1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019 HiSilicon Limited. */ 3 #include <asm/page.h> 4 #include <linux/acpi.h> 5 #include <linux/aer.h> 6 #include <linux/bitmap.h> 7 #include <linux/dma-mapping.h> 8 #include <linux/idr.h> 9 #include <linux/io.h> 10 #include <linux/irqreturn.h> 11 #include <linux/log2.h> 12 #include <linux/pm_runtime.h> 13 #include <linux/seq_file.h> 14 #include <linux/slab.h> 15 #include <linux/uacce.h> 16 #include <linux/uaccess.h> 17 #include <uapi/misc/uacce/hisi_qm.h> 18 #include <linux/hisi_acc_qm.h> 19 #include "qm_common.h" 20 21 /* eq/aeq irq enable */ 22 #define QM_VF_AEQ_INT_SOURCE 0x0 23 #define QM_VF_AEQ_INT_MASK 0x4 24 #define QM_VF_EQ_INT_SOURCE 0x8 25 #define QM_VF_EQ_INT_MASK 0xc 26 27 #define QM_IRQ_VECTOR_MASK GENMASK(15, 0) 28 #define QM_IRQ_TYPE_MASK GENMASK(15, 0) 29 #define QM_IRQ_TYPE_SHIFT 16 30 #define QM_ABN_IRQ_TYPE_MASK GENMASK(7, 0) 31 32 /* mailbox */ 33 #define QM_MB_PING_ALL_VFS 0xffff 34 #define QM_MB_CMD_DATA_SHIFT 32 35 #define QM_MB_CMD_DATA_MASK GENMASK(31, 0) 36 #define QM_MB_STATUS_MASK GENMASK(12, 9) 37 38 /* sqc shift */ 39 #define QM_SQ_HOP_NUM_SHIFT 0 40 #define QM_SQ_PAGE_SIZE_SHIFT 4 41 #define QM_SQ_BUF_SIZE_SHIFT 8 42 #define QM_SQ_SQE_SIZE_SHIFT 12 43 #define QM_SQ_PRIORITY_SHIFT 0 44 #define QM_SQ_ORDERS_SHIFT 4 45 #define QM_SQ_TYPE_SHIFT 8 46 #define QM_QC_PASID_ENABLE 0x1 47 #define QM_QC_PASID_ENABLE_SHIFT 7 48 49 #define QM_SQ_TYPE_MASK GENMASK(3, 0) 50 #define QM_SQ_TAIL_IDX(sqc) ((le16_to_cpu((sqc)->w11) >> 6) & 0x1) 51 52 /* cqc shift */ 53 #define QM_CQ_HOP_NUM_SHIFT 0 54 #define QM_CQ_PAGE_SIZE_SHIFT 4 55 #define QM_CQ_BUF_SIZE_SHIFT 8 56 #define QM_CQ_CQE_SIZE_SHIFT 12 57 #define QM_CQ_PHASE_SHIFT 0 58 #define QM_CQ_FLAG_SHIFT 1 59 60 #define QM_CQE_PHASE(cqe) (le16_to_cpu((cqe)->w7) & 0x1) 61 #define QM_QC_CQE_SIZE 4 62 #define QM_CQ_TAIL_IDX(cqc) ((le16_to_cpu((cqc)->w11) >> 6) & 0x1) 63 64 /* eqc shift */ 65 #define QM_EQE_AEQE_SIZE (2UL << 12) 66 #define QM_EQC_PHASE_SHIFT 16 67 68 #define QM_EQE_PHASE(eqe) ((le32_to_cpu((eqe)->dw0) >> 16) & 0x1) 69 #define QM_EQE_CQN_MASK GENMASK(15, 0) 70 71 #define QM_AEQE_PHASE(aeqe) ((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1) 72 #define QM_AEQE_TYPE_SHIFT 17 73 #define QM_AEQE_CQN_MASK GENMASK(15, 0) 74 #define QM_CQ_OVERFLOW 0 75 #define QM_EQ_OVERFLOW 1 76 #define QM_CQE_ERROR 2 77 78 #define QM_XQ_DEPTH_SHIFT 16 79 #define QM_XQ_DEPTH_MASK GENMASK(15, 0) 80 81 #define QM_DOORBELL_CMD_SQ 0 82 #define QM_DOORBELL_CMD_CQ 1 83 #define QM_DOORBELL_CMD_EQ 2 84 #define QM_DOORBELL_CMD_AEQ 3 85 86 #define QM_DOORBELL_BASE_V1 0x340 87 #define QM_DB_CMD_SHIFT_V1 16 88 #define QM_DB_INDEX_SHIFT_V1 32 89 #define QM_DB_PRIORITY_SHIFT_V1 48 90 #define QM_PAGE_SIZE 0x0034 91 #define QM_QP_DB_INTERVAL 0x10000 92 93 #define QM_MEM_START_INIT 0x100040 94 #define QM_MEM_INIT_DONE 0x100044 95 #define QM_VFT_CFG_RDY 0x10006c 96 #define QM_VFT_CFG_OP_WR 0x100058 97 #define QM_VFT_CFG_TYPE 0x10005c 98 #define QM_VFT_CFG 0x100060 99 #define QM_VFT_CFG_OP_ENABLE 0x100054 100 #define QM_PM_CTRL 0x100148 101 #define QM_IDLE_DISABLE BIT(9) 102 103 #define QM_VFT_CFG_DATA_L 0x100064 104 #define QM_VFT_CFG_DATA_H 0x100068 105 #define QM_SQC_VFT_BUF_SIZE (7ULL << 8) 106 #define QM_SQC_VFT_SQC_SIZE (5ULL << 12) 107 #define QM_SQC_VFT_INDEX_NUMBER (1ULL << 16) 108 #define QM_SQC_VFT_START_SQN_SHIFT 28 109 #define QM_SQC_VFT_VALID (1ULL << 44) 110 #define QM_SQC_VFT_SQN_SHIFT 45 111 #define QM_CQC_VFT_BUF_SIZE (7ULL << 8) 112 #define QM_CQC_VFT_SQC_SIZE (5ULL << 12) 113 #define QM_CQC_VFT_INDEX_NUMBER (1ULL << 16) 114 #define QM_CQC_VFT_VALID (1ULL << 28) 115 116 #define QM_SQC_VFT_BASE_SHIFT_V2 28 117 #define QM_SQC_VFT_BASE_MASK_V2 GENMASK(15, 0) 118 #define QM_SQC_VFT_NUM_SHIFT_V2 45 119 #define QM_SQC_VFT_NUM_MASK_V2 GENMASK(9, 0) 120 121 #define QM_ABNORMAL_INT_SOURCE 0x100000 122 #define QM_ABNORMAL_INT_MASK 0x100004 123 #define QM_ABNORMAL_INT_MASK_VALUE 0x7fff 124 #define QM_ABNORMAL_INT_STATUS 0x100008 125 #define QM_ABNORMAL_INT_SET 0x10000c 126 #define QM_ABNORMAL_INF00 0x100010 127 #define QM_FIFO_OVERFLOW_TYPE 0xc0 128 #define QM_FIFO_OVERFLOW_TYPE_SHIFT 6 129 #define QM_FIFO_OVERFLOW_VF 0x3f 130 #define QM_ABNORMAL_INF01 0x100014 131 #define QM_DB_TIMEOUT_TYPE 0xc0 132 #define QM_DB_TIMEOUT_TYPE_SHIFT 6 133 #define QM_DB_TIMEOUT_VF 0x3f 134 #define QM_RAS_CE_ENABLE 0x1000ec 135 #define QM_RAS_FE_ENABLE 0x1000f0 136 #define QM_RAS_NFE_ENABLE 0x1000f4 137 #define QM_RAS_CE_THRESHOLD 0x1000f8 138 #define QM_RAS_CE_TIMES_PER_IRQ 1 139 #define QM_OOO_SHUTDOWN_SEL 0x1040f8 140 #define QM_ECC_MBIT BIT(2) 141 #define QM_DB_TIMEOUT BIT(10) 142 #define QM_OF_FIFO_OF BIT(11) 143 144 #define QM_RESET_WAIT_TIMEOUT 400 145 #define QM_PEH_VENDOR_ID 0x1000d8 146 #define ACC_VENDOR_ID_VALUE 0x5a5a 147 #define QM_PEH_DFX_INFO0 0x1000fc 148 #define QM_PEH_DFX_INFO1 0x100100 149 #define QM_PEH_DFX_MASK (BIT(0) | BIT(2)) 150 #define QM_PEH_MSI_FINISH_MASK GENMASK(19, 16) 151 #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT 3 152 #define ACC_PEH_MSI_DISABLE GENMASK(31, 0) 153 #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN 0x1 154 #define ACC_MASTER_TRANS_RETURN_RW 3 155 #define ACC_MASTER_TRANS_RETURN 0x300150 156 #define ACC_MASTER_GLOBAL_CTRL 0x300000 157 #define ACC_AM_CFG_PORT_WR_EN 0x30001c 158 #define QM_RAS_NFE_MBIT_DISABLE ~QM_ECC_MBIT 159 #define ACC_AM_ROB_ECC_INT_STS 0x300104 160 #define ACC_ROB_ECC_ERR_MULTPL BIT(1) 161 #define QM_MSI_CAP_ENABLE BIT(16) 162 163 /* interfunction communication */ 164 #define QM_IFC_READY_STATUS 0x100128 165 #define QM_IFC_INT_SET_P 0x100130 166 #define QM_IFC_INT_CFG 0x100134 167 #define QM_IFC_INT_SOURCE_P 0x100138 168 #define QM_IFC_INT_SOURCE_V 0x0020 169 #define QM_IFC_INT_MASK 0x0024 170 #define QM_IFC_INT_STATUS 0x0028 171 #define QM_IFC_INT_SET_V 0x002C 172 #define QM_IFC_SEND_ALL_VFS GENMASK(6, 0) 173 #define QM_IFC_INT_SOURCE_CLR GENMASK(63, 0) 174 #define QM_IFC_INT_SOURCE_MASK BIT(0) 175 #define QM_IFC_INT_DISABLE BIT(0) 176 #define QM_IFC_INT_STATUS_MASK BIT(0) 177 #define QM_IFC_INT_SET_MASK BIT(0) 178 #define QM_WAIT_DST_ACK 10 179 #define QM_MAX_PF_WAIT_COUNT 10 180 #define QM_MAX_VF_WAIT_COUNT 40 181 #define QM_VF_RESET_WAIT_US 20000 182 #define QM_VF_RESET_WAIT_CNT 3000 183 #define QM_VF_RESET_WAIT_TIMEOUT_US \ 184 (QM_VF_RESET_WAIT_US * QM_VF_RESET_WAIT_CNT) 185 186 #define POLL_PERIOD 10 187 #define POLL_TIMEOUT 1000 188 #define WAIT_PERIOD_US_MAX 200 189 #define WAIT_PERIOD_US_MIN 100 190 #define MAX_WAIT_COUNTS 1000 191 #define QM_CACHE_WB_START 0x204 192 #define QM_CACHE_WB_DONE 0x208 193 #define QM_FUNC_CAPS_REG 0x3100 194 #define QM_CAPBILITY_VERSION GENMASK(7, 0) 195 196 #define PCI_BAR_2 2 197 #define PCI_BAR_4 4 198 #define QMC_ALIGN(sz) ALIGN(sz, 32) 199 200 #define QM_DBG_READ_LEN 256 201 #define QM_PCI_COMMAND_INVALID ~0 202 #define QM_RESET_STOP_TX_OFFSET 1 203 #define QM_RESET_STOP_RX_OFFSET 2 204 205 #define WAIT_PERIOD 20 206 #define REMOVE_WAIT_DELAY 10 207 208 #define QM_DRIVER_REMOVING 0 209 #define QM_RST_SCHED 1 210 #define QM_QOS_PARAM_NUM 2 211 #define QM_QOS_MAX_VAL 1000 212 #define QM_QOS_RATE 100 213 #define QM_QOS_EXPAND_RATE 1000 214 #define QM_SHAPER_CIR_B_MASK GENMASK(7, 0) 215 #define QM_SHAPER_CIR_U_MASK GENMASK(10, 8) 216 #define QM_SHAPER_CIR_S_MASK GENMASK(14, 11) 217 #define QM_SHAPER_FACTOR_CIR_U_SHIFT 8 218 #define QM_SHAPER_FACTOR_CIR_S_SHIFT 11 219 #define QM_SHAPER_FACTOR_CBS_B_SHIFT 15 220 #define QM_SHAPER_FACTOR_CBS_S_SHIFT 19 221 #define QM_SHAPER_CBS_B 1 222 #define QM_SHAPER_VFT_OFFSET 6 223 #define QM_QOS_MIN_ERROR_RATE 5 224 #define QM_SHAPER_MIN_CBS_S 8 225 #define QM_QOS_TICK 0x300U 226 #define QM_QOS_DIVISOR_CLK 0x1f40U 227 #define QM_QOS_MAX_CIR_B 200 228 #define QM_QOS_MIN_CIR_B 100 229 #define QM_QOS_MAX_CIR_U 6 230 #define QM_AUTOSUSPEND_DELAY 3000 231 232 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \ 233 (((hop_num) << QM_CQ_HOP_NUM_SHIFT) | \ 234 ((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT) | \ 235 ((buf_sz) << QM_CQ_BUF_SIZE_SHIFT) | \ 236 ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT)) 237 238 #define QM_MK_CQC_DW3_V2(cqe_sz, cq_depth) \ 239 ((((u32)cq_depth) - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT)) 240 241 #define QM_MK_SQC_W13(priority, orders, alg_type) \ 242 (((priority) << QM_SQ_PRIORITY_SHIFT) | \ 243 ((orders) << QM_SQ_ORDERS_SHIFT) | \ 244 (((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT)) 245 246 #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \ 247 (((hop_num) << QM_SQ_HOP_NUM_SHIFT) | \ 248 ((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT) | \ 249 ((buf_sz) << QM_SQ_BUF_SIZE_SHIFT) | \ 250 ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT)) 251 252 #define QM_MK_SQC_DW3_V2(sqe_sz, sq_depth) \ 253 ((((u32)sq_depth) - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT)) 254 255 #define INIT_QC_COMMON(qc, base, pasid) do { \ 256 (qc)->head = 0; \ 257 (qc)->tail = 0; \ 258 (qc)->base_l = cpu_to_le32(lower_32_bits(base)); \ 259 (qc)->base_h = cpu_to_le32(upper_32_bits(base)); \ 260 (qc)->dw3 = 0; \ 261 (qc)->w8 = 0; \ 262 (qc)->rsvd0 = 0; \ 263 (qc)->pasid = cpu_to_le16(pasid); \ 264 (qc)->w11 = 0; \ 265 (qc)->rsvd1 = 0; \ 266 } while (0) 267 268 enum vft_type { 269 SQC_VFT = 0, 270 CQC_VFT, 271 SHAPER_VFT, 272 }; 273 274 enum acc_err_result { 275 ACC_ERR_NONE, 276 ACC_ERR_NEED_RESET, 277 ACC_ERR_RECOVERED, 278 }; 279 280 enum qm_alg_type { 281 ALG_TYPE_0, 282 ALG_TYPE_1, 283 }; 284 285 enum qm_mb_cmd { 286 QM_PF_FLR_PREPARE = 0x01, 287 QM_PF_SRST_PREPARE, 288 QM_PF_RESET_DONE, 289 QM_VF_PREPARE_DONE, 290 QM_VF_PREPARE_FAIL, 291 QM_VF_START_DONE, 292 QM_VF_START_FAIL, 293 QM_PF_SET_QOS, 294 QM_VF_GET_QOS, 295 }; 296 297 enum qm_basic_type { 298 QM_TOTAL_QP_NUM_CAP = 0x0, 299 QM_FUNC_MAX_QP_CAP, 300 QM_XEQ_DEPTH_CAP, 301 QM_QP_DEPTH_CAP, 302 QM_EQ_IRQ_TYPE_CAP, 303 QM_AEQ_IRQ_TYPE_CAP, 304 QM_ABN_IRQ_TYPE_CAP, 305 QM_PF2VF_IRQ_TYPE_CAP, 306 QM_PF_IRQ_NUM_CAP, 307 QM_VF_IRQ_NUM_CAP, 308 }; 309 310 static const struct hisi_qm_cap_info qm_cap_info_comm[] = { 311 {QM_SUPPORT_DB_ISOLATION, 0x30, 0, BIT(0), 0x0, 0x0, 0x0}, 312 {QM_SUPPORT_FUNC_QOS, 0x3100, 0, BIT(8), 0x0, 0x0, 0x1}, 313 {QM_SUPPORT_STOP_QP, 0x3100, 0, BIT(9), 0x0, 0x0, 0x1}, 314 {QM_SUPPORT_MB_COMMAND, 0x3100, 0, BIT(11), 0x0, 0x0, 0x1}, 315 {QM_SUPPORT_SVA_PREFETCH, 0x3100, 0, BIT(14), 0x0, 0x0, 0x1}, 316 }; 317 318 static const struct hisi_qm_cap_info qm_cap_info_pf[] = { 319 {QM_SUPPORT_RPM, 0x3100, 0, BIT(13), 0x0, 0x0, 0x1}, 320 }; 321 322 static const struct hisi_qm_cap_info qm_cap_info_vf[] = { 323 {QM_SUPPORT_RPM, 0x3100, 0, BIT(12), 0x0, 0x0, 0x0}, 324 }; 325 326 static const struct hisi_qm_cap_info qm_basic_info[] = { 327 {QM_TOTAL_QP_NUM_CAP, 0x100158, 0, GENMASK(10, 0), 0x1000, 0x400, 0x400}, 328 {QM_FUNC_MAX_QP_CAP, 0x100158, 11, GENMASK(10, 0), 0x1000, 0x400, 0x400}, 329 {QM_XEQ_DEPTH_CAP, 0x3104, 0, GENMASK(31, 0), 0x800, 0x4000800, 0x4000800}, 330 {QM_QP_DEPTH_CAP, 0x3108, 0, GENMASK(31, 0), 0x4000400, 0x4000400, 0x4000400}, 331 {QM_EQ_IRQ_TYPE_CAP, 0x310c, 0, GENMASK(31, 0), 0x10000, 0x10000, 0x10000}, 332 {QM_AEQ_IRQ_TYPE_CAP, 0x3110, 0, GENMASK(31, 0), 0x0, 0x10001, 0x10001}, 333 {QM_ABN_IRQ_TYPE_CAP, 0x3114, 0, GENMASK(31, 0), 0x0, 0x10003, 0x10003}, 334 {QM_PF2VF_IRQ_TYPE_CAP, 0x3118, 0, GENMASK(31, 0), 0x0, 0x0, 0x10002}, 335 {QM_PF_IRQ_NUM_CAP, 0x311c, 16, GENMASK(15, 0), 0x1, 0x4, 0x4}, 336 {QM_VF_IRQ_NUM_CAP, 0x311c, 0, GENMASK(15, 0), 0x1, 0x2, 0x3}, 337 }; 338 339 struct qm_mailbox { 340 __le16 w0; 341 __le16 queue_num; 342 __le32 base_l; 343 __le32 base_h; 344 __le32 rsvd; 345 }; 346 347 struct qm_doorbell { 348 __le16 queue_num; 349 __le16 cmd; 350 __le16 index; 351 __le16 priority; 352 }; 353 354 struct hisi_qm_resource { 355 struct hisi_qm *qm; 356 int distance; 357 struct list_head list; 358 }; 359 360 struct hisi_qm_hw_ops { 361 int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number); 362 void (*qm_db)(struct hisi_qm *qm, u16 qn, 363 u8 cmd, u16 index, u8 priority); 364 int (*debug_init)(struct hisi_qm *qm); 365 void (*hw_error_init)(struct hisi_qm *qm); 366 void (*hw_error_uninit)(struct hisi_qm *qm); 367 enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm); 368 int (*set_msi)(struct hisi_qm *qm, bool set); 369 }; 370 371 struct hisi_qm_hw_error { 372 u32 int_msk; 373 const char *msg; 374 }; 375 376 static const struct hisi_qm_hw_error qm_hw_error[] = { 377 { .int_msk = BIT(0), .msg = "qm_axi_rresp" }, 378 { .int_msk = BIT(1), .msg = "qm_axi_bresp" }, 379 { .int_msk = BIT(2), .msg = "qm_ecc_mbit" }, 380 { .int_msk = BIT(3), .msg = "qm_ecc_1bit" }, 381 { .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" }, 382 { .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" }, 383 { .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" }, 384 { .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" }, 385 { .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" }, 386 { .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" }, 387 { .int_msk = BIT(10), .msg = "qm_db_timeout" }, 388 { .int_msk = BIT(11), .msg = "qm_of_fifo_of" }, 389 { .int_msk = BIT(12), .msg = "qm_db_random_invalid" }, 390 { .int_msk = BIT(13), .msg = "qm_mailbox_timeout" }, 391 { .int_msk = BIT(14), .msg = "qm_flr_timeout" }, 392 { /* sentinel */ } 393 }; 394 395 static const char * const qm_db_timeout[] = { 396 "sq", "cq", "eq", "aeq", 397 }; 398 399 static const char * const qm_fifo_overflow[] = { 400 "cq", "eq", "aeq", 401 }; 402 403 static const char * const qp_s[] = { 404 "none", "init", "start", "stop", "close", 405 }; 406 407 struct qm_typical_qos_table { 408 u32 start; 409 u32 end; 410 u32 val; 411 }; 412 413 /* the qos step is 100 */ 414 static struct qm_typical_qos_table shaper_cir_s[] = { 415 {100, 100, 4}, 416 {200, 200, 3}, 417 {300, 500, 2}, 418 {600, 1000, 1}, 419 {1100, 100000, 0}, 420 }; 421 422 static struct qm_typical_qos_table shaper_cbs_s[] = { 423 {100, 200, 9}, 424 {300, 500, 11}, 425 {600, 1000, 12}, 426 {1100, 10000, 16}, 427 {10100, 25000, 17}, 428 {25100, 50000, 18}, 429 {50100, 100000, 19} 430 }; 431 432 static void qm_irqs_unregister(struct hisi_qm *qm); 433 434 static bool qm_avail_state(struct hisi_qm *qm, enum qm_state new) 435 { 436 enum qm_state curr = atomic_read(&qm->status.flags); 437 bool avail = false; 438 439 switch (curr) { 440 case QM_INIT: 441 if (new == QM_START || new == QM_CLOSE) 442 avail = true; 443 break; 444 case QM_START: 445 if (new == QM_STOP) 446 avail = true; 447 break; 448 case QM_STOP: 449 if (new == QM_CLOSE || new == QM_START) 450 avail = true; 451 break; 452 default: 453 break; 454 } 455 456 dev_dbg(&qm->pdev->dev, "change qm state from %s to %s\n", 457 qm_s[curr], qm_s[new]); 458 459 if (!avail) 460 dev_warn(&qm->pdev->dev, "Can not change qm state from %s to %s\n", 461 qm_s[curr], qm_s[new]); 462 463 return avail; 464 } 465 466 static bool qm_qp_avail_state(struct hisi_qm *qm, struct hisi_qp *qp, 467 enum qp_state new) 468 { 469 enum qm_state qm_curr = atomic_read(&qm->status.flags); 470 enum qp_state qp_curr = 0; 471 bool avail = false; 472 473 if (qp) 474 qp_curr = atomic_read(&qp->qp_status.flags); 475 476 switch (new) { 477 case QP_INIT: 478 if (qm_curr == QM_START || qm_curr == QM_INIT) 479 avail = true; 480 break; 481 case QP_START: 482 if ((qm_curr == QM_START && qp_curr == QP_INIT) || 483 (qm_curr == QM_START && qp_curr == QP_STOP)) 484 avail = true; 485 break; 486 case QP_STOP: 487 if ((qm_curr == QM_START && qp_curr == QP_START) || 488 (qp_curr == QP_INIT)) 489 avail = true; 490 break; 491 case QP_CLOSE: 492 if ((qm_curr == QM_START && qp_curr == QP_INIT) || 493 (qm_curr == QM_START && qp_curr == QP_STOP) || 494 (qm_curr == QM_STOP && qp_curr == QP_STOP) || 495 (qm_curr == QM_STOP && qp_curr == QP_INIT)) 496 avail = true; 497 break; 498 default: 499 break; 500 } 501 502 dev_dbg(&qm->pdev->dev, "change qp state from %s to %s in QM %s\n", 503 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]); 504 505 if (!avail) 506 dev_warn(&qm->pdev->dev, 507 "Can not change qp state from %s to %s in QM %s\n", 508 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]); 509 510 return avail; 511 } 512 513 static u32 qm_get_hw_error_status(struct hisi_qm *qm) 514 { 515 return readl(qm->io_base + QM_ABNORMAL_INT_STATUS); 516 } 517 518 static u32 qm_get_dev_err_status(struct hisi_qm *qm) 519 { 520 return qm->err_ini->get_dev_hw_err_status(qm); 521 } 522 523 /* Check if the error causes the master ooo block */ 524 static bool qm_check_dev_error(struct hisi_qm *qm) 525 { 526 u32 val, dev_val; 527 528 if (qm->fun_type == QM_HW_VF) 529 return false; 530 531 val = qm_get_hw_error_status(qm) & qm->err_info.qm_shutdown_mask; 532 dev_val = qm_get_dev_err_status(qm) & qm->err_info.dev_shutdown_mask; 533 534 return val || dev_val; 535 } 536 537 static int qm_wait_reset_finish(struct hisi_qm *qm) 538 { 539 int delay = 0; 540 541 /* All reset requests need to be queued for processing */ 542 while (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 543 msleep(++delay); 544 if (delay > QM_RESET_WAIT_TIMEOUT) 545 return -EBUSY; 546 } 547 548 return 0; 549 } 550 551 static int qm_reset_prepare_ready(struct hisi_qm *qm) 552 { 553 struct pci_dev *pdev = qm->pdev; 554 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 555 556 /* 557 * PF and VF on host doesnot support resetting at the 558 * same time on Kunpeng920. 559 */ 560 if (qm->ver < QM_HW_V3) 561 return qm_wait_reset_finish(pf_qm); 562 563 return qm_wait_reset_finish(qm); 564 } 565 566 static void qm_reset_bit_clear(struct hisi_qm *qm) 567 { 568 struct pci_dev *pdev = qm->pdev; 569 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 570 571 if (qm->ver < QM_HW_V3) 572 clear_bit(QM_RESETTING, &pf_qm->misc_ctl); 573 574 clear_bit(QM_RESETTING, &qm->misc_ctl); 575 } 576 577 static void qm_mb_pre_init(struct qm_mailbox *mailbox, u8 cmd, 578 u64 base, u16 queue, bool op) 579 { 580 mailbox->w0 = cpu_to_le16((cmd) | 581 ((op) ? 0x1 << QM_MB_OP_SHIFT : 0) | 582 (0x1 << QM_MB_BUSY_SHIFT)); 583 mailbox->queue_num = cpu_to_le16(queue); 584 mailbox->base_l = cpu_to_le32(lower_32_bits(base)); 585 mailbox->base_h = cpu_to_le32(upper_32_bits(base)); 586 mailbox->rsvd = 0; 587 } 588 589 /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */ 590 int hisi_qm_wait_mb_ready(struct hisi_qm *qm) 591 { 592 u32 val; 593 594 return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE, 595 val, !