSY_SHIFT));
517 	mailbox->queue_num = cpu_to_le16(queue);
518 	mailbox->base_l = cpu_to_le32(lower_32_bits(base));
519 	mailbox->base_h = cpu_to_le32(upper_32_bits(base));
520 	mailbox->rsvd = 0;
521 }
522 
523 /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */
524 int hisi_qm_wait_mb_ready(struct hisi_qm *qm)
525 {
526 	u32 val;
527 
528 	return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE,
529 					  val, !((val >> QM_MB_BUSY_SHIFT) &
530 					  0x1), POLL_PERIOD, POLL_TIMEOUT);
531 }
532 EXPORT_SYMBOL_GPL(hisi_qm_wait_mb_ready);
533 
534 /* 128 bit should be written to hardware at one time to trigger a mailbox */
535 static void qm_mb_write(struct hisi_qm *qm, const void *src)
536 {
537 	void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE;
538 
539 #if IS_ENABLED(CONFIG_ARM64)
540 	unsigned long tmp0 = 0, tmp1 = 0;
541 #endif
542 
543 	if (!IS_ENABLED(CONFIG_ARM64)) {
544 		memcpy_toio(fun_base, src, 16);
545 		dma_wmb();
546 		return;
547 	}
548 
549 #if IS_ENABLED(CONFIG_ARM64)
550 	asm volatile("ldp %0, %1, %3\n"
551 		     "stp %0, %1, %2\n"
552 		     "dmb oshst\n"
553 		     : "=&r" (tmp0),
554 		       "=&r" (tmp1),
555 		       "+Q" (*((char __iomem *)fun_base))
556 		     : "Q" (*((char *)src))
557 		     : "memory");
558 #endif
559 }
560 
561 static int qm_mb_nolock(struct hisi_qm *qm, struct qm_mailbox *mailbox)
562 {
563 	int ret;
564 	u32 val;
565 
566 	if (unlikely(hisi_qm_wait_mb_ready(qm))) {
567 		dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n");
568 		ret = -EBUSY;
569 		goto mb_busy;
570 	}
571 
572 	qm_mb_write(qm, mailbox);
573 
574 	if (unlikely(hisi_qm_wait_mb_ready(qm))) {
575 		dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n");
576 		ret = -ETIMEDOUT;
577 		goto mb_busy;
578 	}
579 
580 	val = readl(qm->io_base + QM_MB_CMD_SEND_BASE);
581 	if (val & QM_MB_STATUS_MASK) {
582 		dev_err(&qm->pdev->dev, "QM mailbox operation failed!\n");
583 		ret = -EIO;
584 		goto mb_busy;
585 	}
586 
587 	return 0;
588 
589 mb_busy:
590 	atomic64_inc(&qm->debug.dfx.mb_err_cnt);
591 	return ret;
592 }
593 
594 int hisi_qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue,
595 	       bool op)
596 {
597 	struct qm_mailbox mailbox;
598 	int ret;
599 
600 	qm_mb_pre_init(&mailbox, cmd, dma_addr, queue, op);
601 
602 	mutex_lock(&qm->mailbox_lock);
603 	ret = qm_mb_nolock(qm, &mailbox);
604 	mutex_unlock(&qm->mailbox_lock);
605 
606 	return ret;
607 }
608 EXPORT_SYMBOL_GPL(hisi_qm_mb);
609 
610 /* op 0: set xqc information to hardware, 1: get xqc information from hardware. */
611 int qm_set_and_get_xqc(struct hisi_qm *qm, u8 cmd, void *xqc, u32 qp_id, bool op)
612 {
613 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
614 	struct qm_mailbox mailbox;
615 	dma_addr_t xqc_dma;
616 	void *tmp_xqc;
617 	size_t size;
618 	int ret;
619 
620 	switch (cmd) {
621 	case QM_MB_CMD_SQC:
622 		size = sizeof(struct qm_sqc);
623 		tmp_xqc = qm->xqc_buf.sqc;
624 		xqc_dma = qm->xqc_buf.sqc_dma;
625 		break;
626 	case QM_MB_CMD_CQC:
627 		size = sizeof(struct qm_cqc);
628 		tmp_xqc = qm->xqc_buf.cqc;
629 		xqc_dma = qm->xqc_buf.cqc_dma;
630 		break;
631 	case QM_MB_CMD_EQC:
632 		size = sizeof(struct qm_eqc);
633 		tmp_xqc = qm->xqc_buf.eqc;
634 		xqc_dma = qm->xqc_buf.eqc_dma;
635 		break;
636 	case QM_MB_CMD_AEQC:
637 		size = sizeof(struct qm_aeqc);
638 		tmp_xqc = qm->xqc_buf.aeqc;
639 		xqc_dma = qm->xqc_buf.aeqc_dma;
640 		break;
641 	}
642 
643 	/* Setting xqc will fail if master OOO is blocked. */
644 	if (qm_check_dev_error(pf_qm)) {
645 		dev_err(&qm->pdev->dev, "failed to send mailbox since qm is stop!\n");
646 		return -EIO;
647 	}
648 
649 	mutex_lock(&qm->mailbox_lock);
650 	if (!op)
651 		memcpy(tmp_xqc, xqc, size);
652 
653 	qm_mb_pre_init(&mailbox, cmd, xqc_dma, qp_id, op);
654 	ret = qm_mb_nolock(qm, &mailbox);
655 	if (!ret && op)
656 		memcpy(xqc, tmp_xqc, size);
657 
658 	mutex_unlock(&qm->mailbox_lock);
659 
660 	return ret;
661 }
662 
663 static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
664 {
665 	u64 doorbell;
666 
667 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) |
668 		   ((u64)index << QM_DB_INDEX_SHIFT_V1)  |
669 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V1);
670 
671 	writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1);
672 }
673 
674 static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
675 {
676 	void __iomem *io_base = qm->io_base;
677 	u16 randata = 0;
678 	u64 doorbell;
679 
680 	if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ)
681 		io_base = qm->db_io_base + (u64)qn * qm->db_interval +
682 			  QM_DOORBELL_SQ_CQ_BASE_V2;
683 	else
684 		io_base += QM_DOORBELL_EQ_AEQ_BASE_V2;
685 
686 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) |
687 		   ((u64)randata << QM_DB_RAND_SHIFT_V2) |
688 		   ((u64)index << QM_DB_INDEX_SHIFT_V2) |
689 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V2);
690 
691 	writeq(doorbell, io_base);
692 }
693 
694 static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
695 {
696 	dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n",
697 		qn, cmd, index);
698 
699 	qm->ops->qm_db(qm, qn, cmd, index, priority);
700 }
701 
702 static void qm_disable_clock_gate(struct hisi_qm *qm)
703 {
704 	u32 val;
705 
706 	/* if qm enables clock gating in Kunpeng930, qos will be inaccurate. */
707 	if (qm->ver < QM_HW_V3)
708 		return;
709 
710 	val = readl(qm->io_base + QM_PM_CTRL);
711 	val |= QM_IDLE_DISABLE;
712 	writel(val, qm->io_base +  QM_PM_CTRL);
713 }
714 
715 static int qm_dev_mem_reset(struct hisi_qm *qm)
716 {
717 	u32 val;
718 
719 	writel(0x1, qm->io_base + QM_MEM_START_INIT);
720 	return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val,
721 					  val & BIT(0), POLL_PERIOD,
722 					  POLL_TIMEOUT);
723 }
724 
725 /**
726  * hisi_qm_get_hw_info() - Get device information.
727  * @qm: The qm which want to get information.
728  * @info_table: Array for storing device information.
729  * @index: Index in info_table.
730  * @is_read: Whether read from reg, 0: not support read from reg.
731  *
732  * This function returns device information the caller needs.
733  */
734 u32 hisi_qm_get_hw_info(struct hisi_qm *qm,
735 			const struct hisi_qm_cap_info *info_table,
736 			u32 index, bool is_read)
737 {
738 	u32 val;
739 
740 	switch (qm->ver) {
741 	case QM_HW_V1:
742 		return info_table[index].v1_val;
743 	case QM_HW_V2:
744 		return info_table[index].v2_val;
745 	default:
746 		if (!is_read)
747 			return info_table[index].v3_val;
748 
749 		val = readl(qm->io_base + info_table[index].offset);
750 		return (val >> info_table[index].shift) & info_table[index].mask;
751 	}
752 }
753 EXPORT_SYMBOL_GPL(hisi_qm_get_hw_info);
754 
755 static void qm_get_xqc_depth(struct hisi_qm *qm, u16 *low_bits,
756 			     u16 *high_bits, enum qm_basic_type type)
757 {
758 	u32 depth;
759 
760 	depth = hisi_qm_get_hw_info(qm, qm_basic_info, type, qm->cap_ver);
761 	*low_bits = depth & QM_XQ_DEPTH_MASK;
762 	*high_bits = (depth >> QM_XQ_DEPTH_SHIFT) & QM_XQ_DEPTH_MASK;
763 }
764 
765 int hisi_qm_set_algs(struct hisi_qm *qm, u64 alg_msk, const struct qm_dev_alg *dev_algs,
766 		     u32 dev_algs_size)
767 {
768 	struct device *dev = &qm->pdev->dev;
769 	char *algs, *ptr;
770 	int i;
771 
772 	if (!qm->uacce)
773 		return 0;
774 
775 	if (dev_algs_size >= QM_DEV_ALG_MAX_LEN) {
776 		dev_err(dev, "algs size %u is equal or larger than %d.\n",
777 			dev_algs_size, QM_DEV_ALG_MAX_LEN);
778 		return -EINVAL;
779 	}
780 
781 	algs = devm_kzalloc(dev, QM_DEV_ALG_MAX_LEN * sizeof(char), GFP_KERNEL);
782 	if (!algs)
783 		return -ENOMEM;
784 
785 	for (i = 0; i < dev_algs_size; i++)
786 		if (alg_msk & dev_algs[i].alg_msk)
787 			strcat(algs, dev_algs[i].alg);
788 
789 	ptr = strrchr(algs, '\n');
790 	if (ptr) {
791 		*ptr = '\0';
792 		qm->uacce->algs = algs;
793 	}
794 
795 	return 0;
796 }
797 EXPORT_SYMBOL_GPL(hisi_qm_set_algs);
798 
799 static u32 qm_get_irq_num(struct hisi_qm *qm)
800 {
801 	if (qm->fun_type == QM_HW_PF)
802 		return hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF_IRQ_NUM_CAP, qm->cap_ver);
803 
804 	return hisi_qm_get_hw_info(qm, qm_basic_info, QM_VF_IRQ_NUM_CAP, qm->cap_ver);
805 }
806 
807 static int qm_pm_get_sync(struct hisi_qm *qm)
808 {
809 	struct device *dev = &qm->pdev->dev;
810 	int ret;
811 
812 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
813 		return 0;
814 
815 	ret = pm_runtime_resume_and_get(dev);
816 	if (ret < 0) {
817 		dev_err(dev, "failed to get_sync(%d).\n", ret);
818 		return ret;
819 	}
820 
821 	return 0;
822 }
823 
824 static void qm_pm_put_sync(struct hisi_qm *qm)
825 {
826 	struct device *dev = &qm->pdev->dev;
827 
828 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
829 		return;
830 
831 	pm_runtime_mark_last_busy(dev);
832 	pm_runtime_put_autosuspend(dev);
833 }
834 
835 static void qm_cq_head_update(struct hisi_qp *qp)
836 {
837 	if (qp->qp_status.cq_head == qp->cq_depth - 1) {
838 		qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase;
839 		qp->qp_status.cq_head = 0;
840 	} else {
841 		qp->qp_status.cq_head++;
842 	}
843 }
844 
845 static void qm_poll_req_cb(struct hisi_qp *qp)
846 {
847 	struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
848 	struct hisi_qm *qm = qp->qm;
849 
850 	while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
851 		dma_rmb();
852 		qp->req_cb(qp, qp->sqe + qm->sqe_size *
853 			   le16_to_cpu(cqe->sq_head));
854 		qm_cq_head_update(qp);
855 		cqe = qp->cqe + qp->qp_status.cq_head;
856 		qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ,
857 		      qp->qp_status.cq_head, 0);
858 		atomic_dec(&qp->qp_status.used);
859 
860 		cond_resched();
861 	}
862 
863 	/* set c_flag */
864 	qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, qp->qp_status.cq_head, 1);
865 }
866 
867 static void qm_work_process(struct work_struct *work)
868 {
869 	struct hisi_qm_poll_data *poll_data =
870 		container_of(work, struct hisi_qm_poll_data, work);
871 	struct hisi_qm *qm = poll_data->qm;
872 	u16 eqe_num = poll_data->eqe_num;
873 	struct hisi_qp *qp;
874 	int i;
875 
876 	for (i = eqe_num - 1; i >= 0; i--) {
877 		qp = &qm->qp_array[poll_data->qp_finish_id[i]];
878 		if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP))
879 			continue;
880 
881 		if (qp->event_cb) {
882 			qp->event_cb(qp);
883 			continue;
884 		}
885 
886 		if (likely(qp->req_cb))
887 			qm_poll_req_cb(qp);
888 	}
889 }
890 
891 static void qm_get_complete_eqe_num(struct hisi_qm *qm)
892 {
893 	struct qm_eqe *eqe = qm->eqe + qm->status.eq_head;
894 	struct hisi_qm_poll_data *poll_data = NULL;
895 	u16 eq_depth = qm->eq_depth;
896 	u16 cqn, eqe_num = 0;
897 
898 	if (QM_EQE_PHASE(eqe) != qm->status.eqc_phase) {
899 		atomic64_inc(&qm->debug.dfx.err_irq_cnt);
900 		qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
901 		return;
902 	}
903 
904 	cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK;
905 	if (unlikely(cqn >= qm->qp_num))
906 		return;
907 	poll_data = &qm->poll_data[cqn];
908 
909 	while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) {
910 		cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK;
911 		poll_data->qp_finish_id[eqe_num] = cqn;
912 		eqe_num++;
913 
914 		if (qm->status.eq_head == eq_depth - 1) {
915 			qm->status.eqc_phase = !qm->status.eqc_phase;
916 			eqe = qm->eqe;
917 			qm->status.eq_head = 0;
918 		} else {
919 			eqe++;
920 			qm->status.eq_head++;
921 		}
922 
923 		if (eqe_num == (eq_depth >> 1) - 1)
924 			break;
925 	}
926 
927 	poll_data->eqe_num = eqe_num;
928 	queue_work(qm->wq, &poll_data->work);
929 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
930 }
931 
932 static irqreturn_t qm_eq_irq(int irq, void *data)
933 {
934 	struct hisi_qm *qm = data;
935 
936 	/* Get qp id of completed tasks and re-enable the interrupt */
937 	qm_get_complete_eqe_num(qm);
938 
939 	return IRQ_HANDLED;
940 }
941 
942 static irqreturn_t qm_mb_cmd_irq(int irq, void *data)
943 {
944 	struct hisi_qm *qm = data;
945 	u32 val;
946 
947 	val = readl(qm->io_base + QM_IFC_INT_STATUS);
948 	val &= QM_IFC_INT_STATUS_MASK;
949 	if (!val)
950 		return IRQ_NONE;
951 
952 	if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl)) {
953 		dev_warn(&qm->pdev->dev, "Driver is down, message cannot be processed!\n");
954 		return IRQ_HANDLED;
955 	}
956 
957 	schedule_work(&qm->cmd_process);
958 
959 	return IRQ_HANDLED;
960 }
961 
962 static void qm_set_qp_disable(struct hisi_qp *qp, int offset)
963 {
964 	u32 *addr;
965 
966 	if (qp->is_in_kernel)
967 		return;
968 
969 	addr = (u32 *)(qp->qdma.va + qp->qdma.size) - offset;
970 	*addr = 1;
971 
972 	/* make sure setup is completed */
973 	smp_wmb();
974 }
975 
976 static void qm_disable_qp(struct hisi_qm *qm, u32 qp_id)
977 {
978 	struct hisi_qp *qp = &qm->qp_array[qp_id];
979 
980 	qm_set_qp_disable(qp, QM_RESET_STOP_TX_OFFSET);
981 	hisi_qm_stop_qp(qp);
982 	qm_set_qp_disable(qp, QM_RESET_STOP_RX_OFFSET);
983 }
984 
985 static void qm_reset_function(struct hisi_qm *qm)
986 {
987 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
988 	struct device *dev = &qm->pdev->dev;
989 	int ret;
990 
991 	if (qm_check_dev_error(pf_qm))
992 		return;
993 
994 	ret = qm_reset_prepare_ready(qm);
995 	if (ret) {
996 		dev_err(dev, "reset function not ready\n");
997 		return;
998 	}
999 
1000 	ret = hisi_qm_stop(qm, QM_DOWN);
1001 	if (ret) {
1002 		dev_err(dev, "failed to stop qm when reset function\n");
1003 		goto clear_bit;
1004 	}
1005 
1006 	ret = hisi_qm_start(qm);
1007 	if (ret)
1008 		dev_err(dev, "failed to start qm when reset function\n");
1009 
1010 clear_bit:
1011 	qm_reset_bit_clear(qm);
1012 }
1013 
1014 static irqreturn_t qm_aeq_thread(int irq, void *data)
1015 {
1016 	struct hisi_qm *qm = data;
1017 	struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head;
1018 	u16 aeq_depth = qm->aeq_depth;
1019 	u32 type, qp_id;
1020 
1021 	atomic64_inc(&qm->debug.dfx.aeq_irq_cnt);
1022 
1023 	while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) {
1024 		type = (le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT) &
1025 			QM_AEQE_TYPE_MASK;
1026 		qp_id = le32_to_cpu(aeqe->dw0) & QM_AEQE_CQN_MASK;
1027 
1028 		switch (type) {
1029 		case QM_EQ_OVERFLOW:
1030 			dev_err(&qm->pdev->dev, "eq overflow, reset function\n");
1031 			qm_reset_function(qm);
1032 			return IRQ_HANDLED;
1033 		case QM_CQ_OVERFLOW:
1034 			dev_err(&qm->pdev->dev, "cq overflow, stop qp(%u)\n",
1035 				qp_id);
1036 			fallthrough;
1037 		case QM_CQE_ERROR:
1038 			qm_disable_qp(qm, qp_id);
1039 			break;
1040 		default:
1041 			dev_err(&qm->pdev->dev, "unknown error type %u\n",
1042 				type);
1043 			break;
1044 		}
1045 
1046 		if (qm->status.aeq_head == aeq_depth - 1) {
1047 			qm->status.aeqc_phase = !qm->status.aeqc_phase;
1048 			aeqe = qm->aeqe;
1049 			qm->status.aeq_head = 0;
1050 		} else {
1051 			aeqe++;
1052 			qm->status.aeq_head++;
1053 		}
1054 	}
1055 
1056 	qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
1057 
1058 	return IRQ_HANDLED;
1059 }
1060 
1061 static void qm_init_qp_status(struct hisi_qp *qp)
1062 {
1063 	struct hisi_qp_status *qp_status = &qp->qp_status;
1064 
1065 	qp_status->sq_tail = 0;
1066 	qp_status->cq_head = 0;
1067 	qp_status->cqc_phase = true;
1068 	atomic_set(&qp_status->used, 0);
1069 }
1070 
1071 static void qm_init_prefetch(struct hisi_qm *qm)
1072 {
1073 	struct device *dev = &qm->pdev->dev;
1074 	u32 page_type = 0x0;
1075 
1076 	if (!test_bit(QM_SUPPORT_SVA_PREFETCH, &qm->caps))
1077 		return;
1078 
1079 	switch (PAGE_SIZE) {
1080 	case SZ_4K:
1081 		page_type = 0x0;
1082 		break;
1083 	case SZ_16K:
1084 		page_type = 0x1;
1085 		break;
1086 	case SZ_64K:
1087 		page_type = 0x2;
1088 		break;
1089 	default:
1090 		dev_err(dev, "system page size is not support: %lu, default set to 4KB",
1091 			PAGE_SIZE);
1092 	}
1093 
1094 	writel(page_type, qm->io_base + QM_PAGE_SIZE);
1095 }
1096 
1097 /*
1098  * acc_shaper_para_calc() Get the IR value by the qos formula, the return value
1099  * is the expected qos calculated.
