1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019 HiSilicon Limited. */ 3 #include <asm/page.h> 4 #include <linux/acpi.h> 5 #include <linux/bitmap.h> 6 #include <linux/dma-mapping.h> 7 #include <linux/idr.h> 8 #include <linux/io.h> 9 #include <linux/irqreturn.h> 10 #include <linux/log2.h> 11 #include <linux/pm_runtime.h> 12 #include <linux/seq_file.h> 13 #include <linux/slab.h> 14 #include <linux/uacce.h> 15 #include <linux/uaccess.h> 16 #include <uapi/misc/uacce/hisi_qm.h> 17 #include <linux/hisi_acc_qm.h> 18 #include "qm_common.h" 19 20 /* eq/aeq irq enable */ 21 #define QM_VF_AEQ_INT_SOURCE 0x0 22 #define QM_VF_AEQ_INT_MASK 0x4 23 #define QM_VF_EQ_INT_SOURCE 0x8 24 #define QM_VF_EQ_INT_MASK 0xc 25 26 #define QM_IRQ_VECTOR_MASK GENMASK(15, 0) 27 #define QM_IRQ_TYPE_MASK GENMASK(15, 0) 28 #define QM_IRQ_TYPE_SHIFT 16 29 #define QM_ABN_IRQ_TYPE_MASK GENMASK(7, 0) 30 31 /* mailbox */ 32 #define QM_MB_PING_ALL_VFS 0xffff 33 #define QM_MB_STATUS_MASK GENMASK(12, 9) 34 35 /* sqc shift */ 36 #define QM_SQ_HOP_NUM_SHIFT 0 37 #define QM_SQ_PAGE_SIZE_SHIFT 4 38 #define QM_SQ_BUF_SIZE_SHIFT 8 39 #define QM_SQ_SQE_SIZE_SHIFT 12 40 #define QM_SQ_PRIORITY_SHIFT 0 41 #define QM_SQ_ORDERS_SHIFT 4 42 #define QM_SQ_TYPE_SHIFT 8 43 #define QM_QC_PASID_ENABLE 0x1 44 #define QM_QC_PASID_ENABLE_SHIFT 7 45 46 #define QM_SQ_TYPE_MASK GENMASK(3, 0) 47 #define QM_SQ_TAIL_IDX(sqc) ((le16_to_cpu((sqc).w11) >> 6) & 0x1) 48 49 /* cqc shift */ 50 #define QM_CQ_HOP_NUM_SHIFT 0 51 #define QM_CQ_PAGE_SIZE_SHIFT 4 52 #define QM_CQ_BUF_SIZE_SHIFT 8 53 #define QM_CQ_CQE_SIZE_SHIFT 12 54 #define QM_CQ_PHASE_SHIFT 0 55 #define QM_CQ_FLAG_SHIFT 1 56 57 #define QM_CQE_PHASE(cqe) (le16_to_cpu((cqe)->w7) & 0x1) 58 #define QM_QC_CQE_SIZE 4 59 #define QM_CQ_TAIL_IDX(cqc) ((le16_to_cpu((cqc).w11) >> 6) & 0x1) 60 61 /* eqc shift */ 62 #define QM_EQE_AEQE_SIZE (2UL << 12) 63 #define QM_EQC_PHASE_SHIFT 16 64 65 #define QM_EQE_PHASE(eqe) ((le32_to_cpu((eqe)->dw0) >> 16) & 0x1) 66 #define QM_EQE_CQN_MASK GENMASK(15, 0) 67 68 #define QM_AEQE_PHASE(aeqe) ((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1) 69 #define QM_AEQE_TYPE_SHIFT 17 70 #define QM_AEQE_TYPE_MASK 0xf 71 #define QM_AEQE_CQN_MASK GENMASK(15, 0) 72 #define QM_CQ_OVERFLOW 0 73 #define QM_EQ_OVERFLOW 1 74 #define QM_CQE_ERROR 2 75 76 #define QM_XQ_DEPTH_SHIFT 16 77 #define QM_XQ_DEPTH_MASK GENMASK(15, 0) 78 79 #define QM_DOORBELL_CMD_SQ 0 80 #define QM_DOORBELL_CMD_CQ 1 81 #define QM_DOORBELL_CMD_EQ 2 82 #define QM_DOORBELL_CMD_AEQ 3 83 84 #define QM_DOORBELL_BASE_V1 0x340 85 #define QM_DB_CMD_SHIFT_V1 16 86 #define QM_DB_INDEX_SHIFT_V1 32 87 #define QM_DB_PRIORITY_SHIFT_V1 48 88 #define QM_PAGE_SIZE 0x0034 89 #define QM_QP_DB_INTERVAL 0x10000 