1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019 HiSilicon Limited. */ 3 #include <asm/page.h> 4 #include <linux/acpi.h> 5 #include <linux/bitmap.h> 6 #include <linux/dma-mapping.h> 7 #include <linux/idr.h> 8 #include <linux/io.h> 9 #include <linux/irqreturn.h> 10 #include <linux/log2.h> 11 #include <linux/pm_runtime.h> 12 #include <linux/seq_file.h> 13 #include <linux/slab.h> 14 #include <linux/uacce.h> 15 #include <linux/uaccess.h> 16 #include <uapi/misc/uacce/hisi_qm.h> 17 #include <linux/hisi_acc_qm.h> 18 #include "qm_common.h" 19 20 /* eq/aeq irq enable */ 21 #define QM_VF_AEQ_INT_SOURCE 0x0 22 #define QM_VF_AEQ_INT_MASK 0x4 23 #define QM_VF_EQ_INT_SOURCE 0x8 24 #define QM_VF_EQ_INT_MASK 0xc 25 26 #define QM_IRQ_VECTOR_MASK GENMASK(15, 0) 27 #define QM_IRQ_TYPE_MASK GENMASK(15, 0) 28 #define QM_IRQ_TYPE_SHIFT 16 29 #define QM_ABN_IRQ_TYPE_MASK GENMASK(7, 0) 30 31 /* mailbox */ 32 #define QM_MB_PING_ALL_VFS 0xffff 33 #define QM_MB_STATUS_MASK GENMASK(12, 9) 34 35 /* sqc shift */ 36 #define QM_SQ_HOP_NUM_SHIFT 0 37 #define QM_SQ_PAGE_SIZE_SHIFT 4 38 #define QM_SQ_BUF_SIZE_SHIFT 8 39 #define QM_SQ_SQE_SIZE_SHIFT 12 40 #define QM_SQ_PRIORITY_SHIFT 0 41 #define QM_SQ_ORDERS_SHIFT 4 42 #define QM_SQ_TYPE_SHIFT 8 43 #define QM_QC_PASID_ENABLE 0x1 44 #define QM_QC_PASID_ENABLE_SHIFT 7 45 46 #define QM_SQ_TYPE_MASK GENMASK(3, 0) 47 #define QM_SQ_TAIL_IDX(sqc) ((le16_to_cpu((sqc).w11) >> 6) & 0x1) 48 #define QM_SQC_DISABLE_QP (1U << 6) 49 #define QM_XQC_RANDOM_DATA 0xaaaa 50 51 /* cqc shift */ 52 #define QM_CQ_HOP_NUM_SHIFT 0 53 #define QM_CQ_PAGE_SIZE_SHIFT 4 54 #define QM_CQ_BUF_SIZE_SHIFT 8 55 #define QM_CQ_CQE_SIZE_SHIFT 12 56 #define QM_CQ_PHASE_SHIFT 0 57 #define QM_CQ_FLAG_SHIFT 1 58 59 #define QM_CQE_PHASE(cqe) (le16_to_cpu((cqe)->w7) & 0x1) 60 #define QM_QC_CQE_SIZE 4 61 #define QM_CQ_TAIL_IDX(cqc) ((le16_to_cpu((cqc).w11) >> 6) & 0x1) 62 63 /* eqc shift */ 64 #define QM_EQE_AEQE_SIZE (2UL << 12) 65 #define QM_EQC_PHASE_SHIFT 16 66 67 #define QM_EQE_PHASE(eqe) ((le32_to_cpu((eqe)->dw0) >> 16) & 0x1) 68 #define QM_EQE_CQN_MASK GENMASK(15, 0) 69 70 #define QM_AEQE_PHASE(aeqe) ((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1) 71 #define QM_AEQE_TYPE_SHIFT 17 72 #define QM_AEQE_TYPE_MASK 0xf 73 #define QM_AEQE_CQN_MASK GENMASK(15, 0) 74 #define QM_CQ_OVERFLOW 0 75 #define QM_EQ_OVERFLOW 1 76 #define QM_CQE_ERROR 2 77 78 #define QM_XQ_DEPTH_SHIFT 16 79 #define QM_XQ_DEPTH_MASK GENMASK(15, 0) 80 81 #define QM_DOORBELL_CMD_SQ 0 82 #define QM_DOORBELL_CMD_CQ 1 83 #define QM_DOORBELL_CMD_EQ 2 84 #define QM_DOORBELL_CMD_AEQ 3 85 86 #define QM_DOORBELL_BASE_V1 0x340 87 #define QM_DB_CMD_SHIFT_V1 16 88 #define QM_DB_INDEX_SHIFT_V1 32 89 #define QM_DB_PRIORITY_SHIFT_V1 48 90 #define QM_PAGE_SIZE 0x0034 91 #define QM_QP_DB_INTERVAL 0x10000 92 #define QM_DB_TIMEOUT_CFG 0x100074 93 #define QM_DB_TIMEOUT_SET 0x1fffff 94 95 #define QM_MEM_START_INIT 0x100040 96 #define QM_MEM_INIT_DONE 0x100044 97 #define QM_VFT_CFG_RDY 0x10006c 98 #define QM_VFT_CFG_OP_WR 0x100058 99 #define QM_VFT_CFG_TYPE 0x10005c 100 #define QM_VFT_CFG 0x100060 101 #define QM_VFT_CFG_OP_ENABLE 0x100054 102 #define QM_PM_CTRL 0x100148 103 #define QM_IDLE_DISABLE BIT(9) 104 105 #define QM_SUB_VERSION_ID 0x210 106 107 #define QM_VFT_CFG_DATA_L 0x100064 108 #define QM_VFT_CFG_DATA_H 0x100068 109 #define QM_SQC_VFT_BUF_SIZE (7ULL << 8) 110 #define QM_SQC_VFT_SQC_SIZE (5ULL << 12) 111 #define QM_SQC_VFT_INDEX_NUMBER (1ULL << 16) 112 #define QM_SQC_VFT_START_SQN_SHIFT 28 113 #define QM_SQC_VFT_VALID (1ULL << 44) 114 #define QM_SQC_VFT_SQN_SHIFT 45 115 #define QM_CQC_VFT_BUF_SIZE (7ULL << 8) 116 #define QM_CQC_VFT_SQC_SIZE (5ULL << 12) 117 #define QM_CQC_VFT_INDEX_NUMBER (1ULL << 16) 118 #define QM_CQC_VFT_VALID (1ULL << 28) 119 120 #define QM_SQC_VFT_BASE_SHIFT_V2 28 121 #define QM_SQC_VFT_BASE_MASK_V2 GENMASK(15, 0) 122 #define QM_SQC_VFT_NUM_SHIFT_V2 45 123 #define QM_SQC_VFT_NUM_MASK_V2 GENMASK(9, 0) 124 #define QM_MAX_QC_TYPE 2 125 126 #define QM_ABNORMAL_INT_SOURCE 0x100000 127 #define QM_ABNORMAL_INT_MASK 0x100004 128 #define QM_ABNORMAL_INT_MASK_VALUE 0x7fff 129 #define QM_ABNORMAL_INT_STATUS 0x100008 130 #define QM_ABNORMAL_INT_SET 0x10000c 131 #define QM_ABNORMAL_INF00 0x100010 132 #define QM_FIFO_OVERFLOW_TYPE 0xc0 133 #define QM_FIFO_OVERFLOW_TYPE_SHIFT 6 134 #define QM_FIFO_OVERFLOW_VF 0x3f 135 #define QM_FIFO_OVERFLOW_QP_SHIFT 16 136 #define QM_ABNORMAL_INF01 0x100014 137 #define QM_DB_TIMEOUT_TYPE 0xc0 138 #define QM_DB_TIMEOUT_TYPE_SHIFT 6 139 #define QM_DB_TIMEOUT_VF 0x3f 140 #define QM_DB_TIMEOUT_QP_SHIFT 16 141 #define QM_ABNORMAL_INF02 0x100018 142 #define QM_AXI_POISON_ERR BIT(22) 143 #define QM_RAS_CE_ENABLE 0x1000ec 144 #define QM_RAS_FE_ENABLE 0x1000f0 145 #define QM_RAS_NFE_ENABLE 0x1000f4 146 #define QM_RAS_CE_THRESHOLD 0x1000f8 147 #define QM_RAS_CE_TIMES_PER_IRQ 1 148 #define QM_OOO_SHUTDOWN_SEL 0x1040f8 149 #define QM_AXI_RRESP_ERR BIT(0) 150 #define QM_DB_TIMEOUT BIT(10) 151 #define QM_OF_FIFO_OF BIT(11) 152 #define QM_RAS_AXI_ERROR (BIT(0) | BIT(1) | BIT(12)) 153 154 #define QM_RESET_WAIT_TIMEOUT 400 155 #define QM_PEH_VENDOR_ID 0x1000d8 156 #define ACC_VENDOR_ID_VALUE 0x5a5a 157 #define QM_PEH_DFX_INFO0 0x1000fc 158 #define QM_PEH_DFX_INFO1 0x100100 159 #define QM_PEH_DFX_MASK (BIT(0) | BIT(2)) 160 #define QM_PEH_MSI_FINISH_MASK GENMASK(19, 16) 161 #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT 3 162 #define ACC_PEH_MSI_DISABLE GENMASK(31, 0) 163 #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN 0x1 164 #define ACC_MASTER_TRANS_RETURN_RW 3 165 #define ACC_MASTER_TRANS_RETURN 0x300150 166 #define ACC_MASTER_GLOBAL_CTRL 0x300000 167 #define ACC_AM_CFG_PORT_WR_EN 0x30001c 168 #define ACC_AM_ROB_ECC_INT_STS 0x300104 169 #define ACC_ROB_ECC_ERR_MULTPL BIT(1) 170 #define QM_MSI_CAP_ENABLE BIT(16) 171 172 /* interfunction communication */ 173 #define QM_IFC_READY_STATUS 0x100128 174 #define QM_IFC_INT_SET_P 0x100130 175 #define QM_IFC_INT_CFG 0x100134 176 #define QM_IFC_INT_SOURCE_P 0x100138 177 #define QM_IFC_INT_SOURCE_V 0x0020 178 #define QM_IFC_INT_MASK 0x0024 179 #define QM_IFC_INT_STATUS 0x0028 180 #define QM_IFC_INT_SET_V 0x002C 181 #define QM_PF2VF_PF_W 0x104700 182 #define QM_VF2PF_PF_R 0x104800 183 #define QM_VF2PF_VF_W 0x320 184 #define QM_PF2VF_VF_R 0x380 185 #define QM_IFC_SEND_ALL_VFS GENMASK(6, 0) 186 #define QM_IFC_INT_SOURCE_CLR GENMASK(63, 0) 187 #define QM_IFC_INT_SOURCE_MASK BIT(0) 188 #define QM_IFC_INT_DISABLE BIT(0) 189 #define QM_IFC_INT_STATUS_MASK BIT(0) 190 #define QM_IFC_INT_SET_MASK BIT(0) 191 #define QM_WAIT_DST_ACK 10 192 #define QM_MAX_PF_WAIT_COUNT 10 193 #define QM_MAX_VF_WAIT_COUNT 40 194 #define QM_VF_RESET_WAIT_US 20000 195 #define QM_VF_RESET_WAIT_CNT 3000 196 #define QM_VF2PF_REG_SIZE 4 197 #define QM_IFC_CMD_MASK GENMASK(31, 0) 198 #define QM_IFC_DATA_SHIFT 32 199 #define QM_VF_RESET_WAIT_TIMEOUT_US \ 200 (QM_VF_RESET_WAIT_US * QM_VF_RESET_WAIT_CNT) 201 202 #define POLL_PERIOD 10 203 #define POLL_TIMEOUT 1000 204 #define WAIT_PERIOD_US_MAX 200 205 #define WAIT_PERIOD_US_MIN 100 206 #define MAX_WAIT_COUNTS 1000 207 #define QM_CACHE_WB_START 0x204 208 #define QM_CACHE_WB_DONE 0x208 209 #define QM_FUNC_CAPS_REG 0x3100 210 #define QM_CAPBILITY_VERSION GENMASK(7, 0) 211 212 #define PCI_BAR_2 2 213 #define PCI_BAR_4 4 214 #define QMC_ALIGN(sz) ALIGN(sz, 32) 215 216 #define QM_DBG_READ_LEN 256 217 #define QM_PCI_COMMAND_INVALID ~0 218 #define QM_RESET_STOP_TX_OFFSET 1 219 #define QM_RESET_STOP_RX_OFFSET 2 220 221 #define WAIT_PERIOD 20 222 #define REMOVE_WAIT_DELAY 10 223 224 #define QM_QOS_PARAM_NUM 2 225 #define QM_QOS_MAX_VAL 1000 226 #define QM_QOS_RATE 100 227 #define QM_QOS_EXPAND_RATE 1000 228 #define QM_SHAPER_CIR_B_MASK GENMASK(7, 0) 229 #define QM_SHAPER_CIR_U_MASK GENMASK(10, 8) 230 #define QM_SHAPER_CIR_S_MASK GENMASK(14, 11) 231 #define QM_SHAPER_FACTOR_CIR_U_SHIFT 8 232 #define QM_SHAPER_FACTOR_CIR_S_SHIFT 11 233 #define QM_SHAPER_FACTOR_CBS_B_SHIFT 15 234 #define QM_SHAPER_FACTOR_CBS_S_SHIFT 19 235 #define QM_SHAPER_CBS_B 1 236 #define QM_SHAPER_VFT_OFFSET 6 237 #define QM_QOS_MIN_ERROR_RATE 5 238 #define QM_SHAPER_MIN_CBS_S 8 239 #define QM_QOS_TICK 0x300U 240 #define QM_QOS_DIVISOR_CLK 0x1f40U 241 #define QM_QOS_MAX_CIR_B 200 242 #define QM_QOS_MIN_CIR_B 100 243 #define QM_QOS_MAX_CIR_U 6 244 #define QM_AUTOSUSPEND_DELAY 3000 245 246 /* abnormal status value for stopping queue */ 247 #define QM_STOP_QUEUE_FAIL 1 248 #define QM_DUMP_SQC_FAIL 3 249 #define QM_DUMP_CQC_FAIL 4 250 #define QM_FINISH_WAIT 5 251 252 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \ 253 (((hop_num) << QM_CQ_HOP_NUM_SHIFT) | \ 254 ((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT) | \ 255 ((buf_sz) << QM_CQ_BUF_SIZE_SHIFT) | \ 256 ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT)) 257 258 #define QM_MK_CQC_DW3_V2(cqe_sz, cq_depth) \ 259 ((((u32)cq_depth) - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT)) 260 261 #define QM_MK_SQC_W13(priority, orders, alg_type) \ 262 (((priority) << QM_SQ_PRIORITY_SHIFT) | \ 263 ((orders) << QM_SQ_ORDERS_SHIFT) | \ 264 (((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT)) 265 266 #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \ 267 (((hop_num) << QM_SQ_HOP_NUM_SHIFT) | \ 268 ((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT) | \ 269 ((buf_sz) << QM_SQ_BUF_SIZE_SHIFT) | \ 270 ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT)) 271 272 #define QM_MK_SQC_DW3_V2(sqe_sz, sq_depth) \ 273 ((((u32)sq_depth) - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT)) 274 275 enum vft_type { 276 SQC_VFT = 0, 277 CQC_VFT, 278 SHAPER_VFT, 279 }; 280 281 enum qm_alg_type { 282 ALG_TYPE_0, 283 ALG_TYPE_1, 284 }; 285 286 enum qm_ifc_cmd { 287 QM_PF_FLR_PREPARE = 0x01, 288 QM_PF_SRST_PREPARE, 289 QM_PF_RESET_DONE, 290 QM_VF_PREPARE_DONE, 291 QM_VF_PREPARE_FAIL, 292 QM_VF_START_DONE, 293 QM_VF_START_FAIL, 294 QM_PF_SET_QOS, 295 QM_VF_GET_QOS, 296 }; 297 298 enum qm_basic_type { 299 QM_TOTAL_QP_NUM_CAP = 0x0, 300 QM_FUNC_MAX_QP_CAP, 301 QM_XEQ_DEPTH_CAP, 302 QM_QP_DEPTH_CAP, 303 QM_EQ_IRQ_TYPE_CAP, 304 QM_AEQ_IRQ_TYPE_CAP, 305 QM_ABN_IRQ_TYPE_CAP, 306 QM_PF2VF_IRQ_TYPE_CAP, 307 QM_PF_IRQ_NUM_CAP, 308 QM_VF_IRQ_NUM_CAP, 309 }; 310 311 enum qm_cap_table_type { 312 QM_CAP_VF = 0x0, 313 QM_AEQE_NUM, 314 QM_SCQE_NUM, 315 QM_EQ_IRQ, 316 QM_AEQ_IRQ, 317 QM_ABNORMAL_IRQ, 318 QM_MB_IRQ, 319 MAX_IRQ_NUM, 320 EXT_BAR_INDEX, 321 }; 322 323 static const struct hisi_qm_cap_query_info qm_cap_query_info[] = { 324 {QM_CAP_VF, "QM_CAP_VF ", 0x3100, 0x0, 0x0, 0x6F01}, 325 {QM_AEQE_NUM, "QM_AEQE_NUM ", 0x3104, 0x800, 0x4000800, 0x4000800}, 326 {QM_SCQE_NUM, "QM_SCQE_NUM ", 327 0x3108, 0x4000400, 0x4000400, 0x4000400}, 328 {QM_EQ_IRQ, "QM_EQ_IRQ ", 0x310c, 0x10000, 0x10000, 0x10000}, 329 {QM_AEQ_IRQ, "QM_AEQ_IRQ ", 0x3110, 0x0, 0x10001, 0x10001}, 330 {QM_ABNORMAL_IRQ, "QM_ABNORMAL_IRQ ", 0x3114, 0x0, 0x10003, 0x10003}, 331 {QM_MB_IRQ, "QM_MB_IRQ ", 0x3118, 0x0, 0x0, 0x10002}, 332 {MAX_IRQ_NUM, "MAX_IRQ_NUM ", 0x311c, 0x10001, 0x40002, 0x40003}, 333 {EXT_BAR_INDEX, "EXT_BAR_INDEX ", 0x3120, 0x0, 0x0, 0x14}, 334 }; 335 336 static const struct hisi_qm_cap_info qm_cap_info_comm[] = { 337 {QM_SUPPORT_DB_ISOLATION, 0x30, 0, BIT(0), 0x0, 0x0, 0x0}, 338 {QM_SUPPORT_FUNC_QOS, 0x3100, 0, BIT(8), 0x0, 0x0, 0x1}, 339 {QM_SUPPORT_STOP_QP, 0x3100, 0, BIT(9), 0x0, 0x0, 0x1}, 340 {QM_SUPPORT_STOP_FUNC, 0x3100, 0, BIT(10), 0x0, 0x0, 0x1}, 341 {QM_SUPPORT_MB_COMMAND, 0x3100, 0, BIT(11), 0x0, 0x0, 0x1}, 342 {QM_SUPPORT_SVA_PREFETCH, 0x3100, 0, BIT(14), 0x0, 0x0, 0x1}, 343 {QM_SUPPORT_DAE, 0x3100, 0, BIT(15), 0x0, 0x0, 0x0}, 344 }; 345 346 static const struct hisi_qm_cap_info qm_cap_info_pf[] = { 347 {QM_SUPPORT_RPM, 0x3100, 0, BIT(13), 0x0, 0x0, 0x1}, 348 }; 349 350 static const struct hisi_qm_cap_info qm_cap_info_vf[] = { 351 {QM_SUPPORT_RPM, 0x3100, 0, BIT(12), 0x0, 0x0, 0x0}, 352 }; 353 354 static const struct hisi_qm_cap_info qm_basic_info[] = { 355 {QM_TOTAL_QP_NUM_CAP, 0x100158, 0, GENMASK(10, 0), 0x1000, 0x400, 0x400}, 356 {QM_FUNC_MAX_QP_CAP, 0x100158, 11, GENMASK(10, 0), 0x1000, 0x400, 0x400}, 357 {QM_XEQ_DEPTH_CAP, 0x3104, 0, GENMASK(31, 0), 0x800, 0x4000800, 0x4000800}, 358 {QM_QP_DEPTH_CAP, 0x3108, 0, GENMASK(31, 0), 0x4000400, 0x4000400, 0x4000400}, 359 {QM_EQ_IRQ_TYPE_CAP, 0x310c, 0, GENMASK(31, 0), 0x10000, 0x10000, 0x10000}, 360 {QM_AEQ_IRQ_TYPE_CAP, 0x3110, 0, GENMASK(31, 0), 0x0, 0x10001, 0x10001}, 361 {QM_ABN_IRQ_TYPE_CAP, 0x3114, 0, GENMASK(31, 0), 0x0, 0x10003, 0x10003}, 362 {QM_PF2VF_IRQ_TYPE_CAP, 0x3118, 0, GENMASK(31, 0), 0x0, 0x0, 0x10002}, 363 {QM_PF_IRQ_NUM_CAP, 0x311c, 16, GENMASK(15, 0), 0x1, 0x4, 0x4}, 364 {QM_VF_IRQ_NUM_CAP, 0x311c, 0, GENMASK(15, 0), 0x1, 0x2, 0x3}, 365 }; 366 367 struct qm_mailbox { 368 __le16 w0; 369 __le16 queue_num; 370 __le32 base_l; 371 __le32 base_h; 372 __le32 rsvd; 373 }; 374 375 struct qm_doorbell { 376 __le16 queue_num; 377 __le16 cmd; 378 __le16 index; 379 __le16 priority; 380 }; 381 382 struct hisi_qm_resource { 383 struct hisi_qm *qm; 384 int distance; 385 struct list_head list; 386 }; 387 388 /** 389 * struct qm_hw_err - Structure describing the device errors 390 * @list: hardware error list 391 * @timestamp: timestamp when the error occurred 392 */ 393 struct qm_hw_err { 394 struct list_head list; 395 unsigned long long timestamp; 396 }; 397 398 struct hisi_qm_hw_ops { 399 int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number); 400 void (*qm_db)(struct hisi_qm *qm, u16 qn, 401 u8 cmd, u16 index, u8 priority); 402 int (*debug_init)(struct hisi_qm *qm); 403 void (*hw_error_init)(struct hisi_qm *qm); 404 void (*hw_error_uninit)(struct hisi_qm *qm); 405 enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm); 406 int (*set_msi)(struct hisi_qm *qm, bool set); 407 408 /* (u64)msg = (u32)data << 32 | (enum qm_ifc_cmd)cmd */ 409 int (*set_ifc_begin)(struct hisi_qm *qm, enum qm_ifc_cmd cmd, u32 data, u32 fun_num); 410 void (*set_ifc_end)(struct hisi_qm *qm); 411 int (*get_ifc)(struct hisi_qm *qm, enum qm_ifc_cmd *cmd, u32 *data, u32 fun_num); 412 }; 413 414 struct hisi_qm_hw_error { 415 u32 int_msk; 416 const char *msg; 417 }; 418 419 static const struct hisi_qm_hw_error qm_hw_error[] = { 420 { .int_msk = BIT(0), .msg = "qm_axi_rresp" }, 421 { .int_msk = BIT(1), .msg = "qm_axi_bresp" }, 422 { .int_msk = BIT(2), .msg = "qm_ecc_mbit" }, 423 { .int_msk = BIT(3), .msg = "qm_ecc_1bit" }, 424 { .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" }, 425 { .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" }, 426 { .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" }, 427 { .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" }, 428 { .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" }, 429 { .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" }, 430 { .int_msk = BIT(10), .msg = "qm_db_timeout" }, 431 { .int_msk = BIT(11), .msg = "qm_of_fifo_of" }, 432 { .int_msk = BIT(12), .msg = "qm_db_random_invalid" }, 433 { .int_msk = BIT(13), .msg = "qm_mailbox_timeout" }, 434 { .int_msk = BIT(14), .msg = "qm_flr_timeout" }, 435 }; 436 437 static const char * const qm_db_timeout[] = { 438 "sq", "cq", "eq", "aeq", 439 }; 440 441 static const char * const qm_fifo_overflow[] = { 442 "cq", "eq", "aeq", 443 }; 444 445 struct qm_typical_qos_table { 446 u32 start; 447 u32 end; 448 u32 val; 449 }; 450 451 /* the qos step is 100 */ 452 static struct qm_typical_qos_table shaper_cir_s[] = { 453 {100, 100, 4}, 454 {200, 200, 3}, 455 {300, 500, 2}, 456 {600, 1000, 1}, 457 {1100, 100000, 0}, 458 }; 459 460 static struct qm_typical_qos_table shaper_cbs_s[] = { 461 {100, 200, 9}, 462 {300, 500, 11}, 463 {600, 1000, 12}, 464 {1100, 10000, 16}, 465 {10100, 25000, 17}, 466 {25100, 50000, 18}, 467 {50100, 100000, 19} 468 }; 469 470 static void qm_irqs_unregister(struct hisi_qm *qm); 471 static int qm_reset_device(struct hisi_qm *qm); 472 int hisi_qm_q_num_set(const char *val, const struct kernel_param *kp, 473 unsigned int device) 474 { 475 struct pci_dev *pdev; 476 u32 n, q_num; 477 int ret; 478 479 if (!val) 480 return -EINVAL; 481 482 pdev = pci_get_device(PCI_VENDOR_ID_HUAWEI, device, NULL); 483 if (!pdev) { 484 q_num = min_t(u32, QM_QNUM_V1, QM_QNUM_V2); 485 pr_info("No device found currently, suppose queue number is %u\n", 486 q_num); 487 } else { 488 if (pdev->revision == QM_HW_V1) 489 q_num = QM_QNUM_V1; 490 else 491 q_num = QM_QNUM_V2; 492 493 pci_dev_put(pdev); 494 } 495 496 ret = kstrtou32(val, 10, &n); 497 if (ret || n < QM_MIN_QNUM || n > q_num) 498 return -EINVAL; 499 500 return param_set_int(val, kp); 501 } 502 EXPORT_SYMBOL_GPL(hisi_qm_q_num_set); 503 504 static u32 qm_get_hw_error_status(struct hisi_qm *qm) 505 { 506 return readl(qm->io_base + QM_ABNORMAL_INT_STATUS); 507 } 508 509 static u32 qm_get_dev_err_status(struct hisi_qm *qm) 510 { 511 return qm->err_ini->get_dev_hw_err_status(qm); 512 } 513 514 /* Check if the error causes the master ooo block */ 515 static bool qm_check_dev_error(struct hisi_qm *qm) 516 { 517 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 518 u32 err_status; 519 520 if (pf_qm->fun_type == QM_HW_VF) 521 return false; 522 523 err_status = qm_get_hw_error_status(pf_qm); 524 if (err_status & pf_qm->err_info.qm_err.shutdown_mask) 525 return true; 526 527 if (pf_qm->err_ini->dev_is_abnormal) 528 return pf_qm->err_ini->dev_is_abnormal(pf_qm); 529 530 return false; 531 } 532 533 static int qm_wait_reset_finish(struct hisi_qm *qm) 534 { 535 int delay = 0; 536 537 /* All reset requests need to be queued for processing */ 538 while (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 539 msleep(++delay); 540 if (delay > QM_RESET_WAIT_TIMEOUT) 541 return -EBUSY; 542 } 543 544 return 0; 545 } 546 547 static int qm_reset_prepare_ready(struct hisi_qm *qm) 548 { 549 struct pci_dev *pdev = qm->pdev; 550 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 551 552 /* 553 * PF and VF on host doesnot support resetting at the 554 * same time on Kunpeng920. 555 */ 556 if (qm->ver < QM_HW_V3) 557 return qm_wait_reset_finish(pf_qm); 558 559 return qm_wait_reset_finish(qm); 560 } 561 562 static void qm_reset_bit_clear(struct hisi_qm *qm) 563 { 564 struct pci_dev *pdev = qm->pdev; 565 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 566 567 if (qm->ver < QM_HW_V3) 568 clear_bit(QM_RESETTING, &pf_qm->misc_ctl); 569 570 clear_bit(QM_RESETTING, &qm->misc_ctl); 571 } 572 573 static void qm_mb_pre_init(struct qm_mailbox *mailbox, u8 cmd, 574 u64 base, u16 queue, bool op) 575 { 576 mailbox->w0 = cpu_to_le16((cmd) | 577 ((op) ? 0x1 << QM_MB_OP_SHIFT : 0) | 578 (0x1 << QM_MB_BUSY_SHIFT)); 579 mailbox->queue_num = cpu_to_le16(queue); 580 mailbox->base_l = cpu_to_le32(lower_32_bits(base)); 581 mailbox->base_h = cpu_to_le32(upper_32_bits(base)); 582 mailbox->rsvd = 0; 583 } 584 585 /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */ 586 int hisi_qm_wait_mb_ready(struct hisi_qm *qm) 587 { 588 u32 val; 589 590 return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE, 591 val, !((val >> QM_MB_BUSY_SHIFT) & 592 0x1), POLL_PERIOD, POLL_TIMEOUT); 593 } 594 EXPORT_SYMBOL_GPL(hisi_qm_wait_mb_ready); 595 596 /* 128 bit should be written to hardware at one time to trigger a mailbox */ 597 static void qm_mb_write(struct hisi_qm *qm, const void *src) 598 { 599 void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE; 600 601 #if IS_ENABLED(CONFIG_ARM64) 602 unsigned long tmp0 = 0, tmp1 = 0; 603 #endif 604 605 if (!IS_ENABLED(CONFIG_ARM64)) { 606 memcpy_toio(fun_base, src, 16); 607 dma_wmb(); 608 return; 609 } 610 611 #if IS_ENABLED(CONFIG_ARM64) 612 asm volatile("ldp %0, %1, %3\n" 613 "stp %0, %1, %2\n" 614 "dmb oshst\n" 615 : "=&r" (tmp0), 616 "=&r" (tmp1), 617 "+Q" (*((char __iomem *)fun_base)) 618 : "Q" (*((char *)src)) 619 : "memory"); 620 #endif 621 } 622 623 static int qm_mb_nolock(struct hisi_qm *qm, struct qm_mailbox *mailbox) 624 { 625 int ret; 626 u32 val; 627 628 if (unlikely(hisi_qm_wait_mb_ready(qm))) { 629 dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n"); 630 ret = -EBUSY; 631 goto mb_busy; 632 } 633 634 qm_mb_write(qm, mailbox); 635 636 if (unlikely(hisi_qm_wait_mb_ready(qm))) { 637 dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n"); 638 ret = -ETIMEDOUT; 639 goto mb_busy; 640 } 641 642 val = readl(qm->io_base + QM_MB_CMD_SEND_BASE); 643 if (val & QM_MB_STATUS_MASK) { 644 dev_err(&qm->pdev->dev, "QM mailbox operation failed!