1100  * the formula:
1101  * IR = X Mbps if ir = 1 means IR = 100 Mbps, if ir = 10000 means = 10Gbps
1102  *
1103  *		IR_b * (2 ^ IR_u) * 8000
1104  * IR(Mbps) = -------------------------
1105  *		  Tick * (2 ^ IR_s)
1106  */
1107 static u32 acc_shaper_para_calc(u64 cir_b, u64 cir_u, u64 cir_s)
1108 {
1109 	return ((cir_b * QM_QOS_DIVISOR_CLK) * (1 << cir_u)) /
1110 					(QM_QOS_TICK * (1 << cir_s));
1111 }
1112 
1113 static u32 acc_shaper_calc_cbs_s(u32 ir)
1114 {
1115 	int table_size = ARRAY_SIZE(shaper_cbs_s);
1116 	int i;
1117 
1118 	for (i = 0; i < table_size; i++) {
1119 		if (ir >= shaper_cbs_s[i].start && ir <= shaper_cbs_s[i].end)
1120 			return shaper_cbs_s[i].val;
1121 	}
1122 
1123 	return QM_SHAPER_MIN_CBS_S;
1124 }
1125 
1126 static u32 acc_shaper_calc_cir_s(u32 ir)
1127 {
1128 	int table_size = ARRAY_SIZE(shaper_cir_s);
1129 	int i;
1130 
1131 	for (i = 0; i < table_size; i++) {
1132 		if (ir >= shaper_cir_s[i].start && ir <= shaper_cir_s[i].end)
1133 			return shaper_cir_s[i].val;
1134 	}
1135 
1136 	return 0;
1137 }
1138 
1139 static int qm_get_shaper_para(u32 ir, struct qm_shaper_factor *factor)
1140 {
1141 	u32 cir_b, cir_u, cir_s, ir_calc;
1142 	u32 error_rate;
1143 
1144 	factor->cbs_s = acc_shaper_calc_cbs_s(ir);
1145 	cir_s = acc_shaper_calc_cir_s(ir);
1146 
1147 	for (cir_b = QM_QOS_MIN_CIR_B; cir_b <= QM_QOS_MAX_CIR_B; cir_b++) {
1148 		for (cir_u = 0; cir_u <= QM_QOS_MAX_CIR_U; cir_u++) {
1149 			ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s);
1150 
1151 			error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir;
1152 			if (error_rate <= QM_QOS_MIN_ERROR_RATE) {
1153 				factor->cir_b = cir_b;
1154 				factor->cir_u = cir_u;
1155 				factor->cir_s = cir_s;
1156 				return 0;
1157 			}
1158 		}
1159 	}
1160 
1161 	return -EINVAL;
1162 }
1163 
1164 static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base,
1165 			    u32 number, struct qm_shaper_factor *factor)
1166 {
1167 	u64 tmp = 0;
1168 
1169 	if (number > 0) {
1170 		switch (type) {
1171 		case SQC_VFT:
1172 			if (qm->ver == QM_HW_V1) {
1173 				tmp = QM_SQC_VFT_BUF_SIZE	|
1174 				      QM_SQC_VFT_SQC_SIZE	|
1175 				      QM_SQC_VFT_INDEX_NUMBER	|
1176 				      QM_SQC_VFT_VALID		|
1177 				      (u64)base << QM_SQC_VFT_START_SQN_SHIFT;
1178 			} else {
1179 				tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT |
1180 				      QM_SQC_VFT_VALID |
1181 				      (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT;
1182 			}
1183 			break;
1184 		case CQC_VFT:
1185 			if (qm->ver == QM_HW_V1) {
1186 				tmp = QM_CQC_VFT_BUF_SIZE	|
1187 				      QM_CQC_VFT_SQC_SIZE	|
1188 				      QM_CQC_VFT_INDEX_NUMBER	|
1189 				      QM_CQC_VFT_VALID;
1190 			} else {
1191 				tmp = QM_CQC_VFT_VALID;
1192 			}
1193 			break;
1194 		case SHAPER_VFT:
1195 			if (factor) {
1196 				tmp = factor->cir_b |
1197 				(factor->cir_u << QM_SHAPER_FACTOR_CIR_U_SHIFT) |
1198 				(factor->cir_s << QM_SHAPER_FACTOR_CIR_S_SHIFT) |
1199 				(QM_SHAPER_CBS_B << QM_SHAPER_FACTOR_CBS_B_SHIFT) |
1200 				(factor->cbs_s << QM_SHAPER_FACTOR_CBS_S_SHIFT);
1201 			}
1202 			break;
1203 		}
1204 	}
1205 
1206 	writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L);
1207 	writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H);
1208 }
1209 
1210 static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type,
1211 			     u32 fun_num, u32 base, u32 number)
1212 {
1213 	struct qm_shaper_factor *factor = NULL;
1214 	unsigned int val;
1215 	int ret;
1216 
1217 	if (type == SHAPER_VFT && test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
1218 		factor = &qm->factor[fun_num];
1219 
1220 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
1221 					 val & BIT(0), POLL_PERIOD,
1222 					 POLL_TIMEOUT);
1223 	if (ret)
1224 		return ret;
1225 
1226 	writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR);
1227 	writel(type, qm->io_base + QM_VFT_CFG_TYPE);
1228 	if (type == SHAPER_VFT)
1229 		fun_num |= base << QM_SHAPER_VFT_OFFSET;
1230 
1231 	writel(fun_num, qm->io_base + QM_VFT_CFG);
1232 
1233 	qm_vft_data_cfg(qm, type, base, number, factor);
1234 
1235 	writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
1236 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
1237 
1238 	return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
1239 					  val & BIT(0), POLL_PERIOD,
1240 					  POLL_TIMEOUT);
1241 }
1242 
1243 static int qm_shaper_init_vft(struct hisi_qm *qm, u32 fun_num)
1244 {
1245 	u32 qos = qm->factor[fun_num].func_qos;
1246 	int ret, i;
1247 
1248 	ret = qm_get_shaper_para(qos * QM_QOS_RATE, &qm->factor[fun_num]);
1249 	if (ret) {
1250 		dev_err(&qm->pdev->dev, "failed to calculate shaper parameter!\n");
1251 		return ret;
1252 	}
1253 	writel(qm->type_rate, qm->io_base + QM_SHAPER_CFG);
1254 	for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) {
1255 		/* The base number of queue reuse for different alg type */
1256 		ret = qm_set_vft_common(qm, SHAPER_VFT, fun_num, i, 1);
1257 		if (ret)
1258 			return ret;
1259 	}
1260 
1261 	return 0;
1262 }
1263 
1264 /* The config should be conducted after qm_dev_mem_reset() */
1265 static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
1266 			      u32 number)
1267 {
1268 	int ret, i;
1269 
1270 	for (i = SQC_VFT; i <= CQC_VFT; i++) {
1271 		ret = qm_set_vft_common(qm, i, fun_num, base, number);
1272 		if (ret)
1273 			return ret;
1274 	}
1275 
1276 	/* init default shaper qos val */
1277 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) {
1278 		ret = qm_shaper_init_vft(qm, fun_num);
1279 		if (ret)
1280 			goto back_sqc_cqc;
1281 	}
1282 
1283 	return 0;
1284 back_sqc_cqc:
1285 	for (i = SQC_VFT; i <= CQC_VFT; i++)
1286 		qm_set_vft_common(qm, i, fun_num, 0, 0);
1287 
1288 	return ret;
1289 }
1290 
1291 static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number)
1292 {
1293 	u64 sqc_vft;
1294 	int ret;
1295 
1296 	ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1);
1297 	if (ret)
1298 		return ret;
1299 
1300 	sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
1301 		  ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
1302 	*base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2);
1303 	*number = (QM_SQC_VFT_NUM_MASK_V2 &
1304 		   (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1;
1305 
1306 	return 0;
1307 }
1308 
1309 static void qm_hw_error_init_v1(struct hisi_qm *qm)
1310 {
1311 	writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK);
1312 }
1313 
1314 static void qm_hw_error_cfg(struct hisi_qm *qm)
1315 {
1316 	struct hisi_qm_err_info *err_info = &qm->err_info;
1317 
1318 	qm->error_mask = err_info->nfe | err_info->ce | err_info->fe;
1319 	/* clear QM hw residual error source */
1320 	writel(qm->error_mask, qm->io_base + QM_ABNORMAL_INT_SOURCE);
1321 
1322 	/* configure error type */
1323 	writel(err_info->ce, qm->io_base + QM_RAS_CE_ENABLE);
1324 	writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD);
1325 	writel(err_info->nfe, qm->io_base + QM_RAS_NFE_ENABLE);
1326 	writel(err_info->fe, qm->io_base + QM_RAS_FE_ENABLE);
1327 }
1328 
1329 static void qm_hw_error_init_v2(struct hisi_qm *qm)
1330 {
1331 	u32 irq_unmask;
1332 
1333 	qm_hw_error_cfg(qm);
1334 
1335 	irq_unmask = ~qm->error_mask;
1336 	irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1337 	writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
1338 }
1339 
1340 static void qm_hw_error_uninit_v2(struct hisi_qm *qm)
1341 {
1342 	u32 irq_mask = qm->error_mask;
1343 
1344 	irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1345 	writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK);
1346 }
1347 
1348 static void qm_hw_error_init_v3(struct hisi_qm *qm)
1349 {
1350 	u32 irq_unmask;
1351 
1352 	qm_hw_error_cfg(qm);
1353 
1354 	/* enable close master ooo when hardware error happened */
1355 	writel(qm->err_info.qm_shutdown_mask, qm->io_base + QM_OOO_SHUTDOWN_SEL);
1356 
1357 	irq_unmask = ~qm->error_mask;
1358 	irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1359 	writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
1360 }
1361 
1362 static void qm_hw_error_uninit_v3(struct hisi_qm *qm)
1363 {
1364 	u32 irq_mask = qm->error_mask;
1365 
1366 	irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1367 	writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK);
1368 
1369 	/* disable close master ooo when hardware error happened */
1370 	writel(0x0, qm->io_base + QM_OOO_SHUTDOWN_SEL);
1371 }
1372 
1373 static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status)
1374 {
1375 	const struct hisi_qm_hw_error *err;
1376 	struct device *dev = &qm->pdev->dev;
1377 	u32 reg_val, type, vf_num, qp_id;
1378 	int i;
1379 
1380 	for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) {
1381 		err = &qm_hw_error[i];
1382 		if (!(err->int_msk & error_status))
1383 			continue;
1384 
1385 		dev_err(dev, "%s [error status=0x%x] found\n",
1386 			err->msg, err->int_msk);
1387 
1388 		if (err->int_msk & QM_DB_TIMEOUT) {
1389 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF01);
1390 			type = (reg_val & QM_DB_TIMEOUT_TYPE) >>
1391 			       QM_DB_TIMEOUT_TYPE_SHIFT;
1392 			vf_num = reg_val & QM_DB_TIMEOUT_VF;
1393 			qp_id = reg_val >> QM_DB_TIMEOUT_QP_SHIFT;
1394 			dev_err(dev, "qm %s doorbell timeout in function %u qp %u\n",
1395 				qm_db_timeout[type], vf_num, qp_id);
1396 		} else if (err->int_msk & QM_OF_FIFO_OF) {
1397 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF00);
1398 			type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >>
1399 			       QM_FIFO_OVERFLOW_TYPE_SHIFT;
1400 			vf_num = reg_val & QM_FIFO_OVERFLOW_VF;
1401 			qp_id = reg_val >> QM_FIFO_OVERFLOW_QP_SHIFT;
1402 			if (type < ARRAY_SIZE(qm_fifo_overflow))
1403 				dev_err(dev, "qm %s fifo overflow in function %u qp %u\n",
1404 					qm_fifo_overflow[type], vf_num, qp_id);
1405 			else
1406 				dev_err(dev, "unknown error type\n");
1407 		} else if (err->int_msk & QM_AXI_RRESP_ERR) {
1408 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF02);
1409 			if (reg_val & QM_AXI_POISON_ERR)
1410 				dev_err(dev, "qm axi poison error happened\n");
1411 		}
1412 	}
1413 }
1414 
1415 static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm)
1416 {
1417 	u32 error_status, tmp;
1418 
1419 	/* read err sts */
1420 	tmp = readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
1421 	error_status = qm->error_mask & tmp;
1422 
1423 	if (error_status) {
1424 		if (error_status & QM_ECC_MBIT)
1425 			qm->err_status.is_qm_ecc_mbit = true;
1426 
1427 		qm_log_hw_error(qm, error_status);
1428 		if (error_status & qm->err_info.qm_reset_mask)
1429 			return ACC_ERR_NEED_RESET;
1430 
1431 		writel(error_status, qm->io_base + QM_ABNORMAL_INT_SOURCE);
1432 		writel(qm->err_info.nfe, qm->io_base + QM_RAS_NFE_ENABLE);
1433 	}
1434 
1435 	return ACC_ERR_RECOVERED;
1436 }
1437 
1438 static int qm_get_mb_cmd(struct hisi_qm *qm, u64 *msg, u16 fun_num)
1439 {
1440 	struct qm_mailbox mailbox;
1441 	int ret;
1442 
1443 	qm_mb_pre_init(&mailbox, QM_MB_CMD_DST, 0, fun_num, 0);
1444 	mutex_lock(&qm->mailbox_lock);
1445 	ret = qm_mb_nolock(qm, &mailbox);
1446 	if (ret)
1447 		goto err_unlock;
1448 
1449 	*msg = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
1450 		  ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
1451 
1452 err_unlock:
1453 	mutex_unlock(&qm->mailbox_lock);
1454 	return ret;
1455 }
1456 
1457 static void qm_clear_cmd_interrupt(struct hisi_qm *qm, u64 vf_mask)
1458 {
1459 	u32 val;
1460 
1461 	if (qm->fun_type == QM_HW_PF)
1462 		writeq(vf_mask, qm->io_base + QM_IFC_INT_SOURCE_P);
1463 
1464 	val = readl(qm->io_base + QM_IFC_INT_SOURCE_V);
1465 	val |= QM_IFC_INT_SOURCE_MASK;
1466 	writel(val, qm->io_base + QM_IFC_INT_SOURCE_V);
1467 }
1468 
1469 static void qm_handle_vf_msg(struct hisi_qm *qm, u32 vf_id)
1470 {
1471 	struct device *dev = &qm->pdev->dev;
1472 	u32 cmd;
1473 	u64 msg;
1474 	int ret;
1475 
1476 	ret = qm_get_mb_cmd(qm, &msg, vf_id);
1477 	if (ret) {
1478 		dev_err(dev, "failed to get msg from VF(%u)!\n", vf_id);
1479 		return;
1480 	}
1481 
1482 	cmd = msg & QM_MB_CMD_DATA_MASK;
1483 	switch (cmd) {
1484 	case QM_VF_PREPARE_FAIL:
1485 		dev_err(dev, "failed to stop VF(%u)!\n", vf_id);
1486 		break;
1487 	case QM_VF_START_FAIL:
1488 		dev_err(dev, "failed to start VF(%u)!\n", vf_id);
1489 		break;
1490 	case QM_VF_PREPARE_DONE:
1491 	case QM_VF_START_DONE:
1492 		break;
1493 	default:
1494 		dev_err(dev, "unsupported cmd %u sent by VF(%u)!\n", cmd, vf_id);
1495 		break;
1496 	}
1497 }
1498 
1499 static int qm_wait_vf_prepare_finish(struct hisi_qm *qm)
1500 {
1501 	struct device *dev = &qm->pdev->dev;
1502 	u32 vfs_num = qm->vfs_num;
1503 	int cnt = 0;
1504 	int ret = 0;
1505 	u64 val;
1506 	u32 i;
1507 
1508 	if (!qm->vfs_num || !test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
1509 		return 0;
1510 
1511 	while (true) {
1512 		val = readq(qm->io_base + QM_IFC_INT_SOURCE_P);
1513 		/* All VFs send command to PF, break */
1514 		if ((val & GENMASK(vfs_num, 1)) == GENMASK(vfs_num, 1))
1515 			break;
1516 
1517 		if (++cnt > QM_MAX_PF_WAIT_COUNT) {
1518 			ret = -EBUSY;
1519 			break;
1520 		}
1521 
1522 		msleep(QM_WAIT_DST_ACK);
1523 	}
1524 
1525 	/* PF check VFs msg */
1526 	for (i = 1; i <= vfs_num; i++) {
1527 		if (val & BIT(i))
1528 			qm_handle_vf_msg(qm, i);
1529 		else
1530 			dev_err(dev, "VF(%u) not ping PF!\n", i);
1531 	}
1532 
1533 	/* PF clear interrupt to ack VFs */
1534 	qm_clear_cmd_interrupt(qm, val);
1535 
1536 	return ret;
1537 }
1538 
1539 static void qm_trigger_vf_interrupt(struct hisi_qm *qm, u32 fun_num)
1540 {
1541 	u32 val;
1542 
1543 	val = readl(qm->io_base + QM_IFC_INT_CFG);
1544 	val &= ~QM_IFC_SEND_ALL_VFS;
1545 	val |= fun_num;
1546 	writel(val, qm->io_base + QM_IFC_INT_CFG);
1547 
1548 	val = readl(qm->io_base + QM_IFC_INT_SET_P);
1549 	val |= QM_IFC_INT_SET_MASK;
1550 	writel(val, qm->io_base + QM_IFC_INT_SET_P);
1551 }
1552 
1553 static void qm_trigger_pf_interrupt(struct hisi_qm *qm)
1554 {
1555 	u32 val;
1556 
1557 	val = readl(qm->io_base + QM_IFC_INT_SET_V);
1558 	val |= QM_IFC_INT_SET_MASK;
1559 	writel(val, qm->io_base + QM_IFC_INT_SET_V);
1560 }
1561 
1562 static int qm_ping_single_vf(struct hisi_qm *qm, u64 cmd, u32 fun_num)
1563 {
1564 	struct device *dev = &qm->pdev->dev;
1565 	struct qm_mailbox mailbox;
1566 	int cnt = 0;
1567 	u64 val;
1568 	int ret;
1569 
1570 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, fun_num, 0);
1571 	mutex_lock(&qm->mailbox_lock);
1572 	ret = qm_mb_nolock(qm, &mailbox);
1573 	if (ret) {
1574 		dev_err(dev, "failed to send command to vf(%u)!\n", fun_num);
1575 		goto err_unlock;
1576 	}
1577 
1578 	qm_trigger_vf_interrupt(qm, fun_num);
1579 	while (true) {
1580 		msleep(QM_WAIT_DST_ACK);
1581 		val = readq(qm->io_base + QM_IFC_READY_STATUS);
1582 		/* if VF respond, PF notifies VF successfully. */
1583 		if (!(val & BIT(fun_num)))
1584 			goto err_unlock;
1585 
1586 		if (++cnt > QM_MAX_PF_WAIT_COUNT) {
1587 			dev_err(dev, "failed to get response from VF(%u)!\n", fun_num);
1588 			ret = -ETIMEDOUT;
1589 			break;
1590 		}
1591 	}
1592 
1593 err_unlock:
1594 	mutex_unlock(&qm->mailbox_lock);
1595 	return ret;
1596 }
1597 
1598 static int qm_ping_all_vfs(struct hisi_qm *qm, u64 cmd)
1599 {
1600 	struct device *dev = &qm->pdev->dev;
1601 	u32 vfs_num = qm->vfs_num;
1602 	struct qm_mailbox mailbox;
1603 	u64 val = 0;
1604 	int cnt = 0;
1605 	int ret;
1606 	u32 i;
1607 
1608 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, QM_MB_PING_ALL_VFS, 0);
1609 	mutex_lock(&qm->mailbox_lock);
1610 	/* PF sends command to all VFs by mailbox */
1611 	ret = qm_mb_nolock(qm, &mailbox);
1612 	if (ret) {
1613 		dev_err(dev, "failed to send command to VFs!\n");
1614 		mutex_unlock(&qm->mailbox_lock);
1615 		return ret;
1616 	}
1617 
1618 	qm_trigger_vf_interrupt(qm, QM_IFC_SEND_ALL_VFS);
1619 	while (true) {
1620 		msleep(QM_WAIT_DST_ACK);
1621 		val = readq(qm->io_base + QM_IFC_READY_STATUS);
1622 		/* If all VFs acked, PF notifies VFs successfully. */
1623 		if (!(val & GENMASK(vfs_num, 1))) {
1624 			mutex_unlock(&qm->mailbox_lock);
1625 			return 0;
1626 		}
1627 
1628 		if (++cnt > QM_MAX_PF_WAIT_COUNT)
1629 			break;
1630 	}
1631 
1632 	mutex_unlock(&qm->mailbox_lock);
1633 
1634 	/* Check which vf respond timeout. */
1635 	for (i = 1; i <= vfs_num; i++) {
1636 		if (val & BIT(i))
1637 			dev_err(dev, "failed to get response from VF(%u)!\n", i);
1638 	}
1639 
1640 	return -ETIMEDOUT;
1641 }
1642 
1643 static int qm_ping_pf(struct hisi_qm *qm, u64 cmd)
1644 {
1645 	struct qm_mailbox mailbox;
1646 	int cnt = 0;
1647 	u32 val;
1648 	int ret;
1649 
1650 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, 0, 0);
1651 	mutex_lock(&qm->mailbox_lock);
1652 	ret = qm_mb_nolock(qm, &mailbox);
1653 	if (ret) {
1654 		dev_err(&qm->pdev->dev, "failed to send command to PF!\n");
1655 		goto unlock;
1656 	}
1657 
1658 	qm_trigger_pf_interrupt(qm);
1659 	/* Waiting for PF response */
1660 	while (true) {
1661 		msleep(QM_WAIT_DST_ACK);
1662 		val = readl(qm->io_base + QM_IFC_INT_SET_V);
1663 		if (!(val & QM_IFC_INT_STATUS_MASK))
1664 			break;
1665 
1666 		if (++cnt > QM_MAX_VF_WAIT_COUNT) {
1667 			ret = -ETIMEDOUT;
1668 			break;
1669 		}
1670 	}
1671 
1672 unlock:
1673 	mutex_unlock(&qm->mailbox_lock);
1674 	return ret;
1675 }
1676 
1677 static int qm_stop_qp(struct hisi_qp *qp)
1678 {
1679 	return hisi_qm_mb(qp->qm, QM_MB_CMD_STOP_QP, 0, qp->qp_id, 0);
1680 }
1681 
1682 static int qm_set_msi(struct hisi_qm *qm, bool set)
1683 {
1684 	struct pci_dev *pdev = qm->pdev;
1685 
1686 	if (set) {
1687 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
1688 				       0);
1689 	} else {
1690 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
1691 				       ACC_PEH_MSI_DISABLE);
1692 		if (qm->err_status.is_qm_ecc_mbit ||
1693 		    qm->err_status.is_dev_ecc_mbit)
1694 			return 0;
1695 
1696 		mdelay(1);
1697 		if (readl(qm->io_base + QM_PEH_DFX_INFO0))
1698 			return -EFAULT;
1699 	}
1700 
1701 	return 0;
1702 }
1703 
1704 static void qm_wait_msi_finish(struct hisi_qm *qm)
1705 {
1706 	struct pci_dev *pdev = qm->pdev;
1707 	u32 cmd = ~0;
1708 	int cnt = 0;
1709 	u32 val;
1710 	int ret;
1711 
1712 	while (true) {
1713 		pci_read_config_dword(pdev, pdev->msi_cap +
1714 				      PCI_MSI_PENDING_64, &cmd);
1715 		if (!cmd)
1716 			break;
1717 
1718 		if (++cnt > MAX_WAIT_COUNTS) {
1719 			pci_warn(pdev, "failed to empty MSI PENDING!\n");
1720 			break;
1721 		}
1722 
1723 		udelay(1);
1724 	}
1725 
1726 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO0,
1727 					 val, !(val & QM_PEH_DFX_MASK),
1728 					 POLL_PERIOD, POLL_TIMEOUT);
1729 	if (ret)
1730 		pci_warn(pdev, "failed to empty PEH MSI!\n");
1731 
1732 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO1,
1733 					 val, !(val & QM_PEH_MSI_FINISH_MASK),
1734 					 POLL_PERIOD, POLL_TIMEOUT);
1735 	if (ret)
1736 		pci_warn(pdev, "failed to finish MSI operation!\n");
1737 }
1738 
1739 static int qm_set_msi_v3(struct hisi_qm *qm, bool set)
1740 {
1741 	struct pci_dev *pdev = qm->pdev;
1742 	int ret = -ETIMEDOUT;
1743 	u32 cmd, i;
1744 
1745 	pci_read_config_dword(pdev, pdev->msi_cap, &cmd);
1746 	if (set)
1747 		cmd |= QM_MSI_CAP_ENABLE;
1748 	else
1749 		cmd &= ~QM_MSI_CAP_ENABLE;
1750 
1751 	pci_write_config_dword(pdev, pdev->msi_cap, cmd);
1752 	if (set) {
1753 		for (i = 0; i < MAX_WAIT_COUNTS; i++) {
1754 			pci_read_config_dword(pdev, pdev->msi_cap, &cmd);
1755 			if (cmd & QM_MSI_CAP_ENABLE)
1756 				return 0;
1757 
1758 			udelay(1);
1759 		}
1760 	} else {
1761 		udelay(WAIT_PERIOD_US_MIN);
1762 		qm_wait_msi_finish(qm);
1763 		ret = 0;
1764 	}
1765 
1766 	return ret;
1767 }
1768 
1769 static const struct hisi_qm_hw_ops qm_hw_ops_v1 = {
1770 	.qm_db = qm_db_v1,
1771 	.hw_error_init = qm_hw_error_init_v1,
1772 	.set_msi = qm_set_msi,
1773 };
1774 
1775 static const struct hisi_qm_hw_ops qm_hw_ops_v2 = {
1776 	.get_vft = qm_get_vft_v2,
1777 	.qm_db = qm_db_v2,
1778 	.hw_error_init = qm_hw_error_init_v2,
1779 	.hw_error_uninit = qm_hw_error_uninit_v2,
1780 	.hw_error_handle = qm_hw_error_handle_v2,
1781 	.set_msi = qm_set_msi,
1782 };
1783 
1784 static const struct hisi_qm_hw_ops qm_hw_ops_v3 = {
1785 	.get_vft = qm_get_vft_v2,
1786 	.qm_db = qm_db_v2,
1787 	.hw_error_init = qm_hw_error_init_v3,
1788 	.hw_error_uninit = qm_hw_error_uninit_v3,
1789 	.hw_error_handle = qm_hw_error_handle_v2,
1790 	.set_msi = qm_set_msi_v3,
1791 };
1792 
1793 static void *qm_get_avail_sqe(struct hisi_qp *qp)
1794 {
1795 	struct hisi_qp_status *qp_status = &qp->qp_status;
1796 	u16 sq_tail = qp_status->sq_tail;
1797 
1798 	if (unlikely(atomic_read(&qp->qp_status.used) == qp->sq_depth - 1))
1799 		return NULL;
1800 
1801 	return qp->sqe + sq_tail * qp->qm->sqe_size;
1802 }
1803 
1804 static void hisi_qm_unset_hw_reset(struct hisi_qp *qp)
1805 {
1806 	u64 *addr;
1807 
1808 	/* Use last 64 bits of DUS to reset status. */
1809 	addr = (u64 *)(qp->qdma.va + qp->qdma.size) - QM_RESET_STOP_TX_OFFSET;
1810 	*addr = 0;
1811 }
1812 
1813 static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type)
1814 {
1815 	struct device *dev = &qm->pdev->dev;
1816 	struct hisi_qp *qp;
1817 	int qp_id;
1818 
1819 	if (atomic_read(&qm->status.flags) == QM_STOP) {
1820 		dev_info_ratelimited(dev, "failed to create qp as qm is stop!\n");
1821 		return ERR_PTR(-EPERM);
1822 	}
1823 
1824 	if (qm->qp_in_used == qm->qp_num) {
1825 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
1826 				     qm->qp_num);
1827 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
1828 		return ERR_PTR(-EBUSY);
1829 	}
1830 
1831 	qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC);
1832 	if (qp_id < 0) {
1833 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
1834 				    qm->qp_num);
1835 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
1836 		return ERR_PTR(-EBUSY);
1837 	}
1838 
1839 	qp = &qm->qp_array[qp_id];
1840 	hisi_qm_unset_hw_reset(qp);
1841 	memset(qp->cqe, 0, sizeof(struct qm_cqe) * qp->cq_depth);
1842 
1843 	qp->event_cb = NULL;
1844 	qp->req_cb = NULL;
1845 	qp->qp_id = qp_id;
1846 	qp->alg_type = alg_type;
1847 	qp->is_in_kernel = true;
1848 	qm->qp_in_used++;
1849 
1850 	return qp;
1851 }
1852 
1853 /**
1854  * hisi_qm_create_qp() - Create a queue pair from qm.
