xref: /linux/drivers/crypto/hisilicon/qm.c (revision bbefef2f07080cd502a93cb1c529e1c8a6c4ac8e)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 HiSilicon Limited. */
3 #include <asm/page.h>
4 #include <linux/acpi.h>
5 #include <linux/aer.h>
6 #include <linux/bitmap.h>
7 #include <linux/dma-mapping.h>
8 #include <linux/idr.h>
9 #include <linux/io.h>
10 #include <linux/irqreturn.h>
11 #include <linux/log2.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/seq_file.h>
14 #include <linux/slab.h>
15 #include <linux/uacce.h>
16 #include <linux/uaccess.h>
17 #include <uapi/misc/uacce/hisi_qm.h>
18 #include <linux/hisi_acc_qm.h>
19 #include "qm_common.h"
20 
21 /* eq/aeq irq enable */
22 #define QM_VF_AEQ_INT_SOURCE		0x0
23 #define QM_VF_AEQ_INT_MASK		0x4
24 #define QM_VF_EQ_INT_SOURCE		0x8
25 #define QM_VF_EQ_INT_MASK		0xc
26 
27 #define QM_IRQ_VECTOR_MASK		GENMASK(15, 0)
28 #define QM_IRQ_TYPE_MASK		GENMASK(15, 0)
29 #define QM_IRQ_TYPE_SHIFT		16
30 #define QM_ABN_IRQ_TYPE_MASK		GENMASK(7, 0)
31 
32 /* mailbox */
33 #define QM_MB_PING_ALL_VFS		0xffff
34 #define QM_MB_CMD_DATA_SHIFT		32
35 #define QM_MB_CMD_DATA_MASK		GENMASK(31, 0)
36 #define QM_MB_STATUS_MASK		GENMASK(12, 9)
37 
38 /* sqc shift */
39 #define QM_SQ_HOP_NUM_SHIFT		0
40 #define QM_SQ_PAGE_SIZE_SHIFT		4
41 #define QM_SQ_BUF_SIZE_SHIFT		8
42 #define QM_SQ_SQE_SIZE_SHIFT		12
43 #define QM_SQ_PRIORITY_SHIFT		0
44 #define QM_SQ_ORDERS_SHIFT		4
45 #define QM_SQ_TYPE_SHIFT		8
46 #define QM_QC_PASID_ENABLE		0x1
47 #define QM_QC_PASID_ENABLE_SHIFT	7
48 
49 #define QM_SQ_TYPE_MASK			GENMASK(3, 0)
50 #define QM_SQ_TAIL_IDX(sqc)		((le16_to_cpu((sqc)->w11) >> 6) & 0x1)
51 
52 /* cqc shift */
53 #define QM_CQ_HOP_NUM_SHIFT		0
54 #define QM_CQ_PAGE_SIZE_SHIFT		4
55 #define QM_CQ_BUF_SIZE_SHIFT		8
56 #define QM_CQ_CQE_SIZE_SHIFT		12
57 #define QM_CQ_PHASE_SHIFT		0
58 #define QM_CQ_FLAG_SHIFT		1
59 
60 #define QM_CQE_PHASE(cqe)		(le16_to_cpu((cqe)->w7) & 0x1)
61 #define QM_QC_CQE_SIZE			4
62 #define QM_CQ_TAIL_IDX(cqc)		((le16_to_cpu((cqc)->w11) >> 6) & 0x1)
63 
64 /* eqc shift */
65 #define QM_EQE_AEQE_SIZE		(2UL << 12)
66 #define QM_EQC_PHASE_SHIFT		16
67 
68 #define QM_EQE_PHASE(eqe)		((le32_to_cpu((eqe)->dw0) >> 16) & 0x1)
69 #define QM_EQE_CQN_MASK			GENMASK(15, 0)
70 
71 #define QM_AEQE_PHASE(aeqe)		((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1)
72 #define QM_AEQE_TYPE_SHIFT		17
73 #define QM_AEQE_CQN_MASK		GENMASK(15, 0)
74 #define QM_CQ_OVERFLOW			0
75 #define QM_EQ_OVERFLOW			1
76 #define QM_CQE_ERROR			2
77 
78 #define QM_XQ_DEPTH_SHIFT		16
79 #define QM_XQ_DEPTH_MASK		GENMASK(15, 0)
80 
81 #define QM_DOORBELL_CMD_SQ		0
82 #define QM_DOORBELL_CMD_CQ		1
83 #define QM_DOORBELL_CMD_EQ		2
84 #define QM_DOORBELL_CMD_AEQ		3
85 
86 #define QM_DOORBELL_BASE_V1		0x340
87 #define QM_DB_CMD_SHIFT_V1		16
88 #define QM_DB_INDEX_SHIFT_V1		32
89 #define QM_DB_PRIORITY_SHIFT_V1		48
90 #define QM_PAGE_SIZE			0x0034
91 #define QM_QP_DB_INTERVAL		0x10000
92 
93 #define QM_MEM_START_INIT		0x100040
94 #define QM_MEM_INIT_DONE		0x100044
95 #define QM_VFT_CFG_RDY			0x10006c
96 #define QM_VFT_CFG_OP_WR		0x100058
97 #define QM_VFT_CFG_TYPE			0x10005c
98 #define QM_VFT_CFG			0x100060
99 #define QM_VFT_CFG_OP_ENABLE		0x100054
100 #define QM_PM_CTRL			0x100148
101 #define QM_IDLE_DISABLE			BIT(9)
102 
103 #define QM_VFT_CFG_DATA_L		0x100064
104 #define QM_VFT_CFG_DATA_H		0x100068
105 #define QM_SQC_VFT_BUF_SIZE		(7ULL << 8)
106 #define QM_SQC_VFT_SQC_SIZE		(5ULL << 12)
107 #define QM_SQC_VFT_INDEX_NUMBER		(1ULL << 16)
108 #define QM_SQC_VFT_START_SQN_SHIFT	28
109 #define QM_SQC_VFT_VALID		(1ULL << 44)
110 #define QM_SQC_VFT_SQN_SHIFT		45
111 #define QM_CQC_VFT_BUF_SIZE		(7ULL << 8)
112 #define QM_CQC_VFT_SQC_SIZE		(5ULL << 12)
113 #define QM_CQC_VFT_INDEX_NUMBER		(1ULL << 16)
114 #define QM_CQC_VFT_VALID		(1ULL << 28)
115 
116 #define QM_SQC_VFT_BASE_SHIFT_V2	28
117 #define QM_SQC_VFT_BASE_MASK_V2		GENMASK(15, 0)
118 #define QM_SQC_VFT_NUM_SHIFT_V2		45
119 #define QM_SQC_VFT_NUM_MASK_V2		GENMASK(9, 0)
120 
121 #define QM_ABNORMAL_INT_SOURCE		0x100000
122 #define QM_ABNORMAL_INT_MASK		0x100004
123 #define QM_ABNORMAL_INT_MASK_VALUE	0x7fff
124 #define QM_ABNORMAL_INT_STATUS		0x100008
125 #define QM_ABNORMAL_INT_SET		0x10000c
126 #define QM_ABNORMAL_INF00		0x100010
127 #define QM_FIFO_OVERFLOW_TYPE		0xc0
128 #define QM_FIFO_OVERFLOW_TYPE_SHIFT	6
129 #define QM_FIFO_OVERFLOW_VF		0x3f
130 #define QM_ABNORMAL_INF01		0x100014
131 #define QM_DB_TIMEOUT_TYPE		0xc0
132 #define QM_DB_TIMEOUT_TYPE_SHIFT	6
133 #define QM_DB_TIMEOUT_VF		0x3f
134 #define QM_RAS_CE_ENABLE		0x1000ec
135 #define QM_RAS_FE_ENABLE		0x1000f0
136 #define QM_RAS_NFE_ENABLE		0x1000f4
137 #define QM_RAS_CE_THRESHOLD		0x1000f8
138 #define QM_RAS_CE_TIMES_PER_IRQ		1
139 #define QM_OOO_SHUTDOWN_SEL		0x1040f8
140 #define QM_ECC_MBIT			BIT(2)
141 #define QM_DB_TIMEOUT			BIT(10)
142 #define QM_OF_FIFO_OF			BIT(11)
143 
144 #define QM_RESET_WAIT_TIMEOUT		400
145 #define QM_PEH_VENDOR_ID		0x1000d8
146 #define ACC_VENDOR_ID_VALUE		0x5a5a
147 #define QM_PEH_DFX_INFO0		0x1000fc
148 #define QM_PEH_DFX_INFO1		0x100100
149 #define QM_PEH_DFX_MASK			(BIT(0) | BIT(2))
150 #define QM_PEH_MSI_FINISH_MASK		GENMASK(19, 16)
151 #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT	3
152 #define ACC_PEH_MSI_DISABLE		GENMASK(31, 0)
153 #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN	0x1
154 #define ACC_MASTER_TRANS_RETURN_RW	3
155 #define ACC_MASTER_TRANS_RETURN		0x300150
156 #define ACC_MASTER_GLOBAL_CTRL		0x300000
157 #define ACC_AM_CFG_PORT_WR_EN		0x30001c
158 #define QM_RAS_NFE_MBIT_DISABLE		~QM_ECC_MBIT
159 #define ACC_AM_ROB_ECC_INT_STS		0x300104
160 #define ACC_ROB_ECC_ERR_MULTPL		BIT(1)
161 #define QM_MSI_CAP_ENABLE		BIT(16)
162 
163 /* interfunction communication */
164 #define QM_IFC_READY_STATUS		0x100128
165 #define QM_IFC_INT_SET_P		0x100130
166 #define QM_IFC_INT_CFG			0x100134
167 #define QM_IFC_INT_SOURCE_P		0x100138
168 #define QM_IFC_INT_SOURCE_V		0x0020
169 #define QM_IFC_INT_MASK			0x0024
170 #define QM_IFC_INT_STATUS		0x0028
171 #define QM_IFC_INT_SET_V		0x002C
172 #define QM_IFC_SEND_ALL_VFS		GENMASK(6, 0)
173 #define QM_IFC_INT_SOURCE_CLR		GENMASK(63, 0)
174 #define QM_IFC_INT_SOURCE_MASK		BIT(0)
175 #define QM_IFC_INT_DISABLE		BIT(0)
176 #define QM_IFC_INT_STATUS_MASK		BIT(0)
177 #define QM_IFC_INT_SET_MASK		BIT(0)
178 #define QM_WAIT_DST_ACK			10
179 #define QM_MAX_PF_WAIT_COUNT		10
180 #define QM_MAX_VF_WAIT_COUNT		40
181 #define QM_VF_RESET_WAIT_US            20000
182 #define QM_VF_RESET_WAIT_CNT           3000
183 #define QM_VF_RESET_WAIT_TIMEOUT_US    \
184 	(QM_VF_RESET_WAIT_US * QM_VF_RESET_WAIT_CNT)
185 
186 #define POLL_PERIOD			10
187 #define POLL_TIMEOUT			1000
188 #define WAIT_PERIOD_US_MAX		200
189 #define WAIT_PERIOD_US_MIN		100
190 #define MAX_WAIT_COUNTS			1000
191 #define QM_CACHE_WB_START		0x204
192 #define QM_CACHE_WB_DONE		0x208
193 #define QM_FUNC_CAPS_REG		0x3100
194 #define QM_CAPBILITY_VERSION		GENMASK(7, 0)
195 
196 #define PCI_BAR_2			2
197 #define PCI_BAR_4			4
198 #define QMC_ALIGN(sz)			ALIGN(sz, 32)
199 
200 #define QM_DBG_READ_LEN		256
201 #define QM_PCI_COMMAND_INVALID		~0
202 #define QM_RESET_STOP_TX_OFFSET		1
203 #define QM_RESET_STOP_RX_OFFSET		2
204 
205 #define WAIT_PERIOD			20
206 #define REMOVE_WAIT_DELAY		10
207 
208 #define QM_DRIVER_REMOVING		0
209 #define QM_RST_SCHED			1
210 #define QM_QOS_PARAM_NUM		2
211 #define QM_QOS_MAX_VAL			1000
212 #define QM_QOS_RATE			100
213 #define QM_QOS_EXPAND_RATE		1000
214 #define QM_SHAPER_CIR_B_MASK		GENMASK(7, 0)
215 #define QM_SHAPER_CIR_U_MASK		GENMASK(10, 8)
216 #define QM_SHAPER_CIR_S_MASK		GENMASK(14, 11)
217 #define QM_SHAPER_FACTOR_CIR_U_SHIFT	8
218 #define QM_SHAPER_FACTOR_CIR_S_SHIFT	11
219 #define QM_SHAPER_FACTOR_CBS_B_SHIFT	15
220 #define QM_SHAPER_FACTOR_CBS_S_SHIFT	19
221 #define QM_SHAPER_CBS_B			1
222 #define QM_SHAPER_VFT_OFFSET		6
223 #define QM_QOS_MIN_ERROR_RATE		5
224 #define QM_SHAPER_MIN_CBS_S		8
225 #define QM_QOS_TICK			0x300U
226 #define QM_QOS_DIVISOR_CLK		0x1f40U
227 #define QM_QOS_MAX_CIR_B		200
228 #define QM_QOS_MIN_CIR_B		100
229 #define QM_QOS_MAX_CIR_U		6
230 #define QM_AUTOSUSPEND_DELAY		3000
231 
232 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \
233 	(((hop_num) << QM_CQ_HOP_NUM_SHIFT) | \
234 	((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT) | \
235 	((buf_sz) << QM_CQ_BUF_SIZE_SHIFT) | \
236 	((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
237 
238 #define QM_MK_CQC_DW3_V2(cqe_sz, cq_depth) \
239 	((((u32)cq_depth) - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
240 
241 #define QM_MK_SQC_W13(priority, orders, alg_type) \
242 	(((priority) << QM_SQ_PRIORITY_SHIFT) | \
243 	((orders) << QM_SQ_ORDERS_SHIFT) | \
244 	(((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT))
245 
246 #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \
247 	(((hop_num) << QM_SQ_HOP_NUM_SHIFT) | \
248 	((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT) | \
249 	((buf_sz) << QM_SQ_BUF_SIZE_SHIFT) | \
250 	((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
251 
252 #define QM_MK_SQC_DW3_V2(sqe_sz, sq_depth) \
253 	((((u32)sq_depth) - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
254 
255 #define INIT_QC_COMMON(qc, base, pasid) do {			\
256 	(qc)->head = 0;						\
257 	(qc)->tail = 0;						\
258 	(qc)->base_l = cpu_to_le32(lower_32_bits(base));	\
259 	(qc)->base_h = cpu_to_le32(upper_32_bits(base));	\
260 	(qc)->dw3 = 0;						\
261 	(qc)->w8 = 0;						\
262 	(qc)->rsvd0 = 0;					\
263 	(qc)->pasid = cpu_to_le16(pasid);			\
264 	(qc)->w11 = 0;						\
265 	(qc)->rsvd1 = 0;					\
266 } while (0)
267 
268 enum vft_type {
269 	SQC_VFT = 0,
270 	CQC_VFT,
271 	SHAPER_VFT,
272 };
273 
274 enum acc_err_result {
275 	ACC_ERR_NONE,
276 	ACC_ERR_NEED_RESET,
277 	ACC_ERR_RECOVERED,
278 };
279 
280 enum qm_alg_type {
281 	ALG_TYPE_0,
282 	ALG_TYPE_1,
283 };
284 
285 enum qm_mb_cmd {
286 	QM_PF_FLR_PREPARE = 0x01,
287 	QM_PF_SRST_PREPARE,
288 	QM_PF_RESET_DONE,
289 	QM_VF_PREPARE_DONE,
290 	QM_VF_PREPARE_FAIL,
291 	QM_VF_START_DONE,
292 	QM_VF_START_FAIL,
293 	QM_PF_SET_QOS,
294 	QM_VF_GET_QOS,
295 };
296 
297 enum qm_basic_type {
298 	QM_TOTAL_QP_NUM_CAP = 0x0,
299 	QM_FUNC_MAX_QP_CAP,
300 	QM_XEQ_DEPTH_CAP,
301 	QM_QP_DEPTH_CAP,
302 	QM_EQ_IRQ_TYPE_CAP,
303 	QM_AEQ_IRQ_TYPE_CAP,
304 	QM_ABN_IRQ_TYPE_CAP,
305 	QM_PF2VF_IRQ_TYPE_CAP,
306 	QM_PF_IRQ_NUM_CAP,
307 	QM_VF_IRQ_NUM_CAP,
308 };
309 
310 static const struct hisi_qm_cap_info qm_cap_info_comm[] = {
311 	{QM_SUPPORT_DB_ISOLATION, 0x30,   0, BIT(0),  0x0, 0x0, 0x0},
312 	{QM_SUPPORT_FUNC_QOS,     0x3100, 0, BIT(8),  0x0, 0x0, 0x1},
313 	{QM_SUPPORT_STOP_QP,      0x3100, 0, BIT(9),  0x0, 0x0, 0x1},
314 	{QM_SUPPORT_MB_COMMAND,   0x3100, 0, BIT(11), 0x0, 0x0, 0x1},
315 	{QM_SUPPORT_SVA_PREFETCH, 0x3100, 0, BIT(14), 0x0, 0x0, 0x1},
316 };
317 
318 static const struct hisi_qm_cap_info qm_cap_info_pf[] = {
319 	{QM_SUPPORT_RPM, 0x3100, 0, BIT(13), 0x0, 0x0, 0x1},
320 };
321 
322 static const struct hisi_qm_cap_info qm_cap_info_vf[] = {
323 	{QM_SUPPORT_RPM, 0x3100, 0, BIT(12), 0x0, 0x0, 0x0},
324 };
325 
326 static const struct hisi_qm_cap_info qm_basic_info[] = {
327 	{QM_TOTAL_QP_NUM_CAP,   0x100158, 0,  GENMASK(10, 0), 0x1000,    0x400,     0x400},
328 	{QM_FUNC_MAX_QP_CAP,    0x100158, 11, GENMASK(10, 0), 0x1000,    0x400,     0x400},
329 	{QM_XEQ_DEPTH_CAP,      0x3104,   0,  GENMASK(31, 0), 0x800,     0x4000800, 0x4000800},
330 	{QM_QP_DEPTH_CAP,       0x3108,   0,  GENMASK(31, 0), 0x4000400, 0x4000400, 0x4000400},
331 	{QM_EQ_IRQ_TYPE_CAP,    0x310c,   0,  GENMASK(31, 0), 0x10000,   0x10000,   0x10000},
332 	{QM_AEQ_IRQ_TYPE_CAP,   0x3110,   0,  GENMASK(31, 0), 0x0,       0x10001,   0x10001},
333 	{QM_ABN_IRQ_TYPE_CAP,   0x3114,   0,  GENMASK(31, 0), 0x0,       0x10003,   0x10003},
334 	{QM_PF2VF_IRQ_TYPE_CAP, 0x3118,   0,  GENMASK(31, 0), 0x0,       0x0,       0x10002},
335 	{QM_PF_IRQ_NUM_CAP,     0x311c,   16, GENMASK(15, 0), 0x1,       0x4,       0x4},
336 	{QM_VF_IRQ_NUM_CAP,     0x311c,   0,  GENMASK(15, 0), 0x1,       0x2,       0x3},
337 };
338 
339 struct qm_mailbox {
340 	__le16 w0;
341 	__le16 queue_num;
342 	__le32 base_l;
343 	__le32 base_h;
344 	__le32 rsvd;
345 };
346 
347 struct qm_doorbell {
348 	__le16 queue_num;
349 	__le16 cmd;
350 	__le16 index;
351 	__le16 priority;
352 };
353 
354 struct hisi_qm_resource {
355 	struct hisi_qm *qm;
356 	int distance;
357 	struct list_head list;
358 };
359 
360 struct hisi_qm_hw_ops {
361 	int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number);
362 	void (*qm_db)(struct hisi_qm *qm, u16 qn,
363 		      u8 cmd, u16 index, u8 priority);
364 	int (*debug_init)(struct hisi_qm *qm);
365 	void (*hw_error_init)(struct hisi_qm *qm);
366 	void (*hw_error_uninit)(struct hisi_qm *qm);
367 	enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm);
368 	int (*set_msi)(struct hisi_qm *qm, bool set);
369 };
370 
371 struct hisi_qm_hw_error {
372 	u32 int_msk;
373 	const char *msg;
374 };
375 
376 static const struct hisi_qm_hw_error qm_hw_error[] = {
377 	{ .int_msk = BIT(0), .msg = "qm_axi_rresp" },
378 	{ .int_msk = BIT(1), .msg = "qm_axi_bresp" },
379 	{ .int_msk = BIT(2), .msg = "qm_ecc_mbit" },
380 	{ .int_msk = BIT(3), .msg = "qm_ecc_1bit" },
381 	{ .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" },
382 	{ .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" },
383 	{ .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" },
384 	{ .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" },
385 	{ .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" },
386 	{ .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" },
387 	{ .int_msk = BIT(10), .msg = "qm_db_timeout" },
388 	{ .int_msk = BIT(11), .msg = "qm_of_fifo_of" },
389 	{ .int_msk = BIT(12), .msg = "qm_db_random_invalid" },
390 	{ .int_msk = BIT(13), .msg = "qm_mailbox_timeout" },
391 	{ .int_msk = BIT(14), .msg = "qm_flr_timeout" },
392 	{ /* sentinel */ }
393 };
394 
395 static const char * const qm_db_timeout[] = {
396 	"sq", "cq", "eq", "aeq",
397 };
398 
399 static const char * const qm_fifo_overflow[] = {
400 	"cq", "eq", "aeq",
401 };
402 
403 static const char * const qp_s[] = {
404 	"none", "init", "start", "stop", "close",
405 };
406 
407 struct qm_typical_qos_table {
408 	u32 start;
409 	u32 end;
410 	u32 val;
411 };
412 
413 /* the qos step is 100 */
414 static struct qm_typical_qos_table shaper_cir_s[] = {
415 	{100, 100, 4},
416 	{200, 200, 3},
417 	{300, 500, 2},
418 	{600, 1000, 1},
419 	{1100, 100000, 0},
420 };
421 
422 static struct qm_typical_qos_table shaper_cbs_s[] = {
423 	{100, 200, 9},
424 	{300, 500, 11},
425 	{600, 1000, 12},
426 	{1100, 10000, 16},
427 	{10100, 25000, 17},
428 	{25100, 50000, 18},
429 	{50100, 100000, 19}
430 };
431 
432 static void qm_irqs_unregister(struct hisi_qm *qm);
433 
434 static bool qm_avail_state(struct hisi_qm *qm, enum qm_state new)
435 {
436 	enum qm_state curr = atomic_read(&qm->status.flags);
437 	bool avail = false;
438 
439 	switch (curr) {
440 	case QM_INIT:
441 		if (new == QM_START || new == QM_CLOSE)
442 			avail = true;
443 		break;
444 	case QM_START:
445 		if (new == QM_STOP)
446 			avail = true;
447 		break;
448 	case QM_STOP:
449 		if (new == QM_CLOSE || new == QM_START)
450 			avail = true;
451 		break;
452 	default:
453 		break;
454 	}
455 
456 	dev_dbg(&qm->pdev->dev, "change qm state from %s to %s\n",
457 		qm_s[curr], qm_s[new]);
458 
459 	if (!avail)
460 		dev_warn(&qm->pdev->dev, "Can not change qm state from %s to %s\n",
461 			 qm_s[curr], qm_s[new]);
462 
463 	return avail;
464 }
465 
466 static bool qm_qp_avail_state(struct hisi_qm *qm, struct hisi_qp *qp,
467 			      enum qp_state new)
468 {
469 	enum qm_state qm_curr = atomic_read(&qm->status.flags);
470 	enum qp_state qp_curr = 0;
471 	bool avail = false;
472 
473 	if (qp)
474 		qp_curr = atomic_read(&qp->qp_status.flags);
475 
476 	switch (new) {
477 	case QP_INIT:
478 		if (qm_curr == QM_START || qm_curr == QM_INIT)
479 			avail = true;
480 		break;
481 	case QP_START:
482 		if ((qm_curr == QM_START && qp_curr == QP_INIT) ||
483 		    (qm_curr == QM_START && qp_curr == QP_STOP))
484 			avail = true;
485 		break;
486 	case QP_STOP:
487 		if ((qm_curr == QM_START && qp_curr == QP_START) ||
488 		    (qp_curr == QP_INIT))
489 			avail = true;
490 		break;
491 	case QP_CLOSE:
492 		if ((qm_curr == QM_START && qp_curr == QP_INIT) ||
493 		    (qm_curr == QM_START && qp_curr == QP_STOP) ||
494 		    (qm_curr == QM_STOP && qp_curr == QP_STOP)  ||
495 		    (qm_curr == QM_STOP && qp_curr == QP_INIT))
496 			avail = true;
497 		break;
498 	default:
499 		break;
500 	}
501 
502 	dev_dbg(&qm->pdev->dev, "change qp state from %s to %s in QM %s\n",
503 		qp_s[qp_curr], qp_s[new], qm_s[qm_curr]);
504 
505 	if (!avail)
506 		dev_warn(&qm->pdev->dev,
507 			 "Can not change qp state from %s to %s in QM %s\n",
508 			 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]);
509 
510 	return avail;
511 }
512 
513 static u32 qm_get_hw_error_status(struct hisi_qm *qm)
514 {
515 	return readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
516 }
517 
518 static u32 qm_get_dev_err_status(struct hisi_qm *qm)
519 {
520 	return qm->err_ini->get_dev_hw_err_status(qm);
521 }
522 
523 /* Check if the error causes the master ooo block */
524 static bool qm_check_dev_error(struct hisi_qm *qm)
525 {
526 	u32 val, dev_val;
527 
528 	if (qm->fun_type == QM_HW_VF)
529 		return false;
530 
531 	val = qm_get_hw_error_status(qm) & qm->err_info.qm_shutdown_mask;
532 	dev_val = qm_get_dev_err_status(qm) & qm->err_info.dev_shutdown_mask;
533 
534 	return val || dev_val;
535 }
536 
537 static int qm_wait_reset_finish(struct hisi_qm *qm)
538 {
539 	int delay = 0;
540 
541 	/* All reset requests need to be queued for processing */
542 	while (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
543 		msleep(++delay);
544 		if (delay > QM_RESET_WAIT_TIMEOUT)
545 			return -EBUSY;
546 	}
547 
548 	return 0;
549 }
550 
551 static int qm_reset_prepare_ready(struct hisi_qm *qm)
552 {
553 	struct pci_dev *pdev = qm->pdev;
554 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
555 
556 	/*
557 	 * PF and VF on host doesnot support resetting at the
558 	 * same time on Kunpeng920.