\n"); 645 ret = -EIO; 646 goto mb_busy; 647 } 648 649 return 0; 650 651 mb_busy: 652 atomic64_inc(&qm->debug.dfx.mb_err_cnt); 653 return ret; 654 } 655 656 int hisi_qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue, 657 bool op) 658 { 659 struct qm_mailbox mailbox; 660 int ret; 661 662 qm_mb_pre_init(&mailbox, cmd, dma_addr, queue, op); 663 664 mutex_lock(&qm->mailbox_lock); 665 ret = qm_mb_nolock(qm, &mailbox); 666 mutex_unlock(&qm->mailbox_lock); 667 668 return ret; 669 } 670 EXPORT_SYMBOL_GPL(hisi_qm_mb); 671 672 /* op 0: set xqc information to hardware, 1: get xqc information from hardware. */ 673 int qm_set_and_get_xqc(struct hisi_qm *qm, u8 cmd, void *xqc, u32 qp_id, bool op) 674 { 675 struct qm_mailbox mailbox; 676 dma_addr_t xqc_dma; 677 void *tmp_xqc; 678 size_t size; 679 int ret; 680 681 switch (cmd) { 682 case QM_MB_CMD_SQC: 683 size = sizeof(struct qm_sqc); 684 tmp_xqc = qm->xqc_buf.sqc; 685 xqc_dma = qm->xqc_buf.sqc_dma; 686 break; 687 case QM_MB_CMD_CQC: 688 size = sizeof(struct qm_cqc); 689 tmp_xqc = qm->xqc_buf.cqc; 690 xqc_dma = qm->xqc_buf.cqc_dma; 691 break; 692 case QM_MB_CMD_EQC: 693 size = sizeof(struct qm_eqc); 694 tmp_xqc = qm->xqc_buf.eqc; 695 xqc_dma = qm->xqc_buf.eqc_dma; 696 break; 697 case QM_MB_CMD_AEQC: 698 size = sizeof(struct qm_aeqc); 699 tmp_xqc = qm->xqc_buf.aeqc; 700 xqc_dma = qm->xqc_buf.aeqc_dma; 701 break; 702 default: 703 dev_err(&qm->pdev->dev, "unknown mailbox cmd %u\n", cmd); 704 return -EINVAL; 705 } 706 707 /* Setting xqc will fail if master OOO is blocked. */ 708 if (qm_check_dev_error(qm)) { 709 dev_err(&qm->pdev->dev, "failed to send mailbox since qm is stop!\n"); 710 return -EIO; 711 } 712 713 mutex_lock(&qm->mailbox_lock); 714 if (!op) 715 memcpy(tmp_xqc, xqc, size); 716 717 qm_mb_pre_init(&mailbox, cmd, xqc_dma, qp_id, op); 718 ret = qm_mb_nolock(qm, &mailbox); 719 if (!ret && op) 720 memcpy(xqc, tmp_xqc, size); 721 722 mutex_unlock(&qm->mailbox_lock); 723 724 return ret; 725 } 726 727 static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 728 { 729 u64 doorbell; 730 731 doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) | 732 ((u64)index << QM_DB_INDEX_SHIFT_V1) | 733 ((u64)priority << QM_DB_PRIORITY_SHIFT_V1); 734 735 writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1); 736 } 737 738 static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 739 { 740 void __iomem *io_base = qm->io_base; 741 u16 randata = 0; 742 u64 doorbell; 743 744 if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ) 745 io_base = qm->db_io_base + (u64)qn * qm->db_interval + 746 QM_DOORBELL_SQ_CQ_BASE_V2; 747 else 748 io_base += QM_DOORBELL_EQ_AEQ_BASE_V2; 749 750 doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) | 751 ((u64)randata << QM_DB_RAND_SHIFT_V2) | 752 ((u64)index << QM_DB_INDEX_SHIFT_V2) | 753 ((u64)priority << QM_DB_PRIORITY_SHIFT_V2); 754 755 writeq(doorbell, io_base); 756 } 757 758 static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 759 { 760 dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n", 761 qn, cmd, index); 762 763 qm->ops->qm_db(qm, qn, cmd, index, priority); 764 } 765 766 static void qm_disable_clock_gate(struct hisi_qm *qm) 767 { 768 u32 val; 769 770 /* if qm enables clock gating in Kunpeng930, qos will be inaccurate. */ 771 if (qm->ver < QM_HW_V3) 772 return; 773 774 val = readl(qm->io_base + QM_PM_CTRL); 775 val |= QM_IDLE_DISABLE; 776 writel(val, qm->io_base + QM_PM_CTRL); 777 } 778 779 static int qm_dev_mem_reset(struct hisi_qm *qm) 780 { 781 u32 val; 782 783 writel(0x1, qm->io_base + QM_MEM_START_INIT); 784 return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val, 785 val & BIT(0), POLL_PERIOD, 786 POLL_TIMEOUT); 787 } 788 789 /** 790 * hisi_qm_get_hw_info() - Get device information. 791 * @qm: The qm which want to get information. 792 * @info_table: Array for storing device information. 793 * @index: Index in info_table. 794 * @is_read: Whether read from reg, 0: not support read from reg. 795 * 796 * This function returns device information the caller needs. 797 */ 798 u32 hisi_qm_get_hw_info(struct hisi_qm *qm, 799 const struct hisi_qm_cap_info *info_table, 800 u32 index, bool is_read) 801 { 802 u32 val; 803 804 switch (qm->ver) { 805 case QM_HW_V1: 806 return info_table[index].v1_val; 807 case QM_HW_V2: 808 return info_table[index].v2_val; 809 default: 810 if (!is_read) 811 return info_table[index].v3_val; 812 813 val = readl(qm->io_base + info_table[index].offset); 814 return (val >> info_table[index].shift) & info_table[index].mask; 815 } 816 } 817 EXPORT_SYMBOL_GPL(hisi_qm_get_hw_info); 818 819 u32 hisi_qm_get_cap_value(struct hisi_qm *qm, 820 const struct hisi_qm_cap_query_info *info_table, 821 u32 index, bool is_read) 822 { 823 u32 val; 824 825 switch (qm->ver) { 826 case QM_HW_V1: 827 return info_table[index].v1_val; 828 case QM_HW_V2: 829 return info_table[index].v2_val; 830 default: 831 if (!is_read) 832 return info_table[index].v3_val; 833 834 val = readl(qm->io_base + info_table[index].offset); 835 return val; 836 } 837 } 838 EXPORT_SYMBOL_GPL(hisi_qm_get_cap_value); 839 840 static void qm_get_xqc_depth(struct hisi_qm *qm, u16 *low_bits, 841 u16 *high_bits, enum qm_basic_type type) 842 { 843 u32 depth; 844 845 depth = hisi_qm_get_hw_info(qm, qm_basic_info, type, qm->cap_ver); 846 *low_bits = depth & QM_XQ_DEPTH_MASK; 847 *high_bits = (depth >> QM_XQ_DEPTH_SHIFT) & QM_XQ_DEPTH_MASK; 848 } 849 850 int hisi_qm_set_algs(struct hisi_qm *qm, u64 alg_msk, const struct qm_dev_alg *dev_algs, 851 u32 dev_algs_size) 852 { 853 struct device *dev = &qm->pdev->dev; 854 char *algs, *ptr; 855 int i; 856 857 if (!qm->uacce) 858 return 0; 859 860 if (dev_algs_size >= QM_DEV_ALG_MAX_LEN) { 861 dev_err(dev, "algs size %u is equal or larger than %d.\n", 862 dev_algs_size, QM_DEV_ALG_MAX_LEN); 863 return -EINVAL; 864 } 865 866 algs = devm_kzalloc(dev, QM_DEV_ALG_MAX_LEN, GFP_KERNEL); 867 if (!algs) 868 return -ENOMEM; 869 870 for (i = 0; i < dev_algs_size; i++) 871 if (alg_msk & dev_algs[i].alg_msk) 872 strcat(algs, dev_algs[i].alg); 873 874 ptr = strrchr(algs, '\n'); 875 if (ptr) 876 *ptr = '\0'; 877 878 qm->uacce->algs = algs; 879 880 return 0; 881 } 882 EXPORT_SYMBOL_GPL(hisi_qm_set_algs); 883 884 static u32 qm_get_irq_num(struct hisi_qm *qm) 885 { 886 if (qm->fun_type == QM_HW_PF) 887 return hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF_IRQ_NUM_CAP, qm->cap_ver); 888 889 return hisi_qm_get_hw_info(qm, qm_basic_info, QM_VF_IRQ_NUM_CAP, qm->cap_ver); 890 } 891 892 static int qm_pm_get_sync(struct hisi_qm *qm) 893 { 894 struct device *dev = &qm->pdev->dev; 895 int ret; 896 897 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 898 return 0; 899 900 ret = pm_runtime_resume_and_get(dev); 901 if (ret < 0) { 902 dev_err(dev, "failed to get_sync(%d).\n", ret); 903 return ret; 904 } 905 906 return 0; 907 } 908 909 static void qm_pm_put_sync(struct hisi_qm *qm) 910 { 911 struct device *dev = &qm->pdev->dev; 912 913 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 914 return; 915 916 pm_runtime_put_autosuspend(dev); 917 } 918 919 static void qm_cq_head_update(struct hisi_qp *qp) 920 { 921 if (qp->qp_status.cq_head == qp->cq_depth - 1) { 922 qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase; 923 qp->qp_status.cq_head = 0; 924 } else { 925 qp->qp_status.cq_head++; 926 } 927 } 928 929 static void qm_poll_req_cb(struct hisi_qp *qp) 930 { 931 struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head; 932 struct hisi_qm *qm = qp->qm; 933 934 while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) { 935 dma_rmb(); 936 qp->req_cb(qp, qp->sqe + qm->sqe_size * 937 le16_to_cpu(cqe->sq_head)); 938 qm_cq_head_update(qp); 939 cqe = qp->cqe + qp->qp_status.cq_head; 940 qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, 941 qp->qp_status.cq_head, 0); 942 atomic_dec(&qp->qp_status.used); 943 944 cond_resched(); 945 } 946 947 /* set c_flag */ 948 qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, qp->qp_status.cq_head, 1); 949 } 950 951 static void qm_work_process(struct work_struct *work) 952 { 953 struct hisi_qm_poll_data *poll_data = 954 container_of(work, struct hisi_qm_poll_data, work); 955 struct hisi_qm *qm = poll_data->qm; 956 u16 eqe_num = poll_data->eqe_num; 957 struct hisi_qp *qp; 958 int i; 959 960 for (i = eqe_num - 1; i >= 0; i--) { 961 qp = &qm->qp_array[poll_data->qp_finish_id[i]]; 962 if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP)) 963 continue; 964 965 if (qp->event_cb) { 966 qp->event_cb(qp); 967 continue; 968 } 969 970 if (likely(qp->req_cb)) 971 qm_poll_req_cb(qp); 972 } 973 } 974 975 static void qm_get_complete_eqe_num(struct hisi_qm *qm) 976 { 977 struct qm_eqe *eqe = qm->eqe + qm->status.eq_head; 978 struct hisi_qm_poll_data *poll_data = NULL; 979 u16 eq_depth = qm->eq_depth; 980 u16 cqn, eqe_num = 0; 981 982 if (QM_EQE_PHASE(eqe) != qm->status.eqc_phase) { 983 atomic64_inc(&qm->debug.dfx.err_irq_cnt); 984 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 985 return; 986 } 987 988 cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK; 989 if (unlikely(cqn >= qm->qp_num)) 990 return; 991 poll_data = &qm->poll_data[cqn]; 992 993 while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) { 994 cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK; 995 poll_data->qp_finish_id[eqe_num] = cqn; 996 eqe_num++; 997 998 if (qm->status.eq_head == eq_depth - 1) { 999 qm->status.eqc_phase = !qm->status.eqc_phase; 1000 eqe = qm->eqe; 1001 qm->status.eq_head = 0; 1002 } else { 1003 eqe++; 1004 qm->status.eq_head++; 1005 } 1006 1007 if (eqe_num == (eq_depth >> 1) - 1) 1008 break; 1009 } 1010 1011 poll_data->eqe_num = eqe_num; 1012 queue_work(qm->wq, &poll_data->work); 1013 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 1014 } 1015 1016 static irqreturn_t qm_eq_irq(int irq, void *data) 1017 { 1018 struct hisi_qm *qm = data; 1019 1020 /* Get qp id of completed tasks and re-enable the interrupt */ 1021 qm_get_complete_eqe_num(qm); 1022 1023 return IRQ_HANDLED; 1024 } 1025 1026 static irqreturn_t qm_mb_cmd_irq(int irq, void *data) 1027 { 1028 struct hisi_qm *qm = data; 1029 u32 val; 1030 1031 val = readl(qm->io_base + QM_IFC_INT_STATUS); 1032 val &= QM_IFC_INT_STATUS_MASK; 1033 if (!val) 1034 return IRQ_NONE; 1035 1036 if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl)) { 1037 dev_warn(&qm->pdev->dev, "Driver is down, message cannot be processed!\n"); 1038 return IRQ_HANDLED; 1039 } 1040 1041 schedule_work(&qm->cmd_process); 1042 1043 return IRQ_HANDLED; 1044 } 1045 1046 static void qm_set_qp_disable(struct hisi_qp *qp, int offset) 1047 { 1048 u32 *addr; 1049 1050 if (qp->is_in_kernel) 1051 return; 1052 1053 addr = (u32 *)(qp->qdma.va + qp->qdma.size) - offset; 1054 *addr = 1; 1055 1056 /* make sure setup is completed */ 1057 smp_wmb(); 1058 } 1059 1060 static void qm_disable_qp(struct hisi_qm *qm, u32 qp_id) 1061 { 1062 struct hisi_qp *qp = &qm->qp_array[qp_id]; 1063 1064 qm_set_qp_disable(qp, QM_RESET_STOP_TX_OFFSET); 1065 hisi_qm_stop_qp(qp); 1066 qm_set_qp_disable(qp, QM_RESET_STOP_RX_OFFSET); 1067 } 1068 1069 static void qm_reset_function(struct hisi_qm *qm) 1070 { 1071 struct device *dev = &qm->pdev->dev; 1072 int ret; 1073 1074 if (qm_check_dev_error(qm)) 1075 return; 1076 1077 ret = qm_reset_prepare_ready(qm); 1078 if (ret) { 1079 dev_err(dev, "reset function not ready\n"); 1080 return; 1081 } 1082 1083 ret = hisi_qm_stop(qm, QM_DOWN); 1084 if (ret) { 1085 dev_err(dev, "failed to stop qm when reset function\n"); 1086 goto clear_bit; 1087 } 1088 1089 ret = hisi_qm_start(qm); 1090 if (ret) 1091 dev_err(dev, "failed to start qm when reset function\n"); 1092 1093 clear_bit: 1094 qm_reset_bit_clear(qm); 1095 } 1096 1097 static irqreturn_t qm_aeq_thread(int irq, void *data) 1098 { 1099 struct hisi_qm *qm = data; 1100 struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head; 1101 u16 aeq_depth = qm->aeq_depth; 1102 u32 type, qp_id; 1103 1104 atomic64_inc(&qm->debug.dfx.aeq_irq_cnt); 1105 1106 while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) { 1107 type = (le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT) & 1108 QM_AEQE_TYPE_MASK; 1109 qp_id = le32_to_cpu(aeqe->dw0) & QM_AEQE_CQN_MASK; 1110 1111 switch (type) { 1112 case QM_EQ_OVERFLOW: 1113 dev_err(&qm->pdev->dev, "eq overflow, reset function\n"); 1114 qm_reset_function(qm); 1115 return IRQ_HANDLED; 1116 case QM_CQ_OVERFLOW: 1117 dev_err(&qm->pdev->dev, "cq overflow, stop qp(%u)\n", 1118 qp_id); 1119 fallthrough; 1120 case QM_CQE_ERROR: 1121 qm_disable_qp(qm, qp_id); 1122 break; 1123 default: 1124 dev_err(&qm->pdev->dev, "unknown error type %u\n", 1125 type); 1126 break; 1127 } 1128 1129 if (qm->status.aeq_head == aeq_depth - 1) { 1130 qm->status.aeqc_phase = !qm->status.aeqc_phase; 1131 aeqe = qm->aeqe; 1132 qm->status.aeq_head = 0; 1133 } else { 1134 aeqe++; 1135 qm->status.aeq_head++; 1136 } 1137 } 1138 1139 qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0); 1140 1141 return IRQ_HANDLED; 1142 } 1143 1144 static void qm_init_qp_status(struct hisi_qp *qp) 1145 { 1146 struct hisi_qp_status *qp_status = &qp->qp_status; 1147 1148 qp_status->sq_tail = 0; 1149 qp_status->cq_head = 0; 1150 qp_status->cqc_phase = true; 1151 atomic_set(&qp_status->used, 0); 1152 } 1153 1154 static void qm_init_prefetch(struct hisi_qm *qm) 1155 { 1156 struct device *dev = &qm->pdev->dev; 1157 u32 page_type = 0x0; 1158 1159 if (!test_bit(QM_SUPPORT_SVA_PREFETCH, &qm->caps)) 1160 return; 1161 1162 switch (PAGE_SIZE) { 1163 case SZ_4K: 1164 page_type = 0x0; 1165 break; 1166 case SZ_16K: 1167 page_type = 0x1; 1168 break; 1169 case SZ_64K: 1170 page_type = 0x2; 1171 break; 1172 default: 1173 dev_err(dev, "system page size is not support: %lu, default set to 4KB", 1174 PAGE_SIZE); 1175 } 1176 1177 writel(page_type, qm->io_base + QM_PAGE_SIZE); 1178 } 1179 1180 /* 1181 * acc_shaper_para_calc() Get the IR value by the qos formula, the return value 1182 * is the expected qos calculated. 1183 * the formula: 1184 * IR = X Mbps if ir = 1 means IR = 100 Mbps, if ir = 10000 means = 10Gbps 1185 * 1186 * IR_b * (2 ^ IR_u) * 8000 1187 * IR(Mbps) = ------------------------- 1188 * Tick * (2 ^ IR_s) 1189 */ 1190 static u32 acc_shaper_para_calc(u64 cir_b, u64 cir_u, u64 cir_s) 1191 { 1192 return ((cir_b * QM_QOS_DIVISOR_CLK) * (1 << cir_u)) / 1193 (QM_QOS_TICK * (1 << cir_s)); 1194 } 1195 1196 static u32 acc_shaper_calc_cbs_s(u32 ir) 1197 { 1198 int table_size = ARRAY_SIZE(shaper_cbs_s); 1199 int i; 1200 1201 for (i = 0; i < table_size; i++) { 1202 if (ir >= shaper_cbs_s[i].start && ir <= shaper_cbs_s[i].end) 1203 return shaper_cbs_s[i].val; 1204 } 1205 1206 return QM_SHAPER_MIN_CBS_S; 1207 } 1208 1209 static u32 acc_shaper_calc_cir_s(u32 ir) 1210 { 1211 int table_size = ARRAY_SIZE(shaper_cir_s); 1212 int i; 1213 1214 for (i = 0; i < table_size; i++) { 1215 if (ir >= shaper_cir_s[i].start && ir <= shaper_cir_s[i].end) 1216 return shaper_cir_s[i].val; 1217 } 1218 1219 return 0; 1220 } 1221 1222 static int qm_get_shaper_para(u32 ir, struct qm_shaper_factor *factor) 1223 { 1224 u32 cir_b, cir_u, cir_s, ir_calc; 1225 u32 error_rate; 1226 1227 factor->cbs_s = acc_shaper_calc_cbs_s(ir); 1228 cir_s = acc_shaper_calc_cir_s(ir); 1229 1230 for (cir_b = QM_QOS_MIN_CIR_B; cir_b <= QM_QOS_MAX_CIR_B; cir_b++) { 1231 for (cir_u = 0; cir_u <= QM_QOS_MAX_CIR_U; cir_u++) { 1232 ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s); 1233 1234 error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir; 1235 if (error_rate <= QM_QOS_MIN_ERROR_RATE) { 1236 factor->cir_b = cir_b; 1237 factor->cir_u = cir_u; 1238 factor->cir_s = cir_s; 1239 return 0; 1240 } 1241 } 1242 } 1243 1244 return -EINVAL; 1245 } 1246 1247 static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base, 1248 u32 number, struct qm_shaper_factor *factor) 1249 { 1250 u64 tmp = 0; 1251 1252 if (number > 0) { 1253 switch (type) { 1254 case SQC_VFT: 1255 if (qm->ver == QM_HW_V1) { 1256 tmp = QM_SQC_VFT_BUF_SIZE | 1257 QM_SQC_VFT_SQC_SIZE | 1258 QM_SQC_VFT_INDEX_NUMBER | 1259 QM_SQC_VFT_VALID | 1260 (u64)base << QM_SQC_VFT_START_SQN_SHIFT; 1261 } else { 1262 tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT | 1263 QM_SQC_VFT_VALID | 1264 (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT; 1265 } 1266 break; 1267 case CQC_VFT: 1268 if (qm->ver == QM_HW_V1) { 1269 tmp = QM_CQC_VFT_BUF_SIZE | 1270 QM_CQC_VFT_SQC_SIZE | 1271 QM_CQC_VFT_INDEX_NUMBER | 1272 QM_CQC_VFT_VALID; 1273 } else { 1274 tmp = QM_CQC_VFT_VALID; 1275 } 1276 break; 1277 case SHAPER_VFT: 1278 if (factor) { 1279 tmp = factor->cir_b | 1280 (factor->cir_u << QM_SHAPER_FACTOR_CIR_U_SHIFT) | 1281 (factor->cir_s << QM_SHAPER_FACTOR_CIR_S_SHIFT) | 1282 (QM_SHAPER_CBS_B << QM_SHAPER_FACTOR_CBS_B_SHIFT) | 1283 (factor->cbs_s << QM_SHAPER_FACTOR_CBS_S_SHIFT); 1284 } 1285 break; 1286 } 1287 } 1288 1289 writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L); 1290 writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H); 1291 } 1292 1293 static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type, 1294 u32 fun_num, u32 base, u32 number) 1295 { 1296 struct qm_shaper_factor *factor = NULL; 1297 unsigned int val; 1298 int ret; 1299 1300 if (type == SHAPER_VFT && test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 1301 factor = &qm->factor[fun_num]; 1302 1303 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 1304 val & BIT(0), POLL_PERIOD, 1305 POLL_TIMEOUT); 1306 if (ret) 1307 return ret; 1308 1309 writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR); 1310 writel(type, qm->io_base + QM_VFT_CFG_TYPE); 1311 if (type == SHAPER_VFT) 1312 fun_num |= base << QM_SHAPER_VFT_OFFSET; 1313 1314 writel(fun_num, qm->io_base + QM_VFT_CFG); 1315 1316 qm_vft_data_cfg(qm, type, base, number, factor); 1317 1318 writel(0x0, qm->io_base + QM_VFT_CFG_RDY); 1319 writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE); 1320 1321 return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 1322 val & BIT(0), POLL_PERIOD, 1323 POLL_TIMEOUT); 1324 } 1325 1326 static int qm_shaper_init_vft(struct hisi_qm *qm, u32 fun_num) 1327 { 1328 u32 qos = qm->factor[fun_num].func_qos; 1329 int ret, i; 1330 1331 ret = qm_get_shaper_para(qos * QM_QOS_RATE, &qm->factor[fun_num]); 1332 if (ret) { 1333 dev_err(&qm->pdev->dev, "failed to calculate shaper parameter!\n"); 1334 return ret; 1335 } 1336 writel(qm->type_rate, qm->io_base + QM_SHAPER_CFG); 1337 for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) { 1338 /* The base number of queue reuse for different alg type */ 1339 ret = qm_set_vft_common(qm, SHAPER_VFT, fun_num, i, 1); 1340 if (ret) 1341 return ret; 1342 } 1343 1344 return 0; 1345 } 1346 1347 /* The config should be conducted after qm_dev_mem_reset() */ 1348 static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base, 1349 u32 number) 1350 { 1351 int ret, i; 1352 1353 for (i = SQC_VFT; i <= CQC_VFT; i++) { 1354 ret = qm_set_vft_common(qm, i, fun_num, base, number); 1355 if (ret) 1356 return ret; 1357 } 1358 1359 /* init default shaper qos val */ 1360 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) { 1361 ret = qm_shaper_init_vft(qm, fun_num); 1362 if (ret) 1363 goto back_sqc_cqc; 1364 } 1365 1366 return 0; 1367 back_sqc_cqc: 1368 for (i = SQC_VFT; i <= CQC_VFT; i++) 1369 qm_set_vft_common(qm, i, fun_num, 0, 0); 1370 1371 return ret; 1372 } 1373 1374 static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number) 1375 { 1376 u64 sqc_vft; 1377 int ret; 1378 1379 ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1); 1380 if (ret) 1381 return ret; 1382 1383 sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) | 1384 ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32); 1385 *base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2); 1386 *number = (QM_SQC_VFT_NUM_MASK_V2 & 1387 (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1; 1388 1389 return 0; 1390 } 1391 1392 static void qm_hw_error_init_v1(struct hisi_qm *qm) 1393 { 1394 writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK); 1395 } 1396 1397 static void qm_hw_error_cfg(struct hisi_qm *qm) 1398 { 1399 struct hisi_qm_err_mask *qm_err = &qm->err_info.qm_err; 1400 1401 qm->error_mask = qm_err->nfe | qm_err->ce | qm_err->fe; 1402 /* clear QM hw residual error source */ 1403 writel(qm->error_mask, qm->io_base + QM_ABNORMAL_INT_SOURCE); 1404 1405 /* configure error type */ 1406 writel(qm_err->ce, qm->io_base + QM_RAS_CE_ENABLE); 1407 writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD); 1408 writel(qm_err->nfe, qm->io_base + QM_RAS_NFE_ENABLE); 1409 writel(qm_err->fe, qm->io_base + QM_RAS_FE_ENABLE); 1410 } 1411 1412 static void qm_hw_error_init_v2(struct hisi_qm *qm) 1413 { 1414 u32 irq_unmask; 1415 1416 qm_hw_error_cfg(qm); 1417 1418 irq_unmask = ~qm->error_mask; 1419 irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1420 writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK); 1421 } 1422 1423 static void qm_hw_error_uninit_v2(struct hisi_qm *qm) 1424 { 1425 u32 irq_mask = qm->error_mask; 1426 1427 irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1428 writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK); 1429 } 1430 1431 static void qm_hw_error_init_v3(struct hisi_qm *qm) 1432 { 1433 u32 irq_unmask; 1434 1435 qm_hw_error_cfg(qm); 1436 1437 /* enable close master ooo when hardware error happened */ 1438 writel(qm->err_info.qm_err.shutdown_mask, qm->io_base + QM_OOO_SHUTDOWN_SEL); 1439 1440 irq_unmask = ~qm->error_mask; 1441 irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1442 writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK); 1443 } 1444 1445 static void qm_hw_error_uninit_v3(struct hisi_qm *qm) 1446 { 1447 u32 irq_mask = qm->error_mask; 1448 1449 irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1450 writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK); 1451 1452 /* disable close master ooo when hardware error happened */ 1453 writel(0x0, qm->io_base + QM_OOO_SHUTDOWN_SEL); 1454 } 1455 1456 static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status) 1457 { 1458 const struct hisi_qm_hw_error *err; 1459 struct device *dev = &qm->pdev->dev; 1460 u32 reg_val, type, vf_num, qp_id; 1461 int i; 1462 1463 for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) { 1464 err = &qm_hw_error[i]; 1465 if (!