90 #define QM_DB_TIMEOUT_CFG 0x100074 91 #define QM_DB_TIMEOUT_SET 0x1fffff 92 93 #define QM_MEM_START_INIT 0x100040 94 #define QM_MEM_INIT_DONE 0x100044 95 #define QM_VFT_CFG_RDY 0x10006c 96 #define QM_VFT_CFG_OP_WR 0x100058 97 #define QM_VFT_CFG_TYPE 0x10005c 98 #define QM_VFT_CFG 0x100060 99 #define QM_VFT_CFG_OP_ENABLE 0x100054 100 #define QM_PM_CTRL 0x100148 101 #define QM_IDLE_DISABLE BIT(9) 102 103 #define QM_SUB_VERSION_ID 0x210 104 105 #define QM_VFT_CFG_DATA_L 0x100064 106 #define QM_VFT_CFG_DATA_H 0x100068 107 #define QM_SQC_VFT_BUF_SIZE (7ULL << 8) 108 #define QM_SQC_VFT_SQC_SIZE (5ULL << 12) 109 #define QM_SQC_VFT_INDEX_NUMBER (1ULL << 16) 110 #define QM_SQC_VFT_START_SQN_SHIFT 28 111 #define QM_SQC_VFT_VALID (1ULL << 44) 112 #define QM_SQC_VFT_SQN_SHIFT 45 113 #define QM_CQC_VFT_BUF_SIZE (7ULL << 8) 114 #define QM_CQC_VFT_SQC_SIZE (5ULL << 12) 115 #define QM_CQC_VFT_INDEX_NUMBER (1ULL << 16) 116 #define QM_CQC_VFT_VALID (1ULL << 28) 117 118 #define QM_SQC_VFT_BASE_SHIFT_V2 28 119 #define QM_SQC_VFT_BASE_MASK_V2 GENMASK(15, 0) 120 #define QM_SQC_VFT_NUM_SHIFT_V2 45 121 #define QM_SQC_VFT_NUM_MASK_V2 GENMASK(9, 0) 122 #define QM_MAX_QC_TYPE 2 123 124 #define QM_ABNORMAL_INT_SOURCE 0x100000 125 #define QM_ABNORMAL_INT_MASK 0x100004 126 #define QM_ABNORMAL_INT_MASK_VALUE 0x7fff 127 #define QM_ABNORMAL_INT_STATUS 0x100008 128 #define QM_ABNORMAL_INT_SET 0x10000c 129 #define QM_ABNORMAL_INF00 0x100010 130 #define QM_FIFO_OVERFLOW_TYPE 0xc0 131 #define QM_FIFO_OVERFLOW_TYPE_SHIFT 6 132 #define QM_FIFO_OVERFLOW_VF 0x3f 133 #define QM_FIFO_OVERFLOW_QP_SHIFT 16 134 #define QM_ABNORMAL_INF01 0x100014 135 #define QM_DB_TIMEOUT_TYPE 0xc0 136 #define QM_DB_TIMEOUT_TYPE_SHIFT 6 137 #define QM_DB_TIMEOUT_VF 0x3f 138 #define QM_DB_TIMEOUT_QP_SHIFT 16 139 #define QM_ABNORMAL_INF02 0x100018 140 #define QM_AXI_POISON_ERR BIT(22) 141 #define QM_RAS_CE_ENABLE 0x1000ec 142 #define QM_RAS_FE_ENABLE 0x1000f0 143 #define QM_RAS_NFE_ENABLE 0x1000f4 144 #define QM_RAS_CE_THRESHOLD 0x1000f8 145 #define QM_RAS_CE_TIMES_PER_IRQ 1 146 #define QM_OOO_SHUTDOWN_SEL 0x1040f8 147 #define QM_AXI_RRESP_ERR BIT(0) 148 #define QM_ECC_MBIT BIT(2) 149 #define QM_DB_TIMEOUT BIT(10) 150 #define QM_OF_FIFO_OF BIT(11) 151 152 #define QM_RESET_WAIT_TIMEOUT 400 153 #define QM_PEH_VENDOR_ID 0x1000d8 154 #define ACC_VENDOR_ID_VALUE 0x5a5a 155 #define QM_PEH_DFX_INFO0 0x1000fc 156 #define QM_PEH_DFX_INFO1 0x100100 157 #define QM_PEH_DFX_MASK (BIT(0) | BIT(2)) 158 #define QM_PEH_MSI_FINISH_MASK GENMASK(19, 16) 159 #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT 3 160 #define ACC_PEH_MSI_DISABLE GENMASK(31, 0) 161 #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN 0x1 162 #define