559 	 */
560 	if (qm->ver < QM_HW_V3)
561 		return qm_wait_reset_finish(pf_qm);
562 
563 	return qm_wait_reset_finish(qm);
564 }
565 
566 static void qm_reset_bit_clear(struct hisi_qm *qm)
567 {
568 	struct pci_dev *pdev = qm->pdev;
569 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
570 
571 	if (qm->ver < QM_HW_V3)
572 		clear_bit(QM_RESETTING, &pf_qm->misc_ctl);
573 
574 	clear_bit(QM_RESETTING, &qm->misc_ctl);
575 }
576 
577 static void qm_mb_pre_init(struct qm_mailbox *mailbox, u8 cmd,
578 			   u64 base, u16 queue, bool op)
579 {
580 	mailbox->w0 = cpu_to_le16((cmd) |
581 		((op) ? 0x1 << QM_MB_OP_SHIFT : 0) |
582 		(0x1 << QM_MB_BUSY_SHIFT));
583 	mailbox->queue_num = cpu_to_le16(queue);
584 	mailbox->base_l = cpu_to_le32(lower_32_bits(base));
585 	mailbox->base_h = cpu_to_le32(upper_32_bits(base));
586 	mailbox->rsvd = 0;
587 }
588 
589 /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */
590 int hisi_qm_wait_mb_ready(struct hisi_qm *qm)
591 {
592 	u32 val;
593 
594 	return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE,
595 					  val, !((val >> QM_MB_BUSY_SHIFT) &
596 					  0x1), POLL_PERIOD, POLL_TIMEOUT);
597 }
598 EXPORT_SYMBOL_GPL(hisi_qm_wait_mb_ready);
599 
600 /* 128 bit should be written to hardware at one time to trigger a mailbox */
601 static void qm_mb_write(struct hisi_qm *qm, const void *src)
602 {
603 	void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE;
604 	unsigned long tmp0 = 0, tmp1 = 0;
605 
606 	if (!IS_ENABLED(CONFIG_ARM64)) {
607 		memcpy_toio(fun_base, src, 16);
608 		dma_wmb();
609 		return;
610 	}
611 
612 	asm volatile("ldp %0, %1, %3\n"
613 		     "stp %0, %1, %2\n"
614 		     "dmb oshst\n"
615 		     : "=&r" (tmp0),
616 		       "=&r" (tmp1),
617 		       "+Q" (*((char __iomem *)fun_base))
618 		     : "Q" (*((char *)src))
619 		     : "memory");
620 }
621 
622 static int qm_mb_nolock(struct hisi_qm *qm, struct qm_mailbox *mailbox)
623 {
624 	int ret;
625 	u32 val;
626 
627 	if (unlikely(hisi_qm_wait_mb_ready(qm))) {
628 		dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n");
629 		ret = -EBUSY;
630 		goto mb_busy;
631 	}
632 
633 	qm_mb_write(qm, mailbox);
634 
635 	if (unlikely(hisi_qm_wait_mb_ready(qm))) {
636 		dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n");
637 		ret = -ETIMEDOUT;
638 		goto mb_busy;
639 	}
640 
641 	val = readl(qm->io_base + QM_MB_CMD_SEND_BASE);
642 	if (val & QM_MB_STATUS_MASK) {
643 		dev_err(&qm->pdev->dev, "QM mailbox operation failed!\n");
644 		ret = -EIO;
645 		goto mb_busy;
646 	}
647 
648 	return 0;
649 
650 mb_busy:
651 	atomic64_inc(&qm->debug.dfx.mb_err_cnt);
652 	return ret;
653 }
654 
655 int hisi_qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue,
656 	       bool op)
657 {
658 	struct qm_mailbox mailbox;
659 	int ret;
660 
661 	dev_dbg(&qm->pdev->dev, "QM mailbox request to q%u: %u-%llx\n",
662 		queue, cmd, (unsigned long long)dma_addr);
663 
664 	qm_mb_pre_init(&mailbox, cmd, dma_addr, queue, op);
665 
666 	mutex_lock(&qm->mailbox_lock);
667 	ret = qm_mb_nolock(qm, &mailbox);
668 	mutex_unlock(&qm->mailbox_lock);
669 
670 	return ret;
671 }
672 EXPORT_SYMBOL_GPL(hisi_qm_mb);
673 
674 static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
675 {
676 	u64 doorbell;
677 
678 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) |
679 		   ((u64)index << QM_DB_INDEX_SHIFT_V1)  |
680 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V1);
681 
682 	writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1);
683 }
684 
685 static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
686 {
687 	void __iomem *io_base = qm->io_base;
688 	u16 randata = 0;
689 	u64 doorbell;
690 
691 	if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ)
692 		io_base = qm->db_io_base + (u64)qn * qm->db_interval +
693 			  QM_DOORBELL_SQ_CQ_BASE_V2;
694 	else
695 		io_base += QM_DOORBELL_EQ_AEQ_BASE_V2;
696 
697 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) |
698 		   ((u64)randata << QM_DB_RAND_SHIFT_V2) |
699 		   ((u64)index << QM_DB_INDEX_SHIFT_V2) |
700 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V2);
701 
702 	writeq(doorbell, io_base);
703 }
704 
705 static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
706 {
707 	dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n",
708 		qn, cmd, index);
709 
710 	qm->ops->qm_db(qm, qn, cmd, index, priority);
711 }
712 
713 static void qm_disable_clock_gate(struct hisi_qm *qm)
714 {
715 	u32 val;
716 
717 	/* if qm enables clock gating in Kunpeng930, qos will be inaccurate. */
718 	if (qm->ver < QM_HW_V3)
719 		return;
720 
721 	val = readl(qm->io_base + QM_PM_CTRL);
722 	val |= QM_IDLE_DISABLE;
723 	writel(val, qm->io_base +  QM_PM_CTRL);
724 }
725 
726 static int qm_dev_mem_reset(struct hisi_qm *qm)
727 {
728 	u32 val;
729 
730 	writel(0x1, qm->io_base + QM_MEM_START_INIT);
731 	return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val,
732 					  val & BIT(0), POLL_PERIOD,
733 					  POLL_TIMEOUT);
734 }
735 
736 /**
737  * hisi_qm_get_hw_info() - Get device information.
738  * @qm: The qm which want to get information.
739  * @info_table: Array for storing device information.
740  * @index: Index in info_table.
741  * @is_read: Whether read from reg, 0: not support read from reg.
742  *
743  * This function returns device information the caller needs.
744  */
745 u32 hisi_qm_get_hw_info(struct hisi_qm *qm,
746 			const struct hisi_qm_cap_info *info_table,
747 			u32 index, bool is_read)
748 {
749 	u32 val;
750 
751 	switch (qm->ver) {
752 	case QM_HW_V1:
753 		return info_table[index].v1_val;
754 	case QM_HW_V2:
755 		return info_table[index].v2_val;
756 	default:
757 		if (!is_read)
758 			return info_table[index].v3_val;
759 
760 		val = readl(qm->io_base + info_table[index].offset);
761 		return (val >> info_table[index].shift) & info_table[index].mask;
762 	}
763 }
764 EXPORT_SYMBOL_GPL(hisi_qm_get_hw_info);
765 
766 static void qm_get_xqc_depth(struct hisi_qm *qm, u16 *low_bits,
767 			     u16 *high_bits, enum qm_basic_type type)
768 {
769 	u32 depth;
770 
771 	depth = hisi_qm_get_hw_info(qm, qm_basic_info, type, qm->cap_ver);
772 	*low_bits = depth & QM_XQ_DEPTH_MASK;
773 	*high_bits = (depth >> QM_XQ_DEPTH_SHIFT) & QM_XQ_DEPTH_MASK;
774 }
775 
776 static u32 qm_get_irq_num(struct hisi_qm *qm)
777 {
778 	if (qm->fun_type == QM_HW_PF)
779 		return hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF_IRQ_NUM_CAP, qm->cap_ver);
780 
781 	return hisi_qm_get_hw_info(qm, qm_basic_info, QM_VF_IRQ_NUM_CAP, qm->cap_ver);
782 }
783 
784 static int qm_pm_get_sync(struct hisi_qm *qm)
785 {
786 	struct device *dev = &qm->pdev->dev;
787 	int ret;
788 
789 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
790 		return 0;
791 
792 	ret = pm_runtime_resume_and_get(dev);
793 	if (ret < 0) {
794 		dev_err(dev, "failed to get_sync(%d).\n", ret);
795 		return ret;
796 	}
797 
798 	return 0;
799 }
800 
801 static void qm_pm_put_sync(struct hisi_qm *qm)
802 {
803 	struct device *dev = &qm->pdev->dev;
804 
805 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
806 		return;
807 
808 	pm_runtime_mark_last_busy(dev);
809 	pm_runtime_put_autosuspend(dev);
810 }
811 
812 static void qm_cq_head_update(struct hisi_qp *qp)
813 {
814 	if (qp->qp_status.cq_head == qp->cq_depth - 1) {
815 		qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase;
816 		qp->qp_status.cq_head = 0;
817 	} else {
818 		qp->qp_status.cq_head++;
819 	}
820 }
821 
822 static void qm_poll_req_cb(struct hisi_qp *qp)
823 {
824 	struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
825 	struct hisi_qm *qm = qp->qm;
826 
827 	while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
828 		dma_rmb();
829 		qp->req_cb(qp, qp->sqe + qm->sqe_size *
830 			   le16_to_cpu(cqe->sq_head));
831 		qm_cq_head_update(qp);
832 		cqe = qp->cqe + qp->qp_status.cq_head;
833 		qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ,
834 		      qp->qp_status.cq_head, 0);
835 		atomic_dec(&qp->qp_status.used);
836 	}
837 
838 	/* set c_flag */
839 	qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, qp->qp_status.cq_head, 1);
840 }
841 
842 static int qm_get_complete_eqe_num(struct hisi_qm_poll_data *poll_data)
843 {
844 	struct hisi_qm *qm = poll_data->qm;
845 	struct qm_eqe *eqe = qm->eqe + qm->status.eq_head;
846 	u16 eq_depth = qm->eq_depth;
847 	int eqe_num = 0;
848 	u16 cqn;
849 
850 	while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) {
851 		cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK;
852 		poll_data->qp_finish_id[eqe_num] = cqn;
853 		eqe_num++;
854 
855 		if (qm->status.eq_head == eq_depth - 1) {
856 			qm->status.eqc_phase = !qm->status.eqc_phase;
857 			eqe = qm->eqe;
858 			qm->status.eq_head = 0;
859 		} else {
860 			eqe++;
861 			qm->status.eq_head++;
862 		}
863 
864 		if (eqe_num == (eq_depth >> 1) - 1)
865 			break;
866 	}
867 
868 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
869 
870 	return eqe_num;
871 }
872 
873 static void qm_work_process(struct work_struct *work)
874 {
875 	struct hisi_qm_poll_data *poll_data =
876 		container_of(work, struct hisi_qm_poll_data, work);
877 	struct hisi_qm *qm = poll_data->qm;
878 	struct hisi_qp *qp;
879 	int eqe_num, i;
880 
881 	/* Get qp id of completed tasks and re-enable the interrupt. */
882 	eqe_num = qm_get_complete_eqe_num(poll_data);
883 	for (i = eqe_num - 1; i >= 0; i--) {
884 		qp = &qm->qp_array[poll_data->qp_finish_id[i]];
885 		if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP))
886 			continue;
887 
888 		if (qp->event_cb) {
889 			qp->event_cb(qp);
890 			continue;
891 		}
892 
893 		if (likely(qp->req_cb))
894 			qm_poll_req_cb(qp);
895 	}
896 }
897 
898 static bool do_qm_eq_irq(struct hisi_qm *qm)
899 {
900 	struct qm_eqe *eqe = qm->eqe + qm->status.eq_head;
901 	struct hisi_qm_poll_data *poll_data;
902 	u16 cqn;
903 
904 	if (!readl(qm->io_base + QM_VF_EQ_INT_SOURCE))
905 		return false;
906 
907 	if (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) {
908 		cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK;
909 		poll_data = &qm->poll_data[cqn];
910 		queue_work(qm->wq, &poll_data->work);
911 
912 		return true;
913 	}
914 
915 	return false;
916 }
917 
918 static irqreturn_t qm_eq_irq(int irq, void *data)
919 {
920 	struct hisi_qm *qm = data;
921 	bool ret;
922 
923 	ret = do_qm_eq_irq(qm);
924 	if (ret)
925 		return IRQ_HANDLED;
926 
927 	atomic64_inc(&qm->debug.dfx.err_irq_cnt);
928 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
929 
930 	return IRQ_NONE;
931 }
932 
933 static irqreturn_t qm_mb_cmd_irq(int irq, void *data)
934 {
935 	struct hisi_qm *qm = data;
936 	u32 val;
937 
938 	val = readl(qm->io_base + QM_IFC_INT_STATUS);
939 	val &= QM_IFC_INT_STATUS_MASK;
940 	if (!val)
941 		return IRQ_NONE;
942 
943 	schedule_work(&qm->cmd_process);
944 
945 	return IRQ_HANDLED;
946 }
947 
948 static void qm_set_qp_disable(struct hisi_qp *qp, int offset)
949 {
950 	u32 *addr;
951 
952 	if (qp->is_in_kernel)
953 		return;
954 
955 	addr = (u32 *)(qp->qdma.va + qp->qdma.size) - offset;
956 	*addr = 1;
957 
958 	/* make sure setup is completed */
959 	smp_wmb();
960 }
961 
962 static void qm_disable_qp(struct hisi_qm *qm, u32 qp_id)
963 {
964 	struct hisi_qp *qp = &qm->qp_array[qp_id];
965 
966 	qm_set_qp_disable(qp, QM_RESET_STOP_TX_OFFSET);
967 	hisi_qm_stop_qp(qp);
968 	qm_set_qp_disable(qp, QM_RESET_STOP_RX_OFFSET);
969 }
970 
971 static void qm_reset_function(struct hisi_qm *qm)
972 {
973 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
974 	struct device *dev = &qm->pdev->dev;
975 	int ret;
976 
977 	if (qm_check_dev_error(pf_qm))
978 		return;
979 
980 	ret = qm_reset_prepare_ready(qm);
981 	if (ret) {
982 		dev_err(dev, "reset function not ready\n");
983 		return;
984 	}
985 
986 	ret = hisi_qm_stop(qm, QM_FLR);
987 	if (ret) {
988 		dev_err(dev, "failed to stop qm when reset function\n");
989 		goto clear_bit;
990 	}
991 
992 	ret = hisi_qm_start(qm);
993 	if (ret)
994 		dev_err(dev, "failed to start qm when reset function\n");
995 
996 clear_bit:
997 	qm_reset_bit_clear(qm);
998 }
999 
1000 static irqreturn_t qm_aeq_thread(int irq, void *data)
1001 {
1002 	struct hisi_qm *qm = data;
1003 	struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head;
1004 	u16 aeq_depth = qm->aeq_depth;
1005 	u32 type, qp_id;
1006 
1007 	while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) {
1008 		type = le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT;
1009 		qp_id = le32_to_cpu(aeqe->dw0) & QM_AEQE_CQN_MASK;
1010 
1011 		switch (type) {
1012 		case QM_EQ_OVERFLOW:
1013 			dev_err(&qm->pdev->dev, "eq overflow, reset function\n");
1014 			qm_reset_function(qm);
1015 			return IRQ_HANDLED;
1016 		case QM_CQ_OVERFLOW:
1017 			dev_err(&qm->pdev->dev, "cq overflow, stop qp(%u)\n",
1018 				qp_id);
1019 			fallthrough;
1020 		case QM_CQE_ERROR:
1021 			qm_disable_qp(qm, qp_id);
1022 			break;
1023 		default:
1024 			dev_err(&qm->pdev->dev, "unknown error type %u\n",
1025 				type);
1026 			break;
1027 		}
1028 
1029 		if (qm->status.aeq_head == aeq_depth - 1) {
1030 			qm->status.aeqc_phase = !qm->status.aeqc_phase;
1031 			aeqe = qm->aeqe;
1032 			qm->status.aeq_head = 0;
1033 		} else {
1034 			aeqe++;
1035 			qm->status.aeq_head++;
1036 		}
1037 	}
1038 
1039 	qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
1040 
1041 	return IRQ_HANDLED;
1042 }
1043 
1044 static irqreturn_t qm_aeq_irq(int irq, void *data)
1045 {
1046 	struct hisi_qm *qm = data;
1047 
1048 	atomic64_inc(&qm->debug.dfx.aeq_irq_cnt);
1049 	if (!readl(qm->io_base + QM_VF_AEQ_INT_SOURCE))
1050 		return IRQ_NONE;
1051 
1052 	return IRQ_WAKE_THREAD;
1053 }
1054 
1055 static void qm_init_qp_status(struct hisi_qp *qp)
1056 {
1057 	struct hisi_qp_status *qp_status = &qp->qp_status;
1058 
1059 	qp_status->sq_tail = 0;
1060 	qp_status->cq_head = 0;
1061 	qp_status->cqc_phase = true;
1062 	atomic_set(&qp_status->used, 0);
1063 }
1064 
1065 static void qm_init_prefetch(struct hisi_qm *qm)
1066 {
1067 	struct device *dev = &qm->pdev->dev;
1068 	u32 page_type = 0x0;
1069 
1070 	if (!test_bit(QM_SUPPORT_SVA_PREFETCH, &qm->caps))
1071 		return;
1072 
1073 	switch (PAGE_SIZE) {
1074 	case SZ_4K:
1075 		page_type = 0x0;
1076 		break;
1077 	case SZ_16K:
1078 		page_type = 0x1;
1079 		break;
1080 	case SZ_64K:
1081 		page_type = 0x2;
1082 		break;
1083 	default:
1084 		dev_err(dev, "system page size is not support: %lu, default set to 4KB",
1085 			PAGE_SIZE);
1086 	}
1087 
1088 	writel(page_type, qm->io_base + QM_PAGE_SIZE);
1089 }
1090 
1091 /*
1092  * acc_shaper_para_calc() Get the IR value by the qos formula, the return value
1093  * is the expected qos calculated.