(err->int_msk & error_status)) 1466 continue; 1467 1468 dev_err(dev, "%s [error status=0x%x] found\n", 1469 err->msg, err->int_msk); 1470 1471 if (err->int_msk & QM_DB_TIMEOUT) { 1472 reg_val = readl(qm->io_base + QM_ABNORMAL_INF01); 1473 type = (reg_val & QM_DB_TIMEOUT_TYPE) >> 1474 QM_DB_TIMEOUT_TYPE_SHIFT; 1475 vf_num = reg_val & QM_DB_TIMEOUT_VF; 1476 qp_id = reg_val >> QM_DB_TIMEOUT_QP_SHIFT; 1477 dev_err(dev, "qm %s doorbell timeout in function %u qp %u\n", 1478 qm_db_timeout[type], vf_num, qp_id); 1479 } else if (err->int_msk & QM_OF_FIFO_OF) { 1480 reg_val = readl(qm->io_base + QM_ABNORMAL_INF00); 1481 type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >> 1482 QM_FIFO_OVERFLOW_TYPE_SHIFT; 1483 vf_num = reg_val & QM_FIFO_OVERFLOW_VF; 1484 qp_id = reg_val >> QM_FIFO_OVERFLOW_QP_SHIFT; 1485 if (type < ARRAY_SIZE(qm_fifo_overflow)) 1486 dev_err(dev, "qm %s fifo overflow in function %u qp %u\n", 1487 qm_fifo_overflow[type], vf_num, qp_id); 1488 else 1489 dev_err(dev, "unknown error type\n"); 1490 } else if (err->int_msk & QM_AXI_RRESP_ERR) { 1491 reg_val = readl(qm->io_base + QM_ABNORMAL_INF02); 1492 if (reg_val & QM_AXI_POISON_ERR) 1493 dev_err(dev, "qm axi poison error happened\n"); 1494 } 1495 } 1496 } 1497 1498 static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm) 1499 { 1500 struct hisi_qm_err_mask *qm_err = &qm->err_info.qm_err; 1501 u32 error_status; 1502 1503 error_status = qm_get_hw_error_status(qm); 1504 if (error_status & qm->error_mask) { 1505 if (error_status & QM_ECC_MBIT) 1506 qm->err_status.is_qm_ecc_mbit = true; 1507 1508 qm_log_hw_error(qm, error_status); 1509 if (error_status & qm_err->reset_mask) { 1510 /* Disable the same error reporting until device is recovered. */ 1511 writel(qm_err->nfe & (~error_status), qm->io_base + QM_RAS_NFE_ENABLE); 1512 return ACC_ERR_NEED_RESET; 1513 } 1514 1515 /* Clear error source if not need reset. */ 1516 writel(error_status, qm->io_base + QM_ABNORMAL_INT_SOURCE); 1517 writel(qm_err->nfe, qm->io_base + QM_RAS_NFE_ENABLE); 1518 writel(qm_err->ce, qm->io_base + QM_RAS_CE_ENABLE); 1519 } 1520 1521 return ACC_ERR_RECOVERED; 1522 } 1523 1524 static int qm_get_mb_cmd(struct hisi_qm *qm, u64 *msg, u16 fun_num) 1525 { 1526 struct qm_mailbox mailbox; 1527 int ret; 1528 1529 qm_mb_pre_init(&mailbox, QM_MB_CMD_DST, 0, fun_num, 0); 1530 mutex_lock(&qm->mailbox_lock); 1531 ret = qm_mb_nolock(qm, &mailbox); 1532 if (ret) 1533 goto err_unlock; 1534 1535 *msg = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) | 1536 ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32); 1537 1538 err_unlock: 1539 mutex_unlock(&qm->mailbox_lock); 1540 return ret; 1541 } 1542 1543 static void qm_clear_cmd_interrupt(struct hisi_qm *qm, u64 vf_mask) 1544 { 1545 u32 val; 1546 1547 if (qm->fun_type == QM_HW_PF) 1548 writeq(vf_mask, qm->io_base + QM_IFC_INT_SOURCE_P); 1549 1550 val = readl(qm->io_base + QM_IFC_INT_SOURCE_V); 1551 val |= QM_IFC_INT_SOURCE_MASK; 1552 writel(val, qm->io_base + QM_IFC_INT_SOURCE_V); 1553 } 1554 1555 static void qm_handle_vf_msg(struct hisi_qm *qm, u32 vf_id) 1556 { 1557 struct device *dev = &qm->pdev->dev; 1558 enum qm_ifc_cmd cmd; 1559 int ret; 1560 1561 ret = qm->ops->get_ifc(qm, &cmd, NULL, vf_id); 1562 if (ret) { 1563 dev_err(dev, "failed to get command from VF(%u)!\n", vf_id); 1564 return; 1565 } 1566 1567 switch (cmd) { 1568 case QM_VF_PREPARE_FAIL: 1569 dev_err(dev, "failed to stop VF(%u)!\n", vf_id); 1570 break; 1571 case QM_VF_START_FAIL: 1572 dev_err(dev, "failed to start VF(%u)!\n", vf_id); 1573 break; 1574 case QM_VF_PREPARE_DONE: 1575 case QM_VF_START_DONE: 1576 break; 1577 default: 1578 dev_err(dev, "unsupported command(0x%x) sent by VF(%u)!\n", cmd, vf_id); 1579 break; 1580 } 1581 } 1582 1583 static int qm_wait_vf_prepare_finish(struct hisi_qm *qm) 1584 { 1585 struct device *dev = &qm->pdev->dev; 1586 u32 vfs_num = qm->vfs_num; 1587 int cnt = 0; 1588 int ret = 0; 1589 u64 val; 1590 u32 i; 1591 1592 if (!qm->vfs_num || !test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 1593 return 0; 1594 1595 while (true) { 1596 val = readq(qm->io_base + QM_IFC_INT_SOURCE_P); 1597 /* All VFs send command to PF, break */ 1598 if ((val & GENMASK(vfs_num, 1)) == GENMASK(vfs_num, 1)) 1599 break; 1600 1601 if (++cnt > QM_MAX_PF_WAIT_COUNT) { 1602 ret = -EBUSY; 1603 break; 1604 } 1605 1606 msleep(QM_WAIT_DST_ACK); 1607 } 1608 1609 /* PF check VFs msg */ 1610 for (i = 1; i <= vfs_num; i++) { 1611 if (val & BIT(i)) 1612 qm_handle_vf_msg(qm, i); 1613 else 1614 dev_err(dev, "VF(%u) not ping PF!\n", i); 1615 } 1616 1617 /* PF clear interrupt to ack VFs */ 1618 qm_clear_cmd_interrupt(qm, val); 1619 1620 return ret; 1621 } 1622 1623 static void qm_trigger_vf_interrupt(struct hisi_qm *qm, u32 fun_num) 1624 { 1625 u32 val; 1626 1627 val = readl(qm->io_base + QM_IFC_INT_CFG); 1628 val &= ~QM_IFC_SEND_ALL_VFS; 1629 val |= fun_num; 1630 writel(val, qm->io_base + QM_IFC_INT_CFG); 1631 1632 val = readl(qm->io_base + QM_IFC_INT_SET_P); 1633 val |= QM_IFC_INT_SET_MASK; 1634 writel(val, qm->io_base + QM_IFC_INT_SET_P); 1635 } 1636 1637 static void qm_trigger_pf_interrupt(struct hisi_qm *qm) 1638 { 1639 u32 val; 1640 1641 val = readl(qm->io_base + QM_IFC_INT_SET_V); 1642 val |= QM_IFC_INT_SET_MASK; 1643 writel(val, qm->io_base + QM_IFC_INT_SET_V); 1644 } 1645 1646 static int qm_ping_single_vf(struct hisi_qm *qm, enum qm_ifc_cmd cmd, u32 data, u32 fun_num) 1647 { 1648 struct device *dev = &qm->pdev->dev; 1649 int cnt = 0; 1650 u64 val; 1651 int ret; 1652 1653 ret = qm->ops->set_ifc_begin(qm, cmd, data, fun_num); 1654 if (ret) { 1655 dev_err(dev, "failed to send command to vf(%u)!\n", fun_num); 1656 goto err_unlock; 1657 } 1658 1659 qm_trigger_vf_interrupt(qm, fun_num); 1660 while (true) { 1661 msleep(QM_WAIT_DST_ACK); 1662 val = readq(qm->io_base + QM_IFC_READY_STATUS); 1663 /* if VF respond, PF notifies VF successfully. */ 1664 if (!(val & BIT(fun_num))) 1665 goto err_unlock; 1666 1667 if (++cnt > QM_MAX_PF_WAIT_COUNT) { 1668 dev_err(dev, "failed to get response from VF(%u)!\n", fun_num); 1669 ret = -ETIMEDOUT; 1670 break; 1671 } 1672 } 1673 1674 err_unlock: 1675 qm->ops->set_ifc_end(qm); 1676 return ret; 1677 } 1678 1679 static int qm_ping_all_vfs(struct hisi_qm *qm, enum qm_ifc_cmd cmd) 1680 { 1681 struct device *dev = &qm->pdev->dev; 1682 u32 vfs_num = qm->vfs_num; 1683 u64 val = 0; 1684 int cnt = 0; 1685 int ret; 1686 u32 i; 1687 1688 ret = qm->ops->set_ifc_begin(qm, cmd, 0, QM_MB_PING_ALL_VFS); 1689 if (ret) { 1690 dev_err(dev, "failed to send command(0x%x) to all vfs!\n", cmd); 1691 qm->ops->set_ifc_end(qm); 1692 return ret; 1693 } 1694 1695 qm_trigger_vf_interrupt(qm, QM_IFC_SEND_ALL_VFS); 1696 while (true) { 1697 msleep(QM_WAIT_DST_ACK); 1698 val = readq(qm->io_base + QM_IFC_READY_STATUS); 1699 /* If all VFs acked, PF notifies VFs successfully. */ 1700 if (!(val & GENMASK(vfs_num, 1))) { 1701 qm->ops->set_ifc_end(qm); 1702 return 0; 1703 } 1704 1705 if (++cnt > QM_MAX_PF_WAIT_COUNT) 1706 break; 1707 } 1708 1709 qm->ops->set_ifc_end(qm); 1710 1711 /* Check which vf respond timeout. */ 1712 for (i = 1; i <= vfs_num; i++) { 1713 if (val & BIT(i)) 1714 dev_err(dev, "failed to get response from VF(%u)!\n", i); 1715 } 1716 1717 return -ETIMEDOUT; 1718 } 1719 1720 static int qm_ping_pf(struct hisi_qm *qm, enum qm_ifc_cmd cmd) 1721 { 1722 int cnt = 0; 1723 u32 val; 1724 int ret; 1725 1726 ret = qm->ops->set_ifc_begin(qm, cmd, 0, 0); 1727 if (ret) { 1728 dev_err(&qm->pdev->dev, "failed to send command(0x%x) to PF!\n", cmd); 1729 goto unlock; 1730 } 1731 1732 qm_trigger_pf_interrupt(qm); 1733 /* Waiting for PF response */ 1734 while (true) { 1735 msleep(QM_WAIT_DST_ACK); 1736 val = readl(qm->io_base + QM_IFC_INT_SET_V); 1737 if (!(val & QM_IFC_INT_STATUS_MASK)) 1738 break; 1739 1740 if (++cnt > QM_MAX_VF_WAIT_COUNT) { 1741 ret = -ETIMEDOUT; 1742 break; 1743 } 1744 } 1745 1746 unlock: 1747 qm->ops->set_ifc_end(qm); 1748 1749 return ret; 1750 } 1751 1752 static int qm_drain_qm(struct hisi_qm *qm) 1753 { 1754 return hisi_qm_mb(qm, QM_MB_CMD_FLUSH_QM, 0, 0, 0); 1755 } 1756 1757 static int qm_stop_qp(struct hisi_qp *qp) 1758 { 1759 return hisi_qm_mb(qp->qm, QM_MB_CMD_STOP_QP, 0, qp->qp_id, 0); 1760 } 1761 1762 static int qm_set_msi(struct hisi_qm *qm, bool set) 1763 { 1764 struct pci_dev *pdev = qm->pdev; 1765 1766 if (set) { 1767 pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64, 1768 0); 1769 } else { 1770 pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64, 1771 ACC_PEH_MSI_DISABLE); 1772 if (qm->err_status.is_qm_ecc_mbit || 1773 qm->err_status.is_dev_ecc_mbit) 1774 return 0; 1775 1776 mdelay(1); 1777 if (readl(qm->io_base + QM_PEH_DFX_INFO0)) 1778 return -EFAULT; 1779 } 1780 1781 return 0; 1782 } 1783 1784 static void qm_wait_msi_finish(struct hisi_qm *qm) 1785 { 1786 struct pci_dev *pdev = qm->pdev; 1787 u32 cmd = ~0; 1788 int cnt = 0; 1789 u32 val; 1790 int ret; 1791 1792 while (true) { 1793 pci_read_config_dword(pdev, pdev->msi_cap + 1794 PCI_MSI_PENDING_64, &cmd); 1795 if (!cmd) 1796 break; 1797 1798 if (++cnt > MAX_WAIT_COUNTS) { 1799 pci_warn(pdev, "failed to empty MSI PENDING!\n"); 1800 break; 1801 } 1802 1803 udelay(1); 1804 } 1805 1806 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO0, 1807 val, !(val & QM_PEH_DFX_MASK), 1808 POLL_PERIOD, POLL_TIMEOUT); 1809 if (ret) 1810 pci_warn(pdev, "failed to empty PEH MSI!\n"); 1811 1812 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO1, 1813 val, !(val & QM_PEH_MSI_FINISH_MASK), 1814 POLL_PERIOD, POLL_TIMEOUT); 1815 if (ret) 1816 pci_warn(pdev, "failed to finish MSI operation!\n"); 1817 } 1818 1819 static int qm_set_msi_v3(struct hisi_qm *qm, bool set) 1820 { 1821 struct pci_dev *pdev = qm->pdev; 1822 int ret = -ETIMEDOUT; 1823 u32 cmd, i; 1824 1825 pci_read_config_dword(pdev, pdev->msi_cap, &cmd); 1826 if (set) 1827 cmd |= QM_MSI_CAP_ENABLE; 1828 else 1829 cmd &= ~QM_MSI_CAP_ENABLE; 1830 1831 pci_write_config_dword(pdev, pdev->msi_cap, cmd); 1832 if (set) { 1833 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 1834 pci_read_config_dword(pdev, pdev->msi_cap, &cmd); 1835 if (cmd & QM_MSI_CAP_ENABLE) 1836 return 0; 1837 1838 udelay(1); 1839 } 1840 } else { 1841 udelay(WAIT_PERIOD_US_MIN); 1842 qm_wait_msi_finish(qm); 1843 ret = 0; 1844 } 1845 1846 return ret; 1847 } 1848 1849 static int qm_set_ifc_begin_v3(struct hisi_qm *qm, enum qm_ifc_cmd cmd, u32 data, u32 fun_num) 1850 { 1851 struct qm_mailbox mailbox; 1852 u64 msg; 1853 1854 msg = cmd | (u64)data << QM_IFC_DATA_SHIFT; 1855 1856 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, msg, fun_num, 0); 1857 mutex_lock(&qm->mailbox_lock); 1858 return qm_mb_nolock(qm, &mailbox); 1859 } 1860 1861 static void qm_set_ifc_end_v3(struct hisi_qm *qm) 1862 { 1863 mutex_unlock(&qm->mailbox_lock); 1864 } 1865 1866 static int qm_get_ifc_v3(struct hisi_qm *qm, enum qm_ifc_cmd *cmd, u32 *data, u32 fun_num) 1867 { 1868 u64 msg; 1869 int ret; 1870 1871 ret = qm_get_mb_cmd(qm, &msg, fun_num); 1872 if (ret) 1873 return ret; 1874 1875 *cmd = msg & QM_IFC_CMD_MASK; 1876 1877 if (data) 1878 *data = msg >> QM_IFC_DATA_SHIFT; 1879 1880 return 0; 1881 } 1882 1883 static int qm_set_ifc_begin_v4(struct hisi_qm *qm, enum qm_ifc_cmd cmd, u32 data, u32 fun_num) 1884 { 1885 uintptr_t offset; 1886 u64 msg; 1887 1888 if (qm->fun_type == QM_HW_PF) 1889 offset = QM_PF2VF_PF_W; 1890 else 1891 offset = QM_VF2PF_VF_W; 1892 1893 msg = cmd | (u64)data << QM_IFC_DATA_SHIFT; 1894 1895 mutex_lock(&qm->ifc_lock); 1896 writeq(msg, qm->io_base + offset); 1897 1898 return 0; 1899 } 1900 1901 static void qm_set_ifc_end_v4(struct hisi_qm *qm) 1902 { 1903 mutex_unlock(&qm->ifc_lock); 1904 } 1905 1906 static u64 qm_get_ifc_pf(struct hisi_qm *qm, u32 fun_num) 1907 { 1908 uintptr_t offset; 1909 1910 offset = QM_VF2PF_PF_R + QM_VF2PF_REG_SIZE * fun_num; 1911 1912 return (u64)readl(qm->io_base + offset); 1913 } 1914 1915 static u64 qm_get_ifc_vf(struct hisi_qm *qm) 1916 { 1917 return readq(qm->io_base + QM_PF2VF_VF_R); 1918 } 1919 1920 static int qm_get_ifc_v4(struct hisi_qm *qm, enum qm_ifc_cmd *cmd, u32 *data, u32 fun_num) 1921 { 1922 u64 msg; 1923 1924 if (qm->fun_type == QM_HW_PF) 1925 msg = qm_get_ifc_pf(qm, fun_num); 1926 else 1927 msg = qm_get_ifc_vf(qm); 1928 1929 *cmd = msg & QM_IFC_CMD_MASK; 1930 1931 if (data) 1932 *data = msg >> QM_IFC_DATA_SHIFT; 1933 1934 return 0; 1935 } 1936 1937 static const struct hisi_qm_hw_ops qm_hw_ops_v1 = { 1938 .qm_db = qm_db_v1, 1939 .hw_error_init = qm_hw_error_init_v1, 1940 .set_msi = qm_set_msi, 1941 }; 1942 1943 static const struct hisi_qm_hw_ops qm_hw_ops_v2 = { 1944 .get_vft = qm_get_vft_v2, 1945 .qm_db = qm_db_v2, 1946 .hw_error_init = qm_hw_error_init_v2, 1947 .hw_error_uninit = qm_hw_error_uninit_v2, 1948 .hw_error_handle = qm_hw_error_handle_v2, 1949 .set_msi = qm_set_msi, 1950 }; 1951 1952 static const struct hisi_qm_hw_ops qm_hw_ops_v3 = { 1953 .get_vft = qm_get_vft_v2, 1954 .qm_db = qm_db_v2, 1955 .hw_error_init = qm_hw_error_init_v3, 1956 .hw_error_uninit = qm_hw_error_uninit_v3, 1957 .hw_error_handle = qm_hw_error_handle_v2, 1958 .set_msi = qm_set_msi_v3, 1959 .set_ifc_begin = qm_set_ifc_begin_v3, 1960 .set_ifc_end = qm_set_ifc_end_v3, 1961 .get_ifc = qm_get_ifc_v3, 1962 }; 1963 1964 static const struct hisi_qm_hw_ops qm_hw_ops_v4 = { 1965 .get_vft = qm_get_vft_v2, 1966 .qm_db = qm_db_v2, 1967 .hw_error_init = qm_hw_error_init_v3, 1968 .hw_error_uninit = qm_hw_error_uninit_v3, 1969 .hw_error_handle = qm_hw_error_handle_v2, 1970 .set_msi = qm_set_msi_v3, 1971 .set_ifc_begin = qm_set_ifc_begin_v4, 1972 .set_ifc_end = qm_set_ifc_end_v4, 1973 .get_ifc = qm_get_ifc_v4, 1974 }; 1975 1976 static void *qm_get_avail_sqe(struct hisi_qp *qp) 1977 { 1978 struct hisi_qp_status *qp_status = &qp->qp_status; 1979 u16 sq_tail = qp_status->sq_tail; 1980 1981 if (unlikely(atomic_read(&qp->qp_status.used) == qp->sq_depth - 1)) 1982 return NULL; 1983 1984 return qp->sqe + sq_tail * qp->qm->sqe_size; 1985 } 1986 1987 static void hisi_qm_unset_hw_reset(struct hisi_qp *qp) 1988 { 1989 u64 *addr; 1990 1991 /* Use last 64 bits of DUS to reset status. */ 1992 addr = (u64 *)(qp->qdma.va + qp->qdma.size) - QM_RESET_STOP_TX_OFFSET; 1993 *addr = 0; 1994 } 1995 1996 static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type) 1997 { 1998 struct device *dev = &qm->pdev->dev; 1999 struct hisi_qp *qp; 2000 int qp_id; 2001 2002 if (atomic_read(&qm->status.flags) == QM_STOP) { 2003 dev_info_ratelimited(dev, "failed to create qp as qm is stop!\n"); 2004 return ERR_PTR(-EPERM); 2005 } 2006 2007 if (qm->qp_in_used == qm->qp_num) { 2008 dev_info_ratelimited(dev, "All %u queues of QM are busy!\n", 2009 qm->qp_num); 2010 atomic64_inc(&qm->debug.dfx.create_qp_err_cnt); 2011 return ERR_PTR(-EBUSY); 2012 } 2013 2014 qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC); 2015 if (qp_id < 0) { 2016 dev_info_ratelimited(dev, "All %u queues of QM are busy!\n", 2017 qm->qp_num); 2018 atomic64_inc(&qm->debug.dfx.create_qp_err_cnt); 2019 return ERR_PTR(-EBUSY); 2020 } 2021 2022 qp = &qm->qp_array[qp_id]; 2023 hisi_qm_unset_hw_reset(qp); 2024 memset(qp->cqe, 0, sizeof(struct qm_cqe) * qp->cq_depth); 2025 2026 qp->event_cb = NULL; 2027 qp->req_cb = NULL; 2028 qp->qp_id = qp_id; 2029 qp->alg_type = alg_type; 2030 qp->is_in_kernel = true; 2031 qm->qp_in_used++; 2032 2033 return qp; 2034 } 2035 2036 /** 2037 * hisi_qm_create_qp() - Create a queue pair from qm. 2038 * @qm: The qm we create a qp from. 2039 * @alg_type: Accelerator specific algorithm type in sqc. 2040 * 2041 * Return created qp, negative error code if failed. 2042 */ 2043 static struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type) 2044 { 2045 struct hisi_qp *qp; 2046 int ret; 2047 2048 ret = qm_pm_get_sync(qm); 2049 if (ret) 2050 return ERR_PTR(ret); 2051 2052 down_write(&qm->qps_lock); 2053 qp = qm_create_qp_nolock(qm, alg_type); 2054 up_write(&qm->qps_lock); 2055 2056 if (IS_ERR(qp)) 2057 qm_pm_put_sync(qm); 2058 2059 return qp; 2060 } 2061 2062 /** 2063 * hisi_qm_release_qp() - Release a qp back to its qm. 2064 * @qp: The qp we want to release. 2065 * 2066 * This function releases the resource of a qp. 2067 */ 2068 static void hisi_qm_release_qp(struct hisi_qp *qp) 2069 { 2070 struct hisi_qm *qm = qp->qm; 2071 2072 down_write(&qm->qps_lock); 2073 2074 qm->qp_in_used--; 2075 idr_remove(&qm->qp_idr, qp->qp_id); 2076 2077 up_write(&qm->qps_lock); 2078 2079 qm_pm_put_sync(qm); 2080 } 2081 2082 static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 2083 { 2084 struct hisi_qm *qm = qp->qm; 2085 enum qm_hw_ver ver = qm->ver; 2086 struct qm_sqc sqc = {0}; 2087 2088 if (ver == QM_HW_V1) { 2089 sqc.dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size)); 2090 sqc.w8 = cpu_to_le16(qp->sq_depth - 1); 2091 } else { 2092 sqc.dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size, qp->sq_depth)); 2093 sqc.w8 = 0; /* rand_qc */ 2094 } 2095 sqc.w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type)); 2096 sqc.base_l = cpu_to_le32(lower_32_bits(qp->sqe_dma)); 2097 sqc.base_h = cpu_to_le32(upper_32_bits(qp->sqe_dma)); 2098 sqc.cq_num = cpu_to_le16(qp_id); 2099 sqc.pasid = cpu_to_le16(pasid); 2100 2101 if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel) 2102 sqc.w11 = cpu_to_le16(QM_QC_PASID_ENABLE << 2103 QM_QC_PASID_ENABLE_SHIFT); 2104 2105 return qm_set_and_get_xqc(qm, QM_MB_CMD_SQC, &sqc, qp_id, 0); 2106 } 2107 2108 static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 2109 { 2110 struct hisi_qm *qm = qp->qm; 2111 enum qm_hw_ver ver = qm->ver; 2112 struct qm_cqc cqc = {0}; 2113 2114 if (ver == QM_HW_V1) { 2115 cqc.dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0, QM_QC_CQE_SIZE)); 2116 cqc.w8 = cpu_to_le16(qp->cq_depth - 1); 2117 } else { 2118 cqc.dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE, qp->cq_depth)); 2119 cqc.w8 = 0; /* rand_qc */ 2120 } 2121 /* 2122 * Enable request finishing interrupts defaultly. 2123 * So, there will be some interrupts until disabling 2124 * this. 2125 */ 2126 cqc.dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT); 2127 cqc.base_l = cpu_to_le32(lower_32_bits(qp->cqe_dma)); 2128 cqc.base_h = cpu_to_le32(upper_32_bits(qp->cqe_dma)); 2129 cqc.pasid = cpu_to_le16(pasid); 2130 2131 if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel) 2132 cqc.w11 = cpu_to_le16(QM_QC_PASID_ENABLE); 2133 2134 return qm_set_and_get_xqc(qm, QM_MB_CMD_CQC, &cqc, qp_id, 0); 2135 } 2136 2137 static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 2138 { 2139 int ret; 2140 2141 qm_init_qp_status(qp); 2142 2143 ret = qm_sq_ctx_cfg(qp, qp_id, pasid); 2144 if (ret) 2145 return ret; 2146 2147 return qm_cq_ctx_cfg(qp, qp_id, pasid); 2148 } 2149 2150 static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg) 2151 { 2152 struct hisi_qm *qm = qp->qm; 2153 struct device *dev = &qm->pdev->dev; 2154 int qp_id = qp->qp_id; 2155 u32 pasid = arg; 2156 int ret; 2157 2158 if (atomic_read(&qm->status.flags) == QM_STOP) { 2159 dev_info_ratelimited(dev, "failed to start qp as qm is stop!\n"); 2160 return -EPERM; 2161 } 2162 2163 ret = qm_qp_ctx_cfg(qp, qp_id, pasid); 2164 if (ret) 2165 return ret; 2166 2167 atomic_set(&qp->qp_status.flags, QP_START); 2168 dev_dbg(dev, "queue %d started\n", qp_id); 2169 2170 return 0; 2171 } 2172 2173 /** 2174 * hisi_qm_start_qp() - Start a qp into running. 2175 * @qp: The qp we want to start to run. 2176 * @arg: Accelerator specific argument. 