1855  * @qm: The qm we create a qp from.
1856  * @alg_type: Accelerator specific algorithm type in sqc.
1857  *
1858  * Return created qp, negative error code if failed.
1859  */
1860 static struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type)
1861 {
1862 	struct hisi_qp *qp;
1863 	int ret;
1864 
1865 	ret = qm_pm_get_sync(qm);
1866 	if (ret)
1867 		return ERR_PTR(ret);
1868 
1869 	down_write(&qm->qps_lock);
1870 	qp = qm_create_qp_nolock(qm, alg_type);
1871 	up_write(&qm->qps_lock);
1872 
1873 	if (IS_ERR(qp))
1874 		qm_pm_put_sync(qm);
1875 
1876 	return qp;
1877 }
1878 
1879 /**
1880  * hisi_qm_release_qp() - Release a qp back to its qm.
1881  * @qp: The qp we want to release.
1882  *
1883  * This function releases the resource of a qp.
1884  */
1885 static void hisi_qm_release_qp(struct hisi_qp *qp)
1886 {
1887 	struct hisi_qm *qm = qp->qm;
1888 
1889 	down_write(&qm->qps_lock);
1890 
1891 	qm->qp_in_used--;
1892 	idr_remove(&qm->qp_idr, qp->qp_id);
1893 
1894 	up_write(&qm->qps_lock);
1895 
1896 	qm_pm_put_sync(qm);
1897 }
1898 
1899 static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
1900 {
1901 	struct hisi_qm *qm = qp->qm;
1902 	enum qm_hw_ver ver = qm->ver;
1903 	struct qm_sqc sqc = {0};
1904 
1905 	if (ver == QM_HW_V1) {
1906 		sqc.dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size));
1907 		sqc.w8 = cpu_to_le16(qp->sq_depth - 1);
1908 	} else {
1909 		sqc.dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size, qp->sq_depth));
1910 		sqc.w8 = 0; /* rand_qc */
1911 	}
1912 	sqc.w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type));
1913 	sqc.base_l = cpu_to_le32(lower_32_bits(qp->sqe_dma));
1914 	sqc.base_h = cpu_to_le32(upper_32_bits(qp->sqe_dma));
1915 	sqc.cq_num = cpu_to_le16(qp_id);
1916 	sqc.pasid = cpu_to_le16(pasid);
1917 
1918 	if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
1919 		sqc.w11 = cpu_to_le16(QM_QC_PASID_ENABLE <<
1920 				      QM_QC_PASID_ENABLE_SHIFT);
1921 
1922 	return qm_set_and_get_xqc(qm, QM_MB_CMD_SQC, &sqc, qp_id, 0);
1923 }
1924 
1925 static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
1926 {
1927 	struct hisi_qm *qm = qp->qm;
1928 	enum qm_hw_ver ver = qm->ver;
1929 	struct qm_cqc cqc = {0};
1930 
1931 	if (ver == QM_HW_V1) {
1932 		cqc.dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0, QM_QC_CQE_SIZE));
1933 		cqc.w8 = cpu_to_le16(qp->cq_depth - 1);
1934 	} else {
1935 		cqc.dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE, qp->cq_depth));
1936 		cqc.w8 = 0; /* rand_qc */
1937 	}
1938 	/*
1939 	 * Enable request finishing interrupts defaultly.
1940 	 * So, there will be some interrupts until disabling
1941 	 * this.
1942 	 */
1943 	cqc.dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT);
1944 	cqc.base_l = cpu_to_le32(lower_32_bits(qp->cqe_dma));
1945 	cqc.base_h = cpu_to_le32(upper_32_bits(qp->cqe_dma));
1946 	cqc.pasid = cpu_to_le16(pasid);
1947 
1948 	if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
1949 		cqc.w11 = cpu_to_le16(QM_QC_PASID_ENABLE);
1950 
1951 	return qm_set_and_get_xqc(qm, QM_MB_CMD_CQC, &cqc, qp_id, 0);
1952 }
1953 
1954 static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
1955 {
1956 	int ret;
1957 
1958 	qm_init_qp_status(qp);
1959 
1960 	ret = qm_sq_ctx_cfg(qp, qp_id, pasid);
1961 	if (ret)
1962 		return ret;
1963 
1964 	return qm_cq_ctx_cfg(qp, qp_id, pasid);
1965 }
1966 
1967 static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg)
1968 {
1969 	struct hisi_qm *qm = qp->qm;
1970 	struct device *dev = &qm->pdev->dev;
1971 	int qp_id = qp->qp_id;
1972 	u32 pasid = arg;
1973 	int ret;
1974 
1975 	if (atomic_read(&qm->status.flags) == QM_STOP) {
1976 		dev_info_ratelimited(dev, "failed to start qp as qm is stop!\n");
1977 		return -EPERM;
1978 	}
1979 
1980 	ret = qm_qp_ctx_cfg(qp, qp_id, pasid);
1981 	if (ret)
1982 		return ret;
1983 
1984 	atomic_set(&qp->qp_status.flags, QP_START);
1985 	dev_dbg(dev, "queue %d started\n", qp_id);
1986 
1987 	return 0;
1988 }
1989 
1990 /**
1991  * hisi_qm_start_qp() - Start a qp into running.
1992  * @qp: The qp we want to start to run.
1993  * @arg: Accelerator specific argument.
1994  *
1995  * After this function, qp can receive request from user. Return 0 if
1996  * successful, negative error code if failed.
1997  */
1998 int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg)
1999 {
2000 	struct hisi_qm *qm = qp->qm;
2001 	int ret;
2002 
2003 	down_write(&qm->qps_lock);
2004 	ret = qm_start_qp_nolock(qp, arg);
2005 	up_write(&qm->qps_lock);
2006 
2007 	return ret;
2008 }
2009 EXPORT_SYMBOL_GPL(hisi_qm_start_qp);
2010 
2011 /**
2012  * qp_stop_fail_cb() - call request cb.
2013  * @qp: stopped failed qp.
2014  *
2015  * Callback function should be called whether task completed or not.
2016  */
2017 static void qp_stop_fail_cb(struct hisi_qp *qp)
2018 {
2019 	int qp_used = atomic_read(&qp->qp_status.used);
2020 	u16 cur_tail = qp->qp_status.sq_tail;
2021 	u16 sq_depth = qp->sq_depth;
2022 	u16 cur_head = (cur_tail + sq_depth - qp_used) % sq_depth;
2023 	struct hisi_qm *qm = qp->qm;
2024 	u16 pos;
2025 	int i;
2026 
2027 	for (i = 0; i < qp_used; i++) {
2028 		pos = (i + cur_head) % sq_depth;
2029 		qp->req_cb(qp, qp->sqe + (u32)(qm->sqe_size * pos));
2030 		atomic_dec(&qp->qp_status.used);
2031 	}
2032 }
2033 
2034 /**
2035  * qm_drain_qp() - Drain a qp.
2036  * @qp: The qp we want to drain.
2037  *
2038  * Determine whether the queue is cleared by judging the tail pointers of
2039  * sq and cq.
2040  */
2041 static int qm_drain_qp(struct hisi_qp *qp)
2042 {
2043 	struct hisi_qm *qm = qp->qm;
2044 	struct device *dev = &qm->pdev->dev;
2045 	struct qm_sqc sqc;
2046 	struct qm_cqc cqc;
2047 	int ret, i = 0;
2048 
2049 	/* No need to judge if master OOO is blocked. */
2050 	if (qm_check_dev_error(qm))
2051 		return 0;
2052 
2053 	/* Kunpeng930 supports drain qp by device */
2054 	if (test_bit(QM_SUPPORT_STOP_QP, &qm->caps)) {
2055 		ret = qm_stop_qp(qp);
2056 		if (ret)
2057 			dev_err(dev, "Failed to stop qp(%u)!\n", qp->qp_id);
2058 		return ret;
2059 	}
2060 
2061 	while (++i) {
2062 		ret = qm_set_and_get_xqc(qm, QM_MB_CMD_SQC, &sqc, qp->qp_id, 1);
2063 		if (ret) {
2064 			dev_err_ratelimited(dev, "Failed to dump sqc!\n");
2065 			return ret;
2066 		}
2067 
2068 		ret = qm_set_and_get_xqc(qm, QM_MB_CMD_CQC, &cqc, qp->qp_id, 1);
2069 		if (ret) {
2070 			dev_err_ratelimited(dev, "Failed to dump cqc!\n");
2071 			return ret;
2072 		}
2073 
2074 		if ((sqc.tail == cqc.tail) &&
2075 		    (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc)))
2076 			break;
2077 
2078 		if (i == MAX_WAIT_COUNTS) {
2079 			dev_err(dev, "Fail to empty queue %u!\n", qp->qp_id);
2080 			return -EBUSY;
2081 		}
2082 
2083 		usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX);
2084 	}
2085 
2086 	return 0;
2087 }
2088 
2089 static int qm_stop_qp_nolock(struct hisi_qp *qp)
2090 {
2091 	struct device *dev = &qp->qm->pdev->dev;
2092 	int ret;
2093 
2094 	/*
2095 	 * It is allowed to stop and release qp when reset, If the qp is
2096 	 * stopped when reset but still want to be released then, the
2097 	 * is_resetting flag should be set negative so that this qp will not
2098 	 * be restarted after reset.
2099 	 */
2100 	if (atomic_read(&qp->qp_status.flags) != QP_START) {
2101 		qp->is_resetting = false;
2102 		return 0;
2103 	}
2104 
2105 	atomic_set(&qp->qp_status.flags, QP_STOP);
2106 
2107 	ret = qm_drain_qp(qp);
2108 	if (ret)
2109 		dev_err(dev, "Failed to drain out data for stopping!\n");
2110 
2111 	flush_workqueue(qp->qm->wq);
2112 	if (unlikely(qp->is_resetting && atomic_read(&qp->qp_status.used)))
2113 		qp_stop_fail_cb(qp);
2114 
2115 	dev_dbg(dev, "stop queue %u!", qp->qp_id);
2116 
2117 	return 0;
2118 }
2119 
2120 /**
2121  * hisi_qm_stop_qp() - Stop a qp in qm.
2122  * @qp: The qp we want to stop.
2123  *
2124  * This function is reverse of hisi_qm_start_qp. Return 0 if successful.
2125  */
2126 int hisi_qm_stop_qp(struct hisi_qp *qp)
2127 {
2128 	int ret;
2129 
2130 	down_write(&qp->qm->qps_lock);
2131 	ret = qm_stop_qp_nolock(qp);
2132 	up_write(&qp->qm->qps_lock);
2133 
2134 	return ret;
2135 }
2136 EXPORT_SYMBOL_GPL(hisi_qm_stop_qp);
2137 
2138 /**
2139  * hisi_qp_send() - Queue up a task in the hardware queue.
2140  * @qp: The qp in which to put the message.
2141  * @msg: The message.
2142  *
2143  * This function will return -EBUSY if qp is currently full, and -EAGAIN
2144  * if qp related qm is resetting.
2145  *
2146  * Note: This function may run with qm_irq_thread and ACC reset at same time.
2147  *       It has no race with qm_irq_thread. However, during hisi_qp_send, ACC
2148  *       reset may happen, we have no lock here considering performance. This
2149  *       causes current qm_db sending fail or can not receive sended sqe. QM
2150  *       sync/async receive function should handle the error sqe. ACC reset
2151  *       done function should clear used sqe to 0.
2152  */
2153 int hisi_qp_send(struct hisi_qp *qp, const void *msg)
2154 {
2155 	struct hisi_qp_status *qp_status = &qp->qp_status;
2156 	u16 sq_tail = qp_status->sq_tail;
2157 	u16 sq_tail_next = (sq_tail + 1) % qp->sq_depth;
2158 	void *sqe = qm_get_avail_sqe(qp);
2159 
2160 	if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP ||
2161 		     atomic_read(&qp->qm->status.flags) == QM_STOP ||
2162 		     qp->is_resetting)) {
2163 		dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n");
2164 		return -EAGAIN;
2165 	}
2166 
2167 	if (!sqe)
2168 		return -EBUSY;
2169 
2170 	memcpy(sqe, msg, qp->qm->sqe_size);
2171 
2172 	qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0);
2173 	atomic_inc(&qp->qp_status.used);
2174 	qp_status->sq_tail = sq_tail_next;
2175 
2176 	return 0;
2177 }
2178 EXPORT_SYMBOL_GPL(hisi_qp_send);
2179 
2180 static void hisi_qm_cache_wb(struct hisi_qm *qm)
2181 {
2182 	unsigned int val;
2183 
2184 	if (qm->ver == QM_HW_V1)
2185 		return;
2186 
2187 	writel(0x1, qm->io_base + QM_CACHE_WB_START);
2188 	if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE,
2189 				       val, val & BIT(0), POLL_PERIOD,
2190 				       POLL_TIMEOUT))
2191 		dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n");
2192 }
2193 
2194 static void qm_qp_event_notifier(struct hisi_qp *qp)
2195 {
2196 	wake_up_interruptible(&qp->uacce_q->wait);
2197 }
2198 
2199  /* This function returns free number of qp in qm. */
2200 static int hisi_qm_get_available_instances(struct uacce_device *uacce)
2201 {
2202 	struct hisi_qm *qm = uacce->priv;
2203 	int ret;
2204 
2205 	down_read(&qm->qps_lock);
2206 	ret = qm->qp_num - qm->qp_in_used;
2207 	up_read(&qm->qps_lock);
2208 
2209 	return ret;
2210 }
2211 
2212 static void hisi_qm_set_hw_reset(struct hisi_qm *qm, int offset)
2213 {
2214 	int i;
2215 
2216 	for (i = 0; i < qm->qp_num; i++)
2217 		qm_set_qp_disable(&qm->qp_array[i], offset);
2218 }
2219 
2220 static int hisi_qm_uacce_get_queue(struct uacce_device *uacce,
2221 				   unsigned long arg,
2222 				   struct uacce_queue *q)
2223 {
2224 	struct hisi_qm *qm = uacce->priv;
2225 	struct hisi_qp *qp;
2226 	u8 alg_type = 0;
2227 
2228 	qp = hisi_qm_create_qp(qm, alg_type);
2229 	if (IS_ERR(qp))
2230 		return PTR_ERR(qp);
2231 
2232 	q->priv = qp;
2233 	q->uacce = uacce;
2234 	qp->uacce_q = q;
2235 	qp->event_cb = qm_qp_event_notifier;
2236 	qp->pasid = arg;
2237 	qp->is_in_kernel = false;
2238 
2239 	return 0;
2240 }
2241 
2242 static void hisi_qm_uacce_put_queue(struct uacce_queue *q)
2243 {
2244 	struct hisi_qp *qp = q->priv;
2245 
2246 	hisi_qm_release_qp(qp);
2247 }
2248 
2249 /* map sq/cq/doorbell to user space */
2250 static int hisi_qm_uacce_mmap(struct uacce_queue *q,
2251 			      struct vm_area_struct *vma,
2252 			      struct uacce_qfile_region *qfr)
2253 {
2254 	struct hisi_qp *qp = q->priv;
2255 	struct hisi_qm *qm = qp->qm;
2256 	resource_size_t phys_base = qm->db_phys_base +
2257 				    qp->qp_id * qm->db_interval;
2258 	size_t sz = vma->vm_end - vma->vm_start;
2259 	struct pci_dev *pdev = qm->pdev;
2260 	struct device *dev = &pdev->dev;
2261 	unsigned long vm_pgoff;
2262 	int ret;
2263 
2264 	switch (qfr->type) {
2265 	case UACCE_QFRT_MMIO:
2266 		if (qm->ver == QM_HW_V1) {
2267 			if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR)
2268 				return -EINVAL;
2269 		} else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) {
2270 			if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR +
2271 			    QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE))
2272 				return -EINVAL;
2273 		} else {
2274 			if (sz > qm->db_interval)
2275 				return -EINVAL;
2276 		}
2277 
2278 		vm_flags_set(vma, VM_IO);
2279 
2280 		return remap_pfn_range(vma, vma->vm_start,
2281 				       phys_base >> PAGE_SHIFT,
2282 				       sz, pgprot_noncached(vma->vm_page_prot));
2283 	case UACCE_QFRT_DUS:
2284 		if (sz != qp->qdma.size)
2285 			return -EINVAL;
2286 
2287 		/*
2288 		 * dma_mmap_coherent() requires vm_pgoff as 0
2289 		 * restore vm_pfoff to initial value for mmap()
2290 		 */
2291 		vm_pgoff = vma->vm_pgoff;
2292 		vma->vm_pgoff = 0;
2293 		ret = dma_mmap_coherent(dev, vma, qp->qdma.va,
2294 					qp->qdma.dma, sz);
2295 		vma->vm_pgoff = vm_pgoff;
2296 		return ret;
2297 
2298 	default:
2299 		return -EINVAL;
2300 	}
2301 }
2302 
2303 static int hisi_qm_uacce_start_queue(struct uacce_queue *q)
2304 {
2305 	struct hisi_qp *qp = q->priv;
2306 
2307 	return hisi_qm_start_qp(qp, qp->pasid);
2308 }
2309 
2310 static void hisi_qm_uacce_stop_queue(struct uacce_queue *q)
2311 {
2312 	hisi_qm_stop_qp(q->priv);
2313 }
2314 
2315 static int hisi_qm_is_q_updated(struct uacce_queue *q)
2316 {
2317 	struct hisi_qp *qp = q->priv;
2318 	struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
2319 	int updated = 0;
2320 
2321 	while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
2322 		/* make sure to read data from memory */
2323 		dma_rmb();
2324 		qm_cq_head_update(qp);
2325 		cqe = qp->cqe + qp->qp_status.cq_head;
2326 		updated = 1;
2327 	}
2328 
2329 	return updated;
2330 }
2331 
2332 static void qm_set_sqctype(struct uacce_queue *q, u16 type)
2333 {
2334 	struct hisi_qm *qm = q->uacce->priv;
2335 	struct hisi_qp *qp = q->priv;
2336 
2337 	down_write(&qm->qps_lock);
2338 	qp->alg_type = type;
2339 	up_write(&qm->qps_lock);
2340 }
2341 
2342 static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd,
2343 				unsigned long arg)
2344 {
2345 	struct hisi_qp *qp = q->priv;
2346 	struct hisi_qp_info qp_info;
2347 	struct hisi_qp_ctx qp_ctx;
2348 
2349 	if (cmd == UACCE_CMD_QM_SET_QP_CTX) {
2350 		if (copy_from_user(&qp_ctx, (void __user *)arg,
2351 				   sizeof(struct hisi_qp_ctx)))
2352 			return -EFAULT;
2353 
2354 		if (qp_ctx.qc_type != 0 && qp_ctx.qc_type != 1)
2355 			return -EINVAL;
2356 
2357 		qm_set_sqctype(q, qp_ctx.qc_type);
2358 		qp_ctx.id = qp->qp_id;
2359 
2360 		if (copy_to_user((void __user *)arg, &qp_ctx,
2361 				 sizeof(struct hisi_qp_ctx)))
2362 			return -EFAULT;
2363 
2364 		return 0;
2365 	} else if (cmd == UACCE_CMD_QM_SET_QP_INFO) {
2366 		if (copy_from_user(&qp_info, (void __user *)arg,
2367 				   sizeof(struct hisi_qp_info)))
2368 			return -EFAULT;
2369 
2370 		qp_info.sqe_size = qp->qm->sqe_size;
2371 		qp_info.sq_depth = qp->sq_depth;
2372 		qp_info.cq_depth = qp->cq_depth;
2373 
2374 		if (copy_to_user((void __user *)arg, &qp_info,
2375 				  sizeof(struct hisi_qp_info)))
2376 			return -EFAULT;
2377 
2378 		return 0;
2379 	}
2380 
2381 	return -EINVAL;
2382 }
2383 
2384 /**
2385  * qm_hw_err_isolate() - Try to set the isolation status of the uacce device
2386  * according to user's configuration of error threshold.