1094  * the formula:
1095  * IR = X Mbps if ir = 1 means IR = 100 Mbps, if ir = 10000 means = 10Gbps
1096  *
1097  *		IR_b * (2 ^ IR_u) * 8000
1098  * IR(Mbps) = -------------------------
1099  *		  Tick * (2 ^ IR_s)
1100  */
1101 static u32 acc_shaper_para_calc(u64 cir_b, u64 cir_u, u64 cir_s)
1102 {
1103 	return ((cir_b * QM_QOS_DIVISOR_CLK) * (1 << cir_u)) /
1104 					(QM_QOS_TICK * (1 << cir_s));
1105 }
1106 
1107 static u32 acc_shaper_calc_cbs_s(u32 ir)
1108 {
1109 	int table_size = ARRAY_SIZE(shaper_cbs_s);
1110 	int i;
1111 
1112 	for (i = 0; i < table_size; i++) {
1113 		if (ir >= shaper_cbs_s[i].start && ir <= shaper_cbs_s[i].end)
1114 			return shaper_cbs_s[i].val;
1115 	}
1116 
1117 	return QM_SHAPER_MIN_CBS_S;
1118 }
1119 
1120 static u32 acc_shaper_calc_cir_s(u32 ir)
1121 {
1122 	int table_size = ARRAY_SIZE(shaper_cir_s);
1123 	int i;
1124 
1125 	for (i = 0; i < table_size; i++) {
1126 		if (ir >= shaper_cir_s[i].start && ir <= shaper_cir_s[i].end)
1127 			return shaper_cir_s[i].val;
1128 	}
1129 
1130 	return 0;
1131 }
1132 
1133 static int qm_get_shaper_para(u32 ir, struct qm_shaper_factor *factor)
1134 {
1135 	u32 cir_b, cir_u, cir_s, ir_calc;
1136 	u32 error_rate;
1137 
1138 	factor->cbs_s = acc_shaper_calc_cbs_s(ir);
1139 	cir_s = acc_shaper_calc_cir_s(ir);
1140 
1141 	for (cir_b = QM_QOS_MIN_CIR_B; cir_b <= QM_QOS_MAX_CIR_B; cir_b++) {
1142 		for (cir_u = 0; cir_u <= QM_QOS_MAX_CIR_U; cir_u++) {
1143 			ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s);
1144 
1145 			error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir;
1146 			if (error_rate <= QM_QOS_MIN_ERROR_RATE) {
1147 				factor->cir_b = cir_b;
1148 				factor->cir_u = cir_u;
1149 				factor->cir_s = cir_s;
1150 				return 0;
1151 			}
1152 		}
1153 	}
1154 
1155 	return -EINVAL;
1156 }
1157 
1158 static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base,
1159 			    u32 number, struct qm_shaper_factor *factor)
1160 {
1161 	u64 tmp = 0;
1162 
1163 	if (number > 0) {
1164 		switch (type) {
1165 		case SQC_VFT:
1166 			if (qm->ver == QM_HW_V1) {
1167 				tmp = QM_SQC_VFT_BUF_SIZE	|
1168 				      QM_SQC_VFT_SQC_SIZE	|
1169 				      QM_SQC_VFT_INDEX_NUMBER	|
1170 				      QM_SQC_VFT_VALID		|
1171 				      (u64)base << QM_SQC_VFT_START_SQN_SHIFT;
1172 			} else {
1173 				tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT |
1174 				      QM_SQC_VFT_VALID |
1175 				      (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT;
1176 			}
1177 			break;
1178 		case CQC_VFT:
1179 			if (qm->ver == QM_HW_V1) {
1180 				tmp = QM_CQC_VFT_BUF_SIZE	|
1181 				      QM_CQC_VFT_SQC_SIZE	|
1182 				      QM_CQC_VFT_INDEX_NUMBER	|
1183 				      QM_CQC_VFT_VALID;
1184 			} else {
1185 				tmp = QM_CQC_VFT_VALID;
1186 			}
1187 			break;
1188 		case SHAPER_VFT:
1189 			if (factor) {
1190 				tmp = factor->cir_b |
1191 				(factor->cir_u << QM_SHAPER_FACTOR_CIR_U_SHIFT) |
1192 				(factor->cir_s << QM_SHAPER_FACTOR_CIR_S_SHIFT) |
1193 				(QM_SHAPER_CBS_B << QM_SHAPER_FACTOR_CBS_B_SHIFT) |
1194 				(factor->cbs_s << QM_SHAPER_FACTOR_CBS_S_SHIFT);
1195 			}
1196 			break;
1197 		}
1198 	}
1199 
1200 	writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L);
1201 	writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H);
1202 }
1203 
1204 static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type,
1205 			     u32 fun_num, u32 base, u32 number)
1206 {
1207 	struct qm_shaper_factor *factor = NULL;
1208 	unsigned int val;
1209 	int ret;
1210 
1211 	if (type == SHAPER_VFT && test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
1212 		factor = &qm->factor[fun_num];
1213 
1214 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
1215 					 val & BIT(0), POLL_PERIOD,
1216 					 POLL_TIMEOUT);
1217 	if (ret)
1218 		return ret;
1219 
1220 	writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR);
1221 	writel(type, qm->io_base + QM_VFT_CFG_TYPE);
1222 	if (type == SHAPER_VFT)
1223 		fun_num |= base << QM_SHAPER_VFT_OFFSET;
1224 
1225 	writel(fun_num, qm->io_base + QM_VFT_CFG);
1226 
1227 	qm_vft_data_cfg(qm, type, base, number, factor);
1228 
1229 	writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
1230 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
1231 
1232 	return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
1233 					  val & BIT(0), POLL_PERIOD,
1234 					  POLL_TIMEOUT);
1235 }
1236 
1237 static int qm_shaper_init_vft(struct hisi_qm *qm, u32 fun_num)
1238 {
1239 	u32 qos = qm->factor[fun_num].func_qos;
1240 	int ret, i;
1241 
1242 	ret = qm_get_shaper_para(qos * QM_QOS_RATE, &qm->factor[fun_num]);
1243 	if (ret) {
1244 		dev_err(&qm->pdev->dev, "failed to calculate shaper parameter!\n");
1245 		return ret;
1246 	}
1247 	writel(qm->type_rate, qm->io_base + QM_SHAPER_CFG);
1248 	for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) {
1249 		/* The base number of queue reuse for different alg type */
1250 		ret = qm_set_vft_common(qm, SHAPER_VFT, fun_num, i, 1);
1251 		if (ret)
1252 			return ret;
1253 	}
1254 
1255 	return 0;
1256 }
1257 
1258 /* The config should be conducted after qm_dev_mem_reset() */
1259 static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
1260 			      u32 number)
1261 {
1262 	int ret, i;
1263 
1264 	for (i = SQC_VFT; i <= CQC_VFT; i++) {
1265 		ret = qm_set_vft_common(qm, i, fun_num, base, number);
1266 		if (ret)
1267 			return ret;
1268 	}
1269 
1270 	/* init default shaper qos val */
1271 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) {
1272 		ret = qm_shaper_init_vft(qm, fun_num);
1273 		if (ret)
1274 			goto back_sqc_cqc;
1275 	}
1276 
1277 	return 0;
1278 back_sqc_cqc:
1279 	for (i = SQC_VFT; i <= CQC_VFT; i++)
1280 		qm_set_vft_common(qm, i, fun_num, 0, 0);
1281 
1282 	return ret;
1283 }
1284 
1285 static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number)
1286 {
1287 	u64 sqc_vft;
1288 	int ret;
1289 
1290 	ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1);
1291 	if (ret)
1292 		return ret;
1293 
1294 	sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
1295 		  ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
1296 	*base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2);
1297 	*number = (QM_SQC_VFT_NUM_MASK_V2 &
1298 		   (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1;
1299 
1300 	return 0;
1301 }
1302 
1303 void *hisi_qm_ctx_alloc(struct hisi_qm *qm, size_t ctx_size,
1304 			  dma_addr_t *dma_addr)
1305 {
1306 	struct device *dev = &qm->pdev->dev;
1307 	void *ctx_addr;
1308 
1309 	ctx_addr = kzalloc(ctx_size, GFP_KERNEL);
1310 	if (!ctx_addr)
1311 		return ERR_PTR(-ENOMEM);
1312 
1313 	*dma_addr = dma_map_single(dev, ctx_addr, ctx_size, DMA_FROM_DEVICE);
1314 	if (dma_mapping_error(dev, *dma_addr)) {
1315 		dev_err(dev, "DMA mapping error!\n");
1316 		kfree(ctx_addr);
1317 		return ERR_PTR(-ENOMEM);
1318 	}
1319 
1320 	return ctx_addr;
1321 }
1322 
1323 void hisi_qm_ctx_free(struct hisi_qm *qm, size_t ctx_size,
1324 			const void *ctx_addr, dma_addr_t *dma_addr)
1325 {
1326 	struct device *dev = &qm->pdev->dev;
1327 
1328 	dma_unmap_single(dev, *dma_addr, ctx_size, DMA_FROM_DEVICE);
1329 	kfree(ctx_addr);
1330 }
1331 
1332 static int qm_dump_sqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id)
1333 {
1334 	return hisi_qm_mb(qm, QM_MB_CMD_SQC, dma_addr, qp_id, 1);
1335 }
1336 
1337 static int qm_dump_cqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id)
1338 {
1339 	return hisi_qm_mb(qm, QM_MB_CMD_CQC, dma_addr, qp_id, 1);
1340 }
1341 
1342 static void qm_hw_error_init_v1(struct hisi_qm *qm)
1343 {
1344 	writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK);
1345 }
1346 
1347 static void qm_hw_error_cfg(struct hisi_qm *qm)
1348 {
1349 	struct hisi_qm_err_info *err_info = &qm->err_info;
1350 
1351 	qm->error_mask = err_info->nfe | err_info->ce | err_info->fe;
1352 	/* clear QM hw residual error source */
1353 	writel(qm->error_mask, qm->io_base + QM_ABNORMAL_INT_SOURCE);
1354 
1355 	/* configure error type */
1356 	writel(err_info->ce, qm->io_base + QM_RAS_CE_ENABLE);
1357 	writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD);
1358 	writel(err_info->nfe, qm->io_base + QM_RAS_NFE_ENABLE);
1359 	writel(err_info->fe, qm->io_base + QM_RAS_FE_ENABLE);
1360 }
1361 
1362 static void qm_hw_error_init_v2(struct hisi_qm *qm)
1363 {
1364 	u32 irq_unmask;
1365 
1366 	qm_hw_error_cfg(qm);
1367 
1368 	irq_unmask = ~qm->error_mask;
1369 	irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1370 	writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
1371 }
1372 
1373 static void qm_hw_error_uninit_v2(struct hisi_qm *qm)
1374 {
1375 	u32 irq_mask = qm->error_mask;
1376 
1377 	irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1378 	writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK);
1379 }
1380 
1381 static void qm_hw_error_init_v3(struct hisi_qm *qm)
1382 {
1383 	u32 irq_unmask;
1384 
1385 	qm_hw_error_cfg(qm);
1386 
1387 	/* enable close master ooo when hardware error happened */
1388 	writel(qm->err_info.qm_shutdown_mask, qm->io_base + QM_OOO_SHUTDOWN_SEL);
1389 
1390 	irq_unmask = ~qm->error_mask;
1391 	irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1392 	writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
1393 }
1394 
1395 static void qm_hw_error_uninit_v3(struct hisi_qm *qm)
1396 {
1397 	u32 irq_mask = qm->error_mask;
1398 
1399 	irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1400 	writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK);
1401 
1402 	/* disable close master ooo when hardware error happened */
1403 	writel(0x0, qm->io_base + QM_OOO_SHUTDOWN_SEL);
1404 }
1405 
1406 static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status)
1407 {
1408 	const struct hisi_qm_hw_error *err;
1409 	struct device *dev = &qm->pdev->dev;
1410 	u32 reg_val, type, vf_num;
1411 	int i;
1412 
1413 	for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) {
1414 		err = &qm_hw_error[i];
1415 		if (!(err->int_msk & error_status))
1416 			continue;
1417 
1418 		dev_err(dev, "%s [error status=0x%x] found\n",
1419 			err->msg, err->int_msk);
1420 
1421 		if (err->int_msk & QM_DB_TIMEOUT) {
1422 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF01);
1423 			type = (reg_val & QM_DB_TIMEOUT_TYPE) >>
1424 			       QM_DB_TIMEOUT_TYPE_SHIFT;
1425 			vf_num = reg_val & QM_DB_TIMEOUT_VF;
1426 			dev_err(dev, "qm %s doorbell timeout in function %u\n",
1427 				qm_db_timeout[type], vf_num);
1428 		} else if (err->int_msk & QM_OF_FIFO_OF) {
1429 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF00);
1430 			type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >>
1431 			       QM_FIFO_OVERFLOW_TYPE_SHIFT;
1432 			vf_num = reg_val & QM_FIFO_OVERFLOW_VF;
1433 
1434 			if (type < ARRAY_SIZE(qm_fifo_overflow))
1435 				dev_err(dev, "qm %s fifo overflow in function %u\n",
1436 					qm_fifo_overflow[type], vf_num);
1437 			else
1438 				dev_err(dev, "unknown error type\n");
1439 		}
1440 	}
1441 }
1442 
1443 static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm)
1444 {
1445 	u32 error_status, tmp;
1446 
1447 	/* read err sts */
1448 	tmp = readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
1449 	error_status = qm->error_mask & tmp;
1450 
1451 	if (error_status) {
1452 		if (error_status & QM_ECC_MBIT)
1453 			qm->err_status.is_qm_ecc_mbit = true;
1454 
1455 		qm_log_hw_error(qm, error_status);
1456 		if (error_status & qm->err_info.qm_reset_mask)
1457 			return ACC_ERR_NEED_RESET;
1458 
1459 		writel(error_status, qm->io_base + QM_ABNORMAL_INT_SOURCE);
1460 		writel(qm->err_info.nfe, qm->io_base + QM_RAS_NFE_ENABLE);
1461 	}
1462 
1463 	return ACC_ERR_RECOVERED;
1464 }
1465 
1466 static int qm_get_mb_cmd(struct hisi_qm *qm, u64 *msg, u16 fun_num)
1467 {
1468 	struct qm_mailbox mailbox;
1469 	int ret;
1470 
1471 	qm_mb_pre_init(&mailbox, QM_MB_CMD_DST, 0, fun_num, 0);
1472 	mutex_lock(&qm->mailbox_lock);
1473 	ret = qm_mb_nolock(qm, &mailbox);
1474 	if (ret)
1475 		goto err_unlock;
1476 
1477 	*msg = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
1478 		  ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
1479 
1480 err_unlock:
1481 	mutex_unlock(&qm->mailbox_lock);
1482 	return ret;
1483 }
1484 
1485 static void qm_clear_cmd_interrupt(struct hisi_qm *qm, u64 vf_mask)
1486 {
1487 	u32 val;
1488 
1489 	if (qm->fun_type == QM_HW_PF)
1490 		writeq(vf_mask, qm->io_base + QM_IFC_INT_SOURCE_P);
1491 
1492 	val = readl(qm->io_base + QM_IFC_INT_SOURCE_V);
1493 	val |= QM_IFC_INT_SOURCE_MASK;
1494 	writel(val, qm->io_base + QM_IFC_INT_SOURCE_V);
1495 }
1496 
1497 static void qm_handle_vf_msg(struct hisi_qm *qm, u32 vf_id)
1498 {
1499 	struct device *dev = &qm->pdev->dev;
1500 	u32 cmd;
1501 	u64 msg;
1502 	int ret;
1503 
1504 	ret = qm_get_mb_cmd(qm, &msg, vf_id);
1505 	if (ret) {
1506 		dev_err(dev, "failed to get msg from VF(%u)!\n", vf_id);
1507 		return;
1508 	}
1509 
1510 	cmd = msg & QM_MB_CMD_DATA_MASK;
1511 	switch (cmd) {
1512 	case QM_VF_PREPARE_FAIL:
1513 		dev_err(dev, "failed to stop VF(%u)!\n", vf_id);
1514 		break;
1515 	case QM_VF_START_FAIL:
1516 		dev_err(dev, "failed to start VF(%u)!\n", vf_id);
1517 		break;
1518 	case QM_VF_PREPARE_DONE:
1519 	case QM_VF_START_DONE:
1520 		break;
1521 	default:
1522 		dev_err(dev, "unsupported cmd %u sent by VF(%u)!\n", cmd, vf_id);
1523 		break;
1524 	}
1525 }
1526 
1527 static int qm_wait_vf_prepare_finish(struct hisi_qm *qm)
1528 {
1529 	struct device *dev = &qm->pdev->dev;
1530 	u32 vfs_num = qm->vfs_num;
1531 	int cnt = 0;
1532 	int ret = 0;
1533 	u64 val;
1534 	u32 i;
1535 
1536 	if (!qm->vfs_num || !test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
1537 		return 0;
1538 
1539 	while (true) {
1540 		val = readq(qm->io_base + QM_IFC_INT_SOURCE_P);
1541 		/* All VFs send command to PF, break */
1542 		if ((val & GENMASK(vfs_num, 1)) == GENMASK(vfs_num, 1))
1543 			break;
1544 
1545 		if (++cnt > QM_MAX_PF_WAIT_COUNT) {
1546 			ret = -EBUSY;
1547 			break;
1548 		}
1549 
1550 		msleep(QM_WAIT_DST_ACK);
1551 	}
1552 
1553 	/* PF check VFs msg */
1554 	for (i = 1; i <= vfs_num; i++) {
1555 		if (val & BIT(i))
1556 			qm_handle_vf_msg(qm, i);
1557 		else
1558 			dev_err(dev, "VF(%u) not ping PF!\n", i);
1559 	}
1560 
1561 	/* PF clear interrupt to ack VFs */
1562 	qm_clear_cmd_interrupt(qm, val);
1563 
1564 	return ret;
1565 }
1566 
1567 static void qm_trigger_vf_interrupt(struct hisi_qm *qm, u32 fun_num)
1568 {
1569 	u32 val;
1570 
1571 	val = readl(qm->io_base + QM_IFC_INT_CFG);
1572 	val &= ~QM_IFC_SEND_ALL_VFS;
1573 	val |= fun_num;
1574 	writel(val, qm->io_base + QM_IFC_INT_CFG);
1575 
1576 	val = readl(qm->io_base + QM_IFC_INT_SET_P);
1577 	val |= QM_IFC_INT_SET_MASK;
1578 	writel(val, qm->io_base + QM_IFC_INT_SET_P);
1579 }
1580 
1581 static void qm_trigger_pf_interrupt(struct hisi_qm *qm)
1582 {
1583 	u32 val;
1584 
1585 	val = readl(qm->io_base + QM_IFC_INT_SET_V);
1586 	val |= QM_IFC_INT_SET_MASK;
1587 	writel(val, qm->io_base + QM_IFC_INT_SET_V);
1588 }
1589 
1590 static int qm_ping_single_vf(struct hisi_qm *qm, u64 cmd, u32 fun_num)
1591 {
1592 	struct device *dev = &qm->pdev->dev;
1593 	struct qm_mailbox mailbox;
1594 	int cnt = 0;
1595 	u64 val;
1596 	int ret;
1597 
1598 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, fun_num, 0);
1599 	mutex_lock(&qm->mailbox_lock);
1600 	ret = qm_mb_nolock(qm, &mailbox);
1601 	if (ret) {
1602 		dev_err(dev, "failed to send command to vf(%u)!\n", fun_num);
1603 		goto err_unlock;
1604 	}
1605 
1606 	qm_trigger_vf_interrupt(qm, fun_num);
1607 	while (true) {
1608 		msleep(QM_WAIT_DST_ACK);
1609 		val = readq(qm->io_base + QM_IFC_READY_STATUS);
1610 		/* if VF respond, PF notifies VF successfully. */
1611 		if (!(val & BIT(fun_num)))
1612 			goto err_unlock;
1613 
1614 		if (++cnt > QM_MAX_PF_WAIT_COUNT) {
1615 			dev_err(dev, "failed to get response from VF(%u)!\n", fun_num);
1616 			ret = -ETIMEDOUT;
1617 			break;
1618 		}
1619 	}
1620 
1621 err_unlock:
1622 	mutex_unlock(&qm->mailbox_lock);
1623 	return ret;
1624 }
1625 
1626 static int qm_ping_all_vfs(struct hisi_qm *qm, u64 cmd)
1627 {
1628 	struct device *dev = &qm->pdev->dev;
1629 	u32 vfs_num = qm->vfs_num;
1630 	struct qm_mailbox mailbox;
1631 	u64 val = 0;
1632 	int cnt = 0;
1633 	int ret;
1634 	u32 i;
1635 
1636 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, QM_MB_PING_ALL_VFS, 0);
1637 	mutex_lock(&qm->mailbox_lock);
1638 	/* PF sends command to all VFs by mailbox */
1639 	ret = qm_mb_nolock(qm, &mailbox);
1640 	if (ret) {
1641 		dev_err(dev, "failed to send command to VFs!\n");
1642 		mutex_unlock(&qm->mailbox_lock);
1643 		return ret;
1644 	}
1645 
1646 	qm_trigger_vf_interrupt(qm, QM_IFC_SEND_ALL_VFS);
1647 	while (true) {
1648 		msleep(QM_WAIT_DST_ACK);
1649 		val = readq(qm->io_base + QM_IFC_READY_STATUS);
1650 		/* If all VFs acked, PF notifies VFs successfully. */
1651 		if (!(val & GENMASK(vfs_num, 1))) {
1652 			mutex_unlock(&qm->mailbox_lock);
1653 			return 0;
1654 		}
1655 
1656 		if (++cnt > QM_MAX_PF_WAIT_COUNT)
1657 			break;
1658 	}
1659 
1660 	mutex_unlock(&qm->mailbox_lock);
1661 
1662 	/* Check which vf respond timeout. */
1663 	for (i = 1; i <= vfs_num; i++) {
1664 		if (val & BIT(i))
1665 			dev_err(dev, "failed to get response from VF(%u)!\n", i);
1666 	}
1667 
1668 	return -ETIMEDOUT;
1669 }
1670 
1671 static int qm_ping_pf(struct hisi_qm *qm, u64 cmd)
1672 {
1673 	struct qm_mailbox mailbox;
1674 	int cnt = 0;
1675 	u32 val;
1676 	int ret;
1677 
1678 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, 0, 0);
1679 	mutex_lock(&qm->mailbox_lock);
1680 	ret = qm_mb_nolock(qm, &mailbox);
1681 	if (ret) {
1682 		dev_err(&qm->pdev->dev, "failed to send command to PF!\n");
1683 		goto unlock;
1684 	}
1685 
1686 	qm_trigger_pf_interrupt(qm);
1687 	/* Waiting for PF response */
1688 	while (true) {
1689 		msleep(QM_WAIT_DST_ACK);
1690 		val = readl(qm->io_base + QM_IFC_INT_SET_V);
1691 		if (!(val & QM_IFC_INT_STATUS_MASK))
1692 			break;
1693 
1694 		if (++cnt > QM_MAX_VF_WAIT_COUNT) {
1695 			ret = -ETIMEDOUT;
1696 			break;
1697 		}
1698 	}
1699 
1700 unlock:
1701 	mutex_unlock(&qm->mailbox_lock);
1702 	return ret;
1703 }
1704 
1705 static int qm_stop_qp(struct hisi_qp *qp)
1706 {
1707 	return hisi_qm_mb(qp->qm, QM_MB_CMD_STOP_QP, 0, qp->qp_id, 0);
1708 }
1709 
1710 static int qm_set_msi(struct hisi_qm *qm, bool set)
1711 {
1712 	struct pci_dev *pdev = qm->pdev;
1713 
1714 	if (set) {
1715 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
1716 				       0);
1717 	} else {
1718 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
1719 				       ACC_PEH_MSI_DISABLE);
1720 		if (qm->err_status.is_qm_ecc_mbit ||
1721 		    qm->err_status.is_dev_ecc_mbit)
1722 			return 0;
1723 
1724 		mdelay(1);
1725 		if (readl(qm->io_base + QM_PEH_DFX_INFO0))
1726 			return -EFAULT;
1727 	}
1728 
1729 	return 0;
1730 }
1731 
1732 static void qm_wait_msi_finish(struct hisi_qm *qm)
1733 {
1734 	struct pci_dev *pdev = qm->pdev;
1735 	u32 cmd = ~0;
1736 	int cnt = 0;
1737 	u32 val;
1738 	int ret;
1739 
1740 	while (true) {
1741 		pci_read_config_dword(pdev, pdev->msi_cap +
1742 				      PCI_MSI_PENDING_64, &cmd);
1743 		if (!cmd)
1744 			break;
1745 
1746 		if (++cnt > MAX_WAIT_COUNTS) {
1747 			pci_warn(pdev, "failed to empty MSI PENDING!\n");
1748 			break;
1749 		}
1750 
1751 		udelay(1);
1752 	}
1753 
1754 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO0,
1755 					 val, !(val & QM_PEH_DFX_MASK),
1756 					 POLL_PERIOD, POLL_TIMEOUT);
1757 	if (ret)
1758 		pci_warn(pdev, "failed to empty PEH MSI!\n");
1759 
1760 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO1,
1761 					 val, !(val & QM_PEH_MSI_FINISH_MASK),
1762 					 POLL_PERIOD, POLL_TIMEOUT);
1763 	if (ret)
1764 		pci_warn(pdev, "failed to finish MSI operation!\n");
1765 }
1766 
1767 static int qm_set_msi_v3(struct hisi_qm *qm, bool set)
1768 {
1769 	struct pci_dev *pdev = qm->pdev;
1770 	int ret = -ETIMEDOUT;
1771 	u32 cmd, i;
1772 
1773 	pci_read_config_dword(pdev, pdev->msi_cap, &cmd);
1774 	if (set)
1775 		cmd |= QM_MSI_CAP_ENABLE;
1776 	else
1777 		cmd &= ~QM_MSI_CAP_ENABLE;
1778 
1779 	pci_write_config_dword(pdev, pdev->msi_cap, cmd);
1780 	if (set) {
1781 		for (i = 0; i < MAX_WAIT_COUNTS; i++) {
1782 			pci_read_config_dword(pdev, pdev->msi_cap, &cmd);
1783 			if (cmd & QM_MSI_CAP_ENABLE)
1784 				return 0;
1785 
1786 			udelay(1);
1787 		}
1788 	} else {
1789 		udelay(WAIT_PERIOD_US_MIN);
1790 		qm_wait_msi_finish(qm);
1791 		ret = 0;
1792 	}
1793 
1794 	return ret;
1795 }
1796 
1797 static const struct hisi_qm_hw_ops qm_hw_ops_v1 = {
1798 	.qm_db = qm_db_v1,
1799 	.hw_error_init = qm_hw_error_init_v1,
1800 	.set_msi = qm_set_msi,
1801 };
1802 
1803 static const struct hisi_qm_hw_ops qm_hw_ops_v2 = {
1804 	.get_vft = qm_get_vft_v2,
1805 	.qm_db = qm_db_v2,
1806 	.hw_error_init = qm_hw_error_init_v2,
1807 	.hw_error_uninit = qm_hw_error_uninit_v2,
1808 	.hw_error_handle = qm_hw_error_handle_v2,
1809 	.set_msi = qm_set_msi,
1810 };
1811 
1812 static const struct hisi_qm_hw_ops qm_hw_ops_v3 = {
1813 	.get_vft = qm_get_vft_v2,
1814 	.qm_db = qm_db_v2,
1815 	.hw_error_init = qm_hw_error_init_v3,
1816 	.hw_error_uninit = qm_hw_error_uninit_v3,
1817 	.hw_error_handle = qm_hw_error_handle_v2,
1818 	.set_msi = qm_set_msi_v3,
1819 };
1820 
1821 static void *qm_get_avail_sqe(struct hisi_qp *qp)
1822 {
1823 	struct hisi_qp_status *qp_status = &qp->qp_status;
1824 	u16 sq_tail = qp_status->sq_tail;
1825 
1826 	if (unlikely(atomic_read(&qp->qp_status.used) == qp->sq_depth - 1))
1827 		return NULL;
1828 
1829 	return qp->sqe + sq_tail * qp->qm->sqe_size;
1830 }
1831 
1832 static void hisi_qm_unset_hw_reset(struct hisi_qp *qp)
1833 {
1834 	u64 *addr;
1835 
1836 	/* Use last 64 bits of DUS to reset status. */
1837 	addr = (u64 *)(qp->qdma.va + qp->qdma.size) - QM_RESET_STOP_TX_OFFSET;
1838 	*addr = 0;
1839 }
1840 
1841 static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type)
1842 {
1843 	struct device *dev = &qm->pdev->dev;
1844 	struct hisi_qp *qp;
1845 	int qp_id;
1846 
1847 	if (!qm_qp_avail_state(qm, NULL, QP_INIT))
1848 		return ERR_PTR(-EPERM);
1849 
1850 	if (qm->qp_in_used == qm->qp_num) {
1851 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
1852 				     qm->qp_num);
1853 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
1854 		return ERR_PTR(-EBUSY);
1855 	}
1856 
1857 	qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC);
1858 	if (qp_id < 0) {
1859 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
1860 				    qm->qp_num);
1861 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
1862 		return ERR_PTR(-EBUSY);
1863 	}
1864 
1865 	qp = &qm->qp_array[qp_id];
1866 	hisi_qm_unset_hw_reset(qp);
1867 	memset(qp->cqe, 0, sizeof(struct qm_cqe) * qp->cq_depth);
1868 
1869 	qp->event_cb = NULL;
1870 	qp->req_cb = NULL;
1871 	qp->qp_id = qp_id;
1872 	qp->alg_type = alg_type;
1873 	qp->is_in_kernel = true;
1874 	qm->qp_in_used++;
1875 	atomic_set(&qp->qp_status.flags, QP_INIT);
1876 
1877 	return qp;
1878 }
1879 
1880 /**
1881  * hisi_qm_create_qp() - Create a queue pair from qm.
1882  * @qm: The qm we create a qp from.
1883  * @alg_type: Accelerator specific algorithm type in sqc.
1884  *
1885  * Return created qp, negative error code if failed.
1886  */
1887 static struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type)
1888 {
1889 	struct hisi_qp *qp;
1890 	int ret;
1891 
1892 	ret = qm_pm_get_sync(qm);
1893 	if (ret)
1894 		return ERR_PTR(ret);
1895 
1896 	down_write(&qm->qps_lock);
1897 	qp = qm_create_qp_nolock(qm, alg_type);
1898 	up_write(&qm->qps_lock);
1899 
1900 	if (IS_ERR(qp))
1901 		qm_pm_put_sync(qm);
1902 
1903 	return qp;
1904 }
1905 
1906 /**
1907  * hisi_qm_release_qp() - Release a qp back to its qm.
1908  * @qp: The qp we want to release.
1909  *
1910  * This function releases the resource of a qp.