((val >> QM_MB_BUSY_SHIFT) & 596 0x1), POLL_PERIOD, POLL_TIMEOUT); 597 } 598 EXPORT_SYMBOL_GPL(hisi_qm_wait_mb_ready); 599 600 /* 128 bit should be written to hardware at one time to trigger a mailbox */ 601 static void qm_mb_write(struct hisi_qm *qm, const void *src) 602 { 603 void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE; 604 unsigned long tmp0 = 0, tmp1 = 0; 605 606 if (!IS_ENABLED(CONFIG_ARM64)) { 607 memcpy_toio(fun_base, src, 16); 608 dma_wmb(); 609 return; 610 } 611 612 asm volatile("ldp %0, %1, %3\n" 613 "stp %0, %1, %2\n" 614 "dmb oshst\n" 615 : "=&r" (tmp0), 616 "=&r" (tmp1), 617 "+Q" (*((char __iomem *)fun_base)) 618 : "Q" (*((char *)src)) 619 : "memory"); 620 } 621 622 static int qm_mb_nolock(struct hisi_qm *qm, struct qm_mailbox *mailbox) 623 { 624 int ret; 625 u32 val; 626 627 if (unlikely(hisi_qm_wait_mb_ready(qm))) { 628 dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n"); 629 ret = -EBUSY; 630 goto mb_busy; 631 } 632 633 qm_mb_write(qm, mailbox); 634 635 if (unlikely(hisi_qm_wait_mb_ready(qm))) { 636 dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n"); 637 ret = -ETIMEDOUT; 638 goto mb_busy; 639 } 640 641 val = readl(qm->io_base + QM_MB_CMD_SEND_BASE); 642 if (val & QM_MB_STATUS_MASK) { 643 dev_err(&qm->pdev->dev, "QM mailbox operation failed!\n"); 644 ret = -EIO; 645 goto mb_busy; 646 } 647 648 return 0; 649 650 mb_busy: 651 atomic64_inc(&qm->debug.dfx.mb_err_cnt); 652 return ret; 653 } 654 655 int hisi_qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue, 656 bool op) 657 { 658 struct qm_mailbox mailbox; 659 int ret; 660 661 dev_dbg(&qm->pdev->dev, "QM mailbox request to q%u: %u-%llx\n", 662 queue, cmd, (unsigned long long)dma_addr); 663 664 qm_mb_pre_init(&mailbox, cmd, dma_addr, queue, op); 665 666 mutex_lock(&qm->mailbox_lock); 667 ret = qm_mb_nolock(qm, &mailbox); 668 mutex_unlock(&qm->mailbox_lock); 669 670 return ret; 671 } 672 EXPORT_SYMBOL_GPL(hisi_qm_mb); 673 674 static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 675 { 676 u64 doorbell; 677 678 doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) | 679 ((u64)index << QM_DB_INDEX_SHIFT_V1) | 680 ((u64)priority << QM_DB_PRIORITY_SHIFT_V1); 681 682 writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1); 683 } 684 685 static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 686 { 687 void __iomem *io_base = qm->io_base; 688 u16 randata = 0; 689 u64 doorbell; 690 691 if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ) 692 io_base = qm->db_io_base + (u64)qn * qm->db_interval + 693 QM_DOORBELL_SQ_CQ_BASE_V2; 694 else 695 io_base += QM_DOORBELL_EQ_AEQ_BASE_V2; 696 697 doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) | 698 ((u64)randata << QM_DB_RAND_SHIFT_V2) | 699 ((u64)index << QM_DB_INDEX_SHIFT_V2) | 700 ((u64)priority << QM_DB_PRIORITY_SHIFT_V2); 701 702 writeq(doorbell, io_base); 703 } 704 705 static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 706 { 707 dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n", 708 qn, cmd, index); 709 710 qm->ops->qm_db(qm, qn, cmd, index, priority); 711 } 712 713 static void qm_disable_clock_gate(struct hisi_qm *qm) 714 { 715 u32 val; 716 717 /* if qm enables clock gating in Kunpeng930, qos will be inaccurate. */ 718 if (qm->ver < QM_HW_V3) 719 return; 720 721 val = readl(qm->io_base + QM_PM_CTRL); 722 val |= QM_IDLE_DISABLE; 723 writel(val, qm->io_base + QM_PM_CTRL); 724 } 725 726 static int qm_dev_mem_reset(struct hisi_qm *qm) 727 { 728 u32 val; 729 730 writel(0x1, qm->io_base + QM_MEM_START_INIT); 731 return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val, 732 val & BIT(0), POLL_PERIOD, 733 POLL_TIMEOUT); 734 } 735 736 /** 737 * hisi_qm_get_hw_info() - Get device information. 738 * @qm: The qm which want to get information. 739 * @info_table: Array for storing device information. 740 * @index: Index in info_table. 741 * @is_read: Whether read from reg, 0: not support read from reg. 742 * 743 * This function returns device information the caller needs. 744 */ 745 u32 hisi_qm_get_hw_info(struct hisi_qm *qm, 746 const struct hisi_qm_cap_info *info_table, 747 u32 index, bool is_read) 748 { 749 u32 val; 750 751 switch (qm->ver) { 752 case QM_HW_V1: 753 return info_table[index].v1_val; 754 case QM_HW_V2: 755 return info_table[index].v2_val; 756 default: 757 if (!is_read) 758 return info_table[index].v3_val; 759 760 val = readl(qm->io_base + info_table[index].offset); 761 return (val >> info_table[index].shift) & info_table[index].mask; 762 } 763 } 764 EXPORT_SYMBOL_GPL(hisi_qm_get_hw_info); 765 766 static void qm_get_xqc_depth(struct hisi_qm *qm, u16 *low_bits, 767 u16 *high_bits, enum qm_basic_type type) 768 { 769 u32 depth; 770 771 depth = hisi_qm_get_hw_info(qm, qm_basic_info, type, qm->cap_ver); 772 *low_bits = depth & QM_XQ_DEPTH_MASK; 773 *high_bits = (depth >> QM_XQ_DEPTH_SHIFT) & QM_XQ_DEPTH_MASK; 774 } 775 776 static u32 qm_get_irq_num(struct hisi_qm *qm) 777 { 778 if (qm->fun_type == QM_HW_PF) 779 return hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF_IRQ_NUM_CAP, qm->cap_ver); 780 781 return hisi_qm_get_hw_info(qm, qm_basic_info, QM_VF_IRQ_NUM_CAP, qm->cap_ver); 782 } 783 784 static int qm_pm_get_sync(struct hisi_qm *qm) 785 { 786 struct device *dev = &qm->pdev->dev; 787 int ret; 788 789 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 790 return 0; 791 792 ret = pm_runtime_resume_and_get(dev); 793 if (ret < 0) { 794 dev_err(dev, "failed to get_sync(%d).\n", ret); 795 return ret; 796 } 797 798 return 0; 799 } 800 801 static void qm_pm_put_sync(struct hisi_qm *qm) 802 { 803 struct device *dev = &qm->pdev->dev; 804 805 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 806 return; 807 808 pm_runtime_mark_last_busy(dev); 809 pm_runtime_put_autosuspend(dev); 810 } 811 812 static void qm_cq_head_update(struct hisi_qp *qp) 813 { 814 if (qp->qp_status.cq_head == qp->cq_depth - 1) { 815 qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase; 816 qp->qp_status.cq_head = 0; 817 } else { 818 qp->qp_status.cq_head++; 819 } 820 } 821 822 static void qm_poll_req_cb(struct hisi_qp *qp) 823 { 824 struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head; 825 struct hisi_qm *qm = qp->qm; 826 827 while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) { 828 dma_rmb(); 829 qp->req_cb(qp, qp->sqe + qm->sqe_size * 830 le16_to_cpu(cqe->sq_head)); 831 qm_cq_head_update(qp); 832 cqe = qp->cqe + qp->qp_status.cq_head; 833 qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, 834 qp->qp_status.cq_head, 0); 835 atomic_dec(&qp->qp_status.used); 836 } 837 838 /* set c_flag */ 839 qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, qp->qp_status.cq_head, 1); 840 } 841 842 static int qm_get_complete_eqe_num(struct hisi_qm_poll_data *poll_data) 843 { 844 struct hisi_qm *qm = poll_data->qm; 845 struct qm_eqe *eqe = qm->eqe + qm->status.eq_head; 846 u16 eq_depth = qm->eq_depth; 847 int eqe_num = 0; 848 u16 cqn; 849 850 while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) { 851 cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK; 852 poll_data->qp_finish_id[eqe_num] = cqn; 853 eqe_num++; 854 855 if (qm->status.eq_head == eq_depth - 1) { 856 qm->status.eqc_phase = !qm->status.eqc_phase; 857 eqe = qm->eqe; 858 qm->status.eq_head = 0; 859 } else { 860 eqe++; 861 qm->status.eq_head++; 862 } 863 864 if (eqe_num == (eq_depth >> 1) - 1) 865 break; 866 } 867 868 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 869 870 return eqe_num; 871 } 872 873 static void qm_work_process(struct work_struct *work) 874 { 875 struct hisi_qm_poll_data *poll_data = 876 container_of(work, struct hisi_qm_poll_data, work); 877 struct hisi_qm *qm = poll_data->qm; 878 struct hisi_qp *qp; 879 int eqe_num, i; 880 881 /* Get qp id of completed tasks and re-enable the interrupt. */ 882 eqe_num = qm_get_complete_eqe_num(poll_data); 883 for (i = eqe_num - 1; i >= 0; i--) { 884 qp = &qm->qp_array[poll_data->qp_finish_id[i]]; 885 if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP)) 886 continue; 887 888 if (qp->event_cb) { 889 qp->event_cb(qp); 890 continue; 891 } 892 893 if (likely(qp->req_cb)) 894 qm_poll_req_cb(qp); 895 } 896 } 897 898 static bool do_qm_eq_irq(struct hisi_qm *qm) 899 { 900 struct qm_eqe *eqe = qm->eqe + qm->status.eq_head; 901 struct hisi_qm_poll_data *poll_data; 902 u16 cqn; 903 904 if (!readl(qm->io_base + QM_VF_EQ_INT_SOURCE)) 905 return false; 906 907 if (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) { 908 cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK; 909 poll_data = &qm->poll_data[cqn]; 910 queue_work(qm->wq, &poll_data->work); 911 912 return true; 913 } 914 915 return false; 916 } 917 918 static irqreturn_t qm_eq_irq(int irq, void *data) 919 { 920 struct hisi_qm *qm = data; 921 bool ret; 922 923 ret = do_qm_eq_irq(qm); 924 if (ret) 925 return IRQ_HANDLED; 926 927 atomic64_inc(&qm->debug.dfx.err_irq_cnt); 928 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 929 930 return IRQ_NONE; 931 } 932 933 static irqreturn_t qm_mb_cmd_irq(int irq, void *data) 934 { 935 struct hisi_qm *qm = data; 936 u32 val; 937 938 val = readl(qm->io_base + QM_IFC_INT_STATUS); 939 val &= QM_IFC_INT_STATUS_MASK; 940 if (!val) 941 return IRQ_NONE; 942 943 schedule_work(&qm->cmd_process); 944 945 return IRQ_HANDLED; 946 } 947 948 static void qm_set_qp_disable(struct hisi_qp *qp, int offset) 949 { 950 u32 *addr; 951 952 if (qp->is_in_kernel) 953 return; 954 955 addr = (u32 *)(qp->qdma.va + qp->qdma.size) - offset; 956 *addr = 1; 957 958 /* make sure setup is completed */ 959 smp_wmb(); 960 } 961 962 static void qm_disable_qp(struct hisi_qm *qm, u32 qp_id) 963 { 964 struct hisi_qp *qp = &qm->qp_array[qp_id]; 965 966 qm_set_qp_disable(qp, QM_RESET_STOP_TX_OFFSET); 967 hisi_qm_stop_qp(qp); 968 qm_set_qp_disable(qp, QM_RESET_STOP_RX_OFFSET); 969 } 970 971 static void qm_reset_function(struct hisi_qm *qm) 972 { 973 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 974 struct device *dev = &qm->pdev->dev; 975 int ret; 976 977 if (qm_check_dev_error(pf_qm)) 978 return; 979 980 ret = qm_reset_prepare_ready(qm); 981 if (ret) { 982 dev_err(dev, "reset function not ready\n"); 983 return; 984 } 985 986 ret = hisi_qm_stop(qm, QM_FLR); 987 if (ret) { 988 dev_err(dev, "failed to stop qm when reset function\n"); 989 goto clear_bit; 990 } 991 992 ret = hisi_qm_start(qm); 993 if (ret) 994 dev_err(dev, "failed to start qm when reset function\n"); 995 996 clear_bit: 997 qm_reset_bit_clear(qm); 998 } 999 1000 static irqreturn_t qm_aeq_thread(int irq, void *data) 1001 { 1002 struct hisi_qm *qm = data; 1003 struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head; 1004 u16 aeq_depth = qm->aeq_depth; 1005 u32 type, qp_id; 1006 1007 while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) { 1008 type = le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT; 1009 qp_id = le32_to_cpu(aeqe->dw0) & QM_AEQE_CQN_MASK; 1010 1011 switch (type) { 1012 case QM_EQ_OVERFLOW: 1013 dev_err(&qm->pdev->dev, "eq overflow, reset function\n"); 1014 qm_reset_function(qm); 1015 return IRQ_HANDLED; 1016 case QM_CQ_OVERFLOW: 1017 dev_err(&qm->pdev->dev, "cq overflow, stop qp(%u)\n", 1018 qp_id); 1019 fallthrough; 1020 case QM_CQE_ERROR: 1021 qm_disable_qp(qm, qp_id); 1022 break; 1023 default: 1024 dev_err(&qm->pdev->dev, "unknown error type %u\n", 1025 type); 1026 break; 1027 } 1028 1029 if (qm->status.aeq_head == aeq_depth - 1) { 1030 qm->status.aeqc_phase = !qm->status.aeqc_phase; 1031 aeqe = qm->aeqe; 1032 qm->status.aeq_head = 0; 1033 } else { 1034 aeqe++; 1035 qm->status.aeq_head++; 1036 } 1037 } 1038 1039 qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0); 1040 1041 return IRQ_HANDLED; 1042 } 1043 1044 static irqreturn_t qm_aeq_irq(int irq, void *data) 1045 { 1046 struct hisi_qm *qm = data; 1047 1048 atomic64_inc(&qm->debug.dfx.aeq_irq_cnt); 1049 if (!readl(qm->io_base + QM_VF_AEQ_INT_SOURCE)) 1050 return IRQ_NONE; 1051 1052 return IRQ_WAKE_THREAD; 1053 } 1054 1055 static void qm_init_qp_status(struct hisi_qp *qp) 1056 { 1057 struct hisi_qp_status *qp_status = &qp->qp_status; 1058 1059 qp_status->sq_tail = 0; 1060 qp_status->cq_head = 0; 1061 qp_status->cqc_phase = true; 1062 atomic_set(&qp_status->used, 0); 1063 } 1064 1065 static void qm_init_prefetch(struct hisi_qm *qm) 1066 { 1067 struct device *dev = &qm->pdev->dev; 1068 u32 page_type = 0x0; 1069 1070 if (!test_bit(QM_SUPPORT_SVA_PREFETCH, &qm->caps)) 1071 return; 1072 1073 switch (PAGE_SIZE) { 1074 case SZ_4K: 1075 page_type = 0x0; 1076 break; 1077 case SZ_16K: 1078 page_type = 0x1; 1079 break; 1080 case SZ_64K: 1081 page_type = 0x2; 1082 break; 1083 default: 1084 dev_err(dev, "system page size is not support: %lu, default set to 4KB", 1085 PAGE_SIZE); 1086 } 1087 1088 writel(page_type, qm->io_base + QM_PAGE_SIZE); 1089 } 1090 1091 /* 1092 * acc_shaper_para_calc() Get the IR value by the qos formula, the return value 1093 * is the expected qos calculated. 1094 * the formula: 1095 * IR = X Mbps if ir = 1 means IR = 100 Mbps, if ir = 10000 means = 10Gbps 1096 * 1097 * IR_b * (2 ^ IR_u) * 8000 1098 * IR(Mbps) = ------------------------- 1099 * Tick * (2 ^ IR_s) 1100 */ 1101 static u32 acc_shaper_para_calc(u64 cir_b, u64 cir_u, u64 cir_s) 1102 { 1103 return ((cir_b * QM_QOS_DIVISOR_CLK) * (1 << cir_u)) / 1104 (QM_QOS_TICK * (1 << cir_s)); 1105 } 1106 1107 static u32 acc_shaper_calc_cbs_s(u32 ir) 1108 { 1109 int table_size = ARRAY_SIZE(shaper_cbs_s); 1110 int i; 1111 1112 for (i = 0; i < table_size; i++) { 1113 if (ir >= shaper_cbs_s[i].start && ir <= shaper_cbs_s[i].end) 1114 return shaper_cbs_s[i].val; 1115 } 1116 1117 return QM_SHAPER_MIN_CBS_S; 1118 } 1119 1120 static u32 acc_shaper_calc_cir_s(u32 ir) 1121 { 1122 int table_size = ARRAY_SIZE(shaper_cir_s); 1123 int i; 1124 1125 for (i = 0; i < table_size; i++) { 1126 if (ir >= shaper_cir_s[i].start && ir <= shaper_cir_s[i].end) 1127 return shaper_cir_s[i].val; 1128 } 1129 1130 return 0; 1131 } 1132 1133 static int qm_get_shaper_para(u32 ir, struct qm_shaper_factor *factor) 1134 { 1135 u32 cir_b, cir_u, cir_s, ir_calc; 1136 u32 error_rate; 1137 1138 factor->cbs_s = acc_shaper_calc_cbs_s(ir); 1139 cir_s = acc_shaper_calc_cir_s(ir); 1140 1141 for (cir_b = QM_QOS_MIN_CIR_B; cir_b <= QM_QOS_MAX_CIR_B; cir_b++) { 1142 for (cir_u = 0; cir_u <= QM_QOS_MAX_CIR_U; cir_u++) { 1143 ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s); 1144 1145 error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir; 1146 if (error_rate <= QM_QOS_MIN_ERROR_RATE) { 1147 factor->cir_b = cir_b; 1148 factor->cir_u = cir_u; 1149 factor->cir_s = cir_s; 1150 return 0; 1151 } 1152 } 1153 } 1154 1155 return -EINVAL; 1156 } 1157 1158 static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base, 1159 u32 number, struct qm_shaper_factor *factor) 1160 { 1161 u64 tmp = 0; 1162 1163 if (number > 0) { 1164 switch (type) { 1165 case SQC_VFT: 1166 if (qm->ver == QM_HW_V1) { 1167 tmp = QM_SQC_VFT_BUF_SIZE | 1168 QM_SQC_VFT_SQC_SIZE | 1169 QM_SQC_VFT_INDEX_NUMBER | 1170 QM_SQC_VFT_VALID | 1171 (u64)base << QM_SQC_VFT_START_SQN_SHIFT; 1172 } else { 1173 tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT | 1174 QM_SQC_VFT_VALID | 1175 (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT; 1176 } 1177 break; 1178 case CQC_VFT: 1179 if (qm->ver == QM_HW_V1) { 1180 tmp = QM_CQC_VFT_BUF_SIZE | 1181 QM_CQC_VFT_SQC_SIZE | 1182 QM_CQC_VFT_INDEX_NUMBER | 1183 QM_CQC_VFT_VALID; 1184 } else { 1185 tmp = QM_CQC_VFT_VALID; 1186 } 1187 break; 1188 case SHAPER_VFT: 1189 if (factor) { 1190 tmp = factor->cir_b | 1191 (factor->cir_u << QM_SHAPER_FACTOR_CIR_U_SHIFT) | 1192 (factor->cir_s << QM_SHAPER_FACTOR_CIR_S_SHIFT) | 1193 (QM_SHAPER_CBS_B << QM_SHAPER_FACTOR_CBS_B_SHIFT) | 1194 (factor->cbs_s << QM_SHAPER_FACTOR_CBS_S_SHIFT); 1195 } 1196 break; 1197 } 1198 } 1199 1200 writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L); 1201 writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H); 1202 } 1203 1204 static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type, 1205 u32 fun_num, u32 base, u32 number) 1206 { 1207 struct qm_shaper_factor *factor = NULL; 1208 unsigned int val; 1209 int ret; 1210 1211 if (type == SHAPER_VFT && test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 1212 factor = &qm->factor[fun_num]; 1213 1214 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 1215 val & BIT(0), POLL_PERIOD, 1216 POLL_TIMEOUT); 1217 if (ret) 1218 return ret; 1219 1220 writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR); 1221 writel(type, qm->io_base + QM_VFT_CFG_TYPE); 1222 if (type == SHAPER_VFT) 1223 fun_num |= base << QM_SHAPER_VFT_OFFSET; 1224 1225 writel(fun_num, qm->io_base + QM_VFT_CFG); 1226 1227 qm_vft_data_cfg(qm, type, base, number, factor); 1228 1229 writel(0x0, qm->io_base + QM_VFT_CFG_RDY); 1230 writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE); 1231 1232 return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 1233 val & BIT(0), POLL_PERIOD, 1234 POLL_TIMEOUT); 1235 } 1236 1237 static int qm_shaper_init_vft(struct hisi_qm *qm, u32 fun_num) 1238 { 1239 u32 qos = qm->factor[fun_num].func_qos; 1240 int ret, i; 1241 1242 ret = qm_get_shaper_para(qos * QM_QOS_RATE, &qm->factor[fun_num]); 1243 if (ret) { 1244 dev_err(&qm->pdev->dev, "failed to calculate shaper parameter!\n"); 1245 return ret; 1246 } 1247 writel(qm->type_rate, qm->io_base + QM_SHAPER_CFG); 1248 for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) { 1249 /* The base number of queue reuse for different alg type */ 1250 ret = qm_set_vft_common(qm, SHAPER_VFT, fun_num, i, 1); 1251 if (ret) 1252 return ret; 1253 } 1254 1255 return 0; 1256 } 1257 1258 /* The config should be conducted after qm_dev_mem_reset() */ 1259 static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base, 1260 u32 number) 1261 { 1262 int ret, i; 1263 1264 for (i = SQC_VFT; i <= CQC_VFT; i++) { 1265 ret = qm_set_vft_common(qm, i, fun_num, base, number); 1266 if (ret) 1267 return ret; 1268 } 1269 1270 /* init default shaper qos val */ 1271 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) { 1272 ret = qm_shaper_init_vft(qm, fun_num); 1273 if (ret) 1274 goto back_sqc_cqc; 1275 } 1276 1277 return 0; 1278 back_sqc_cqc: 1279 for (i = SQC_VFT; i <= CQC_VFT; i++) 1280 qm_set_vft_common(qm, i, fun_num, 0, 0); 1281 1282 return ret; 1283 } 1284 1285 static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number) 1286 { 1287 u64 sqc_vft; 1288 int ret; 1289 1290 ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1); 1291 if (ret) 1292 return ret; 1293 1294 sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) | 1295 ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32); 1296 *base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2); 1297 *number = (QM_SQC_VFT_NUM_MASK_V2 & 1298 (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1; 1299 1300 return 0; 1301 } 1302 1303 void *hisi_qm_ctx_alloc(struct hisi_qm *qm, size_t ctx_size, 1304 dma_addr_t *dma_addr) 1305 { 1306 struct device *dev = &qm->pdev->dev; 1307 void *ctx_addr; 1308 1309 ctx_addr = kzalloc(ctx_size, GFP_KERNEL); 1310 if (!ctx_addr) 1311 return ERR_PTR(-ENOMEM); 1312 1313 *dma_addr = dma_map_single(dev, ctx_addr, ctx_size, DMA_FROM_DEVICE); 1314 if (dma_mapping_error(dev, *dma_addr)) { 1315 dev_err(dev, "DMA mapping error!