2387  * @qm: the uacce device
2388  */
2389 static int qm_hw_err_isolate(struct hisi_qm *qm)
2390 {
2391 	struct qm_hw_err *err, *tmp, *hw_err;
2392 	struct qm_err_isolate *isolate;
2393 	u32 count = 0;
2394 
2395 	isolate = &qm->isolate_data;
2396 
2397 #define SECONDS_PER_HOUR	3600
2398 
2399 	/* All the hw errs are processed by PF driver */
2400 	if (qm->uacce->is_vf || isolate->is_isolate || !isolate->err_threshold)
2401 		return 0;
2402 
2403 	hw_err = kzalloc(sizeof(*hw_err), GFP_KERNEL);
2404 	if (!hw_err)
2405 		return -ENOMEM;
2406 
2407 	/*
2408 	 * Time-stamp every slot AER error. Then check the AER error log when the
2409 	 * next device AER error occurred. if the device slot AER error count exceeds
2410 	 * the setting error threshold in one hour, the isolated state will be set
2411 	 * to true. And the AER error logs that exceed one hour will be cleared.
2412 	 */
2413 	mutex_lock(&isolate->isolate_lock);
2414 	hw_err->timestamp = jiffies;
2415 	list_for_each_entry_safe(err, tmp, &isolate->qm_hw_errs, list) {
2416 		if ((hw_err->timestamp - err->timestamp) / HZ >
2417 		    SECONDS_PER_HOUR) {
2418 			list_del(&err->list);
2419 			kfree(err);
2420 		} else {
2421 			count++;
2422 		}
2423 	}
2424 	list_add(&hw_err->list, &isolate->qm_hw_errs);
2425 	mutex_unlock(&isolate->isolate_lock);
2426 
2427 	if (count >= isolate->err_threshold)
2428 		isolate->is_isolate = true;
2429 
2430 	return 0;
2431 }
2432 
2433 static void qm_hw_err_destroy(struct hisi_qm *qm)
2434 {
2435 	struct qm_hw_err *err, *tmp;
2436 
2437 	mutex_lock(&qm->isolate_data.isolate_lock);
2438 	list_for_each_entry_safe(err, tmp, &qm->isolate_data.qm_hw_errs, list) {
2439 		list_del(&err->list);
2440 		kfree(err);
2441 	}
2442 	mutex_unlock(&qm->isolate_data.isolate_lock);
2443 }
2444 
2445 static enum uacce_dev_state hisi_qm_get_isolate_state(struct uacce_device *uacce)
2446 {
2447 	struct hisi_qm *qm = uacce->priv;
2448 	struct hisi_qm *pf_qm;
2449 
2450 	if (uacce->is_vf)
2451 		pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
2452 	else
2453 		pf_qm = qm;
2454 
2455 	return pf_qm->isolate_data.is_isolate ?
2456 			UACCE_DEV_ISOLATE : UACCE_DEV_NORMAL;
2457 }
2458 
2459 static int hisi_qm_isolate_threshold_write(struct uacce_device *uacce, u32 num)
2460 {
2461 	struct hisi_qm *qm = uacce->priv;
2462 
2463 	/* Must be set by PF */
2464 	if (uacce->is_vf)
2465 		return -EPERM;
2466 
2467 	if (qm->isolate_data.is_isolate)
2468 		return -EPERM;
2469 
2470 	qm->isolate_data.err_threshold = num;
2471 
2472 	/* After the policy is updated, need to reset the hardware err list */
2473 	qm_hw_err_destroy(qm);
2474 
2475 	return 0;
2476 }
2477 
2478 static u32 hisi_qm_isolate_threshold_read(struct uacce_device *uacce)
2479 {
2480 	struct hisi_qm *qm = uacce->priv;
2481 	struct hisi_qm *pf_qm;
2482 
2483 	if (uacce->is_vf) {
2484 		pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
2485 		return pf_qm->isolate_data.err_threshold;
2486 	}
2487 
2488 	return qm->isolate_data.err_threshold;
2489 }
2490 
2491 static const struct uacce_ops uacce_qm_ops = {
2492 	.get_available_instances = hisi_qm_get_available_instances,
2493 	.get_queue = hisi_qm_uacce_get_queue,
2494 	.put_queue = hisi_qm_uacce_put_queue,
2495 	.start_queue = hisi_qm_uacce_start_queue,
2496 	.stop_queue = hisi_qm_uacce_stop_queue,
2497 	.mmap = hisi_qm_uacce_mmap,
2498 	.ioctl = hisi_qm_uacce_ioctl,
2499 	.is_q_updated = hisi_qm_is_q_updated,
2500 	.get_isolate_state = hisi_qm_get_isolate_state,
2501 	.isolate_err_threshold_write = hisi_qm_isolate_threshold_write,
2502 	.isolate_err_threshold_read = hisi_qm_isolate_threshold_read,
2503 };
2504 
2505 static void qm_remove_uacce(struct hisi_qm *qm)
2506 {
2507 	struct uacce_device *uacce = qm->uacce;
2508 
2509 	if (qm->use_sva) {
2510 		qm_hw_err_destroy(qm);
2511 		uacce_remove(uacce);
2512 		qm->uacce = NULL;
2513 	}
2514 }
2515 
2516 static int qm_alloc_uacce(struct hisi_qm *qm)
2517 {
2518 	struct pci_dev *pdev = qm->pdev;
2519 	struct uacce_device *uacce;
2520 	unsigned long mmio_page_nr;
2521 	unsigned long dus_page_nr;
2522 	u16 sq_depth, cq_depth;
2523 	struct uacce_interface interface = {
2524 		.flags = UACCE_DEV_SVA,
2525 		.ops = &uacce_qm_ops,
2526 	};
2527 	int ret;
2528 
2529 	ret = strscpy(interface.name, dev_driver_string(&pdev->dev),
2530 		      sizeof(interface.name));
2531 	if (ret < 0)
2532 		return -ENAMETOOLONG;
2533 
2534 	uacce = uacce_alloc(&pdev->dev, &interface);
2535 	if (IS_ERR(uacce))
2536 		return PTR_ERR(uacce);
2537 
2538 	if (uacce->flags & UACCE_DEV_SVA) {
2539 		qm->use_sva = true;
2540 	} else {
2541 		/* only consider sva case */
2542 		qm_remove_uacce(qm);
2543 		return -EINVAL;
2544 	}
2545 
2546 	uacce->is_vf = pdev->is_virtfn;
2547 	uacce->priv = qm;
2548 
2549 	if (qm->ver == QM_HW_V1)
2550 		uacce->api_ver = HISI_QM_API_VER_BASE;
2551 	else if (qm->ver == QM_HW_V2)
2552 		uacce->api_ver = HISI_QM_API_VER2_BASE;
2553 	else
2554 		uacce->api_ver = HISI_QM_API_VER3_BASE;
2555 
2556 	if (qm->ver == QM_HW_V1)
2557 		mmio_page_nr = QM_DOORBELL_PAGE_NR;
2558 	else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
2559 		mmio_page_nr = QM_DOORBELL_PAGE_NR +
2560 			QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE;
2561 	else
2562 		mmio_page_nr = qm->db_interval / PAGE_SIZE;
2563 
2564 	qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP);
2565 
2566 	/* Add one more page for device or qp status */
2567 	dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * sq_depth +
2568 		       sizeof(struct qm_cqe) * cq_depth  + PAGE_SIZE) >>
2569 					 PAGE_SHIFT;
2570 
2571 	uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr;
2572 	uacce->qf_pg_num[UACCE_QFRT_DUS]  = dus_page_nr;
2573 
2574 	qm->uacce = uacce;
2575 	INIT_LIST_HEAD(&qm->isolate_data.qm_hw_errs);
2576 	mutex_init(&qm->isolate_data.isolate_lock);
2577 
2578 	return 0;
2579 }
2580 
2581 /**
2582  * qm_frozen() - Try to froze QM to cut continuous queue request. If
2583  * there is user on the QM, return failure without doing anything.
2584  * @qm: The qm needed to be fronzen.
2585  *
2586  * This function frozes QM, then we can do SRIOV disabling.
2587  */
2588 static int qm_frozen(struct hisi_qm *qm)
2589 {
2590 	if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl))
2591 		return 0;
2592 
2593 	down_write(&qm->qps_lock);
2594 
2595 	if (!qm->qp_in_used) {
2596 		qm->qp_in_used = qm->qp_num;
2597 		up_write(&qm->qps_lock);
2598 		set_bit(QM_DRIVER_REMOVING, &qm->misc_ctl);
2599 		return 0;
2600 	}
2601 
2602 	up_write(&qm->qps_lock);
2603 
2604 	return -EBUSY;
2605 }
2606 
2607 static int qm_try_frozen_vfs(struct pci_dev *pdev,
2608 			     struct hisi_qm_list *qm_list)
2609 {
2610 	struct hisi_qm *qm, *vf_qm;
2611 	struct pci_dev *dev;
2612 	int ret = 0;
2613 
2614 	if (!qm_list || !pdev)
2615 		return -EINVAL;
2616 
2617 	/* Try to frozen all the VFs as disable SRIOV */
2618 	mutex_lock(&qm_list->lock);
2619 	list_for_each_entry(qm, &qm_list->list, list) {
2620 		dev = qm->pdev;
2621 		if (dev == pdev)
2622 			continue;
2623 		if (pci_physfn(dev) == pdev) {
2624 			vf_qm = pci_get_drvdata(dev);
2625 			ret = qm_frozen(vf_qm);
2626 			if (ret)
2627 				goto frozen_fail;
2628 		}
2629 	}
2630 
2631 frozen_fail:
2632 	mutex_unlock(&qm_list->lock);
2633 
2634 	return ret;
2635 }
2636 
2637 /**
2638  * hisi_qm_wait_task_finish() - Wait until the task is finished
2639  * when removing the driver.
2640  * @qm: The qm needed to wait for the task to finish.
2641  * @qm_list: The list of all available devices.
2642  */
2643 void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
2644 {
2645 	while (qm_frozen(qm) ||
2646 	       ((qm->fun_type == QM_HW_PF) &&
2647 	       qm_try_frozen_vfs(qm->pdev, qm_list))) {
2648 		msleep(WAIT_PERIOD);
2649 	}
2650 
2651 	while (test_bit(QM_RST_SCHED, &qm->misc_ctl) ||
2652 	       test_bit(QM_RESETTING, &qm->misc_ctl))
2653 		msleep(WAIT_PERIOD);
2654 
2655 	if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
2656 		flush_work(&qm->cmd_process);
2657 
2658 	udelay(REMOVE_WAIT_DELAY);
2659 }
2660 EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish);
2661 
2662 static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num)
2663 {
2664 	struct device *dev = &qm->pdev->dev;
2665 	struct qm_dma *qdma;
2666 	int i;
2667 
2668 	for (i = num - 1; i >= 0; i--) {
2669 		qdma = &qm->qp_array[i].qdma;
2670 		dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma);
2671 		kfree(qm->poll_data[i].qp_finish_id);
2672 	}
2673 
2674 	kfree(qm->poll_data);
2675 	kfree(qm->qp_array);
2676 }
2677 
2678 static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id,
2679 			       u16 sq_depth, u16 cq_depth)
2680 {
2681 	struct device *dev = &qm->pdev->dev;
2682 	size_t off = qm->sqe_size * sq_depth;
2683 	struct hisi_qp *qp;
2684 	int ret = -ENOMEM;
2685 
2686 	qm->poll_data[id].qp_finish_id = kcalloc(qm->qp_num, sizeof(u16),
2687 						 GFP_KERNEL);
2688 	if (!qm->poll_data[id].qp_finish_id)
2689 		return -ENOMEM;
2690 
2691 	qp = &qm->qp_array[id];
2692 	qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma,
2693 					 GFP_KERNEL);
2694 	if (!qp->qdma.va)
2695 		goto err_free_qp_finish_id;
2696 
2697 	qp->sqe = qp->qdma.va;
2698 	qp->sqe_dma = qp->qdma.dma;
2699 	qp->cqe = qp->qdma.va + off;
2700 	qp->cqe_dma = qp->qdma.dma + off;
2701 	qp->qdma.size = dma_size;
2702 	qp->sq_depth = sq_depth;
2703 	qp->cq_depth = cq_depth;
2704 	qp->qm = qm;
2705 	qp->qp_id = id;
2706 
2707 	return 0;
2708 
2709 err_free_qp_finish_id:
2710 	kfree(qm->poll_data[id].qp_finish_id);
2711 	return ret;
2712 }
2713 
2714 static void hisi_qm_pre_init(struct hisi_qm *qm)
2715 {
2716 	struct pci_dev *pdev = qm->pdev;
2717 
2718 	if (qm->ver == QM_HW_V1)
2719 		qm->ops = &qm_hw_ops_v1;
2720 	else if (qm->ver == QM_HW_V2)
2721 		qm->ops = &qm_hw_ops_v2;
2722 	else
2723 		qm->ops = &qm_hw_ops_v3;
2724 
2725 	pci_set_drvdata(pdev, qm);
2726 	mutex_init(&qm->mailbox_lock);
2727 	init_rwsem(&qm->qps_lock);
2728 	qm->qp_in_used = 0;
2729 	if (test_bit(QM_SUPPORT_RPM, &qm->caps)) {
2730 		if (!acpi_device_power_manageable(ACPI_COMPANION(&pdev->dev)))
2731 			dev_info(&pdev->dev, "_PS0 and _PR0 are not defined");
2732 	}
2733 }
2734 
2735 static void qm_cmd_uninit(struct hisi_qm *qm)
2736 {
2737 	u32 val;
2738 
2739 	if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
2740 		return;
2741 
2742 	val = readl(qm->io_base + QM_IFC_INT_MASK);
2743 	val |= QM_IFC_INT_DISABLE;
2744 	writel(val, qm->io_base + QM_IFC_INT_MASK);
2745 }
2746 
2747 static void qm_cmd_init(struct hisi_qm *qm)
2748 {
2749 	u32 val;
2750 
2751 	if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
2752 		return;
2753 
2754 	/* Clear communication interrupt source */
2755 	qm_clear_cmd_interrupt(qm, QM_IFC_INT_SOURCE_CLR);
2756 
2757 	/* Enable pf to vf communication reg. */
2758 	val = readl(qm->io_base + QM_IFC_INT_MASK);
2759 	val &= ~QM_IFC_INT_DISABLE;
2760 	writel(val, qm->io_base + QM_IFC_INT_MASK);
2761 }
2762 
2763 static void qm_put_pci_res(struct hisi_qm *qm)
2764 {
2765 	struct pci_dev *pdev = qm->pdev;
2766 
2767 	if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
2768 		iounmap(qm->db_io_base);
2769 
2770 	iounmap(qm->io_base);
2771 	pci_release_mem_regions(pdev);
2772 }
2773 
2774 static void hisi_qm_pci_uninit(struct hisi_qm *qm)
2775 {
2776 	struct pci_dev *pdev = qm->pdev;
2777 
2778 	pci_free_irq_vectors(pdev);
2779 	qm_put_pci_res(qm);
2780 	pci_disable_device(pdev);
2781 }
2782 
2783 static void hisi_qm_set_state(struct hisi_qm *qm, u8 state)
2784 {
2785 	if (qm->ver > QM_HW_V2 && qm->fun_type == QM_HW_VF)
2786 		writel(state, qm->io_base + QM_VF_STATE);
2787 }
2788 
2789 static void hisi_qm_unint_work(struct hisi_qm *qm)
2790 {
2791 	destroy_workqueue(qm->wq);
2792 }
2793 
2794 static void hisi_qm_free_rsv_buf(struct hisi_qm *qm)
2795 {
2796 	struct qm_dma *xqc_dma = &qm->xqc_buf.qcdma;
2797 	struct device *dev = &qm->pdev->dev;
2798 
2799 	dma_free_coherent(dev, xqc_dma->size, xqc_dma->va, xqc_dma->dma);
2800 }
2801 
2802 static void hisi_qm_memory_uninit(struct hisi_qm *qm)
2803 {
2804 	struct device *dev = &qm->pdev->dev;
2805 
2806 	hisi_qp_memory_uninit(qm, qm->qp_num);
2807 	hisi_qm_free_rsv_buf(qm);
2808 	if (qm->qdma.va) {
2809 		hisi_qm_cache_wb(qm);
2810 		dma_free_coherent(dev, qm->qdma.size,
2811 				  qm->qdma.va, qm->qdma.dma);
2812 	}
2813 
2814 	idr_destroy(&qm->qp_idr);
2815 
2816 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
2817 		kfree(qm->factor);
2818 }
2819 
2820 /**
2821  * hisi_qm_uninit() - Uninitialize qm.
2822  * @qm: The qm needed uninit.
2823  *
2824  * This function uninits qm related device resources.
2825  */
2826 void hisi_qm_uninit(struct hisi_qm *qm)
2827 {
2828 	qm_cmd_uninit(qm);
2829 	hisi_qm_unint_work(qm);
2830 
2831 	down_write(&qm->qps_lock);
2832 	hisi_qm_memory_uninit(qm);
2833 	hisi_qm_set_state(qm, QM_NOT_READY);
2834 	up_write(&qm->qps_lock);
2835 
2836 	qm_irqs_unregister(qm);
2837 	hisi_qm_pci_uninit(qm);
2838 	if (qm->use_sva) {
2839 		uacce_remove(qm->uacce);
2840 		qm->uacce = NULL;
2841 	}
2842 }
2843 EXPORT_SYMBOL_GPL(hisi_qm_uninit);
2844 
2845 /**
2846  * hisi_qm_get_vft() - Get vft from a qm.
2847  * @qm: The qm we want to get its vft.
2848  * @base: The base number of queue in vft.
2849  * @number: The number of queues in vft.
2850  *
2851  * We can allocate multiple queues to a qm by configuring virtual function
2852  * table. We get related configures by this function. Normally, we call this
2853  * function in VF driver to get the queue information.
2854  *
2855  * qm hw v1 does not support this interface.
2856  */
2857 static int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number)
2858 {
2859 	if (!base || !number)
2860 		return -EINVAL;
2861 
2862 	if (!qm->ops->get_vft) {
2863 		dev_err(&qm->pdev->dev, "Don't support vft read!\n");
2864 		return -EINVAL;
2865 	}
2866 
2867 	return qm->ops->get_vft(qm, base, number);
2868 }
2869 
2870 /**
2871  * hisi_qm_set_vft() - Set vft to a qm.
2872  * @qm: The qm we want to set its vft.
2873  * @fun_num: The function number.
2874  * @base: The base number of queue in vft.
2875  * @number: The number of queues in vft.
2876  *
2877  * This function is alway called in PF driver, it is used to assign queues
2878  * among PF and VFs.
2879  *
2880  * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1)
2881  * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1)
2882  * (VF function number 0x2)
2883  */
2884 static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
2885 		    u32 number)
2886 {
2887 	u32 max_q_num = qm->ctrl_qp_num;
2888 
2889 	if (base >= max_q_num || number > max_q_num ||
2890 	    (base + number) > max_q_num)
2891 		return -EINVAL;
2892 
2893 	return qm_set_sqc_cqc_vft(qm, fun_num, base, number);
2894 }
2895 
2896 static void qm_init_eq_aeq_status(struct hisi_qm *qm)
2897 {
2898 	struct hisi_qm_status *status = &qm->status;
2899 
2900 	status->eq_head = 0;
2901 	status->aeq_head = 0;
2902 	status->eqc_phase = true;
2903 	status->aeqc_phase = true;
2904 }
2905 
2906 static void qm_enable_eq_aeq_interrupts(struct hisi_qm *qm)
2907 {
2908 	/* Clear eq/aeq interrupt source */
2909 	qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
2910 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
2911 
2912 	writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK);
2913 	writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK);
2914 }
2915 
2916 static void qm_disable_eq_aeq_interrupts(struct hisi_qm *qm)
2917 {
2918 	writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK);
2919 	writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK);
2920 }
2921 
2922 static int qm_eq_ctx_cfg(struct hisi_qm *qm)
2923 {
2924 	struct qm_eqc eqc = {0};
2925 
2926 	eqc.base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma));
2927 	eqc.base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma));
2928 	if (qm->ver == QM_HW_V1)
2929 		eqc.dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE);
2930 	eqc.dw6 = cpu_to_le32(((u32)qm->eq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT));
2931 
2932 	return qm_set_and_get_xqc(qm, QM_MB_CMD_EQC, &eqc, 0, 0);
2933 }
2934 
2935 static int qm_aeq_ctx_cfg(struct hisi_qm *qm)
2936 {
2937 	struct qm_aeqc aeqc = {0};
2938 
2939 	aeqc.base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma));
2940 	aeqc.base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma));
2941 	aeqc.dw6 = cpu_to_le32(((u32)qm->aeq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT));
2942 
2943 	return qm_set_and_get_xqc(qm, QM_MB_CMD_AEQC, &aeqc, 0, 0);
2944 }
2945 
2946 static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm)
2947 {
2948 	struct device *dev = &qm->pdev->dev;
2949 	int ret;
2950 
2951 	qm_init_eq_aeq_status(qm);
2952 
2953 	ret = qm_eq_ctx_cfg(qm);
2954 	if (ret) {
2955 		dev_err(dev, "Set eqc failed!\n");
2956 		return ret;
2957 	}
2958 
2959 	return qm_aeq_ctx_cfg(qm);
2960 }
2961 
2962 static int __hisi_qm_start(struct hisi_qm *qm)
2963 {
2964 	int ret;
2965 
2966 	WARN_ON(!qm->qdma.va);
2967 
2968 	if (qm->fun_type == QM_HW_PF) {
2969 		ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num);
2970 		if (ret)
2971 			return ret;
2972 	}
2973 
2974 	ret = qm_eq_aeq_ctx_cfg(qm);
2975 	if (ret)
2976 		return ret;
2977 
2978 	ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0);
2979 	if (ret)
2980 		return ret;
2981 
2982 	ret = hisi_qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0);
2983 	if (ret)
2984 		return ret;
2985 
2986 	qm_init_prefetch(qm);
2987 	qm_enable_eq_aeq_interrupts(qm);
2988 
2989 	return 0;
2990 }
2991 
2992 /**
2993  * hisi_qm_start() - start qm
2994  * @qm: The qm to be started.
2995  *
2996  * This function starts a qm, then we can allocate qp from this qm.