1911  */
1912 static void hisi_qm_release_qp(struct hisi_qp *qp)
1913 {
1914 	struct hisi_qm *qm = qp->qm;
1915 
1916 	down_write(&qm->qps_lock);
1917 
1918 	if (!qm_qp_avail_state(qm, qp, QP_CLOSE)) {
1919 		up_write(&qm->qps_lock);
1920 		return;
1921 	}
1922 
1923 	qm->qp_in_used--;
1924 	idr_remove(&qm->qp_idr, qp->qp_id);
1925 
1926 	up_write(&qm->qps_lock);
1927 
1928 	qm_pm_put_sync(qm);
1929 }
1930 
1931 static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
1932 {
1933 	struct hisi_qm *qm = qp->qm;
1934 	struct device *dev = &qm->pdev->dev;
1935 	enum qm_hw_ver ver = qm->ver;
1936 	struct qm_sqc *sqc;
1937 	dma_addr_t sqc_dma;
1938 	int ret;
1939 
1940 	sqc = kzalloc(sizeof(struct qm_sqc), GFP_KERNEL);
1941 	if (!sqc)
1942 		return -ENOMEM;
1943 
1944 	INIT_QC_COMMON(sqc, qp->sqe_dma, pasid);
1945 	if (ver == QM_HW_V1) {
1946 		sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size));
1947 		sqc->w8 = cpu_to_le16(qp->sq_depth - 1);
1948 	} else {
1949 		sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size, qp->sq_depth));
1950 		sqc->w8 = 0; /* rand_qc */
1951 	}
1952 	sqc->cq_num = cpu_to_le16(qp_id);
1953 	sqc->w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type));
1954 
1955 	if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
1956 		sqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE <<
1957 				       QM_QC_PASID_ENABLE_SHIFT);
1958 
1959 	sqc_dma = dma_map_single(dev, sqc, sizeof(struct qm_sqc),
1960 				 DMA_TO_DEVICE);
1961 	if (dma_mapping_error(dev, sqc_dma)) {
1962 		kfree(sqc);
1963 		return -ENOMEM;
1964 	}
1965 
1966 	ret = hisi_qm_mb(qm, QM_MB_CMD_SQC, sqc_dma, qp_id, 0);
1967 	dma_unmap_single(dev, sqc_dma, sizeof(struct qm_sqc), DMA_TO_DEVICE);
1968 	kfree(sqc);
1969 
1970 	return ret;
1971 }
1972 
1973 static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
1974 {
1975 	struct hisi_qm *qm = qp->qm;
1976 	struct device *dev = &qm->pdev->dev;
1977 	enum qm_hw_ver ver = qm->ver;
1978 	struct qm_cqc *cqc;
1979 	dma_addr_t cqc_dma;
1980 	int ret;
1981 
1982 	cqc = kzalloc(sizeof(struct qm_cqc), GFP_KERNEL);
1983 	if (!cqc)
1984 		return -ENOMEM;
1985 
1986 	INIT_QC_COMMON(cqc, qp->cqe_dma, pasid);
1987 	if (ver == QM_HW_V1) {
1988 		cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0,
1989 							QM_QC_CQE_SIZE));
1990 		cqc->w8 = cpu_to_le16(qp->cq_depth - 1);
1991 	} else {
1992 		cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE, qp->cq_depth));
1993 		cqc->w8 = 0; /* rand_qc */
1994 	}
1995 	cqc->dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT);
1996 
1997 	if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
1998 		cqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE);
1999 
2000 	cqc_dma = dma_map_single(dev, cqc, sizeof(struct qm_cqc),
2001 				 DMA_TO_DEVICE);
2002 	if (dma_mapping_error(dev, cqc_dma)) {
2003 		kfree(cqc);
2004 		return -ENOMEM;
2005 	}
2006 
2007 	ret = hisi_qm_mb(qm, QM_MB_CMD_CQC, cqc_dma, qp_id, 0);
2008 	dma_unmap_single(dev, cqc_dma, sizeof(struct qm_cqc), DMA_TO_DEVICE);
2009 	kfree(cqc);
2010 
2011 	return ret;
2012 }
2013 
2014 static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
2015 {
2016 	int ret;
2017 
2018 	qm_init_qp_status(qp);
2019 
2020 	ret = qm_sq_ctx_cfg(qp, qp_id, pasid);
2021 	if (ret)
2022 		return ret;
2023 
2024 	return qm_cq_ctx_cfg(qp, qp_id, pasid);
2025 }
2026 
2027 static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg)
2028 {
2029 	struct hisi_qm *qm = qp->qm;
2030 	struct device *dev = &qm->pdev->dev;
2031 	int qp_id = qp->qp_id;
2032 	u32 pasid = arg;
2033 	int ret;
2034 
2035 	if (!qm_qp_avail_state(qm, qp, QP_START))
2036 		return -EPERM;
2037 
2038 	ret = qm_qp_ctx_cfg(qp, qp_id, pasid);
2039 	if (ret)
2040 		return ret;
2041 
2042 	atomic_set(&qp->qp_status.flags, QP_START);
2043 	dev_dbg(dev, "queue %d started\n", qp_id);
2044 
2045 	return 0;
2046 }
2047 
2048 /**
2049  * hisi_qm_start_qp() - Start a qp into running.
2050  * @qp: The qp we want to start to run.
2051  * @arg: Accelerator specific argument.
2052  *
2053  * After this function, qp can receive request from user. Return 0 if
2054  * successful, negative error code if failed.
2055  */
2056 int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg)
2057 {
2058 	struct hisi_qm *qm = qp->qm;
2059 	int ret;
2060 
2061 	down_write(&qm->qps_lock);
2062 	ret = qm_start_qp_nolock(qp, arg);
2063 	up_write(&qm->qps_lock);
2064 
2065 	return ret;
2066 }
2067 EXPORT_SYMBOL_GPL(hisi_qm_start_qp);
2068 
2069 /**
2070  * qp_stop_fail_cb() - call request cb.
2071  * @qp: stopped failed qp.
2072  *
2073  * Callback function should be called whether task completed or not.
2074  */
2075 static void qp_stop_fail_cb(struct hisi_qp *qp)
2076 {
2077 	int qp_used = atomic_read(&qp->qp_status.used);
2078 	u16 cur_tail = qp->qp_status.sq_tail;
2079 	u16 sq_depth = qp->sq_depth;
2080 	u16 cur_head = (cur_tail + sq_depth - qp_used) % sq_depth;
2081 	struct hisi_qm *qm = qp->qm;
2082 	u16 pos;
2083 	int i;
2084 
2085 	for (i = 0; i < qp_used; i++) {
2086 		pos = (i + cur_head) % sq_depth;
2087 		qp->req_cb(qp, qp->sqe + (u32)(qm->sqe_size * pos));
2088 		atomic_dec(&qp->qp_status.used);
2089 	}
2090 }
2091 
2092 /**
2093  * qm_drain_qp() - Drain a qp.
2094  * @qp: The qp we want to drain.
2095  *
2096  * Determine whether the queue is cleared by judging the tail pointers of
2097  * sq and cq.
2098  */
2099 static int qm_drain_qp(struct hisi_qp *qp)
2100 {
2101 	size_t size = sizeof(struct qm_sqc) + sizeof(struct qm_cqc);
2102 	struct hisi_qm *qm = qp->qm;
2103 	struct device *dev = &qm->pdev->dev;
2104 	struct qm_sqc *sqc;
2105 	struct qm_cqc *cqc;
2106 	dma_addr_t dma_addr;
2107 	int ret = 0, i = 0;
2108 	void *addr;
2109 
2110 	/* No need to judge if master OOO is blocked. */
2111 	if (qm_check_dev_error(qm))
2112 		return 0;
2113 
2114 	/* Kunpeng930 supports drain qp by device */
2115 	if (test_bit(QM_SUPPORT_STOP_QP, &qm->caps)) {
2116 		ret = qm_stop_qp(qp);
2117 		if (ret)
2118 			dev_err(dev, "Failed to stop qp(%u)!\n", qp->qp_id);
2119 		return ret;
2120 	}
2121 
2122 	addr = hisi_qm_ctx_alloc(qm, size, &dma_addr);
2123 	if (IS_ERR(addr)) {
2124 		dev_err(dev, "Failed to alloc ctx for sqc and cqc!\n");
2125 		return -ENOMEM;
2126 	}
2127 
2128 	while (++i) {
2129 		ret = qm_dump_sqc_raw(qm, dma_addr, qp->qp_id);
2130 		if (ret) {
2131 			dev_err_ratelimited(dev, "Failed to dump sqc!\n");
2132 			break;
2133 		}
2134 		sqc = addr;
2135 
2136 		ret = qm_dump_cqc_raw(qm, (dma_addr + sizeof(struct qm_sqc)),
2137 				      qp->qp_id);
2138 		if (ret) {
2139 			dev_err_ratelimited(dev, "Failed to dump cqc!\n");
2140 			break;
2141 		}
2142 		cqc = addr + sizeof(struct qm_sqc);
2143 
2144 		if ((sqc->tail == cqc->tail) &&
2145 		    (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc)))
2146 			break;
2147 
2148 		if (i == MAX_WAIT_COUNTS) {
2149 			dev_err(dev, "Fail to empty queue %u!\n", qp->qp_id);
2150 			ret = -EBUSY;
2151 			break;
2152 		}
2153 
2154 		usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX);
2155 	}
2156 
2157 	hisi_qm_ctx_free(qm, size, addr, &dma_addr);
2158 
2159 	return ret;
2160 }
2161 
2162 static int qm_stop_qp_nolock(struct hisi_qp *qp)
2163 {
2164 	struct device *dev = &qp->qm->pdev->dev;
2165 	int ret;
2166 
2167 	/*
2168 	 * It is allowed to stop and release qp when reset, If the qp is
2169 	 * stopped when reset but still want to be released then, the
2170 	 * is_resetting flag should be set negative so that this qp will not
2171 	 * be restarted after reset.
2172 	 */
2173 	if (atomic_read(&qp->qp_status.flags) == QP_STOP) {
2174 		qp->is_resetting = false;
2175 		return 0;
2176 	}
2177 
2178 	if (!qm_qp_avail_state(qp->qm, qp, QP_STOP))
2179 		return -EPERM;
2180 
2181 	atomic_set(&qp->qp_status.flags, QP_STOP);
2182 
2183 	ret = qm_drain_qp(qp);
2184 	if (ret)
2185 		dev_err(dev, "Failed to drain out data for stopping!\n");
2186 
2187 
2188 	flush_workqueue(qp->qm->wq);
2189 	if (unlikely(qp->is_resetting && atomic_read(&qp->qp_status.used)))
2190 		qp_stop_fail_cb(qp);
2191 
2192 	dev_dbg(dev, "stop queue %u!", qp->qp_id);
2193 
2194 	return 0;
2195 }
2196 
2197 /**
2198  * hisi_qm_stop_qp() - Stop a qp in qm.
2199  * @qp: The qp we want to stop.
2200  *
2201  * This function is reverse of hisi_qm_start_qp. Return 0 if successful.
2202  */
2203 int hisi_qm_stop_qp(struct hisi_qp *qp)
2204 {
2205 	int ret;
2206 
2207 	down_write(&qp->qm->qps_lock);
2208 	ret = qm_stop_qp_nolock(qp);
2209 	up_write(&qp->qm->qps_lock);
2210 
2211 	return ret;
2212 }
2213 EXPORT_SYMBOL_GPL(hisi_qm_stop_qp);
2214 
2215 /**
2216  * hisi_qp_send() - Queue up a task in the hardware queue.
2217  * @qp: The qp in which to put the message.
2218  * @msg: The message.
2219  *
2220  * This function will return -EBUSY if qp is currently full, and -EAGAIN
2221  * if qp related qm is resetting.
2222  *
2223  * Note: This function may run with qm_irq_thread and ACC reset at same time.
2224  *       It has no race with qm_irq_thread. However, during hisi_qp_send, ACC
2225  *       reset may happen, we have no lock here considering performance. This
2226  *       causes current qm_db sending fail or can not receive sended sqe. QM
2227  *       sync/async receive function should handle the error sqe. ACC reset
2228  *       done function should clear used sqe to 0.
2229  */
2230 int hisi_qp_send(struct hisi_qp *qp, const void *msg)
2231 {
2232 	struct hisi_qp_status *qp_status = &qp->qp_status;
2233 	u16 sq_tail = qp_status->sq_tail;
2234 	u16 sq_tail_next = (sq_tail + 1) % qp->sq_depth;
2235 	void *sqe = qm_get_avail_sqe(qp);
2236 
2237 	if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP ||
2238 		     atomic_read(&qp->qm->status.flags) == QM_STOP ||
2239 		     qp->is_resetting)) {
2240 		dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n");
2241 		return -EAGAIN;
2242 	}
2243 
2244 	if (!sqe)
2245 		return -EBUSY;
2246 
2247 	memcpy(sqe, msg, qp->qm->sqe_size);
2248 
2249 	qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0);
2250 	atomic_inc(&qp->qp_status.used);
2251 	qp_status->sq_tail = sq_tail_next;
2252 
2253 	return 0;
2254 }
2255 EXPORT_SYMBOL_GPL(hisi_qp_send);
2256 
2257 static void hisi_qm_cache_wb(struct hisi_qm *qm)
2258 {
2259 	unsigned int val;
2260 
2261 	if (qm->ver == QM_HW_V1)
2262 		return;
2263 
2264 	writel(0x1, qm->io_base + QM_CACHE_WB_START);
2265 	if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE,
2266 				       val, val & BIT(0), POLL_PERIOD,
2267 				       POLL_TIMEOUT))
2268 		dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n");
2269 }
2270 
2271 static void qm_qp_event_notifier(struct hisi_qp *qp)
2272 {
2273 	wake_up_interruptible(&qp->uacce_q->wait);
2274 }
2275 
2276  /* This function returns free number of qp in qm. */
2277 static int hisi_qm_get_available_instances(struct uacce_device *uacce)
2278 {
2279 	struct hisi_qm *qm = uacce->priv;
2280 	int ret;
2281 
2282 	down_read(&qm->qps_lock);
2283 	ret = qm->qp_num - qm->qp_in_used;
2284 	up_read(&qm->qps_lock);
2285 
2286 	return ret;
2287 }
2288 
2289 static void hisi_qm_set_hw_reset(struct hisi_qm *qm, int offset)
2290 {
2291 	int i;
2292 
2293 	for (i = 0; i < qm->qp_num; i++)
2294 		qm_set_qp_disable(&qm->qp_array[i], offset);
2295 }
2296 
2297 static int hisi_qm_uacce_get_queue(struct uacce_device *uacce,
2298 				   unsigned long arg,
2299 				   struct uacce_queue *q)
2300 {
2301 	struct hisi_qm *qm = uacce->priv;
2302 	struct hisi_qp *qp;
2303 	u8 alg_type = 0;
2304 
2305 	qp = hisi_qm_create_qp(qm, alg_type);
2306 	if (IS_ERR(qp))
2307 		return PTR_ERR(qp);
2308 
2309 	q->priv = qp;
2310 	q->uacce = uacce;
2311 	qp->uacce_q = q;
2312 	qp->event_cb = qm_qp_event_notifier;
2313 	qp->pasid = arg;
2314 	qp->is_in_kernel = false;
2315 
2316 	return 0;
2317 }
2318 
2319 static void hisi_qm_uacce_put_queue(struct uacce_queue *q)
2320 {
2321 	struct hisi_qp *qp = q->priv;
2322 
2323 	hisi_qm_release_qp(qp);
2324 }
2325 
2326 /* map sq/cq/doorbell to user space */
2327 static int hisi_qm_uacce_mmap(struct uacce_queue *q,
2328 			      struct vm_area_struct *vma,
2329 			      struct uacce_qfile_region *qfr)
2330 {
2331 	struct hisi_qp *qp = q->priv;
2332 	struct hisi_qm *qm = qp->qm;
2333 	resource_size_t phys_base = qm->db_phys_base +
2334 				    qp->qp_id * qm->db_interval;
2335 	size_t sz = vma->vm_end - vma->vm_start;
2336 	struct pci_dev *pdev = qm->pdev;
2337 	struct device *dev = &pdev->dev;
2338 	unsigned long vm_pgoff;
2339 	int ret;
2340 
2341 	switch (qfr->type) {
2342 	case UACCE_QFRT_MMIO:
2343 		if (qm->ver == QM_HW_V1) {
2344 			if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR)
2345 				return -EINVAL;
2346 		} else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) {
2347 			if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR +
2348 			    QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE))
2349 				return -EINVAL;
2350 		} else {
2351 			if (sz > qm->db_interval)
2352 				return -EINVAL;
2353 		}
2354 
2355 		vma->vm_flags |= VM_IO;
2356 
2357 		return remap_pfn_range(vma, vma->vm_start,
2358 				       phys_base >> PAGE_SHIFT,
2359 				       sz, pgprot_noncached(vma->vm_page_prot));
2360 	case UACCE_QFRT_DUS:
2361 		if (sz != qp->qdma.size)
2362 			return -EINVAL;
2363 
2364 		/*
2365 		 * dma_mmap_coherent() requires vm_pgoff as 0
2366 		 * restore vm_pfoff to initial value for mmap()
2367 		 */
2368 		vm_pgoff = vma->vm_pgoff;
2369 		vma->vm_pgoff = 0;
2370 		ret = dma_mmap_coherent(dev, vma, qp->qdma.va,
2371 					qp->qdma.dma, sz);
2372 		vma->vm_pgoff = vm_pgoff;
2373 		return ret;
2374 
2375 	default:
2376 		return -EINVAL;
2377 	}
2378 }
2379 
2380 static int hisi_qm_uacce_start_queue(struct uacce_queue *q)
2381 {
2382 	struct hisi_qp *qp = q->priv;
2383 
2384 	return hisi_qm_start_qp(qp, qp->pasid);
2385 }
2386 
2387 static void hisi_qm_uacce_stop_queue(struct uacce_queue *q)
2388 {
2389 	hisi_qm_stop_qp(q->priv);
2390 }
2391 
2392 static int hisi_qm_is_q_updated(struct uacce_queue *q)
2393 {
2394 	struct hisi_qp *qp = q->priv;
2395 	struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
2396 	int updated = 0;
2397 
2398 	while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
2399 		/* make sure to read data from memory */
2400 		dma_rmb();
2401 		qm_cq_head_update(qp);
2402 		cqe = qp->cqe + qp->qp_status.cq_head;
2403 		updated = 1;
2404 	}
2405 
2406 	return updated;
2407 }
2408 
2409 static void qm_set_sqctype(struct uacce_queue *q, u16 type)
2410 {
2411 	struct hisi_qm *qm = q->uacce->priv;
2412 	struct hisi_qp *qp = q->priv;
2413 
2414 	down_write(&qm->qps_lock);
2415 	qp->alg_type = type;
2416 	up_write(&qm->qps_lock);
2417 }
2418 
2419 static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd,
2420 				unsigned long arg)
2421 {
2422 	struct hisi_qp *qp = q->priv;
2423 	struct hisi_qp_info qp_info;
2424 	struct hisi_qp_ctx qp_ctx;
2425 
2426 	if (cmd == UACCE_CMD_QM_SET_QP_CTX) {
2427 		if (copy_from_user(&qp_ctx, (void __user *)arg,
2428 				   sizeof(struct hisi_qp_ctx)))
2429 			return -EFAULT;
2430 
2431 		if (qp_ctx.qc_type != 0 && qp_ctx.qc_type != 1)
2432 			return -EINVAL;
2433 
2434 		qm_set_sqctype(q, qp_ctx.qc_type);
2435 		qp_ctx.id = qp->qp_id;
2436 
2437 		if (copy_to_user((void __user *)arg, &qp_ctx,
2438 				 sizeof(struct hisi_qp_ctx)))
2439 			return -EFAULT;
2440 
2441 		return 0;
2442 	} else if (cmd == UACCE_CMD_QM_SET_QP_INFO) {
2443 		if (copy_from_user(&qp_info, (void __user *)arg,
2444 				   sizeof(struct hisi_qp_info)))
2445 			return -EFAULT;
2446 
2447 		qp_info.sqe_size = qp->qm->sqe_size;
2448 		qp_info.sq_depth = qp->sq_depth;
2449 		qp_info.cq_depth = qp->cq_depth;
2450 
2451 		if (copy_to_user((void __user *)arg, &qp_info,
2452 				  sizeof(struct hisi_qp_info)))
2453 			return -EFAULT;
2454 
2455 		return 0;
2456 	}
2457 
2458 	return -EINVAL;
2459 }
2460 
2461 static const struct uacce_ops uacce_qm_ops = {
2462 	.get_available_instances = hisi_qm_get_available_instances,
2463 	.get_queue = hisi_qm_uacce_get_queue,
2464 	.put_queue = hisi_qm_uacce_put_queue,
2465 	.start_queue = hisi_qm_uacce_start_queue,
2466 	.stop_queue = hisi_qm_uacce_stop_queue,
2467 	.mmap = hisi_qm_uacce_mmap,
2468 	.ioctl = hisi_qm_uacce_ioctl,
2469 	.is_q_updated = hisi_qm_is_q_updated,
2470 };
2471 
2472 static int qm_alloc_uacce(struct hisi_qm *qm)
2473 {
2474 	struct pci_dev *pdev = qm->pdev;
2475 	struct uacce_device *uacce;
2476 	unsigned long mmio_page_nr;
2477 	unsigned long dus_page_nr;
2478 	u16 sq_depth, cq_depth;
2479 	struct uacce_interface interface = {
2480 		.flags = UACCE_DEV_SVA,
2481 		.ops = &uacce_qm_ops,
2482 	};
2483 	int ret;
2484 
2485 	ret = strscpy(interface.name, dev_driver_string(&pdev->dev),
2486 		      sizeof(interface.name));
2487 	if (ret < 0)
2488 		return -ENAMETOOLONG;
2489 
2490 	uacce = uacce_alloc(&pdev->dev, &interface);
2491 	if (IS_ERR(uacce))
2492 		return PTR_ERR(uacce);
2493 
2494 	if (uacce->flags & UACCE_DEV_SVA) {
2495 		qm->use_sva = true;
2496 	} else {
2497 		/* only consider sva case */
2498 		uacce_remove(uacce);
2499 		qm->uacce = NULL;
2500 		return -EINVAL;
2501 	}
2502 
2503 	uacce->is_vf = pdev->is_virtfn;
2504 	uacce->priv = qm;
2505 
2506 	if (qm->ver == QM_HW_V1)
2507 		uacce->api_ver = HISI_QM_API_VER_BASE;
2508 	else if (qm->ver == QM_HW_V2)
2509 		uacce->api_ver = HISI_QM_API_VER2_BASE;
2510 	else
2511 		uacce->api_ver = HISI_QM_API_VER3_BASE;
2512 
2513 	if (qm->ver == QM_HW_V1)
2514 		mmio_page_nr = QM_DOORBELL_PAGE_NR;
2515 	else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
2516 		mmio_page_nr = QM_DOORBELL_PAGE_NR +
2517 			QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE;
2518 	else
2519 		mmio_page_nr = qm->db_interval / PAGE_SIZE;
2520 
2521 	qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP);
2522 
2523 	/* Add one more page for device or qp status */
2524 	dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * sq_depth +
2525 		       sizeof(struct qm_cqe) * cq_depth  + PAGE_SIZE) >>
2526 					 PAGE_SHIFT;
2527 
2528 	uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr;
2529 	uacce->qf_pg_num[UACCE_QFRT_DUS]  = dus_page_nr;
2530 
2531 	qm->uacce = uacce;
2532 
2533 	return 0;
2534 }
2535 
2536 /**
2537  * qm_frozen() - Try to froze QM to cut continuous queue request. If
2538  * there is user on the QM, return failure without doing anything.
2539  * @qm: The qm needed to be fronzen.
2540  *
2541  * This function frozes QM, then we can do SRIOV disabling.
2542  */
2543 static int qm_frozen(struct hisi_qm *qm)
2544 {
2545 	if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl))
2546 		return 0;
2547 
2548 	down_write(&qm->qps_lock);
2549 
2550 	if (!qm->qp_in_used) {
2551 		qm->qp_in_used = qm->qp_num;
2552 		up_write(&qm->qps_lock);
2553 		set_bit(QM_DRIVER_REMOVING, &qm->misc_ctl);
2554 		return 0;
2555 	}
2556 
2557 	up_write(&qm->qps_lock);
2558 
2559 	return -EBUSY;
2560 }
2561 
2562 static int qm_try_frozen_vfs(struct pci_dev *pdev,
2563 			     struct hisi_qm_list *qm_list)
2564 {
2565 	struct hisi_qm *qm, *vf_qm;
2566 	struct pci_dev *dev;
2567 	int ret = 0;
2568 
2569 	if (!qm_list || !pdev)
2570 		return -EINVAL;
2571 
2572 	/* Try to frozen all the VFs as disable SRIOV */
2573 	mutex_lock(&qm_list->lock);
2574 	list_for_each_entry(qm, &qm_list->list, list) {
2575 		dev = qm->pdev;
2576 		if (dev == pdev)
2577 			continue;
2578 		if (pci_physfn(dev) == pdev) {
2579 			vf_qm = pci_get_drvdata(dev);
2580 			ret = qm_frozen(vf_qm);
2581 			if (ret)
2582 				goto frozen_fail;
2583 		}
2584 	}
2585 
2586 frozen_fail:
2587 	mutex_unlock(&qm_list->lock);
2588 
2589 	return ret;
2590 }
2591 
2592 /**
2593  * hisi_qm_wait_task_finish() - Wait until the task is finished
2594  * when removing the driver.
2595  * @qm: The qm needed to wait for the task to finish.
2596  * @qm_list: The list of all available devices.