\n"); 1316 kfree(ctx_addr); 1317 return ERR_PTR(-ENOMEM); 1318 } 1319 1320 return ctx_addr; 1321 } 1322 1323 void hisi_qm_ctx_free(struct hisi_qm *qm, size_t ctx_size, 1324 const void *ctx_addr, dma_addr_t *dma_addr) 1325 { 1326 struct device *dev = &qm->pdev->dev; 1327 1328 dma_unmap_single(dev, *dma_addr, ctx_size, DMA_FROM_DEVICE); 1329 kfree(ctx_addr); 1330 } 1331 1332 static int qm_dump_sqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id) 1333 { 1334 return hisi_qm_mb(qm, QM_MB_CMD_SQC, dma_addr, qp_id, 1); 1335 } 1336 1337 static int qm_dump_cqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id) 1338 { 1339 return hisi_qm_mb(qm, QM_MB_CMD_CQC, dma_addr, qp_id, 1); 1340 } 1341 1342 static void qm_hw_error_init_v1(struct hisi_qm *qm) 1343 { 1344 writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK); 1345 } 1346 1347 static void qm_hw_error_cfg(struct hisi_qm *qm) 1348 { 1349 struct hisi_qm_err_info *err_info = &qm->err_info; 1350 1351 qm->error_mask = err_info->nfe | err_info->ce | err_info->fe; 1352 /* clear QM hw residual error source */ 1353 writel(qm->error_mask, qm->io_base + QM_ABNORMAL_INT_SOURCE); 1354 1355 /* configure error type */ 1356 writel(err_info->ce, qm->io_base + QM_RAS_CE_ENABLE); 1357 writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD); 1358 writel(err_info->nfe, qm->io_base + QM_RAS_NFE_ENABLE); 1359 writel(err_info->fe, qm->io_base + QM_RAS_FE_ENABLE); 1360 } 1361 1362 static void qm_hw_error_init_v2(struct hisi_qm *qm) 1363 { 1364 u32 irq_unmask; 1365 1366 qm_hw_error_cfg(qm); 1367 1368 irq_unmask = ~qm->error_mask; 1369 irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1370 writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK); 1371 } 1372 1373 static void qm_hw_error_uninit_v2(struct hisi_qm *qm) 1374 { 1375 u32 irq_mask = qm->error_mask; 1376 1377 irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1378 writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK); 1379 } 1380 1381 static void qm_hw_error_init_v3(struct hisi_qm *qm) 1382 { 1383 u32 irq_unmask; 1384 1385 qm_hw_error_cfg(qm); 1386 1387 /* enable close master ooo when hardware error happened */ 1388 writel(qm->err_info.qm_shutdown_mask, qm->io_base + QM_OOO_SHUTDOWN_SEL); 1389 1390 irq_unmask = ~qm->error_mask; 1391 irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1392 writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK); 1393 } 1394 1395 static void qm_hw_error_uninit_v3(struct hisi_qm *qm) 1396 { 1397 u32 irq_mask = qm->error_mask; 1398 1399 irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1400 writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK); 1401 1402 /* disable close master ooo when hardware error happened */ 1403 writel(0x0, qm->io_base + QM_OOO_SHUTDOWN_SEL); 1404 } 1405 1406 static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status) 1407 { 1408 const struct hisi_qm_hw_error *err; 1409 struct device *dev = &qm->pdev->dev; 1410 u32 reg_val, type, vf_num; 1411 int i; 1412 1413 for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) { 1414 err = &qm_hw_error[i]; 1415 if (!(err->int_msk & error_status)) 1416 continue; 1417 1418 dev_err(dev, "%s [error status=0x%x] found\n", 1419 err->msg, err->int_msk); 1420 1421 if (err->int_msk & QM_DB_TIMEOUT) { 1422 reg_val = readl(qm->io_base + QM_ABNORMAL_INF01); 1423 type = (reg_val & QM_DB_TIMEOUT_TYPE) >> 1424 QM_DB_TIMEOUT_TYPE_SHIFT; 1425 vf_num = reg_val & QM_DB_TIMEOUT_VF; 1426 dev_err(dev, "qm %s doorbell timeout in function %u\n", 1427 qm_db_timeout[type], vf_num); 1428 } else if (err->int_msk & QM_OF_FIFO_OF) { 1429 reg_val = readl(qm->io_base + QM_ABNORMAL_INF00); 1430 type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >> 1431 QM_FIFO_OVERFLOW_TYPE_SHIFT; 1432 vf_num = reg_val & QM_FIFO_OVERFLOW_VF; 1433 1434 if (type < ARRAY_SIZE(qm_fifo_overflow)) 1435 dev_err(dev, "qm %s fifo overflow in function %u\n", 1436 qm_fifo_overflow[type], vf_num); 1437 else 1438 dev_err(dev, "unknown error type\n"); 1439 } 1440 } 1441 } 1442 1443 static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm) 1444 { 1445 u32 error_status, tmp; 1446 1447 /* read err sts */ 1448 tmp = readl(qm->io_base + QM_ABNORMAL_INT_STATUS); 1449 error_status = qm->error_mask & tmp; 1450 1451 if (error_status) { 1452 if (error_status & QM_ECC_MBIT) 1453 qm->err_status.is_qm_ecc_mbit = true; 1454 1455 qm_log_hw_error(qm, error_status); 1456 if (error_status & qm->err_info.qm_reset_mask) 1457 return ACC_ERR_NEED_RESET; 1458 1459 writel(error_status, qm->io_base + QM_ABNORMAL_INT_SOURCE); 1460 writel(qm->err_info.nfe, qm->io_base + QM_RAS_NFE_ENABLE); 1461 } 1462 1463 return ACC_ERR_RECOVERED; 1464 } 1465 1466 static int qm_get_mb_cmd(struct hisi_qm *qm, u64 *msg, u16 fun_num) 1467 { 1468 struct qm_mailbox mailbox; 1469 int ret; 1470 1471 qm_mb_pre_init(&mailbox, QM_MB_CMD_DST, 0, fun_num, 0); 1472 mutex_lock(&qm->mailbox_lock); 1473 ret = qm_mb_nolock(qm, &mailbox); 1474 if (ret) 1475 goto err_unlock; 1476 1477 *msg = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) | 1478 ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32); 1479 1480 err_unlock: 1481 mutex_unlock(&qm->mailbox_lock); 1482 return ret; 1483 } 1484 1485 static void qm_clear_cmd_interrupt(struct hisi_qm *qm, u64 vf_mask) 1486 { 1487 u32 val; 1488 1489 if (qm->fun_type == QM_HW_PF) 1490 writeq(vf_mask, qm->io_base + QM_IFC_INT_SOURCE_P); 1491 1492 val = readl(qm->io_base + QM_IFC_INT_SOURCE_V); 1493 val |= QM_IFC_INT_SOURCE_MASK; 1494 writel(val, qm->io_base + QM_IFC_INT_SOURCE_V); 1495 } 1496 1497 static void qm_handle_vf_msg(struct hisi_qm *qm, u32 vf_id) 1498 { 1499 struct device *dev = &qm->pdev->dev; 1500 u32 cmd; 1501 u64 msg; 1502 int ret; 1503 1504 ret = qm_get_mb_cmd(qm, &msg, vf_id); 1505 if (ret) { 1506 dev_err(dev, "failed to get msg from VF(%u)!\n", vf_id); 1507 return; 1508 } 1509 1510 cmd = msg & QM_MB_CMD_DATA_MASK; 1511 switch (cmd) { 1512 case QM_VF_PREPARE_FAIL: 1513 dev_err(dev, "failed to stop VF(%u)!\n", vf_id); 1514 break; 1515 case QM_VF_START_FAIL: 1516 dev_err(dev, "failed to start VF(%u)!\n", vf_id); 1517 break; 1518 case QM_VF_PREPARE_DONE: 1519 case QM_VF_START_DONE: 1520 break; 1521 default: 1522 dev_err(dev, "unsupported cmd %u sent by VF(%u)!\n", cmd, vf_id); 1523 break; 1524 } 1525 } 1526 1527 static int qm_wait_vf_prepare_finish(struct hisi_qm *qm) 1528 { 1529 struct device *dev = &qm->pdev->dev; 1530 u32 vfs_num = qm->vfs_num; 1531 int cnt = 0; 1532 int ret = 0; 1533 u64 val; 1534 u32 i; 1535 1536 if (!qm->vfs_num || !test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 1537 return 0; 1538 1539 while (true) { 1540 val = readq(qm->io_base + QM_IFC_INT_SOURCE_P); 1541 /* All VFs send command to PF, break */ 1542 if ((val & GENMASK(vfs_num, 1)) == GENMASK(vfs_num, 1)) 1543 break; 1544 1545 if (++cnt > QM_MAX_PF_WAIT_COUNT) { 1546 ret = -EBUSY; 1547 break; 1548 } 1549 1550 msleep(QM_WAIT_DST_ACK); 1551 } 1552 1553 /* PF check VFs msg */ 1554 for (i = 1; i <= vfs_num; i++) { 1555 if (val & BIT(i)) 1556 qm_handle_vf_msg(qm, i); 1557 else 1558 dev_err(dev, "VF(%u) not ping PF!\n", i); 1559 } 1560 1561 /* PF clear interrupt to ack VFs */ 1562 qm_clear_cmd_interrupt(qm, val); 1563 1564 return ret; 1565 } 1566 1567 static void qm_trigger_vf_interrupt(struct hisi_qm *qm, u32 fun_num) 1568 { 1569 u32 val; 1570 1571 val = readl(qm->io_base + QM_IFC_INT_CFG); 1572 val &= ~QM_IFC_SEND_ALL_VFS; 1573 val |= fun_num; 1574 writel(val, qm->io_base + QM_IFC_INT_CFG); 1575 1576 val = readl(qm->io_base + QM_IFC_INT_SET_P); 1577 val |= QM_IFC_INT_SET_MASK; 1578 writel(val, qm->io_base + QM_IFC_INT_SET_P); 1579 } 1580 1581 static void qm_trigger_pf_interrupt(struct hisi_qm *qm) 1582 { 1583 u32 val; 1584 1585 val = readl(qm->io_base + QM_IFC_INT_SET_V); 1586 val |= QM_IFC_INT_SET_MASK; 1587 writel(val, qm->io_base + QM_IFC_INT_SET_V); 1588 } 1589 1590 static int qm_ping_single_vf(struct hisi_qm *qm, u64 cmd, u32 fun_num) 1591 { 1592 struct device *dev = &qm->pdev->dev; 1593 struct qm_mailbox mailbox; 1594 int cnt = 0; 1595 u64 val; 1596 int ret; 1597 1598 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, fun_num, 0); 1599 mutex_lock(&qm->mailbox_lock); 1600 ret = qm_mb_nolock(qm, &mailbox); 1601 if (ret) { 1602 dev_err(dev, "failed to send command to vf(%u)!\n", fun_num); 1603 goto err_unlock; 1604 } 1605 1606 qm_trigger_vf_interrupt(qm, fun_num); 1607 while (true) { 1608 msleep(QM_WAIT_DST_ACK); 1609 val = readq(qm->io_base + QM_IFC_READY_STATUS); 1610 /* if VF respond, PF notifies VF successfully. */ 1611 if (!(val & BIT(fun_num))) 1612 goto err_unlock; 1613 1614 if (++cnt > QM_MAX_PF_WAIT_COUNT) { 1615 dev_err(dev, "failed to get response from VF(%u)!\n", fun_num); 1616 ret = -ETIMEDOUT; 1617 break; 1618 } 1619 } 1620 1621 err_unlock: 1622 mutex_unlock(&qm->mailbox_lock); 1623 return ret; 1624 } 1625 1626 static int qm_ping_all_vfs(struct hisi_qm *qm, u64 cmd) 1627 { 1628 struct device *dev = &qm->pdev->dev; 1629 u32 vfs_num = qm->vfs_num; 1630 struct qm_mailbox mailbox; 1631 u64 val = 0; 1632 int cnt = 0; 1633 int ret; 1634 u32 i; 1635 1636 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, QM_MB_PING_ALL_VFS, 0); 1637 mutex_lock(&qm->mailbox_lock); 1638 /* PF sends command to all VFs by mailbox */ 1639 ret = qm_mb_nolock(qm, &mailbox); 1640 if (ret) { 1641 dev_err(dev, "failed to send command to VFs!\n"); 1642 mutex_unlock(&qm->mailbox_lock); 1643 return ret; 1644 } 1645 1646 qm_trigger_vf_interrupt(qm, QM_IFC_SEND_ALL_VFS); 1647 while (true) { 1648 msleep(QM_WAIT_DST_ACK); 1649 val = readq(qm->io_base + QM_IFC_READY_STATUS); 1650 /* If all VFs acked, PF notifies VFs successfully. */ 1651 if (!(val & GENMASK(vfs_num, 1))) { 1652 mutex_unlock(&qm->mailbox_lock); 1653 return 0; 1654 } 1655 1656 if (++cnt > QM_MAX_PF_WAIT_COUNT) 1657 break; 1658 } 1659 1660 mutex_unlock(&qm->mailbox_lock); 1661 1662 /* Check which vf respond timeout. */ 1663 for (i = 1; i <= vfs_num; i++) { 1664 if (val & BIT(i)) 1665 dev_err(dev, "failed to get response from VF(%u)!\n", i); 1666 } 1667 1668 return -ETIMEDOUT; 1669 } 1670 1671 static int qm_ping_pf(struct hisi_qm *qm, u64 cmd) 1672 { 1673 struct qm_mailbox mailbox; 1674 int cnt = 0; 1675 u32 val; 1676 int ret; 1677 1678 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, 0, 0); 1679 mutex_lock(&qm->mailbox_lock); 1680 ret = qm_mb_nolock(qm, &mailbox); 1681 if (ret) { 1682 dev_err(&qm->pdev->dev, "failed to send command to PF!\n"); 1683 goto unlock; 1684 } 1685 1686 qm_trigger_pf_interrupt(qm); 1687 /* Waiting for PF response */ 1688 while (true) { 1689 msleep(QM_WAIT_DST_ACK); 1690 val = readl(qm->io_base + QM_IFC_INT_SET_V); 1691 if (!(val & QM_IFC_INT_STATUS_MASK)) 1692 break; 1693 1694 if (++cnt > QM_MAX_VF_WAIT_COUNT) { 1695 ret = -ETIMEDOUT; 1696 break; 1697 } 1698 } 1699 1700 unlock: 1701 mutex_unlock(&qm->mailbox_lock); 1702 return ret; 1703 } 1704 1705 static int qm_stop_qp(struct hisi_qp *qp) 1706 { 1707 return hisi_qm_mb(qp->qm, QM_MB_CMD_STOP_QP, 0, qp->qp_id, 0); 1708 } 1709 1710 static int qm_set_msi(struct hisi_qm *qm, bool set) 1711 { 1712 struct pci_dev *pdev = qm->pdev; 1713 1714 if (set) { 1715 pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64, 1716 0); 1717 } else { 1718 pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64, 1719 ACC_PEH_MSI_DISABLE); 1720 if (qm->err_status.is_qm_ecc_mbit || 1721 qm->err_status.is_dev_ecc_mbit) 1722 return 0; 1723 1724 mdelay(1); 1725 if (readl(qm->io_base + QM_PEH_DFX_INFO0)) 1726 return -EFAULT; 1727 } 1728 1729 return 0; 1730 } 1731 1732 static void qm_wait_msi_finish(struct hisi_qm *qm) 1733 { 1734 struct pci_dev *pdev = qm->pdev; 1735 u32 cmd = ~0; 1736 int cnt = 0; 1737 u32 val; 1738 int ret; 1739 1740 while (true) { 1741 pci_read_config_dword(pdev, pdev->msi_cap + 1742 PCI_MSI_PENDING_64, &cmd); 1743 if (!cmd) 1744 break; 1745 1746 if (++cnt > MAX_WAIT_COUNTS) { 1747 pci_warn(pdev, "failed to empty MSI PENDING!\n"); 1748 break; 1749 } 1750 1751 udelay(1); 1752 } 1753 1754 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO0, 1755 val, !(val & QM_PEH_DFX_MASK), 1756 POLL_PERIOD, POLL_TIMEOUT); 1757 if (ret) 1758 pci_warn(pdev, "failed to empty PEH MSI!\n"); 1759 1760 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO1, 1761 val, !(val & QM_PEH_MSI_FINISH_MASK), 1762 POLL_PERIOD, POLL_TIMEOUT); 1763 if (ret) 1764 pci_warn(pdev, "failed to finish MSI operation!\n"); 1765 } 1766 1767 static int qm_set_msi_v3(struct hisi_qm *qm, bool set) 1768 { 1769 struct pci_dev *pdev = qm->pdev; 1770 int ret = -ETIMEDOUT; 1771 u32 cmd, i; 1772 1773 pci_read_config_dword(pdev, pdev->msi_cap, &cmd); 1774 if (set) 1775 cmd |= QM_MSI_CAP_ENABLE; 1776 else 1777 cmd &= ~QM_MSI_CAP_ENABLE; 1778 1779 pci_write_config_dword(pdev, pdev->msi_cap, cmd); 1780 if (set) { 1781 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 1782 pci_read_config_dword(pdev, pdev->msi_cap, &cmd); 1783 if (cmd & QM_MSI_CAP_ENABLE) 1784 return 0; 1785 1786 udelay(1); 1787 } 1788 } else { 1789 udelay(WAIT_PERIOD_US_MIN); 1790 qm_wait_msi_finish(qm); 1791 ret = 0; 1792 } 1793 1794 return ret; 1795 } 1796 1797 static const struct hisi_qm_hw_ops qm_hw_ops_v1 = { 1798 .qm_db = qm_db_v1, 1799 .hw_error_init = qm_hw_error_init_v1, 1800 .set_msi = qm_set_msi, 1801 }; 1802 1803 static const struct hisi_qm_hw_ops qm_hw_ops_v2 = { 1804 .get_vft = qm_get_vft_v2, 1805 .qm_db = qm_db_v2, 1806 .hw_error_init = qm_hw_error_init_v2, 1807 .hw_error_uninit = qm_hw_error_uninit_v2, 1808 .hw_error_handle = qm_hw_error_handle_v2, 1809 .set_msi = qm_set_msi, 1810 }; 1811 1812 static const struct hisi_qm_hw_ops qm_hw_ops_v3 = { 1813 .get_vft = qm_get_vft_v2, 1814 .qm_db = qm_db_v2, 1815 .hw_error_init = qm_hw_error_init_v3, 1816 .hw_error_uninit = qm_hw_error_uninit_v3, 1817 .hw_error_handle = qm_hw_error_handle_v2, 1818 .set_msi = qm_set_msi_v3, 1819 }; 1820 1821 static void *qm_get_avail_sqe(struct hisi_qp *qp) 1822 { 1823 struct hisi_qp_status *qp_status = &qp->qp_status; 1824 u16 sq_tail = qp_status->sq_tail; 1825 1826 if (unlikely(atomic_read(&qp->qp_status.used) == qp->sq_depth - 1)) 1827 return NULL; 1828 1829 return qp->sqe + sq_tail * qp->qm->sqe_size; 1830 } 1831 1832 static void hisi_qm_unset_hw_reset(struct hisi_qp *qp) 1833 { 1834 u64 *addr; 1835 1836 /* Use last 64 bits of DUS to reset status. */ 1837 addr = (u64 *)(qp->qdma.va + qp->qdma.size) - QM_RESET_STOP_TX_OFFSET; 1838 *addr = 0; 1839 } 1840 1841 static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type) 1842 { 1843 struct device *dev = &qm->pdev->dev; 1844 struct hisi_qp *qp; 1845 int qp_id; 1846 1847 if (!qm_qp_avail_state(qm, NULL, QP_INIT)) 1848 return ERR_PTR(-EPERM); 1849 1850 if (qm->qp_in_used == qm->qp_num) { 1851 dev_info_ratelimited(dev, "All %u queues of QM are busy!\n", 1852 qm->qp_num); 1853 atomic64_inc(&qm->debug.dfx.create_qp_err_cnt); 1854 return ERR_PTR(-EBUSY); 1855 } 1856 1857 qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC); 1858 if (qp_id < 0) { 1859 dev_info_ratelimited(dev, "All %u queues of QM are busy!\n", 1860 qm->qp_num); 1861 atomic64_inc(&qm->debug.dfx.create_qp_err_cnt); 1862 return ERR_PTR(-EBUSY); 1863 } 1864 1865 qp = &qm->qp_array[qp_id]; 1866 hisi_qm_unset_hw_reset(qp); 1867 memset(qp->cqe, 0, sizeof(struct qm_cqe) * qp->cq_depth); 1868 1869 qp->event_cb = NULL; 1870 qp->req_cb = NULL; 1871 qp->qp_id = qp_id; 1872 qp->alg_type = alg_type; 1873 qp->is_in_kernel = true; 1874 qm->qp_in_used++; 1875 atomic_set(&qp->qp_status.flags, QP_INIT); 1876 1877 return qp; 1878 } 1879 1880 /** 1881 * hisi_qm_create_qp() - Create a queue pair from qm. 1882 * @qm: The qm we create a qp from. 1883 * @alg_type: Accelerator specific algorithm type in sqc. 1884 * 1885 * Return created qp, negative error code if failed. 1886 */ 1887 static struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type) 1888 { 1889 struct hisi_qp *qp; 1890 int ret; 1891 1892 ret = qm_pm_get_sync(qm); 1893 if (ret) 1894 return ERR_PTR(ret); 1895 1896 down_write(&qm->qps_lock); 1897 qp = qm_create_qp_nolock(qm, alg_type); 1898 up_write(&qm->qps_lock); 1899 1900 if (IS_ERR(qp)) 1901 qm_pm_put_sync(qm); 1902 1903 return qp; 1904 } 1905 1906 /** 1907 * hisi_qm_release_qp() - Release a qp back to its qm. 1908 * @qp: The qp we want to release. 1909 * 1910 * This function releases the resource of a qp. 1911 */ 1912 static void hisi_qm_release_qp(struct hisi_qp *qp) 1913 { 1914 struct hisi_qm *qm = qp->qm; 1915 1916 down_write(&qm->qps_lock); 1917 1918 if (!qm_qp_avail_state(qm, qp, QP_CLOSE)) { 1919 up_write(&qm->qps_lock); 1920 return; 1921 } 1922 1923 qm->qp_in_used--; 1924 idr_remove(&qm->qp_idr, qp->qp_id); 1925 1926 up_write(&qm->qps_lock); 1927 1928 qm_pm_put_sync(qm); 1929 } 1930 1931 static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 1932 { 1933 struct hisi_qm *qm = qp->qm; 1934 struct device *dev = &qm->pdev->dev; 1935 enum qm_hw_ver ver = qm->ver; 1936 struct qm_sqc *sqc; 1937 dma_addr_t sqc_dma; 1938 int ret; 1939 1940 sqc = kzalloc(sizeof(struct qm_sqc), GFP_KERNEL); 1941 if (!sqc) 1942 return -ENOMEM; 1943 1944 INIT_QC_COMMON(sqc, qp->sqe_dma, pasid); 1945 if (ver == QM_HW_V1) { 1946 sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size)); 1947 sqc->w8 = cpu_to_le16(qp->sq_depth - 1); 1948 } else { 1949 sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size, qp->sq_depth)); 1950 sqc->w8 = 0; /* rand_qc */ 1951 } 1952 sqc->cq_num = cpu_to_le16(qp_id); 1953 sqc->w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type)); 1954 1955 if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel) 1956 sqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE << 1957 QM_QC_PASID_ENABLE_SHIFT); 1958 1959 sqc_dma = dma_map_single(dev, sqc, sizeof(struct qm_sqc), 1960 DMA_TO_DEVICE); 1961 if (dma_mapping_error(dev, sqc_dma)) { 1962 kfree(sqc); 1963 return -ENOMEM; 1964 } 1965 1966 ret = hisi_qm_mb(qm, QM_MB_CMD_SQC, sqc_dma, qp_id, 0); 1967 dma_unmap_single(dev, sqc_dma, sizeof(struct qm_sqc), DMA_TO_DEVICE); 1968 kfree(sqc); 1969 1970 return ret; 1971 } 1972 1973 static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 1974 { 1975 struct hisi_qm *qm = qp->qm; 1976 struct device *dev = &qm->pdev->dev; 1977 enum qm_hw_ver ver = qm->ver; 1978 struct qm_cqc *cqc; 1979 dma_addr_t cqc_dma; 1980 int ret; 1981 1982 cqc = kzalloc(sizeof(struct qm_cqc), GFP_KERNEL); 1983 if (!cqc) 1984 return -ENOMEM; 1985 1986 INIT_QC_COMMON(cqc, qp->cqe_dma, pasid); 1987 if (ver == QM_HW_V1) { 1988 cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0, 1989 QM_QC_CQE_SIZE)); 1990 cqc->w8 = cpu_to_le16(qp->cq_depth - 1); 1991 } else { 1992 cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE, qp->cq_depth)); 1993 cqc->w8 = 0; /* rand_qc */ 1994 } 1995 cqc->dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT); 1996 1997 if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel) 1998 cqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE); 1999 2000 cqc_dma = dma_map_single(dev, cqc, sizeof(struct qm_cqc), 2001 DMA_TO_DEVICE); 2002 if (dma_mapping_error(dev, cqc_dma)) { 2003 kfree(cqc); 2004 return -ENOMEM; 2005 } 2006 2007 ret = hisi_qm_mb(qm, QM_MB_CMD_CQC, cqc_dma, qp_id, 0); 2008 dma_unmap_single(dev, cqc_dma, sizeof(struct qm_cqc), DMA_TO_DEVICE); 2009 kfree(cqc); 2010 2011 return ret; 2012 } 2013 2014 static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 2015 { 2016 int ret; 2017 2018 qm_init_qp_status(qp); 2019 2020 ret = qm_sq_ctx_cfg(qp, qp_id, pasid); 2021 if (ret) 2022 return ret; 2023 2024 return qm_cq_ctx_cfg(qp, qp_id, pasid); 2025 } 2026 2027 static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg) 2028 { 2029 struct hisi_qm *qm = qp->qm; 2030 struct device *dev = &qm->pdev->dev; 2031 int qp_id = qp->qp_id; 2032 u32 pasid = arg; 2033 int ret; 2034 2035 if (!qm_qp_avail_state(qm, qp, QP_START)) 2036 return -EPERM; 2037 2038 ret = qm_qp_ctx_cfg(qp, qp_id, pasid); 2039 if (ret) 2040 return ret; 2041 2042 atomic_set(&qp->qp_status.flags, QP_START); 2043 dev_dbg(dev, "queue %d started\n", qp_id); 2044 2045 return 0; 2046 } 2047 2048 /** 2049 * hisi_qm_start_qp() - Start a qp into running. 