2997  */
2998 int hisi_qm_start(struct hisi_qm *qm)
2999 {
3000 	struct device *dev = &qm->pdev->dev;
3001 	int ret = 0;
3002 
3003 	down_write(&qm->qps_lock);
3004 
3005 	dev_dbg(dev, "qm start with %u queue pairs\n", qm->qp_num);
3006 
3007 	if (!qm->qp_num) {
3008 		dev_err(dev, "qp_num should not be 0\n");
3009 		ret = -EINVAL;
3010 		goto err_unlock;
3011 	}
3012 
3013 	ret = __hisi_qm_start(qm);
3014 	if (ret)
3015 		goto err_unlock;
3016 
3017 	atomic_set(&qm->status.flags, QM_WORK);
3018 	hisi_qm_set_state(qm, QM_READY);
3019 
3020 err_unlock:
3021 	up_write(&qm->qps_lock);
3022 	return ret;
3023 }
3024 EXPORT_SYMBOL_GPL(hisi_qm_start);
3025 
3026 static int qm_restart(struct hisi_qm *qm)
3027 {
3028 	struct device *dev = &qm->pdev->dev;
3029 	struct hisi_qp *qp;
3030 	int ret, i;
3031 
3032 	ret = hisi_qm_start(qm);
3033 	if (ret < 0)
3034 		return ret;
3035 
3036 	down_write(&qm->qps_lock);
3037 	for (i = 0; i < qm->qp_num; i++) {
3038 		qp = &qm->qp_array[i];
3039 		if (atomic_read(&qp->qp_status.flags) == QP_STOP &&
3040 		    qp->is_resetting == true) {
3041 			ret = qm_start_qp_nolock(qp, 0);
3042 			if (ret < 0) {
3043 				dev_err(dev, "Failed to start qp%d!\n", i);
3044 
3045 				up_write(&qm->qps_lock);
3046 				return ret;
3047 			}
3048 			qp->is_resetting = false;
3049 		}
3050 	}
3051 	up_write(&qm->qps_lock);
3052 
3053 	return 0;
3054 }
3055 
3056 /* Stop started qps in reset flow */
3057 static int qm_stop_started_qp(struct hisi_qm *qm)
3058 {
3059 	struct device *dev = &qm->pdev->dev;
3060 	struct hisi_qp *qp;
3061 	int i, ret;
3062 
3063 	for (i = 0; i < qm->qp_num; i++) {
3064 		qp = &qm->qp_array[i];
3065 		if (qp && atomic_read(&qp->qp_status.flags) == QP_START) {
3066 			qp->is_resetting = true;
3067 			ret = qm_stop_qp_nolock(qp);
3068 			if (ret < 0) {
3069 				dev_err(dev, "Failed to stop qp%d!\n", i);
3070 				return ret;
3071 			}
3072 		}
3073 	}
3074 
3075 	return 0;
3076 }
3077 
3078 /**
3079  * qm_clear_queues() - Clear all queues memory in a qm.
3080  * @qm: The qm in which the queues will be cleared.
3081  *
3082  * This function clears all queues memory in a qm. Reset of accelerator can
3083  * use this to clear queues.
3084  */
3085 static void qm_clear_queues(struct hisi_qm *qm)
3086 {
3087 	struct hisi_qp *qp;
3088 	int i;
3089 
3090 	for (i = 0; i < qm->qp_num; i++) {
3091 		qp = &qm->qp_array[i];
3092 		if (qp->is_in_kernel && qp->is_resetting)
3093 			memset(qp->qdma.va, 0, qp->qdma.size);
3094 	}
3095 
3096 	memset(qm->qdma.va, 0, qm->qdma.size);
3097 }
3098 
3099 /**
3100  * hisi_qm_stop() - Stop a qm.
3101  * @qm: The qm which will be stopped.
3102  * @r: The reason to stop qm.
3103  *
3104  * This function stops qm and its qps, then qm can not accept request.
3105  * Related resources are not released at this state, we can use hisi_qm_start
3106  * to let qm start again.
3107  */
3108 int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r)
3109 {
3110 	struct device *dev = &qm->pdev->dev;
3111 	int ret = 0;
3112 
3113 	down_write(&qm->qps_lock);
3114 
3115 	qm->status.stop_reason = r;
3116 	if (atomic_read(&qm->status.flags) == QM_STOP)
3117 		goto err_unlock;
3118 
3119 	/* Stop all the request sending at first. */
3120 	atomic_set(&qm->status.flags, QM_STOP);
3121 
3122 	if (qm->status.stop_reason == QM_SOFT_RESET ||
3123 	    qm->status.stop_reason == QM_DOWN) {
3124 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
3125 		ret = qm_stop_started_qp(qm);
3126 		if (ret < 0) {
3127 			dev_err(dev, "Failed to stop started qp!\n");
3128 			goto err_unlock;
3129 		}
3130 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
3131 	}
3132 
3133 	qm_disable_eq_aeq_interrupts(qm);
3134 	if (qm->fun_type == QM_HW_PF) {
3135 		ret = hisi_qm_set_vft(qm, 0, 0, 0);
3136 		if (ret < 0) {
3137 			dev_err(dev, "Failed to set vft!\n");
3138 			ret = -EBUSY;
3139 			goto err_unlock;
3140 		}
3141 	}
3142 
3143 	qm_clear_queues(qm);
3144 
3145 err_unlock:
3146 	up_write(&qm->qps_lock);
3147 	return ret;
3148 }
3149 EXPORT_SYMBOL_GPL(hisi_qm_stop);
3150 
3151 static void qm_hw_error_init(struct hisi_qm *qm)
3152 {
3153 	if (!qm->ops->hw_error_init) {
3154 		dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n");
3155 		return;
3156 	}
3157 
3158 	qm->ops->hw_error_init(qm);
3159 }
3160 
3161 static void qm_hw_error_uninit(struct hisi_qm *qm)
3162 {
3163 	if (!qm->ops->hw_error_uninit) {
3164 		dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n");
3165 		return;
3166 	}
3167 
3168 	qm->ops->hw_error_uninit(qm);
3169 }
3170 
3171 static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm)
3172 {
3173 	if (!qm->ops->hw_error_handle) {
3174 		dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n");
3175 		return ACC_ERR_NONE;
3176 	}
3177 
3178 	return qm->ops->hw_error_handle(qm);
3179 }
3180 
3181 /**
3182  * hisi_qm_dev_err_init() - Initialize device error configuration.
3183  * @qm: The qm for which we want to do error initialization.
3184  *
3185  * Initialize QM and device error related configuration.
3186  */
3187 void hisi_qm_dev_err_init(struct hisi_qm *qm)
3188 {
3189 	if (qm->fun_type == QM_HW_VF)
3190 		return;
3191 
3192 	qm_hw_error_init(qm);
3193 
3194 	if (!qm->err_ini->hw_err_enable) {
3195 		dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n");
3196 		return;
3197 	}
3198 	qm->err_ini->hw_err_enable(qm);
3199 }
3200 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init);
3201 
3202 /**
3203  * hisi_qm_dev_err_uninit() - Uninitialize device error configuration.
3204  * @qm: The qm for which we want to do error uninitialization.
3205  *
3206  * Uninitialize QM and device error related configuration.
3207  */
3208 void hisi_qm_dev_err_uninit(struct hisi_qm *qm)
3209 {
3210 	if (qm->fun_type == QM_HW_VF)
3211 		return;
3212 
3213 	qm_hw_error_uninit(qm);
3214 
3215 	if (!qm->err_ini->hw_err_disable) {
3216 		dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n");
3217 		return;
3218 	}
3219 	qm->err_ini->hw_err_disable(qm);
3220 }
3221 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit);
3222 
3223 /**
3224  * hisi_qm_free_qps() - free multiple queue pairs.
3225  * @qps: The queue pairs need to be freed.
3226  * @qp_num: The num of queue pairs.
3227  */
3228 void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num)
3229 {
3230 	int i;
3231 
3232 	if (!qps || qp_num <= 0)
3233 		return;
3234 
3235 	for (i = qp_num - 1; i >= 0; i--)
3236 		hisi_qm_release_qp(qps[i]);
3237 }
3238 EXPORT_SYMBOL_GPL(hisi_qm_free_qps);
3239 
3240 static void free_list(struct list_head *head)
3241 {
3242 	struct hisi_qm_resource *res, *tmp;
3243 
3244 	list_for_each_entry_safe(res, tmp, head, list) {
3245 		list_del(&res->list);
3246 		kfree(res);
3247 	}
3248 }
3249 
3250 static int hisi_qm_sort_devices(int node, struct list_head *head,
3251 				struct hisi_qm_list *qm_list)
3252 {
3253 	struct hisi_qm_resource *res, *tmp;
3254 	struct hisi_qm *qm;
3255 	struct list_head *n;
3256 	struct device *dev;
3257 	int dev_node;
3258 
3259 	list_for_each_entry(qm, &qm_list->list, list) {
3260 		dev = &qm->pdev->dev;
3261 
3262 		dev_node = dev_to_node(dev);
3263 		if (dev_node < 0)
3264 			dev_node = 0;
3265 
3266 		res = kzalloc(sizeof(*res), GFP_KERNEL);
3267 		if (!res)
3268 			return -ENOMEM;
3269 
3270 		res->qm = qm;
3271 		res->distance = node_distance(dev_node, node);
3272 		n = head;
3273 		list_for_each_entry(tmp, head, list) {
3274 			if (res->distance < tmp->distance) {
3275 				n = &tmp->list;
3276 				break;
3277 			}
3278 		}
3279 		list_add_tail(&res->list, n);
3280 	}
3281 
3282 	return 0;
3283 }
3284 
3285 /**
3286  * hisi_qm_alloc_qps_node() - Create multiple queue pairs.
3287  * @qm_list: The list of all available devices.
3288  * @qp_num: The number of queue pairs need created.
3289  * @alg_type: The algorithm type.
3290  * @node: The numa node.
3291  * @qps: The queue pairs need created.
3292  *
3293  * This function will sort all available device according to numa distance.
3294  * Then try to create all queue pairs from one device, if all devices do
3295  * not meet the requirements will return error.
3296  */
3297 int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num,
3298 			   u8 alg_type, int node, struct hisi_qp **qps)
3299 {
3300 	struct hisi_qm_resource *tmp;
3301 	int ret = -ENODEV;
3302 	LIST_HEAD(head);
3303 	int i;
3304 
3305 	if (!qps || !qm_list || qp_num <= 0)
3306 		return -EINVAL;
3307 
3308 	mutex_lock(&qm_list->lock);
3309 	if (hisi_qm_sort_devices(node, &head, qm_list)) {
3310 		mutex_unlock(&qm_list->lock);
3311 		goto err;
3312 	}
3313 
3314 	list_for_each_entry(tmp, &head, list) {
3315 		for (i = 0; i < qp_num; i++) {
3316 			qps[i] = hisi_qm_create_qp(tmp->qm, alg_type);
3317 			if (IS_ERR(qps[i])) {
3318 				hisi_qm_free_qps(qps, i);
3319 				break;
3320 			}
3321 		}
3322 
3323 		if (i == qp_num) {
3324 			ret = 0;
3325 			break;
3326 		}
3327 	}
3328 
3329 	mutex_unlock(&qm_list->lock);
3330 	if (ret)
3331 		pr_info("Failed to create qps, node[%d], alg[%u], qp[%d]!\n",
3332 			node, alg_type, qp_num);
3333 
3334 err:
3335 	free_list(&head);
3336 	return ret;
3337 }
3338 EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node);
3339 
3340 static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs)
3341 {
3342 	u32 remain_q_num, vfs_q_num, act_q_num, q_num, i, j;
3343 	u32 max_qp_num = qm->max_qp_num;
3344 	u32 q_base = qm->qp_num;
3345 	int ret;
3346 
3347 	if (!num_vfs)
3348 		return -EINVAL;
3349 
3350 	vfs_q_num = qm->ctrl_qp_num - qm->qp_num;
3351 
3352 	/* If vfs_q_num is less than num_vfs, return error. */
3353 	if (vfs_q_num < num_vfs)
3354 		return -EINVAL;
3355 
3356 	q_num = vfs_q_num / num_vfs;
3357 	remain_q_num = vfs_q_num % num_vfs;
3358 
3359 	for (i = num_vfs; i > 0; i--) {
3360 		/*
3361 		 * if q_num + remain_q_num > max_qp_num in last vf, divide the
3362 		 * remaining queues equally.
3363 		 */
3364 		if (i == num_vfs && q_num + remain_q_num <= max_qp_num) {
3365 			act_q_num = q_num + remain_q_num;
3366 			remain_q_num = 0;
3367 		} else if (remain_q_num > 0) {
3368 			act_q_num = q_num + 1;
3369 			remain_q_num--;
3370 		} else {
3371 			act_q_num = q_num;
3372 		}
3373 
3374 		act_q_num = min(act_q_num, max_qp_num);
3375 		ret = hisi_qm_set_vft(qm, i, q_base, act_q_num);
3376 		if (ret) {
3377 			for (j = num_vfs; j > i; j--)
3378 				hisi_qm_set_vft(qm, j, 0, 0);
3379 			return ret;
3380 		}
3381 		q_base += act_q_num;
3382 	}
3383 
3384 	return 0;
3385 }
3386 
3387 static int qm_clear_vft_config(struct hisi_qm *qm)
3388 {
3389 	int ret;
3390 	u32 i;
3391 
3392 	for (i = 1; i <= qm->vfs_num; i++) {
3393 		ret = hisi_qm_set_vft(qm, i, 0, 0);
3394 		if (ret)
3395 			return ret;
3396 	}
3397 	qm->vfs_num = 0;
3398 
3399 	return 0;
3400 }
3401 
3402 static int qm_func_shaper_enable(struct hisi_qm *qm, u32 fun_index, u32 qos)
3403 {
3404 	struct device *dev = &qm->pdev->dev;
3405 	u32 ir = qos * QM_QOS_RATE;
3406 	int ret, total_vfs, i;
3407 
3408 	total_vfs = pci_sriov_get_totalvfs(qm->pdev);
3409 	if (fun_index > total_vfs)
3410 		return -EINVAL;
3411 
3412 	qm->factor[fun_index].func_qos = qos;
3413 
3414 	ret = qm_get_shaper_para(ir, &qm->factor[fun_index]);
3415 	if (ret) {
3416 		dev_err(dev, "failed to calculate shaper parameter!\n");
3417 		return -EINVAL;
3418 	}
3419 
3420 	for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) {
3421 		/* The base number of queue reuse for different alg type */
3422 		ret = qm_set_vft_common(qm, SHAPER_VFT, fun_index, i, 1);
3423 		if (ret) {
3424 			dev_err(dev, "type: %d, failed to set shaper vft!\n", i);
3425 			return -EINVAL;
3426 		}
3427 	}
3428 
3429 	return 0;
3430 }
3431 
3432 static u32 qm_get_shaper_vft_qos(struct hisi_qm *qm, u32 fun_index)
3433 {
3434 	u64 cir_u = 0, cir_b = 0, cir_s = 0;
3435 	u64 shaper_vft, ir_calc, ir;
3436 	unsigned int val;
3437 	u32 error_rate;
3438 	int ret;
3439 
3440 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
3441 					 val & BIT(0), POLL_PERIOD,
3442 					 POLL_TIMEOUT);
3443 	if (ret)
3444 		return 0;
3445 
3446 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_WR);
3447 	writel(SHAPER_VFT, qm->io_base + QM_VFT_CFG_TYPE);
3448 	writel(fun_index, qm->io_base + QM_VFT_CFG);
3449 
3450 	writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
3451 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
3452 
3453 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
3454 					 val & BIT(0), POLL_PERIOD,
3455 					 POLL_TIMEOUT);
3456 	if (ret)
3457 		return 0;
3458 
3459 	shaper_vft = readl(qm->io_base + QM_VFT_CFG_DATA_L) |
3460 		  ((u64)readl(qm->io_base + QM_VFT_CFG_DATA_H) << 32);
3461 
3462 	cir_b = shaper_vft & QM_SHAPER_CIR_B_MASK;
3463 	cir_u = shaper_vft & QM_SHAPER_CIR_U_MASK;
3464 	cir_u = cir_u >> QM_SHAPER_FACTOR_CIR_U_SHIFT;
3465 
3466 	cir_s = shaper_vft & QM_SHAPER_CIR_S_MASK;
3467 	cir_s = cir_s >> QM_SHAPER_FACTOR_CIR_S_SHIFT;
3468 
3469 	ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s);
3470 
3471 	ir = qm->factor[fun_index].func_qos * QM_QOS_RATE;
3472 
3473 	error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir;
3474 	if (error_rate > QM_QOS_MIN_ERROR_RATE) {
3475 		pci_err(qm->pdev, "error_rate: %u, get function qos is error!\n", error_rate);
3476 		return 0;
3477 	}
3478 
3479 	return ir;
3480 }
3481 
3482 static void qm_vf_get_qos(struct hisi_qm *qm, u32 fun_num)
3483 {
3484 	struct device *dev = &qm->pdev->dev;
3485 	u64 mb_cmd;
3486 	u32 qos;
3487 	int ret;
3488 
3489 	qos = qm_get_shaper_vft_qos(qm, fun_num);
3490 	if (!qos) {
3491 		dev_err(dev, "function(%u) failed to get qos by PF!\n", fun_num);
3492 		return;
3493 	}
3494 
3495 	mb_cmd = QM_PF_SET_QOS | (u64)qos << QM_MB_CMD_DATA_SHIFT;
3496 	ret = qm_ping_single_vf(qm, mb_cmd, fun_num);
3497 	if (ret)
3498 		dev_err(dev, "failed to send cmd to VF(%u)!\n", fun_num);
3499 }
3500 
3501 static int qm_vf_read_qos(struct hisi_qm *qm)
3502 {
3503 	int cnt = 0;
3504 	int ret = -EINVAL;
3505 
3506 	/* reset mailbox qos val */
3507 	qm->mb_qos = 0;
3508 
3509 	/* vf ping pf to get function qos */
3510 	ret = qm_ping_pf(qm, QM_VF_GET_QOS);
3511 	if (ret) {
3512 		pci_err(qm->pdev, "failed to send cmd to PF to get qos!\n");
3513 		return ret;
3514 	}
3515 
3516 	while (true) {
3517 		msleep(QM_WAIT_DST_ACK);
3518 		if (qm->mb_qos)
3519 			break;
3520 
3521 		if (++cnt > QM_MAX_VF_WAIT_COUNT) {
3522 			pci_err(qm->pdev, "PF ping VF timeout!\n");
3523 			return  -ETIMEDOUT;
3524 		}
3525 	}
3526 
3527 	return ret;
3528 }
3529 
3530 static ssize_t qm_algqos_read(struct file *filp, char __user *buf,
3531 			       size_t count, loff_t *pos)
3532 {
3533 	struct hisi_qm *qm = filp->private_data;
3534 	char tbuf[QM_DBG_READ_LEN];
3535 	u32 qos_val, ir;
3536 	int ret;
3537 
3538 	ret = hisi_qm_get_dfx_access(qm);
3539 	if (ret)
3540 		return ret;
3541 
3542 	/* Mailbox and reset cannot be operated at the same time */
3543 	if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
3544 		pci_err(qm->pdev, "dev resetting, read alg qos failed!\n");
3545 		ret = -EAGAIN;
3546 		goto err_put_dfx_access;
3547 	}
3548 
3549 	if (qm->fun_type == QM_HW_PF) {
3550 		ir = qm_get_shaper_vft_qos(qm, 0);
3551 	} else {
3552 		ret = qm_vf_read_qos(qm);
3553 		if (ret)
3554 			goto err_get_status;
3555 		ir = qm->mb_qos;
3556 	}
3557 
3558 	qos_val = ir / QM_QOS_RATE;
3559 	ret = scnprintf(tbuf, QM_DBG_READ_LEN, "%u\n", qos_val);
3560 
3561 	ret = simple_read_from_buffer(buf, count, pos, tbuf, ret);
3562 
3563 err_get_status:
3564 	clear_bit(QM_RESETTING, &qm->misc_ctl);
3565 err_put_dfx_access:
3566 	hisi_qm_put_dfx_access(qm);
3567 	return ret;
3568 }
3569 
3570 static ssize_t qm_get_qos_value(struct hisi_qm *qm, const char *buf,
3571 			       unsigned long *val,
3572 			       unsigned int *fun_index)
3573 {
3574 	const struct bus_type *bus_type = qm->pdev->dev.bus;
3575 	char tbuf_bdf[QM_DBG_READ_LEN] = {0};
3576 	char val_buf[QM_DBG_READ_LEN] = {0};
3577 	struct pci_dev *pdev;
3578 	struct device *dev;
3579 	int ret;
3580 
3581 	ret = sscanf(buf, "%s %s", tbuf_bdf, val_buf);
3582 	if (ret != QM_QOS_PARAM_NUM)
3583 		return -EINVAL;
3584 
3585 	ret = kstrtoul(val_buf, 10, val);
3586 	if (ret || *val == 0 || *val > QM_QOS_MAX_VAL) {
3587 		pci_err(qm->pdev, "input qos value is error, please set 1~1000!\n");
3588 		return -EINVAL;
3589 	}
3590 
3591 	dev = bus_find_device_by_name(bus_type, NULL, tbuf_bdf);
3592 	if (!dev) {
3593 		pci_err(qm->pdev, "input pci bdf number is error!\n");
3594 		return -ENODEV;
3595 	}
3596 
3597 	pdev = container_of(dev, struct pci_dev, dev);
3598 
3599 	*fun_index = pdev->devfn;
3600 
3601 	return 0;
3602 }
3603 
3604 static ssize_t qm_algqos_write(struct file *filp, const char __user *buf,
3605 			       size_t count, loff_t *pos)
3606 {
3607 	struct hisi_qm *qm = filp->private_data;
3608 	char tbuf[QM_DBG_READ_LEN];
3609 	unsigned int fun_index;
3610 	unsigned long val;
3611 	int len, ret;
3612 
3613 	if (*pos != 0)
3614 		return 0;
3615 
3616 	if (count >= QM_DBG_READ_LEN)
3617 		return -ENOSPC;
3618 
3619 	len = simple_write_to_buffer(tbuf, QM_DBG_READ_LEN - 1, pos, buf, count);
3620 	if (len < 0)
3621 		return len;
3622 
3623 	tbuf[len] = '\0';
3624 	ret = qm_get_qos_value(qm, tbuf, &val, &fun_index);
3625 	if (ret)
3626 		return ret;
3627 
3628 	/* Mailbox and reset cannot be operated at the same time */
3629 	if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
3630 		pci_err(qm->pdev, "dev resetting, write alg qos failed!\n");
3631 		return -EAGAIN;
3632 	}
3633 
3634 	ret = qm_pm_get_sync(qm);
3635 	if (ret) {
3636 		ret = -EINVAL;
3637 		goto err_get_status;
3638 	}
3639 
3640 	ret = qm_func_shaper_enable(qm, fun_index, val);
3641 	if (ret) {
3642 		pci_err(qm->pdev, "failed to enable function shaper!\n");
3643 		ret = -EINVAL;
3644 		goto err_put_sync;
3645 	}
3646 
3647 	pci_info(qm->pdev, "the qos value of function%u is set to %lu.\n",
3648 		 fun_index, val);
3649 	ret = count;
3650 
3651 err_put_sync:
3652 	qm_pm_put_sync(qm);
3653 err_get_status:
3654 	clear_bit(QM_RESETTING, &qm->misc_ctl);
3655 	return ret;
3656 }
3657 
3658 static const struct file_operations qm_algqos_fops = {
3659 	.owner = THIS_MODULE,
3660 	.open = simple_open,
3661 	.read = qm_algqos_read,
3662 	.write = qm_algqos_write,
3663 };
3664 
3665 /**
3666  * hisi_qm_set_algqos_init() - Initialize function qos debugfs files.