2177 * 2178 * After this function, qp can receive request from user. Return 0 if 2179 * successful, negative error code if failed. 2180 */ 2181 int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg) 2182 { 2183 struct hisi_qm *qm = qp->qm; 2184 int ret; 2185 2186 down_write(&qm->qps_lock); 2187 ret = qm_start_qp_nolock(qp, arg); 2188 up_write(&qm->qps_lock); 2189 2190 return ret; 2191 } 2192 EXPORT_SYMBOL_GPL(hisi_qm_start_qp); 2193 2194 /** 2195 * qp_stop_fail_cb() - call request cb. 2196 * @qp: stopped failed qp. 2197 * 2198 * Callback function should be called whether task completed or not. 2199 */ 2200 static void qp_stop_fail_cb(struct hisi_qp *qp) 2201 { 2202 int qp_used = atomic_read(&qp->qp_status.used); 2203 u16 cur_tail = qp->qp_status.sq_tail; 2204 u16 sq_depth = qp->sq_depth; 2205 u16 cur_head = (cur_tail + sq_depth - qp_used) % sq_depth; 2206 struct hisi_qm *qm = qp->qm; 2207 u16 pos; 2208 int i; 2209 2210 for (i = 0; i < qp_used; i++) { 2211 pos = (i + cur_head) % sq_depth; 2212 qp->req_cb(qp, qp->sqe + (u32)(qm->sqe_size * pos)); 2213 atomic_dec(&qp->qp_status.used); 2214 } 2215 } 2216 2217 static int qm_wait_qp_empty(struct hisi_qm *qm, u32 *state, u32 qp_id) 2218 { 2219 struct device *dev = &qm->pdev->dev; 2220 struct qm_sqc sqc; 2221 struct qm_cqc cqc; 2222 int ret, i = 0; 2223 2224 while (++i) { 2225 ret = qm_set_and_get_xqc(qm, QM_MB_CMD_SQC, &sqc, qp_id, 1); 2226 if (ret) { 2227 dev_err_ratelimited(dev, "Failed to dump sqc!\n"); 2228 *state = QM_DUMP_SQC_FAIL; 2229 return ret; 2230 } 2231 2232 ret = qm_set_and_get_xqc(qm, QM_MB_CMD_CQC, &cqc, qp_id, 1); 2233 if (ret) { 2234 dev_err_ratelimited(dev, "Failed to dump cqc!\n"); 2235 *state = QM_DUMP_CQC_FAIL; 2236 return ret; 2237 } 2238 2239 if ((sqc.tail == cqc.tail) && 2240 (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc))) 2241 break; 2242 2243 if (i == MAX_WAIT_COUNTS) { 2244 dev_err(dev, "Fail to empty queue %u!\n", qp_id); 2245 *state = QM_STOP_QUEUE_FAIL; 2246 return -ETIMEDOUT; 2247 } 2248 2249 usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX); 2250 } 2251 2252 return 0; 2253 } 2254 2255 /** 2256 * qm_drain_qp() - Drain a qp. 2257 * @qp: The qp we want to drain. 2258 * 2259 * If the device does not support stopping queue by sending mailbox, 2260 * determine whether the queue is cleared by judging the tail pointers of 2261 * sq and cq. 2262 */ 2263 static int qm_drain_qp(struct hisi_qp *qp) 2264 { 2265 struct hisi_qm *qm = qp->qm; 2266 u32 state = 0; 2267 int ret; 2268 2269 /* No need to judge if master OOO is blocked. */ 2270 if (qm_check_dev_error(qm)) 2271 return 0; 2272 2273 /* HW V3 supports drain qp by device */ 2274 if (test_bit(QM_SUPPORT_STOP_QP, &qm->caps)) { 2275 ret = qm_stop_qp(qp); 2276 if (ret) { 2277 dev_err(&qm->pdev->dev, "Failed to stop qp!\n"); 2278 state = QM_STOP_QUEUE_FAIL; 2279 goto set_dev_state; 2280 } 2281 return ret; 2282 } 2283 2284 ret = qm_wait_qp_empty(qm, &state, qp->qp_id); 2285 if (ret) 2286 goto set_dev_state; 2287 2288 return 0; 2289 2290 set_dev_state: 2291 if (qm->debug.dev_dfx.dev_timeout) 2292 qm->debug.dev_dfx.dev_state = state; 2293 2294 return ret; 2295 } 2296 2297 static void qm_stop_qp_nolock(struct hisi_qp *qp) 2298 { 2299 struct hisi_qm *qm = qp->qm; 2300 struct device *dev = &qm->pdev->dev; 2301 int ret; 2302 2303 /* 2304 * It is allowed to stop and release qp when reset, If the qp is 2305 * stopped when reset but still want to be released then, the 2306 * is_resetting flag should be set negative so that this qp will not 2307 * be restarted after reset. 2308 */ 2309 if (atomic_read(&qp->qp_status.flags) != QP_START) { 2310 qp->is_resetting = false; 2311 return; 2312 } 2313 2314 atomic_set(&qp->qp_status.flags, QP_STOP); 2315 2316 /* V3 supports direct stop function when FLR prepare */ 2317 if (qm->ver < QM_HW_V3 || qm->status.stop_reason == QM_NORMAL) { 2318 ret = qm_drain_qp(qp); 2319 if (ret) 2320 dev_err(dev, "Failed to drain out data for stopping qp(%u)!\n", qp->qp_id); 2321 } 2322 2323 flush_workqueue(qm->wq); 2324 if (unlikely(qp->is_resetting && atomic_read(&qp->qp_status.used))) 2325 qp_stop_fail_cb(qp); 2326 2327 dev_dbg(dev, "stop queue %u!", qp->qp_id); 2328 } 2329 2330 /** 2331 * hisi_qm_stop_qp() - Stop a qp in qm. 2332 * @qp: The qp we want to stop. 2333 * 2334 * This function is reverse of hisi_qm_start_qp. 2335 */ 2336 void hisi_qm_stop_qp(struct hisi_qp *qp) 2337 { 2338 down_write(&qp->qm->qps_lock); 2339 qm_stop_qp_nolock(qp); 2340 up_write(&qp->qm->qps_lock); 2341 } 2342 EXPORT_SYMBOL_GPL(hisi_qm_stop_qp); 2343 2344 /** 2345 * hisi_qp_send() - Queue up a task in the hardware queue. 2346 * @qp: The qp in which to put the message. 2347 * @msg: The message. 2348 * 2349 * This function will return -EBUSY if qp is currently full, and -EAGAIN 2350 * if qp related qm is resetting. 2351 * 2352 * Note: This function may run with qm_irq_thread and ACC reset at same time. 2353 * It has no race with qm_irq_thread. However, during hisi_qp_send, ACC 2354 * reset may happen, we have no lock here considering performance. This 2355 * causes current qm_db sending fail or can not receive sended sqe. QM 2356 * sync/async receive function should handle the error sqe. ACC reset 2357 * done function should clear used sqe to 0. 2358 */ 2359 int hisi_qp_send(struct hisi_qp *qp, const void *msg) 2360 { 2361 struct hisi_qp_status *qp_status = &qp->qp_status; 2362 u16 sq_tail = qp_status->sq_tail; 2363 u16 sq_tail_next = (sq_tail + 1) % qp->sq_depth; 2364 void *sqe = qm_get_avail_sqe(qp); 2365 2366 if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP || 2367 atomic_read(&qp->qm->status.flags) == QM_STOP || 2368 qp->is_resetting)) { 2369 dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n"); 2370 return -EAGAIN; 2371 } 2372 2373 if (!sqe) 2374 return -EBUSY; 2375 2376 memcpy(sqe, msg, qp->qm->sqe_size); 2377 2378 qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0); 2379 atomic_inc(&qp->qp_status.used); 2380 qp_status->sq_tail = sq_tail_next; 2381 2382 return 0; 2383 } 2384 EXPORT_SYMBOL_GPL(hisi_qp_send); 2385 2386 static void hisi_qm_cache_wb(struct hisi_qm *qm) 2387 { 2388 unsigned int val; 2389 2390 if (qm->ver == QM_HW_V1) 2391 return; 2392 2393 writel(0x1, qm->io_base + QM_CACHE_WB_START); 2394 if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE, 2395 val, val & BIT(0), POLL_PERIOD, 2396 POLL_TIMEOUT)) 2397 dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n"); 2398 } 2399 2400 static void qm_qp_event_notifier(struct hisi_qp *qp) 2401 { 2402 wake_up_interruptible(&qp->uacce_q->wait); 2403 } 2404 2405 /* This function returns free number of qp in qm. */ 2406 static int hisi_qm_get_available_instances(struct uacce_device *uacce) 2407 { 2408 struct hisi_qm *qm = uacce->priv; 2409 int ret; 2410 2411 down_read(&qm->qps_lock); 2412 ret = qm->qp_num - qm->qp_in_used; 2413 up_read(&qm->qps_lock); 2414 2415 return ret; 2416 } 2417 2418 static void hisi_qm_set_hw_reset(struct hisi_qm *qm, int offset) 2419 { 2420 int i; 2421 2422 for (i = 0; i < qm->qp_num; i++) 2423 qm_set_qp_disable(&qm->qp_array[i], offset); 2424 } 2425 2426 static int hisi_qm_uacce_get_queue(struct uacce_device *uacce, 2427 unsigned long arg, 2428 struct uacce_queue *q) 2429 { 2430 struct hisi_qm *qm = uacce->priv; 2431 struct hisi_qp *qp; 2432 u8 alg_type = 0; 2433 2434 qp = hisi_qm_create_qp(qm, alg_type); 2435 if (IS_ERR(qp)) 2436 return PTR_ERR(qp); 2437 2438 q->priv = qp; 2439 q->uacce = uacce; 2440 qp->uacce_q = q; 2441 qp->event_cb = qm_qp_event_notifier; 2442 qp->pasid = arg; 2443 qp->is_in_kernel = false; 2444 2445 return 0; 2446 } 2447 2448 static void hisi_qm_uacce_put_queue(struct uacce_queue *q) 2449 { 2450 struct hisi_qp *qp = q->priv; 2451 2452 hisi_qm_release_qp(qp); 2453 } 2454 2455 /* map sq/cq/doorbell to user space */ 2456 static int hisi_qm_uacce_mmap(struct uacce_queue *q, 2457 struct vm_area_struct *vma, 2458 struct uacce_qfile_region *qfr) 2459 { 2460 struct hisi_qp *qp = q->priv; 2461 struct hisi_qm *qm = qp->qm; 2462 resource_size_t phys_base = qm->db_phys_base + 2463 qp->qp_id * qm->db_interval; 2464 size_t sz = vma->vm_end - vma->vm_start; 2465 struct pci_dev *pdev = qm->pdev; 2466 struct device *dev = &pdev->dev; 2467 unsigned long vm_pgoff; 2468 int ret; 2469 2470 switch (qfr->type) { 2471 case UACCE_QFRT_MMIO: 2472 if (qm->ver == QM_HW_V1) { 2473 if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR) 2474 return -EINVAL; 2475 } else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) { 2476 if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR + 2477 QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE)) 2478 return -EINVAL; 2479 } else { 2480 if (sz > qm->db_interval) 2481 return -EINVAL; 2482 } 2483 2484 vm_flags_set(vma, VM_IO); 2485 2486 return remap_pfn_range(vma, vma->vm_start, 2487 phys_base >> PAGE_SHIFT, 2488 sz, pgprot_noncached(vma->vm_page_prot)); 2489 case UACCE_QFRT_DUS: 2490 if (sz != qp->qdma.size) 2491 return -EINVAL; 2492 2493 /* 2494 * dma_mmap_coherent() requires vm_pgoff as 0 2495 * restore vm_pfoff to initial value for mmap() 2496 */ 2497 vm_pgoff = vma->vm_pgoff; 2498 vma->vm_pgoff = 0; 2499 ret = dma_mmap_coherent(dev, vma, qp->qdma.va, 2500 qp->qdma.dma, sz); 2501 vma->vm_pgoff = vm_pgoff; 2502 return ret; 2503 2504 default: 2505 return -EINVAL; 2506 } 2507 } 2508 2509 static int hisi_qm_uacce_start_queue(struct uacce_queue *q) 2510 { 2511 struct hisi_qp *qp = q->priv; 2512 2513 return hisi_qm_start_qp(qp, qp->pasid); 2514 } 2515 2516 static void hisi_qm_uacce_stop_queue(struct uacce_queue *q) 2517 { 2518 struct hisi_qp *qp = q->priv; 2519 struct hisi_qm *qm = qp->qm; 2520 struct qm_dev_dfx *dev_dfx = &qm->debug.dev_dfx; 2521 u32 i = 0; 2522 2523 hisi_qm_stop_qp(qp); 2524 2525 if (!dev_dfx->dev_timeout || !dev_dfx->dev_state) 2526 return; 2527 2528 /* 2529 * After the queue fails to be stopped, 2530 * wait for a period of time before releasing the queue. 2531 */ 2532 while (++i) { 2533 msleep(WAIT_PERIOD); 2534 2535 /* Since dev_timeout maybe modified, check i >= dev_timeout */ 2536 if (i >= dev_dfx->dev_timeout) { 2537 dev_err(&qm->pdev->dev, "Stop q %u timeout, state %u\n", 2538 qp->qp_id, dev_dfx->dev_state); 2539 dev_dfx->dev_state = QM_FINISH_WAIT; 2540 break; 2541 } 2542 } 2543 } 2544 2545 static int hisi_qm_is_q_updated(struct uacce_queue *q) 2546 { 2547 struct hisi_qp *qp = q->priv; 2548 struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head; 2549 int updated = 0; 2550 2551 while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) { 2552 /* make sure to read data from memory */ 2553 dma_rmb(); 2554 qm_cq_head_update(qp); 2555 cqe = qp->cqe + qp->qp_status.cq_head; 2556 updated = 1; 2557 } 2558 2559 return updated; 2560 } 2561 2562 static void qm_set_sqctype(struct uacce_queue *q, u16 type) 2563 { 2564 struct hisi_qm *qm = q->uacce->priv; 2565 struct hisi_qp *qp = q->priv; 2566 2567 down_write(&qm->qps_lock); 2568 qp->alg_type = type; 2569 up_write(&qm->qps_lock); 2570 } 2571 2572 static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd, 2573 unsigned long arg) 2574 { 2575 struct hisi_qp *qp = q->priv; 2576 struct hisi_qp_info qp_info; 2577 struct hisi_qp_ctx qp_ctx; 2578 2579 if (cmd == UACCE_CMD_QM_SET_QP_CTX) { 2580 if (copy_from_user(&qp_ctx, (void __user *)arg, 2581 sizeof(struct hisi_qp_ctx))) 2582 return -EFAULT; 2583 2584 if (qp_ctx.qc_type > QM_MAX_QC_TYPE) 2585 return -EINVAL; 2586 2587 qm_set_sqctype(q, qp_ctx.qc_type); 2588 qp_ctx.id = qp->qp_id; 2589 2590 if (copy_to_user((void __user *)arg, &qp_ctx, 2591 sizeof(struct hisi_qp_ctx))) 2592 return -EFAULT; 2593 2594 return 0; 2595 } else if (cmd == UACCE_CMD_QM_SET_QP_INFO) { 2596 if (copy_from_user(&qp_info, (void __user *)arg, 2597 sizeof(struct hisi_qp_info))) 2598 return -EFAULT; 2599 2600 qp_info.sqe_size = qp->qm->sqe_size; 2601 qp_info.sq_depth = qp->sq_depth; 2602 qp_info.cq_depth = qp->cq_depth; 2603 2604 if (copy_to_user((void __user *)arg, &qp_info, 2605 sizeof(struct hisi_qp_info))) 2606 return -EFAULT; 2607 2608 return 0; 2609 } 2610 2611 return -EINVAL; 2612 } 2613 2614 /** 2615 * qm_hw_err_isolate() - Try to set the isolation status of the uacce device 2616 * according to user's configuration of error threshold. 2617 * @qm: the uacce device 2618 */ 2619 static int qm_hw_err_isolate(struct hisi_qm *qm) 2620 { 2621 struct qm_hw_err *err, *tmp, *hw_err; 2622 struct qm_err_isolate *isolate; 2623 u32 count = 0; 2624 2625 isolate = &qm->isolate_data; 2626 2627 #define SECONDS_PER_HOUR 3600 2628 2629 /* All the hw errs are processed by PF driver */ 2630 if (qm->uacce->is_vf || isolate->is_isolate || !isolate->err_threshold) 2631 return 0; 2632 2633 hw_err = kzalloc(sizeof(*hw_err), GFP_KERNEL); 2634 if (!hw_err) 2635 return -ENOMEM; 2636 2637 /* 2638 * Time-stamp every slot AER error. Then check the AER error log when the 2639 * next device AER error occurred. if the device slot AER error count exceeds 2640 * the setting error threshold in one hour, the isolated state will be set 2641 * to true. And the AER error logs that exceed one hour will be cleared. 2642 */ 2643 mutex_lock(&isolate->isolate_lock); 2644 hw_err->timestamp = jiffies; 2645 list_for_each_entry_safe(err, tmp, &isolate->qm_hw_errs, list) { 2646 if ((hw_err->timestamp - err->timestamp) / HZ > 2647 SECONDS_PER_HOUR) { 2648 list_del(&err->list); 2649 kfree(err); 2650 } else { 2651 count++; 2652 } 2653 } 2654 list_add(&hw_err->list, &isolate->qm_hw_errs); 2655 mutex_unlock(&isolate->isolate_lock); 2656 2657 if (count >= isolate->err_threshold) 2658 isolate->is_isolate = true; 2659 2660 return 0; 2661 } 2662 2663 static void qm_hw_err_destroy(struct hisi_qm *qm) 2664 { 2665 struct qm_hw_err *err, *tmp; 2666 2667 mutex_lock(&qm->isolate_data.isolate_lock); 2668 list_for_each_entry_safe(err, tmp, &qm->isolate_data.qm_hw_errs, list) { 2669 list_del(&err->list); 2670 kfree(err); 2671 } 2672 mutex_unlock(&qm->isolate_data.isolate_lock); 2673 } 2674 2675 static enum uacce_dev_state hisi_qm_get_isolate_state(struct uacce_device *uacce) 2676 { 2677 struct hisi_qm *qm = uacce->priv; 2678 struct hisi_qm *pf_qm; 2679 2680 if (uacce->is_vf) 2681 pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 2682 else 2683 pf_qm = qm; 2684 2685 return pf_qm->isolate_data.is_isolate ? 2686 UACCE_DEV_ISOLATE : UACCE_DEV_NORMAL; 2687 } 2688 2689 static int hisi_qm_isolate_threshold_write(struct uacce_device *uacce, u32 num) 2690 { 2691 struct hisi_qm *qm = uacce->priv; 2692 2693 /* Must be set by PF */ 2694 if (uacce->is_vf) 2695 return -EPERM; 2696 2697 if (qm->isolate_data.is_isolate) 2698 return -EPERM; 2699 2700 qm->isolate_data.err_threshold = num; 2701 2702 /* After the policy is updated, need to reset the hardware err list */ 2703 qm_hw_err_destroy(qm); 2704 2705 return 0; 2706 } 2707 2708 static u32 hisi_qm_isolate_threshold_read(struct uacce_device *uacce) 2709 { 2710 struct hisi_qm *qm = uacce->priv; 2711 struct hisi_qm *pf_qm; 2712 2713 if (uacce->is_vf) { 2714 pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 2715 return pf_qm->isolate_data.err_threshold; 2716 } 2717 2718 return qm->isolate_data.err_threshold; 2719 } 2720 2721 static const struct uacce_ops uacce_qm_ops = { 2722 .get_available_instances = hisi_qm_get_available_instances, 2723 .get_queue = hisi_qm_uacce_get_queue, 2724 .put_queue = hisi_qm_uacce_put_queue, 2725 .start_queue = hisi_qm_uacce_start_queue, 2726 .stop_queue = hisi_qm_uacce_stop_queue, 2727 .mmap = hisi_qm_uacce_mmap, 2728 .ioctl = hisi_qm_uacce_ioctl, 2729 .is_q_updated = hisi_qm_is_q_updated, 2730 .get_isolate_state = hisi_qm_get_isolate_state, 2731 .isolate_err_threshold_write = hisi_qm_isolate_threshold_write, 2732 .isolate_err_threshold_read = hisi_qm_isolate_threshold_read, 2733 }; 2734 2735 static void qm_remove_uacce(struct hisi_qm *qm) 2736 { 2737 struct uacce_device *uacce = qm->uacce; 2738 2739 if (qm->use_sva) { 2740 qm_hw_err_destroy(qm); 2741 uacce_remove(uacce); 2742 qm->uacce = NULL; 2743 } 2744 } 2745 2746 static void qm_uacce_api_ver_init(struct hisi_qm *qm) 2747 { 2748 struct uacce_device *uacce = qm->uacce; 2749 2750 switch (qm->ver) { 2751 case QM_HW_V1: 2752 uacce->api_ver = HISI_QM_API_VER_BASE; 2753 break; 2754 case QM_HW_V2: 2755 uacce->api_ver = HISI_QM_API_VER2_BASE; 2756 break; 2757 case QM_HW_V3: 2758 case QM_HW_V4: 2759 uacce->api_ver = HISI_QM_API_VER3_BASE; 2760 break; 2761 default: 2762 uacce->api_ver = HISI_QM_API_VER5_BASE; 2763 break; 2764 } 2765 } 2766 2767 static int qm_alloc_uacce(struct hisi_qm *qm) 2768 { 2769 struct pci_dev *pdev = qm->pdev; 2770 struct uacce_device *uacce; 2771 unsigned long mmio_page_nr; 2772 unsigned long dus_page_nr; 2773 u16 sq_depth, cq_depth; 2774 struct uacce_interface interface = { 2775 .flags = UACCE_DEV_SVA, 2776 .ops = &uacce_qm_ops, 2777 }; 2778 int ret; 2779 2780 ret = strscpy(interface.name, dev_driver_string(&pdev->dev), 2781 sizeof(interface.name)); 2782 if (ret < 0) 2783 return -ENAMETOOLONG; 2784 2785 uacce = uacce_alloc(&pdev->dev, &interface); 2786 if (IS_ERR(uacce)) 2787 return PTR_ERR(uacce); 2788 2789 if (uacce->flags & UACCE_DEV_SVA) { 2790 qm->use_sva = true; 2791 } else { 2792 /* only consider sva case */ 2793 qm_remove_uacce(qm); 2794 return -EINVAL; 2795 } 2796 2797 uacce->is_vf = pdev->is_virtfn; 2798 uacce->priv = qm; 2799 2800 if (qm->ver == QM_HW_V1) 2801 mmio_page_nr = QM_DOORBELL_PAGE_NR; 2802 else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) 2803 mmio_page_nr = QM_DOORBELL_PAGE_NR + 2804 QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE; 2805 else 2806 mmio_page_nr = qm->db_interval / PAGE_SIZE; 2807 2808 qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP); 2809 2810 /* Add one more page for device or qp status */ 2811 dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * sq_depth + 2812 sizeof(struct qm_cqe) * cq_depth + PAGE_SIZE) >> 2813 PAGE_SHIFT; 2814 2815 uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr; 2816 uacce->qf_pg_num[UACCE_QFRT_DUS] = dus_page_nr; 2817 2818 qm->uacce = uacce; 2819 qm_uacce_api_ver_init(qm); 2820 INIT_LIST_HEAD(&qm->isolate_data.qm_hw_errs); 2821 mutex_init(&qm->isolate_data.isolate_lock); 2822 2823 return 0; 2824 } 2825 2826 /** 2827 * qm_frozen() - Try to froze QM to cut continuous queue request. If 2828 * there is user on the QM, return failure without doing anything. 2829 * @qm: The qm needed to be fronzen. 2830 * 2831 * This function frozes QM, then we can do SRIOV disabling. 2832 */ 2833 static int qm_frozen(struct hisi_qm *qm) 2834 { 2835 if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl)) 2836 return 0; 2837 2838 down_write(&qm->qps_lock); 2839 2840 if (!qm->qp_in_used) { 2841 qm->qp_in_used = qm->qp_num; 2842 up_write(&qm->qps_lock); 2843 set_bit(QM_DRIVER_REMOVING, &qm->misc_ctl); 2844 return 0; 2845 } 2846 2847 up_write(&qm->qps_lock); 2848 2849 return -EBUSY; 2850 } 2851 2852 static int qm_try_frozen_vfs(struct pci_dev *pdev, 2853 struct hisi_qm_list *qm_list) 2854 { 2855 struct hisi_qm *qm, *vf_qm; 2856 struct pci_dev *dev; 2857 int ret = 0; 2858 2859 if (!qm_list || !pdev) 2860 return -EINVAL; 2861 2862 /* Try to frozen all the VFs as disable SRIOV */ 2863 mutex_lock(&qm_list->lock); 2864 list_for_each_entry(qm, &qm_list->list, list) { 2865 dev = qm->pdev; 2866 if (dev == pdev) 2867 continue; 2868 if (pci_physfn(dev) == pdev) { 2869 vf_qm = pci_get_drvdata(dev); 2870 ret = qm_frozen(vf_qm); 2871 if (ret) 2872 goto frozen_fail; 2873 } 2874 } 2875 2876 frozen_fail: 2877 mutex_unlock(&qm_list->lock); 2878 2879 return ret; 2880 } 2881 2882 /** 2883 * hisi_qm_wait_task_finish() - Wait until the task is finished 2884 * when removing the driver. 2885 * @qm: The qm needed to wait for the task to finish. 2886 * @qm_list: The list of all available devices. 