2050 * @qp: The qp we want to start to run. 2051 * @arg: Accelerator specific argument. 2052 * 2053 * After this function, qp can receive request from user. Return 0 if 2054 * successful, negative error code if failed. 2055 */ 2056 int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg) 2057 { 2058 struct hisi_qm *qm = qp->qm; 2059 int ret; 2060 2061 down_write(&qm->qps_lock); 2062 ret = qm_start_qp_nolock(qp, arg); 2063 up_write(&qm->qps_lock); 2064 2065 return ret; 2066 } 2067 EXPORT_SYMBOL_GPL(hisi_qm_start_qp); 2068 2069 /** 2070 * qp_stop_fail_cb() - call request cb. 2071 * @qp: stopped failed qp. 2072 * 2073 * Callback function should be called whether task completed or not. 2074 */ 2075 static void qp_stop_fail_cb(struct hisi_qp *qp) 2076 { 2077 int qp_used = atomic_read(&qp->qp_status.used); 2078 u16 cur_tail = qp->qp_status.sq_tail; 2079 u16 sq_depth = qp->sq_depth; 2080 u16 cur_head = (cur_tail + sq_depth - qp_used) % sq_depth; 2081 struct hisi_qm *qm = qp->qm; 2082 u16 pos; 2083 int i; 2084 2085 for (i = 0; i < qp_used; i++) { 2086 pos = (i + cur_head) % sq_depth; 2087 qp->req_cb(qp, qp->sqe + (u32)(qm->sqe_size * pos)); 2088 atomic_dec(&qp->qp_status.used); 2089 } 2090 } 2091 2092 /** 2093 * qm_drain_qp() - Drain a qp. 2094 * @qp: The qp we want to drain. 2095 * 2096 * Determine whether the queue is cleared by judging the tail pointers of 2097 * sq and cq. 2098 */ 2099 static int qm_drain_qp(struct hisi_qp *qp) 2100 { 2101 size_t size = sizeof(struct qm_sqc) + sizeof(struct qm_cqc); 2102 struct hisi_qm *qm = qp->qm; 2103 struct device *dev = &qm->pdev->dev; 2104 struct qm_sqc *sqc; 2105 struct qm_cqc *cqc; 2106 dma_addr_t dma_addr; 2107 int ret = 0, i = 0; 2108 void *addr; 2109 2110 /* No need to judge if master OOO is blocked. */ 2111 if (qm_check_dev_error(qm)) 2112 return 0; 2113 2114 /* Kunpeng930 supports drain qp by device */ 2115 if (test_bit(QM_SUPPORT_STOP_QP, &qm->caps)) { 2116 ret = qm_stop_qp(qp); 2117 if (ret) 2118 dev_err(dev, "Failed to stop qp(%u)!\n", qp->qp_id); 2119 return ret; 2120 } 2121 2122 addr = hisi_qm_ctx_alloc(qm, size, &dma_addr); 2123 if (IS_ERR(addr)) { 2124 dev_err(dev, "Failed to alloc ctx for sqc and cqc!\n"); 2125 return -ENOMEM; 2126 } 2127 2128 while (++i) { 2129 ret = qm_dump_sqc_raw(qm, dma_addr, qp->qp_id); 2130 if (ret) { 2131 dev_err_ratelimited(dev, "Failed to dump sqc!\n"); 2132 break; 2133 } 2134 sqc = addr; 2135 2136 ret = qm_dump_cqc_raw(qm, (dma_addr + sizeof(struct qm_sqc)), 2137 qp->qp_id); 2138 if (ret) { 2139 dev_err_ratelimited(dev, "Failed to dump cqc!\n"); 2140 break; 2141 } 2142 cqc = addr + sizeof(struct qm_sqc); 2143 2144 if ((sqc->tail == cqc->tail) && 2145 (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc))) 2146 break; 2147 2148 if (i == MAX_WAIT_COUNTS) { 2149 dev_err(dev, "Fail to empty queue %u!\n", qp->qp_id); 2150 ret = -EBUSY; 2151 break; 2152 } 2153 2154 usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX); 2155 } 2156 2157 hisi_qm_ctx_free(qm, size, addr, &dma_addr); 2158 2159 return ret; 2160 } 2161 2162 static int qm_stop_qp_nolock(struct hisi_qp *qp) 2163 { 2164 struct device *dev = &qp->qm->pdev->dev; 2165 int ret; 2166 2167 /* 2168 * It is allowed to stop and release qp when reset, If the qp is 2169 * stopped when reset but still want to be released then, the 2170 * is_resetting flag should be set negative so that this qp will not 2171 * be restarted after reset. 2172 */ 2173 if (atomic_read(&qp->qp_status.flags) == QP_STOP) { 2174 qp->is_resetting = false; 2175 return 0; 2176 } 2177 2178 if (!qm_qp_avail_state(qp->qm, qp, QP_STOP)) 2179 return -EPERM; 2180 2181 atomic_set(&qp->qp_status.flags, QP_STOP); 2182 2183 ret = qm_drain_qp(qp); 2184 if (ret) 2185 dev_err(dev, "Failed to drain out data for stopping!\n"); 2186 2187 2188 flush_workqueue(qp->qm->wq); 2189 if (unlikely(qp->is_resetting && atomic_read(&qp->qp_status.used))) 2190 qp_stop_fail_cb(qp); 2191 2192 dev_dbg(dev, "stop queue %u!", qp->qp_id); 2193 2194 return 0; 2195 } 2196 2197 /** 2198 * hisi_qm_stop_qp() - Stop a qp in qm. 2199 * @qp: The qp we want to stop. 2200 * 2201 * This function is reverse of hisi_qm_start_qp. Return 0 if successful. 2202 */ 2203 int hisi_qm_stop_qp(struct hisi_qp *qp) 2204 { 2205 int ret; 2206 2207 down_write(&qp->qm->qps_lock); 2208 ret = qm_stop_qp_nolock(qp); 2209 up_write(&qp->qm->qps_lock); 2210 2211 return ret; 2212 } 2213 EXPORT_SYMBOL_GPL(hisi_qm_stop_qp); 2214 2215 /** 2216 * hisi_qp_send() - Queue up a task in the hardware queue. 2217 * @qp: The qp in which to put the message. 2218 * @msg: The message. 2219 * 2220 * This function will return -EBUSY if qp is currently full, and -EAGAIN 2221 * if qp related qm is resetting. 2222 * 2223 * Note: This function may run with qm_irq_thread and ACC reset at same time. 2224 * It has no race with qm_irq_thread. However, during hisi_qp_send, ACC 2225 * reset may happen, we have no lock here considering performance. This 2226 * causes current qm_db sending fail or can not receive sended sqe. QM 2227 * sync/async receive function should handle the error sqe. ACC reset 2228 * done function should clear used sqe to 0. 2229 */ 2230 int hisi_qp_send(struct hisi_qp *qp, const void *msg) 2231 { 2232 struct hisi_qp_status *qp_status = &qp->qp_status; 2233 u16 sq_tail = qp_status->sq_tail; 2234 u16 sq_tail_next = (sq_tail + 1) % qp->sq_depth; 2235 void *sqe = qm_get_avail_sqe(qp); 2236 2237 if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP || 2238 atomic_read(&qp->qm->status.flags) == QM_STOP || 2239 qp->is_resetting)) { 2240 dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n"); 2241 return -EAGAIN; 2242 } 2243 2244 if (!sqe) 2245 return -EBUSY; 2246 2247 memcpy(sqe, msg, qp->qm->sqe_size); 2248 2249 qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0); 2250 atomic_inc(&qp->qp_status.used); 2251 qp_status->sq_tail = sq_tail_next; 2252 2253 return 0; 2254 } 2255 EXPORT_SYMBOL_GPL(hisi_qp_send); 2256 2257 static void hisi_qm_cache_wb(struct hisi_qm *qm) 2258 { 2259 unsigned int val; 2260 2261 if (qm->ver == QM_HW_V1) 2262 return; 2263 2264 writel(0x1, qm->io_base + QM_CACHE_WB_START); 2265 if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE, 2266 val, val & BIT(0), POLL_PERIOD, 2267 POLL_TIMEOUT)) 2268 dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n"); 2269 } 2270 2271 static void qm_qp_event_notifier(struct hisi_qp *qp) 2272 { 2273 wake_up_interruptible(&qp->uacce_q->wait); 2274 } 2275 2276 /* This function returns free number of qp in qm. */ 2277 static int hisi_qm_get_available_instances(struct uacce_device *uacce) 2278 { 2279 struct hisi_qm *qm = uacce->priv; 2280 int ret; 2281 2282 down_read(&qm->qps_lock); 2283 ret = qm->qp_num - qm->qp_in_used; 2284 up_read(&qm->qps_lock); 2285 2286 return ret; 2287 } 2288 2289 static void hisi_qm_set_hw_reset(struct hisi_qm *qm, int offset) 2290 { 2291 int i; 2292 2293 for (i = 0; i < qm->qp_num; i++) 2294 qm_set_qp_disable(&qm->qp_array[i], offset); 2295 } 2296 2297 static int hisi_qm_uacce_get_queue(struct uacce_device *uacce, 2298 unsigned long arg, 2299 struct uacce_queue *q) 2300 { 2301 struct hisi_qm *qm = uacce->priv; 2302 struct hisi_qp *qp; 2303 u8 alg_type = 0; 2304 2305 qp = hisi_qm_create_qp(qm, alg_type); 2306 if (IS_ERR(qp)) 2307 return PTR_ERR(qp); 2308 2309 q->priv = qp; 2310 q->uacce = uacce; 2311 qp->uacce_q = q; 2312 qp->event_cb = qm_qp_event_notifier; 2313 qp->pasid = arg; 2314 qp->is_in_kernel = false; 2315 2316 return 0; 2317 } 2318 2319 static void hisi_qm_uacce_put_queue(struct uacce_queue *q) 2320 { 2321 struct hisi_qp *qp = q->priv; 2322 2323 hisi_qm_release_qp(qp); 2324 } 2325 2326 /* map sq/cq/doorbell to user space */ 2327 static int hisi_qm_uacce_mmap(struct uacce_queue *q, 2328 struct vm_area_struct *vma, 2329 struct uacce_qfile_region *qfr) 2330 { 2331 struct hisi_qp *qp = q->priv; 2332 struct hisi_qm *qm = qp->qm; 2333 resource_size_t phys_base = qm->db_phys_base + 2334 qp->qp_id * qm->db_interval; 2335 size_t sz = vma->vm_end - vma->vm_start; 2336 struct pci_dev *pdev = qm->pdev; 2337 struct device *dev = &pdev->dev; 2338 unsigned long vm_pgoff; 2339 int ret; 2340 2341 switch (qfr->type) { 2342 case UACCE_QFRT_MMIO: 2343 if (qm->ver == QM_HW_V1) { 2344 if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR) 2345 return -EINVAL; 2346 } else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) { 2347 if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR + 2348 QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE)) 2349 return -EINVAL; 2350 } else { 2351 if (sz > qm->db_interval) 2352 return -EINVAL; 2353 } 2354 2355 vma->vm_flags |= VM_IO; 2356 2357 return remap_pfn_range(vma, vma->vm_start, 2358 phys_base >> PAGE_SHIFT, 2359 sz, pgprot_noncached(vma->vm_page_prot)); 2360 case UACCE_QFRT_DUS: 2361 if (sz != qp->qdma.size) 2362 return -EINVAL; 2363 2364 /* 2365 * dma_mmap_coherent() requires vm_pgoff as 0 2366 * restore vm_pfoff to initial value for mmap() 2367 */ 2368 vm_pgoff = vma->vm_pgoff; 2369 vma->vm_pgoff = 0; 2370 ret = dma_mmap_coherent(dev, vma, qp->qdma.va, 2371 qp->qdma.dma, sz); 2372 vma->vm_pgoff = vm_pgoff; 2373 return ret; 2374 2375 default: 2376 return -EINVAL; 2377 } 2378 } 2379 2380 static int hisi_qm_uacce_start_queue(struct uacce_queue *q) 2381 { 2382 struct hisi_qp *qp = q->priv; 2383 2384 return hisi_qm_start_qp(qp, qp->pasid); 2385 } 2386 2387 static void hisi_qm_uacce_stop_queue(struct uacce_queue *q) 2388 { 2389 hisi_qm_stop_qp(q->priv); 2390 } 2391 2392 static int hisi_qm_is_q_updated(struct uacce_queue *q) 2393 { 2394 struct hisi_qp *qp = q->priv; 2395 struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head; 2396 int updated = 0; 2397 2398 while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) { 2399 /* make sure to read data from memory */ 2400 dma_rmb(); 2401 qm_cq_head_update(qp); 2402 cqe = qp->cqe + qp->qp_status.cq_head; 2403 updated = 1; 2404 } 2405 2406 return updated; 2407 } 2408 2409 static void qm_set_sqctype(struct uacce_queue *q, u16 type) 2410 { 2411 struct hisi_qm *qm = q->uacce->priv; 2412 struct hisi_qp *qp = q->priv; 2413 2414 down_write(&qm->qps_lock); 2415 qp->alg_type = type; 2416 up_write(&qm->qps_lock); 2417 } 2418 2419 static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd, 2420 unsigned long arg) 2421 { 2422 struct hisi_qp *qp = q->priv; 2423 struct hisi_qp_info qp_info; 2424 struct hisi_qp_ctx qp_ctx; 2425 2426 if (cmd == UACCE_CMD_QM_SET_QP_CTX) { 2427 if (copy_from_user(&qp_ctx, (void __user *)arg, 2428 sizeof(struct hisi_qp_ctx))) 2429 return -EFAULT; 2430 2431 if (qp_ctx.qc_type != 0 && qp_ctx.qc_type != 1) 2432 return -EINVAL; 2433 2434 qm_set_sqctype(q, qp_ctx.qc_type); 2435 qp_ctx.id = qp->qp_id; 2436 2437 if (copy_to_user((void __user *)arg, &qp_ctx, 2438 sizeof(struct hisi_qp_ctx))) 2439 return -EFAULT; 2440 2441 return 0; 2442 } else if (cmd == UACCE_CMD_QM_SET_QP_INFO) { 2443 if (copy_from_user(&qp_info, (void __user *)arg, 2444 sizeof(struct hisi_qp_info))) 2445 return -EFAULT; 2446 2447 qp_info.sqe_size = qp->qm->sqe_size; 2448 qp_info.sq_depth = qp->sq_depth; 2449 qp_info.cq_depth = qp->cq_depth; 2450 2451 if (copy_to_user((void __user *)arg, &qp_info, 2452 sizeof(struct hisi_qp_info))) 2453 return -EFAULT; 2454 2455 return 0; 2456 } 2457 2458 return -EINVAL; 2459 } 2460 2461 static const struct uacce_ops uacce_qm_ops = { 2462 .get_available_instances = hisi_qm_get_available_instances, 2463 .get_queue = hisi_qm_uacce_get_queue, 2464 .put_queue = hisi_qm_uacce_put_queue, 2465 .start_queue = hisi_qm_uacce_start_queue, 2466 .stop_queue = hisi_qm_uacce_stop_queue, 2467 .mmap = hisi_qm_uacce_mmap, 2468 .ioctl = hisi_qm_uacce_ioctl, 2469 .is_q_updated = hisi_qm_is_q_updated, 2470 }; 2471 2472 static int qm_alloc_uacce(struct hisi_qm *qm) 2473 { 2474 struct pci_dev *pdev = qm->pdev; 2475 struct uacce_device *uacce; 2476 unsigned long mmio_page_nr; 2477 unsigned long dus_page_nr; 2478 u16 sq_depth, cq_depth; 2479 struct uacce_interface interface = { 2480 .flags = UACCE_DEV_SVA, 2481 .ops = &uacce_qm_ops, 2482 }; 2483 int ret; 2484 2485 ret = strscpy(interface.name, dev_driver_string(&pdev->dev), 2486 sizeof(interface.name)); 2487 if (ret < 0) 2488 return -ENAMETOOLONG; 2489 2490 uacce = uacce_alloc(&pdev->dev, &interface); 2491 if (IS_ERR(uacce)) 2492 return PTR_ERR(uacce); 2493 2494 if (uacce->flags & UACCE_DEV_SVA) { 2495 qm->use_sva = true; 2496 } else { 2497 /* only consider sva case */ 2498 uacce_remove(uacce); 2499 qm->uacce = NULL; 2500 return -EINVAL; 2501 } 2502 2503 uacce->is_vf = pdev->is_virtfn; 2504 uacce->priv = qm; 2505 2506 if (qm->ver == QM_HW_V1) 2507 uacce->api_ver = HISI_QM_API_VER_BASE; 2508 else if (qm->ver == QM_HW_V2) 2509 uacce->api_ver = HISI_QM_API_VER2_BASE; 2510 else 2511 uacce->api_ver = HISI_QM_API_VER3_BASE; 2512 2513 if (qm->ver == QM_HW_V1) 2514 mmio_page_nr = QM_DOORBELL_PAGE_NR; 2515 else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) 2516 mmio_page_nr = QM_DOORBELL_PAGE_NR + 2517 QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE; 2518 else 2519 mmio_page_nr = qm->db_interval / PAGE_SIZE; 2520 2521 qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP); 2522 2523 /* Add one more page for device or qp status */ 2524 dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * sq_depth + 2525 sizeof(struct qm_cqe) * cq_depth + PAGE_SIZE) >> 2526 PAGE_SHIFT; 2527 2528 uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr; 2529 uacce->qf_pg_num[UACCE_QFRT_DUS] = dus_page_nr; 2530 2531 qm->uacce = uacce; 2532 2533 return 0; 2534 } 2535 2536 /** 2537 * qm_frozen() - Try to froze QM to cut continuous queue request. If 2538 * there is user on the QM, return failure without doing anything. 2539 * @qm: The qm needed to be fronzen. 2540 * 2541 * This function frozes QM, then we can do SRIOV disabling. 2542 */ 2543 static int qm_frozen(struct hisi_qm *qm) 2544 { 2545 if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl)) 2546 return 0; 2547 2548 down_write(&qm->qps_lock); 2549 2550 if (!qm->qp_in_used) { 2551 qm->qp_in_used = qm->qp_num; 2552 up_write(&qm->qps_lock); 2553 set_bit(QM_DRIVER_REMOVING, &qm->misc_ctl); 2554 return 0; 2555 } 2556 2557 up_write(&qm->qps_lock); 2558 2559 return -EBUSY; 2560 } 2561 2562 static int qm_try_frozen_vfs(struct pci_dev *pdev, 2563 struct hisi_qm_list *qm_list) 2564 { 2565 struct hisi_qm *qm, *vf_qm; 2566 struct pci_dev *dev; 2567 int ret = 0; 2568 2569 if (!qm_list || !pdev) 2570 return -EINVAL; 2571 2572 /* Try to frozen all the VFs as disable SRIOV */ 2573 mutex_lock(&qm_list->lock); 2574 list_for_each_entry(qm, &qm_list->list, list) { 2575 dev = qm->pdev; 2576 if (dev == pdev) 2577 continue; 2578 if (pci_physfn(dev) == pdev) { 2579 vf_qm = pci_get_drvdata(dev); 2580 ret = qm_frozen(vf_qm); 2581 if (ret) 2582 goto frozen_fail; 2583 } 2584 } 2585 2586 frozen_fail: 2587 mutex_unlock(&qm_list->lock); 2588 2589 return ret; 2590 } 2591 2592 /** 2593 * hisi_qm_wait_task_finish() - Wait until the task is finished 2594 * when removing the driver. 2595 * @qm: The qm needed to wait for the task to finish. 2596 * @qm_list: The list of all available devices. 2597 */ 2598 void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 2599 { 2600 while (qm_frozen(qm) || 2601 ((qm->fun_type == QM_HW_PF) && 2602 qm_try_frozen_vfs(qm->pdev, qm_list))) { 2603 msleep(WAIT_PERIOD); 2604 } 2605 2606 while (test_bit(QM_RST_SCHED, &qm->misc_ctl) || 2607 test_bit(QM_RESETTING, &qm->misc_ctl)) 2608 msleep(WAIT_PERIOD); 2609 2610 udelay(REMOVE_WAIT_DELAY); 2611 } 2612 EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish); 2613 2614 static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num) 2615 { 2616 struct device *dev = &qm->pdev->dev; 2617 struct qm_dma *qdma; 2618 int i; 2619 2620 for (i = num - 1; i >= 0; i--) { 2621 qdma = &qm->qp_array[i].qdma; 2622 dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma); 2623 kfree(qm->poll_data[i].qp_finish_id); 2624 } 2625 2626 kfree(qm->poll_data); 2627 kfree(qm->qp_array); 2628 } 2629 2630 static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id, 2631 u16 sq_depth, u16 cq_depth) 2632 { 2633 struct device *dev = &qm->pdev->dev; 2634 size_t off = qm->sqe_size * sq_depth; 2635 struct hisi_qp *qp; 2636 int ret = -ENOMEM; 2637 2638 qm->poll_data[id].qp_finish_id = kcalloc(qm->qp_num, sizeof(u16), 2639 GFP_KERNEL); 2640 if (!qm->poll_data[id].qp_finish_id) 2641 return -ENOMEM; 2642 2643 qp = &qm->qp_array[id]; 2644 qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma, 2645 GFP_KERNEL); 2646 if (!qp->qdma.va) 2647 goto err_free_qp_finish_id; 2648 2649 qp->sqe = qp->qdma.va; 2650 qp->sqe_dma = qp->qdma.dma; 2651 qp->cqe = qp->qdma.va + off; 2652 qp->cqe_dma = qp->qdma.dma + off; 2653 qp->qdma.size = dma_size; 2654 qp->sq_depth = sq_depth; 2655 qp->cq_depth = cq_depth; 2656 qp->qm = qm; 2657 qp->qp_id = id; 2658 2659 return 0; 2660 2661 err_free_qp_finish_id: 2662 kfree(qm->poll_data[id].qp_finish_id); 2663 return ret; 2664 } 2665 2666 static void hisi_qm_pre_init(struct hisi_qm *qm) 2667 { 2668 struct pci_dev *pdev = qm->pdev; 2669 2670 if (qm->ver == QM_HW_V1) 2671 qm->ops = &qm_hw_ops_v1; 2672 else if (qm->ver == QM_HW_V2) 2673 qm->ops = &qm_hw_ops_v2; 2674 else 2675 qm->ops = &qm_hw_ops_v3; 2676 2677 pci_set_drvdata(pdev, qm); 2678 mutex_init(&qm->mailbox_lock); 2679 init_rwsem(&qm->qps_lock); 2680 qm->qp_in_used = 0; 2681 qm->misc_ctl = false; 2682 if (test_bit(QM_SUPPORT_RPM, &qm->caps)) { 2683 if (!acpi_device_power_manageable(ACPI_COMPANION(&pdev->dev))) 2684 dev_info(&pdev->dev, "_PS0 and _PR0 are not defined"); 2685 } 2686 } 2687 2688 static void qm_cmd_uninit(struct hisi_qm *qm) 2689 { 2690 u32 val; 2691 2692 if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 2693 return; 2694 2695 val = readl(qm->io_base + QM_IFC_INT_MASK); 2696 val |= QM_IFC_INT_DISABLE; 2697 writel(val, qm->io_base + QM_IFC_INT_MASK); 2698 } 2699 2700 static void qm_cmd_init(struct hisi_qm *qm) 2701 { 2702 u32 val; 2703 2704 if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 2705 return; 2706 2707 /* Clear communication interrupt source */ 2708 qm_clear_cmd_interrupt(qm, QM_IFC_INT_SOURCE_CLR); 2709 2710 /* Enable pf to vf communication reg. */ 2711 val = readl(qm->io_base + QM_IFC_INT_MASK); 2712 val &= ~QM_IFC_INT_DISABLE; 2713 writel(val, qm->io_base + QM_IFC_INT_MASK); 2714 } 2715 2716 static void qm_put_pci_res(struct hisi_qm *qm) 2717 { 2718 struct pci_dev *pdev = qm->pdev; 2719 2720 if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) 2721 iounmap(qm->db_io_base); 2722 2723 iounmap(qm->io_base); 2724 pci_release_mem_regions(pdev); 2725 } 2726 2727 static void hisi_qm_pci_uninit(struct hisi_qm *qm) 2728 { 2729 struct pci_dev *pdev = qm->pdev; 2730 2731 pci_free_irq_vectors(pdev); 2732 qm_put_pci_res(qm); 2733 pci_disable_device(pdev); 2734 } 2735 2736 static void hisi_qm_set_state(struct hisi_qm *qm, u8 state) 2737 { 2738 if (qm->ver > QM_HW_V2 && qm->fun_type == QM_HW_VF) 2739 writel(state, qm->io_base + QM_VF_STATE); 2740 } 2741 2742 static void hisi_qm_unint_work(struct hisi_qm *qm) 2743 { 2744 destroy_workqueue(qm->wq); 2745 } 2746 2747 static void hisi_qm_memory_uninit(struct hisi_qm *qm) 2748 { 2749 struct device *dev = &qm->pdev->dev; 2750 2751 hisi_qp_memory_uninit(qm, qm->qp_num); 2752 if (qm->qdma.va) { 2753 hisi_qm_cache_wb(qm); 2754 dma_free_coherent(dev, qm->qdma.size, 2755 qm->qdma.va, qm->qdma.dma); 2756 } 2757 2758 idr_destroy(&qm->qp_idr); 2759 2760 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 2761 kfree(qm->factor); 2762 } 2763 2764 /** 2765 * hisi_qm_uninit() - Uninitialize qm. 2766 * @qm: The qm needed uninit. 