2597  */
2598 void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
2599 {
2600 	while (qm_frozen(qm) ||
2601 	       ((qm->fun_type == QM_HW_PF) &&
2602 	       qm_try_frozen_vfs(qm->pdev, qm_list))) {
2603 		msleep(WAIT_PERIOD);
2604 	}
2605 
2606 	while (test_bit(QM_RST_SCHED, &qm->misc_ctl) ||
2607 	       test_bit(QM_RESETTING, &qm->misc_ctl))
2608 		msleep(WAIT_PERIOD);
2609 
2610 	udelay(REMOVE_WAIT_DELAY);
2611 }
2612 EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish);
2613 
2614 static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num)
2615 {
2616 	struct device *dev = &qm->pdev->dev;
2617 	struct qm_dma *qdma;
2618 	int i;
2619 
2620 	for (i = num - 1; i >= 0; i--) {
2621 		qdma = &qm->qp_array[i].qdma;
2622 		dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma);
2623 		kfree(qm->poll_data[i].qp_finish_id);
2624 	}
2625 
2626 	kfree(qm->poll_data);
2627 	kfree(qm->qp_array);
2628 }
2629 
2630 static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id,
2631 			       u16 sq_depth, u16 cq_depth)
2632 {
2633 	struct device *dev = &qm->pdev->dev;
2634 	size_t off = qm->sqe_size * sq_depth;
2635 	struct hisi_qp *qp;
2636 	int ret = -ENOMEM;
2637 
2638 	qm->poll_data[id].qp_finish_id = kcalloc(qm->qp_num, sizeof(u16),
2639 						 GFP_KERNEL);
2640 	if (!qm->poll_data[id].qp_finish_id)
2641 		return -ENOMEM;
2642 
2643 	qp = &qm->qp_array[id];
2644 	qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma,
2645 					 GFP_KERNEL);
2646 	if (!qp->qdma.va)
2647 		goto err_free_qp_finish_id;
2648 
2649 	qp->sqe = qp->qdma.va;
2650 	qp->sqe_dma = qp->qdma.dma;
2651 	qp->cqe = qp->qdma.va + off;
2652 	qp->cqe_dma = qp->qdma.dma + off;
2653 	qp->qdma.size = dma_size;
2654 	qp->sq_depth = sq_depth;
2655 	qp->cq_depth = cq_depth;
2656 	qp->qm = qm;
2657 	qp->qp_id = id;
2658 
2659 	return 0;
2660 
2661 err_free_qp_finish_id:
2662 	kfree(qm->poll_data[id].qp_finish_id);
2663 	return ret;
2664 }
2665 
2666 static void hisi_qm_pre_init(struct hisi_qm *qm)
2667 {
2668 	struct pci_dev *pdev = qm->pdev;
2669 
2670 	if (qm->ver == QM_HW_V1)
2671 		qm->ops = &qm_hw_ops_v1;
2672 	else if (qm->ver == QM_HW_V2)
2673 		qm->ops = &qm_hw_ops_v2;
2674 	else
2675 		qm->ops = &qm_hw_ops_v3;
2676 
2677 	pci_set_drvdata(pdev, qm);
2678 	mutex_init(&qm->mailbox_lock);
2679 	init_rwsem(&qm->qps_lock);
2680 	qm->qp_in_used = 0;
2681 	qm->misc_ctl = false;
2682 	if (test_bit(QM_SUPPORT_RPM, &qm->caps)) {
2683 		if (!acpi_device_power_manageable(ACPI_COMPANION(&pdev->dev)))
2684 			dev_info(&pdev->dev, "_PS0 and _PR0 are not defined");
2685 	}
2686 }
2687 
2688 static void qm_cmd_uninit(struct hisi_qm *qm)
2689 {
2690 	u32 val;
2691 
2692 	if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
2693 		return;
2694 
2695 	val = readl(qm->io_base + QM_IFC_INT_MASK);
2696 	val |= QM_IFC_INT_DISABLE;
2697 	writel(val, qm->io_base + QM_IFC_INT_MASK);
2698 }
2699 
2700 static void qm_cmd_init(struct hisi_qm *qm)
2701 {
2702 	u32 val;
2703 
2704 	if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
2705 		return;
2706 
2707 	/* Clear communication interrupt source */
2708 	qm_clear_cmd_interrupt(qm, QM_IFC_INT_SOURCE_CLR);
2709 
2710 	/* Enable pf to vf communication reg. */
2711 	val = readl(qm->io_base + QM_IFC_INT_MASK);
2712 	val &= ~QM_IFC_INT_DISABLE;
2713 	writel(val, qm->io_base + QM_IFC_INT_MASK);
2714 }
2715 
2716 static void qm_put_pci_res(struct hisi_qm *qm)
2717 {
2718 	struct pci_dev *pdev = qm->pdev;
2719 
2720 	if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
2721 		iounmap(qm->db_io_base);
2722 
2723 	iounmap(qm->io_base);
2724 	pci_release_mem_regions(pdev);
2725 }
2726 
2727 static void hisi_qm_pci_uninit(struct hisi_qm *qm)
2728 {
2729 	struct pci_dev *pdev = qm->pdev;
2730 
2731 	pci_free_irq_vectors(pdev);
2732 	qm_put_pci_res(qm);
2733 	pci_disable_device(pdev);
2734 }
2735 
2736 static void hisi_qm_set_state(struct hisi_qm *qm, u8 state)
2737 {
2738 	if (qm->ver > QM_HW_V2 && qm->fun_type == QM_HW_VF)
2739 		writel(state, qm->io_base + QM_VF_STATE);
2740 }
2741 
2742 static void hisi_qm_unint_work(struct hisi_qm *qm)
2743 {
2744 	destroy_workqueue(qm->wq);
2745 }
2746 
2747 static void hisi_qm_memory_uninit(struct hisi_qm *qm)
2748 {
2749 	struct device *dev = &qm->pdev->dev;
2750 
2751 	hisi_qp_memory_uninit(qm, qm->qp_num);
2752 	if (qm->qdma.va) {
2753 		hisi_qm_cache_wb(qm);
2754 		dma_free_coherent(dev, qm->qdma.size,
2755 				  qm->qdma.va, qm->qdma.dma);
2756 	}
2757 
2758 	idr_destroy(&qm->qp_idr);
2759 
2760 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
2761 		kfree(qm->factor);
2762 }
2763 
2764 /**
2765  * hisi_qm_uninit() - Uninitialize qm.
2766  * @qm: The qm needed uninit.
2767  *
2768  * This function uninits qm related device resources.
2769  */
2770 void hisi_qm_uninit(struct hisi_qm *qm)
2771 {
2772 	qm_cmd_uninit(qm);
2773 	hisi_qm_unint_work(qm);
2774 	down_write(&qm->qps_lock);
2775 
2776 	if (!qm_avail_state(qm, QM_CLOSE)) {
2777 		up_write(&qm->qps_lock);
2778 		return;
2779 	}
2780 
2781 	hisi_qm_memory_uninit(qm);
2782 	hisi_qm_set_state(qm, QM_NOT_READY);
2783 	up_write(&qm->qps_lock);
2784 
2785 	qm_irqs_unregister(qm);
2786 	hisi_qm_pci_uninit(qm);
2787 	if (qm->use_sva) {
2788 		uacce_remove(qm->uacce);
2789 		qm->uacce = NULL;
2790 	}
2791 }
2792 EXPORT_SYMBOL_GPL(hisi_qm_uninit);
2793 
2794 /**
2795  * hisi_qm_get_vft() - Get vft from a qm.
2796  * @qm: The qm we want to get its vft.
2797  * @base: The base number of queue in vft.
2798  * @number: The number of queues in vft.
2799  *
2800  * We can allocate multiple queues to a qm by configuring virtual function
2801  * table. We get related configures by this function. Normally, we call this
2802  * function in VF driver to get the queue information.
2803  *
2804  * qm hw v1 does not support this interface.
2805  */
2806 static int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number)
2807 {
2808 	if (!base || !number)
2809 		return -EINVAL;
2810 
2811 	if (!qm->ops->get_vft) {
2812 		dev_err(&qm->pdev->dev, "Don't support vft read!\n");
2813 		return -EINVAL;
2814 	}
2815 
2816 	return qm->ops->get_vft(qm, base, number);
2817 }
2818 
2819 /**
2820  * hisi_qm_set_vft() - Set vft to a qm.
2821  * @qm: The qm we want to set its vft.
2822  * @fun_num: The function number.
2823  * @base: The base number of queue in vft.
2824  * @number: The number of queues in vft.
2825  *
2826  * This function is alway called in PF driver, it is used to assign queues
2827  * among PF and VFs.
2828  *
2829  * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1)
2830  * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1)
2831  * (VF function number 0x2)
2832  */
2833 static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
2834 		    u32 number)
2835 {
2836 	u32 max_q_num = qm->ctrl_qp_num;
2837 
2838 	if (base >= max_q_num || number > max_q_num ||
2839 	    (base + number) > max_q_num)
2840 		return -EINVAL;
2841 
2842 	return qm_set_sqc_cqc_vft(qm, fun_num, base, number);
2843 }
2844 
2845 static void qm_init_eq_aeq_status(struct hisi_qm *qm)
2846 {
2847 	struct hisi_qm_status *status = &qm->status;
2848 
2849 	status->eq_head = 0;
2850 	status->aeq_head = 0;
2851 	status->eqc_phase = true;
2852 	status->aeqc_phase = true;
2853 }
2854 
2855 static void qm_enable_eq_aeq_interrupts(struct hisi_qm *qm)
2856 {
2857 	/* Clear eq/aeq interrupt source */
2858 	qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
2859 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
2860 
2861 	writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK);
2862 	writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK);
2863 }
2864 
2865 static void qm_disable_eq_aeq_interrupts(struct hisi_qm *qm)
2866 {
2867 	writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK);
2868 	writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK);
2869 }
2870 
2871 static int qm_eq_ctx_cfg(struct hisi_qm *qm)
2872 {
2873 	struct device *dev = &qm->pdev->dev;
2874 	struct qm_eqc *eqc;
2875 	dma_addr_t eqc_dma;
2876 	int ret;
2877 
2878 	eqc = kzalloc(sizeof(struct qm_eqc), GFP_KERNEL);
2879 	if (!eqc)
2880 		return -ENOMEM;
2881 
2882 	eqc->base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma));
2883 	eqc->base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma));
2884 	if (qm->ver == QM_HW_V1)
2885 		eqc->dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE);
2886 	eqc->dw6 = cpu_to_le32(((u32)qm->eq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT));
2887 
2888 	eqc_dma = dma_map_single(dev, eqc, sizeof(struct qm_eqc),
2889 				 DMA_TO_DEVICE);
2890 	if (dma_mapping_error(dev, eqc_dma)) {
2891 		kfree(eqc);
2892 		return -ENOMEM;
2893 	}
2894 
2895 	ret = hisi_qm_mb(qm, QM_MB_CMD_EQC, eqc_dma, 0, 0);
2896 	dma_unmap_single(dev, eqc_dma, sizeof(struct qm_eqc), DMA_TO_DEVICE);
2897 	kfree(eqc);
2898 
2899 	return ret;
2900 }
2901 
2902 static int qm_aeq_ctx_cfg(struct hisi_qm *qm)
2903 {
2904 	struct device *dev = &qm->pdev->dev;
2905 	struct qm_aeqc *aeqc;
2906 	dma_addr_t aeqc_dma;
2907 	int ret;
2908 
2909 	aeqc = kzalloc(sizeof(struct qm_aeqc), GFP_KERNEL);
2910 	if (!aeqc)
2911 		return -ENOMEM;
2912 
2913 	aeqc->base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma));
2914 	aeqc->base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma));
2915 	aeqc->dw6 = cpu_to_le32(((u32)qm->aeq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT));
2916 
2917 	aeqc_dma = dma_map_single(dev, aeqc, sizeof(struct qm_aeqc),
2918 				  DMA_TO_DEVICE);
2919 	if (dma_mapping_error(dev, aeqc_dma)) {
2920 		kfree(aeqc);
2921 		return -ENOMEM;
2922 	}
2923 
2924 	ret = hisi_qm_mb(qm, QM_MB_CMD_AEQC, aeqc_dma, 0, 0);
2925 	dma_unmap_single(dev, aeqc_dma, sizeof(struct qm_aeqc), DMA_TO_DEVICE);
2926 	kfree(aeqc);
2927 
2928 	return ret;
2929 }
2930 
2931 static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm)
2932 {
2933 	struct device *dev = &qm->pdev->dev;
2934 	int ret;
2935 
2936 	qm_init_eq_aeq_status(qm);
2937 
2938 	ret = qm_eq_ctx_cfg(qm);
2939 	if (ret) {
2940 		dev_err(dev, "Set eqc failed!\n");
2941 		return ret;
2942 	}
2943 
2944 	return qm_aeq_ctx_cfg(qm);
2945 }
2946 
2947 static int __hisi_qm_start(struct hisi_qm *qm)
2948 {
2949 	int ret;
2950 
2951 	WARN_ON(!qm->qdma.va);
2952 
2953 	if (qm->fun_type == QM_HW_PF) {
2954 		ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num);
2955 		if (ret)
2956 			return ret;
2957 	}
2958 
2959 	ret = qm_eq_aeq_ctx_cfg(qm);
2960 	if (ret)
2961 		return ret;
2962 
2963 	ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0);
2964 	if (ret)
2965 		return ret;
2966 
2967 	ret = hisi_qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0);
2968 	if (ret)
2969 		return ret;
2970 
2971 	qm_init_prefetch(qm);
2972 	qm_enable_eq_aeq_interrupts(qm);
2973 
2974 	return 0;
2975 }
2976 
2977 /**
2978  * hisi_qm_start() - start qm
2979  * @qm: The qm to be started.
2980  *
2981  * This function starts a qm, then we can allocate qp from this qm.
2982  */
2983 int hisi_qm_start(struct hisi_qm *qm)
2984 {
2985 	struct device *dev = &qm->pdev->dev;
2986 	int ret = 0;
2987 
2988 	down_write(&qm->qps_lock);
2989 
2990 	if (!qm_avail_state(qm, QM_START)) {
2991 		up_write(&qm->qps_lock);
2992 		return -EPERM;
2993 	}
2994 
2995 	dev_dbg(dev, "qm start with %u queue pairs\n", qm->qp_num);
2996 
2997 	if (!qm->qp_num) {
2998 		dev_err(dev, "qp_num should not be 0\n");
2999 		ret = -EINVAL;
3000 		goto err_unlock;
3001 	}
3002 
3003 	ret = __hisi_qm_start(qm);
3004 	if (!ret)
3005 		atomic_set(&qm->status.flags, QM_START);
3006 
3007 	hisi_qm_set_state(qm, QM_READY);
3008 err_unlock:
3009 	up_write(&qm->qps_lock);
3010 	return ret;
3011 }
3012 EXPORT_SYMBOL_GPL(hisi_qm_start);
3013 
3014 static int qm_restart(struct hisi_qm *qm)
3015 {
3016 	struct device *dev = &qm->pdev->dev;
3017 	struct hisi_qp *qp;
3018 	int ret, i;
3019 
3020 	ret = hisi_qm_start(qm);
3021 	if (ret < 0)
3022 		return ret;
3023 
3024 	down_write(&qm->qps_lock);
3025 	for (i = 0; i < qm->qp_num; i++) {
3026 		qp = &qm->qp_array[i];
3027 		if (atomic_read(&qp->qp_status.flags) == QP_STOP &&
3028 		    qp->is_resetting == true) {
3029 			ret = qm_start_qp_nolock(qp, 0);
3030 			if (ret < 0) {
3031 				dev_err(dev, "Failed to start qp%d!\n", i);
3032 
3033 				up_write(&qm->qps_lock);
3034 				return ret;
3035 			}
3036 			qp->is_resetting = false;
3037 		}
3038 	}
3039 	up_write(&qm->qps_lock);
3040 
3041 	return 0;
3042 }
3043 
3044 /* Stop started qps in reset flow */
3045 static int qm_stop_started_qp(struct hisi_qm *qm)
3046 {
3047 	struct device *dev = &qm->pdev->dev;
3048 	struct hisi_qp *qp;
3049 	int i, ret;
3050 
3051 	for (i = 0; i < qm->qp_num; i++) {
3052 		qp = &qm->qp_array[i];
3053 		if (qp && atomic_read(&qp->qp_status.flags) == QP_START) {
3054 			qp->is_resetting = true;
3055 			ret = qm_stop_qp_nolock(qp);
3056 			if (ret < 0) {
3057 				dev_err(dev, "Failed to stop qp%d!\n", i);
3058 				return ret;
3059 			}
3060 		}
3061 	}
3062 
3063 	return 0;
3064 }
3065 
3066 /**
3067  * qm_clear_queues() - Clear all queues memory in a qm.
3068  * @qm: The qm in which the queues will be cleared.
3069  *
3070  * This function clears all queues memory in a qm. Reset of accelerator can
3071  * use this to clear queues.
3072  */
3073 static void qm_clear_queues(struct hisi_qm *qm)
3074 {
3075 	struct hisi_qp *qp;
3076 	int i;
3077 
3078 	for (i = 0; i < qm->qp_num; i++) {
3079 		qp = &qm->qp_array[i];
3080 		if (qp->is_in_kernel && qp->is_resetting)
3081 			memset(qp->qdma.va, 0, qp->qdma.size);
3082 	}
3083 
3084 	memset(qm->qdma.va, 0, qm->qdma.size);
3085 }
3086 
3087 /**
3088  * hisi_qm_stop() - Stop a qm.
3089  * @qm: The qm which will be stopped.
3090  * @r: The reason to stop qm.
3091  *
3092  * This function stops qm and its qps, then qm can not accept request.
3093  * Related resources are not released at this state, we can use hisi_qm_start
3094  * to let qm start again.
3095  */
3096 int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r)
3097 {
3098 	struct device *dev = &qm->pdev->dev;
3099 	int ret = 0;
3100 
3101 	down_write(&qm->qps_lock);
3102 
3103 	qm->status.stop_reason = r;
3104 	if (!qm_avail_state(qm, QM_STOP)) {
3105 		ret = -EPERM;
3106 		goto err_unlock;
3107 	}
3108 
3109 	if (qm->status.stop_reason == QM_SOFT_RESET ||
3110 	    qm->status.stop_reason == QM_FLR) {
3111 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
3112 		ret = qm_stop_started_qp(qm);
3113 		if (ret < 0) {
3114 			dev_err(dev, "Failed to stop started qp!\n");
3115 			goto err_unlock;
3116 		}
3117 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
3118 	}
3119 
3120 	qm_disable_eq_aeq_interrupts(qm);
3121 	if (qm->fun_type == QM_HW_PF) {
3122 		ret = hisi_qm_set_vft(qm, 0, 0, 0);
3123 		if (ret < 0) {
3124 			dev_err(dev, "Failed to set vft!\n");
3125 			ret = -EBUSY;
3126 			goto err_unlock;
3127 		}
3128 	}
3129 
3130 	qm_clear_queues(qm);
3131 	atomic_set(&qm->status.flags, QM_STOP);
3132 
3133 err_unlock:
3134 	up_write(&qm->qps_lock);
3135 	return ret;
3136 }
3137 EXPORT_SYMBOL_GPL(hisi_qm_stop);
3138 
3139 static void qm_hw_error_init(struct hisi_qm *qm)
3140 {
3141 	if (!qm->ops->hw_error_init) {
3142 		dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n");
3143 		return;
3144 	}
3145 
3146 	qm->ops->hw_error_init(qm);
3147 }
3148 
3149 static void qm_hw_error_uninit(struct hisi_qm *qm)
3150 {
3151 	if (!qm->ops->hw_error_uninit) {
3152 		dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n");
3153 		return;
3154 	}
3155 
3156 	qm->ops->hw_error_uninit(qm);
3157 }
3158 
3159 static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm)
3160 {
3161 	if (!qm->ops->hw_error_handle) {
3162 		dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n");
3163 		return ACC_ERR_NONE;
3164 	}
3165 
3166 	return qm->ops->hw_error_handle(qm);
3167 }
3168 
3169 /**
3170  * hisi_qm_dev_err_init() - Initialize device error configuration.
3171  * @qm: The qm for which we want to do error initialization.
3172  *
3173  * Initialize QM and device error related configuration.
3174  */
3175 void hisi_qm_dev_err_init(struct hisi_qm *qm)
3176 {
3177 	if (qm->fun_type == QM_HW_VF)
3178 		return;
3179 
3180 	qm_hw_error_init(qm);
3181 
3182 	if (!qm->err_ini->hw_err_enable) {
3183 		dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n");
3184 		return;
3185 	}
3186 	qm->err_ini->hw_err_enable(qm);
3187 }
3188 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init);
3189 
3190 /**
3191  * hisi_qm_dev_err_uninit() - Uninitialize device error configuration.
3192  * @qm: The qm for which we want to do error uninitialization.
3193  *
3194  * Uninitialize QM and device error related configuration.
3195  */
3196 void hisi_qm_dev_err_uninit(struct hisi_qm *qm)
3197 {
3198 	if (qm->fun_type == QM_HW_VF)
3199 		return;
3200 
3201 	qm_hw_error_uninit(qm);
3202 
3203 	if (!qm->err_ini->hw_err_disable) {
3204 		dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n");
3205 		return;
3206 	}
3207 	qm->err_ini->hw_err_disable(qm);
3208 }
3209 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit);
3210 
3211 /**
3212  * hisi_qm_free_qps() - free multiple queue pairs.
3213  * @qps: The queue pairs need to be freed.
3214  * @qp_num: The num of queue pairs.
3215  */
3216 void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num)
3217 {
3218 	int i;
3219 
3220 	if (!qps || qp_num <= 0)
3221 		return;
3222 
3223 	for (i = qp_num - 1; i >= 0; i--)
3224 		hisi_qm_release_qp(qps[i]);
3225 }
3226 EXPORT_SYMBOL_GPL(hisi_qm_free_qps);
3227 
3228 static void free_list(struct list_head *head)
3229 {
3230 	struct hisi_qm_resource *res, *tmp;
3231 
3232 	list_for_each_entry_safe(res, tmp, head, list) {
3233 		list_del(&res->list);
3234 		kfree(res);
3235 	}
3236 }
3237 
3238 static int hisi_qm_sort_devices(int node, struct list_head *head,
3239 				struct hisi_qm_list *qm_list)
3240 {
3241 	struct hisi_qm_resource *res, *tmp;
3242 	struct hisi_qm *qm;
3243 	struct list_head *n;
3244 	struct device *dev;
3245 	int dev_node;
3246 
3247 	list_for_each_entry(qm, &qm_list->list, list) {
3248 		dev = &qm->pdev->dev;
3249 
3250 		dev_node = dev_to_node(dev);
3251 		if (dev_node < 0)
3252 			dev_node = 0;
3253 
3254 		res = kzalloc(sizeof(*res), GFP_KERNEL);
3255 		if (!res)
3256 			return -ENOMEM;
3257 
3258 		res->qm = qm;
3259 		res->distance = node_distance(dev_node, node);
3260 		n = head;
3261 		list_for_each_entry(tmp, head, list) {
3262 			if (res->distance < tmp->distance) {
3263 				n = &tmp->list;
3264 				break;
3265 			}
3266 		}
3267 		list_add_tail(&res->list, n);
3268 	}
3269 
3270 	return 0;
3271 }
3272 
3273 /**
3274  * hisi_qm_alloc_qps_node() - Create multiple queue pairs.
3275  * @qm_list: The list of all available devices.
3276  * @qp_num: The number of queue pairs need created.
3277  * @alg_type: The algorithm type.
3278  * @node: The numa node.
3279  * @qps: The queue pairs need created.
3280  *
3281  * This function will sort all available device according to numa distance.
3282  * Then try to create all queue pairs from one device, if all devices do
3283  * not meet the requirements will return error.
3284  */
3285 int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num,
3286 			   u8 alg_type, int node, struct hisi_qp **qps)
3287 {
3288 	struct hisi_qm_resource *tmp;
3289 	int ret = -ENODEV;
3290 	LIST_HEAD(head);
3291 	int i;
3292 
3293 	if (!qps || !qm_list || qp_num <= 0)
3294 		return -EINVAL;
3295 
3296 	mutex_lock(&qm_list->lock);
3297 	if (hisi_qm_sort_devices(node, &head, qm_list)) {
3298 		mutex_unlock(&qm_list->lock);
3299 		goto err;
3300 	}
3301 
3302 	list_for_each_entry(tmp, &head, list) {
3303 		for (i = 0; i < qp_num; i++) {
3304 			qps[i] = hisi_qm_create_qp(tmp->qm, alg_type);
3305 			if (IS_ERR(qps[i])) {
3306 				hisi_qm_free_qps(qps, i);
3307 				break;
3308 			}
3309 		}
3310 
3311 		if (i == qp_num) {
3312 			ret = 0;
3313 			break;
3314 		}
3315 	}
3316 
3317 	mutex_unlock(&qm_list->lock);
3318 	if (ret)
3319 		pr_info("Failed to create qps, node[%d], alg[%u], qp[%d]!\n",
3320 			node, alg_type, qp_num);
3321 
3322 err:
3323 	free_list(&head);
3324 	return ret;
3325 }
3326 EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node);
3327 
3328 static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs)
3329 {
3330 	u32 remain_q_num, vfs_q_num, act_q_num, q_num, i, j;
3331 	u32 max_qp_num = qm->max_qp_num;
3332 	u32 q_base = qm->qp_num;
3333 	int ret;
3334 
3335 	if (!num_vfs)
3336 		return -EINVAL;
3337 
3338 	vfs_q_num = qm->ctrl_qp_num - qm->qp_num;
3339 
3340 	/* If vfs_q_num is less than num_vfs, return error. */
3341 	if (vfs_q_num < num_vfs)
3342 		return -EINVAL;
3343 
3344 	q_num = vfs_q_num / num_vfs;
3345 	remain_q_num = vfs_q_num % num_vfs;
3346 
3347 	for (i = num_vfs; i > 0; i--) {
3348 		/*
3349 		 * if q_num + remain_q_num > max_qp_num in last vf, divide the
3350 		 * remaining queues equally.