3667  * @qm: The qm for which we want to add debugfs files.
3668  *
3669  * Create function qos debugfs files, VF ping PF to get function qos.
3670  */
3671 void hisi_qm_set_algqos_init(struct hisi_qm *qm)
3672 {
3673 	if (qm->fun_type == QM_HW_PF)
3674 		debugfs_create_file("alg_qos", 0644, qm->debug.debug_root,
3675 				    qm, &qm_algqos_fops);
3676 	else if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
3677 		debugfs_create_file("alg_qos", 0444, qm->debug.debug_root,
3678 				    qm, &qm_algqos_fops);
3679 }
3680 
3681 static void hisi_qm_init_vf_qos(struct hisi_qm *qm, int total_func)
3682 {
3683 	int i;
3684 
3685 	for (i = 1; i <= total_func; i++)
3686 		qm->factor[i].func_qos = QM_QOS_MAX_VAL;
3687 }
3688 
3689 /**
3690  * hisi_qm_sriov_enable() - enable virtual functions
3691  * @pdev: the PCIe device
3692  * @max_vfs: the number of virtual functions to enable
3693  *
3694  * Returns the number of enabled VFs. If there are VFs enabled already or
3695  * max_vfs is more than the total number of device can be enabled, returns
3696  * failure.
3697  */
3698 int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs)
3699 {
3700 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3701 	int pre_existing_vfs, num_vfs, total_vfs, ret;
3702 
3703 	ret = qm_pm_get_sync(qm);
3704 	if (ret)
3705 		return ret;
3706 
3707 	total_vfs = pci_sriov_get_totalvfs(pdev);
3708 	pre_existing_vfs = pci_num_vf(pdev);
3709 	if (pre_existing_vfs) {
3710 		pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n",
3711 			pre_existing_vfs);
3712 		goto err_put_sync;
3713 	}
3714 
3715 	if (max_vfs > total_vfs) {
3716 		pci_err(pdev, "%d VFs is more than total VFs %d!\n", max_vfs, total_vfs);
3717 		ret = -ERANGE;
3718 		goto err_put_sync;
3719 	}
3720 
3721 	num_vfs = max_vfs;
3722 
3723 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
3724 		hisi_qm_init_vf_qos(qm, num_vfs);
3725 
3726 	ret = qm_vf_q_assign(qm, num_vfs);
3727 	if (ret) {
3728 		pci_err(pdev, "Can't assign queues for VF!\n");
3729 		goto err_put_sync;
3730 	}
3731 
3732 	qm->vfs_num = num_vfs;
3733 
3734 	ret = pci_enable_sriov(pdev, num_vfs);
3735 	if (ret) {
3736 		pci_err(pdev, "Can't enable VF!\n");
3737 		qm_clear_vft_config(qm);
3738 		goto err_put_sync;
3739 	}
3740 
3741 	pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs);
3742 
3743 	return num_vfs;
3744 
3745 err_put_sync:
3746 	qm_pm_put_sync(qm);
3747 	return ret;
3748 }
3749 EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable);
3750 
3751 /**
3752  * hisi_qm_sriov_disable - disable virtual functions
3753  * @pdev: the PCI device.
3754  * @is_frozen: true when all the VFs are frozen.
3755  *
3756  * Return failure if there are VFs assigned already or VF is in used.
3757  */
3758 int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen)
3759 {
3760 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3761 	int ret;
3762 
3763 	if (pci_vfs_assigned(pdev)) {
3764 		pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n");
3765 		return -EPERM;
3766 	}
3767 
3768 	/* While VF is in used, SRIOV cannot be disabled. */
3769 	if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) {
3770 		pci_err(pdev, "Task is using its VF!\n");
3771 		return -EBUSY;
3772 	}
3773 
3774 	pci_disable_sriov(pdev);
3775 
3776 	ret = qm_clear_vft_config(qm);
3777 	if (ret)
3778 		return ret;
3779 
3780 	qm_pm_put_sync(qm);
3781 
3782 	return 0;
3783 }
3784 EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable);
3785 
3786 /**
3787  * hisi_qm_sriov_configure - configure the number of VFs
3788  * @pdev: The PCI device
3789  * @num_vfs: The number of VFs need enabled
3790  *
3791  * Enable SR-IOV according to num_vfs, 0 means disable.
3792  */
3793 int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs)
3794 {
3795 	if (num_vfs == 0)
3796 		return hisi_qm_sriov_disable(pdev, false);
3797 	else
3798 		return hisi_qm_sriov_enable(pdev, num_vfs);
3799 }
3800 EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure);
3801 
3802 static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm)
3803 {
3804 	u32 err_sts;
3805 
3806 	if (!qm->err_ini->get_dev_hw_err_status) {
3807 		dev_err(&qm->pdev->dev, "Device doesn't support get hw error status!\n");
3808 		return ACC_ERR_NONE;
3809 	}
3810 
3811 	/* get device hardware error status */
3812 	err_sts = qm->err_ini->get_dev_hw_err_status(qm);
3813 	if (err_sts) {
3814 		if (err_sts & qm->err_info.ecc_2bits_mask)
3815 			qm->err_status.is_dev_ecc_mbit = true;
3816 
3817 		if (qm->err_ini->log_dev_hw_err)
3818 			qm->err_ini->log_dev_hw_err(qm, err_sts);
3819 
3820 		if (err_sts & qm->err_info.dev_reset_mask)
3821 			return ACC_ERR_NEED_RESET;
3822 
3823 		if (qm->err_ini->clear_dev_hw_err_status)
3824 			qm->err_ini->clear_dev_hw_err_status(qm, err_sts);
3825 	}
3826 
3827 	return ACC_ERR_RECOVERED;
3828 }
3829 
3830 static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm)
3831 {
3832 	enum acc_err_result qm_ret, dev_ret;
3833 
3834 	/* log qm error */
3835 	qm_ret = qm_hw_error_handle(qm);
3836 
3837 	/* log device error */
3838 	dev_ret = qm_dev_err_handle(qm);
3839 
3840 	return (qm_ret == ACC_ERR_NEED_RESET ||
3841 		dev_ret == ACC_ERR_NEED_RESET) ?
3842 		ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED;
3843 }
3844 
3845 /**
3846  * hisi_qm_dev_err_detected() - Get device and qm error status then log it.
3847  * @pdev: The PCI device which need report error.
3848  * @state: The connectivity between CPU and device.
3849  *
3850  * We register this function into PCIe AER handlers, It will report device or
3851  * qm hardware error status when error occur.
3852  */
3853 pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev,
3854 					  pci_channel_state_t state)
3855 {
3856 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3857 	enum acc_err_result ret;
3858 
3859 	if (pdev->is_virtfn)
3860 		return PCI_ERS_RESULT_NONE;
3861 
3862 	pci_info(pdev, "PCI error detected, state(=%u)!!\n", state);
3863 	if (state == pci_channel_io_perm_failure)
3864 		return PCI_ERS_RESULT_DISCONNECT;
3865 
3866 	ret = qm_process_dev_error(qm);
3867 	if (ret == ACC_ERR_NEED_RESET)
3868 		return PCI_ERS_RESULT_NEED_RESET;
3869 
3870 	return PCI_ERS_RESULT_RECOVERED;
3871 }
3872 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected);
3873 
3874 static int qm_check_req_recv(struct hisi_qm *qm)
3875 {
3876 	struct pci_dev *pdev = qm->pdev;
3877 	int ret;
3878 	u32 val;
3879 
3880 	if (qm->ver >= QM_HW_V3)
3881 		return 0;
3882 
3883 	writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID);
3884 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
3885 					 (val == ACC_VENDOR_ID_VALUE),
3886 					 POLL_PERIOD, POLL_TIMEOUT);
3887 	if (ret) {
3888 		dev_err(&pdev->dev, "Fails to read QM reg!\n");
3889 		return ret;
3890 	}
3891 
3892 	writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID);
3893 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
3894 					 (val == PCI_VENDOR_ID_HUAWEI),
3895 					 POLL_PERIOD, POLL_TIMEOUT);
3896 	if (ret)
3897 		dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n");
3898 
3899 	return ret;
3900 }
3901 
3902 static int qm_set_pf_mse(struct hisi_qm *qm, bool set)
3903 {
3904 	struct pci_dev *pdev = qm->pdev;
3905 	u16 cmd;
3906 	int i;
3907 
3908 	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
3909 	if (set)
3910 		cmd |= PCI_COMMAND_MEMORY;
3911 	else
3912 		cmd &= ~PCI_COMMAND_MEMORY;
3913 
3914 	pci_write_config_word(pdev, PCI_COMMAND, cmd);
3915 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
3916 		pci_read_config_word(pdev, PCI_COMMAND, &cmd);
3917 		if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1))
3918 			return 0;
3919 
3920 		udelay(1);
3921 	}
3922 
3923 	return -ETIMEDOUT;
3924 }
3925 
3926 static int qm_set_vf_mse(struct hisi_qm *qm, bool set)
3927 {
3928 	struct pci_dev *pdev = qm->pdev;
3929 	u16 sriov_ctrl;
3930 	int pos;
3931 	int i;
3932 
3933 	/*
3934 	 * Since function qm_set_vf_mse is called only after SRIOV is enabled,
3935 	 * pci_find_ext_capability cannot return 0, pos does not need to be
3936 	 * checked.
3937 	 */
3938 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
3939 	pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
3940 	if (set)
3941 		sriov_ctrl |= PCI_SRIOV_CTRL_MSE;
3942 	else
3943 		sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE;
3944 	pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl);
3945 
3946 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
3947 		pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
3948 		if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >>
3949 		    ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT)
3950 			return 0;
3951 
3952 		udelay(1);
3953 	}
3954 
3955 	return -ETIMEDOUT;
3956 }
3957 
3958 static int qm_vf_reset_prepare(struct hisi_qm *qm,
3959 			       enum qm_stop_reason stop_reason)
3960 {
3961 	struct hisi_qm_list *qm_list = qm->qm_list;
3962 	struct pci_dev *pdev = qm->pdev;
3963 	struct pci_dev *virtfn;
3964 	struct hisi_qm *vf_qm;
3965 	int ret = 0;
3966 
3967 	mutex_lock(&qm_list->lock);
3968 	list_for_each_entry(vf_qm, &qm_list->list, list) {
3969 		virtfn = vf_qm->pdev;
3970 		if (virtfn == pdev)
3971 			continue;
3972 
3973 		if (pci_physfn(virtfn) == pdev) {
3974 			/* save VFs PCIE BAR configuration */
3975 			pci_save_state(virtfn);
3976 
3977 			ret = hisi_qm_stop(vf_qm, stop_reason);
3978 			if (ret)
3979 				goto stop_fail;
3980 		}
3981 	}
3982 
3983 stop_fail:
3984 	mutex_unlock(&qm_list->lock);
3985 	return ret;
3986 }
3987 
3988 static int qm_try_stop_vfs(struct hisi_qm *qm, u64 cmd,
3989 			   enum qm_stop_reason stop_reason)
3990 {
3991 	struct pci_dev *pdev = qm->pdev;
3992 	int ret;
3993 
3994 	if (!qm->vfs_num)
3995 		return 0;
3996 
3997 	/* Kunpeng930 supports to notify VFs to stop before PF reset */
3998 	if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) {
3999 		ret = qm_ping_all_vfs(qm, cmd);
4000 		if (ret)
4001 			pci_err(pdev, "failed to send cmd to all VFs before PF reset!\n");
4002 	} else {
4003 		ret = qm_vf_reset_prepare(qm, stop_reason);
4004 		if (ret)
4005 			pci_err(pdev, "failed to prepare reset, ret = %d.\n", ret);
4006 	}
4007 
4008 	return ret;
4009 }
4010 
4011 static int qm_controller_reset_prepare(struct hisi_qm *qm)
4012 {
4013 	struct pci_dev *pdev = qm->pdev;
4014 	int ret;
4015 
4016 	ret = qm_reset_prepare_ready(qm);
4017 	if (ret) {
4018 		pci_err(pdev, "Controller reset not ready!\n");
4019 		return ret;
4020 	}
4021 
4022 	/* PF obtains the information of VF by querying the register. */
4023 	qm_cmd_uninit(qm);
4024 
4025 	/* Whether VFs stop successfully, soft reset will continue. */
4026 	ret = qm_try_stop_vfs(qm, QM_PF_SRST_PREPARE, QM_SOFT_RESET);
4027 	if (ret)
4028 		pci_err(pdev, "failed to stop vfs by pf in soft reset.\n");
4029 
4030 	ret = hisi_qm_stop(qm, QM_SOFT_RESET);
4031 	if (ret) {
4032 		pci_err(pdev, "Fails to stop QM!\n");
4033 		qm_reset_bit_clear(qm);
4034 		return ret;
4035 	}
4036 
4037 	if (qm->use_sva) {
4038 		ret = qm_hw_err_isolate(qm);
4039 		if (ret)
4040 			pci_err(pdev, "failed to isolate hw err!\n");
4041 	}
4042 
4043 	ret = qm_wait_vf_prepare_finish(qm);
4044 	if (ret)
4045 		pci_err(pdev, "failed to stop by vfs in soft reset!\n");
4046 
4047 	clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4048 
4049 	return 0;
4050 }
4051 
4052 static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm)
4053 {
4054 	u32 nfe_enb = 0;
4055 
4056 	/* Kunpeng930 hardware automatically close master ooo when NFE occurs */
4057 	if (qm->ver >= QM_HW_V3)
4058 		return;
4059 
4060 	if (!qm->err_status.is_dev_ecc_mbit &&
4061 	    qm->err_status.is_qm_ecc_mbit &&
4062 	    qm->err_ini->close_axi_master_ooo) {
4063 		qm->err_ini->close_axi_master_ooo(qm);
4064 	} else if (qm->err_status.is_dev_ecc_mbit &&
4065 		   !qm->err_status.is_qm_ecc_mbit &&
4066 		   !qm->err_ini->close_axi_master_ooo) {
4067 		nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE);
4068 		writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE,
4069 		       qm->io_base + QM_RAS_NFE_ENABLE);
4070 		writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET);
4071 	}
4072 }
4073 
4074 static int qm_soft_reset(struct hisi_qm *qm)
4075 {
4076 	struct pci_dev *pdev = qm->pdev;
4077 	int ret;
4078 	u32 val;
4079 
4080 	/* Ensure all doorbells and mailboxes received by QM */
4081 	ret = qm_check_req_recv(qm);
4082 	if (ret)
4083 		return ret;
4084 
4085 	if (qm->vfs_num) {
4086 		ret = qm_set_vf_mse(qm, false);
4087 		if (ret) {
4088 			pci_err(pdev, "Fails to disable vf MSE bit.\n");
4089 			return ret;
4090 		}
4091 	}
4092 
4093 	ret = qm->ops->set_msi(qm, false);
4094 	if (ret) {
4095 		pci_err(pdev, "Fails to disable PEH MSI bit.\n");
4096 		return ret;
4097 	}
4098 
4099 	qm_dev_ecc_mbit_handle(qm);
4100 
4101 	/* OOO register set and check */
4102 	writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN,
4103 	       qm->io_base + ACC_MASTER_GLOBAL_CTRL);
4104 
4105 	/* If bus lock, reset chip */
4106 	ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN,
4107 					 val,
4108 					 (val == ACC_MASTER_TRANS_RETURN_RW),
4109 					 POLL_PERIOD, POLL_TIMEOUT);
4110 	if (ret) {
4111 		pci_emerg(pdev, "Bus lock! Please reset system.\n");
4112 		return ret;
4113 	}
4114 
4115 	if (qm->err_ini->close_sva_prefetch)
4116 		qm->err_ini->close_sva_prefetch(qm);
4117 
4118 	ret = qm_set_pf_mse(qm, false);
4119 	if (ret) {
4120 		pci_err(pdev, "Fails to disable pf MSE bit.\n");
4121 		return ret;
4122 	}
4123 
4124 	/* The reset related sub-control registers are not in PCI BAR */
4125 	if (ACPI_HANDLE(&pdev->dev)) {
4126 		unsigned long long value = 0;
4127 		acpi_status s;
4128 
4129 		s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev),
4130 					  qm->err_info.acpi_rst,
4131 					  NULL, &value);
4132 		if (ACPI_FAILURE(s)) {
4133 			pci_err(pdev, "NO controller reset method!\n");
4134 			return -EIO;
4135 		}
4136 
4137 		if (value) {
4138 			pci_err(pdev, "Reset step %llu failed!\n", value);
4139 			return -EIO;
4140 		}
4141 	} else {
4142 		pci_err(pdev, "No reset method!\n");
4143 		return -EINVAL;
4144 	}
4145 
4146 	return 0;
4147 }
4148 
4149 static int qm_vf_reset_done(struct hisi_qm *qm)
4150 {
4151 	struct hisi_qm_list *qm_list = qm->qm_list;
4152 	struct pci_dev *pdev = qm->pdev;
4153 	struct pci_dev *virtfn;
4154 	struct hisi_qm *vf_qm;
4155 	int ret = 0;
4156 
4157 	mutex_lock(&qm_list->lock);
4158 	list_for_each_entry(vf_qm, &qm_list->list, list) {
4159 		virtfn = vf_qm->pdev;
4160 		if (virtfn == pdev)
4161 			continue;
4162 
4163 		if (pci_physfn(virtfn) == pdev) {
4164 			/* enable VFs PCIE BAR configuration */
4165 			pci_restore_state(virtfn);
4166 
4167 			ret = qm_restart(vf_qm);
4168 			if (ret)
4169 				goto restart_fail;
4170 		}
4171 	}
4172 
4173 restart_fail:
4174 	mutex_unlock(&qm_list->lock);
4175 	return ret;
4176 }
4177 
4178 static int qm_try_start_vfs(struct hisi_qm *qm, enum qm_mb_cmd cmd)
4179 {
4180 	struct pci_dev *pdev = qm->pdev;
4181 	int ret;
4182 
4183 	if (!qm->vfs_num)
4184 		return 0;
4185 
4186 	ret = qm_vf_q_assign(qm, qm->vfs_num);
4187 	if (ret) {
4188 		pci_err(pdev, "failed to assign VFs, ret = %d.\n", ret);
4189 		return ret;
4190 	}
4191 
4192 	/* Kunpeng930 supports to notify VFs to start after PF reset. */
4193 	if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) {
4194 		ret = qm_ping_all_vfs(qm, cmd);
4195 		if (ret)
4196 			pci_warn(pdev, "failed to send cmd to all VFs after PF reset!\n");
4197 	} else {
4198 		ret = qm_vf_reset_done(qm);
4199 		if (ret)
4200 			pci_warn(pdev, "failed to start vfs, ret = %d.\n", ret);
4201 	}
4202 
4203 	return ret;
4204 }
4205 
4206 static int qm_dev_hw_init(struct hisi_qm *qm)
4207 {
4208 	return qm->err_ini->hw_init(qm);
4209 }
4210 
4211 static void qm_restart_prepare(struct hisi_qm *qm)
4212 {
4213 	u32 value;
4214 
4215 	if (qm->err_ini->open_sva_prefetch)
4216 		qm->err_ini->open_sva_prefetch(qm);
4217 
4218 	if (qm->ver >= QM_HW_V3)
4219 		return;
4220 
4221 	if (!qm->err_status.is_qm_ecc_mbit &&
4222 	    !qm->err_status.is_dev_ecc_mbit)
4223 		return;
4224 
4225 	/* temporarily close the OOO port used for PEH to write out MSI */
4226 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4227 	writel(value & ~qm->err_info.msi_wr_port,
4228 	       qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4229 
4230 	/* clear dev ecc 2bit error source if having */
4231 	value = qm_get_dev_err_status(qm) & qm->err_info.ecc_2bits_mask;
4232 	if (value && qm->err_ini->clear_dev_hw_err_status)
4233 		qm->err_ini->clear_dev_hw_err_status(qm, value);
4234 
4235 	/* clear QM ecc mbit error source */
4236 	writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE);
4237 
4238 	/* clear AM Reorder Buffer ecc mbit source */
4239 	writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS);
4240 }
4241 
4242 static void qm_restart_done(struct hisi_qm *qm)
4243 {
4244 	u32 value;
4245 
4246 	if (qm->ver >= QM_HW_V3)
4247 		goto clear_flags;
4248 
4249 	if (!qm->err_status.is_qm_ecc_mbit &&
4250 	    !qm->err_status.is_dev_ecc_mbit)
4251 		return;
4252 
4253 	/* open the OOO port for PEH to write out MSI */
4254 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4255 	value |= qm->err_info.msi_wr_port;
4256 	writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4257 
4258 clear_flags:
4259 	qm->err_status.is_qm_ecc_mbit = false;
4260 	qm->err_status.is_dev_ecc_mbit = false;
4261 }
4262 
4263 static int qm_controller_reset_done(struct hisi_qm *qm)
4264 {
4265 	struct pci_dev *pdev = qm->pdev;
4266 	int ret;
4267 
4268 	ret = qm->ops->set_msi(qm, true);
4269 	if (ret) {
4270 		pci_err(pdev, "Fails to enable PEH MSI bit!\n");
4271 		return ret;
4272 	}
4273 
4274 	ret = qm_set_pf_mse(qm, true);
4275 	if (ret) {
4276 		pci_err(pdev, "Fails to enable pf MSE bit!\n");
4277 		return ret;
4278 	}
4279 
4280 	if (qm->vfs_num) {
4281 		ret = qm_set_vf_mse(qm, true);
4282 		if (ret) {
4283 			pci_err(pdev, "Fails to enable vf MSE bit!\n");
4284 			return ret;
4285 		}
4286 	}
4287 
4288 	ret = qm_dev_hw_init(qm);
4289 	if (ret) {
4290 		pci_err(pdev, "Failed to init device\n");
4291 		return ret;
4292 	}
4293 
4294 	qm_restart_prepare(qm);
4295 	hisi_qm_dev_err_init(qm);
4296 	if (qm->err_ini->open_axi_master_ooo)
4297 		qm->err_ini->open_axi_master_ooo(qm);
4298 
4299 	ret = qm_dev_mem_reset(qm);
4300 	if (ret) {
4301 		pci_err(pdev, "failed to reset device memory\n");
4302 		return ret;
4303 	}
4304 
4305 	ret = qm_restart(qm);
4306 	if (ret) {
4307 		pci_err(pdev, "Failed to start QM!\n");
4308 		return ret;
4309 	}
4310 
4311 	ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE);
4312 	if (ret)
4313 		pci_err(pdev, "failed to start vfs by pf in soft reset.\n");
4314 
4315 	ret = qm_wait_vf_prepare_finish(qm);
4316 	if (ret)
4317 		pci_err(pdev, "failed to start by vfs in soft reset!\n");
4318 
4319 	qm_cmd_init(qm);
4320 	qm_restart_done(qm);
4321 
4322 	qm_reset_bit_clear(qm);
4323 
4324 	return 0;
4325 }
4326 
4327 static int qm_controller_reset(struct hisi_qm *qm)
4328 {
4329 	struct pci_dev *pdev = qm->pdev;
4330 	int ret;
4331 
4332 	pci_info(pdev, "Controller resetting...\n");
4333 
4334 	ret = qm_controller_reset_prepare(qm);
4335 	if (ret) {
4336 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4337 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4338 		clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4339 		return ret;
4340 	}
4341 
4342 	hisi_qm_show_last_dfx_regs(qm);
4343 	if (qm->err_ini->show_last_dfx_regs)
4344 		qm->err_ini->show_last_dfx_regs(qm);
4345 
4346 	ret = qm_soft_reset(qm);
4347 	if (ret)
4348 		goto err_reset;
4349 
4350 	ret = qm_controller_reset_done(qm);
4351 	if (ret)
4352 		goto err_reset;
4353 
4354 	pci_info(pdev, "Controller reset complete\n");
4355 
4356 	return 0;
4357 
4358 err_reset:
4359 	pci_err(pdev, "Controller reset failed (%d)\n", ret);
4360 	qm_reset_bit_clear(qm);
4361 
4362 	/* if resetting fails, isolate the device */
4363 	if (qm->use_sva)
4364 		qm->isolate_data.is_isolate = true;
4365 	return ret;
4366 }
4367 
4368 /**
4369  * hisi_qm_dev_slot_reset() - slot reset
4370  * @pdev: the PCIe device
4371  *
4372  * This function offers QM relate PCIe device reset interface. Drivers which
4373  * use QM can use this function as slot_reset in its struct pci_error_handlers.