2767 * 2768 * This function uninits qm related device resources. 2769 */ 2770 void hisi_qm_uninit(struct hisi_qm *qm) 2771 { 2772 qm_cmd_uninit(qm); 2773 hisi_qm_unint_work(qm); 2774 down_write(&qm->qps_lock); 2775 2776 if (!qm_avail_state(qm, QM_CLOSE)) { 2777 up_write(&qm->qps_lock); 2778 return; 2779 } 2780 2781 hisi_qm_memory_uninit(qm); 2782 hisi_qm_set_state(qm, QM_NOT_READY); 2783 up_write(&qm->qps_lock); 2784 2785 qm_irqs_unregister(qm); 2786 hisi_qm_pci_uninit(qm); 2787 if (qm->use_sva) { 2788 uacce_remove(qm->uacce); 2789 qm->uacce = NULL; 2790 } 2791 } 2792 EXPORT_SYMBOL_GPL(hisi_qm_uninit); 2793 2794 /** 2795 * hisi_qm_get_vft() - Get vft from a qm. 2796 * @qm: The qm we want to get its vft. 2797 * @base: The base number of queue in vft. 2798 * @number: The number of queues in vft. 2799 * 2800 * We can allocate multiple queues to a qm by configuring virtual function 2801 * table. We get related configures by this function. Normally, we call this 2802 * function in VF driver to get the queue information. 2803 * 2804 * qm hw v1 does not support this interface. 2805 */ 2806 static int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number) 2807 { 2808 if (!base || !number) 2809 return -EINVAL; 2810 2811 if (!qm->ops->get_vft) { 2812 dev_err(&qm->pdev->dev, "Don't support vft read!\n"); 2813 return -EINVAL; 2814 } 2815 2816 return qm->ops->get_vft(qm, base, number); 2817 } 2818 2819 /** 2820 * hisi_qm_set_vft() - Set vft to a qm. 2821 * @qm: The qm we want to set its vft. 2822 * @fun_num: The function number. 2823 * @base: The base number of queue in vft. 2824 * @number: The number of queues in vft. 2825 * 2826 * This function is alway called in PF driver, it is used to assign queues 2827 * among PF and VFs. 2828 * 2829 * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1) 2830 * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1) 2831 * (VF function number 0x2) 2832 */ 2833 static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base, 2834 u32 number) 2835 { 2836 u32 max_q_num = qm->ctrl_qp_num; 2837 2838 if (base >= max_q_num || number > max_q_num || 2839 (base + number) > max_q_num) 2840 return -EINVAL; 2841 2842 return qm_set_sqc_cqc_vft(qm, fun_num, base, number); 2843 } 2844 2845 static void qm_init_eq_aeq_status(struct hisi_qm *qm) 2846 { 2847 struct hisi_qm_status *status = &qm->status; 2848 2849 status->eq_head = 0; 2850 status->aeq_head = 0; 2851 status->eqc_phase = true; 2852 status->aeqc_phase = true; 2853 } 2854 2855 static void qm_enable_eq_aeq_interrupts(struct hisi_qm *qm) 2856 { 2857 /* Clear eq/aeq interrupt source */ 2858 qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0); 2859 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 2860 2861 writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK); 2862 writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK); 2863 } 2864 2865 static void qm_disable_eq_aeq_interrupts(struct hisi_qm *qm) 2866 { 2867 writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK); 2868 writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK); 2869 } 2870 2871 static int qm_eq_ctx_cfg(struct hisi_qm *qm) 2872 { 2873 struct device *dev = &qm->pdev->dev; 2874 struct qm_eqc *eqc; 2875 dma_addr_t eqc_dma; 2876 int ret; 2877 2878 eqc = kzalloc(sizeof(struct qm_eqc), GFP_KERNEL); 2879 if (!eqc) 2880 return -ENOMEM; 2881 2882 eqc->base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma)); 2883 eqc->base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma)); 2884 if (qm->ver == QM_HW_V1) 2885 eqc->dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE); 2886 eqc->dw6 = cpu_to_le32(((u32)qm->eq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT)); 2887 2888 eqc_dma = dma_map_single(dev, eqc, sizeof(struct qm_eqc), 2889 DMA_TO_DEVICE); 2890 if (dma_mapping_error(dev, eqc_dma)) { 2891 kfree(eqc); 2892 return -ENOMEM; 2893 } 2894 2895 ret = hisi_qm_mb(qm, QM_MB_CMD_EQC, eqc_dma, 0, 0); 2896 dma_unmap_single(dev, eqc_dma, sizeof(struct qm_eqc), DMA_TO_DEVICE); 2897 kfree(eqc); 2898 2899 return ret; 2900 } 2901 2902 static int qm_aeq_ctx_cfg(struct hisi_qm *qm) 2903 { 2904 struct device *dev = &qm->pdev->dev; 2905 struct qm_aeqc *aeqc; 2906 dma_addr_t aeqc_dma; 2907 int ret; 2908 2909 aeqc = kzalloc(sizeof(struct qm_aeqc), GFP_KERNEL); 2910 if (!aeqc) 2911 return -ENOMEM; 2912 2913 aeqc->base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma)); 2914 aeqc->base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma)); 2915 aeqc->dw6 = cpu_to_le32(((u32)qm->aeq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT)); 2916 2917 aeqc_dma = dma_map_single(dev, aeqc, sizeof(struct qm_aeqc), 2918 DMA_TO_DEVICE); 2919 if (dma_mapping_error(dev, aeqc_dma)) { 2920 kfree(aeqc); 2921 return -ENOMEM; 2922 } 2923 2924 ret = hisi_qm_mb(qm, QM_MB_CMD_AEQC, aeqc_dma, 0, 0); 2925 dma_unmap_single(dev, aeqc_dma, sizeof(struct qm_aeqc), DMA_TO_DEVICE); 2926 kfree(aeqc); 2927 2928 return ret; 2929 } 2930 2931 static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm) 2932 { 2933 struct device *dev = &qm->pdev->dev; 2934 int ret; 2935 2936 qm_init_eq_aeq_status(qm); 2937 2938 ret = qm_eq_ctx_cfg(qm); 2939 if (ret) { 2940 dev_err(dev, "Set eqc failed!\n"); 2941 return ret; 2942 } 2943 2944 return qm_aeq_ctx_cfg(qm); 2945 } 2946 2947 static int __hisi_qm_start(struct hisi_qm *qm) 2948 { 2949 int ret; 2950 2951 WARN_ON(!qm->qdma.va); 2952 2953 if (qm->fun_type == QM_HW_PF) { 2954 ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num); 2955 if (ret) 2956 return ret; 2957 } 2958 2959 ret = qm_eq_aeq_ctx_cfg(qm); 2960 if (ret) 2961 return ret; 2962 2963 ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0); 2964 if (ret) 2965 return ret; 2966 2967 ret = hisi_qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0); 2968 if (ret) 2969 return ret; 2970 2971 qm_init_prefetch(qm); 2972 qm_enable_eq_aeq_interrupts(qm); 2973 2974 return 0; 2975 } 2976 2977 /** 2978 * hisi_qm_start() - start qm 2979 * @qm: The qm to be started. 2980 * 2981 * This function starts a qm, then we can allocate qp from this qm. 2982 */ 2983 int hisi_qm_start(struct hisi_qm *qm) 2984 { 2985 struct device *dev = &qm->pdev->dev; 2986 int ret = 0; 2987 2988 down_write(&qm->qps_lock); 2989 2990 if (!qm_avail_state(qm, QM_START)) { 2991 up_write(&qm->qps_lock); 2992 return -EPERM; 2993 } 2994 2995 dev_dbg(dev, "qm start with %u queue pairs\n", qm->qp_num); 2996 2997 if (!qm->qp_num) { 2998 dev_err(dev, "qp_num should not be 0\n"); 2999 ret = -EINVAL; 3000 goto err_unlock; 3001 } 3002 3003 ret = __hisi_qm_start(qm); 3004 if (!ret) 3005 atomic_set(&qm->status.flags, QM_START); 3006 3007 hisi_qm_set_state(qm, QM_READY); 3008 err_unlock: 3009 up_write(&qm->qps_lock); 3010 return ret; 3011 } 3012 EXPORT_SYMBOL_GPL(hisi_qm_start); 3013 3014 static int qm_restart(struct hisi_qm *qm) 3015 { 3016 struct device *dev = &qm->pdev->dev; 3017 struct hisi_qp *qp; 3018 int ret, i; 3019 3020 ret = hisi_qm_start(qm); 3021 if (ret < 0) 3022 return ret; 3023 3024 down_write(&qm->qps_lock); 3025 for (i = 0; i < qm->qp_num; i++) { 3026 qp = &qm->qp_array[i]; 3027 if (atomic_read(&qp->qp_status.flags) == QP_STOP && 3028 qp->is_resetting == true) { 3029 ret = qm_start_qp_nolock(qp, 0); 3030 if (ret < 0) { 3031 dev_err(dev, "Failed to start qp%d!\n", i); 3032 3033 up_write(&qm->qps_lock); 3034 return ret; 3035 } 3036 qp->is_resetting = false; 3037 } 3038 } 3039 up_write(&qm->qps_lock); 3040 3041 return 0; 3042 } 3043 3044 /* Stop started qps in reset flow */ 3045 static int qm_stop_started_qp(struct hisi_qm *qm) 3046 { 3047 struct device *dev = &qm->pdev->dev; 3048 struct hisi_qp *qp; 3049 int i, ret; 3050 3051 for (i = 0; i < qm->qp_num; i++) { 3052 qp = &qm->qp_array[i]; 3053 if (qp && atomic_read(&qp->qp_status.flags) == QP_START) { 3054 qp->is_resetting = true; 3055 ret = qm_stop_qp_nolock(qp); 3056 if (ret < 0) { 3057 dev_err(dev, "Failed to stop qp%d!\n", i); 3058 return ret; 3059 } 3060 } 3061 } 3062 3063 return 0; 3064 } 3065 3066 /** 3067 * qm_clear_queues() - Clear all queues memory in a qm. 3068 * @qm: The qm in which the queues will be cleared. 3069 * 3070 * This function clears all queues memory in a qm. Reset of accelerator can 3071 * use this to clear queues. 3072 */ 3073 static void qm_clear_queues(struct hisi_qm *qm) 3074 { 3075 struct hisi_qp *qp; 3076 int i; 3077 3078 for (i = 0; i < qm->qp_num; i++) { 3079 qp = &qm->qp_array[i]; 3080 if (qp->is_in_kernel && qp->is_resetting) 3081 memset(qp->qdma.va, 0, qp->qdma.size); 3082 } 3083 3084 memset(qm->qdma.va, 0, qm->qdma.size); 3085 } 3086 3087 /** 3088 * hisi_qm_stop() - Stop a qm. 3089 * @qm: The qm which will be stopped. 3090 * @r: The reason to stop qm. 3091 * 3092 * This function stops qm and its qps, then qm can not accept request. 3093 * Related resources are not released at this state, we can use hisi_qm_start 3094 * to let qm start again. 3095 */ 3096 int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r) 3097 { 3098 struct device *dev = &qm->pdev->dev; 3099 int ret = 0; 3100 3101 down_write(&qm->qps_lock); 3102 3103 qm->status.stop_reason = r; 3104 if (!qm_avail_state(qm, QM_STOP)) { 3105 ret = -EPERM; 3106 goto err_unlock; 3107 } 3108 3109 if (qm->status.stop_reason == QM_SOFT_RESET || 3110 qm->status.stop_reason == QM_FLR) { 3111 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 3112 ret = qm_stop_started_qp(qm); 3113 if (ret < 0) { 3114 dev_err(dev, "Failed to stop started qp!\n"); 3115 goto err_unlock; 3116 } 3117 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 3118 } 3119 3120 qm_disable_eq_aeq_interrupts(qm); 3121 if (qm->fun_type == QM_HW_PF) { 3122 ret = hisi_qm_set_vft(qm, 0, 0, 0); 3123 if (ret < 0) { 3124 dev_err(dev, "Failed to set vft!\n"); 3125 ret = -EBUSY; 3126 goto err_unlock; 3127 } 3128 } 3129 3130 qm_clear_queues(qm); 3131 atomic_set(&qm->status.flags, QM_STOP); 3132 3133 err_unlock: 3134 up_write(&qm->qps_lock); 3135 return ret; 3136 } 3137 EXPORT_SYMBOL_GPL(hisi_qm_stop); 3138 3139 static void qm_hw_error_init(struct hisi_qm *qm) 3140 { 3141 if (!qm->ops->hw_error_init) { 3142 dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n"); 3143 return; 3144 } 3145 3146 qm->ops->hw_error_init(qm); 3147 } 3148 3149 static void qm_hw_error_uninit(struct hisi_qm *qm) 3150 { 3151 if (!qm->ops->hw_error_uninit) { 3152 dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n"); 3153 return; 3154 } 3155 3156 qm->ops->hw_error_uninit(qm); 3157 } 3158 3159 static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm) 3160 { 3161 if (!qm->ops->hw_error_handle) { 3162 dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n"); 3163 return ACC_ERR_NONE; 3164 } 3165 3166 return qm->ops->hw_error_handle(qm); 3167 } 3168 3169 /** 3170 * hisi_qm_dev_err_init() - Initialize device error configuration. 3171 * @qm: The qm for which we want to do error initialization. 3172 * 3173 * Initialize QM and device error related configuration. 3174 */ 3175 void hisi_qm_dev_err_init(struct hisi_qm *qm) 3176 { 3177 if (qm->fun_type == QM_HW_VF) 3178 return; 3179 3180 qm_hw_error_init(qm); 3181 3182 if (!qm->err_ini->hw_err_enable) { 3183 dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n"); 3184 return; 3185 } 3186 qm->err_ini->hw_err_enable(qm); 3187 } 3188 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init); 3189 3190 /** 3191 * hisi_qm_dev_err_uninit() - Uninitialize device error configuration. 3192 * @qm: The qm for which we want to do error uninitialization. 3193 * 3194 * Uninitialize QM and device error related configuration. 3195 */ 3196 void hisi_qm_dev_err_uninit(struct hisi_qm *qm) 3197 { 3198 if (qm->fun_type == QM_HW_VF) 3199 return; 3200 3201 qm_hw_error_uninit(qm); 3202 3203 if (!qm->err_ini->hw_err_disable) { 3204 dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n"); 3205 return; 3206 } 3207 qm->err_ini->hw_err_disable(qm); 3208 } 3209 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit); 3210 3211 /** 3212 * hisi_qm_free_qps() - free multiple queue pairs. 3213 * @qps: The queue pairs need to be freed. 3214 * @qp_num: The num of queue pairs. 3215 */ 3216 void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num) 3217 { 3218 int i; 3219 3220 if (!qps || qp_num <= 0) 3221 return; 3222 3223 for (i = qp_num - 1; i >= 0; i--) 3224 hisi_qm_release_qp(qps[i]); 3225 } 3226 EXPORT_SYMBOL_GPL(hisi_qm_free_qps); 3227 3228 static void free_list(struct list_head *head) 3229 { 3230 struct hisi_qm_resource *res, *tmp; 3231 3232 list_for_each_entry_safe(res, tmp, head, list) { 3233 list_del(&res->list); 3234 kfree(res); 3235 } 3236 } 3237 3238 static int hisi_qm_sort_devices(int node, struct list_head *head, 3239 struct hisi_qm_list *qm_list) 3240 { 3241 struct hisi_qm_resource *res, *tmp; 3242 struct hisi_qm *qm; 3243 struct list_head *n; 3244 struct device *dev; 3245 int dev_node; 3246 3247 list_for_each_entry(qm, &qm_list->list, list) { 3248 dev = &qm->pdev->dev; 3249 3250 dev_node = dev_to_node(dev); 3251 if (dev_node < 0) 3252 dev_node = 0; 3253 3254 res = kzalloc(sizeof(*res), GFP_KERNEL); 3255 if (!res) 3256 return -ENOMEM; 3257 3258 res->qm = qm; 3259 res->distance = node_distance(dev_node, node); 3260 n = head; 3261 list_for_each_entry(tmp, head, list) { 3262 if (res->distance < tmp->distance) { 3263 n = &tmp->list; 3264 break; 3265 } 3266 } 3267 list_add_tail(&res->list, n); 3268 } 3269 3270 return 0; 3271 } 3272 3273 /** 3274 * hisi_qm_alloc_qps_node() - Create multiple queue pairs. 3275 * @qm_list: The list of all available devices. 3276 * @qp_num: The number of queue pairs need created. 3277 * @alg_type: The algorithm type. 3278 * @node: The numa node. 3279 * @qps: The queue pairs need created. 3280 * 3281 * This function will sort all available device according to numa distance. 3282 * Then try to create all queue pairs from one device, if all devices do 3283 * not meet the requirements will return error. 3284 */ 3285 int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num, 3286 u8 alg_type, int node, struct hisi_qp **qps) 3287 { 3288 struct hisi_qm_resource *tmp; 3289 int ret = -ENODEV; 3290 LIST_HEAD(head); 3291 int i; 3292 3293 if (!qps || !qm_list || qp_num <= 0) 3294 return -EINVAL; 3295 3296 mutex_lock(&qm_list->lock); 3297 if (hisi_qm_sort_devices(node, &head, qm_list)) { 3298 mutex_unlock(&qm_list->lock); 3299 goto err; 3300 } 3301 3302 list_for_each_entry(tmp, &head, list) { 3303 for (i = 0; i < qp_num; i++) { 3304 qps[i] = hisi_qm_create_qp(tmp->qm, alg_type); 3305 if (IS_ERR(qps[i])) { 3306 hisi_qm_free_qps(qps, i); 3307 break; 3308 } 3309 } 3310 3311 if (i == qp_num) { 3312 ret = 0; 3313 break; 3314 } 3315 } 3316 3317 mutex_unlock(&qm_list->lock); 3318 if (ret) 3319 pr_info("Failed to create qps, node[%d], alg[%u], qp[%d]!\n", 3320 node, alg_type, qp_num); 3321 3322 err: 3323 free_list(&head); 3324 return ret; 3325 } 3326 EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node); 3327 3328 static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs) 3329 { 3330 u32 remain_q_num, vfs_q_num, act_q_num, q_num, i, j; 3331 u32 max_qp_num = qm->max_qp_num; 3332 u32 q_base = qm->qp_num; 3333 int ret; 3334 3335 if (!num_vfs) 3336 return -EINVAL; 3337 3338 vfs_q_num = qm->ctrl_qp_num - qm->qp_num; 3339 3340 /* If vfs_q_num is less than num_vfs, return error. */ 3341 if (vfs_q_num < num_vfs) 3342 return -EINVAL; 3343 3344 q_num = vfs_q_num / num_vfs; 3345 remain_q_num = vfs_q_num % num_vfs; 3346 3347 for (i = num_vfs; i > 0; i--) { 3348 /* 3349 * if q_num + remain_q_num > max_qp_num in last vf, divide the 3350 * remaining queues equally. 3351 */ 3352 if (i == num_vfs && q_num + remain_q_num <= max_qp_num) { 3353 act_q_num = q_num + remain_q_num; 3354 remain_q_num = 0; 3355 } else if (remain_q_num > 0) { 3356 act_q_num = q_num + 1; 3357 remain_q_num--; 3358 } else { 3359 act_q_num = q_num; 3360 } 3361 3362 act_q_num = min(act_q_num, max_qp_num); 3363 ret = hisi_qm_set_vft(qm, i, q_base, act_q_num); 3364 if (ret) { 3365 for (j = num_vfs; j > i; j--) 3366 hisi_qm_set_vft(qm, j, 0, 0); 3367 return ret; 3368 } 3369 q_base += act_q_num; 3370 } 3371 3372 return 0; 3373 } 3374 3375 static int qm_clear_vft_config(struct hisi_qm *qm) 3376 { 3377 int ret; 3378 u32 i; 3379 3380 for (i = 1; i <= qm->vfs_num; i++) { 3381 ret = hisi_qm_set_vft(qm, i, 0, 0); 3382 if (ret) 3383 return ret; 3384 } 3385 qm->vfs_num = 0; 3386 3387 return 0; 3388 } 3389 3390 static int qm_func_shaper_enable(struct hisi_qm *qm, u32 fun_index, u32 qos) 3391 { 3392 struct device *dev = &qm->pdev->dev; 3393 u32 ir = qos * QM_QOS_RATE; 3394 int ret, total_vfs, i; 3395 3396 total_vfs = pci_sriov_get_totalvfs(qm->pdev); 3397 if (fun_index > total_vfs) 3398 return -EINVAL; 3399 3400 qm->factor[fun_index].func_qos = qos; 3401 3402 ret = qm_get_shaper_para(ir, &qm->factor[fun_index]); 3403 if (ret) { 3404 dev_err(dev, "failed to calculate shaper parameter!