3351 		 */
3352 		if (i == num_vfs && q_num + remain_q_num <= max_qp_num) {
3353 			act_q_num = q_num + remain_q_num;
3354 			remain_q_num = 0;
3355 		} else if (remain_q_num > 0) {
3356 			act_q_num = q_num + 1;
3357 			remain_q_num--;
3358 		} else {
3359 			act_q_num = q_num;
3360 		}
3361 
3362 		act_q_num = min(act_q_num, max_qp_num);
3363 		ret = hisi_qm_set_vft(qm, i, q_base, act_q_num);
3364 		if (ret) {
3365 			for (j = num_vfs; j > i; j--)
3366 				hisi_qm_set_vft(qm, j, 0, 0);
3367 			return ret;
3368 		}
3369 		q_base += act_q_num;
3370 	}
3371 
3372 	return 0;
3373 }
3374 
3375 static int qm_clear_vft_config(struct hisi_qm *qm)
3376 {
3377 	int ret;
3378 	u32 i;
3379 
3380 	for (i = 1; i <= qm->vfs_num; i++) {
3381 		ret = hisi_qm_set_vft(qm, i, 0, 0);
3382 		if (ret)
3383 			return ret;
3384 	}
3385 	qm->vfs_num = 0;
3386 
3387 	return 0;
3388 }
3389 
3390 static int qm_func_shaper_enable(struct hisi_qm *qm, u32 fun_index, u32 qos)
3391 {
3392 	struct device *dev = &qm->pdev->dev;
3393 	u32 ir = qos * QM_QOS_RATE;
3394 	int ret, total_vfs, i;
3395 
3396 	total_vfs = pci_sriov_get_totalvfs(qm->pdev);
3397 	if (fun_index > total_vfs)
3398 		return -EINVAL;
3399 
3400 	qm->factor[fun_index].func_qos = qos;
3401 
3402 	ret = qm_get_shaper_para(ir, &qm->factor[fun_index]);
3403 	if (ret) {
3404 		dev_err(dev, "failed to calculate shaper parameter!\n");
3405 		return -EINVAL;
3406 	}
3407 
3408 	for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) {
3409 		/* The base number of queue reuse for different alg type */
3410 		ret = qm_set_vft_common(qm, SHAPER_VFT, fun_index, i, 1);
3411 		if (ret) {
3412 			dev_err(dev, "type: %d, failed to set shaper vft!\n", i);
3413 			return -EINVAL;
3414 		}
3415 	}
3416 
3417 	return 0;
3418 }
3419 
3420 static u32 qm_get_shaper_vft_qos(struct hisi_qm *qm, u32 fun_index)
3421 {
3422 	u64 cir_u = 0, cir_b = 0, cir_s = 0;
3423 	u64 shaper_vft, ir_calc, ir;
3424 	unsigned int val;
3425 	u32 error_rate;
3426 	int ret;
3427 
3428 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
3429 					 val & BIT(0), POLL_PERIOD,
3430 					 POLL_TIMEOUT);
3431 	if (ret)
3432 		return 0;
3433 
3434 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_WR);
3435 	writel(SHAPER_VFT, qm->io_base + QM_VFT_CFG_TYPE);
3436 	writel(fun_index, qm->io_base + QM_VFT_CFG);
3437 
3438 	writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
3439 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
3440 
3441 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
3442 					 val & BIT(0), POLL_PERIOD,
3443 					 POLL_TIMEOUT);
3444 	if (ret)
3445 		return 0;
3446 
3447 	shaper_vft = readl(qm->io_base + QM_VFT_CFG_DATA_L) |
3448 		  ((u64)readl(qm->io_base + QM_VFT_CFG_DATA_H) << 32);
3449 
3450 	cir_b = shaper_vft & QM_SHAPER_CIR_B_MASK;
3451 	cir_u = shaper_vft & QM_SHAPER_CIR_U_MASK;
3452 	cir_u = cir_u >> QM_SHAPER_FACTOR_CIR_U_SHIFT;
3453 
3454 	cir_s = shaper_vft & QM_SHAPER_CIR_S_MASK;
3455 	cir_s = cir_s >> QM_SHAPER_FACTOR_CIR_S_SHIFT;
3456 
3457 	ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s);
3458 
3459 	ir = qm->factor[fun_index].func_qos * QM_QOS_RATE;
3460 
3461 	error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir;
3462 	if (error_rate > QM_QOS_MIN_ERROR_RATE) {
3463 		pci_err(qm->pdev, "error_rate: %u, get function qos is error!\n", error_rate);
3464 		return 0;
3465 	}
3466 
3467 	return ir;
3468 }
3469 
3470 static void qm_vf_get_qos(struct hisi_qm *qm, u32 fun_num)
3471 {
3472 	struct device *dev = &qm->pdev->dev;
3473 	u64 mb_cmd;
3474 	u32 qos;
3475 	int ret;
3476 
3477 	qos = qm_get_shaper_vft_qos(qm, fun_num);
3478 	if (!qos) {
3479 		dev_err(dev, "function(%u) failed to get qos by PF!\n", fun_num);
3480 		return;
3481 	}
3482 
3483 	mb_cmd = QM_PF_SET_QOS | (u64)qos << QM_MB_CMD_DATA_SHIFT;
3484 	ret = qm_ping_single_vf(qm, mb_cmd, fun_num);
3485 	if (ret)
3486 		dev_err(dev, "failed to send cmd to VF(%u)!\n", fun_num);
3487 }
3488 
3489 static int qm_vf_read_qos(struct hisi_qm *qm)
3490 {
3491 	int cnt = 0;
3492 	int ret = -EINVAL;
3493 
3494 	/* reset mailbox qos val */
3495 	qm->mb_qos = 0;
3496 
3497 	/* vf ping pf to get function qos */
3498 	ret = qm_ping_pf(qm, QM_VF_GET_QOS);
3499 	if (ret) {
3500 		pci_err(qm->pdev, "failed to send cmd to PF to get qos!\n");
3501 		return ret;
3502 	}
3503 
3504 	while (true) {
3505 		msleep(QM_WAIT_DST_ACK);
3506 		if (qm->mb_qos)
3507 			break;
3508 
3509 		if (++cnt > QM_MAX_VF_WAIT_COUNT) {
3510 			pci_err(qm->pdev, "PF ping VF timeout!\n");
3511 			return  -ETIMEDOUT;
3512 		}
3513 	}
3514 
3515 	return ret;
3516 }
3517 
3518 static ssize_t qm_algqos_read(struct file *filp, char __user *buf,
3519 			       size_t count, loff_t *pos)
3520 {
3521 	struct hisi_qm *qm = filp->private_data;
3522 	char tbuf[QM_DBG_READ_LEN];
3523 	u32 qos_val, ir;
3524 	int ret;
3525 
3526 	ret = hisi_qm_get_dfx_access(qm);
3527 	if (ret)
3528 		return ret;
3529 
3530 	/* Mailbox and reset cannot be operated at the same time */
3531 	if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
3532 		pci_err(qm->pdev, "dev resetting, read alg qos failed!\n");
3533 		ret = -EAGAIN;
3534 		goto err_put_dfx_access;
3535 	}
3536 
3537 	if (qm->fun_type == QM_HW_PF) {
3538 		ir = qm_get_shaper_vft_qos(qm, 0);
3539 	} else {
3540 		ret = qm_vf_read_qos(qm);
3541 		if (ret)
3542 			goto err_get_status;
3543 		ir = qm->mb_qos;
3544 	}
3545 
3546 	qos_val = ir / QM_QOS_RATE;
3547 	ret = scnprintf(tbuf, QM_DBG_READ_LEN, "%u\n", qos_val);
3548 
3549 	ret = simple_read_from_buffer(buf, count, pos, tbuf, ret);
3550 
3551 err_get_status:
3552 	clear_bit(QM_RESETTING, &qm->misc_ctl);
3553 err_put_dfx_access:
3554 	hisi_qm_put_dfx_access(qm);
3555 	return ret;
3556 }
3557 
3558 static ssize_t qm_get_qos_value(struct hisi_qm *qm, const char *buf,
3559 			       unsigned long *val,
3560 			       unsigned int *fun_index)
3561 {
3562 	struct bus_type *bus_type = qm->pdev->dev.bus;
3563 	char tbuf_bdf[QM_DBG_READ_LEN] = {0};
3564 	char val_buf[QM_DBG_READ_LEN] = {0};
3565 	struct pci_dev *pdev;
3566 	struct device *dev;
3567 	int ret;
3568 
3569 	ret = sscanf(buf, "%s %s", tbuf_bdf, val_buf);
3570 	if (ret != QM_QOS_PARAM_NUM)
3571 		return -EINVAL;
3572 
3573 	ret = kstrtoul(val_buf, 10, val);
3574 	if (ret || *val == 0 || *val > QM_QOS_MAX_VAL) {
3575 		pci_err(qm->pdev, "input qos value is error, please set 1~1000!\n");
3576 		return -EINVAL;
3577 	}
3578 
3579 	dev = bus_find_device_by_name(bus_type, NULL, tbuf_bdf);
3580 	if (!dev) {
3581 		pci_err(qm->pdev, "input pci bdf number is error!\n");
3582 		return -ENODEV;
3583 	}
3584 
3585 	pdev = container_of(dev, struct pci_dev, dev);
3586 
3587 	*fun_index = pdev->devfn;
3588 
3589 	return 0;
3590 }
3591 
3592 static ssize_t qm_algqos_write(struct file *filp, const char __user *buf,
3593 			       size_t count, loff_t *pos)
3594 {
3595 	struct hisi_qm *qm = filp->private_data;
3596 	char tbuf[QM_DBG_READ_LEN];
3597 	unsigned int fun_index;
3598 	unsigned long val;
3599 	int len, ret;
3600 
3601 	if (*pos != 0)
3602 		return 0;
3603 
3604 	if (count >= QM_DBG_READ_LEN)
3605 		return -ENOSPC;
3606 
3607 	len = simple_write_to_buffer(tbuf, QM_DBG_READ_LEN - 1, pos, buf, count);
3608 	if (len < 0)
3609 		return len;
3610 
3611 	tbuf[len] = '\0';
3612 	ret = qm_get_qos_value(qm, tbuf, &val, &fun_index);
3613 	if (ret)
3614 		return ret;
3615 
3616 	/* Mailbox and reset cannot be operated at the same time */
3617 	if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
3618 		pci_err(qm->pdev, "dev resetting, write alg qos failed!\n");
3619 		return -EAGAIN;
3620 	}
3621 
3622 	ret = qm_pm_get_sync(qm);
3623 	if (ret) {
3624 		ret = -EINVAL;
3625 		goto err_get_status;
3626 	}
3627 
3628 	ret = qm_func_shaper_enable(qm, fun_index, val);
3629 	if (ret) {
3630 		pci_err(qm->pdev, "failed to enable function shaper!\n");
3631 		ret = -EINVAL;
3632 		goto err_put_sync;
3633 	}
3634 
3635 	pci_info(qm->pdev, "the qos value of function%u is set to %lu.\n",
3636 		 fun_index, val);
3637 	ret = count;
3638 
3639 err_put_sync:
3640 	qm_pm_put_sync(qm);
3641 err_get_status:
3642 	clear_bit(QM_RESETTING, &qm->misc_ctl);
3643 	return ret;
3644 }
3645 
3646 static const struct file_operations qm_algqos_fops = {
3647 	.owner = THIS_MODULE,
3648 	.open = simple_open,
3649 	.read = qm_algqos_read,
3650 	.write = qm_algqos_write,
3651 };
3652 
3653 /**
3654  * hisi_qm_set_algqos_init() - Initialize function qos debugfs files.
3655  * @qm: The qm for which we want to add debugfs files.
3656  *
3657  * Create function qos debugfs files, VF ping PF to get function qos.
3658  */
3659 void hisi_qm_set_algqos_init(struct hisi_qm *qm)
3660 {
3661 	if (qm->fun_type == QM_HW_PF)
3662 		debugfs_create_file("alg_qos", 0644, qm->debug.debug_root,
3663 				    qm, &qm_algqos_fops);
3664 	else if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
3665 		debugfs_create_file("alg_qos", 0444, qm->debug.debug_root,
3666 				    qm, &qm_algqos_fops);
3667 }
3668 
3669 static void hisi_qm_init_vf_qos(struct hisi_qm *qm, int total_func)
3670 {
3671 	int i;
3672 
3673 	for (i = 1; i <= total_func; i++)
3674 		qm->factor[i].func_qos = QM_QOS_MAX_VAL;
3675 }
3676 
3677 /**
3678  * hisi_qm_sriov_enable() - enable virtual functions
3679  * @pdev: the PCIe device
3680  * @max_vfs: the number of virtual functions to enable
3681  *
3682  * Returns the number of enabled VFs. If there are VFs enabled already or
3683  * max_vfs is more than the total number of device can be enabled, returns
3684  * failure.
3685  */
3686 int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs)
3687 {
3688 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3689 	int pre_existing_vfs, num_vfs, total_vfs, ret;
3690 
3691 	ret = qm_pm_get_sync(qm);
3692 	if (ret)
3693 		return ret;
3694 
3695 	total_vfs = pci_sriov_get_totalvfs(pdev);
3696 	pre_existing_vfs = pci_num_vf(pdev);
3697 	if (pre_existing_vfs) {
3698 		pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n",
3699 			pre_existing_vfs);
3700 		goto err_put_sync;
3701 	}
3702 
3703 	if (max_vfs > total_vfs) {
3704 		pci_err(pdev, "%d VFs is more than total VFs %d!\n", max_vfs, total_vfs);
3705 		ret = -ERANGE;
3706 		goto err_put_sync;
3707 	}
3708 
3709 	num_vfs = max_vfs;
3710 
3711 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
3712 		hisi_qm_init_vf_qos(qm, num_vfs);
3713 
3714 	ret = qm_vf_q_assign(qm, num_vfs);
3715 	if (ret) {
3716 		pci_err(pdev, "Can't assign queues for VF!\n");
3717 		goto err_put_sync;
3718 	}
3719 
3720 	qm->vfs_num = num_vfs;
3721 
3722 	ret = pci_enable_sriov(pdev, num_vfs);
3723 	if (ret) {
3724 		pci_err(pdev, "Can't enable VF!\n");
3725 		qm_clear_vft_config(qm);
3726 		goto err_put_sync;
3727 	}
3728 
3729 	pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs);
3730 
3731 	return num_vfs;
3732 
3733 err_put_sync:
3734 	qm_pm_put_sync(qm);
3735 	return ret;
3736 }
3737 EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable);
3738 
3739 /**
3740  * hisi_qm_sriov_disable - disable virtual functions
3741  * @pdev: the PCI device.
3742  * @is_frozen: true when all the VFs are frozen.
3743  *
3744  * Return failure if there are VFs assigned already or VF is in used.
3745  */
3746 int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen)
3747 {
3748 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3749 	int ret;
3750 
3751 	if (pci_vfs_assigned(pdev)) {
3752 		pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n");
3753 		return -EPERM;
3754 	}
3755 
3756 	/* While VF is in used, SRIOV cannot be disabled. */
3757 	if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) {
3758 		pci_err(pdev, "Task is using its VF!\n");
3759 		return -EBUSY;
3760 	}
3761 
3762 	pci_disable_sriov(pdev);
3763 
3764 	ret = qm_clear_vft_config(qm);
3765 	if (ret)
3766 		return ret;
3767 
3768 	qm_pm_put_sync(qm);
3769 
3770 	return 0;
3771 }
3772 EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable);
3773 
3774 /**
3775  * hisi_qm_sriov_configure - configure the number of VFs
3776  * @pdev: The PCI device
3777  * @num_vfs: The number of VFs need enabled
3778  *
3779  * Enable SR-IOV according to num_vfs, 0 means disable.
3780  */
3781 int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs)
3782 {
3783 	if (num_vfs == 0)
3784 		return hisi_qm_sriov_disable(pdev, false);
3785 	else
3786 		return hisi_qm_sriov_enable(pdev, num_vfs);
3787 }
3788 EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure);
3789 
3790 static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm)
3791 {
3792 	u32 err_sts;
3793 
3794 	if (!qm->err_ini->get_dev_hw_err_status) {
3795 		dev_err(&qm->pdev->dev, "Device doesn't support get hw error status!\n");
3796 		return ACC_ERR_NONE;
3797 	}
3798 
3799 	/* get device hardware error status */
3800 	err_sts = qm->err_ini->get_dev_hw_err_status(qm);
3801 	if (err_sts) {
3802 		if (err_sts & qm->err_info.ecc_2bits_mask)
3803 			qm->err_status.is_dev_ecc_mbit = true;
3804 
3805 		if (qm->err_ini->log_dev_hw_err)
3806 			qm->err_ini->log_dev_hw_err(qm, err_sts);
3807 
3808 		if (err_sts & qm->err_info.dev_reset_mask)
3809 			return ACC_ERR_NEED_RESET;
3810 
3811 		if (qm->err_ini->clear_dev_hw_err_status)
3812 			qm->err_ini->clear_dev_hw_err_status(qm, err_sts);
3813 	}
3814 
3815 	return ACC_ERR_RECOVERED;
3816 }
3817 
3818 static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm)
3819 {
3820 	enum acc_err_result qm_ret, dev_ret;
3821 
3822 	/* log qm error */
3823 	qm_ret = qm_hw_error_handle(qm);
3824 
3825 	/* log device error */
3826 	dev_ret = qm_dev_err_handle(qm);
3827 
3828 	return (qm_ret == ACC_ERR_NEED_RESET ||
3829 		dev_ret == ACC_ERR_NEED_RESET) ?
3830 		ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED;
3831 }
3832 
3833 /**
3834  * hisi_qm_dev_err_detected() - Get device and qm error status then log it.
3835  * @pdev: The PCI device which need report error.
3836  * @state: The connectivity between CPU and device.
3837  *
3838  * We register this function into PCIe AER handlers, It will report device or
3839  * qm hardware error status when error occur.