2887 */ 2888 void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 2889 { 2890 while (qm_frozen(qm) || 2891 ((qm->fun_type == QM_HW_PF) && 2892 qm_try_frozen_vfs(qm->pdev, qm_list))) { 2893 msleep(WAIT_PERIOD); 2894 } 2895 2896 while (test_bit(QM_RST_SCHED, &qm->misc_ctl) || 2897 test_bit(QM_RESETTING, &qm->misc_ctl)) 2898 msleep(WAIT_PERIOD); 2899 2900 if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 2901 flush_work(&qm->cmd_process); 2902 2903 udelay(REMOVE_WAIT_DELAY); 2904 } 2905 EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish); 2906 2907 static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num) 2908 { 2909 struct device *dev = &qm->pdev->dev; 2910 struct qm_dma *qdma; 2911 int i; 2912 2913 for (i = num - 1; i >= 0; i--) { 2914 qdma = &qm->qp_array[i].qdma; 2915 dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma); 2916 kfree(qm->poll_data[i].qp_finish_id); 2917 } 2918 2919 kfree(qm->poll_data); 2920 kfree(qm->qp_array); 2921 } 2922 2923 static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id, 2924 u16 sq_depth, u16 cq_depth) 2925 { 2926 struct device *dev = &qm->pdev->dev; 2927 size_t off = qm->sqe_size * sq_depth; 2928 struct hisi_qp *qp; 2929 int ret = -ENOMEM; 2930 2931 qm->poll_data[id].qp_finish_id = kcalloc(qm->qp_num, sizeof(u16), 2932 GFP_KERNEL); 2933 if (!qm->poll_data[id].qp_finish_id) 2934 return -ENOMEM; 2935 2936 qp = &qm->qp_array[id]; 2937 qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma, 2938 GFP_KERNEL); 2939 if (!qp->qdma.va) 2940 goto err_free_qp_finish_id; 2941 2942 qp->sqe = qp->qdma.va; 2943 qp->sqe_dma = qp->qdma.dma; 2944 qp->cqe = qp->qdma.va + off; 2945 qp->cqe_dma = qp->qdma.dma + off; 2946 qp->qdma.size = dma_size; 2947 qp->sq_depth = sq_depth; 2948 qp->cq_depth = cq_depth; 2949 qp->qm = qm; 2950 qp->qp_id = id; 2951 2952 return 0; 2953 2954 err_free_qp_finish_id: 2955 kfree(qm->poll_data[id].qp_finish_id); 2956 return ret; 2957 } 2958 2959 static void hisi_qm_pre_init(struct hisi_qm *qm) 2960 { 2961 struct pci_dev *pdev = qm->pdev; 2962 2963 if (qm->ver == QM_HW_V1) 2964 qm->ops = &qm_hw_ops_v1; 2965 else if (qm->ver == QM_HW_V2) 2966 qm->ops = &qm_hw_ops_v2; 2967 else if (qm->ver == QM_HW_V3) 2968 qm->ops = &qm_hw_ops_v3; 2969 else 2970 qm->ops = &qm_hw_ops_v4; 2971 2972 pci_set_drvdata(pdev, qm); 2973 mutex_init(&qm->mailbox_lock); 2974 mutex_init(&qm->ifc_lock); 2975 init_rwsem(&qm->qps_lock); 2976 qm->qp_in_used = 0; 2977 if (test_bit(QM_SUPPORT_RPM, &qm->caps)) { 2978 if (!acpi_device_power_manageable(ACPI_COMPANION(&pdev->dev))) 2979 dev_info(&pdev->dev, "_PS0 and _PR0 are not defined"); 2980 } 2981 } 2982 2983 static void qm_cmd_uninit(struct hisi_qm *qm) 2984 { 2985 u32 val; 2986 2987 if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 2988 return; 2989 2990 val = readl(qm->io_base + QM_IFC_INT_MASK); 2991 val |= QM_IFC_INT_DISABLE; 2992 writel(val, qm->io_base + QM_IFC_INT_MASK); 2993 } 2994 2995 static void qm_cmd_init(struct hisi_qm *qm) 2996 { 2997 u32 val; 2998 2999 if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 3000 return; 3001 3002 /* Clear communication interrupt source */ 3003 qm_clear_cmd_interrupt(qm, QM_IFC_INT_SOURCE_CLR); 3004 3005 /* Enable pf to vf communication reg. */ 3006 val = readl(qm->io_base + QM_IFC_INT_MASK); 3007 val &= ~QM_IFC_INT_DISABLE; 3008 writel(val, qm->io_base + QM_IFC_INT_MASK); 3009 } 3010 3011 static void qm_put_pci_res(struct hisi_qm *qm) 3012 { 3013 struct pci_dev *pdev = qm->pdev; 3014 3015 if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) 3016 iounmap(qm->db_io_base); 3017 3018 iounmap(qm->io_base); 3019 pci_release_mem_regions(pdev); 3020 } 3021 3022 static void hisi_qm_pci_uninit(struct hisi_qm *qm) 3023 { 3024 struct pci_dev *pdev = qm->pdev; 3025 3026 pci_free_irq_vectors(pdev); 3027 qm_put_pci_res(qm); 3028 pci_disable_device(pdev); 3029 } 3030 3031 static void hisi_qm_set_state(struct hisi_qm *qm, u8 state) 3032 { 3033 if (qm->ver > QM_HW_V2 && qm->fun_type == QM_HW_VF) 3034 writel(state, qm->io_base + QM_VF_STATE); 3035 } 3036 3037 static void hisi_qm_unint_work(struct hisi_qm *qm) 3038 { 3039 destroy_workqueue(qm->wq); 3040 } 3041 3042 static void hisi_qm_free_rsv_buf(struct hisi_qm *qm) 3043 { 3044 struct qm_dma *xqc_dma = &qm->xqc_buf.qcdma; 3045 struct device *dev = &qm->pdev->dev; 3046 3047 dma_free_coherent(dev, xqc_dma->size, xqc_dma->va, xqc_dma->dma); 3048 } 3049 3050 static void hisi_qm_memory_uninit(struct hisi_qm *qm) 3051 { 3052 struct device *dev = &qm->pdev->dev; 3053 3054 hisi_qp_memory_uninit(qm, qm->qp_num); 3055 hisi_qm_free_rsv_buf(qm); 3056 if (qm->qdma.va) { 3057 hisi_qm_cache_wb(qm); 3058 dma_free_coherent(dev, qm->qdma.size, 3059 qm->qdma.va, qm->qdma.dma); 3060 } 3061 3062 idr_destroy(&qm->qp_idr); 3063 3064 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 3065 kfree(qm->factor); 3066 } 3067 3068 /** 3069 * hisi_qm_uninit() - Uninitialize qm. 3070 * @qm: The qm needed uninit. 3071 * 3072 * This function uninits qm related device resources. 3073 */ 3074 void hisi_qm_uninit(struct hisi_qm *qm) 3075 { 3076 qm_cmd_uninit(qm); 3077 hisi_qm_unint_work(qm); 3078 3079 down_write(&qm->qps_lock); 3080 hisi_qm_memory_uninit(qm); 3081 hisi_qm_set_state(qm, QM_NOT_READY); 3082 up_write(&qm->qps_lock); 3083 3084 qm_remove_uacce(qm); 3085 qm_irqs_unregister(qm); 3086 hisi_qm_pci_uninit(qm); 3087 } 3088 EXPORT_SYMBOL_GPL(hisi_qm_uninit); 3089 3090 /** 3091 * hisi_qm_get_vft() - Get vft from a qm. 3092 * @qm: The qm we want to get its vft. 3093 * @base: The base number of queue in vft. 3094 * @number: The number of queues in vft. 3095 * 3096 * We can allocate multiple queues to a qm by configuring virtual function 3097 * table. We get related configures by this function. Normally, we call this 3098 * function in VF driver to get the queue information. 3099 * 3100 * qm hw v1 does not support this interface. 3101 */ 3102 static int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number) 3103 { 3104 if (!base || !number) 3105 return -EINVAL; 3106 3107 if (!qm->ops->get_vft) { 3108 dev_err(&qm->pdev->dev, "Don't support vft read!\n"); 3109 return -EINVAL; 3110 } 3111 3112 return qm->ops->get_vft(qm, base, number); 3113 } 3114 3115 /** 3116 * hisi_qm_set_vft() - Set vft to a qm. 3117 * @qm: The qm we want to set its vft. 3118 * @fun_num: The function number. 3119 * @base: The base number of queue in vft. 3120 * @number: The number of queues in vft. 3121 * 3122 * This function is alway called in PF driver, it is used to assign queues 3123 * among PF and VFs. 3124 * 3125 * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1) 3126 * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1) 3127 * (VF function number 0x2) 3128 */ 3129 static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base, 3130 u32 number) 3131 { 3132 u32 max_q_num = qm->ctrl_qp_num; 3133 3134 if (base >= max_q_num || number > max_q_num || 3135 (base + number) > max_q_num) 3136 return -EINVAL; 3137 3138 return qm_set_sqc_cqc_vft(qm, fun_num, base, number); 3139 } 3140 3141 static void qm_init_eq_aeq_status(struct hisi_qm *qm) 3142 { 3143 struct hisi_qm_status *status = &qm->status; 3144 3145 status->eq_head = 0; 3146 status->aeq_head = 0; 3147 status->eqc_phase = true; 3148 status->aeqc_phase = true; 3149 } 3150 3151 static void qm_enable_eq_aeq_interrupts(struct hisi_qm *qm) 3152 { 3153 /* Clear eq/aeq interrupt source */ 3154 qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0); 3155 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 3156 3157 writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK); 3158 writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK); 3159 } 3160 3161 static void qm_disable_eq_aeq_interrupts(struct hisi_qm *qm) 3162 { 3163 writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK); 3164 writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK); 3165 } 3166 3167 static int qm_eq_ctx_cfg(struct hisi_qm *qm) 3168 { 3169 struct qm_eqc eqc = {0}; 3170 3171 eqc.base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma)); 3172 eqc.base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma)); 3173 if (qm->ver == QM_HW_V1) 3174 eqc.dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE); 3175 eqc.dw6 = cpu_to_le32(((u32)qm->eq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT)); 3176 3177 return qm_set_and_get_xqc(qm, QM_MB_CMD_EQC, &eqc, 0, 0); 3178 } 3179 3180 static int qm_aeq_ctx_cfg(struct hisi_qm *qm) 3181 { 3182 struct qm_aeqc aeqc = {0}; 3183 3184 aeqc.base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma)); 3185 aeqc.base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma)); 3186 aeqc.dw6 = cpu_to_le32(((u32)qm->aeq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT)); 3187 3188 return qm_set_and_get_xqc(qm, QM_MB_CMD_AEQC, &aeqc, 0, 0); 3189 } 3190 3191 static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm) 3192 { 3193 struct device *dev = &qm->pdev->dev; 3194 int ret; 3195 3196 qm_init_eq_aeq_status(qm); 3197 3198 /* Before starting the dev, clear the memory and then configure to device using. */ 3199 memset(qm->qdma.va, 0, qm->qdma.size); 3200 3201 ret = qm_eq_ctx_cfg(qm); 3202 if (ret) { 3203 dev_err(dev, "Set eqc failed!\n"); 3204 return ret; 3205 } 3206 3207 return qm_aeq_ctx_cfg(qm); 3208 } 3209 3210 static int __hisi_qm_start(struct hisi_qm *qm) 3211 { 3212 struct device *dev = &qm->pdev->dev; 3213 int ret; 3214 3215 if (!qm->qdma.va) { 3216 dev_err(dev, "qm qdma is NULL!\n"); 3217 return -EINVAL; 3218 } 3219 3220 if (qm->fun_type == QM_HW_PF) { 3221 ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num); 3222 if (ret) 3223 return ret; 3224 } 3225 3226 ret = qm_eq_aeq_ctx_cfg(qm); 3227 if (ret) 3228 return ret; 3229 3230 ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0); 3231 if (ret) 3232 return ret; 3233 3234 ret = hisi_qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0); 3235 if (ret) 3236 return ret; 3237 3238 qm_init_prefetch(qm); 3239 qm_enable_eq_aeq_interrupts(qm); 3240 3241 return 0; 3242 } 3243 3244 /** 3245 * hisi_qm_start() - start qm 3246 * @qm: The qm to be started. 3247 * 3248 * This function starts a qm, then we can allocate qp from this qm. 3249 */ 3250 int hisi_qm_start(struct hisi_qm *qm) 3251 { 3252 struct device *dev = &qm->pdev->dev; 3253 int ret = 0; 3254 3255 down_write(&qm->qps_lock); 3256 3257 dev_dbg(dev, "qm start with %u queue pairs\n", qm->qp_num); 3258 3259 if (!qm->qp_num) { 3260 dev_err(dev, "qp_num should not be 0\n"); 3261 ret = -EINVAL; 3262 goto err_unlock; 3263 } 3264 3265 ret = __hisi_qm_start(qm); 3266 if (ret) 3267 goto err_unlock; 3268 3269 atomic_set(&qm->status.flags, QM_WORK); 3270 hisi_qm_set_state(qm, QM_READY); 3271 3272 err_unlock: 3273 up_write(&qm->qps_lock); 3274 return ret; 3275 } 3276 EXPORT_SYMBOL_GPL(hisi_qm_start); 3277 3278 static int qm_restart(struct hisi_qm *qm) 3279 { 3280 struct device *dev = &qm->pdev->dev; 3281 struct hisi_qp *qp; 3282 int ret, i; 3283 3284 ret = hisi_qm_start(qm); 3285 if (ret < 0) 3286 return ret; 3287 3288 down_write(&qm->qps_lock); 3289 for (i = 0; i < qm->qp_num; i++) { 3290 qp = &qm->qp_array[i]; 3291 if (atomic_read(&qp->qp_status.flags) == QP_STOP && 3292 qp->is_resetting == true && qp->is_in_kernel == true) { 3293 ret = qm_start_qp_nolock(qp, 0); 3294 if (ret < 0) { 3295 dev_err(dev, "Failed to start qp%d!\n", i); 3296 3297 up_write(&qm->qps_lock); 3298 return ret; 3299 } 3300 qp->is_resetting = false; 3301 } 3302 } 3303 up_write(&qm->qps_lock); 3304 3305 return 0; 3306 } 3307 3308 /* Stop started qps in reset flow */ 3309 static void qm_stop_started_qp(struct hisi_qm *qm) 3310 { 3311 struct hisi_qp *qp; 3312 int i; 3313 3314 for (i = 0; i < qm->qp_num; i++) { 3315 qp = &qm->qp_array[i]; 3316 if (atomic_read(&qp->qp_status.flags) == QP_START) { 3317 qp->is_resetting = true; 3318 qm_stop_qp_nolock(qp); 3319 } 3320 } 3321 } 3322 3323 /** 3324 * qm_invalid_queues() - invalid all queues in use. 3325 * @qm: The qm in which the queues will be invalidated. 3326 * 3327 * This function invalid all queues in use. If the doorbell command is sent 3328 * to device in user space after the device is reset, the device discards 3329 * the doorbell command. 3330 */ 3331 static void qm_invalid_queues(struct hisi_qm *qm) 3332 { 3333 struct hisi_qp *qp; 3334 struct qm_sqc *sqc; 3335 struct qm_cqc *cqc; 3336 int i; 3337 3338 /* 3339 * Normal stop queues is no longer used and does not need to be 3340 * invalid queues. 3341 */ 3342 if (qm->status.stop_reason == QM_NORMAL) 3343 return; 3344 3345 if (qm->status.stop_reason == QM_DOWN) 3346 hisi_qm_cache_wb(qm); 3347 3348 for (i = 0; i < qm->qp_num; i++) { 3349 qp = &qm->qp_array[i]; 3350 if (!qp->is_resetting) 3351 continue; 3352 3353 /* Modify random data and set sqc close bit to invalid queue. */ 3354 sqc = qm->sqc + i; 3355 cqc = qm->cqc + i; 3356 sqc->w8 = cpu_to_le16(QM_XQC_RANDOM_DATA); 3357 sqc->w13 = cpu_to_le16(QM_SQC_DISABLE_QP); 3358 cqc->w8 = cpu_to_le16(QM_XQC_RANDOM_DATA); 3359 if (qp->is_in_kernel) 3360 memset(qp->qdma.va, 0, qp->qdma.size); 3361 } 3362 } 3363 3364 /** 3365 * hisi_qm_stop() - Stop a qm. 3366 * @qm: The qm which will be stopped. 3367 * @r: The reason to stop qm. 3368 * 3369 * This function stops qm and its qps, then qm can not accept request. 3370 * Related resources are not released at this state, we can use hisi_qm_start 3371 * to let qm start again. 3372 */ 3373 int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r) 3374 { 3375 struct device *dev = &qm->pdev->dev; 3376 int ret = 0; 3377 3378 down_write(&qm->qps_lock); 3379 3380 if (atomic_read(&qm->status.flags) == QM_STOP) 3381 goto err_unlock; 3382 3383 /* Stop all the request sending at first. */ 3384 atomic_set(&qm->status.flags, QM_STOP); 3385 qm->status.stop_reason = r; 3386 3387 if (qm->status.stop_reason != QM_NORMAL) { 3388 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 3389 /* 3390 * When performing soft reset, the hardware will no longer 3391 * do tasks, and the tasks in the device will be flushed 3392 * out directly since the master ooo is closed. 3393 */ 3394 if (test_bit(QM_SUPPORT_STOP_FUNC, &qm->caps) && 3395 r != QM_SOFT_RESET) { 3396 ret = qm_drain_qm(qm); 3397 if (ret) { 3398 dev_err(dev, "failed to drain qm!\n"); 3399 goto err_unlock; 3400 } 3401 } 3402 3403 qm_stop_started_qp(qm); 3404 3405 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 3406 } 3407 3408 qm_disable_eq_aeq_interrupts(qm); 3409 if (qm->fun_type == QM_HW_PF) { 3410 ret = hisi_qm_set_vft(qm, 0, 0, 0); 3411 if (ret < 0) { 3412 dev_err(dev, "Failed to set vft!\n"); 3413 ret = -EBUSY; 3414 goto err_unlock; 3415 } 3416 } 3417 3418 qm_invalid_queues(qm); 3419 qm->status.stop_reason = QM_NORMAL; 3420 3421 err_unlock: 3422 up_write(&qm->qps_lock); 3423 return ret; 3424 } 3425 EXPORT_SYMBOL_GPL(hisi_qm_stop); 3426 3427 static void qm_hw_error_init(struct hisi_qm *qm) 3428 { 3429 if (!qm->ops->hw_error_init) { 3430 dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n"); 3431 return; 3432 } 3433 3434 qm->ops->hw_error_init(qm); 3435 } 3436 3437 static void qm_hw_error_uninit(struct hisi_qm *qm) 3438 { 3439 if (!qm->ops->hw_error_uninit) { 3440 dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n"); 3441 return; 3442 } 3443 3444 qm->ops->hw_error_uninit(qm); 3445 } 3446 3447 static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm) 3448 { 3449 if (!qm->ops->hw_error_handle) { 3450 dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n"); 3451 return ACC_ERR_NONE; 3452 } 3453 3454 return qm->ops->hw_error_handle(qm); 3455 } 3456 3457 /** 3458 * hisi_qm_dev_err_init() - Initialize device error configuration. 3459 * @qm: The qm for which we want to do error initialization. 3460 * 3461 * Initialize QM and device error related configuration. 3462 */ 3463 void hisi_qm_dev_err_init(struct hisi_qm *qm) 3464 { 3465 if (qm->fun_type == QM_HW_VF) 3466 return; 3467 3468 qm_hw_error_init(qm); 3469 3470 if (!qm->err_ini->hw_err_enable) { 3471 dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n"); 3472 return; 3473 } 3474 qm->err_ini->hw_err_enable(qm); 3475 } 3476 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init); 3477 3478 /** 3479 * hisi_qm_dev_err_uninit() - Uninitialize device error configuration. 3480 * @qm: The qm for which we want to do error uninitialization. 3481 * 3482 * Uninitialize QM and device error related configuration. 3483 */ 3484 void hisi_qm_dev_err_uninit(struct hisi_qm *qm) 3485 { 3486 if (qm->fun_type == QM_HW_VF) 3487 return; 3488 3489 qm_hw_error_uninit(qm); 3490 3491 if (!qm->err_ini->hw_err_disable) { 3492 dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n"); 3493 return; 3494 } 3495 qm->err_ini->hw_err_disable(qm); 3496 } 3497 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit); 3498 3499 /** 3500 * hisi_qm_free_qps() - free multiple queue pairs. 3501 * @qps: The queue pairs need to be freed. 3502 * @qp_num: The num of queue pairs. 3503 */ 3504 void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num) 3505 { 3506 int i; 3507 3508 if (!qps || qp_num <= 0) 3509 return; 3510 3511 for (i = qp_num - 1; i >= 0; i--) 3512 hisi_qm_release_qp(qps[i]); 3513 } 3514 EXPORT_SYMBOL_GPL(hisi_qm_free_qps); 3515 3516 static void free_list(struct list_head *head) 3517 { 3518 struct hisi_qm_resource *res, *tmp; 3519 3520 list_for_each_entry_safe(res, tmp, head, list) { 3521 list_del(&res->list); 3522 kfree(res); 3523 } 3524 } 3525 3526 static int hisi_qm_sort_devices(int node, struct list_head *head, 3527 struct hisi_qm_list *qm_list) 3528 { 3529 struct hisi_qm_resource *res, *tmp; 3530 struct hisi_qm *qm; 3531 struct list_head *n; 3532 struct device *dev; 3533 int dev_node; 3534 3535 list_for_each_entry(qm, &qm_list->list, list) { 3536 dev = &qm->pdev->dev; 3537 3538 dev_node = dev_to_node(dev); 3539 if (dev_node < 0) 3540 dev_node = 0; 3541 3542 res = kzalloc(sizeof(*res), GFP_KERNEL); 3543 if (!res) 3544 return -ENOMEM; 3545 3546 res->qm = qm; 3547 res->distance = node_distance(dev_node, node); 3548 n = head; 3549 list_for_each_entry(tmp, head, list) { 3550 if (res->distance < tmp->distance) { 3551 n = &tmp->list; 3552 break; 3553 } 3554 } 3555 list_add_tail(&res->list, n); 3556 } 3557 3558 return 0; 3559 } 3560 3561 /** 3562 * hisi_qm_alloc_qps_node() - Create multiple queue pairs. 3563 * @qm_list: The list of all available devices. 3564 * @qp_num: The number of queue pairs need created. 3565 * @alg_type: The algorithm type. 3566 * @node: The numa node. 3567 * @qps: The queue pairs need created. 3568 * 3569 * This function will sort all available device according to numa distance. 3570 * Then try to create all queue pairs from one device, if all devices do 3571 * not meet the requirements will return error. 3572 */ 3573 int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num, 3574 u8 alg_type, int node, struct hisi_qp **qps) 3575 { 3576 struct hisi_qm_resource *tmp; 3577 int ret = -ENODEV; 3578 LIST_HEAD(head); 3579 int i; 3580 3581 if (!qps || !qm_list || qp_num <= 0) 3582 return -EINVAL; 3583 3584 mutex_lock(&qm_list->lock); 3585 if (hisi_qm_sort_devices(node, &head, qm_list)) { 3586 mutex_unlock(&qm_list->lock); 3587 goto err; 3588 } 3589 3590 list_for_each_entry(tmp, &head, list) { 3591 for (i = 0; i < qp_num; i++) { 3592 qps[i] = hisi_qm_create_qp(tmp->qm, alg_type); 3593 if (IS_ERR(qps[i])) { 3594 hisi_qm_free_qps(qps, i); 3595 break; 3596 } 3597 } 3598 3599 if (i == qp_num) { 3600 ret = 0; 3601 break; 3602 } 3603 } 3604 3605 mutex_unlock(&qm_list->lock); 3606 if (ret) 3607 pr_info("Failed to create qps, node[%d], alg[%u], qp[%d]!\n", 3608 node, alg_type, qp_num); 3609 3610 err: 3611 free_list(&head); 3612 return ret; 3613 } 3614 EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node); 3615 3616 static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs) 3617 { 3618 u32 remain_q_num, vfs_q_num, act_q_num, q_num, i, j; 3619 u32 max_qp_num = qm->max_qp_num; 3620 u32 q_base = qm->qp_num; 3621 int ret; 3622 3623 if (!num_vfs) 3624 return -EINVAL; 3625 3626 vfs_q_num = qm->ctrl_qp_num - qm->qp_num; 3627 3628 /* If vfs_q_num is less than num_vfs, return error. */ 3629 if (vfs_q_num < num_vfs) 3630 return -EINVAL; 3631 3632 q_num = vfs_q_num / num_vfs; 3633 remain_q_num = vfs_q_num % num_vfs; 3634 3635 for (i = num_vfs; i > 0; i--) { 3636 /* 3637 * if q_num + remain_q_num > max_qp_num in last vf, divide the 3638 * remaining queues equally. 3639 */ 3640 if (i == num_vfs && q_num + remain_q_num <= max_qp_num) { 3641 act_q_num = q_num + remain_q_num; 3642 remain_q_num = 0; 3643 } else if (remain_q_num > 0) { 3644 act_q_num = q_num + 1; 3645 remain_q_num--; 3646 } else { 3647 act_q_num = q_num; 3648 } 3649 3650 act_q_num = min(act_q_num, max_qp_num); 3651 ret = hisi_qm_set_vft(qm, i, q_base, act_q_num); 3652 if (ret) { 3653 for (j = num_vfs; j > i; j--) 3654 hisi_qm_set_vft(qm, j, 0, 0); 3655 return ret; 3656 } 3657 q_base += act_q_num; 3658 } 3659 3660 return 0; 3661 } 3662 3663 static void qm_clear_vft_config(struct hisi_qm *qm) 3664 { 3665 u32 i; 3666 3667 /* 3668 * When disabling SR-IOV, clear the configuration of each VF in the hardware 3669 * sequentially. Failure to clear a single VF should not affect the clearing 3670 * operation of other VFs. 3671 */ 3672 for (i = 1; i <= qm->vfs_num; i++) 3673 (void)hisi_qm_set_vft(qm, i, 0, 0); 3674 3675 qm->vfs_num = 0; 3676 } 3677 3678 static int qm_func_shaper_enable(struct hisi_qm *qm, u32 fun_index, u32 qos) 3679 { 3680 struct device *dev = &qm->pdev->dev; 3681 u32 ir = qos * QM_QOS_RATE; 3682 int ret, total_vfs, i; 3683 3684 total_vfs = pci_sriov_get_totalvfs(qm->pdev); 3685 if (fun_index > total_vfs) 3686 return -EINVAL; 3687 3688 qm->factor[fun_index].func_qos = qos; 3689 3690 ret = qm_get_shaper_para(ir, &qm->factor[fun_index]); 3691 if (ret) { 3692 dev_err(dev, "failed to calculate shaper parameter!