\n"); 3405 return -EINVAL; 3406 } 3407 3408 for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) { 3409 /* The base number of queue reuse for different alg type */ 3410 ret = qm_set_vft_common(qm, SHAPER_VFT, fun_index, i, 1); 3411 if (ret) { 3412 dev_err(dev, "type: %d, failed to set shaper vft!\n", i); 3413 return -EINVAL; 3414 } 3415 } 3416 3417 return 0; 3418 } 3419 3420 static u32 qm_get_shaper_vft_qos(struct hisi_qm *qm, u32 fun_index) 3421 { 3422 u64 cir_u = 0, cir_b = 0, cir_s = 0; 3423 u64 shaper_vft, ir_calc, ir; 3424 unsigned int val; 3425 u32 error_rate; 3426 int ret; 3427 3428 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 3429 val & BIT(0), POLL_PERIOD, 3430 POLL_TIMEOUT); 3431 if (ret) 3432 return 0; 3433 3434 writel(0x1, qm->io_base + QM_VFT_CFG_OP_WR); 3435 writel(SHAPER_VFT, qm->io_base + QM_VFT_CFG_TYPE); 3436 writel(fun_index, qm->io_base + QM_VFT_CFG); 3437 3438 writel(0x0, qm->io_base + QM_VFT_CFG_RDY); 3439 writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE); 3440 3441 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 3442 val & BIT(0), POLL_PERIOD, 3443 POLL_TIMEOUT); 3444 if (ret) 3445 return 0; 3446 3447 shaper_vft = readl(qm->io_base + QM_VFT_CFG_DATA_L) | 3448 ((u64)readl(qm->io_base + QM_VFT_CFG_DATA_H) << 32); 3449 3450 cir_b = shaper_vft & QM_SHAPER_CIR_B_MASK; 3451 cir_u = shaper_vft & QM_SHAPER_CIR_U_MASK; 3452 cir_u = cir_u >> QM_SHAPER_FACTOR_CIR_U_SHIFT; 3453 3454 cir_s = shaper_vft & QM_SHAPER_CIR_S_MASK; 3455 cir_s = cir_s >> QM_SHAPER_FACTOR_CIR_S_SHIFT; 3456 3457 ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s); 3458 3459 ir = qm->factor[fun_index].func_qos * QM_QOS_RATE; 3460 3461 error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir; 3462 if (error_rate > QM_QOS_MIN_ERROR_RATE) { 3463 pci_err(qm->pdev, "error_rate: %u, get function qos is error!\n", error_rate); 3464 return 0; 3465 } 3466 3467 return ir; 3468 } 3469 3470 static void qm_vf_get_qos(struct hisi_qm *qm, u32 fun_num) 3471 { 3472 struct device *dev = &qm->pdev->dev; 3473 u64 mb_cmd; 3474 u32 qos; 3475 int ret; 3476 3477 qos = qm_get_shaper_vft_qos(qm, fun_num); 3478 if (!qos) { 3479 dev_err(dev, "function(%u) failed to get qos by PF!\n", fun_num); 3480 return; 3481 } 3482 3483 mb_cmd = QM_PF_SET_QOS | (u64)qos << QM_MB_CMD_DATA_SHIFT; 3484 ret = qm_ping_single_vf(qm, mb_cmd, fun_num); 3485 if (ret) 3486 dev_err(dev, "failed to send cmd to VF(%u)!\n", fun_num); 3487 } 3488 3489 static int qm_vf_read_qos(struct hisi_qm *qm) 3490 { 3491 int cnt = 0; 3492 int ret = -EINVAL; 3493 3494 /* reset mailbox qos val */ 3495 qm->mb_qos = 0; 3496 3497 /* vf ping pf to get function qos */ 3498 ret = qm_ping_pf(qm, QM_VF_GET_QOS); 3499 if (ret) { 3500 pci_err(qm->pdev, "failed to send cmd to PF to get qos!\n"); 3501 return ret; 3502 } 3503 3504 while (true) { 3505 msleep(QM_WAIT_DST_ACK); 3506 if (qm->mb_qos) 3507 break; 3508 3509 if (++cnt > QM_MAX_VF_WAIT_COUNT) { 3510 pci_err(qm->pdev, "PF ping VF timeout!\n"); 3511 return -ETIMEDOUT; 3512 } 3513 } 3514 3515 return ret; 3516 } 3517 3518 static ssize_t qm_algqos_read(struct file *filp, char __user *buf, 3519 size_t count, loff_t *pos) 3520 { 3521 struct hisi_qm *qm = filp->private_data; 3522 char tbuf[QM_DBG_READ_LEN]; 3523 u32 qos_val, ir; 3524 int ret; 3525 3526 ret = hisi_qm_get_dfx_access(qm); 3527 if (ret) 3528 return ret; 3529 3530 /* Mailbox and reset cannot be operated at the same time */ 3531 if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 3532 pci_err(qm->pdev, "dev resetting, read alg qos failed!\n"); 3533 ret = -EAGAIN; 3534 goto err_put_dfx_access; 3535 } 3536 3537 if (qm->fun_type == QM_HW_PF) { 3538 ir = qm_get_shaper_vft_qos(qm, 0); 3539 } else { 3540 ret = qm_vf_read_qos(qm); 3541 if (ret) 3542 goto err_get_status; 3543 ir = qm->mb_qos; 3544 } 3545 3546 qos_val = ir / QM_QOS_RATE; 3547 ret = scnprintf(tbuf, QM_DBG_READ_LEN, "%u\n", qos_val); 3548 3549 ret = simple_read_from_buffer(buf, count, pos, tbuf, ret); 3550 3551 err_get_status: 3552 clear_bit(QM_RESETTING, &qm->misc_ctl); 3553 err_put_dfx_access: 3554 hisi_qm_put_dfx_access(qm); 3555 return ret; 3556 } 3557 3558 static ssize_t qm_get_qos_value(struct hisi_qm *qm, const char *buf, 3559 unsigned long *val, 3560 unsigned int *fun_index) 3561 { 3562 struct bus_type *bus_type = qm->pdev->dev.bus; 3563 char tbuf_bdf[QM_DBG_READ_LEN] = {0}; 3564 char val_buf[QM_DBG_READ_LEN] = {0}; 3565 struct pci_dev *pdev; 3566 struct device *dev; 3567 int ret; 3568 3569 ret = sscanf(buf, "%s %s", tbuf_bdf, val_buf); 3570 if (ret != QM_QOS_PARAM_NUM) 3571 return -EINVAL; 3572 3573 ret = kstrtoul(val_buf, 10, val); 3574 if (ret || *val == 0 || *val > QM_QOS_MAX_VAL) { 3575 pci_err(qm->pdev, "input qos value is error, please set 1~1000!\n"); 3576 return -EINVAL; 3577 } 3578 3579 dev = bus_find_device_by_name(bus_type, NULL, tbuf_bdf); 3580 if (!dev) { 3581 pci_err(qm->pdev, "input pci bdf number is error!\n"); 3582 return -ENODEV; 3583 } 3584 3585 pdev = container_of(dev, struct pci_dev, dev); 3586 3587 *fun_index = pdev->devfn; 3588 3589 return 0; 3590 } 3591 3592 static ssize_t qm_algqos_write(struct file *filp, const char __user *buf, 3593 size_t count, loff_t *pos) 3594 { 3595 struct hisi_qm *qm = filp->private_data; 3596 char tbuf[QM_DBG_READ_LEN]; 3597 unsigned int fun_index; 3598 unsigned long val; 3599 int len, ret; 3600 3601 if (*pos != 0) 3602 return 0; 3603 3604 if (count >= QM_DBG_READ_LEN) 3605 return -ENOSPC; 3606 3607 len = simple_write_to_buffer(tbuf, QM_DBG_READ_LEN - 1, pos, buf, count); 3608 if (len < 0) 3609 return len; 3610 3611 tbuf[len] = '\0'; 3612 ret = qm_get_qos_value(qm, tbuf, &val, &fun_index); 3613 if (ret) 3614 return ret; 3615 3616 /* Mailbox and reset cannot be operated at the same time */ 3617 if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 3618 pci_err(qm->pdev, "dev resetting, write alg qos failed!\n"); 3619 return -EAGAIN; 3620 } 3621 3622 ret = qm_pm_get_sync(qm); 3623 if (ret) { 3624 ret = -EINVAL; 3625 goto err_get_status; 3626 } 3627 3628 ret = qm_func_shaper_enable(qm, fun_index, val); 3629 if (ret) { 3630 pci_err(qm->pdev, "failed to enable function shaper!\n"); 3631 ret = -EINVAL; 3632 goto err_put_sync; 3633 } 3634 3635 pci_info(qm->pdev, "the qos value of function%u is set to %lu.\n", 3636 fun_index, val); 3637 ret = count; 3638 3639 err_put_sync: 3640 qm_pm_put_sync(qm); 3641 err_get_status: 3642 clear_bit(QM_RESETTING, &qm->misc_ctl); 3643 return ret; 3644 } 3645 3646 static const struct file_operations qm_algqos_fops = { 3647 .owner = THIS_MODULE, 3648 .open = simple_open, 3649 .read = qm_algqos_read, 3650 .write = qm_algqos_write, 3651 }; 3652 3653 /** 3654 * hisi_qm_set_algqos_init() - Initialize function qos debugfs files. 3655 * @qm: The qm for which we want to add debugfs files. 3656 * 3657 * Create function qos debugfs files, VF ping PF to get function qos. 3658 */ 3659 void hisi_qm_set_algqos_init(struct hisi_qm *qm) 3660 { 3661 if (qm->fun_type == QM_HW_PF) 3662 debugfs_create_file("alg_qos", 0644, qm->debug.debug_root, 3663 qm, &qm_algqos_fops); 3664 else if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 3665 debugfs_create_file("alg_qos", 0444, qm->debug.debug_root, 3666 qm, &qm_algqos_fops); 3667 } 3668 3669 static void hisi_qm_init_vf_qos(struct hisi_qm *qm, int total_func) 3670 { 3671 int i; 3672 3673 for (i = 1; i <= total_func; i++) 3674 qm->factor[i].func_qos = QM_QOS_MAX_VAL; 3675 } 3676 3677 /** 3678 * hisi_qm_sriov_enable() - enable virtual functions 3679 * @pdev: the PCIe device 3680 * @max_vfs: the number of virtual functions to enable 3681 * 3682 * Returns the number of enabled VFs. If there are VFs enabled already or 3683 * max_vfs is more than the total number of device can be enabled, returns 3684 * failure. 3685 */ 3686 int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs) 3687 { 3688 struct hisi_qm *qm = pci_get_drvdata(pdev); 3689 int pre_existing_vfs, num_vfs, total_vfs, ret; 3690 3691 ret = qm_pm_get_sync(qm); 3692 if (ret) 3693 return ret; 3694 3695 total_vfs = pci_sriov_get_totalvfs(pdev); 3696 pre_existing_vfs = pci_num_vf(pdev); 3697 if (pre_existing_vfs) { 3698 pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n", 3699 pre_existing_vfs); 3700 goto err_put_sync; 3701 } 3702 3703 if (max_vfs > total_vfs) { 3704 pci_err(pdev, "%d VFs is more than total VFs %d!\n", max_vfs, total_vfs); 3705 ret = -ERANGE; 3706 goto err_put_sync; 3707 } 3708 3709 num_vfs = max_vfs; 3710 3711 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 3712 hisi_qm_init_vf_qos(qm, num_vfs); 3713 3714 ret = qm_vf_q_assign(qm, num_vfs); 3715 if (ret) { 3716 pci_err(pdev, "Can't assign queues for VF!\n"); 3717 goto err_put_sync; 3718 } 3719 3720 qm->vfs_num = num_vfs; 3721 3722 ret = pci_enable_sriov(pdev, num_vfs); 3723 if (ret) { 3724 pci_err(pdev, "Can't enable VF!\n"); 3725 qm_clear_vft_config(qm); 3726 goto err_put_sync; 3727 } 3728 3729 pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs); 3730 3731 return num_vfs; 3732 3733 err_put_sync: 3734 qm_pm_put_sync(qm); 3735 return ret; 3736 } 3737 EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable); 3738 3739 /** 3740 * hisi_qm_sriov_disable - disable virtual functions 3741 * @pdev: the PCI device. 3742 * @is_frozen: true when all the VFs are frozen. 3743 * 3744 * Return failure if there are VFs assigned already or VF is in used. 3745 */ 3746 int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen) 3747 { 3748 struct hisi_qm *qm = pci_get_drvdata(pdev); 3749 int ret; 3750 3751 if (pci_vfs_assigned(pdev)) { 3752 pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n"); 3753 return -EPERM; 3754 } 3755 3756 /* While VF is in used, SRIOV cannot be disabled. */ 3757 if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) { 3758 pci_err(pdev, "Task is using its VF!\n"); 3759 return -EBUSY; 3760 } 3761 3762 pci_disable_sriov(pdev); 3763 3764 ret = qm_clear_vft_config(qm); 3765 if (ret) 3766 return ret; 3767 3768 qm_pm_put_sync(qm); 3769 3770 return 0; 3771 } 3772 EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable); 3773 3774 /** 3775 * hisi_qm_sriov_configure - configure the number of VFs 3776 * @pdev: The PCI device 3777 * @num_vfs: The number of VFs need enabled 3778 * 3779 * Enable SR-IOV according to num_vfs, 0 means disable. 3780 */ 3781 int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs) 3782 { 3783 if (num_vfs == 0) 3784 return hisi_qm_sriov_disable(pdev, false); 3785 else 3786 return hisi_qm_sriov_enable(pdev, num_vfs); 3787 } 3788 EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure); 3789 3790 static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm) 3791 { 3792 u32 err_sts; 3793 3794 if (!qm->err_ini->get_dev_hw_err_status) { 3795 dev_err(&qm->pdev->dev, "Device doesn't support get hw error status!\n"); 3796 return ACC_ERR_NONE; 3797 } 3798 3799 /* get device hardware error status */ 3800 err_sts = qm->err_ini->get_dev_hw_err_status(qm); 3801 if (err_sts) { 3802 if (err_sts & qm->err_info.ecc_2bits_mask) 3803 qm->err_status.is_dev_ecc_mbit = true; 3804 3805 if (qm->err_ini->log_dev_hw_err) 3806 qm->err_ini->log_dev_hw_err(qm, err_sts); 3807 3808 if (err_sts & qm->err_info.dev_reset_mask) 3809 return ACC_ERR_NEED_RESET; 3810 3811 if (qm->err_ini->clear_dev_hw_err_status) 3812 qm->err_ini->clear_dev_hw_err_status(qm, err_sts); 3813 } 3814 3815 return ACC_ERR_RECOVERED; 3816 } 3817 3818 static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm) 3819 { 3820 enum acc_err_result qm_ret, dev_ret; 3821 3822 /* log qm error */ 3823 qm_ret = qm_hw_error_handle(qm); 3824 3825 /* log device error */ 3826 dev_ret = qm_dev_err_handle(qm); 3827 3828 return (qm_ret == ACC_ERR_NEED_RESET || 3829 dev_ret == ACC_ERR_NEED_RESET) ? 3830 ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED; 3831 } 3832 3833 /** 3834 * hisi_qm_dev_err_detected() - Get device and qm error status then log it. 3835 * @pdev: The PCI device which need report error. 3836 * @state: The connectivity between CPU and device. 3837 * 3838 * We register this function into PCIe AER handlers, It will report device or 3839 * qm hardware error status when error occur. 3840 */ 3841 pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev, 3842 pci_channel_state_t state) 3843 { 3844 struct hisi_qm *qm = pci_get_drvdata(pdev); 3845 enum acc_err_result ret; 3846 3847 if (pdev->is_virtfn) 3848 return PCI_ERS_RESULT_NONE; 3849 3850 pci_info(pdev, "PCI error detected, state(=%u)!!\n", state); 3851 if (state == pci_channel_io_perm_failure) 3852 return PCI_ERS_RESULT_DISCONNECT; 3853 3854 ret = qm_process_dev_error(qm); 3855 if (ret == ACC_ERR_NEED_RESET) 3856 return PCI_ERS_RESULT_NEED_RESET; 3857 3858 return PCI_ERS_RESULT_RECOVERED; 3859 } 3860 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected); 3861 3862 static int qm_check_req_recv(struct hisi_qm *qm) 3863 { 3864 struct pci_dev *pdev = qm->pdev; 3865 int ret; 3866 u32 val; 3867 3868 if (qm->ver >= QM_HW_V3) 3869 return 0; 3870 3871 writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID); 3872 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val, 3873 (val == ACC_VENDOR_ID_VALUE), 3874 POLL_PERIOD, POLL_TIMEOUT); 3875 if (ret) { 3876 dev_err(&pdev->dev, "Fails to read QM reg!\n"); 3877 return ret; 3878 } 3879 3880 writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID); 3881 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val, 3882 (val == PCI_VENDOR_ID_HUAWEI), 3883 POLL_PERIOD, POLL_TIMEOUT); 3884 if (ret) 3885 dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n"); 3886 3887 return ret; 3888 } 3889 3890 static int qm_set_pf_mse(struct hisi_qm *qm, bool set) 3891 { 3892 struct pci_dev *pdev = qm->pdev; 3893 u16 cmd; 3894 int i; 3895 3896 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 3897 if (set) 3898 cmd |= PCI_COMMAND_MEMORY; 3899 else 3900 cmd &= ~PCI_COMMAND_MEMORY; 3901 3902 pci_write_config_word(pdev, PCI_COMMAND, cmd); 3903 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 3904 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 3905 if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1)) 3906 return 0; 3907 3908 udelay(1); 3909 } 3910 3911 return -ETIMEDOUT; 3912 } 3913 3914 static int qm_set_vf_mse(struct hisi_qm *qm, bool set) 3915 { 3916 struct pci_dev *pdev = qm->pdev; 3917 u16 sriov_ctrl; 3918 int pos; 3919 int i; 3920 3921 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); 3922 pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl); 3923 if (set) 3924 sriov_ctrl |= PCI_SRIOV_CTRL_MSE; 3925 else 3926 sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE; 3927 pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl); 3928 3929 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 3930 pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl); 3931 if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >> 3932 ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT) 3933 return 0; 3934 3935 udelay(1); 3936 } 3937 3938 return -ETIMEDOUT; 3939 } 3940 3941 static int qm_vf_reset_prepare(struct hisi_qm *qm, 3942 enum qm_stop_reason stop_reason) 3943 { 3944 struct hisi_qm_list *qm_list = qm->qm_list; 3945 struct pci_dev *pdev = qm->pdev; 3946 struct pci_dev *virtfn; 3947 struct hisi_qm *vf_qm; 3948 int ret = 0; 3949 3950 mutex_lock(&qm_list->lock); 3951 list_for_each_entry(vf_qm, &qm_list->list, list) { 3952 virtfn = vf_qm->pdev; 3953 if (virtfn == pdev) 3954 continue; 3955 3956 if (pci_physfn(virtfn) == pdev) { 3957 /* save VFs PCIE BAR configuration */ 3958 pci_save_state(virtfn); 3959 3960 ret = hisi_qm_stop(vf_qm, stop_reason); 3961 if (ret) 3962 goto stop_fail; 3963 } 3964 } 3965 3966 stop_fail: 3967 mutex_unlock(&qm_list->lock); 3968 return ret; 3969 } 3970 3971 static int qm_try_stop_vfs(struct hisi_qm *qm, u64 cmd, 3972 enum qm_stop_reason stop_reason) 3973 { 3974 struct pci_dev *pdev = qm->pdev; 3975 int ret; 3976 3977 if (!qm->vfs_num) 3978 return 0; 3979 3980 /* Kunpeng930 supports to notify VFs to stop before PF reset */ 3981 if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) { 3982 ret = qm_ping_all_vfs(qm, cmd); 3983 if (ret) 3984 pci_err(pdev, "failed to send cmd to all VFs before PF reset!\n"); 3985 } else { 3986 ret = qm_vf_reset_prepare(qm, stop_reason); 3987 if (ret) 3988 pci_err(pdev, "failed to prepare reset, ret = %d.\n", ret); 3989 } 3990 3991 return ret; 3992 } 3993 3994 static int qm_controller_reset_prepare(struct hisi_qm *qm) 3995 { 3996 struct pci_dev *pdev = qm->pdev; 3997 int ret; 3998 3999 ret = qm_reset_prepare_ready(qm); 4000 if (ret) { 4001 pci_err(pdev, "Controller reset not ready!\n"); 4002 return ret; 4003 } 4004 4005 /* PF obtains the information of VF by querying the register. */ 4006 qm_cmd_uninit(qm); 4007 4008 /* Whether VFs stop successfully, soft reset will continue. */ 4009 ret = qm_try_stop_vfs(qm, QM_PF_SRST_PREPARE, QM_SOFT_RESET); 4010 if (ret) 4011 pci_err(pdev, "failed to stop vfs by pf in soft reset.\n"); 4012 4013 ret = hisi_qm_stop(qm, QM_SOFT_RESET); 4014 if (ret) { 4015 pci_err(pdev, "Fails to stop QM!\n"); 4016 qm_reset_bit_clear(qm); 4017 return ret; 4018 } 4019 4020 ret = qm_wait_vf_prepare_finish(qm); 4021 if (ret) 4022 pci_err(pdev, "failed to stop by vfs in soft reset!\n"); 4023 4024 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 4025 4026 return 0; 4027 } 4028 4029 static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm) 4030 { 4031 u32 nfe_enb = 0; 4032 4033 /* Kunpeng930 hardware automatically close master ooo when NFE occurs */ 4034 if (qm->ver >= QM_HW_V3) 4035 return; 4036 4037 if (!qm->err_status.is_dev_ecc_mbit && 4038 qm->err_status.is_qm_ecc_mbit && 4039 qm->err_ini->close_axi_master_ooo) { 4040 qm->err_ini->close_axi_master_ooo(qm); 4041 } else if (qm->err_status.is_dev_ecc_mbit && 4042 !qm->err_status.is_qm_ecc_mbit && 4043 !qm->err_ini->close_axi_master_ooo) { 4044 nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE); 4045 writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE, 4046 qm->io_base + QM_RAS_NFE_ENABLE); 4047 writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET); 4048 } 4049 } 4050 4051 static int qm_soft_reset(struct hisi_qm *qm) 4052 { 4053 struct pci_dev *pdev = qm->pdev; 4054 int ret; 4055 u32 val; 4056 4057 /* Ensure all doorbells and mailboxes received by QM */ 4058 ret = qm_check_req_recv(qm); 4059 if (ret) 4060 return ret; 4061 4062 if (qm->vfs_num) { 4063 ret = qm_set_vf_mse(qm, false); 4064 if (ret) { 4065 pci_err(pdev, "Fails to disable vf MSE bit.\n"); 4066 return ret; 4067 } 4068 } 4069 4070 ret = qm->ops->set_msi(qm, false); 4071 if (ret) { 4072 pci_err(pdev, "Fails to disable PEH MSI bit.\n"); 4073 return ret; 4074 } 4075 4076 qm_dev_ecc_mbit_handle(qm); 4077 4078 /* OOO register set and check */ 4079 writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN, 4080 qm->io_base + ACC_MASTER_GLOBAL_CTRL); 4081 4082 /* If bus lock, reset chip */ 4083 ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN, 4084 val, 4085 (val == ACC_MASTER_TRANS_RETURN_RW), 4086 POLL_PERIOD, POLL_TIMEOUT); 4087 if (ret) { 4088 pci_emerg(pdev, "Bus lock! Please reset system.