3840  */
3841 pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev,
3842 					  pci_channel_state_t state)
3843 {
3844 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3845 	enum acc_err_result ret;
3846 
3847 	if (pdev->is_virtfn)
3848 		return PCI_ERS_RESULT_NONE;
3849 
3850 	pci_info(pdev, "PCI error detected, state(=%u)!!\n", state);
3851 	if (state == pci_channel_io_perm_failure)
3852 		return PCI_ERS_RESULT_DISCONNECT;
3853 
3854 	ret = qm_process_dev_error(qm);
3855 	if (ret == ACC_ERR_NEED_RESET)
3856 		return PCI_ERS_RESULT_NEED_RESET;
3857 
3858 	return PCI_ERS_RESULT_RECOVERED;
3859 }
3860 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected);
3861 
3862 static int qm_check_req_recv(struct hisi_qm *qm)
3863 {
3864 	struct pci_dev *pdev = qm->pdev;
3865 	int ret;
3866 	u32 val;
3867 
3868 	if (qm->ver >= QM_HW_V3)
3869 		return 0;
3870 
3871 	writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID);
3872 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
3873 					 (val == ACC_VENDOR_ID_VALUE),
3874 					 POLL_PERIOD, POLL_TIMEOUT);
3875 	if (ret) {
3876 		dev_err(&pdev->dev, "Fails to read QM reg!\n");
3877 		return ret;
3878 	}
3879 
3880 	writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID);
3881 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
3882 					 (val == PCI_VENDOR_ID_HUAWEI),
3883 					 POLL_PERIOD, POLL_TIMEOUT);
3884 	if (ret)
3885 		dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n");
3886 
3887 	return ret;
3888 }
3889 
3890 static int qm_set_pf_mse(struct hisi_qm *qm, bool set)
3891 {
3892 	struct pci_dev *pdev = qm->pdev;
3893 	u16 cmd;
3894 	int i;
3895 
3896 	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
3897 	if (set)
3898 		cmd |= PCI_COMMAND_MEMORY;
3899 	else
3900 		cmd &= ~PCI_COMMAND_MEMORY;
3901 
3902 	pci_write_config_word(pdev, PCI_COMMAND, cmd);
3903 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
3904 		pci_read_config_word(pdev, PCI_COMMAND, &cmd);
3905 		if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1))
3906 			return 0;
3907 
3908 		udelay(1);
3909 	}
3910 
3911 	return -ETIMEDOUT;
3912 }
3913 
3914 static int qm_set_vf_mse(struct hisi_qm *qm, bool set)
3915 {
3916 	struct pci_dev *pdev = qm->pdev;
3917 	u16 sriov_ctrl;
3918 	int pos;
3919 	int i;
3920 
3921 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
3922 	pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
3923 	if (set)
3924 		sriov_ctrl |= PCI_SRIOV_CTRL_MSE;
3925 	else
3926 		sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE;
3927 	pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl);
3928 
3929 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
3930 		pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
3931 		if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >>
3932 		    ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT)
3933 			return 0;
3934 
3935 		udelay(1);
3936 	}
3937 
3938 	return -ETIMEDOUT;
3939 }
3940 
3941 static int qm_vf_reset_prepare(struct hisi_qm *qm,
3942 			       enum qm_stop_reason stop_reason)
3943 {
3944 	struct hisi_qm_list *qm_list = qm->qm_list;
3945 	struct pci_dev *pdev = qm->pdev;
3946 	struct pci_dev *virtfn;
3947 	struct hisi_qm *vf_qm;
3948 	int ret = 0;
3949 
3950 	mutex_lock(&qm_list->lock);
3951 	list_for_each_entry(vf_qm, &qm_list->list, list) {
3952 		virtfn = vf_qm->pdev;
3953 		if (virtfn == pdev)
3954 			continue;
3955 
3956 		if (pci_physfn(virtfn) == pdev) {
3957 			/* save VFs PCIE BAR configuration */
3958 			pci_save_state(virtfn);
3959 
3960 			ret = hisi_qm_stop(vf_qm, stop_reason);
3961 			if (ret)
3962 				goto stop_fail;
3963 		}
3964 	}
3965 
3966 stop_fail:
3967 	mutex_unlock(&qm_list->lock);
3968 	return ret;
3969 }
3970 
3971 static int qm_try_stop_vfs(struct hisi_qm *qm, u64 cmd,
3972 			   enum qm_stop_reason stop_reason)
3973 {
3974 	struct pci_dev *pdev = qm->pdev;
3975 	int ret;
3976 
3977 	if (!qm->vfs_num)
3978 		return 0;
3979 
3980 	/* Kunpeng930 supports to notify VFs to stop before PF reset */
3981 	if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) {
3982 		ret = qm_ping_all_vfs(qm, cmd);
3983 		if (ret)
3984 			pci_err(pdev, "failed to send cmd to all VFs before PF reset!\n");
3985 	} else {
3986 		ret = qm_vf_reset_prepare(qm, stop_reason);
3987 		if (ret)
3988 			pci_err(pdev, "failed to prepare reset, ret = %d.\n", ret);
3989 	}
3990 
3991 	return ret;
3992 }
3993 
3994 static int qm_controller_reset_prepare(struct hisi_qm *qm)
3995 {
3996 	struct pci_dev *pdev = qm->pdev;
3997 	int ret;
3998 
3999 	ret = qm_reset_prepare_ready(qm);
4000 	if (ret) {
4001 		pci_err(pdev, "Controller reset not ready!\n");
4002 		return ret;
4003 	}
4004 
4005 	/* PF obtains the information of VF by querying the register. */
4006 	qm_cmd_uninit(qm);
4007 
4008 	/* Whether VFs stop successfully, soft reset will continue. */
4009 	ret = qm_try_stop_vfs(qm, QM_PF_SRST_PREPARE, QM_SOFT_RESET);
4010 	if (ret)
4011 		pci_err(pdev, "failed to stop vfs by pf in soft reset.\n");
4012 
4013 	ret = hisi_qm_stop(qm, QM_SOFT_RESET);
4014 	if (ret) {
4015 		pci_err(pdev, "Fails to stop QM!\n");
4016 		qm_reset_bit_clear(qm);
4017 		return ret;
4018 	}
4019 
4020 	ret = qm_wait_vf_prepare_finish(qm);
4021 	if (ret)
4022 		pci_err(pdev, "failed to stop by vfs in soft reset!\n");
4023 
4024 	clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4025 
4026 	return 0;
4027 }
4028 
4029 static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm)
4030 {
4031 	u32 nfe_enb = 0;
4032 
4033 	/* Kunpeng930 hardware automatically close master ooo when NFE occurs */
4034 	if (qm->ver >= QM_HW_V3)
4035 		return;
4036 
4037 	if (!qm->err_status.is_dev_ecc_mbit &&
4038 	    qm->err_status.is_qm_ecc_mbit &&
4039 	    qm->err_ini->close_axi_master_ooo) {
4040 		qm->err_ini->close_axi_master_ooo(qm);
4041 	} else if (qm->err_status.is_dev_ecc_mbit &&
4042 		   !qm->err_status.is_qm_ecc_mbit &&
4043 		   !qm->err_ini->close_axi_master_ooo) {
4044 		nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE);
4045 		writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE,
4046 		       qm->io_base + QM_RAS_NFE_ENABLE);
4047 		writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET);
4048 	}
4049 }
4050 
4051 static int qm_soft_reset(struct hisi_qm *qm)
4052 {
4053 	struct pci_dev *pdev = qm->pdev;
4054 	int ret;
4055 	u32 val;
4056 
4057 	/* Ensure all doorbells and mailboxes received by QM */
4058 	ret = qm_check_req_recv(qm);
4059 	if (ret)
4060 		return ret;
4061 
4062 	if (qm->vfs_num) {
4063 		ret = qm_set_vf_mse(qm, false);
4064 		if (ret) {
4065 			pci_err(pdev, "Fails to disable vf MSE bit.\n");
4066 			return ret;
4067 		}
4068 	}
4069 
4070 	ret = qm->ops->set_msi(qm, false);
4071 	if (ret) {
4072 		pci_err(pdev, "Fails to disable PEH MSI bit.\n");
4073 		return ret;
4074 	}
4075 
4076 	qm_dev_ecc_mbit_handle(qm);
4077 
4078 	/* OOO register set and check */
4079 	writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN,
4080 	       qm->io_base + ACC_MASTER_GLOBAL_CTRL);
4081 
4082 	/* If bus lock, reset chip */
4083 	ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN,
4084 					 val,
4085 					 (val == ACC_MASTER_TRANS_RETURN_RW),
4086 					 POLL_PERIOD, POLL_TIMEOUT);
4087 	if (ret) {
4088 		pci_emerg(pdev, "Bus lock! Please reset system.\n");
4089 		return ret;
4090 	}
4091 
4092 	if (qm->err_ini->close_sva_prefetch)
4093 		qm->err_ini->close_sva_prefetch(qm);
4094 
4095 	ret = qm_set_pf_mse(qm, false);
4096 	if (ret) {
4097 		pci_err(pdev, "Fails to disable pf MSE bit.\n");
4098 		return ret;
4099 	}
4100 
4101 	/* The reset related sub-control registers are not in PCI BAR */
4102 	if (ACPI_HANDLE(&pdev->dev)) {
4103 		unsigned long long value = 0;
4104 		acpi_status s;
4105 
4106 		s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev),
4107 					  qm->err_info.acpi_rst,
4108 					  NULL, &value);
4109 		if (ACPI_FAILURE(s)) {
4110 			pci_err(pdev, "NO controller reset method!\n");
4111 			return -EIO;
4112 		}
4113 
4114 		if (value) {
4115 			pci_err(pdev, "Reset step %llu failed!\n", value);
4116 			return -EIO;
4117 		}
4118 	} else {
4119 		pci_err(pdev, "No reset method!\n");
4120 		return -EINVAL;
4121 	}
4122 
4123 	return 0;
4124 }
4125 
4126 static int qm_vf_reset_done(struct hisi_qm *qm)
4127 {
4128 	struct hisi_qm_list *qm_list = qm->qm_list;
4129 	struct pci_dev *pdev = qm->pdev;
4130 	struct pci_dev *virtfn;
4131 	struct hisi_qm *vf_qm;
4132 	int ret = 0;
4133 
4134 	mutex_lock(&qm_list->lock);
4135 	list_for_each_entry(vf_qm, &qm_list->list, list) {
4136 		virtfn = vf_qm->pdev;
4137 		if (virtfn == pdev)
4138 			continue;
4139 
4140 		if (pci_physfn(virtfn) == pdev) {
4141 			/* enable VFs PCIE BAR configuration */
4142 			pci_restore_state(virtfn);
4143 
4144 			ret = qm_restart(vf_qm);
4145 			if (ret)
4146 				goto restart_fail;
4147 		}
4148 	}
4149 
4150 restart_fail:
4151 	mutex_unlock(&qm_list->lock);
4152 	return ret;
4153 }
4154 
4155 static int qm_try_start_vfs(struct hisi_qm *qm, enum qm_mb_cmd cmd)
4156 {
4157 	struct pci_dev *pdev = qm->pdev;
4158 	int ret;
4159 
4160 	if (!qm->vfs_num)
4161 		return 0;
4162 
4163 	ret = qm_vf_q_assign(qm, qm->vfs_num);
4164 	if (ret) {
4165 		pci_err(pdev, "failed to assign VFs, ret = %d.\n", ret);
4166 		return ret;
4167 	}
4168 
4169 	/* Kunpeng930 supports to notify VFs to start after PF reset. */
4170 	if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) {
4171 		ret = qm_ping_all_vfs(qm, cmd);
4172 		if (ret)
4173 			pci_warn(pdev, "failed to send cmd to all VFs after PF reset!\n");
4174 	} else {
4175 		ret = qm_vf_reset_done(qm);
4176 		if (ret)
4177 			pci_warn(pdev, "failed to start vfs, ret = %d.\n", ret);
4178 	}
4179 
4180 	return ret;
4181 }
4182 
4183 static int qm_dev_hw_init(struct hisi_qm *qm)
4184 {
4185 	return qm->err_ini->hw_init(qm);
4186 }
4187 
4188 static void qm_restart_prepare(struct hisi_qm *qm)
4189 {
4190 	u32 value;
4191 
4192 	if (qm->err_ini->open_sva_prefetch)
4193 		qm->err_ini->open_sva_prefetch(qm);
4194 
4195 	if (qm->ver >= QM_HW_V3)
4196 		return;
4197 
4198 	if (!qm->err_status.is_qm_ecc_mbit &&
4199 	    !qm->err_status.is_dev_ecc_mbit)
4200 		return;
4201 
4202 	/* temporarily close the OOO port used for PEH to write out MSI */
4203 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4204 	writel(value & ~qm->err_info.msi_wr_port,
4205 	       qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4206 
4207 	/* clear dev ecc 2bit error source if having */
4208 	value = qm_get_dev_err_status(qm) & qm->err_info.ecc_2bits_mask;
4209 	if (value && qm->err_ini->clear_dev_hw_err_status)
4210 		qm->err_ini->clear_dev_hw_err_status(qm, value);
4211 
4212 	/* clear QM ecc mbit error source */
4213 	writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE);
4214 
4215 	/* clear AM Reorder Buffer ecc mbit source */
4216 	writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS);
4217 }
4218 
4219 static void qm_restart_done(struct hisi_qm *qm)
4220 {
4221 	u32 value;
4222 
4223 	if (qm->ver >= QM_HW_V3)
4224 		goto clear_flags;
4225 
4226 	if (!qm->err_status.is_qm_ecc_mbit &&
4227 	    !qm->err_status.is_dev_ecc_mbit)
4228 		return;
4229 
4230 	/* open the OOO port for PEH to write out MSI */
4231 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4232 	value |= qm->err_info.msi_wr_port;
4233 	writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4234 
4235 clear_flags:
4236 	qm->err_status.is_qm_ecc_mbit = false;
4237 	qm->err_status.is_dev_ecc_mbit = false;
4238 }
4239 
4240 static int qm_controller_reset_done(struct hisi_qm *qm)
4241 {
4242 	struct pci_dev *pdev = qm->pdev;
4243 	int ret;
4244 
4245 	ret = qm->ops->set_msi(qm, true);
4246 	if (ret) {
4247 		pci_err(pdev, "Fails to enable PEH MSI bit!\n");
4248 		return ret;
4249 	}
4250 
4251 	ret = qm_set_pf_mse(qm, true);
4252 	if (ret) {
4253 		pci_err(pdev, "Fails to enable pf MSE bit!\n");
4254 		return ret;
4255 	}
4256 
4257 	if (qm->vfs_num) {
4258 		ret = qm_set_vf_mse(qm, true);
4259 		if (ret) {
4260 			pci_err(pdev, "Fails to enable vf MSE bit!\n");
4261 			return ret;
4262 		}
4263 	}
4264 
4265 	ret = qm_dev_hw_init(qm);
4266 	if (ret) {
4267 		pci_err(pdev, "Failed to init device\n");
4268 		return ret;
4269 	}
4270 
4271 	qm_restart_prepare(qm);
4272 	hisi_qm_dev_err_init(qm);
4273 	if (qm->err_ini->open_axi_master_ooo)
4274 		qm->err_ini->open_axi_master_ooo(qm);
4275 
4276 	ret = qm_dev_mem_reset(qm);
4277 	if (ret) {
4278 		pci_err(pdev, "failed to reset device memory\n");
4279 		return ret;
4280 	}
4281 
4282 	ret = qm_restart(qm);
4283 	if (ret) {
4284 		pci_err(pdev, "Failed to start QM!\n");
4285 		return ret;
4286 	}
4287 
4288 	ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE);
4289 	if (ret)
4290 		pci_err(pdev, "failed to start vfs by pf in soft reset.\n");
4291 
4292 	ret = qm_wait_vf_prepare_finish(qm);
4293 	if (ret)
4294 		pci_err(pdev, "failed to start by vfs in soft reset!\n");
4295 
4296 	qm_cmd_init(qm);
4297 	qm_restart_done(qm);
4298 
4299 	qm_reset_bit_clear(qm);
4300 
4301 	return 0;
4302 }
4303 
4304 static int qm_controller_reset(struct hisi_qm *qm)
4305 {
4306 	struct pci_dev *pdev = qm->pdev;
4307 	int ret;
4308 
4309 	pci_info(pdev, "Controller resetting...\n");
4310 
4311 	ret = qm_controller_reset_prepare(qm);
4312 	if (ret) {
4313 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4314 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4315 		clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4316 		return ret;
4317 	}
4318 
4319 	hisi_qm_show_last_dfx_regs(qm);
4320 	if (qm->err_ini->show_last_dfx_regs)
4321 		qm->err_ini->show_last_dfx_regs(qm);
4322 
4323 	ret = qm_soft_reset(qm);
4324 	if (ret) {
4325 		pci_err(pdev, "Controller reset failed (%d)\n", ret);
4326 		qm_reset_bit_clear(qm);
4327 		return ret;
4328 	}
4329 
4330 	ret = qm_controller_reset_done(qm);
4331 	if (ret) {
4332 		qm_reset_bit_clear(qm);
4333 		return ret;
4334 	}
4335 
4336 	pci_info(pdev, "Controller reset complete\n");
4337 
4338 	return 0;
4339 }
4340 
4341 /**
4342  * hisi_qm_dev_slot_reset() - slot reset
4343  * @pdev: the PCIe device
4344  *
4345  * This function offers QM relate PCIe device reset interface. Drivers which
4346  * use QM can use this function as slot_reset in its struct pci_error_handlers.
4347  */
4348 pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev)
4349 {
4350 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4351 	int ret;
4352 
4353 	if (pdev->is_virtfn)
4354 		return PCI_ERS_RESULT_RECOVERED;
4355 
4356 	/* reset pcie device controller */
4357 	ret = qm_controller_reset(qm);
4358 	if (ret) {
4359 		pci_err(pdev, "Controller reset failed (%d)\n", ret);
4360 		return PCI_ERS_RESULT_DISCONNECT;
4361 	}
4362 
4363 	return PCI_ERS_RESULT_RECOVERED;
4364 }
4365 EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset);
4366 
4367 void hisi_qm_reset_prepare(struct pci_dev *pdev)
4368 {
4369 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
4370 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4371 	u32 delay = 0;
4372 	int ret;
4373 
4374 	hisi_qm_dev_err_uninit(pf_qm);
4375 
4376 	/*
4377 	 * Check whether there is an ECC mbit error, If it occurs, need to
4378 	 * wait for soft reset to fix it.
4379 	 */
4380 	while (qm_check_dev_error(pf_qm)) {
4381 		msleep(++delay);
4382 		if (delay > QM_RESET_WAIT_TIMEOUT)
4383 			return;
4384 	}
4385 
4386 	ret = qm_reset_prepare_ready(qm);
4387 	if (ret) {
4388 		pci_err(pdev, "FLR not ready!\n");
4389 		return;
4390 	}
4391 
4392 	/* PF obtains the information of VF by querying the register. */
4393 	if (qm->fun_type == QM_HW_PF)
4394 		qm_cmd_uninit(qm);
4395 
4396 	ret = qm_try_stop_vfs(qm, QM_PF_FLR_PREPARE, QM_FLR);
4397 	if (ret)
4398 		pci_err(pdev, "failed to stop vfs by pf in FLR.\n");
4399 
4400 	ret = hisi_qm_stop(qm, QM_FLR);
4401 	if (ret) {
4402 		pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret);
4403 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4404 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4405 		return;
4406 	}
4407 
4408 	ret = qm_wait_vf_prepare_finish(qm);
4409 	if (ret)
4410 		pci_err(pdev, "failed to stop by vfs in FLR!\n");
4411 
4412 	pci_info(pdev, "FLR resetting...\n");
4413 }
4414 EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare);
4415 
4416 static bool qm_flr_reset_complete(struct pci_dev *pdev)
4417 {
4418 	struct pci_dev *pf_pdev = pci_physfn(pdev);
4419 	struct hisi_qm *qm = pci_get_drvdata(pf_pdev);
4420 	u32 id;
4421 
4422 	pci_read_config_dword(qm->pdev, PCI_COMMAND, &id);
4423 	if (id == QM_PCI_COMMAND_INVALID) {
4424 		pci_err(pdev, "Device can not be used!\n");
4425 		return false;
4426 	}
4427 
4428 	return true;
4429 }
4430 
4431 void hisi_qm_reset_done(struct pci_dev *pdev)
4432 {
4433 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
4434 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4435 	int ret;
4436 
4437 	if (qm->fun_type == QM_HW_PF) {
4438 		ret = qm_dev_hw_init(qm);
4439 		if (ret) {
4440 			pci_err(pdev, "Failed to init PF, ret = %d.\n", ret);
4441 			goto flr_done;
4442 		}
4443 	}
4444 
4445 	hisi_qm_dev_err_init(pf_qm);
4446 
4447 	ret = qm_restart(qm);
4448 	if (ret) {
4449 		pci_err(pdev, "Failed to start QM, ret = %d.\n", ret);
4450 		goto flr_done;
4451 	}
4452 
4453 	ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE);
4454 	if (ret)
4455 		pci_err(pdev, "failed to start vfs by pf in FLR.\n");
4456 
4457 	ret = qm_wait_vf_prepare_finish(qm);
4458 	if (ret)
4459 		pci_err(pdev, "failed to start by vfs in FLR!\n");
4460 
4461 flr_done:
4462 	if (qm->fun_type == QM_HW_PF)
4463 		qm_cmd_init(qm);
4464 
4465 	if (qm_flr_reset_complete(pdev))
4466 		pci_info(pdev, "FLR reset complete\n");
4467 
4468 	qm_reset_bit_clear(qm);
4469 }
4470 EXPORT_SYMBOL_GPL(hisi_qm_reset_done);
4471 
4472 static irqreturn_t qm_abnormal_irq(int irq, void *data)
4473 {
4474 	struct hisi_qm *qm = data;
4475 	enum acc_err_result ret;
4476 
4477 	atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt);
4478 	ret = qm_process_dev_error(qm);
4479 	if (ret == ACC_ERR_NEED_RESET &&
4480 	    !test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl) &&
4481 	    !test_and_set_bit(QM_RST_SCHED, &qm->misc_ctl))
4482 		schedule_work(&qm->rst_work);
4483 
4484 	return IRQ_HANDLED;
4485 }
4486 
4487 /**
4488  * hisi_qm_dev_shutdown() - Shutdown device.
4489  * @pdev: The device will be shutdown.
4490  *
4491  * This function will stop qm when OS shutdown or rebooting.
4492  */
4493 void hisi_qm_dev_shutdown(struct pci_dev *pdev)
4494 {
4495 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4496 	int ret;
4497 
4498 	ret = hisi_qm_stop(qm, QM_NORMAL);
4499 	if (ret)
4500 		dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n");
4501 }
4502 EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown);
4503 
4504 static void hisi_qm_controller_reset(struct work_struct *rst_work)
4505 {
4506 	struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work);
4507 	int ret;
4508 
4509 	ret = qm_pm_get_sync(qm);
4510 	if (ret) {
4511 		clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4512 		return;
4513 	}
4514 
4515 	/* reset pcie device controller */
4516 	ret = qm_controller_reset(qm);
4517 	if (ret)
4518 		dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret);
4519 
4520 	qm_pm_put_sync(qm);
4521 }
4522 
4523 static void qm_pf_reset_vf_prepare(struct hisi_qm *qm,
4524 				   enum qm_stop_reason stop_reason)
4525 {
4526 	enum qm_mb_cmd cmd = QM_VF_PREPARE_DONE;
4527 	struct pci_dev *pdev = qm->pdev;
4528 	int ret;
4529 
4530 	ret = qm_reset_prepare_ready(qm);
4531 	if (ret) {
4532 		dev_err(&pdev->dev, "reset prepare not ready!\n");
4533 		atomic_set(&qm->status.flags, QM_STOP);
4534 		cmd = QM_VF_PREPARE_FAIL;
4535 		goto err_prepare;
4536 	}
4537 
4538 	ret = hisi_qm_stop(qm, stop_reason);
4539 	if (ret) {
4540 		dev_err(&pdev->dev, "failed to stop QM, ret = %d.\n", ret);
4541 		atomic_set(&qm->status.flags, QM_STOP);
4542 		cmd = QM_VF_PREPARE_FAIL;
4543 		goto err_prepare;
4544 	} else {
4545 		goto out;
4546 	}
4547 
4548 err_prepare:
4549 	hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4550 	hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4551 out:
4552 	pci_save_state(pdev);
4553 	ret = qm_ping_pf(qm, cmd);
4554 	if (ret)
4555 		dev_warn(&pdev->dev, "PF responds timeout in reset prepare!\n");
4556 }
4557 
4558 static void qm_pf_reset_vf_done(struct hisi_qm *qm)
4559 {
4560 	enum qm_mb_cmd cmd = QM_VF_START_DONE;
4561 	struct pci_dev *pdev = qm->pdev;
4562 	int ret;
4563 
4564 	pci_restore_state(pdev);
4565 	ret = hisi_qm_start(qm);
4566 	if (ret) {
4567 		dev_err(&pdev->dev, "failed to start QM, ret = %d.\n", ret);
4568 		cmd = QM_VF_START_FAIL;
4569 	}
4570 
4571 	qm_cmd_init(qm);
4572 	ret = qm_ping_pf(qm, cmd);
4573 	if (ret)
4574 		dev_warn(&pdev->dev, "PF responds timeout in reset done!\n");
4575 
4576 	qm_reset_bit_clear(qm);
4577 }
4578 
4579 static int qm_wait_pf_reset_finish(struct hisi_qm *qm)
4580 {
4581 	struct device *dev = &qm->pdev->dev;
4582 	u32 val, cmd;
4583 	u64 msg;
4584 	int ret;
4585 
4586 	/* Wait for reset to finish */
4587 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_IFC_INT_SOURCE_V, val,
4588 					 val == BIT(0), QM_VF_RESET_WAIT_US,
4589 					 QM_VF_RESET_WAIT_TIMEOUT_US);
4590 	/* hardware completion status should be available by this time */
4591 	if (ret) {
4592 		dev_err(dev, "couldn't get reset done status from PF, timeout!\n");
4593 		return -ETIMEDOUT;
4594 	}
4595 
4596 	/*
4597 	 * Whether message is got successfully,
4598 	 * VF needs to ack PF by clearing the interrupt.
4599 	 */
4600 	ret = qm_get_mb_cmd(qm, &msg, 0);
4601 	qm_clear_cmd_interrupt(qm, 0);
4602 	if (ret) {
4603 		dev_err(dev, "failed to get msg from PF in reset done!\n");
4604 		return ret;
4605 	}
4606 
4607 	cmd = msg & QM_MB_CMD_DATA_MASK;
4608 	if (cmd != QM_PF_RESET_DONE) {
4609 		dev_err(dev, "the cmd(%u) is not reset done!\n", cmd);
4610 		ret = -EINVAL;
4611 	}
4612 
4613 	return ret;
4614 }
4615 
4616 static void qm_pf_reset_vf_process(struct hisi_qm *qm,
4617 				   enum qm_stop_reason stop_reason)
4618 {
4619 	struct device *dev = &qm->pdev->dev;
4620 	int ret;
4621 
4622 	dev_info(dev, "device reset start...\n");
4623 
4624 	/* The message is obtained by querying the register during resetting */
4625 	qm_cmd_uninit(qm);
4626 	qm_pf_reset_vf_prepare(qm, stop_reason);
4627 
4628 	ret = qm_wait_pf_reset_finish(qm);
4629 	if (ret)
4630 		goto err_get_status;
4631 
4632 	qm_pf_reset_vf_done(qm);
4633 
4634 	dev_info(dev, "device reset done.\n");
4635 
4636 	return;
4637 
4638 err_get_status:
4639 	qm_cmd_init(qm);
4640 	qm_reset_bit_clear(qm);
4641 }
4642 
4643 static void qm_handle_cmd_msg(struct hisi_qm *qm, u32 fun_num)
4644 {
4645 	struct device *dev = &qm->pdev->dev;
4646 	u64 msg;
4647 	u32 cmd;
4648 	int ret;
4649 
4650 	/*
4651 	 * Get the msg from source by sending mailbox. Whether message is got
4652 	 * successfully, destination needs to ack source by clearing the interrupt.
4653 	 */
4654 	ret = qm_get_mb_cmd(qm, &msg, fun_num);
4655 	qm_clear_cmd_interrupt(qm, BIT(fun_num));
4656 	if (ret) {
4657 		dev_err(dev, "failed to get msg from source!\n");
4658 		return;
4659 	}
4660 
4661 	cmd = msg & QM_MB_CMD_DATA_MASK;
4662 	switch (cmd) {
4663 	case QM_PF_FLR_PREPARE:
4664 		qm_pf_reset_vf_process(qm, QM_FLR);
4665 		break;
4666 	case QM_PF_SRST_PREPARE:
4667 		qm_pf_reset_vf_process(qm, QM_SOFT_RESET);
4668 		break;
4669 	case QM_VF_GET_QOS:
4670 		qm_vf_get_qos(qm, fun_num);
4671 		break;
4672 	case QM_PF_SET_QOS:
4673 		qm->mb_qos = msg >> QM_MB_CMD_DATA_SHIFT;
4674 		break;
4675 	default:
4676 		dev_err(dev, "unsupported cmd %u sent by function(%u)!\n", cmd, fun_num);
4677 		break;
4678 	}
4679 }
4680 
4681 static void qm_cmd_process(struct work_struct *cmd_process)
4682 {
4683 	struct hisi_qm *qm = container_of(cmd_process,
4684 					struct hisi_qm, cmd_process);
4685 	u32 vfs_num = qm->vfs_num;
4686 	u64 val;
4687 	u32 i;
4688 
4689 	if (qm->fun_type == QM_HW_PF) {
4690 		val = readq(qm->io_base + QM_IFC_INT_SOURCE_P);
4691 		if (!val)
4692 			return;
4693 
4694 		for (i = 1; i <= vfs_num; i++) {
4695 			if (val & BIT(i))
4696 				qm_handle_cmd_msg(qm, i);
4697 		}
4698 
4699 		return;
4700 	}
4701 
4702 	qm_handle_cmd_msg(qm, 0);
4703 }
4704 
4705 /**
4706  * hisi_qm_alg_register() - Register alg to crypto and add qm to qm_list.
4707  * @qm: The qm needs add.
4708  * @qm_list: The qm list.
4709  *
4710  * This function adds qm to qm list, and will register algorithm to
4711  * crypto when the qm list is empty.
4712  */
4713 int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
4714 {
4715 	struct device *dev = &qm->pdev->dev;
4716 	int flag = 0;
4717 	int ret = 0;
4718 
4719 	mutex_lock(&qm_list->lock);
4720 	if (list_empty(&qm_list->list))
4721 		flag = 1;
4722 	list_add_tail(&qm->list, &qm_list->list);
4723 	mutex_unlock(&qm_list->lock);
4724 
4725 	if (qm->ver <= QM_HW_V2 && qm->use_sva) {
4726 		dev_info(dev, "HW V2 not both use uacce sva mode and hardware crypto algs.\n");
4727 		return 0;
4728 	}
4729 
4730 	if (flag) {
4731 		ret = qm_list->register_to_crypto(qm);
4732 		if (ret) {
4733 			mutex_lock(&qm_list->lock);
4734 			list_del(&qm->list);
4735 			mutex_unlock(&qm_list->lock);
4736 		}
4737 	}
4738 
4739 	return ret;
4740 }
4741 EXPORT_SYMBOL_GPL(hisi_qm_alg_register);
4742 
4743 /**
4744  * hisi_qm_alg_unregister() - Unregister alg from crypto and delete qm from
4745  * qm list.
4746  * @qm: The qm needs delete.
4747  * @qm_list: The qm list.
4748  *
4749  * This function deletes qm from qm list, and will unregister algorithm
4750  * from crypto when the qm list is empty.