\n"); 3693 return -EINVAL; 3694 } 3695 3696 for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) { 3697 /* The base number of queue reuse for different alg type */ 3698 ret = qm_set_vft_common(qm, SHAPER_VFT, fun_index, i, 1); 3699 if (ret) { 3700 dev_err(dev, "type: %d, failed to set shaper vft!\n", i); 3701 return -EINVAL; 3702 } 3703 } 3704 3705 return 0; 3706 } 3707 3708 static u32 qm_get_shaper_vft_qos(struct hisi_qm *qm, u32 fun_index) 3709 { 3710 u64 cir_u = 0, cir_b = 0, cir_s = 0; 3711 u64 shaper_vft, ir_calc, ir; 3712 unsigned int val; 3713 u32 error_rate; 3714 int ret; 3715 3716 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 3717 val & BIT(0), POLL_PERIOD, 3718 POLL_TIMEOUT); 3719 if (ret) 3720 return 0; 3721 3722 writel(0x1, qm->io_base + QM_VFT_CFG_OP_WR); 3723 writel(SHAPER_VFT, qm->io_base + QM_VFT_CFG_TYPE); 3724 writel(fun_index, qm->io_base + QM_VFT_CFG); 3725 3726 writel(0x0, qm->io_base + QM_VFT_CFG_RDY); 3727 writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE); 3728 3729 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 3730 val & BIT(0), POLL_PERIOD, 3731 POLL_TIMEOUT); 3732 if (ret) 3733 return 0; 3734 3735 shaper_vft = readl(qm->io_base + QM_VFT_CFG_DATA_L) | 3736 ((u64)readl(qm->io_base + QM_VFT_CFG_DATA_H) << 32); 3737 3738 cir_b = shaper_vft & QM_SHAPER_CIR_B_MASK; 3739 cir_u = shaper_vft & QM_SHAPER_CIR_U_MASK; 3740 cir_u = cir_u >> QM_SHAPER_FACTOR_CIR_U_SHIFT; 3741 3742 cir_s = shaper_vft & QM_SHAPER_CIR_S_MASK; 3743 cir_s = cir_s >> QM_SHAPER_FACTOR_CIR_S_SHIFT; 3744 3745 ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s); 3746 3747 ir = qm->factor[fun_index].func_qos * QM_QOS_RATE; 3748 3749 error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir; 3750 if (error_rate > QM_QOS_MIN_ERROR_RATE) { 3751 pci_err(qm->pdev, "error_rate: %u, get function qos is error!\n", error_rate); 3752 return 0; 3753 } 3754 3755 return ir; 3756 } 3757 3758 static void qm_vf_get_qos(struct hisi_qm *qm, u32 fun_num) 3759 { 3760 struct device *dev = &qm->pdev->dev; 3761 u32 qos; 3762 int ret; 3763 3764 qos = qm_get_shaper_vft_qos(qm, fun_num); 3765 if (!qos) { 3766 dev_err(dev, "function(%u) failed to get qos by PF!\n", fun_num); 3767 return; 3768 } 3769 3770 ret = qm_ping_single_vf(qm, QM_PF_SET_QOS, qos, fun_num); 3771 if (ret) 3772 dev_err(dev, "failed to send command(0x%x) to VF(%u)!\n", QM_PF_SET_QOS, fun_num); 3773 } 3774 3775 static int qm_vf_read_qos(struct hisi_qm *qm) 3776 { 3777 int cnt = 0; 3778 int ret = -EINVAL; 3779 3780 /* reset mailbox qos val */ 3781 qm->mb_qos = 0; 3782 3783 /* vf ping pf to get function qos */ 3784 ret = qm_ping_pf(qm, QM_VF_GET_QOS); 3785 if (ret) { 3786 pci_err(qm->pdev, "failed to send cmd to PF to get qos!\n"); 3787 return ret; 3788 } 3789 3790 while (true) { 3791 msleep(QM_WAIT_DST_ACK); 3792 if (qm->mb_qos) 3793 break; 3794 3795 if (++cnt > QM_MAX_VF_WAIT_COUNT) { 3796 pci_err(qm->pdev, "PF ping VF timeout!\n"); 3797 return -ETIMEDOUT; 3798 } 3799 } 3800 3801 return ret; 3802 } 3803 3804 static ssize_t qm_algqos_read(struct file *filp, char __user *buf, 3805 size_t count, loff_t *pos) 3806 { 3807 struct hisi_qm *qm = filp->private_data; 3808 char tbuf[QM_DBG_READ_LEN]; 3809 u32 qos_val, ir; 3810 int ret; 3811 3812 ret = hisi_qm_get_dfx_access(qm); 3813 if (ret) 3814 return ret; 3815 3816 /* Mailbox and reset cannot be operated at the same time */ 3817 if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 3818 pci_err(qm->pdev, "dev resetting, read alg qos failed!\n"); 3819 ret = -EAGAIN; 3820 goto err_put_dfx_access; 3821 } 3822 3823 if (qm->fun_type == QM_HW_PF) { 3824 ir = qm_get_shaper_vft_qos(qm, 0); 3825 } else { 3826 ret = qm_vf_read_qos(qm); 3827 if (ret) 3828 goto err_get_status; 3829 ir = qm->mb_qos; 3830 } 3831 3832 qos_val = ir / QM_QOS_RATE; 3833 ret = scnprintf(tbuf, QM_DBG_READ_LEN, "%u\n", qos_val); 3834 3835 ret = simple_read_from_buffer(buf, count, pos, tbuf, ret); 3836 3837 err_get_status: 3838 clear_bit(QM_RESETTING, &qm->misc_ctl); 3839 err_put_dfx_access: 3840 hisi_qm_put_dfx_access(qm); 3841 return ret; 3842 } 3843 3844 static ssize_t qm_get_qos_value(struct hisi_qm *qm, const char *buf, 3845 unsigned long *val, 3846 unsigned int *fun_index) 3847 { 3848 const struct bus_type *bus_type = qm->pdev->dev.bus; 3849 char tbuf_bdf[QM_DBG_READ_LEN] = {0}; 3850 char val_buf[QM_DBG_READ_LEN] = {0}; 3851 struct pci_dev *pdev; 3852 struct device *dev; 3853 int ret; 3854 3855 ret = sscanf(buf, "%s %s", tbuf_bdf, val_buf); 3856 if (ret != QM_QOS_PARAM_NUM) 3857 return -EINVAL; 3858 3859 ret = kstrtoul(val_buf, 10, val); 3860 if (ret || *val == 0 || *val > QM_QOS_MAX_VAL) { 3861 pci_err(qm->pdev, "input qos value is error, please set 1~1000!\n"); 3862 return -EINVAL; 3863 } 3864 3865 dev = bus_find_device_by_name(bus_type, NULL, tbuf_bdf); 3866 if (!dev) { 3867 pci_err(qm->pdev, "input pci bdf number is error!\n"); 3868 return -ENODEV; 3869 } 3870 3871 pdev = container_of(dev, struct pci_dev, dev); 3872 if (pci_physfn(pdev) != qm->pdev) { 3873 pci_err(qm->pdev, "the pdev input does not match the pf!\n"); 3874 return -EINVAL; 3875 } 3876 3877 *fun_index = pdev->devfn; 3878 3879 return 0; 3880 } 3881 3882 static ssize_t qm_algqos_write(struct file *filp, const char __user *buf, 3883 size_t count, loff_t *pos) 3884 { 3885 struct hisi_qm *qm = filp->private_data; 3886 char tbuf[QM_DBG_READ_LEN]; 3887 unsigned int fun_index; 3888 unsigned long val; 3889 int len, ret; 3890 3891 if (*pos != 0) 3892 return 0; 3893 3894 if (count >= QM_DBG_READ_LEN) 3895 return -ENOSPC; 3896 3897 len = simple_write_to_buffer(tbuf, QM_DBG_READ_LEN - 1, pos, buf, count); 3898 if (len < 0) 3899 return len; 3900 3901 tbuf[len] = '\0'; 3902 ret = qm_get_qos_value(qm, tbuf, &val, &fun_index); 3903 if (ret) 3904 return ret; 3905 3906 /* Mailbox and reset cannot be operated at the same time */ 3907 if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 3908 pci_err(qm->pdev, "dev resetting, write alg qos failed!\n"); 3909 return -EAGAIN; 3910 } 3911 3912 ret = qm_pm_get_sync(qm); 3913 if (ret) { 3914 ret = -EINVAL; 3915 goto err_get_status; 3916 } 3917 3918 ret = qm_func_shaper_enable(qm, fun_index, val); 3919 if (ret) { 3920 pci_err(qm->pdev, "failed to enable function shaper!\n"); 3921 ret = -EINVAL; 3922 goto err_put_sync; 3923 } 3924 3925 pci_info(qm->pdev, "the qos value of function%u is set to %lu.\n", 3926 fun_index, val); 3927 ret = count; 3928 3929 err_put_sync: 3930 qm_pm_put_sync(qm); 3931 err_get_status: 3932 clear_bit(QM_RESETTING, &qm->misc_ctl); 3933 return ret; 3934 } 3935 3936 static const struct file_operations qm_algqos_fops = { 3937 .owner = THIS_MODULE, 3938 .open = simple_open, 3939 .read = qm_algqos_read, 3940 .write = qm_algqos_write, 3941 }; 3942 3943 /** 3944 * hisi_qm_set_algqos_init() - Initialize function qos debugfs files. 3945 * @qm: The qm for which we want to add debugfs files. 3946 * 3947 * Create function qos debugfs files, VF ping PF to get function qos. 3948 */ 3949 void hisi_qm_set_algqos_init(struct hisi_qm *qm) 3950 { 3951 if (qm->fun_type == QM_HW_PF) 3952 debugfs_create_file("alg_qos", 0644, qm->debug.debug_root, 3953 qm, &qm_algqos_fops); 3954 else if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 3955 debugfs_create_file("alg_qos", 0444, qm->debug.debug_root, 3956 qm, &qm_algqos_fops); 3957 } 3958 3959 static void hisi_qm_init_vf_qos(struct hisi_qm *qm, int total_func) 3960 { 3961 int i; 3962 3963 for (i = 1; i <= total_func; i++) 3964 qm->factor[i].func_qos = QM_QOS_MAX_VAL; 3965 } 3966 3967 /** 3968 * hisi_qm_sriov_enable() - enable virtual functions 3969 * @pdev: the PCIe device 3970 * @max_vfs: the number of virtual functions to enable 3971 * 3972 * Returns the number of enabled VFs. If there are VFs enabled already or 3973 * max_vfs is more than the total number of device can be enabled, returns 3974 * failure. 3975 */ 3976 int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs) 3977 { 3978 struct hisi_qm *qm = pci_get_drvdata(pdev); 3979 int pre_existing_vfs, num_vfs, total_vfs, ret; 3980 3981 ret = qm_pm_get_sync(qm); 3982 if (ret) 3983 return ret; 3984 3985 total_vfs = pci_sriov_get_totalvfs(pdev); 3986 pre_existing_vfs = pci_num_vf(pdev); 3987 if (pre_existing_vfs) { 3988 pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n", 3989 pre_existing_vfs); 3990 goto err_put_sync; 3991 } 3992 3993 if (max_vfs > total_vfs) { 3994 pci_err(pdev, "%d VFs is more than total VFs %d!\n", max_vfs, total_vfs); 3995 ret = -ERANGE; 3996 goto err_put_sync; 3997 } 3998 3999 num_vfs = max_vfs; 4000 4001 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 4002 hisi_qm_init_vf_qos(qm, num_vfs); 4003 4004 ret = qm_vf_q_assign(qm, num_vfs); 4005 if (ret) { 4006 pci_err(pdev, "Can't assign queues for VF!\n"); 4007 goto err_put_sync; 4008 } 4009 4010 qm->vfs_num = num_vfs; 4011 ret = pci_enable_sriov(pdev, num_vfs); 4012 if (ret) { 4013 pci_err(pdev, "Can't enable VF!\n"); 4014 qm_clear_vft_config(qm); 4015 goto err_put_sync; 4016 } 4017 4018 pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs); 4019 4020 return num_vfs; 4021 4022 err_put_sync: 4023 qm_pm_put_sync(qm); 4024 return ret; 4025 } 4026 EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable); 4027 4028 /** 4029 * hisi_qm_sriov_disable - disable virtual functions 4030 * @pdev: the PCI device. 4031 * @is_frozen: true when all the VFs are frozen. 4032 * 4033 * Return failure if there are VFs assigned already or VF is in used. 4034 */ 4035 int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen) 4036 { 4037 struct hisi_qm *qm = pci_get_drvdata(pdev); 4038 4039 if (pci_vfs_assigned(pdev)) { 4040 pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n"); 4041 return -EPERM; 4042 } 4043 4044 /* While VF is in used, SRIOV cannot be disabled. */ 4045 if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) { 4046 pci_err(pdev, "Task is using its VF!\n"); 4047 return -EBUSY; 4048 } 4049 4050 pci_disable_sriov(pdev); 4051 qm_clear_vft_config(qm); 4052 qm_pm_put_sync(qm); 4053 4054 return 0; 4055 } 4056 EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable); 4057 4058 /** 4059 * hisi_qm_sriov_configure - configure the number of VFs 4060 * @pdev: The PCI device 4061 * @num_vfs: The number of VFs need enabled 4062 * 4063 * Enable SR-IOV according to num_vfs, 0 means disable. 4064 */ 4065 int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs) 4066 { 4067 if (num_vfs == 0) 4068 return hisi_qm_sriov_disable(pdev, false); 4069 else 4070 return hisi_qm_sriov_enable(pdev, num_vfs); 4071 } 4072 EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure); 4073 4074 static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm) 4075 { 4076 if (!qm->err_ini->get_err_result) { 4077 dev_err(&qm->pdev->dev, "Device doesn't support reset!\n"); 4078 return ACC_ERR_NONE; 4079 } 4080 4081 return qm->err_ini->get_err_result(qm); 4082 } 4083 4084 static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm) 4085 { 4086 enum acc_err_result qm_ret, dev_ret; 4087 4088 /* log qm error */ 4089 qm_ret = qm_hw_error_handle(qm); 4090 4091 /* log device error */ 4092 dev_ret = qm_dev_err_handle(qm); 4093 4094 return (qm_ret == ACC_ERR_NEED_RESET || 4095 dev_ret == ACC_ERR_NEED_RESET) ? 4096 ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED; 4097 } 4098 4099 /** 4100 * hisi_qm_dev_err_detected() - Get device and qm error status then log it. 4101 * @pdev: The PCI device which need report error. 4102 * @state: The connectivity between CPU and device. 4103 * 4104 * We register this function into PCIe AER handlers, It will report device or 4105 * qm hardware error status when error occur. 4106 */ 4107 pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev, 4108 pci_channel_state_t state) 4109 { 4110 struct hisi_qm *qm = pci_get_drvdata(pdev); 4111 enum acc_err_result ret; 4112 4113 if (pdev->is_virtfn) 4114 return PCI_ERS_RESULT_NONE; 4115 4116 pci_info(pdev, "PCI error detected, state(=%u)!!\n", state); 4117 if (state == pci_channel_io_perm_failure) 4118 return PCI_ERS_RESULT_DISCONNECT; 4119 4120 ret = qm_process_dev_error(qm); 4121 if (ret == ACC_ERR_NEED_RESET) 4122 return PCI_ERS_RESULT_NEED_RESET; 4123 4124 return PCI_ERS_RESULT_RECOVERED; 4125 } 4126 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected); 4127 4128 static int qm_check_req_recv(struct hisi_qm *qm) 4129 { 4130 struct pci_dev *pdev = qm->pdev; 4131 int ret; 4132 u32 val; 4133 4134 if (qm->ver >= QM_HW_V3) 4135 return 0; 4136 4137 writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID); 4138 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val, 4139 (val == ACC_VENDOR_ID_VALUE), 4140 POLL_PERIOD, POLL_TIMEOUT); 4141 if (ret) { 4142 dev_err(&pdev->dev, "Fails to read QM reg!\n"); 4143 return ret; 4144 } 4145 4146 writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID); 4147 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val, 4148 (val == PCI_VENDOR_ID_HUAWEI), 4149 POLL_PERIOD, POLL_TIMEOUT); 4150 if (ret) 4151 dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n"); 4152 4153 return ret; 4154 } 4155 4156 static int qm_set_pf_mse(struct hisi_qm *qm, bool set) 4157 { 4158 struct pci_dev *pdev = qm->pdev; 4159 u16 cmd; 4160 int i; 4161 4162 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 4163 if (set) 4164 cmd |= PCI_COMMAND_MEMORY; 4165 else 4166 cmd &= ~PCI_COMMAND_MEMORY; 4167 4168 pci_write_config_word(pdev, PCI_COMMAND, cmd); 4169 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 4170 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 4171 if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1)) 4172 return 0; 4173 4174 udelay(1); 4175 } 4176 4177 return -ETIMEDOUT; 4178 } 4179 4180 static int qm_set_vf_mse(struct hisi_qm *qm, bool set) 4181 { 4182 struct pci_dev *pdev = qm->pdev; 4183 u16 sriov_ctrl; 4184 int pos; 4185 int i; 4186 4187 /* 4188 * Since function qm_set_vf_mse is called only after SRIOV is enabled, 4189 * pci_find_ext_capability cannot return 0, pos does not need to be 4190 * checked. 4191 */ 4192 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); 4193 pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl); 4194 if (set) 4195 sriov_ctrl |= PCI_SRIOV_CTRL_MSE; 4196 else 4197 sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE; 4198 pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl); 4199 4200 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 4201 pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl); 4202 if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >> 4203 ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT) 4204 return 0; 4205 4206 udelay(1); 4207 } 4208 4209 return -ETIMEDOUT; 4210 } 4211 4212 static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm) 4213 { 4214 u32 nfe_enb = 0; 4215 4216 /* Kunpeng930 hardware automatically close master ooo when NFE occurs */ 4217 if (qm->ver >= QM_HW_V3) 4218 return; 4219 4220 if (!qm->err_status.is_dev_ecc_mbit && 4221 qm->err_status.is_qm_ecc_mbit && 4222 qm->err_ini->close_axi_master_ooo) { 4223 qm->err_ini->close_axi_master_ooo(qm); 4224 } else if (qm->err_status.is_dev_ecc_mbit && 4225 !qm->err_status.is_qm_ecc_mbit && 4226 !qm->err_ini->close_axi_master_ooo) { 4227 nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE); 4228 writel(nfe_enb & ~qm->err_info.qm_err.ecc_2bits_mask, 4229 qm->io_base + QM_RAS_NFE_ENABLE); 4230 writel(qm->err_info.qm_err.ecc_2bits_mask, qm->io_base + QM_ABNORMAL_INT_SET); 4231 } 4232 } 4233 4234 static int qm_vf_reset_prepare(struct hisi_qm *qm, 4235 enum qm_stop_reason stop_reason) 4236 { 4237 struct hisi_qm_list *qm_list = qm->qm_list; 4238 struct pci_dev *pdev = qm->pdev; 4239 struct pci_dev *virtfn; 4240 struct hisi_qm *vf_qm; 4241 int ret = 0; 4242 4243 mutex_lock(&qm_list->lock); 4244 list_for_each_entry(vf_qm, &qm_list->list, list) { 4245 virtfn = vf_qm->pdev; 4246 if (virtfn == pdev) 4247 continue; 4248 4249 if (pci_physfn(virtfn) == pdev) { 4250 /* save VFs PCIE BAR configuration */ 4251 pci_save_state(virtfn); 4252 4253 ret = hisi_qm_stop(vf_qm, stop_reason); 4254 if (ret) 4255 goto stop_fail; 4256 } 4257 } 4258 4259 stop_fail: 4260 mutex_unlock(&qm_list->lock); 4261 return ret; 4262 } 4263 4264 static int qm_try_stop_vfs(struct hisi_qm *qm, enum qm_ifc_cmd cmd, 4265 enum qm_stop_reason stop_reason) 4266 { 4267 struct pci_dev *pdev = qm->pdev; 4268 int ret; 4269 4270 if (!qm->vfs_num) 4271 return 0; 4272 4273 /* Kunpeng930 supports to notify VFs to stop before PF reset */ 4274 if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) { 4275 ret = qm_ping_all_vfs(qm, cmd); 4276 if (ret) 4277 pci_err(pdev, "failed to send command to all VFs before PF reset!\n"); 4278 } else { 4279 ret = qm_vf_reset_prepare(qm, stop_reason); 4280 if (ret) 4281 pci_err(pdev, "failed to prepare reset, ret = %d.\n", ret); 4282 } 4283 4284 return ret; 4285 } 4286 4287 static int qm_controller_reset_prepare(struct hisi_qm *qm) 4288 { 4289 struct pci_dev *pdev = qm->pdev; 4290 int ret; 4291 4292 if (qm->err_ini->set_priv_status) { 4293 ret = qm->err_ini->set_priv_status(qm); 4294 if (ret) 4295 return ret; 4296 } 4297 4298 ret = qm_reset_prepare_ready(qm); 4299 if (ret) { 4300 pci_err(pdev, "Controller reset not ready!\n"); 4301 return ret; 4302 } 4303 4304 qm_dev_ecc_mbit_handle(qm); 4305 4306 /* PF obtains the information of VF by querying the register. */ 4307 qm_cmd_uninit(qm); 4308 4309 /* Whether VFs stop successfully, soft reset will continue. */ 4310 ret = qm_try_stop_vfs(qm, QM_PF_SRST_PREPARE, QM_SOFT_RESET); 4311 if (ret) 4312 pci_err(pdev, "failed to stop vfs by pf in soft reset.\n"); 4313 4314 ret = hisi_qm_stop(qm, QM_SOFT_RESET); 4315 if (ret) { 4316 pci_err(pdev, "Fails to stop QM!\n"); 4317 qm_reset_bit_clear(qm); 4318 return ret; 4319 } 4320 4321 if (qm->use_sva) { 4322 ret = qm_hw_err_isolate(qm); 4323 if (ret) 4324 pci_err(pdev, "failed to isolate hw err!\n"); 4325 } 4326 4327 ret = qm_wait_vf_prepare_finish(qm); 4328 if (ret) 4329 pci_err(pdev, "failed to stop by vfs in soft reset!\n"); 4330 4331 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 4332 4333 return 0; 4334 } 4335 4336 static int qm_master_ooo_check(struct hisi_qm *qm) 4337 { 4338 u32 val; 4339 int ret; 4340 4341 /* Check the ooo register of the device before resetting the device. */ 4342 writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN, qm->io_base + ACC_MASTER_GLOBAL_CTRL); 4343 ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN, 4344 val, (val == ACC_MASTER_TRANS_RETURN_RW), 4345 POLL_PERIOD, POLL_TIMEOUT); 4346 if (ret) 4347 pci_warn(qm->pdev, "Bus lock! Please reset system.\n"); 4348 4349 return ret; 4350 } 4351 4352 static int qm_soft_reset_prepare(struct hisi_qm *qm) 4353 { 4354 struct pci_dev *pdev = qm->pdev; 4355 int ret; 4356 4357 /* Ensure all doorbells and mailboxes received by QM */ 4358 ret = qm_check_req_recv(qm); 4359 if (ret) 4360 return ret; 4361 4362 if (qm->vfs_num) { 4363 ret = qm_set_vf_mse(qm, false); 4364 if (ret) { 4365 pci_err(pdev, "Fails to disable vf MSE bit.\n"); 4366 return ret; 4367 } 4368 } 4369 4370 ret = qm->ops->set_msi(qm, false); 4371 if (ret) { 4372 pci_err(pdev, "Fails to disable PEH MSI bit.\n"); 4373 return ret; 4374 } 4375 4376 ret = qm_master_ooo_check(qm); 4377 if (ret) 4378 return ret; 4379 4380 if (qm->err_ini->close_sva_prefetch) 4381 qm->err_ini->close_sva_prefetch(qm); 4382 4383 ret = qm_set_pf_mse(qm, false); 4384 if (ret) 4385 pci_err(pdev, "Fails to disable pf MSE bit.\n"); 4386 4387 return ret; 4388 } 4389 4390 static int qm_reset_device(struct hisi_qm *qm) 4391 { 4392 struct pci_dev *pdev = qm->pdev; 4393 4394 /* The reset related sub-control registers are not in PCI BAR */ 4395 if (ACPI_HANDLE(&pdev->dev)) { 4396 unsigned long long value = 0; 4397 acpi_status s; 4398 4399 s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev), 4400 qm->err_info.acpi_rst, 4401 NULL, &value); 4402 if (ACPI_FAILURE(s)) { 4403 pci_err(pdev, "NO controller reset method!\n"); 4404 return -EIO; 4405 } 4406 4407 if (value) { 4408 pci_err(pdev, "Reset step %llu failed!\n", value); 4409 return -EIO; 4410 } 4411 4412 return 0; 4413 } 4414 4415 pci_err(pdev, "No reset method!