4374  */
4375 pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev)
4376 {
4377 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4378 	int ret;
4379 
4380 	if (pdev->is_virtfn)
4381 		return PCI_ERS_RESULT_RECOVERED;
4382 
4383 	/* reset pcie device controller */
4384 	ret = qm_controller_reset(qm);
4385 	if (ret) {
4386 		pci_err(pdev, "Controller reset failed (%d)\n", ret);
4387 		return PCI_ERS_RESULT_DISCONNECT;
4388 	}
4389 
4390 	return PCI_ERS_RESULT_RECOVERED;
4391 }
4392 EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset);
4393 
4394 void hisi_qm_reset_prepare(struct pci_dev *pdev)
4395 {
4396 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
4397 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4398 	u32 delay = 0;
4399 	int ret;
4400 
4401 	hisi_qm_dev_err_uninit(pf_qm);
4402 
4403 	/*
4404 	 * Check whether there is an ECC mbit error, If it occurs, need to
4405 	 * wait for soft reset to fix it.
4406 	 */
4407 	while (qm_check_dev_error(pf_qm)) {
4408 		msleep(++delay);
4409 		if (delay > QM_RESET_WAIT_TIMEOUT)
4410 			return;
4411 	}
4412 
4413 	ret = qm_reset_prepare_ready(qm);
4414 	if (ret) {
4415 		pci_err(pdev, "FLR not ready!\n");
4416 		return;
4417 	}
4418 
4419 	/* PF obtains the information of VF by querying the register. */
4420 	if (qm->fun_type == QM_HW_PF)
4421 		qm_cmd_uninit(qm);
4422 
4423 	ret = qm_try_stop_vfs(qm, QM_PF_FLR_PREPARE, QM_DOWN);
4424 	if (ret)
4425 		pci_err(pdev, "failed to stop vfs by pf in FLR.\n");
4426 
4427 	ret = hisi_qm_stop(qm, QM_DOWN);
4428 	if (ret) {
4429 		pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret);
4430 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4431 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4432 		return;
4433 	}
4434 
4435 	ret = qm_wait_vf_prepare_finish(qm);
4436 	if (ret)
4437 		pci_err(pdev, "failed to stop by vfs in FLR!\n");
4438 
4439 	pci_info(pdev, "FLR resetting...\n");
4440 }
4441 EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare);
4442 
4443 static bool qm_flr_reset_complete(struct pci_dev *pdev)
4444 {
4445 	struct pci_dev *pf_pdev = pci_physfn(pdev);
4446 	struct hisi_qm *qm = pci_get_drvdata(pf_pdev);
4447 	u32 id;
4448 
4449 	pci_read_config_dword(qm->pdev, PCI_COMMAND, &id);
4450 	if (id == QM_PCI_COMMAND_INVALID) {
4451 		pci_err(pdev, "Device can not be used!\n");
4452 		return false;
4453 	}
4454 
4455 	return true;
4456 }
4457 
4458 void hisi_qm_reset_done(struct pci_dev *pdev)
4459 {
4460 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
4461 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4462 	int ret;
4463 
4464 	if (qm->fun_type == QM_HW_PF) {
4465 		ret = qm_dev_hw_init(qm);
4466 		if (ret) {
4467 			pci_err(pdev, "Failed to init PF, ret = %d.\n", ret);
4468 			goto flr_done;
4469 		}
4470 	}
4471 
4472 	hisi_qm_dev_err_init(pf_qm);
4473 
4474 	ret = qm_restart(qm);
4475 	if (ret) {
4476 		pci_err(pdev, "Failed to start QM, ret = %d.\n", ret);
4477 		goto flr_done;
4478 	}
4479 
4480 	ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE);
4481 	if (ret)
4482 		pci_err(pdev, "failed to start vfs by pf in FLR.\n");
4483 
4484 	ret = qm_wait_vf_prepare_finish(qm);
4485 	if (ret)
4486 		pci_err(pdev, "failed to start by vfs in FLR!\n");
4487 
4488 flr_done:
4489 	if (qm->fun_type == QM_HW_PF)
4490 		qm_cmd_init(qm);
4491 
4492 	if (qm_flr_reset_complete(pdev))
4493 		pci_info(pdev, "FLR reset complete\n");
4494 
4495 	qm_reset_bit_clear(qm);
4496 }
4497 EXPORT_SYMBOL_GPL(hisi_qm_reset_done);
4498 
4499 static irqreturn_t qm_abnormal_irq(int irq, void *data)
4500 {
4501 	struct hisi_qm *qm = data;
4502 	enum acc_err_result ret;
4503 
4504 	atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt);
4505 	ret = qm_process_dev_error(qm);
4506 	if (ret == ACC_ERR_NEED_RESET &&
4507 	    !test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl) &&
4508 	    !test_and_set_bit(QM_RST_SCHED, &qm->misc_ctl))
4509 		schedule_work(&qm->rst_work);
4510 
4511 	return IRQ_HANDLED;
4512 }
4513 
4514 /**
4515  * hisi_qm_dev_shutdown() - Shutdown device.
4516  * @pdev: The device will be shutdown.
4517  *
4518  * This function will stop qm when OS shutdown or rebooting.
4519  */
4520 void hisi_qm_dev_shutdown(struct pci_dev *pdev)
4521 {
4522 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4523 	int ret;
4524 
4525 	ret = hisi_qm_stop(qm, QM_DOWN);
4526 	if (ret)
4527 		dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n");
4528 
4529 	hisi_qm_cache_wb(qm);
4530 }
4531 EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown);
4532 
4533 static void hisi_qm_controller_reset(struct work_struct *rst_work)
4534 {
4535 	struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work);
4536 	int ret;
4537 
4538 	ret = qm_pm_get_sync(qm);
4539 	if (ret) {
4540 		clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4541 		return;
4542 	}
4543 
4544 	/* reset pcie device controller */
4545 	ret = qm_controller_reset(qm);
4546 	if (ret)
4547 		dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret);
4548 
4549 	qm_pm_put_sync(qm);
4550 }
4551 
4552 static void qm_pf_reset_vf_prepare(struct hisi_qm *qm,
4553 				   enum qm_stop_reason stop_reason)
4554 {
4555 	enum qm_mb_cmd cmd = QM_VF_PREPARE_DONE;
4556 	struct pci_dev *pdev = qm->pdev;
4557 	int ret;
4558 
4559 	ret = qm_reset_prepare_ready(qm);
4560 	if (ret) {
4561 		dev_err(&pdev->dev, "reset prepare not ready!\n");
4562 		atomic_set(&qm->status.flags, QM_STOP);
4563 		cmd = QM_VF_PREPARE_FAIL;
4564 		goto err_prepare;
4565 	}
4566 
4567 	ret = hisi_qm_stop(qm, stop_reason);
4568 	if (ret) {
4569 		dev_err(&pdev->dev, "failed to stop QM, ret = %d.\n", ret);
4570 		atomic_set(&qm->status.flags, QM_STOP);
4571 		cmd = QM_VF_PREPARE_FAIL;
4572 		goto err_prepare;
4573 	} else {
4574 		goto out;
4575 	}
4576 
4577 err_prepare:
4578 	hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4579 	hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4580 out:
4581 	pci_save_state(pdev);
4582 	ret = qm_ping_pf(qm, cmd);
4583 	if (ret)
4584 		dev_warn(&pdev->dev, "PF responds timeout in reset prepare!\n");
4585 }
4586 
4587 static void qm_pf_reset_vf_done(struct hisi_qm *qm)
4588 {
4589 	enum qm_mb_cmd cmd = QM_VF_START_DONE;
4590 	struct pci_dev *pdev = qm->pdev;
4591 	int ret;
4592 
4593 	pci_restore_state(pdev);
4594 	ret = hisi_qm_start(qm);
4595 	if (ret) {
4596 		dev_err(&pdev->dev, "failed to start QM, ret = %d.\n", ret);
4597 		cmd = QM_VF_START_FAIL;
4598 	}
4599 
4600 	qm_cmd_init(qm);
4601 	ret = qm_ping_pf(qm, cmd);
4602 	if (ret)
4603 		dev_warn(&pdev->dev, "PF responds timeout in reset done!\n");
4604 
4605 	qm_reset_bit_clear(qm);
4606 }
4607 
4608 static int qm_wait_pf_reset_finish(struct hisi_qm *qm)
4609 {
4610 	struct device *dev = &qm->pdev->dev;
4611 	u32 val, cmd;
4612 	u64 msg;
4613 	int ret;
4614 
4615 	/* Wait for reset to finish */
4616 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_IFC_INT_SOURCE_V, val,
4617 					 val == BIT(0), QM_VF_RESET_WAIT_US,
4618 					 QM_VF_RESET_WAIT_TIMEOUT_US);
4619 	/* hardware completion status should be available by this time */
4620 	if (ret) {
4621 		dev_err(dev, "couldn't get reset done status from PF, timeout!\n");
4622 		return -ETIMEDOUT;
4623 	}
4624 
4625 	/*
4626 	 * Whether message is got successfully,
4627 	 * VF needs to ack PF by clearing the interrupt.
4628 	 */
4629 	ret = qm_get_mb_cmd(qm, &msg, 0);
4630 	qm_clear_cmd_interrupt(qm, 0);
4631 	if (ret) {
4632 		dev_err(dev, "failed to get msg from PF in reset done!\n");
4633 		return ret;
4634 	}
4635 
4636 	cmd = msg & QM_MB_CMD_DATA_MASK;
4637 	if (cmd != QM_PF_RESET_DONE) {
4638 		dev_err(dev, "the cmd(%u) is not reset done!\n", cmd);
4639 		ret = -EINVAL;
4640 	}
4641 
4642 	return ret;
4643 }
4644 
4645 static void qm_pf_reset_vf_process(struct hisi_qm *qm,
4646 				   enum qm_stop_reason stop_reason)
4647 {
4648 	struct device *dev = &qm->pdev->dev;
4649 	int ret;
4650 
4651 	dev_info(dev, "device reset start...\n");
4652 
4653 	/* The message is obtained by querying the register during resetting */
4654 	qm_cmd_uninit(qm);
4655 	qm_pf_reset_vf_prepare(qm, stop_reason);
4656 
4657 	ret = qm_wait_pf_reset_finish(qm);
4658 	if (ret)
4659 		goto err_get_status;
4660 
4661 	qm_pf_reset_vf_done(qm);
4662 
4663 	dev_info(dev, "device reset done.\n");
4664 
4665 	return;
4666 
4667 err_get_status:
4668 	qm_cmd_init(qm);
4669 	qm_reset_bit_clear(qm);
4670 }
4671 
4672 static void qm_handle_cmd_msg(struct hisi_qm *qm, u32 fun_num)
4673 {
4674 	struct device *dev = &qm->pdev->dev;
4675 	u64 msg;
4676 	u32 cmd;
4677 	int ret;
4678 
4679 	/*
4680 	 * Get the msg from source by sending mailbox. Whether message is got
4681 	 * successfully, destination needs to ack source by clearing the interrupt.
4682 	 */
4683 	ret = qm_get_mb_cmd(qm, &msg, fun_num);
4684 	qm_clear_cmd_interrupt(qm, BIT(fun_num));
4685 	if (ret) {
4686 		dev_err(dev, "failed to get msg from source!\n");
4687 		return;
4688 	}
4689 
4690 	cmd = msg & QM_MB_CMD_DATA_MASK;
4691 	switch (cmd) {
4692 	case QM_PF_FLR_PREPARE:
4693 		qm_pf_reset_vf_process(qm, QM_DOWN);
4694 		break;
4695 	case QM_PF_SRST_PREPARE:
4696 		qm_pf_reset_vf_process(qm, QM_SOFT_RESET);
4697 		break;
4698 	case QM_VF_GET_QOS:
4699 		qm_vf_get_qos(qm, fun_num);
4700 		break;
4701 	case QM_PF_SET_QOS:
4702 		qm->mb_qos = msg >> QM_MB_CMD_DATA_SHIFT;
4703 		break;
4704 	default:
4705 		dev_err(dev, "unsupported cmd %u sent by function(%u)!\n", cmd, fun_num);
4706 		break;
4707 	}
4708 }
4709 
4710 static void qm_cmd_process(struct work_struct *cmd_process)
4711 {
4712 	struct hisi_qm *qm = container_of(cmd_process,
4713 					struct hisi_qm, cmd_process);
4714 	u32 vfs_num = qm->vfs_num;
4715 	u64 val;
4716 	u32 i;
4717 
4718 	if (qm->fun_type == QM_HW_PF) {
4719 		val = readq(qm->io_base + QM_IFC_INT_SOURCE_P);
4720 		if (!val)
4721 			return;
4722 
4723 		for (i = 1; i <= vfs_num; i++) {
4724 			if (val & BIT(i))
4725 				qm_handle_cmd_msg(qm, i);
4726 		}
4727 
4728 		return;
4729 	}
4730 
4731 	qm_handle_cmd_msg(qm, 0);
4732 }
4733 
4734 /**
4735  * hisi_qm_alg_register() - Register alg to crypto.
4736  * @qm: The qm needs add.
4737  * @qm_list: The qm list.
4738  * @guard: Guard of qp_num.
4739  *
4740  * Register algorithm to crypto when the function is satisfy guard.
4741  */
4742 int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list, int guard)
4743 {
4744 	struct device *dev = &qm->pdev->dev;
4745 
4746 	if (qm->ver <= QM_HW_V2 && qm->use_sva) {
4747 		dev_info(dev, "HW V2 not both use uacce sva mode and hardware crypto algs.\n");
4748 		return 0;
4749 	}
4750 
4751 	if (qm->qp_num < guard) {
4752 		dev_info(dev, "qp_num is less than task need.\n");
4753 		return 0;
4754 	}
4755 
4756 	return qm_list->register_to_crypto(qm);
4757 }
4758 EXPORT_SYMBOL_GPL(hisi_qm_alg_register);
4759 
4760 /**
4761  * hisi_qm_alg_unregister() - Unregister alg from crypto.
4762  * @qm: The qm needs delete.
4763  * @qm_list: The qm list.
4764  * @guard: Guard of qp_num.
4765  *
4766  * Unregister algorithm from crypto when the last function is satisfy guard.
4767  */
4768 void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list, int guard)
4769 {
4770 	if (qm->ver <= QM_HW_V2 && qm->use_sva)
4771 		return;
4772 
4773 	if (qm->qp_num < guard)
4774 		return;
4775 
4776 	qm_list->unregister_from_crypto(qm);
4777 }
4778 EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister);
4779 
4780 static void qm_unregister_abnormal_irq(struct hisi_qm *qm)
4781 {
4782 	struct pci_dev *pdev = qm->pdev;
4783 	u32 irq_vector, val;
4784 
4785 	if (qm->fun_type == QM_HW_VF)
4786 		return;
4787 
4788 	val = qm->cap_tables.qm_cap_table[QM_ABN_IRQ_TYPE_CAP_IDX].cap_val;
4789 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK))
4790 		return;
4791 
4792 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4793 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
4794 }
4795 
4796 static int qm_register_abnormal_irq(struct hisi_qm *qm)
4797 {
4798 	struct pci_dev *pdev = qm->pdev;
4799 	u32 irq_vector, val;
4800 	int ret;
4801 
4802 	if (qm->fun_type == QM_HW_VF)
4803 		return 0;
4804 
4805 	val = qm->cap_tables.qm_cap_table[QM_ABN_IRQ_TYPE_CAP_IDX].cap_val;
4806 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK))
4807 		return 0;
4808 
4809 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4810 	ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_abnormal_irq, 0, qm->dev_name, qm);
4811 	if (ret)
4812 		dev_err(&qm->pdev->dev, "failed to request abnormal irq, ret = %d", ret);
4813 
4814 	return ret;
4815 }
4816 
4817 static void qm_unregister_mb_cmd_irq(struct hisi_qm *qm)
4818 {
4819 	struct pci_dev *pdev = qm->pdev;
4820 	u32 irq_vector, val;
4821 
4822 	val = qm->cap_tables.qm_cap_table[QM_PF2VF_IRQ_TYPE_CAP_IDX].cap_val;
4823 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4824 		return;
4825 
4826 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4827 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
4828 }
4829 
4830 static int qm_register_mb_cmd_irq(struct hisi_qm *qm)
4831 {
4832 	struct pci_dev *pdev = qm->pdev;
4833 	u32 irq_vector, val;
4834 	int ret;
4835 
4836 	val = qm->cap_tables.qm_cap_table[QM_PF2VF_IRQ_TYPE_CAP_IDX].cap_val;
4837 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4838 		return 0;
4839 
4840 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4841 	ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_mb_cmd_irq, 0, qm->dev_name, qm);
4842 	if (ret)
4843 		dev_err(&pdev->dev, "failed to request function communication irq, ret = %d", ret);
4844 
4845 	return ret;
4846 }
4847 
4848 static void qm_unregister_aeq_irq(struct hisi_qm *qm)
4849 {
4850 	struct pci_dev *pdev = qm->pdev;
4851 	u32 irq_vector, val;
4852 
4853 	val = qm->cap_tables.qm_cap_table[QM_AEQ_IRQ_TYPE_CAP_IDX].cap_val;
4854 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4855 		return;
4856 
4857 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4858 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
4859 }
4860 
4861 static int qm_register_aeq_irq(struct hisi_qm *qm)
4862 {
4863 	struct pci_dev *pdev = qm->pdev;
4864 	u32 irq_vector, val;
4865 	int ret;
4866 
4867 	val = qm->cap_tables.qm_cap_table[QM_AEQ_IRQ_TYPE_CAP_IDX].cap_val;
4868 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4869 		return 0;
4870 
4871 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4872 	ret = request_threaded_irq(pci_irq_vector(pdev, irq_vector), NULL,
4873 						   qm_aeq_thread, IRQF_ONESHOT, qm->dev_name, qm);
4874 	if (ret)
4875 		dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret);
4876 
4877 	return ret;
4878 }
4879 
4880 static void qm_unregister_eq_irq(struct hisi_qm *qm)
4881 {
4882 	struct pci_dev *pdev = qm->pdev;
4883 	u32 irq_vector, val;
4884 
4885 	val = qm->cap_tables.qm_cap_table[QM_EQ_IRQ_TYPE_CAP_IDX].cap_val;
4886 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4887 		return;
4888 
4889 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4890 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
4891 }
4892 
4893 static int qm_register_eq_irq(struct hisi_qm *qm)
4894 {
4895 	struct pci_dev *pdev = qm->pdev;
4896 	u32 irq_vector, val;
4897 	int ret;
4898 
4899 	val = qm->cap_tables.qm_cap_table[QM_EQ_IRQ_TYPE_CAP_IDX].cap_val;
4900 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4901 		return 0;
4902 
4903 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4904 	ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_eq_irq, 0, qm->dev_name, qm);
4905 	if (ret)
4906 		dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret);
4907 
4908 	return ret;
4909 }
4910 
4911 static void qm_irqs_unregister(struct hisi_qm *qm)
4912 {
4913 	qm_unregister_mb_cmd_irq(qm);
4914 	qm_unregister_abnormal_irq(qm);
4915 	qm_unregister_aeq_irq(qm);
4916 	qm_unregister_eq_irq(qm);
4917 }
4918 
4919 static int qm_irqs_register(struct hisi_qm *qm)
4920 {
4921 	int ret;
4922 
4923 	ret = qm_register_eq_irq(qm);
4924 	if (ret)
4925 		return ret;
4926 
4927 	ret = qm_register_aeq_irq(qm);
4928 	if (ret)
4929 		goto free_eq_irq;
4930 
4931 	ret = qm_register_abnormal_irq(qm);
4932 	if (ret)
4933 		goto free_aeq_irq;
4934 
4935 	ret = qm_register_mb_cmd_irq(qm);
4936 	if (ret)
4937 		goto free_abnormal_irq;
4938 
4939 	return 0;
4940 
4941 free_abnormal_irq:
4942 	qm_unregister_abnormal_irq(qm);
4943 free_aeq_irq:
4944 	qm_unregister_aeq_irq(qm);
4945 free_eq_irq:
4946 	qm_unregister_eq_irq(qm);
4947 	return ret;
4948 }
4949 
4950 static int qm_get_qp_num(struct hisi_qm *qm)
4951 {
4952 	struct device *dev = &qm->pdev->dev;
4953 	bool is_db_isolation;
4954 
4955 	/* VF's qp_num assigned by PF in v2, and VF can get qp_num by vft. */
4956 	if (qm->fun_type == QM_HW_VF) {
4957 		if (qm->ver != QM_HW_V1)
4958 			/* v2 starts to support get vft by mailbox */
4959 			return hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num);
4960 
4961 		return 0;
4962 	}
4963 
4964 	is_db_isolation = test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps);
4965 	qm->ctrl_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, QM_TOTAL_QP_NUM_CAP, true);
4966 	qm->max_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info,
4967 					     QM_FUNC_MAX_QP_CAP, is_db_isolation);
4968 
4969 	if (qm->qp_num <= qm->max_qp_num)
4970 		return 0;
4971 
4972 	if (test_bit(QM_MODULE_PARAM, &qm->misc_ctl)) {
4973 		/* Check whether the set qp number is valid */
4974 		dev_err(dev, "qp num(%u) is more than max qp num(%u)!\n",
4975 			qm->qp_num, qm->max_qp_num);
4976 		return -EINVAL;
4977 	}
4978 
4979 	dev_info(dev, "Default qp num(%u) is too big, reset it to Function's max qp num(%u)!\n",
4980 		 qm->qp_num, qm->max_qp_num);
4981 	qm->qp_num = qm->max_qp_num;
4982 	qm->debug.curr_qm_qp_num = qm->qp_num;
4983 
4984 	return 0;
4985 }
4986 
4987 static int qm_pre_store_irq_type_caps(struct hisi_qm *qm)
4988 {
4989 	struct hisi_qm_cap_record *qm_cap;
4990 	struct pci_dev *pdev = qm->pdev;
4991 	size_t i, size;
4992 
4993 	size = ARRAY_SIZE(qm_pre_store_caps);
4994 	qm_cap = devm_kzalloc(&pdev->dev, sizeof(*qm_cap) * size, GFP_KERNEL);
4995 	if (!qm_cap)
4996 		return -ENOMEM;
4997 
4998 	for (i = 0; i < size; i++) {
4999 		qm_cap[i].type = qm_pre_store_caps[i];
5000 		qm_cap[i].cap_val = hisi_qm_get_hw_info(qm, qm_basic_info,
5001 							qm_pre_store_caps[i], qm->cap_ver);
5002 	}
5003 
5004 	qm->cap_tables.qm_cap_table = qm_cap;
5005 
5006 	return 0;
5007 }
5008 
5009 static int qm_get_hw_caps(struct hisi_qm *qm)
5010 {
5011 	const struct hisi_qm_cap_info *cap_info = qm->fun_type == QM_HW_PF ?