4751  */
4752 void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
4753 {
4754 	mutex_lock(&qm_list->lock);
4755 	list_del(&qm->list);
4756 	mutex_unlock(&qm_list->lock);
4757 
4758 	if (qm->ver <= QM_HW_V2 && qm->use_sva)
4759 		return;
4760 
4761 	if (list_empty(&qm_list->list))
4762 		qm_list->unregister_from_crypto(qm);
4763 }
4764 EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister);
4765 
4766 static void qm_unregister_abnormal_irq(struct hisi_qm *qm)
4767 {
4768 	struct pci_dev *pdev = qm->pdev;
4769 	u32 irq_vector, val;
4770 
4771 	if (qm->fun_type == QM_HW_VF)
4772 		return;
4773 
4774 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_ABN_IRQ_TYPE_CAP, qm->cap_ver);
4775 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK))
4776 		return;
4777 
4778 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4779 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
4780 }
4781 
4782 static int qm_register_abnormal_irq(struct hisi_qm *qm)
4783 {
4784 	struct pci_dev *pdev = qm->pdev;
4785 	u32 irq_vector, val;
4786 	int ret;
4787 
4788 	if (qm->fun_type == QM_HW_VF)
4789 		return 0;
4790 
4791 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_ABN_IRQ_TYPE_CAP, qm->cap_ver);
4792 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK))
4793 		return 0;
4794 
4795 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4796 	ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_abnormal_irq, 0, qm->dev_name, qm);
4797 	if (ret)
4798 		dev_err(&qm->pdev->dev, "failed to request abnormal irq, ret = %d", ret);
4799 
4800 	return ret;
4801 }
4802 
4803 static void qm_unregister_mb_cmd_irq(struct hisi_qm *qm)
4804 {
4805 	struct pci_dev *pdev = qm->pdev;
4806 	u32 irq_vector, val;
4807 
4808 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF2VF_IRQ_TYPE_CAP, qm->cap_ver);
4809 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4810 		return;
4811 
4812 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4813 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
4814 }
4815 
4816 static int qm_register_mb_cmd_irq(struct hisi_qm *qm)
4817 {
4818 	struct pci_dev *pdev = qm->pdev;
4819 	u32 irq_vector, val;
4820 	int ret;
4821 
4822 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF2VF_IRQ_TYPE_CAP, qm->cap_ver);
4823 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4824 		return 0;
4825 
4826 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4827 	ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_mb_cmd_irq, 0, qm->dev_name, qm);
4828 	if (ret)
4829 		dev_err(&pdev->dev, "failed to request function communication irq, ret = %d", ret);
4830 
4831 	return ret;
4832 }
4833 
4834 static void qm_unregister_aeq_irq(struct hisi_qm *qm)
4835 {
4836 	struct pci_dev *pdev = qm->pdev;
4837 	u32 irq_vector, val;
4838 
4839 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_AEQ_IRQ_TYPE_CAP, qm->cap_ver);
4840 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4841 		return;
4842 
4843 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4844 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
4845 }
4846 
4847 static int qm_register_aeq_irq(struct hisi_qm *qm)
4848 {
4849 	struct pci_dev *pdev = qm->pdev;
4850 	u32 irq_vector, val;
4851 	int ret;
4852 
4853 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_AEQ_IRQ_TYPE_CAP, qm->cap_ver);
4854 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4855 		return 0;
4856 
4857 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4858 	ret = request_threaded_irq(pci_irq_vector(pdev, irq_vector), qm_aeq_irq,
4859 						   qm_aeq_thread, 0, qm->dev_name, qm);
4860 	if (ret)
4861 		dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret);
4862 
4863 	return ret;
4864 }
4865 
4866 static void qm_unregister_eq_irq(struct hisi_qm *qm)
4867 {
4868 	struct pci_dev *pdev = qm->pdev;
4869 	u32 irq_vector, val;
4870 
4871 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_EQ_IRQ_TYPE_CAP, qm->cap_ver);
4872 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4873 		return;
4874 
4875 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4876 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
4877 }
4878 
4879 static int qm_register_eq_irq(struct hisi_qm *qm)
4880 {
4881 	struct pci_dev *pdev = qm->pdev;
4882 	u32 irq_vector, val;
4883 	int ret;
4884 
4885 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_EQ_IRQ_TYPE_CAP, qm->cap_ver);
4886 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4887 		return 0;
4888 
4889 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4890 	ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_eq_irq, 0, qm->dev_name, qm);
4891 	if (ret)
4892 		dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret);
4893 
4894 	return ret;
4895 }
4896 
4897 static void qm_irqs_unregister(struct hisi_qm *qm)
4898 {
4899 	qm_unregister_mb_cmd_irq(qm);
4900 	qm_unregister_abnormal_irq(qm);
4901 	qm_unregister_aeq_irq(qm);
4902 	qm_unregister_eq_irq(qm);
4903 }
4904 
4905 static int qm_irqs_register(struct hisi_qm *qm)
4906 {
4907 	int ret;
4908 
4909 	ret = qm_register_eq_irq(qm);
4910 	if (ret)
4911 		return ret;
4912 
4913 	ret = qm_register_aeq_irq(qm);
4914 	if (ret)
4915 		goto free_eq_irq;
4916 
4917 	ret = qm_register_abnormal_irq(qm);
4918 	if (ret)
4919 		goto free_aeq_irq;
4920 
4921 	ret = qm_register_mb_cmd_irq(qm);
4922 	if (ret)
4923 		goto free_abnormal_irq;
4924 
4925 	return 0;
4926 
4927 free_abnormal_irq:
4928 	qm_unregister_abnormal_irq(qm);
4929 free_aeq_irq:
4930 	qm_unregister_aeq_irq(qm);
4931 free_eq_irq:
4932 	qm_unregister_eq_irq(qm);
4933 	return ret;
4934 }
4935 
4936 static int qm_get_qp_num(struct hisi_qm *qm)
4937 {
4938 	bool is_db_isolation;
4939 
4940 	/* VF's qp_num assigned by PF in v2, and VF can get qp_num by vft. */
4941 	if (qm->fun_type == QM_HW_VF) {
4942 		if (qm->ver != QM_HW_V1)
4943 			/* v2 starts to support get vft by mailbox */
4944 			return hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num);
4945 
4946 		return 0;
4947 	}
4948 
4949 	is_db_isolation = test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps);
4950 	qm->ctrl_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, QM_TOTAL_QP_NUM_CAP, true);
4951 	qm->max_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info,
4952 					     QM_FUNC_MAX_QP_CAP, is_db_isolation);
4953 
4954 	/* check if qp number is valid */
4955 	if (qm->qp_num > qm->max_qp_num) {
4956 		dev_err(&qm->pdev->dev, "qp num(%u) is more than max qp num(%u)!\n",
4957 			qm->qp_num, qm->max_qp_num);
4958 		return -EINVAL;
4959 	}
4960 
4961 	return 0;
4962 }
4963 
4964 static void qm_get_hw_caps(struct hisi_qm *qm)
4965 {
4966 	const struct hisi_qm_cap_info *cap_info = qm->fun_type == QM_HW_PF ?
4967 						  qm_cap_info_pf : qm_cap_info_vf;
4968 	u32 size = qm->fun_type == QM_HW_PF ? ARRAY_SIZE(qm_cap_info_pf) :
4969 				   ARRAY_SIZE(qm_cap_info_vf);
4970 	u32 val, i;
4971 
4972 	/* Doorbell isolate register is a independent register. */
4973 	val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, QM_SUPPORT_DB_ISOLATION, true);
4974 	if (val)
4975 		set_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps);
4976 
4977 	if (qm->ver >= QM_HW_V3) {
4978 		val = readl(qm->io_base + QM_FUNC_CAPS_REG);
4979 		qm->cap_ver = val & QM_CAPBILITY_VERSION;
4980 	}
4981 
4982 	/* Get PF/VF common capbility */
4983 	for (i = 1; i < ARRAY_SIZE(qm_cap_info_comm); i++) {
4984 		val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, i, qm->cap_ver);
4985 		if (val)
4986 			set_bit(qm_cap_info_comm[i].type, &qm->caps);
4987 	}
4988 
4989 	/* Get PF/VF different capbility */
4990 	for (i = 0; i < size; i++) {
4991 		val = hisi_qm_get_hw_info(qm, cap_info, i, qm->cap_ver);
4992 		if (val)
4993 			set_bit(cap_info[i].type, &qm->caps);
4994 	}
4995 }
4996 
4997 static int qm_get_pci_res(struct hisi_qm *qm)
4998 {
4999 	struct pci_dev *pdev = qm->pdev;
5000 	struct device *dev = &pdev->dev;
5001 	int ret;
5002 
5003 	ret = pci_request_mem_regions(pdev, qm->dev_name);
5004 	if (ret < 0) {
5005 		dev_err(dev, "Failed to request mem regions!\n");
5006 		return ret;
5007 	}
5008 
5009 	qm->phys_base = pci_resource_start(pdev, PCI_BAR_2);
5010 	qm->io_base = ioremap(qm->phys_base, pci_resource_len(pdev, PCI_BAR_2));
5011 	if (!qm->io_base) {
5012 		ret = -EIO;
5013 		goto err_request_mem_regions;
5014 	}
5015 
5016 	qm_get_hw_caps(qm);
5017 	if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) {
5018 		qm->db_interval = QM_QP_DB_INTERVAL;
5019 		qm->db_phys_base = pci_resource_start(pdev, PCI_BAR_4);
5020 		qm->db_io_base = ioremap(qm->db_phys_base,
5021 					 pci_resource_len(pdev, PCI_BAR_4));
5022 		if (!qm->db_io_base) {
5023 			ret = -EIO;
5024 			goto err_ioremap;
5025 		}
5026 	} else {
5027 		qm->db_phys_base = qm->phys_base;
5028 		qm->db_io_base = qm->io_base;
5029 		qm->db_interval = 0;
5030 	}
5031 
5032 	ret = qm_get_qp_num(qm);
5033 	if (ret)
5034 		goto err_db_ioremap;
5035 
5036 	return 0;
5037 
5038 err_db_ioremap:
5039 	if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
5040 		iounmap(qm->db_io_base);
5041 err_ioremap:
5042 	iounmap(qm->io_base);
5043 err_request_mem_regions:
5044 	pci_release_mem_regions(pdev);
5045 	return ret;
5046 }
5047 
5048 static int hisi_qm_pci_init(struct hisi_qm *qm)
5049 {
5050 	struct pci_dev *pdev = qm->pdev;
5051 	struct device *dev = &pdev->dev;
5052 	unsigned int num_vec;
5053 	int ret;
5054 
5055 	ret = pci_enable_device_mem(pdev);
5056 	if (ret < 0) {
5057 		dev_err(dev, "Failed to enable device mem!\n");
5058 		return ret;
5059 	}
5060 
5061 	ret = qm_get_pci_res(qm);
5062 	if (ret)
5063 		goto err_disable_pcidev;
5064 
5065 	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
5066 	if (ret < 0)
5067 		goto err_get_pci_res;
5068 	pci_set_master(pdev);
5069 
5070 	num_vec = qm_get_irq_num(qm);
5071 	ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI);
5072 	if (ret < 0) {
5073 		dev_err(dev, "Failed to enable MSI vectors!\n");
5074 		goto err_get_pci_res;
5075 	}
5076 
5077 	return 0;
5078 
5079 err_get_pci_res:
5080 	qm_put_pci_res(qm);
5081 err_disable_pcidev:
5082 	pci_disable_device(pdev);
5083 	return ret;
5084 }
5085 
5086 static int hisi_qm_init_work(struct hisi_qm *qm)
5087 {
5088 	int i;
5089 
5090 	for (i = 0; i < qm->qp_num; i++)
5091 		INIT_WORK(&qm->poll_data[i].work, qm_work_process);
5092 
5093 	if (qm->fun_type == QM_HW_PF)
5094 		INIT_WORK(&qm->rst_work, hisi_qm_controller_reset);
5095 
5096 	if (qm->ver > QM_HW_V2)
5097 		INIT_WORK(&qm->cmd_process, qm_cmd_process);
5098 
5099 	qm->wq = alloc_workqueue("%s", WQ_HIGHPRI | WQ_MEM_RECLAIM |
5100 				 WQ_UNBOUND, num_online_cpus(),
5101 				 pci_name(qm->pdev));
5102 	if (!qm->wq) {
5103 		pci_err(qm->pdev, "failed to alloc workqueue!\n");
5104 		return -ENOMEM;
5105 	}
5106 
5107 	return 0;
5108 }
5109 
5110 static int hisi_qp_alloc_memory(struct hisi_qm *qm)
5111 {
5112 	struct device *dev = &qm->pdev->dev;
5113 	u16 sq_depth, cq_depth;
5114 	size_t qp_dma_size;
5115 	int i, ret;
5116 
5117 	qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL);
5118 	if (!qm->qp_array)
5119 		return -ENOMEM;
5120 
5121 	qm->poll_data = kcalloc(qm->qp_num, sizeof(struct hisi_qm_poll_data), GFP_KERNEL);
5122 	if (!qm->poll_data) {
5123 		kfree(qm->qp_array);
5124 		return -ENOMEM;
5125 	}
5126 
5127 	qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP);
5128 
5129 	/* one more page for device or qp statuses */
5130 	qp_dma_size = qm->sqe_size * sq_depth + sizeof(struct qm_cqe) * cq_depth;
5131 	qp_dma_size = PAGE_ALIGN(qp_dma_size) + PAGE_SIZE;
5132 	for (i = 0; i < qm->qp_num; i++) {
5133 		qm->poll_data[i].qm = qm;
5134 		ret = hisi_qp_memory_init(qm, qp_dma_size, i, sq_depth, cq_depth);
5135 		if (ret)
5136 			goto err_init_qp_mem;
5137 
5138 		dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size);
5139 	}
5140 
5141 	return 0;
5142 err_init_qp_mem:
5143 	hisi_qp_memory_uninit(qm, i);
5144 
5145 	return ret;
5146 }
5147 
5148 static int hisi_qm_memory_init(struct hisi_qm *qm)
5149 {
5150 	struct device *dev = &qm->pdev->dev;
5151 	int ret, total_func;
5152 	size_t off = 0;
5153 
5154 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) {
5155 		total_func = pci_sriov_get_totalvfs(qm->pdev) + 1;
5156 		qm->factor = kcalloc(total_func, sizeof(struct qm_shaper_factor), GFP_KERNEL);
5157 		if (!qm->factor)
5158 			return -ENOMEM;
5159 
5160 		/* Only the PF value needs to be initialized */
5161 		qm->factor[0].func_qos = QM_QOS_MAX_VAL;
5162 	}
5163 
5164 #define QM_INIT_BUF(qm, type, num) do { \
5165 	(qm)->type = ((qm)->qdma.va + (off)); \
5166 	(qm)->type##_dma = (qm)->qdma.dma + (off); \
5167 	off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \
5168 } while (0)
5169 
5170 	idr_init(&qm->qp_idr);
5171 	qm_get_xqc_depth(qm, &qm->eq_depth, &qm->aeq_depth, QM_XEQ_DEPTH_CAP);
5172 	qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * qm->eq_depth) +
5173 			QMC_ALIGN(sizeof(struct qm_aeqe) * qm->aeq_depth) +
5174 			QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) +
5175 			QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num);
5176 	qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma,
5177 					 GFP_ATOMIC);
5178 	dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size);
5179 	if (!qm->qdma.va) {
5180 		ret = -ENOMEM;
5181 		goto err_destroy_idr;
5182 	}
5183 
5184 	QM_INIT_BUF(qm, eqe, qm->eq_depth);
5185 	QM_INIT_BUF(qm, aeqe, qm->aeq_depth);
5186 	QM_INIT_BUF(qm, sqc, qm->qp_num);
5187 	QM_INIT_BUF(qm, cqc, qm->qp_num);
5188 
5189 	ret = hisi_qp_alloc_memory(qm);
5190 	if (ret)
5191 		goto err_alloc_qp_array;
5192 
5193 	return 0;
5194 
5195 err_alloc_qp_array:
5196 	dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma);
5197 err_destroy_idr:
5198 	idr_destroy(&qm->qp_idr);
5199 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
5200 		kfree(qm->factor);
5201 
5202 	return ret;
5203 }
5204 
5205 /**
5206  * hisi_qm_init() - Initialize configures about qm.
5207  * @qm: The qm needing init.
5208  *
5209  * This function init qm, then we can call hisi_qm_start to put qm into work.
5210  */
5211 int hisi_qm_init(struct hisi_qm *qm)
5212 {
5213 	struct pci_dev *pdev = qm->pdev;
5214 	struct device *dev = &pdev->dev;
5215 	int ret;
5216 
5217 	hisi_qm_pre_init(qm);
5218 
5219 	ret = hisi_qm_pci_init(qm);
5220 	if (ret)
5221 		return ret;
5222 
5223 	ret = qm_irqs_register(qm);
5224 	if (ret)
5225 		goto err_pci_init;
5226 
5227 	if (qm->fun_type == QM_HW_PF) {
5228 		qm_disable_clock_gate(qm);
5229 		ret = qm_dev_mem_reset(qm);
5230 		if (ret) {
5231 			dev_err(dev, "failed to reset device memory\n");
5232 			goto err_irq_register;
5233 		}
5234 	}
5235 
5236 	if (qm->mode == UACCE_MODE_SVA) {
5237 		ret = qm_alloc_uacce(qm);
5238 		if (ret < 0)
5239 			dev_warn(dev, "fail to alloc uacce (%d)\n", ret);
5240 	}
5241 
5242 	ret = hisi_qm_memory_init(qm);
5243 	if (ret)
5244 		goto err_alloc_uacce;
5245 
5246 	ret = hisi_qm_init_work(qm);
5247 	if (ret)
5248 		goto err_free_qm_memory;
5249 
5250 	qm_cmd_init(qm);
5251 	atomic_set(&qm->status.flags, QM_INIT);
5252 
5253 	return 0;
5254 
5255 err_free_qm_memory:
5256 	hisi_qm_memory_uninit(qm);
5257 err_alloc_uacce:
5258 	if (qm->use_sva) {
5259 		uacce_remove(qm->uacce);
5260 		qm->uacce = NULL;
5261 	}
5262 err_irq_register:
5263 	qm_irqs_unregister(qm);
5264 err_pci_init:
5265 	hisi_qm_pci_uninit(qm);
5266 	return ret;
5267 }
5268 EXPORT_SYMBOL_GPL(hisi_qm_init);
5269 
5270 /**
5271  * hisi_qm_get_dfx_access() - Try to get dfx access.
5272  * @qm: pointer to accelerator device.
5273  *
5274  * Try to get dfx access, then user can get message.
5275  *
5276  * If device is in suspended, return failure, otherwise
5277  * bump up the runtime PM usage counter.
5278  */
5279 int hisi_qm_get_dfx_access(struct hisi_qm *qm)
5280 {
5281 	struct device *dev = &qm->pdev->dev;
5282 
5283 	if (pm_runtime_suspended(dev)) {
5284 		dev_info(dev, "can not read/write - device in suspended.\n");
5285 		return -EAGAIN;
5286 	}
5287 
5288 	return qm_pm_get_sync(qm);
5289 }
5290 EXPORT_SYMBOL_GPL(hisi_qm_get_dfx_access);
5291 
5292 /**
5293  * hisi_qm_put_dfx_access() - Put dfx access.
5294  * @qm: pointer to accelerator device.
5295  *
5296  * Put dfx access, drop runtime PM usage counter.
5297  */
5298 void hisi_qm_put_dfx_access(struct hisi_qm *qm)
5299 {
5300 	qm_pm_put_sync(qm);
5301 }
5302 EXPORT_SYMBOL_GPL(hisi_qm_put_dfx_access);
5303 
5304 /**
5305  * hisi_qm_pm_init() - Initialize qm runtime PM.
5306  * @qm: pointer to accelerator device.
5307  *
5308  * Function that initialize qm runtime PM.
5309  */
5310 void hisi_qm_pm_init(struct hisi_qm *qm)
5311 {
5312 	struct device *dev = &qm->pdev->dev;
5313 
5314 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
5315 		return;
5316 
5317 	pm_runtime_set_autosuspend_delay(dev, QM_AUTOSUSPEND_DELAY);
5318 	pm_runtime_use_autosuspend(dev);
5319 	pm_runtime_put_noidle(dev);
5320 }
5321 EXPORT_SYMBOL_GPL(hisi_qm_pm_init);
5322 
5323 /**
5324  * hisi_qm_pm_uninit() - Uninitialize qm runtime PM.
5325  * @qm: pointer to accelerator device.
5326  *
5327  * Function that uninitialize qm runtime PM.
5328  */
5329 void hisi_qm_pm_uninit(struct hisi_qm *qm)
5330 {
5331 	struct device *dev = &qm->pdev->dev;
5332 
5333 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
5334 		return;
5335 
5336 	pm_runtime_get_noresume(dev);
5337 	pm_runtime_dont_use_autosuspend(dev);
5338 }
5339 EXPORT_SYMBOL_GPL(hisi_qm_pm_uninit);
5340 
5341 static int qm_prepare_for_suspend(struct hisi_qm *qm)
5342 {
5343 	struct pci_dev *pdev = qm->pdev;
5344 	int ret;
5345 	u32 val;
5346 
5347 	ret = qm->ops->set_msi(qm, false);
5348 	if (ret) {
5349 		pci_err(pdev, "failed to disable MSI before suspending!\n");
5350 		return ret;
5351 	}
5352 
5353 	/* shutdown OOO register */
5354 	writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN,
5355 	       qm->io_base + ACC_MASTER_GLOBAL_CTRL);
5356 
5357 	ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN,
5358 					 val,
5359 					 (val == ACC_MASTER_TRANS_RETURN_RW),
5360 					 POLL_PERIOD, POLL_TIMEOUT);
5361 	if (ret) {
5362 		pci_emerg(pdev, "Bus lock! Please reset system.\n");
5363 		return ret;
5364 	}
5365 
5366 	ret = qm_set_pf_mse(qm, false);
5367 	if (ret)
5368 		pci_err(pdev, "failed to disable MSE before suspending!\n");
5369 
5370 	return ret;
5371 }
5372 
5373 static int qm_rebuild_for_resume(struct hisi_qm *qm)
5374 {
5375 	struct pci_dev *pdev = qm->pdev;
5376 	int ret;
5377 
5378 	ret = qm_set_pf_mse(qm, true);
5379 	if (ret) {
5380 		pci_err(pdev, "failed to enable MSE after resuming!\n");
5381 		return ret;
5382 	}
5383 
5384 	ret = qm->ops->set_msi(qm, true);
5385 	if (ret) {
5386 		pci_err(pdev, "failed to enable MSI after resuming!\n");
5387 		return ret;
5388 	}
5389 
5390 	ret = qm_dev_hw_init(qm);
5391 	if (ret) {
5392 		pci_err(pdev, "failed to init device after resuming\n");
5393 		return ret;
5394 	}
5395 
5396 	qm_cmd_init(qm);
5397 	hisi_qm_dev_err_init(qm);
5398 	qm_disable_clock_gate(qm);
5399 	ret = qm_dev_mem_reset(qm);
5400 	if (ret)
5401 		pci_err(pdev, "failed to reset device memory\n");
5402 
5403 	return ret;
5404 }
5405 
5406 /**
5407  * hisi_qm_suspend() - Runtime suspend of given device.
5408  * @dev: device to suspend.
5409  *
5410  * Function that suspend the device.
5411  */
5412 int hisi_qm_suspend(struct device *dev)
5413 {
5414 	struct pci_dev *pdev = to_pci_dev(dev);
5415 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5416 	int ret;
5417 
5418 	pci_info(pdev, "entering suspended state\n");
5419 
5420 	ret = hisi_qm_stop(qm, QM_NORMAL);
5421 	if (ret) {
5422 		pci_err(pdev, "failed to stop qm(%d)\n", ret);
5423 		return ret;
5424 	}
5425 
5426 	ret = qm_prepare_for_suspend(qm);
5427 	if (ret)
5428 		pci_err(pdev, "failed to prepare suspended(%d)\n", ret);
5429 
5430 	return ret;
5431 }
5432 EXPORT_SYMBOL_GPL(hisi_qm_suspend);
5433 
5434 /**
5435  * hisi_qm_resume() - Runtime resume of given device.
5436  * @dev: device to resume.
5437  *
5438  * Function that resume the device.
5439  */
5440 int hisi_qm_resume(struct device *dev)
5441 {
5442 	struct pci_dev *pdev = to_pci_dev(dev);
5443 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5444 	int ret;
5445 
5446 	pci_info(pdev, "resuming from suspend state\n");
5447 
5448 	ret = qm_rebuild_for_resume(qm);
5449 	if (ret) {
5450 		pci_err(pdev, "failed to rebuild resume(%d)\n", ret);
5451 		return ret;
5452 	}
5453 
5454 	ret = hisi_qm_start(qm);
5455 	if (ret) {
5456 		if (qm_check_dev_error(qm)) {
5457 			pci_info(pdev, "failed to start qm due to device error, device will be reset!\n");
5458 			return 0;
5459 		}
5460 
5461 		pci_err(pdev, "failed to start qm(%d)!\n", ret);
5462 	}
5463 
5464 	return ret;
5465 }
5466 EXPORT_SYMBOL_GPL(hisi_qm_resume);
5467 
5468 MODULE_LICENSE("GPL v2");
5469 MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>");
5470 MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver");
5471