\n"); 4089 return ret; 4090 } 4091 4092 if (qm->err_ini->close_sva_prefetch) 4093 qm->err_ini->close_sva_prefetch(qm); 4094 4095 ret = qm_set_pf_mse(qm, false); 4096 if (ret) { 4097 pci_err(pdev, "Fails to disable pf MSE bit.\n"); 4098 return ret; 4099 } 4100 4101 /* The reset related sub-control registers are not in PCI BAR */ 4102 if (ACPI_HANDLE(&pdev->dev)) { 4103 unsigned long long value = 0; 4104 acpi_status s; 4105 4106 s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev), 4107 qm->err_info.acpi_rst, 4108 NULL, &value); 4109 if (ACPI_FAILURE(s)) { 4110 pci_err(pdev, "NO controller reset method!\n"); 4111 return -EIO; 4112 } 4113 4114 if (value) { 4115 pci_err(pdev, "Reset step %llu failed!\n", value); 4116 return -EIO; 4117 } 4118 } else { 4119 pci_err(pdev, "No reset method!\n"); 4120 return -EINVAL; 4121 } 4122 4123 return 0; 4124 } 4125 4126 static int qm_vf_reset_done(struct hisi_qm *qm) 4127 { 4128 struct hisi_qm_list *qm_list = qm->qm_list; 4129 struct pci_dev *pdev = qm->pdev; 4130 struct pci_dev *virtfn; 4131 struct hisi_qm *vf_qm; 4132 int ret = 0; 4133 4134 mutex_lock(&qm_list->lock); 4135 list_for_each_entry(vf_qm, &qm_list->list, list) { 4136 virtfn = vf_qm->pdev; 4137 if (virtfn == pdev) 4138 continue; 4139 4140 if (pci_physfn(virtfn) == pdev) { 4141 /* enable VFs PCIE BAR configuration */ 4142 pci_restore_state(virtfn); 4143 4144 ret = qm_restart(vf_qm); 4145 if (ret) 4146 goto restart_fail; 4147 } 4148 } 4149 4150 restart_fail: 4151 mutex_unlock(&qm_list->lock); 4152 return ret; 4153 } 4154 4155 static int qm_try_start_vfs(struct hisi_qm *qm, enum qm_mb_cmd cmd) 4156 { 4157 struct pci_dev *pdev = qm->pdev; 4158 int ret; 4159 4160 if (!qm->vfs_num) 4161 return 0; 4162 4163 ret = qm_vf_q_assign(qm, qm->vfs_num); 4164 if (ret) { 4165 pci_err(pdev, "failed to assign VFs, ret = %d.\n", ret); 4166 return ret; 4167 } 4168 4169 /* Kunpeng930 supports to notify VFs to start after PF reset. */ 4170 if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) { 4171 ret = qm_ping_all_vfs(qm, cmd); 4172 if (ret) 4173 pci_warn(pdev, "failed to send cmd to all VFs after PF reset!\n"); 4174 } else { 4175 ret = qm_vf_reset_done(qm); 4176 if (ret) 4177 pci_warn(pdev, "failed to start vfs, ret = %d.\n", ret); 4178 } 4179 4180 return ret; 4181 } 4182 4183 static int qm_dev_hw_init(struct hisi_qm *qm) 4184 { 4185 return qm->err_ini->hw_init(qm); 4186 } 4187 4188 static void qm_restart_prepare(struct hisi_qm *qm) 4189 { 4190 u32 value; 4191 4192 if (qm->err_ini->open_sva_prefetch) 4193 qm->err_ini->open_sva_prefetch(qm); 4194 4195 if (qm->ver >= QM_HW_V3) 4196 return; 4197 4198 if (!qm->err_status.is_qm_ecc_mbit && 4199 !qm->err_status.is_dev_ecc_mbit) 4200 return; 4201 4202 /* temporarily close the OOO port used for PEH to write out MSI */ 4203 value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4204 writel(value & ~qm->err_info.msi_wr_port, 4205 qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4206 4207 /* clear dev ecc 2bit error source if having */ 4208 value = qm_get_dev_err_status(qm) & qm->err_info.ecc_2bits_mask; 4209 if (value && qm->err_ini->clear_dev_hw_err_status) 4210 qm->err_ini->clear_dev_hw_err_status(qm, value); 4211 4212 /* clear QM ecc mbit error source */ 4213 writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE); 4214 4215 /* clear AM Reorder Buffer ecc mbit source */ 4216 writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS); 4217 } 4218 4219 static void qm_restart_done(struct hisi_qm *qm) 4220 { 4221 u32 value; 4222 4223 if (qm->ver >= QM_HW_V3) 4224 goto clear_flags; 4225 4226 if (!qm->err_status.is_qm_ecc_mbit && 4227 !qm->err_status.is_dev_ecc_mbit) 4228 return; 4229 4230 /* open the OOO port for PEH to write out MSI */ 4231 value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4232 value |= qm->err_info.msi_wr_port; 4233 writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4234 4235 clear_flags: 4236 qm->err_status.is_qm_ecc_mbit = false; 4237 qm->err_status.is_dev_ecc_mbit = false; 4238 } 4239 4240 static int qm_controller_reset_done(struct hisi_qm *qm) 4241 { 4242 struct pci_dev *pdev = qm->pdev; 4243 int ret; 4244 4245 ret = qm->ops->set_msi(qm, true); 4246 if (ret) { 4247 pci_err(pdev, "Fails to enable PEH MSI bit!\n"); 4248 return ret; 4249 } 4250 4251 ret = qm_set_pf_mse(qm, true); 4252 if (ret) { 4253 pci_err(pdev, "Fails to enable pf MSE bit!\n"); 4254 return ret; 4255 } 4256 4257 if (qm->vfs_num) { 4258 ret = qm_set_vf_mse(qm, true); 4259 if (ret) { 4260 pci_err(pdev, "Fails to enable vf MSE bit!\n"); 4261 return ret; 4262 } 4263 } 4264 4265 ret = qm_dev_hw_init(qm); 4266 if (ret) { 4267 pci_err(pdev, "Failed to init device\n"); 4268 return ret; 4269 } 4270 4271 qm_restart_prepare(qm); 4272 hisi_qm_dev_err_init(qm); 4273 if (qm->err_ini->open_axi_master_ooo) 4274 qm->err_ini->open_axi_master_ooo(qm); 4275 4276 ret = qm_dev_mem_reset(qm); 4277 if (ret) { 4278 pci_err(pdev, "failed to reset device memory\n"); 4279 return ret; 4280 } 4281 4282 ret = qm_restart(qm); 4283 if (ret) { 4284 pci_err(pdev, "Failed to start QM!\n"); 4285 return ret; 4286 } 4287 4288 ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE); 4289 if (ret) 4290 pci_err(pdev, "failed to start vfs by pf in soft reset.\n"); 4291 4292 ret = qm_wait_vf_prepare_finish(qm); 4293 if (ret) 4294 pci_err(pdev, "failed to start by vfs in soft reset!\n"); 4295 4296 qm_cmd_init(qm); 4297 qm_restart_done(qm); 4298 4299 qm_reset_bit_clear(qm); 4300 4301 return 0; 4302 } 4303 4304 static int qm_controller_reset(struct hisi_qm *qm) 4305 { 4306 struct pci_dev *pdev = qm->pdev; 4307 int ret; 4308 4309 pci_info(pdev, "Controller resetting...\n"); 4310 4311 ret = qm_controller_reset_prepare(qm); 4312 if (ret) { 4313 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 4314 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 4315 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 4316 return ret; 4317 } 4318 4319 hisi_qm_show_last_dfx_regs(qm); 4320 if (qm->err_ini->show_last_dfx_regs) 4321 qm->err_ini->show_last_dfx_regs(qm); 4322 4323 ret = qm_soft_reset(qm); 4324 if (ret) { 4325 pci_err(pdev, "Controller reset failed (%d)\n", ret); 4326 qm_reset_bit_clear(qm); 4327 return ret; 4328 } 4329 4330 ret = qm_controller_reset_done(qm); 4331 if (ret) { 4332 qm_reset_bit_clear(qm); 4333 return ret; 4334 } 4335 4336 pci_info(pdev, "Controller reset complete\n"); 4337 4338 return 0; 4339 } 4340 4341 /** 4342 * hisi_qm_dev_slot_reset() - slot reset 4343 * @pdev: the PCIe device 4344 * 4345 * This function offers QM relate PCIe device reset interface. Drivers which 4346 * use QM can use this function as slot_reset in its struct pci_error_handlers. 4347 */ 4348 pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev) 4349 { 4350 struct hisi_qm *qm = pci_get_drvdata(pdev); 4351 int ret; 4352 4353 if (pdev->is_virtfn) 4354 return PCI_ERS_RESULT_RECOVERED; 4355 4356 /* reset pcie device controller */ 4357 ret = qm_controller_reset(qm); 4358 if (ret) { 4359 pci_err(pdev, "Controller reset failed (%d)\n", ret); 4360 return PCI_ERS_RESULT_DISCONNECT; 4361 } 4362 4363 return PCI_ERS_RESULT_RECOVERED; 4364 } 4365 EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset); 4366 4367 void hisi_qm_reset_prepare(struct pci_dev *pdev) 4368 { 4369 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 4370 struct hisi_qm *qm = pci_get_drvdata(pdev); 4371 u32 delay = 0; 4372 int ret; 4373 4374 hisi_qm_dev_err_uninit(pf_qm); 4375 4376 /* 4377 * Check whether there is an ECC mbit error, If it occurs, need to 4378 * wait for soft reset to fix it. 4379 */ 4380 while (qm_check_dev_error(pf_qm)) { 4381 msleep(++delay); 4382 if (delay > QM_RESET_WAIT_TIMEOUT) 4383 return; 4384 } 4385 4386 ret = qm_reset_prepare_ready(qm); 4387 if (ret) { 4388 pci_err(pdev, "FLR not ready!\n"); 4389 return; 4390 } 4391 4392 /* PF obtains the information of VF by querying the register. */ 4393 if (qm->fun_type == QM_HW_PF) 4394 qm_cmd_uninit(qm); 4395 4396 ret = qm_try_stop_vfs(qm, QM_PF_FLR_PREPARE, QM_FLR); 4397 if (ret) 4398 pci_err(pdev, "failed to stop vfs by pf in FLR.\n"); 4399 4400 ret = hisi_qm_stop(qm, QM_FLR); 4401 if (ret) { 4402 pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret); 4403 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 4404 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 4405 return; 4406 } 4407 4408 ret = qm_wait_vf_prepare_finish(qm); 4409 if (ret) 4410 pci_err(pdev, "failed to stop by vfs in FLR!\n"); 4411 4412 pci_info(pdev, "FLR resetting...\n"); 4413 } 4414 EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare); 4415 4416 static bool qm_flr_reset_complete(struct pci_dev *pdev) 4417 { 4418 struct pci_dev *pf_pdev = pci_physfn(pdev); 4419 struct hisi_qm *qm = pci_get_drvdata(pf_pdev); 4420 u32 id; 4421 4422 pci_read_config_dword(qm->pdev, PCI_COMMAND, &id); 4423 if (id == QM_PCI_COMMAND_INVALID) { 4424 pci_err(pdev, "Device can not be used!\n"); 4425 return false; 4426 } 4427 4428 return true; 4429 } 4430 4431 void hisi_qm_reset_done(struct pci_dev *pdev) 4432 { 4433 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 4434 struct hisi_qm *qm = pci_get_drvdata(pdev); 4435 int ret; 4436 4437 if (qm->fun_type == QM_HW_PF) { 4438 ret = qm_dev_hw_init(qm); 4439 if (ret) { 4440 pci_err(pdev, "Failed to init PF, ret = %d.\n", ret); 4441 goto flr_done; 4442 } 4443 } 4444 4445 hisi_qm_dev_err_init(pf_qm); 4446 4447 ret = qm_restart(qm); 4448 if (ret) { 4449 pci_err(pdev, "Failed to start QM, ret = %d.\n", ret); 4450 goto flr_done; 4451 } 4452 4453 ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE); 4454 if (ret) 4455 pci_err(pdev, "failed to start vfs by pf in FLR.\n"); 4456 4457 ret = qm_wait_vf_prepare_finish(qm); 4458 if (ret) 4459 pci_err(pdev, "failed to start by vfs in FLR!\n"); 4460 4461 flr_done: 4462 if (qm->fun_type == QM_HW_PF) 4463 qm_cmd_init(qm); 4464 4465 if (qm_flr_reset_complete(pdev)) 4466 pci_info(pdev, "FLR reset complete\n"); 4467 4468 qm_reset_bit_clear(qm); 4469 } 4470 EXPORT_SYMBOL_GPL(hisi_qm_reset_done); 4471 4472 static irqreturn_t qm_abnormal_irq(int irq, void *data) 4473 { 4474 struct hisi_qm *qm = data; 4475 enum acc_err_result ret; 4476 4477 atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt); 4478 ret = qm_process_dev_error(qm); 4479 if (ret == ACC_ERR_NEED_RESET && 4480 !test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl) && 4481 !test_and_set_bit(QM_RST_SCHED, &qm->misc_ctl)) 4482 schedule_work(&qm->rst_work); 4483 4484 return IRQ_HANDLED; 4485 } 4486 4487 /** 4488 * hisi_qm_dev_shutdown() - Shutdown device. 4489 * @pdev: The device will be shutdown. 4490 * 4491 * This function will stop qm when OS shutdown or rebooting. 4492 */ 4493 void hisi_qm_dev_shutdown(struct pci_dev *pdev) 4494 { 4495 struct hisi_qm *qm = pci_get_drvdata(pdev); 4496 int ret; 4497 4498 ret = hisi_qm_stop(qm, QM_NORMAL); 4499 if (ret) 4500 dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n"); 4501 } 4502 EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown); 4503 4504 static void hisi_qm_controller_reset(struct work_struct *rst_work) 4505 { 4506 struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work); 4507 int ret; 4508 4509 ret = qm_pm_get_sync(qm); 4510 if (ret) { 4511 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 4512 return; 4513 } 4514 4515 /* reset pcie device controller */ 4516 ret = qm_controller_reset(qm); 4517 if (ret) 4518 dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret); 4519 4520 qm_pm_put_sync(qm); 4521 } 4522 4523 static void qm_pf_reset_vf_prepare(struct hisi_qm *qm, 4524 enum qm_stop_reason stop_reason) 4525 { 4526 enum qm_mb_cmd cmd = QM_VF_PREPARE_DONE; 4527 struct pci_dev *pdev = qm->pdev; 4528 int ret; 4529 4530 ret = qm_reset_prepare_ready(qm); 4531 if (ret) { 4532 dev_err(&pdev->dev, "reset prepare not ready!\n"); 4533 atomic_set(&qm->status.flags, QM_STOP); 4534 cmd = QM_VF_PREPARE_FAIL; 4535 goto err_prepare; 4536 } 4537 4538 ret = hisi_qm_stop(qm, stop_reason); 4539 if (ret) { 4540 dev_err(&pdev->dev, "failed to stop QM, ret = %d.\n", ret); 4541 atomic_set(&qm->status.flags, QM_STOP); 4542 cmd = QM_VF_PREPARE_FAIL; 4543 goto err_prepare; 4544 } else { 4545 goto out; 4546 } 4547 4548 err_prepare: 4549 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 4550 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 4551 out: 4552 pci_save_state(pdev); 4553 ret = qm_ping_pf(qm, cmd); 4554 if (ret) 4555 dev_warn(&pdev->dev, "PF responds timeout in reset prepare!\n"); 4556 } 4557 4558 static void qm_pf_reset_vf_done(struct hisi_qm *qm) 4559 { 4560 enum qm_mb_cmd cmd = QM_VF_START_DONE; 4561 struct pci_dev *pdev = qm->pdev; 4562 int ret; 4563 4564 pci_restore_state(pdev); 4565 ret = hisi_qm_start(qm); 4566 if (ret) { 4567 dev_err(&pdev->dev, "failed to start QM, ret = %d.\n", ret); 4568 cmd = QM_VF_START_FAIL; 4569 } 4570 4571 qm_cmd_init(qm); 4572 ret = qm_ping_pf(qm, cmd); 4573 if (ret) 4574 dev_warn(&pdev->dev, "PF responds timeout in reset done!\n"); 4575 4576 qm_reset_bit_clear(qm); 4577 } 4578 4579 static int qm_wait_pf_reset_finish(struct hisi_qm *qm) 4580 { 4581 struct device *dev = &qm->pdev->dev; 4582 u32 val, cmd; 4583 u64 msg; 4584 int ret; 4585 4586 /* Wait for reset to finish */ 4587 ret = readl_relaxed_poll_timeout(qm->io_base + QM_IFC_INT_SOURCE_V, val, 4588 val == BIT(0), QM_VF_RESET_WAIT_US, 4589 QM_VF_RESET_WAIT_TIMEOUT_US); 4590 /* hardware completion status should be available by this time */ 4591 if (ret) { 4592 dev_err(dev, "couldn't get reset done status from PF, timeout!\n"); 4593 return -ETIMEDOUT; 4594 } 4595 4596 /* 4597 * Whether message is got successfully, 4598 * VF needs to ack PF by clearing the interrupt. 4599 */ 4600 ret = qm_get_mb_cmd(qm, &msg, 0); 4601 qm_clear_cmd_interrupt(qm, 0); 4602 if (ret) { 4603 dev_err(dev, "failed to get msg from PF in reset done!\n"); 4604 return ret; 4605 } 4606 4607 cmd = msg & QM_MB_CMD_DATA_MASK; 4608 if (cmd != QM_PF_RESET_DONE) { 4609 dev_err(dev, "the cmd(%u) is not reset done!\n", cmd); 4610 ret = -EINVAL; 4611 } 4612 4613 return ret; 4614 } 4615 4616 static void qm_pf_reset_vf_process(struct hisi_qm *qm, 4617 enum qm_stop_reason stop_reason) 4618 { 4619 struct device *dev = &qm->pdev->dev; 4620 int ret; 4621 4622 dev_info(dev, "device reset start...\n"); 4623 4624 /* The message is obtained by querying the register during resetting */ 4625 qm_cmd_uninit(qm); 4626 qm_pf_reset_vf_prepare(qm, stop_reason); 4627 4628 ret = qm_wait_pf_reset_finish(qm); 4629 if (ret) 4630 goto err_get_status; 4631 4632 qm_pf_reset_vf_done(qm); 4633 4634 dev_info(dev, "device reset done.\n"); 4635 4636 return; 4637 4638 err_get_status: 4639 qm_cmd_init(qm); 4640 qm_reset_bit_clear(qm); 4641 } 4642 4643 static void qm_handle_cmd_msg(struct hisi_qm *qm, u32 fun_num) 4644 { 4645 struct device *dev = &qm->pdev->dev; 4646 u64 msg; 4647 u32 cmd; 4648 int ret; 4649 4650 /* 4651 * Get the msg from source by sending mailbox. Whether message is got 4652 * successfully, destination needs to ack source by clearing the interrupt. 4653 */ 4654 ret = qm_get_mb_cmd(qm, &msg, fun_num); 4655 qm_clear_cmd_interrupt(qm, BIT(fun_num)); 4656 if (ret) { 4657 dev_err(dev, "failed to get msg from source!\n"); 4658 return; 4659 } 4660 4661 cmd = msg & QM_MB_CMD_DATA_MASK; 4662 switch (cmd) { 4663 case QM_PF_FLR_PREPARE: 4664 qm_pf_reset_vf_process(qm, QM_FLR); 4665 break; 4666 case QM_PF_SRST_PREPARE: 4667 qm_pf_reset_vf_process(qm, QM_SOFT_RESET); 4668 break; 4669 case QM_VF_GET_QOS: 4670 qm_vf_get_qos(qm, fun_num); 4671 break; 4672 case QM_PF_SET_QOS: 4673 qm->mb_qos = msg >> QM_MB_CMD_DATA_SHIFT; 4674 break; 4675 default: 4676 dev_err(dev, "unsupported cmd %u sent by function(%u)!\n", cmd, fun_num); 4677 break; 4678 } 4679 } 4680 4681 static void qm_cmd_process(struct work_struct *cmd_process) 4682 { 4683 struct hisi_qm *qm = container_of(cmd_process, 4684 struct hisi_qm, cmd_process); 4685 u32 vfs_num = qm->vfs_num; 4686 u64 val; 4687 u32 i; 4688 4689 if (qm->fun_type == QM_HW_PF) { 4690 val = readq(qm->io_base + QM_IFC_INT_SOURCE_P); 4691 if (!val) 4692 return; 4693 4694 for (i = 1; i <= vfs_num; i++) { 4695 if (val & BIT(i)) 4696 qm_handle_cmd_msg(qm, i); 4697 } 4698 4699 return; 4700 } 4701 4702 qm_handle_cmd_msg(qm, 0); 4703 } 4704 4705 /** 4706 * hisi_qm_alg_register() - Register alg to crypto and add qm to qm_list. 4707 * @qm: The qm needs add. 4708 * @qm_list: The qm list. 4709 * 4710 * This function adds qm to qm list, and will register algorithm to 4711 * crypto when the qm list is empty. 4712 */ 4713 int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 4714 { 4715 struct device *dev = &qm->pdev->dev; 4716 int flag = 0; 4717 int ret = 0; 4718 4719 mutex_lock(&qm_list->lock); 4720 if (list_empty(&qm_list->list)) 4721 flag = 1; 4722 list_add_tail(&qm->list, &qm_list->list); 4723 mutex_unlock(&qm_list->lock); 4724 4725 if (qm->ver <= QM_HW_V2 && qm->use_sva) { 4726 dev_info(dev, "HW V2 not both use uacce sva mode and hardware crypto algs.\n"); 4727 return 0; 4728 } 4729 4730 if (flag) { 4731 ret = qm_list->register_to_crypto(qm); 4732 if (ret) { 4733 mutex_lock(&qm_list->lock); 4734 list_del(&qm->list); 4735 mutex_unlock(&qm_list->lock); 4736 } 4737 } 4738 4739 return ret; 4740 } 4741 EXPORT_SYMBOL_GPL(hisi_qm_alg_register); 4742 4743 /** 4744 * hisi_qm_alg_unregister() - Unregister alg from crypto and delete qm from 4745 * qm list. 4746 * @qm: The qm needs delete. 4747 * @qm_list: The qm list. 4748 * 4749 * This function deletes qm from qm list, and will unregister algorithm 4750 * from crypto when the qm list is empty. 