5012 						  qm_cap_info_pf : qm_cap_info_vf;
5013 	u32 size = qm->fun_type == QM_HW_PF ? ARRAY_SIZE(qm_cap_info_pf) :
5014 				   ARRAY_SIZE(qm_cap_info_vf);
5015 	u32 val, i;
5016 
5017 	/* Doorbell isolate register is a independent register. */
5018 	val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, QM_SUPPORT_DB_ISOLATION, true);
5019 	if (val)
5020 		set_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps);
5021 
5022 	if (qm->ver >= QM_HW_V3) {
5023 		val = readl(qm->io_base + QM_FUNC_CAPS_REG);
5024 		qm->cap_ver = val & QM_CAPBILITY_VERSION;
5025 	}
5026 
5027 	/* Get PF/VF common capbility */
5028 	for (i = 1; i < ARRAY_SIZE(qm_cap_info_comm); i++) {
5029 		val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, i, qm->cap_ver);
5030 		if (val)
5031 			set_bit(qm_cap_info_comm[i].type, &qm->caps);
5032 	}
5033 
5034 	/* Get PF/VF different capbility */
5035 	for (i = 0; i < size; i++) {
5036 		val = hisi_qm_get_hw_info(qm, cap_info, i, qm->cap_ver);
5037 		if (val)
5038 			set_bit(cap_info[i].type, &qm->caps);
5039 	}
5040 
5041 	/* Fetch and save the value of irq type related capability registers */
5042 	return qm_pre_store_irq_type_caps(qm);
5043 }
5044 
5045 static int qm_get_pci_res(struct hisi_qm *qm)
5046 {
5047 	struct pci_dev *pdev = qm->pdev;
5048 	struct device *dev = &pdev->dev;
5049 	int ret;
5050 
5051 	ret = pci_request_mem_regions(pdev, qm->dev_name);
5052 	if (ret < 0) {
5053 		dev_err(dev, "Failed to request mem regions!\n");
5054 		return ret;
5055 	}
5056 
5057 	qm->phys_base = pci_resource_start(pdev, PCI_BAR_2);
5058 	qm->io_base = ioremap(qm->phys_base, pci_resource_len(pdev, PCI_BAR_2));
5059 	if (!qm->io_base) {
5060 		ret = -EIO;
5061 		goto err_request_mem_regions;
5062 	}
5063 
5064 	ret = qm_get_hw_caps(qm);
5065 	if (ret)
5066 		goto err_ioremap;
5067 
5068 	if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) {
5069 		qm->db_interval = QM_QP_DB_INTERVAL;
5070 		qm->db_phys_base = pci_resource_start(pdev, PCI_BAR_4);
5071 		qm->db_io_base = ioremap(qm->db_phys_base,
5072 					 pci_resource_len(pdev, PCI_BAR_4));
5073 		if (!qm->db_io_base) {
5074 			ret = -EIO;
5075 			goto err_ioremap;
5076 		}
5077 	} else {
5078 		qm->db_phys_base = qm->phys_base;
5079 		qm->db_io_base = qm->io_base;
5080 		qm->db_interval = 0;
5081 	}
5082 
5083 	ret = qm_get_qp_num(qm);
5084 	if (ret)
5085 		goto err_db_ioremap;
5086 
5087 	return 0;
5088 
5089 err_db_ioremap:
5090 	if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
5091 		iounmap(qm->db_io_base);
5092 err_ioremap:
5093 	iounmap(qm->io_base);
5094 err_request_mem_regions:
5095 	pci_release_mem_regions(pdev);
5096 	return ret;
5097 }
5098 
5099 static int hisi_qm_pci_init(struct hisi_qm *qm)
5100 {
5101 	struct pci_dev *pdev = qm->pdev;
5102 	struct device *dev = &pdev->dev;
5103 	unsigned int num_vec;
5104 	int ret;
5105 
5106 	ret = pci_enable_device_mem(pdev);
5107 	if (ret < 0) {
5108 		dev_err(dev, "Failed to enable device mem!\n");
5109 		return ret;
5110 	}
5111 
5112 	ret = qm_get_pci_res(qm);
5113 	if (ret)
5114 		goto err_disable_pcidev;
5115 
5116 	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
5117 	if (ret < 0)
5118 		goto err_get_pci_res;
5119 	pci_set_master(pdev);
5120 
5121 	num_vec = qm_get_irq_num(qm);
5122 	ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI);
5123 	if (ret < 0) {
5124 		dev_err(dev, "Failed to enable MSI vectors!\n");
5125 		goto err_get_pci_res;
5126 	}
5127 
5128 	return 0;
5129 
5130 err_get_pci_res:
5131 	qm_put_pci_res(qm);
5132 err_disable_pcidev:
5133 	pci_disable_device(pdev);
5134 	return ret;
5135 }
5136 
5137 static int hisi_qm_init_work(struct hisi_qm *qm)
5138 {
5139 	int i;
5140 
5141 	for (i = 0; i < qm->qp_num; i++)
5142 		INIT_WORK(&qm->poll_data[i].work, qm_work_process);
5143 
5144 	if (qm->fun_type == QM_HW_PF)
5145 		INIT_WORK(&qm->rst_work, hisi_qm_controller_reset);
5146 
5147 	if (qm->ver > QM_HW_V2)
5148 		INIT_WORK(&qm->cmd_process, qm_cmd_process);
5149 
5150 	qm->wq = alloc_workqueue("%s", WQ_HIGHPRI | WQ_MEM_RECLAIM |
5151 				 WQ_UNBOUND, num_online_cpus(),
5152 				 pci_name(qm->pdev));
5153 	if (!qm->wq) {
5154 		pci_err(qm->pdev, "failed to alloc workqueue!\n");
5155 		return -ENOMEM;
5156 	}
5157 
5158 	return 0;
5159 }
5160 
5161 static int hisi_qp_alloc_memory(struct hisi_qm *qm)
5162 {
5163 	struct device *dev = &qm->pdev->dev;
5164 	u16 sq_depth, cq_depth;
5165 	size_t qp_dma_size;
5166 	int i, ret;
5167 
5168 	qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL);
5169 	if (!qm->qp_array)
5170 		return -ENOMEM;
5171 
5172 	qm->poll_data = kcalloc(qm->qp_num, sizeof(struct hisi_qm_poll_data), GFP_KERNEL);
5173 	if (!qm->poll_data) {
5174 		kfree(qm->qp_array);
5175 		return -ENOMEM;
5176 	}
5177 
5178 	qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP);
5179 
5180 	/* one more page for device or qp statuses */
5181 	qp_dma_size = qm->sqe_size * sq_depth + sizeof(struct qm_cqe) * cq_depth;
5182 	qp_dma_size = PAGE_ALIGN(qp_dma_size) + PAGE_SIZE;
5183 	for (i = 0; i < qm->qp_num; i++) {
5184 		qm->poll_data[i].qm = qm;
5185 		ret = hisi_qp_memory_init(qm, qp_dma_size, i, sq_depth, cq_depth);
5186 		if (ret)
5187 			goto err_init_qp_mem;
5188 
5189 		dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size);
5190 	}
5191 
5192 	return 0;
5193 err_init_qp_mem:
5194 	hisi_qp_memory_uninit(qm, i);
5195 
5196 	return ret;
5197 }
5198 
5199 static int hisi_qm_alloc_rsv_buf(struct hisi_qm *qm)
5200 {
5201 	struct qm_rsv_buf *xqc_buf = &qm->xqc_buf;
5202 	struct qm_dma *xqc_dma = &xqc_buf->qcdma;
5203 	struct device *dev = &qm->pdev->dev;
5204 	size_t off = 0;
5205 
5206 #define QM_XQC_BUF_INIT(xqc_buf, type) do { \
5207 	(xqc_buf)->type = ((xqc_buf)->qcdma.va + (off)); \
5208 	(xqc_buf)->type##_dma = (xqc_buf)->qcdma.dma + (off); \
5209 	off += QMC_ALIGN(sizeof(struct qm_##type)); \
5210 } while (0)
5211 
5212 	xqc_dma->size = QMC_ALIGN(sizeof(struct qm_eqc)) +
5213 			QMC_ALIGN(sizeof(struct qm_aeqc)) +
5214 			QMC_ALIGN(sizeof(struct qm_sqc)) +
5215 			QMC_ALIGN(sizeof(struct qm_cqc));
5216 	xqc_dma->va = dma_alloc_coherent(dev, xqc_dma->size,
5217 					 &xqc_dma->dma, GFP_KERNEL);
5218 	if (!xqc_dma->va)
5219 		return -ENOMEM;
5220 
5221 	QM_XQC_BUF_INIT(xqc_buf, eqc);
5222 	QM_XQC_BUF_INIT(xqc_buf, aeqc);
5223 	QM_XQC_BUF_INIT(xqc_buf, sqc);
5224 	QM_XQC_BUF_INIT(xqc_buf, cqc);
5225 
5226 	return 0;
5227 }
5228 
5229 static int hisi_qm_memory_init(struct hisi_qm *qm)
5230 {
5231 	struct device *dev = &qm->pdev->dev;
5232 	int ret, total_func;
5233 	size_t off = 0;
5234 
5235 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) {
5236 		total_func = pci_sriov_get_totalvfs(qm->pdev) + 1;
5237 		qm->factor = kcalloc(total_func, sizeof(struct qm_shaper_factor), GFP_KERNEL);
5238 		if (!qm->factor)
5239 			return -ENOMEM;
5240 
5241 		/* Only the PF value needs to be initialized */
5242 		qm->factor[0].func_qos = QM_QOS_MAX_VAL;
5243 	}
5244 
5245 #define QM_INIT_BUF(qm, type, num) do { \
5246 	(qm)->type = ((qm)->qdma.va + (off)); \
5247 	(qm)->type##_dma = (qm)->qdma.dma + (off); \
5248 	off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \
5249 } while (0)
5250 
5251 	idr_init(&qm->qp_idr);
5252 	qm_get_xqc_depth(qm, &qm->eq_depth, &qm->aeq_depth, QM_XEQ_DEPTH_CAP);
5253 	qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * qm->eq_depth) +
5254 			QMC_ALIGN(sizeof(struct qm_aeqe) * qm->aeq_depth) +
5255 			QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) +
5256 			QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num);
5257 	qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma,
5258 					 GFP_ATOMIC);
5259 	dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size);
5260 	if (!qm->qdma.va) {
5261 		ret = -ENOMEM;
5262 		goto err_destroy_idr;
5263 	}
5264 
5265 	QM_INIT_BUF(qm, eqe, qm->eq_depth);
5266 	QM_INIT_BUF(qm, aeqe, qm->aeq_depth);
5267 	QM_INIT_BUF(qm, sqc, qm->qp_num);
5268 	QM_INIT_BUF(qm, cqc, qm->qp_num);
5269 
5270 	ret = hisi_qm_alloc_rsv_buf(qm);
5271 	if (ret)
5272 		goto err_free_qdma;
5273 
5274 	ret = hisi_qp_alloc_memory(qm);
5275 	if (ret)
5276 		goto err_free_reserve_buf;
5277 
5278 	return 0;
5279 
5280 err_free_reserve_buf:
5281 	hisi_qm_free_rsv_buf(qm);
5282 err_free_qdma:
5283 	dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma);
5284 err_destroy_idr:
5285 	idr_destroy(&qm->qp_idr);
5286 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
5287 		kfree(qm->factor);
5288 
5289 	return ret;
5290 }
5291 
5292 /**
5293  * hisi_qm_init() - Initialize configures about qm.
5294  * @qm: The qm needing init.
5295  *
5296  * This function init qm, then we can call hisi_qm_start to put qm into work.
5297  */
5298 int hisi_qm_init(struct hisi_qm *qm)
5299 {
5300 	struct pci_dev *pdev = qm->pdev;
5301 	struct device *dev = &pdev->dev;
5302 	int ret;
5303 
5304 	hisi_qm_pre_init(qm);
5305 
5306 	ret = hisi_qm_pci_init(qm);
5307 	if (ret)
5308 		return ret;
5309 
5310 	ret = qm_irqs_register(qm);
5311 	if (ret)
5312 		goto err_pci_init;
5313 
5314 	if (qm->fun_type == QM_HW_PF) {
5315 		/* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */
5316 		writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG);
5317 		qm_disable_clock_gate(qm);
5318 		ret = qm_dev_mem_reset(qm);
5319 		if (ret) {
5320 			dev_err(dev, "failed to reset device memory\n");
5321 			goto err_irq_register;
5322 		}
5323 	}
5324 
5325 	if (qm->mode == UACCE_MODE_SVA) {
5326 		ret = qm_alloc_uacce(qm);
5327 		if (ret < 0)
5328 			dev_warn(dev, "fail to alloc uacce (%d)\n", ret);
5329 	}
5330 
5331 	ret = hisi_qm_memory_init(qm);
5332 	if (ret)
5333 		goto err_alloc_uacce;
5334 
5335 	ret = hisi_qm_init_work(qm);
5336 	if (ret)
5337 		goto err_free_qm_memory;
5338 
5339 	qm_cmd_init(qm);
5340 
5341 	return 0;
5342 
5343 err_free_qm_memory:
5344 	hisi_qm_memory_uninit(qm);
5345 err_alloc_uacce:
5346 	qm_remove_uacce(qm);
5347 err_irq_register:
5348 	qm_irqs_unregister(qm);
5349 err_pci_init:
5350 	hisi_qm_pci_uninit(qm);
5351 	return ret;
5352 }
5353 EXPORT_SYMBOL_GPL(hisi_qm_init);
5354 
5355 /**
5356  * hisi_qm_get_dfx_access() - Try to get dfx access.
5357  * @qm: pointer to accelerator device.
5358  *
5359  * Try to get dfx access, then user can get message.
5360  *
5361  * If device is in suspended, return failure, otherwise
5362  * bump up the runtime PM usage counter.
5363  */
5364 int hisi_qm_get_dfx_access(struct hisi_qm *qm)
5365 {
5366 	struct device *dev = &qm->pdev->dev;
5367 
5368 	if (pm_runtime_suspended(dev)) {
5369 		dev_info(dev, "can not read/write - device in suspended.\n");
5370 		return -EAGAIN;
5371 	}
5372 
5373 	return qm_pm_get_sync(qm);
5374 }
5375 EXPORT_SYMBOL_GPL(hisi_qm_get_dfx_access);
5376 
5377 /**
5378  * hisi_qm_put_dfx_access() - Put dfx access.
5379  * @qm: pointer to accelerator device.
5380  *
5381  * Put dfx access, drop runtime PM usage counter.
5382  */
5383 void hisi_qm_put_dfx_access(struct hisi_qm *qm)
5384 {
5385 	qm_pm_put_sync(qm);
5386 }
5387 EXPORT_SYMBOL_GPL(hisi_qm_put_dfx_access);
5388 
5389 /**
5390  * hisi_qm_pm_init() - Initialize qm runtime PM.
5391  * @qm: pointer to accelerator device.
5392  *
5393  * Function that initialize qm runtime PM.
5394  */
5395 void hisi_qm_pm_init(struct hisi_qm *qm)
5396 {
5397 	struct device *dev = &qm->pdev->dev;
5398 
5399 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
5400 		return;
5401 
5402 	pm_runtime_set_autosuspend_delay(dev, QM_AUTOSUSPEND_DELAY);
5403 	pm_runtime_use_autosuspend(dev);
5404 	pm_runtime_put_noidle(dev);
5405 }
5406 EXPORT_SYMBOL_GPL(hisi_qm_pm_init);
5407 
5408 /**
5409  * hisi_qm_pm_uninit() - Uninitialize qm runtime PM.
5410  * @qm: pointer to accelerator device.
5411  *
5412  * Function that uninitialize qm runtime PM.
5413  */
5414 void hisi_qm_pm_uninit(struct hisi_qm *qm)
5415 {
5416 	struct device *dev = &qm->pdev->dev;
5417 
5418 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
5419 		return;
5420 
5421 	pm_runtime_get_noresume(dev);
5422 	pm_runtime_dont_use_autosuspend(dev);
5423 }
5424 EXPORT_SYMBOL_GPL(hisi_qm_pm_uninit);
5425 
5426 static int qm_prepare_for_suspend(struct hisi_qm *qm)
5427 {
5428 	struct pci_dev *pdev = qm->pdev;
5429 	int ret;
5430 	u32 val;
5431 
5432 	ret = qm->ops->set_msi(qm, false);
5433 	if (ret) {
5434 		pci_err(pdev, "failed to disable MSI before suspending!\n");
5435 		return ret;
5436 	}
5437 
5438 	/* shutdown OOO register */
5439 	writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN,
5440 	       qm->io_base + ACC_MASTER_GLOBAL_CTRL);
5441 
5442 	ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN,
5443 					 val,
5444 					 (val == ACC_MASTER_TRANS_RETURN_RW),
5445 					 POLL_PERIOD, POLL_TIMEOUT);
5446 	if (ret) {
5447 		pci_emerg(pdev, "Bus lock! Please reset system.\n");
5448 		return ret;
5449 	}
5450 
5451 	ret = qm_set_pf_mse(qm, false);
5452 	if (ret)
5453 		pci_err(pdev, "failed to disable MSE before suspending!\n");
5454 
5455 	return ret;
5456 }
5457 
5458 static int qm_rebuild_for_resume(struct hisi_qm *qm)
5459 {
5460 	struct pci_dev *pdev = qm->pdev;
5461 	int ret;
5462 
5463 	ret = qm_set_pf_mse(qm, true);
5464 	if (ret) {
5465 		pci_err(pdev, "failed to enable MSE after resuming!\n");
5466 		return ret;
5467 	}
5468 
5469 	ret = qm->ops->set_msi(qm, true);
5470 	if (ret) {
5471 		pci_err(pdev, "failed to enable MSI after resuming!\n");
5472 		return ret;
5473 	}
5474 
5475 	ret = qm_dev_hw_init(qm);
5476 	if (ret) {
5477 		pci_err(pdev, "failed to init device after resuming\n");
5478 		return ret;
5479 	}
5480 
5481 	qm_cmd_init(qm);
5482 	hisi_qm_dev_err_init(qm);
5483 	/* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */
5484 	writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG);
5485 	qm_disable_clock_gate(qm);
5486 	ret = qm_dev_mem_reset(qm);
5487 	if (ret)
5488 		pci_err(pdev, "failed to reset device memory\n");
5489 
5490 	return ret;
5491 }
5492 
5493 /**
5494  * hisi_qm_suspend() - Runtime suspend of given device.
5495  * @dev: device to suspend.
5496  *
5497  * Function that suspend the device.
5498  */
5499 int hisi_qm_suspend(struct device *dev)
5500 {
5501 	struct pci_dev *pdev = to_pci_dev(dev);
5502 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5503 	int ret;
5504 
5505 	pci_info(pdev, "entering suspended state\n");
5506 
5507 	ret = hisi_qm_stop(qm, QM_NORMAL);
5508 	if (ret) {
5509 		pci_err(pdev, "failed to stop qm(%d)\n", ret);
5510 		return ret;
5511 	}
5512 
5513 	ret = qm_prepare_for_suspend(qm);
5514 	if (ret)
5515 		pci_err(pdev, "failed to prepare suspended(%d)\n", ret);
5516 
5517 	return ret;
5518 }
5519 EXPORT_SYMBOL_GPL(hisi_qm_suspend);
5520 
5521 /**
5522  * hisi_qm_resume() - Runtime resume of given device.
5523  * @dev: device to resume.
5524  *
5525  * Function that resume the device.
5526  */
5527 int hisi_qm_resume(struct device *dev)
5528 {
5529 	struct pci_dev *pdev = to_pci_dev(dev);
5530 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5531 	int ret;
5532 
5533 	pci_info(pdev, "resuming from suspend state\n");
5534 
5535 	ret = qm_rebuild_for_resume(qm);
5536 	if (ret) {
5537 		pci_err(pdev, "failed to rebuild resume(%d)\n", ret);
5538 		return ret;
5539 	}
5540 
5541 	ret = hisi_qm_start(qm);
5542 	if (ret) {
5543 		if (qm_check_dev_error(qm)) {
5544 			pci_info(pdev, "failed to start qm due to device error, device will be reset!\n");
5545 			return 0;
5546 		}
5547 
5548 		pci_err(pdev, "failed to start qm(%d)!\n", ret);
5549 	}
5550 
5551 	return ret;
5552 }
5553 EXPORT_SYMBOL_GPL(hisi_qm_resume);
5554 
5555 MODULE_LICENSE("GPL v2");
5556 MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>");
5557 MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver");
5558