\n"); 4416 return -EINVAL; 4417 } 4418 4419 static int qm_soft_reset(struct hisi_qm *qm) 4420 { 4421 int ret; 4422 4423 ret = qm_soft_reset_prepare(qm); 4424 if (ret) 4425 return ret; 4426 4427 return qm_reset_device(qm); 4428 } 4429 4430 static int qm_vf_reset_done(struct hisi_qm *qm) 4431 { 4432 struct hisi_qm_list *qm_list = qm->qm_list; 4433 struct pci_dev *pdev = qm->pdev; 4434 struct pci_dev *virtfn; 4435 struct hisi_qm *vf_qm; 4436 int ret = 0; 4437 4438 mutex_lock(&qm_list->lock); 4439 list_for_each_entry(vf_qm, &qm_list->list, list) { 4440 virtfn = vf_qm->pdev; 4441 if (virtfn == pdev) 4442 continue; 4443 4444 if (pci_physfn(virtfn) == pdev) { 4445 /* enable VFs PCIE BAR configuration */ 4446 pci_restore_state(virtfn); 4447 4448 ret = qm_restart(vf_qm); 4449 if (ret) 4450 goto restart_fail; 4451 } 4452 } 4453 4454 restart_fail: 4455 mutex_unlock(&qm_list->lock); 4456 return ret; 4457 } 4458 4459 static int qm_try_start_vfs(struct hisi_qm *qm, enum qm_ifc_cmd cmd) 4460 { 4461 struct pci_dev *pdev = qm->pdev; 4462 int ret; 4463 4464 if (!qm->vfs_num) 4465 return 0; 4466 4467 ret = qm_vf_q_assign(qm, qm->vfs_num); 4468 if (ret) { 4469 pci_err(pdev, "failed to assign VFs, ret = %d.\n", ret); 4470 return ret; 4471 } 4472 4473 /* Kunpeng930 supports to notify VFs to start after PF reset. */ 4474 if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) { 4475 ret = qm_ping_all_vfs(qm, cmd); 4476 if (ret) 4477 pci_warn(pdev, "failed to send cmd to all VFs after PF reset!\n"); 4478 } else { 4479 ret = qm_vf_reset_done(qm); 4480 if (ret) 4481 pci_warn(pdev, "failed to start vfs, ret = %d.\n", ret); 4482 } 4483 4484 return ret; 4485 } 4486 4487 static int qm_dev_hw_init(struct hisi_qm *qm) 4488 { 4489 return qm->err_ini->hw_init(qm); 4490 } 4491 4492 static void qm_restart_prepare(struct hisi_qm *qm) 4493 { 4494 u32 value; 4495 4496 if (qm->ver >= QM_HW_V3) 4497 return; 4498 4499 if (!qm->err_status.is_qm_ecc_mbit && 4500 !qm->err_status.is_dev_ecc_mbit) 4501 return; 4502 4503 /* temporarily close the OOO port used for PEH to write out MSI */ 4504 value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4505 writel(value & ~qm->err_info.msi_wr_port, 4506 qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4507 4508 /* clear dev ecc 2bit error source if having */ 4509 value = qm_get_dev_err_status(qm) & qm->err_info.dev_err.ecc_2bits_mask; 4510 if (value && qm->err_ini->clear_dev_hw_err_status) 4511 qm->err_ini->clear_dev_hw_err_status(qm, value); 4512 4513 /* clear QM ecc mbit error source */ 4514 writel(qm->err_info.qm_err.ecc_2bits_mask, qm->io_base + QM_ABNORMAL_INT_SOURCE); 4515 4516 /* clear AM Reorder Buffer ecc mbit source */ 4517 writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS); 4518 } 4519 4520 static void qm_restart_done(struct hisi_qm *qm) 4521 { 4522 u32 value; 4523 4524 if (qm->ver >= QM_HW_V3) 4525 goto clear_flags; 4526 4527 if (!qm->err_status.is_qm_ecc_mbit && 4528 !qm->err_status.is_dev_ecc_mbit) 4529 return; 4530 4531 /* open the OOO port for PEH to write out MSI */ 4532 value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4533 value |= qm->err_info.msi_wr_port; 4534 writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4535 4536 clear_flags: 4537 qm->err_status.is_qm_ecc_mbit = false; 4538 qm->err_status.is_dev_ecc_mbit = false; 4539 } 4540 4541 static void qm_disable_axi_error(struct hisi_qm *qm) 4542 { 4543 struct hisi_qm_err_mask *qm_err = &qm->err_info.qm_err; 4544 u32 val; 4545 4546 val = ~(qm->error_mask & (~QM_RAS_AXI_ERROR)); 4547 writel(val, qm->io_base + QM_ABNORMAL_INT_MASK); 4548 if (qm->ver > QM_HW_V2) 4549 writel(qm_err->shutdown_mask & (~QM_RAS_AXI_ERROR), 4550 qm->io_base + QM_OOO_SHUTDOWN_SEL); 4551 4552 if (qm->err_ini->disable_axi_error) 4553 qm->err_ini->disable_axi_error(qm); 4554 } 4555 4556 static void qm_enable_axi_error(struct hisi_qm *qm) 4557 { 4558 /* clear axi error source */ 4559 writel(QM_RAS_AXI_ERROR, qm->io_base + QM_ABNORMAL_INT_SOURCE); 4560 4561 writel(~qm->error_mask, qm->io_base + QM_ABNORMAL_INT_MASK); 4562 if (qm->ver > QM_HW_V2) 4563 writel(qm->err_info.qm_err.shutdown_mask, qm->io_base + QM_OOO_SHUTDOWN_SEL); 4564 4565 if (qm->err_ini->enable_axi_error) 4566 qm->err_ini->enable_axi_error(qm); 4567 } 4568 4569 static int qm_controller_reset_done(struct hisi_qm *qm) 4570 { 4571 struct pci_dev *pdev = qm->pdev; 4572 int ret; 4573 4574 ret = qm->ops->set_msi(qm, true); 4575 if (ret) { 4576 pci_err(pdev, "Fails to enable PEH MSI bit!\n"); 4577 return ret; 4578 } 4579 4580 ret = qm_set_pf_mse(qm, true); 4581 if (ret) { 4582 pci_err(pdev, "Fails to enable pf MSE bit!\n"); 4583 return ret; 4584 } 4585 4586 if (qm->vfs_num) { 4587 ret = qm_set_vf_mse(qm, true); 4588 if (ret) { 4589 pci_err(pdev, "Fails to enable vf MSE bit!\n"); 4590 return ret; 4591 } 4592 } 4593 4594 ret = qm_dev_hw_init(qm); 4595 if (ret) { 4596 pci_err(pdev, "Failed to init device\n"); 4597 return ret; 4598 } 4599 4600 qm_restart_prepare(qm); 4601 hisi_qm_dev_err_init(qm); 4602 qm_disable_axi_error(qm); 4603 if (qm->err_ini->open_axi_master_ooo) 4604 qm->err_ini->open_axi_master_ooo(qm); 4605 4606 ret = qm_dev_mem_reset(qm); 4607 if (ret) { 4608 pci_err(pdev, "failed to reset device memory\n"); 4609 return ret; 4610 } 4611 4612 ret = qm_restart(qm); 4613 if (ret) { 4614 pci_err(pdev, "Failed to start QM!\n"); 4615 return ret; 4616 } 4617 4618 ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE); 4619 if (ret) 4620 pci_err(pdev, "failed to start vfs by pf in soft reset.\n"); 4621 4622 ret = qm_wait_vf_prepare_finish(qm); 4623 if (ret) 4624 pci_err(pdev, "failed to start by vfs in soft reset!\n"); 4625 qm_enable_axi_error(qm); 4626 qm_cmd_init(qm); 4627 qm_restart_done(qm); 4628 4629 qm_reset_bit_clear(qm); 4630 4631 return 0; 4632 } 4633 4634 static int qm_controller_reset(struct hisi_qm *qm) 4635 { 4636 struct pci_dev *pdev = qm->pdev; 4637 int ret; 4638 4639 pci_info(pdev, "Controller resetting...\n"); 4640 4641 ret = qm_controller_reset_prepare(qm); 4642 if (ret) { 4643 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 4644 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 4645 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 4646 return ret; 4647 } 4648 4649 hisi_qm_show_last_dfx_regs(qm); 4650 if (qm->err_ini->show_last_dfx_regs) 4651 qm->err_ini->show_last_dfx_regs(qm); 4652 4653 ret = qm_soft_reset(qm); 4654 if (ret) 4655 goto err_reset; 4656 4657 ret = qm_controller_reset_done(qm); 4658 if (ret) 4659 goto err_reset; 4660 4661 pci_info(pdev, "Controller reset complete\n"); 4662 4663 return 0; 4664 4665 err_reset: 4666 pci_err(pdev, "Controller reset failed (%d)\n", ret); 4667 qm_reset_bit_clear(qm); 4668 4669 /* if resetting fails, isolate the device */ 4670 if (qm->use_sva) 4671 qm->isolate_data.is_isolate = true; 4672 return ret; 4673 } 4674 4675 /** 4676 * hisi_qm_dev_slot_reset() - slot reset 4677 * @pdev: the PCIe device 4678 * 4679 * This function offers QM relate PCIe device reset interface. Drivers which 4680 * use QM can use this function as slot_reset in its struct pci_error_handlers. 4681 */ 4682 pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev) 4683 { 4684 struct hisi_qm *qm = pci_get_drvdata(pdev); 4685 int ret; 4686 4687 if (pdev->is_virtfn) 4688 return PCI_ERS_RESULT_RECOVERED; 4689 4690 /* reset pcie device controller */ 4691 ret = qm_controller_reset(qm); 4692 if (ret) { 4693 pci_err(pdev, "Controller reset failed (%d)\n", ret); 4694 return PCI_ERS_RESULT_DISCONNECT; 4695 } 4696 4697 return PCI_ERS_RESULT_RECOVERED; 4698 } 4699 EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset); 4700 4701 void hisi_qm_reset_prepare(struct pci_dev *pdev) 4702 { 4703 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 4704 struct hisi_qm *qm = pci_get_drvdata(pdev); 4705 u32 delay = 0; 4706 int ret; 4707 4708 hisi_qm_dev_err_uninit(pf_qm); 4709 4710 /* 4711 * Check whether there is an ECC mbit error, If it occurs, need to 4712 * wait for soft reset to fix it. 4713 */ 4714 while (qm_check_dev_error(qm)) { 4715 msleep(++delay); 4716 if (delay > QM_RESET_WAIT_TIMEOUT) 4717 return; 4718 } 4719 4720 ret = qm_reset_prepare_ready(qm); 4721 if (ret) { 4722 pci_err(pdev, "FLR not ready!\n"); 4723 return; 4724 } 4725 4726 /* PF obtains the information of VF by querying the register. */ 4727 if (qm->fun_type == QM_HW_PF) 4728 qm_cmd_uninit(qm); 4729 4730 ret = qm_try_stop_vfs(qm, QM_PF_FLR_PREPARE, QM_DOWN); 4731 if (ret) 4732 pci_err(pdev, "failed to stop vfs by pf in FLR.\n"); 4733 4734 ret = hisi_qm_stop(qm, QM_DOWN); 4735 if (ret) { 4736 pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret); 4737 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 4738 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 4739 return; 4740 } 4741 4742 ret = qm_wait_vf_prepare_finish(qm); 4743 if (ret) 4744 pci_err(pdev, "failed to stop by vfs in FLR!\n"); 4745 4746 pci_info(pdev, "FLR resetting...\n"); 4747 } 4748 EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare); 4749 4750 static bool qm_flr_reset_complete(struct pci_dev *pdev) 4751 { 4752 struct pci_dev *pf_pdev = pci_physfn(pdev); 4753 struct hisi_qm *qm = pci_get_drvdata(pf_pdev); 4754 u32 id; 4755 4756 pci_read_config_dword(qm->pdev, PCI_COMMAND, &id); 4757 if (id == QM_PCI_COMMAND_INVALID) { 4758 pci_err(pdev, "Device can not be used!\n"); 4759 return false; 4760 } 4761 4762 return true; 4763 } 4764 4765 void hisi_qm_reset_done(struct pci_dev *pdev) 4766 { 4767 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 4768 struct hisi_qm *qm = pci_get_drvdata(pdev); 4769 int ret; 4770 4771 if (qm->fun_type == QM_HW_PF) { 4772 ret = qm_dev_hw_init(qm); 4773 if (ret) { 4774 pci_err(pdev, "Failed to init PF, ret = %d.\n", ret); 4775 goto flr_done; 4776 } 4777 } 4778 4779 hisi_qm_dev_err_init(pf_qm); 4780 4781 ret = qm_restart(qm); 4782 if (ret) { 4783 pci_err(pdev, "Failed to start QM, ret = %d.\n", ret); 4784 goto flr_done; 4785 } 4786 4787 ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE); 4788 if (ret) 4789 pci_err(pdev, "failed to start vfs by pf in FLR.\n"); 4790 4791 ret = qm_wait_vf_prepare_finish(qm); 4792 if (ret) 4793 pci_err(pdev, "failed to start by vfs in FLR!\n"); 4794 4795 flr_done: 4796 if (qm->fun_type == QM_HW_PF) 4797 qm_cmd_init(qm); 4798 4799 if (qm_flr_reset_complete(pdev)) 4800 pci_info(pdev, "FLR reset complete\n"); 4801 4802 qm_reset_bit_clear(qm); 4803 } 4804 EXPORT_SYMBOL_GPL(hisi_qm_reset_done); 4805 4806 static irqreturn_t qm_rsvd_irq(int irq, void *data) 4807 { 4808 struct hisi_qm *qm = data; 4809 4810 dev_info(&qm->pdev->dev, "Reserved interrupt, ignore!\n"); 4811 4812 return IRQ_HANDLED; 4813 } 4814 4815 static irqreturn_t qm_abnormal_irq(int irq, void *data) 4816 { 4817 struct hisi_qm *qm = data; 4818 enum acc_err_result ret; 4819 4820 atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt); 4821 ret = qm_process_dev_error(qm); 4822 if (ret == ACC_ERR_NEED_RESET && 4823 !test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl) && 4824 !test_and_set_bit(QM_RST_SCHED, &qm->misc_ctl)) 4825 schedule_work(&qm->rst_work); 4826 4827 return IRQ_HANDLED; 4828 } 4829 4830 /** 4831 * hisi_qm_dev_shutdown() - Shutdown device. 4832 * @pdev: The device will be shutdown. 4833 * 4834 * This function will stop qm when OS shutdown or rebooting. 4835 */ 4836 void hisi_qm_dev_shutdown(struct pci_dev *pdev) 4837 { 4838 struct hisi_qm *qm = pci_get_drvdata(pdev); 4839 int ret; 4840 4841 ret = hisi_qm_stop(qm, QM_DOWN); 4842 if (ret) 4843 dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n"); 4844 } 4845 EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown); 4846 4847 static void hisi_qm_controller_reset(struct work_struct *rst_work) 4848 { 4849 struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work); 4850 int ret; 4851 4852 ret = qm_pm_get_sync(qm); 4853 if (ret) { 4854 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 4855 return; 4856 } 4857 4858 /* reset pcie device controller */ 4859 ret = qm_controller_reset(qm); 4860 if (ret) 4861 dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret); 4862 4863 qm_pm_put_sync(qm); 4864 } 4865 4866 static void qm_pf_reset_vf_prepare(struct hisi_qm *qm, 4867 enum qm_stop_reason stop_reason) 4868 { 4869 enum qm_ifc_cmd cmd = QM_VF_PREPARE_DONE; 4870 struct pci_dev *pdev = qm->pdev; 4871 int ret; 4872 4873 ret = qm_reset_prepare_ready(qm); 4874 if (ret) { 4875 dev_err(&pdev->dev, "reset prepare not ready!\n"); 4876 atomic_set(&qm->status.flags, QM_STOP); 4877 cmd = QM_VF_PREPARE_FAIL; 4878 goto err_prepare; 4879 } 4880 4881 ret = hisi_qm_stop(qm, stop_reason); 4882 if (ret) { 4883 dev_err(&pdev->dev, "failed to stop QM, ret = %d.\n", ret); 4884 atomic_set(&qm->status.flags, QM_STOP); 4885 cmd = QM_VF_PREPARE_FAIL; 4886 goto err_prepare; 4887 } else { 4888 goto out; 4889 } 4890 4891 err_prepare: 4892 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 4893 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 4894 out: 4895 pci_save_state(pdev); 4896 ret = qm_ping_pf(qm, cmd); 4897 if (ret) 4898 dev_warn(&pdev->dev, "PF responds timeout in reset prepare!\n"); 4899 } 4900 4901 static void qm_pf_reset_vf_done(struct hisi_qm *qm) 4902 { 4903 enum qm_ifc_cmd cmd = QM_VF_START_DONE; 4904 struct pci_dev *pdev = qm->pdev; 4905 int ret; 4906 4907 pci_restore_state(pdev); 4908 ret = hisi_qm_start(qm); 4909 if (ret) { 4910 dev_err(&pdev->dev, "failed to start QM, ret = %d.\n", ret); 4911 cmd = QM_VF_START_FAIL; 4912 } 4913 4914 qm_cmd_init(qm); 4915 ret = qm_ping_pf(qm, cmd); 4916 if (ret) 4917 dev_warn(&pdev->dev, "PF responds timeout in reset done!\n"); 4918 4919 qm_reset_bit_clear(qm); 4920 } 4921 4922 static int qm_wait_pf_reset_finish(struct hisi_qm *qm) 4923 { 4924 struct device *dev = &qm->pdev->dev; 4925 u32 val, cmd; 4926 int ret; 4927 4928 /* Wait for reset to finish */ 4929 ret = readl_relaxed_poll_timeout(qm->io_base + QM_IFC_INT_SOURCE_V, val, 4930 val == BIT(0), QM_VF_RESET_WAIT_US, 4931 QM_VF_RESET_WAIT_TIMEOUT_US); 4932 /* hardware completion status should be available by this time */ 4933 if (ret) { 4934 dev_err(dev, "couldn't get reset done status from PF, timeout!\n"); 4935 return -ETIMEDOUT; 4936 } 4937 4938 /* 4939 * Whether message is got successfully, 4940 * VF needs to ack PF by clearing the interrupt. 4941 */ 4942 ret = qm->ops->get_ifc(qm, &cmd, NULL, 0); 4943 qm_clear_cmd_interrupt(qm, 0); 4944 if (ret) { 4945 dev_err(dev, "failed to get command from PF in reset done!\n"); 4946 return ret; 4947 } 4948 4949 if (cmd != QM_PF_RESET_DONE) { 4950 dev_err(dev, "the command(0x%x) is not reset done!\n", cmd); 4951 ret = -EINVAL; 4952 } 4953 4954 return ret; 4955 } 4956 4957 static void qm_pf_reset_vf_process(struct hisi_qm *qm, 4958 enum qm_stop_reason stop_reason) 4959 { 4960 struct device *dev = &qm->pdev->dev; 4961 int ret; 4962 4963 dev_info(dev, "device reset start...\n"); 4964 4965 /* The message is obtained by querying the register during resetting */ 4966 qm_cmd_uninit(qm); 4967 qm_pf_reset_vf_prepare(qm, stop_reason); 4968 4969 ret = qm_wait_pf_reset_finish(qm); 4970 if (ret) 4971 goto err_get_status; 4972 4973 qm_pf_reset_vf_done(qm); 4974 4975 dev_info(dev, "device reset done.\n"); 4976 4977 return; 4978 4979 err_get_status: 4980 qm_cmd_init(qm); 4981 qm_reset_bit_clear(qm); 4982 } 4983 4984 static void qm_handle_cmd_msg(struct hisi_qm *qm, u32 fun_num) 4985 { 4986 struct device *dev = &qm->pdev->dev; 4987 enum qm_ifc_cmd cmd; 4988 u32 data; 4989 int ret; 4990 4991 /* 4992 * Get the msg from source by sending mailbox. Whether message is got 4993 * successfully, destination needs to ack source by clearing the interrupt. 4994 */ 4995 ret = qm->ops->get_ifc(qm, &cmd, &data, fun_num); 4996 qm_clear_cmd_interrupt(qm, BIT(fun_num)); 4997 if (ret) { 4998 dev_err(dev, "failed to get command from source!\n"); 4999 return; 5000 } 5001 5002 switch (cmd) { 5003 case QM_PF_FLR_PREPARE: 5004 qm_pf_reset_vf_process(qm, QM_DOWN); 5005 break; 5006 case QM_PF_SRST_PREPARE: 5007 qm_pf_reset_vf_process(qm, QM_SOFT_RESET); 5008 break; 5009 case QM_VF_GET_QOS: 5010 qm_vf_get_qos(qm, fun_num); 5011 break; 5012 case QM_PF_SET_QOS: 5013 qm->mb_qos = data; 5014 break; 5015 default: 5016 dev_err(dev, "unsupported command(0x%x) sent by function(%u)!\n", cmd, fun_num); 5017 break; 5018 } 5019 } 5020 5021 static void qm_cmd_process(struct work_struct *cmd_process) 5022 { 5023 struct hisi_qm *qm = container_of(cmd_process, 5024 struct hisi_qm, cmd_process); 5025 u32 vfs_num = qm->vfs_num; 5026 u64 val; 5027 u32 i; 5028 5029 if (qm->fun_type == QM_HW_PF) { 5030 val = readq(qm->io_base + QM_IFC_INT_SOURCE_P); 5031 if (!val) 5032 return; 5033 5034 for (i = 1; i <= vfs_num; i++) { 5035 if (val & BIT(i)) 5036 qm_handle_cmd_msg(qm, i); 5037 } 5038 5039 return; 5040 } 5041 5042 qm_handle_cmd_msg(qm, 0); 5043 } 5044 5045 /** 5046 * hisi_qm_alg_register() - Register alg to crypto. 5047 * @qm: The qm needs add. 5048 * @qm_list: The qm list. 5049 * @guard: Guard of qp_num. 5050 * 5051 * Register algorithm to crypto when the function is satisfy guard. 5052 */ 5053 int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list, int guard) 5054 { 5055 struct device *dev = &qm->pdev->dev; 5056 5057 if (qm->ver <= QM_HW_V2 && qm->use_sva) { 5058 dev_info(dev, "HW V2 not both use uacce sva mode and hardware crypto algs.\n"); 5059 return 0; 5060 } 5061 5062 if (qm->qp_num < guard) { 5063 dev_info(dev, "qp_num is less than task need.\n"); 5064 return 0; 5065 } 5066 5067 return qm_list->register_to_crypto(qm); 5068 } 5069 EXPORT_SYMBOL_GPL(hisi_qm_alg_register); 5070 5071 /** 5072 * hisi_qm_alg_unregister() - Unregister alg from crypto. 5073 * @qm: The qm needs delete. 5074 * @qm_list: The qm list. 5075 * @guard: Guard of qp_num. 5076 * 5077 * Unregister algorithm from crypto when the last function is satisfy guard. 5078 */ 5079 void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list, int guard) 5080 { 5081 if (qm->ver <= QM_HW_V2 && qm->use_sva) 5082 return; 5083 5084 if (qm->qp_num < guard) 5085 return; 5086 5087 qm_list->unregister_from_crypto(qm); 5088 } 5089 EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister); 5090 5091 static void qm_unregister_abnormal_irq(struct hisi_qm *qm) 5092 { 5093 struct pci_dev *pdev = qm->pdev; 5094 u32 irq_vector, val; 5095 5096 if (qm->fun_type == QM_HW_VF && qm->ver < QM_HW_V3) 5097 return; 5098 5099 val = qm->cap_tables.qm_cap_table[QM_ABNORMAL_IRQ].cap_val; 5100 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK)) 5101 return; 5102 5103 irq_vector = val & QM_IRQ_VECTOR_MASK; 5104 free_irq(pci_irq_vector(pdev, irq_vector), qm); 5105 } 5106 5107 static int qm_register_abnormal_irq(struct hisi_qm *qm) 5108 { 5109 struct pci_dev *pdev = qm->pdev; 5110 u32 irq_vector, val; 5111 int ret; 5112 5113 val = qm->cap_tables.qm_cap_table[QM_ABNORMAL_IRQ].cap_val; 5114 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK)) 5115 return 0; 5116 irq_vector = val & QM_IRQ_VECTOR_MASK; 5117 5118 /* For VF, this is a reserved interrupt in V3 version. */ 5119 if (qm->fun_type == QM_HW_VF) { 5120 if (qm->ver < QM_HW_V3) 5121 return 0; 5122 5123 ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_rsvd_irq, 5124 IRQF_NO_AUTOEN, qm->dev_name, qm); 5125 if (ret) { 5126 dev_err(&pdev->dev, "failed to request reserved irq, ret = %d!\n", ret); 5127 return ret; 5128 } 5129 return 0; 5130 } 5131 5132 ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_abnormal_irq, 0, qm->dev_name, qm); 5133 if (ret) 5134 dev_err(&qm->pdev->dev, "failed to request abnormal irq, ret = %d!