4751 */ 4752 void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 4753 { 4754 mutex_lock(&qm_list->lock); 4755 list_del(&qm->list); 4756 mutex_unlock(&qm_list->lock); 4757 4758 if (qm->ver <= QM_HW_V2 && qm->use_sva) 4759 return; 4760 4761 if (list_empty(&qm_list->list)) 4762 qm_list->unregister_from_crypto(qm); 4763 } 4764 EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister); 4765 4766 static void qm_unregister_abnormal_irq(struct hisi_qm *qm) 4767 { 4768 struct pci_dev *pdev = qm->pdev; 4769 u32 irq_vector, val; 4770 4771 if (qm->fun_type == QM_HW_VF) 4772 return; 4773 4774 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_ABN_IRQ_TYPE_CAP, qm->cap_ver); 4775 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK)) 4776 return; 4777 4778 irq_vector = val & QM_IRQ_VECTOR_MASK; 4779 free_irq(pci_irq_vector(pdev, irq_vector), qm); 4780 } 4781 4782 static int qm_register_abnormal_irq(struct hisi_qm *qm) 4783 { 4784 struct pci_dev *pdev = qm->pdev; 4785 u32 irq_vector, val; 4786 int ret; 4787 4788 if (qm->fun_type == QM_HW_VF) 4789 return 0; 4790 4791 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_ABN_IRQ_TYPE_CAP, qm->cap_ver); 4792 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK)) 4793 return 0; 4794 4795 irq_vector = val & QM_IRQ_VECTOR_MASK; 4796 ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_abnormal_irq, 0, qm->dev_name, qm); 4797 if (ret) 4798 dev_err(&qm->pdev->dev, "failed to request abnormal irq, ret = %d", ret); 4799 4800 return ret; 4801 } 4802 4803 static void qm_unregister_mb_cmd_irq(struct hisi_qm *qm) 4804 { 4805 struct pci_dev *pdev = qm->pdev; 4806 u32 irq_vector, val; 4807 4808 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF2VF_IRQ_TYPE_CAP, qm->cap_ver); 4809 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 4810 return; 4811 4812 irq_vector = val & QM_IRQ_VECTOR_MASK; 4813 free_irq(pci_irq_vector(pdev, irq_vector), qm); 4814 } 4815 4816 static int qm_register_mb_cmd_irq(struct hisi_qm *qm) 4817 { 4818 struct pci_dev *pdev = qm->pdev; 4819 u32 irq_vector, val; 4820 int ret; 4821 4822 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF2VF_IRQ_TYPE_CAP, qm->cap_ver); 4823 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 4824 return 0; 4825 4826 irq_vector = val & QM_IRQ_VECTOR_MASK; 4827 ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_mb_cmd_irq, 0, qm->dev_name, qm); 4828 if (ret) 4829 dev_err(&pdev->dev, "failed to request function communication irq, ret = %d", ret); 4830 4831 return ret; 4832 } 4833 4834 static void qm_unregister_aeq_irq(struct hisi_qm *qm) 4835 { 4836 struct pci_dev *pdev = qm->pdev; 4837 u32 irq_vector, val; 4838 4839 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_AEQ_IRQ_TYPE_CAP, qm->cap_ver); 4840 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 4841 return; 4842 4843 irq_vector = val & QM_IRQ_VECTOR_MASK; 4844 free_irq(pci_irq_vector(pdev, irq_vector), qm); 4845 } 4846 4847 static int qm_register_aeq_irq(struct hisi_qm *qm) 4848 { 4849 struct pci_dev *pdev = qm->pdev; 4850 u32 irq_vector, val; 4851 int ret; 4852 4853 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_AEQ_IRQ_TYPE_CAP, qm->cap_ver); 4854 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 4855 return 0; 4856 4857 irq_vector = val & QM_IRQ_VECTOR_MASK; 4858 ret = request_threaded_irq(pci_irq_vector(pdev, irq_vector), qm_aeq_irq, 4859 qm_aeq_thread, 0, qm->dev_name, qm); 4860 if (ret) 4861 dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret); 4862 4863 return ret; 4864 } 4865 4866 static void qm_unregister_eq_irq(struct hisi_qm *qm) 4867 { 4868 struct pci_dev *pdev = qm->pdev; 4869 u32 irq_vector, val; 4870 4871 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_EQ_IRQ_TYPE_CAP, qm->cap_ver); 4872 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 4873 return; 4874 4875 irq_vector = val & QM_IRQ_VECTOR_MASK; 4876 free_irq(pci_irq_vector(pdev, irq_vector), qm); 4877 } 4878 4879 static int qm_register_eq_irq(struct hisi_qm *qm) 4880 { 4881 struct pci_dev *pdev = qm->pdev; 4882 u32 irq_vector, val; 4883 int ret; 4884 4885 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_EQ_IRQ_TYPE_CAP, qm->cap_ver); 4886 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 4887 return 0; 4888 4889 irq_vector = val & QM_IRQ_VECTOR_MASK; 4890 ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_eq_irq, 0, qm->dev_name, qm); 4891 if (ret) 4892 dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret); 4893 4894 return ret; 4895 } 4896 4897 static void qm_irqs_unregister(struct hisi_qm *qm) 4898 { 4899 qm_unregister_mb_cmd_irq(qm); 4900 qm_unregister_abnormal_irq(qm); 4901 qm_unregister_aeq_irq(qm); 4902 qm_unregister_eq_irq(qm); 4903 } 4904 4905 static int qm_irqs_register(struct hisi_qm *qm) 4906 { 4907 int ret; 4908 4909 ret = qm_register_eq_irq(qm); 4910 if (ret) 4911 return ret; 4912 4913 ret = qm_register_aeq_irq(qm); 4914 if (ret) 4915 goto free_eq_irq; 4916 4917 ret = qm_register_abnormal_irq(qm); 4918 if (ret) 4919 goto free_aeq_irq; 4920 4921 ret = qm_register_mb_cmd_irq(qm); 4922 if (ret) 4923 goto free_abnormal_irq; 4924 4925 return 0; 4926 4927 free_abnormal_irq: 4928 qm_unregister_abnormal_irq(qm); 4929 free_aeq_irq: 4930 qm_unregister_aeq_irq(qm); 4931 free_eq_irq: 4932 qm_unregister_eq_irq(qm); 4933 return ret; 4934 } 4935 4936 static int qm_get_qp_num(struct hisi_qm *qm) 4937 { 4938 bool is_db_isolation; 4939 4940 /* VF's qp_num assigned by PF in v2, and VF can get qp_num by vft. */ 4941 if (qm->fun_type == QM_HW_VF) { 4942 if (qm->ver != QM_HW_V1) 4943 /* v2 starts to support get vft by mailbox */ 4944 return hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num); 4945 4946 return 0; 4947 } 4948 4949 is_db_isolation = test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps); 4950 qm->ctrl_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, QM_TOTAL_QP_NUM_CAP, true); 4951 qm->max_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, 4952 QM_FUNC_MAX_QP_CAP, is_db_isolation); 4953 4954 /* check if qp number is valid */ 4955 if (qm->qp_num > qm->max_qp_num) { 4956 dev_err(&qm->pdev->dev, "qp num(%u) is more than max qp num(%u)!\n", 4957 qm->qp_num, qm->max_qp_num); 4958 return -EINVAL; 4959 } 4960 4961 return 0; 4962 } 4963 4964 static void qm_get_hw_caps(struct hisi_qm *qm) 4965 { 4966 const struct hisi_qm_cap_info *cap_info = qm->fun_type == QM_HW_PF ? 4967 qm_cap_info_pf : qm_cap_info_vf; 4968 u32 size = qm->fun_type == QM_HW_PF ? ARRAY_SIZE(qm_cap_info_pf) : 4969 ARRAY_SIZE(qm_cap_info_vf); 4970 u32 val, i; 4971 4972 /* Doorbell isolate register is a independent register. */ 4973 val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, QM_SUPPORT_DB_ISOLATION, true); 4974 if (val) 4975 set_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps); 4976 4977 if (qm->ver >= QM_HW_V3) { 4978 val = readl(qm->io_base + QM_FUNC_CAPS_REG); 4979 qm->cap_ver = val & QM_CAPBILITY_VERSION; 4980 } 4981 4982 /* Get PF/VF common capbility */ 4983 for (i = 1; i < ARRAY_SIZE(qm_cap_info_comm); i++) { 4984 val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, i, qm->cap_ver); 4985 if (val) 4986 set_bit(qm_cap_info_comm[i].type, &qm->caps); 4987 } 4988 4989 /* Get PF/VF different capbility */ 4990 for (i = 0; i < size; i++) { 4991 val = hisi_qm_get_hw_info(qm, cap_info, i, qm->cap_ver); 4992 if (val) 4993 set_bit(cap_info[i].type, &qm->caps); 4994 } 4995 } 4996 4997 static int qm_get_pci_res(struct hisi_qm *qm) 4998 { 4999 struct pci_dev *pdev = qm->pdev; 5000 struct device *dev = &pdev->dev; 5001 int ret; 5002 5003 ret = pci_request_mem_regions(pdev, qm->dev_name); 5004 if (ret < 0) { 5005 dev_err(dev, "Failed to request mem regions!\n"); 5006 return ret; 5007 } 5008 5009 qm->phys_base = pci_resource_start(pdev, PCI_BAR_2); 5010 qm->io_base = ioremap(qm->phys_base, pci_resource_len(pdev, PCI_BAR_2)); 5011 if (!qm->io_base) { 5012 ret = -EIO; 5013 goto err_request_mem_regions; 5014 } 5015 5016 qm_get_hw_caps(qm); 5017 if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) { 5018 qm->db_interval = QM_QP_DB_INTERVAL; 5019 qm->db_phys_base = pci_resource_start(pdev, PCI_BAR_4); 5020 qm->db_io_base = ioremap(qm->db_phys_base, 5021 pci_resource_len(pdev, PCI_BAR_4)); 5022 if (!qm->db_io_base) { 5023 ret = -EIO; 5024 goto err_ioremap; 5025 } 5026 } else { 5027 qm->db_phys_base = qm->phys_base; 5028 qm->db_io_base = qm->io_base; 5029 qm->db_interval = 0; 5030 } 5031 5032 ret = qm_get_qp_num(qm); 5033 if (ret) 5034 goto err_db_ioremap; 5035 5036 return 0; 5037 5038 err_db_ioremap: 5039 if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) 5040 iounmap(qm->db_io_base); 5041 err_ioremap: 5042 iounmap(qm->io_base); 5043 err_request_mem_regions: 5044 pci_release_mem_regions(pdev); 5045 return ret; 5046 } 5047 5048 static int hisi_qm_pci_init(struct hisi_qm *qm) 5049 { 5050 struct pci_dev *pdev = qm->pdev; 5051 struct device *dev = &pdev->dev; 5052 unsigned int num_vec; 5053 int ret; 5054 5055 ret = pci_enable_device_mem(pdev); 5056 if (ret < 0) { 5057 dev_err(dev, "Failed to enable device mem!\n"); 5058 return ret; 5059 } 5060 5061 ret = qm_get_pci_res(qm); 5062 if (ret) 5063 goto err_disable_pcidev; 5064 5065 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5066 if (ret < 0) 5067 goto err_get_pci_res; 5068 pci_set_master(pdev); 5069 5070 num_vec = qm_get_irq_num(qm); 5071 ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI); 5072 if (ret < 0) { 5073 dev_err(dev, "Failed to enable MSI vectors!\n"); 5074 goto err_get_pci_res; 5075 } 5076 5077 return 0; 5078 5079 err_get_pci_res: 5080 qm_put_pci_res(qm); 5081 err_disable_pcidev: 5082 pci_disable_device(pdev); 5083 return ret; 5084 } 5085 5086 static int hisi_qm_init_work(struct hisi_qm *qm) 5087 { 5088 int i; 5089 5090 for (i = 0; i < qm->qp_num; i++) 5091 INIT_WORK(&qm->poll_data[i].work, qm_work_process); 5092 5093 if (qm->fun_type == QM_HW_PF) 5094 INIT_WORK(&qm->rst_work, hisi_qm_controller_reset); 5095 5096 if (qm->ver > QM_HW_V2) 5097 INIT_WORK(&qm->cmd_process, qm_cmd_process); 5098 5099 qm->wq = alloc_workqueue("%s", WQ_HIGHPRI | WQ_MEM_RECLAIM | 5100 WQ_UNBOUND, num_online_cpus(), 5101 pci_name(qm->pdev)); 5102 if (!qm->wq) { 5103 pci_err(qm->pdev, "failed to alloc workqueue!\n"); 5104 return -ENOMEM; 5105 } 5106 5107 return 0; 5108 } 5109 5110 static int hisi_qp_alloc_memory(struct hisi_qm *qm) 5111 { 5112 struct device *dev = &qm->pdev->dev; 5113 u16 sq_depth, cq_depth; 5114 size_t qp_dma_size; 5115 int i, ret; 5116 5117 qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL); 5118 if (!qm->qp_array) 5119 return -ENOMEM; 5120 5121 qm->poll_data = kcalloc(qm->qp_num, sizeof(struct hisi_qm_poll_data), GFP_KERNEL); 5122 if (!qm->poll_data) { 5123 kfree(qm->qp_array); 5124 return -ENOMEM; 5125 } 5126 5127 qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP); 5128 5129 /* one more page for device or qp statuses */ 5130 qp_dma_size = qm->sqe_size * sq_depth + sizeof(struct qm_cqe) * cq_depth; 5131 qp_dma_size = PAGE_ALIGN(qp_dma_size) + PAGE_SIZE; 5132 for (i = 0; i < qm->qp_num; i++) { 5133 qm->poll_data[i].qm = qm; 5134 ret = hisi_qp_memory_init(qm, qp_dma_size, i, sq_depth, cq_depth); 5135 if (ret) 5136 goto err_init_qp_mem; 5137 5138 dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size); 5139 } 5140 5141 return 0; 5142 err_init_qp_mem: 5143 hisi_qp_memory_uninit(qm, i); 5144 5145 return ret; 5146 } 5147 5148 static int hisi_qm_memory_init(struct hisi_qm *qm) 5149 { 5150 struct device *dev = &qm->pdev->dev; 5151 int ret, total_func; 5152 size_t off = 0; 5153 5154 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) { 5155 total_func = pci_sriov_get_totalvfs(qm->pdev) + 1; 5156 qm->factor = kcalloc(total_func, sizeof(struct qm_shaper_factor), GFP_KERNEL); 5157 if (!qm->factor) 5158 return -ENOMEM; 5159 5160 /* Only the PF value needs to be initialized */ 5161 qm->factor[0].func_qos = QM_QOS_MAX_VAL; 5162 } 5163 5164 #define QM_INIT_BUF(qm, type, num) do { \ 5165 (qm)->type = ((qm)->qdma.va + (off)); \ 5166 (qm)->type##_dma = (qm)->qdma.dma + (off); \ 5167 off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \ 5168 } while (0) 5169 5170 idr_init(&qm->qp_idr); 5171 qm_get_xqc_depth(qm, &qm->eq_depth, &qm->aeq_depth, QM_XEQ_DEPTH_CAP); 5172 qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * qm->eq_depth) + 5173 QMC_ALIGN(sizeof(struct qm_aeqe) * qm->aeq_depth) + 5174 QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) + 5175 QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num); 5176 qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma, 5177 GFP_ATOMIC); 5178 dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size); 5179 if (!qm->qdma.va) { 5180 ret = -ENOMEM; 5181 goto err_destroy_idr; 5182 } 5183 5184 QM_INIT_BUF(qm, eqe, qm->eq_depth); 5185 QM_INIT_BUF(qm, aeqe, qm->aeq_depth); 5186 QM_INIT_BUF(qm, sqc, qm->qp_num); 5187 QM_INIT_BUF(qm, cqc, qm->qp_num); 5188 5189 ret = hisi_qp_alloc_memory(qm); 5190 if (ret) 5191 goto err_alloc_qp_array; 5192 5193 return 0; 5194 5195 err_alloc_qp_array: 5196 dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma); 5197 err_destroy_idr: 5198 idr_destroy(&qm->qp_idr); 5199 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 5200 kfree(qm->factor); 5201 5202 return ret; 5203 } 5204 5205 /** 5206 * hisi_qm_init() - Initialize configures about qm. 5207 * @qm: The qm needing init. 5208 * 5209 * This function init qm, then we can call hisi_qm_start to put qm into work. 5210 */ 5211 int hisi_qm_init(struct hisi_qm *qm) 5212 { 5213 struct pci_dev *pdev = qm->pdev; 5214 struct device *dev = &pdev->dev; 5215 int ret; 5216 5217 hisi_qm_pre_init(qm); 5218 5219 ret = hisi_qm_pci_init(qm); 5220 if (ret) 5221 return ret; 5222 5223 ret = qm_irqs_register(qm); 5224 if (ret) 5225 goto err_pci_init; 5226 5227 if (qm->fun_type == QM_HW_PF) { 5228 qm_disable_clock_gate(qm); 5229 ret = qm_dev_mem_reset(qm); 5230 if (ret) { 5231 dev_err(dev, "failed to reset device memory\n"); 5232 goto err_irq_register; 5233 } 5234 } 5235 5236 if (qm->mode == UACCE_MODE_SVA) { 5237 ret = qm_alloc_uacce(qm); 5238 if (ret < 0) 5239 dev_warn(dev, "fail to alloc uacce (%d)\n", ret); 5240 } 5241 5242 ret = hisi_qm_memory_init(qm); 5243 if (ret) 5244 goto err_alloc_uacce; 5245 5246 ret = hisi_qm_init_work(qm); 5247 if (ret) 5248 goto err_free_qm_memory; 5249 5250 qm_cmd_init(qm); 5251 atomic_set(&qm->status.flags, QM_INIT); 5252 5253 return 0; 5254 5255 err_free_qm_memory: 5256 hisi_qm_memory_uninit(qm); 5257 err_alloc_uacce: 5258 if (qm->use_sva) { 5259 uacce_remove(qm->uacce); 5260 qm->uacce = NULL; 5261 } 5262 err_irq_register: 5263 qm_irqs_unregister(qm); 5264 err_pci_init: 5265 hisi_qm_pci_uninit(qm); 5266 return ret; 5267 } 5268 EXPORT_SYMBOL_GPL(hisi_qm_init); 5269 5270 /** 5271 * hisi_qm_get_dfx_access() - Try to get dfx access. 5272 * @qm: pointer to accelerator device. 5273 * 5274 * Try to get dfx access, then user can get message. 5275 * 5276 * If device is in suspended, return failure, otherwise 5277 * bump up the runtime PM usage counter. 5278 */ 5279 int hisi_qm_get_dfx_access(struct hisi_qm *qm) 5280 { 5281 struct device *dev = &qm->pdev->dev; 5282 5283 if (pm_runtime_suspended(dev)) { 5284 dev_info(dev, "can not read/write - device in suspended.\n"); 5285 return -EAGAIN; 5286 } 5287 5288 return qm_pm_get_sync(qm); 5289 } 5290 EXPORT_SYMBOL_GPL(hisi_qm_get_dfx_access); 5291 5292 /** 5293 * hisi_qm_put_dfx_access() - Put dfx access. 5294 * @qm: pointer to accelerator device. 5295 * 5296 * Put dfx access, drop runtime PM usage counter. 5297 */ 5298 void hisi_qm_put_dfx_access(struct hisi_qm *qm) 5299 { 5300 qm_pm_put_sync(qm); 5301 } 5302 EXPORT_SYMBOL_GPL(hisi_qm_put_dfx_access); 5303 5304 /** 5305 * hisi_qm_pm_init() - Initialize qm runtime PM. 5306 * @qm: pointer to accelerator device. 5307 * 5308 * Function that initialize qm runtime PM. 5309 */ 5310 void hisi_qm_pm_init(struct hisi_qm *qm) 5311 { 5312 struct device *dev = &qm->pdev->dev; 5313 5314 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 5315 return; 5316 5317 pm_runtime_set_autosuspend_delay(dev, QM_AUTOSUSPEND_DELAY); 5318 pm_runtime_use_autosuspend(dev); 5319 pm_runtime_put_noidle(dev); 5320 } 5321 EXPORT_SYMBOL_GPL(hisi_qm_pm_init); 5322 5323 /** 5324 * hisi_qm_pm_uninit() - Uninitialize qm runtime PM. 5325 * @qm: pointer to accelerator device. 5326 * 5327 * Function that uninitialize qm runtime PM. 5328 */ 5329 void hisi_qm_pm_uninit(struct hisi_qm *qm) 5330 { 5331 struct device *dev = &qm->pdev->dev; 5332 5333 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 5334 return; 5335 5336 pm_runtime_get_noresume(dev); 5337 pm_runtime_dont_use_autosuspend(dev); 5338 } 5339 EXPORT_SYMBOL_GPL(hisi_qm_pm_uninit); 5340 5341 static int qm_prepare_for_suspend(struct hisi_qm *qm) 5342 { 5343 struct pci_dev *pdev = qm->pdev; 5344 int ret; 5345 u32 val; 5346 5347 ret = qm->ops->set_msi(qm, false); 5348 if (ret) { 5349 pci_err(pdev, "failed to disable MSI before suspending!\n"); 5350 return ret; 5351 } 5352 5353 /* shutdown OOO register */ 5354 writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN, 5355 qm->io_base + ACC_MASTER_GLOBAL_CTRL); 5356 5357 ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN, 5358 val, 5359 (val == ACC_MASTER_TRANS_RETURN_RW), 5360 POLL_PERIOD, POLL_TIMEOUT); 5361 if (ret) { 5362 pci_emerg(pdev, "Bus lock! Please reset system.\n"); 5363 return ret; 5364 } 5365 5366 ret = qm_set_pf_mse(qm, false); 5367 if (ret) 5368 pci_err(pdev, "failed to disable MSE before suspending!\n"); 5369 5370 return ret; 5371 } 5372 5373 static int qm_rebuild_for_resume(struct hisi_qm *qm) 5374 { 5375 struct pci_dev *pdev = qm->pdev; 5376 int ret; 5377 5378 ret = qm_set_pf_mse(qm, true); 5379 if (ret) { 5380 pci_err(pdev, "failed to enable MSE after resuming!\n"); 5381 return ret; 5382 } 5383 5384 ret = qm->ops->set_msi(qm, true); 5385 if (ret) { 5386 pci_err(pdev, "failed to enable MSI after resuming!\n"); 5387 return ret; 5388 } 5389 5390 ret = qm_dev_hw_init(qm); 5391 if (ret) { 5392 pci_err(pdev, "failed to init device after resuming\n"); 5393 return ret; 5394 } 5395 5396 qm_cmd_init(qm); 5397 hisi_qm_dev_err_init(qm); 5398 qm_disable_clock_gate(qm); 5399 ret = qm_dev_mem_reset(qm); 5400 if (ret) 5401 pci_err(pdev, "failed to reset device memory\n"); 5402 5403 return ret; 5404 } 5405 5406 /** 5407 * hisi_qm_suspend() - Runtime suspend of given device. 5408 * @dev: device to suspend. 5409 * 5410 * Function that suspend the device. 5411 */ 5412 int hisi_qm_suspend(struct device *dev) 5413 { 5414 struct pci_dev *pdev = to_pci_dev(dev); 5415 struct hisi_qm *qm = pci_get_drvdata(pdev); 5416 int ret; 5417 5418 pci_info(pdev, "entering suspended state\n"); 5419 5420 ret = hisi_qm_stop(qm, QM_NORMAL); 5421 if (ret) { 5422 pci_err(pdev, "failed to stop qm(%d)\n", ret); 5423 return ret; 5424 } 5425 5426 ret = qm_prepare_for_suspend(qm); 5427 if (ret) 5428 pci_err(pdev, "failed to prepare suspended(%d)\n", ret); 5429 5430 return ret; 5431 } 5432 EXPORT_SYMBOL_GPL(hisi_qm_suspend); 5433 5434 /** 5435 * hisi_qm_resume() - Runtime resume of given device. 5436 * @dev: device to resume. 5437 * 5438 * Function that resume the device. 5439 */ 5440 int hisi_qm_resume(struct device *dev) 5441 { 5442 struct pci_dev *pdev = to_pci_dev(dev); 5443 struct hisi_qm *qm = pci_get_drvdata(pdev); 5444 int ret; 5445 5446 pci_info(pdev, "resuming from suspend state\n"); 5447 5448 ret = qm_rebuild_for_resume(qm); 5449 if (ret) { 5450 pci_err(pdev, "failed to rebuild resume(%d)\n", ret); 5451 return ret; 5452 } 5453 5454 ret = hisi_qm_start(qm); 5455 if (ret) { 5456 if (qm_check_dev_error(qm)) { 5457 pci_info(pdev, "failed to start qm due to device error, device will be reset!\n"); 5458 return 0; 5459 } 5460 5461 pci_err(pdev, "failed to start qm(%d)!\n", ret); 5462 } 5463 5464 return ret; 5465 } 5466 EXPORT_SYMBOL_GPL(hisi_qm_resume); 5467 5468 MODULE_LICENSE("GPL v2"); 5469 MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>"); 5470 MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver"); 5471