\n", ret); 5135 5136 return ret; 5137 } 5138 5139 static void qm_unregister_mb_cmd_irq(struct hisi_qm *qm) 5140 { 5141 struct pci_dev *pdev = qm->pdev; 5142 u32 irq_vector, val; 5143 5144 val = qm->cap_tables.qm_cap_table[QM_MB_IRQ].cap_val; 5145 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5146 return; 5147 5148 irq_vector = val & QM_IRQ_VECTOR_MASK; 5149 free_irq(pci_irq_vector(pdev, irq_vector), qm); 5150 } 5151 5152 static int qm_register_mb_cmd_irq(struct hisi_qm *qm) 5153 { 5154 struct pci_dev *pdev = qm->pdev; 5155 u32 irq_vector, val; 5156 int ret; 5157 5158 val = qm->cap_tables.qm_cap_table[QM_MB_IRQ].cap_val; 5159 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5160 return 0; 5161 5162 irq_vector = val & QM_IRQ_VECTOR_MASK; 5163 ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_mb_cmd_irq, 0, qm->dev_name, qm); 5164 if (ret) 5165 dev_err(&pdev->dev, "failed to request function communication irq, ret = %d", ret); 5166 5167 return ret; 5168 } 5169 5170 static void qm_unregister_aeq_irq(struct hisi_qm *qm) 5171 { 5172 struct pci_dev *pdev = qm->pdev; 5173 u32 irq_vector, val; 5174 5175 val = qm->cap_tables.qm_cap_table[QM_AEQ_IRQ].cap_val; 5176 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5177 return; 5178 5179 irq_vector = val & QM_IRQ_VECTOR_MASK; 5180 free_irq(pci_irq_vector(pdev, irq_vector), qm); 5181 } 5182 5183 static int qm_register_aeq_irq(struct hisi_qm *qm) 5184 { 5185 struct pci_dev *pdev = qm->pdev; 5186 u32 irq_vector, val; 5187 int ret; 5188 5189 val = qm->cap_tables.qm_cap_table[QM_AEQ_IRQ].cap_val; 5190 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5191 return 0; 5192 5193 irq_vector = val & QM_IRQ_VECTOR_MASK; 5194 ret = request_threaded_irq(pci_irq_vector(pdev, irq_vector), NULL, 5195 qm_aeq_thread, IRQF_ONESHOT, qm->dev_name, qm); 5196 if (ret) 5197 dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret); 5198 5199 return ret; 5200 } 5201 5202 static void qm_unregister_eq_irq(struct hisi_qm *qm) 5203 { 5204 struct pci_dev *pdev = qm->pdev; 5205 u32 irq_vector, val; 5206 5207 val = qm->cap_tables.qm_cap_table[QM_EQ_IRQ].cap_val; 5208 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5209 return; 5210 5211 irq_vector = val & QM_IRQ_VECTOR_MASK; 5212 free_irq(pci_irq_vector(pdev, irq_vector), qm); 5213 } 5214 5215 static int qm_register_eq_irq(struct hisi_qm *qm) 5216 { 5217 struct pci_dev *pdev = qm->pdev; 5218 u32 irq_vector, val; 5219 int ret; 5220 5221 val = qm->cap_tables.qm_cap_table[QM_EQ_IRQ].cap_val; 5222 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5223 return 0; 5224 5225 irq_vector = val & QM_IRQ_VECTOR_MASK; 5226 ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_eq_irq, 0, qm->dev_name, qm); 5227 if (ret) 5228 dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret); 5229 5230 return ret; 5231 } 5232 5233 static void qm_irqs_unregister(struct hisi_qm *qm) 5234 { 5235 qm_unregister_mb_cmd_irq(qm); 5236 qm_unregister_abnormal_irq(qm); 5237 qm_unregister_aeq_irq(qm); 5238 qm_unregister_eq_irq(qm); 5239 } 5240 5241 static int qm_irqs_register(struct hisi_qm *qm) 5242 { 5243 int ret; 5244 5245 ret = qm_register_eq_irq(qm); 5246 if (ret) 5247 return ret; 5248 5249 ret = qm_register_aeq_irq(qm); 5250 if (ret) 5251 goto free_eq_irq; 5252 5253 ret = qm_register_abnormal_irq(qm); 5254 if (ret) 5255 goto free_aeq_irq; 5256 5257 ret = qm_register_mb_cmd_irq(qm); 5258 if (ret) 5259 goto free_abnormal_irq; 5260 5261 return 0; 5262 5263 free_abnormal_irq: 5264 qm_unregister_abnormal_irq(qm); 5265 free_aeq_irq: 5266 qm_unregister_aeq_irq(qm); 5267 free_eq_irq: 5268 qm_unregister_eq_irq(qm); 5269 return ret; 5270 } 5271 5272 static int qm_get_qp_num(struct hisi_qm *qm) 5273 { 5274 struct device *dev = &qm->pdev->dev; 5275 bool is_db_isolation; 5276 5277 /* VF's qp_num assigned by PF in v2, and VF can get qp_num by vft. */ 5278 if (qm->fun_type == QM_HW_VF) { 5279 if (qm->ver != QM_HW_V1) 5280 /* v2 starts to support get vft by mailbox */ 5281 return hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num); 5282 5283 return 0; 5284 } 5285 5286 is_db_isolation = test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps); 5287 qm->ctrl_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, QM_TOTAL_QP_NUM_CAP, true); 5288 qm->max_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, 5289 QM_FUNC_MAX_QP_CAP, is_db_isolation); 5290 5291 if (qm->qp_num <= qm->max_qp_num) 5292 return 0; 5293 5294 if (test_bit(QM_MODULE_PARAM, &qm->misc_ctl)) { 5295 /* Check whether the set qp number is valid */ 5296 dev_err(dev, "qp num(%u) is more than max qp num(%u)!\n", 5297 qm->qp_num, qm->max_qp_num); 5298 return -EINVAL; 5299 } 5300 5301 dev_info(dev, "Default qp num(%u) is too big, reset it to Function's max qp num(%u)!\n", 5302 qm->qp_num, qm->max_qp_num); 5303 qm->qp_num = qm->max_qp_num; 5304 qm->debug.curr_qm_qp_num = qm->qp_num; 5305 5306 return 0; 5307 } 5308 5309 static int qm_pre_store_caps(struct hisi_qm *qm) 5310 { 5311 struct hisi_qm_cap_record *qm_cap; 5312 struct pci_dev *pdev = qm->pdev; 5313 size_t i, size; 5314 5315 size = ARRAY_SIZE(qm_cap_query_info); 5316 qm_cap = devm_kcalloc(&pdev->dev, sizeof(*qm_cap), size, GFP_KERNEL); 5317 if (!qm_cap) 5318 return -ENOMEM; 5319 5320 for (i = 0; i < size; i++) { 5321 qm_cap[i].type = qm_cap_query_info[i].type; 5322 qm_cap[i].name = qm_cap_query_info[i].name; 5323 qm_cap[i].cap_val = hisi_qm_get_cap_value(qm, qm_cap_query_info, 5324 i, qm->cap_ver); 5325 } 5326 5327 qm->cap_tables.qm_cap_table = qm_cap; 5328 qm->cap_tables.qm_cap_size = size; 5329 5330 return 0; 5331 } 5332 5333 static int qm_get_hw_caps(struct hisi_qm *qm) 5334 { 5335 const struct hisi_qm_cap_info *cap_info = qm->fun_type == QM_HW_PF ? 5336 qm_cap_info_pf : qm_cap_info_vf; 5337 u32 size = qm->fun_type == QM_HW_PF ? ARRAY_SIZE(qm_cap_info_pf) : 5338 ARRAY_SIZE(qm_cap_info_vf); 5339 u32 val, i; 5340 5341 /* Doorbell isolate register is a independent register. */ 5342 val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, QM_SUPPORT_DB_ISOLATION, true); 5343 if (val) 5344 set_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps); 5345 5346 if (qm->ver >= QM_HW_V3) { 5347 val = readl(qm->io_base + QM_FUNC_CAPS_REG); 5348 qm->cap_ver = val & QM_CAPBILITY_VERSION; 5349 } 5350 5351 /* Get PF/VF common capbility */ 5352 for (i = 1; i < ARRAY_SIZE(qm_cap_info_comm); i++) { 5353 val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, i, qm->cap_ver); 5354 if (val) 5355 set_bit(qm_cap_info_comm[i].type, &qm->caps); 5356 } 5357 5358 /* Get PF/VF different capbility */ 5359 for (i = 0; i < size; i++) { 5360 val = hisi_qm_get_hw_info(qm, cap_info, i, qm->cap_ver); 5361 if (val) 5362 set_bit(cap_info[i].type, &qm->caps); 5363 } 5364 5365 /* Fetch and save the value of qm capability registers */ 5366 return qm_pre_store_caps(qm); 5367 } 5368 5369 static void qm_get_version(struct hisi_qm *qm) 5370 { 5371 struct pci_dev *pdev = qm->pdev; 5372 u32 sub_version_id; 5373 5374 qm->ver = pdev->revision; 5375 5376 if (pdev->revision == QM_HW_V3) { 5377 sub_version_id = readl(qm->io_base + QM_SUB_VERSION_ID); 5378 if (sub_version_id) 5379 qm->ver = sub_version_id; 5380 } 5381 } 5382 5383 static int qm_get_pci_res(struct hisi_qm *qm) 5384 { 5385 struct pci_dev *pdev = qm->pdev; 5386 struct device *dev = &pdev->dev; 5387 int ret; 5388 5389 ret = pci_request_mem_regions(pdev, qm->dev_name); 5390 if (ret < 0) { 5391 dev_err(dev, "Failed to request mem regions!\n"); 5392 return ret; 5393 } 5394 5395 qm->phys_base = pci_resource_start(pdev, PCI_BAR_2); 5396 qm->io_base = ioremap(qm->phys_base, pci_resource_len(pdev, PCI_BAR_2)); 5397 if (!qm->io_base) { 5398 ret = -EIO; 5399 goto err_request_mem_regions; 5400 } 5401 5402 qm_get_version(qm); 5403 5404 ret = qm_get_hw_caps(qm); 5405 if (ret) 5406 goto err_ioremap; 5407 5408 if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) { 5409 qm->db_interval = QM_QP_DB_INTERVAL; 5410 qm->db_phys_base = pci_resource_start(pdev, PCI_BAR_4); 5411 qm->db_io_base = ioremap(qm->db_phys_base, 5412 pci_resource_len(pdev, PCI_BAR_4)); 5413 if (!qm->db_io_base) { 5414 ret = -EIO; 5415 goto err_ioremap; 5416 } 5417 } else { 5418 qm->db_phys_base = qm->phys_base; 5419 qm->db_io_base = qm->io_base; 5420 qm->db_interval = 0; 5421 } 5422 5423 hisi_qm_pre_init(qm); 5424 ret = qm_get_qp_num(qm); 5425 if (ret) 5426 goto err_db_ioremap; 5427 5428 return 0; 5429 5430 err_db_ioremap: 5431 if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) 5432 iounmap(qm->db_io_base); 5433 err_ioremap: 5434 iounmap(qm->io_base); 5435 err_request_mem_regions: 5436 pci_release_mem_regions(pdev); 5437 return ret; 5438 } 5439 5440 static int qm_clear_device(struct hisi_qm *qm) 5441 { 5442 acpi_handle handle = ACPI_HANDLE(&qm->pdev->dev); 5443 int ret; 5444 5445 if (qm->fun_type == QM_HW_VF) 5446 return 0; 5447 5448 /* Device does not support reset, return */ 5449 if (!qm->err_ini->err_info_init) 5450 return 0; 5451 qm->err_ini->err_info_init(qm); 5452 5453 if (!handle) 5454 return 0; 5455 5456 /* No reset method, return */ 5457 if (!acpi_has_method(handle, qm->err_info.acpi_rst)) 5458 return 0; 5459 5460 ret = qm_master_ooo_check(qm); 5461 if (ret) { 5462 writel(0x0, qm->io_base + ACC_MASTER_GLOBAL_CTRL); 5463 return ret; 5464 } 5465 5466 if (qm->err_ini->set_priv_status) { 5467 ret = qm->err_ini->set_priv_status(qm); 5468 if (ret) { 5469 writel(0x0, qm->io_base + ACC_MASTER_GLOBAL_CTRL); 5470 return ret; 5471 } 5472 } 5473 5474 return qm_reset_device(qm); 5475 } 5476 5477 static int hisi_qm_pci_init(struct hisi_qm *qm) 5478 { 5479 struct pci_dev *pdev = qm->pdev; 5480 struct device *dev = &pdev->dev; 5481 unsigned int num_vec; 5482 int ret; 5483 5484 ret = pci_enable_device_mem(pdev); 5485 if (ret < 0) { 5486 dev_err(dev, "Failed to enable device mem!\n"); 5487 return ret; 5488 } 5489 5490 ret = qm_get_pci_res(qm); 5491 if (ret) 5492 goto err_disable_pcidev; 5493 5494 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5495 if (ret < 0) 5496 goto err_get_pci_res; 5497 pci_set_master(pdev); 5498 5499 num_vec = qm_get_irq_num(qm); 5500 if (!num_vec) { 5501 dev_err(dev, "Device irq num is zero!\n"); 5502 ret = -EINVAL; 5503 goto err_get_pci_res; 5504 } 5505 num_vec = roundup_pow_of_two(num_vec); 5506 ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI); 5507 if (ret < 0) { 5508 dev_err(dev, "Failed to enable MSI vectors!\n"); 5509 goto err_get_pci_res; 5510 } 5511 5512 ret = qm_clear_device(qm); 5513 if (ret) 5514 goto err_free_vectors; 5515 5516 return 0; 5517 5518 err_free_vectors: 5519 pci_free_irq_vectors(pdev); 5520 err_get_pci_res: 5521 qm_put_pci_res(qm); 5522 err_disable_pcidev: 5523 pci_disable_device(pdev); 5524 return ret; 5525 } 5526 5527 static int hisi_qm_init_work(struct hisi_qm *qm) 5528 { 5529 int i; 5530 5531 for (i = 0; i < qm->qp_num; i++) 5532 INIT_WORK(&qm->poll_data[i].work, qm_work_process); 5533 5534 if (qm->fun_type == QM_HW_PF) 5535 INIT_WORK(&qm->rst_work, hisi_qm_controller_reset); 5536 5537 if (qm->ver > QM_HW_V2) 5538 INIT_WORK(&qm->cmd_process, qm_cmd_process); 5539 5540 qm->wq = alloc_workqueue("%s", WQ_HIGHPRI | WQ_MEM_RECLAIM | 5541 WQ_UNBOUND, num_online_cpus(), 5542 pci_name(qm->pdev)); 5543 if (!qm->wq) { 5544 pci_err(qm->pdev, "failed to alloc workqueue!\n"); 5545 return -ENOMEM; 5546 } 5547 5548 return 0; 5549 } 5550 5551 static int hisi_qp_alloc_memory(struct hisi_qm *qm) 5552 { 5553 struct device *dev = &qm->pdev->dev; 5554 u16 sq_depth, cq_depth; 5555 size_t qp_dma_size; 5556 int i, ret; 5557 5558 qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL); 5559 if (!qm->qp_array) 5560 return -ENOMEM; 5561 5562 qm->poll_data = kcalloc(qm->qp_num, sizeof(struct hisi_qm_poll_data), GFP_KERNEL); 5563 if (!qm->poll_data) { 5564 kfree(qm->qp_array); 5565 return -ENOMEM; 5566 } 5567 5568 qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP); 5569 5570 /* one more page for device or qp statuses */ 5571 qp_dma_size = qm->sqe_size * sq_depth + sizeof(struct qm_cqe) * cq_depth; 5572 qp_dma_size = PAGE_ALIGN(qp_dma_size) + PAGE_SIZE; 5573 for (i = 0; i < qm->qp_num; i++) { 5574 qm->poll_data[i].qm = qm; 5575 ret = hisi_qp_memory_init(qm, qp_dma_size, i, sq_depth, cq_depth); 5576 if (ret) 5577 goto err_init_qp_mem; 5578 5579 dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size); 5580 } 5581 5582 return 0; 5583 err_init_qp_mem: 5584 hisi_qp_memory_uninit(qm, i); 5585 5586 return ret; 5587 } 5588 5589 static int hisi_qm_alloc_rsv_buf(struct hisi_qm *qm) 5590 { 5591 struct qm_rsv_buf *xqc_buf = &qm->xqc_buf; 5592 struct qm_dma *xqc_dma = &xqc_buf->qcdma; 5593 struct device *dev = &qm->pdev->dev; 5594 size_t off = 0; 5595 5596 #define QM_XQC_BUF_INIT(xqc_buf, type) do { \ 5597 (xqc_buf)->type = ((xqc_buf)->qcdma.va + (off)); \ 5598 (xqc_buf)->type##_dma = (xqc_buf)->qcdma.dma + (off); \ 5599 off += QMC_ALIGN(sizeof(struct qm_##type)); \ 5600 } while (0) 5601 5602 xqc_dma->size = QMC_ALIGN(sizeof(struct qm_eqc)) + 5603 QMC_ALIGN(sizeof(struct qm_aeqc)) + 5604 QMC_ALIGN(sizeof(struct qm_sqc)) + 5605 QMC_ALIGN(sizeof(struct qm_cqc)); 5606 xqc_dma->va = dma_alloc_coherent(dev, xqc_dma->size, 5607 &xqc_dma->dma, GFP_KERNEL); 5608 if (!xqc_dma->va) 5609 return -ENOMEM; 5610 5611 QM_XQC_BUF_INIT(xqc_buf, eqc); 5612 QM_XQC_BUF_INIT(xqc_buf, aeqc); 5613 QM_XQC_BUF_INIT(xqc_buf, sqc); 5614 QM_XQC_BUF_INIT(xqc_buf, cqc); 5615 5616 return 0; 5617 } 5618 5619 static int hisi_qm_memory_init(struct hisi_qm *qm) 5620 { 5621 struct device *dev = &qm->pdev->dev; 5622 int ret, total_func; 5623 size_t off = 0; 5624 5625 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) { 5626 total_func = pci_sriov_get_totalvfs(qm->pdev) + 1; 5627 qm->factor = kcalloc(total_func, sizeof(struct qm_shaper_factor), GFP_KERNEL); 5628 if (!qm->factor) 5629 return -ENOMEM; 5630 5631 /* Only the PF value needs to be initialized */ 5632 qm->factor[0].func_qos = QM_QOS_MAX_VAL; 5633 } 5634 5635 #define QM_INIT_BUF(qm, type, num) do { \ 5636 (qm)->type = ((qm)->qdma.va + (off)); \ 5637 (qm)->type##_dma = (qm)->qdma.dma + (off); \ 5638 off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \ 5639 } while (0) 5640 5641 idr_init(&qm->qp_idr); 5642 qm_get_xqc_depth(qm, &qm->eq_depth, &qm->aeq_depth, QM_XEQ_DEPTH_CAP); 5643 qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * qm->eq_depth) + 5644 QMC_ALIGN(sizeof(struct qm_aeqe) * qm->aeq_depth) + 5645 QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) + 5646 QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num); 5647 qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma, 5648 GFP_ATOMIC); 5649 dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size); 5650 if (!qm->qdma.va) { 5651 ret = -ENOMEM; 5652 goto err_destroy_idr; 5653 } 5654 5655 QM_INIT_BUF(qm, eqe, qm->eq_depth); 5656 QM_INIT_BUF(qm, aeqe, qm->aeq_depth); 5657 QM_INIT_BUF(qm, sqc, qm->qp_num); 5658 QM_INIT_BUF(qm, cqc, qm->qp_num); 5659 5660 ret = hisi_qm_alloc_rsv_buf(qm); 5661 if (ret) 5662 goto err_free_qdma; 5663 5664 ret = hisi_qp_alloc_memory(qm); 5665 if (ret) 5666 goto err_free_reserve_buf; 5667 5668 return 0; 5669 5670 err_free_reserve_buf: 5671 hisi_qm_free_rsv_buf(qm); 5672 err_free_qdma: 5673 dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma); 5674 err_destroy_idr: 5675 idr_destroy(&qm->qp_idr); 5676 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 5677 kfree(qm->factor); 5678 5679 return ret; 5680 } 5681 5682 /** 5683 * hisi_qm_init() - Initialize configures about qm. 5684 * @qm: The qm needing init. 5685 * 5686 * This function init qm, then we can call hisi_qm_start to put qm into work. 5687 */ 5688 int hisi_qm_init(struct hisi_qm *qm) 5689 { 5690 struct pci_dev *pdev = qm->pdev; 5691 struct device *dev = &pdev->dev; 5692 int ret; 5693 5694 ret = hisi_qm_pci_init(qm); 5695 if (ret) 5696 return ret; 5697 5698 ret = qm_irqs_register(qm); 5699 if (ret) 5700 goto err_pci_init; 5701 5702 if (qm->fun_type == QM_HW_PF) { 5703 /* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */ 5704 writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG); 5705 qm_disable_clock_gate(qm); 5706 ret = qm_dev_mem_reset(qm); 5707 if (ret) { 5708 dev_err(dev, "failed to reset device memory\n"); 5709 goto err_irq_register; 5710 } 5711 } 5712 5713 if (qm->mode == UACCE_MODE_SVA) { 5714 ret = qm_alloc_uacce(qm); 5715 if (ret < 0) 5716 dev_warn(dev, "fail to alloc uacce (%d)\n", ret); 5717 } 5718 5719 ret = hisi_qm_memory_init(qm); 5720 if (ret) 5721 goto err_alloc_uacce; 5722 5723 ret = hisi_qm_init_work(qm); 5724 if (ret) 5725 goto err_free_qm_memory; 5726 5727 qm_cmd_init(qm); 5728 5729 return 0; 5730 5731 err_free_qm_memory: 5732 hisi_qm_memory_uninit(qm); 5733 err_alloc_uacce: 5734 qm_remove_uacce(qm); 5735 err_irq_register: 5736 qm_irqs_unregister(qm); 5737 err_pci_init: 5738 hisi_qm_pci_uninit(qm); 5739 return ret; 5740 } 5741 EXPORT_SYMBOL_GPL(hisi_qm_init); 5742 5743 /** 5744 * hisi_qm_get_dfx_access() - Try to get dfx access. 5745 * @qm: pointer to accelerator device. 5746 * 5747 * Try to get dfx access, then user can get message. 5748 * 5749 * If device is in suspended, return failure, otherwise 5750 * bump up the runtime PM usage counter. 5751 */ 5752 int hisi_qm_get_dfx_access(struct hisi_qm *qm) 5753 { 5754 struct device *dev = &qm->pdev->dev; 5755 5756 if (pm_runtime_suspended(dev)) { 5757 dev_info(dev, "can not read/write - device in suspended.\n"); 5758 return -EAGAIN; 5759 } 5760 5761 return qm_pm_get_sync(qm); 5762 } 5763 EXPORT_SYMBOL_GPL(hisi_qm_get_dfx_access); 5764 5765 /** 5766 * hisi_qm_put_dfx_access() - Put dfx access. 5767 * @qm: pointer to accelerator device. 5768 * 5769 * Put dfx access, drop runtime PM usage counter. 5770 */ 5771 void hisi_qm_put_dfx_access(struct hisi_qm *qm) 5772 { 5773 qm_pm_put_sync(qm); 5774 } 5775 EXPORT_SYMBOL_GPL(hisi_qm_put_dfx_access); 5776 5777 /** 5778 * hisi_qm_pm_init() - Initialize qm runtime PM. 5779 * @qm: pointer to accelerator device. 5780 * 5781 * Function that initialize qm runtime PM. 5782 */ 5783 void hisi_qm_pm_init(struct hisi_qm *qm) 5784 { 5785 struct device *dev = &qm->pdev->dev; 5786 5787 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 5788 return; 5789 5790 pm_runtime_set_autosuspend_delay(dev, QM_AUTOSUSPEND_DELAY); 5791 pm_runtime_use_autosuspend(dev); 5792 pm_runtime_put_noidle(dev); 5793 } 5794 EXPORT_SYMBOL_GPL(hisi_qm_pm_init); 5795 5796 /** 5797 * hisi_qm_pm_uninit() - Uninitialize qm runtime PM. 5798 * @qm: pointer to accelerator device. 5799 * 5800 * Function that uninitialize qm runtime PM. 5801 */ 5802 void hisi_qm_pm_uninit(struct hisi_qm *qm) 5803 { 5804 struct device *dev = &qm->pdev->dev; 5805 5806 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 5807 return; 5808 5809 pm_runtime_get_noresume(dev); 5810 pm_runtime_dont_use_autosuspend(dev); 5811 } 5812 EXPORT_SYMBOL_GPL(hisi_qm_pm_uninit); 5813 5814 static int qm_prepare_for_suspend(struct hisi_qm *qm) 5815 { 5816 struct pci_dev *pdev = qm->pdev; 5817 int ret; 5818 5819 ret = qm->ops->set_msi(qm, false); 5820 if (ret) { 5821 pci_err(pdev, "failed to disable MSI before suspending!\n"); 5822 return ret; 5823 } 5824 5825 ret = qm_master_ooo_check(qm); 5826 if (ret) 5827 return ret; 5828 5829 if (qm->err_ini->set_priv_status) { 5830 ret = qm->err_ini->set_priv_status(qm); 5831 if (ret) 5832 return ret; 5833 } 5834 5835 ret = qm_set_pf_mse(qm, false); 5836 if (ret) 5837 pci_err(pdev, "failed to disable MSE before suspending!\n"); 5838 5839 return ret; 5840 } 5841 5842 static int qm_rebuild_for_resume(struct hisi_qm *qm) 5843 { 5844 struct pci_dev *pdev = qm->pdev; 5845 int ret; 5846 5847 ret = qm_set_pf_mse(qm, true); 5848 if (ret) { 5849 pci_err(pdev, "failed to enable MSE after resuming!\n"); 5850 return ret; 5851 } 5852 5853 ret = qm->ops->set_msi(qm, true); 5854 if (ret) { 5855 pci_err(pdev, "failed to enable MSI after resuming!\n"); 5856 return ret; 5857 } 5858 5859 ret = qm_dev_hw_init(qm); 5860 if (ret) { 5861 pci_err(pdev, "failed to init device after resuming\n"); 5862 return ret; 5863 } 5864 5865 qm_cmd_init(qm); 5866 hisi_qm_dev_err_init(qm); 5867 /* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */ 5868 writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG); 5869 qm_disable_clock_gate(qm); 5870 ret = qm_dev_mem_reset(qm); 5871 if (ret) 5872 pci_err(pdev, "failed to reset device memory\n"); 5873 5874 return ret; 5875 } 5876 5877 /** 5878 * hisi_qm_suspend() - Runtime suspend of given device. 5879 * @dev: device to suspend. 5880 * 5881 * Function that suspend the device. 5882 */ 5883 int hisi_qm_suspend(struct device *dev) 5884 { 5885 struct pci_dev *pdev = to_pci_dev(dev); 5886 struct hisi_qm *qm = pci_get_drvdata(pdev); 5887 int ret; 5888 5889 pci_info(pdev, "entering suspended state\n"); 5890 5891 ret = hisi_qm_stop(qm, QM_NORMAL); 5892 if (ret) { 5893 pci_err(pdev, "failed to stop qm(%d)\n", ret); 5894 return ret; 5895 } 5896 5897 ret = qm_prepare_for_suspend(qm); 5898 if (ret) 5899 pci_err(pdev, "failed to prepare suspended(%d)\n", ret); 5900 5901 return ret; 5902 } 5903 EXPORT_SYMBOL_GPL(hisi_qm_suspend); 5904 5905 /** 5906 * hisi_qm_resume() - Runtime resume of given device. 5907 * @dev: device to resume. 5908 * 5909 * Function that resume the device. 5910 */ 5911 int hisi_qm_resume(struct device *dev) 5912 { 5913 struct pci_dev *pdev = to_pci_dev(dev); 5914 struct hisi_qm *qm = pci_get_drvdata(pdev); 5915 int ret; 5916 5917 pci_info(pdev, "resuming from suspend state\n"); 5918 5919 ret = qm_rebuild_for_resume(qm); 5920 if (ret) { 5921 pci_err(pdev, "failed to rebuild resume(%d)\n", ret); 5922 return ret; 5923 } 5924 5925 ret = hisi_qm_start(qm); 5926 if (ret) { 5927 if (qm_check_dev_error(qm)) { 5928 pci_info(pdev, "failed to start qm due to device error, device will be reset!\n"); 5929 return 0; 5930 } 5931 5932 pci_err(pdev, "failed to start qm(%d)!\n", ret); 5933 } 5934 5935 return ret; 5936 } 5937 EXPORT_SYMBOL_GPL(hisi_qm_resume); 5938 5939 MODULE_LICENSE("GPL v2"); 5940 MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>"); 5941 MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver"); 5942