ACC_MASTER_TRANS_RETURN_RW 3 163 #define ACC_MASTER_TRANS_RETURN 0x300150 164 #define ACC_MASTER_GLOBAL_CTRL 0x300000 165 #define ACC_AM_CFG_PORT_WR_EN 0x30001c 166 #define QM_RAS_NFE_MBIT_DISABLE ~QM_ECC_MBIT 167 #define ACC_AM_ROB_ECC_INT_STS 0x300104 168 #define ACC_ROB_ECC_ERR_MULTPL BIT(1) 169 #define QM_MSI_CAP_ENABLE BIT(16) 170 171 /* interfunction communication */ 172 #define QM_IFC_READY_STATUS 0x100128 173 #define QM_IFC_INT_SET_P 0x100130 174 #define QM_IFC_INT_CFG 0x100134 175 #define QM_IFC_INT_SOURCE_P 0x100138 176 #define QM_IFC_INT_SOURCE_V 0x0020 177 #define QM_IFC_INT_MASK 0x0024 178 #define QM_IFC_INT_STATUS 0x0028 179 #define QM_IFC_INT_SET_V 0x002C 180 #define QM_PF2VF_PF_W 0x104700 181 #define QM_VF2PF_PF_R 0x104800 182 #define QM_VF2PF_VF_W 0x320 183 #define QM_PF2VF_VF_R 0x380 184 #define QM_IFC_SEND_ALL_VFS GENMASK(6, 0) 185 #define QM_IFC_INT_SOURCE_CLR GENMASK(63, 0) 186 #define QM_IFC_INT_SOURCE_MASK BIT(0) 187 #define QM_IFC_INT_DISABLE BIT(0) 188 #define QM_IFC_INT_STATUS_MASK BIT(0) 189 #define QM_IFC_INT_SET_MASK BIT(0) 190 #define QM_WAIT_DST_ACK 10 191 #define QM_MAX_PF_WAIT_COUNT 10 192 #define QM_MAX_VF_WAIT_COUNT 40 193 #define QM_VF_RESET_WAIT_US 20000 194 #define QM_VF_RESET_WAIT_CNT 3000 195 #define QM_VF2PF_REG_SIZE 4 196 #define QM_IFC_CMD_MASK GENMASK(31, 0) 197 #define QM_IFC_DATA_SHIFT 32 198 #define QM_VF_RESET_WAIT_TIMEOUT_US \ 199 (QM_VF_RESET_WAIT_US * QM_VF_RESET_WAIT_CNT) 200 201 #define POLL_PERIOD 10 202 #define POLL_TIMEOUT 1000 203 #define WAIT_PERIOD_US_MAX 200 204 #define WAIT_PERIOD_US_MIN 100 205 #define MAX_WAIT_COUNTS 1000 206 #define QM_CACHE_WB_START 0x204 207 #define QM_CACHE_WB_DONE 0x208 208 #define QM_FUNC_CAPS_REG 0x3100 209 #define QM_CAPBILITY_VERSION GENMASK(7, 0) 210 211 #define PCI_BAR_2 2 212 #define PCI_BAR_4 4 213 #define QMC_ALIGN(sz) ALIGN(sz, 32) 214 215 #define QM_DBG_READ_LEN 256 216 #define QM_PCI_COMMAND_INVALID ~0 217 #define QM_RESET_STOP_TX_OFFSET 1 218 #define QM_RESET_STOP_RX_OFFSET 2 219 220 #define WAIT_PERIOD 20 221 #define REMOVE_WAIT_DELAY 10 222 223 #define QM_QOS_PARAM_NUM 2 224 #define QM_QOS_MAX_VAL 1000 225 #define QM_QOS_RATE 100 226 #define QM_QOS_EXPAND_RATE 1000 227 #define QM_SHAPER_CIR_B_MASK GENMASK(7, 0) 228 #define QM_SHAPER_CIR_U_MASK GENMASK(10, 8) 229 #define QM_SHAPER_CIR_S_MASK GENMASK(14, 11) 230 #define QM_SHAPER_FACTOR_CIR_U_SHIFT 8 231 #define QM_SHAPER_FACTOR_CIR_S_SHIFT 11 232 #define QM_SHAPER_FACTOR_CBS_B_SHIFT 15 233 #define QM_SHAPER_FACTOR_CBS_S_SHIFT 19 234 #define QM_SHAPER_CBS_B 1 235 #define QM_SHAPER_VFT_OFFSET 6 236 #define QM_QOS_MIN_ERROR_RATE 5 237 #define QM_SHAPER_MIN_CBS_S 8 238 #define QM_QOS_TICK 0x300U 239 #define QM_QOS_DIVISOR_CLK 0x1f40U 240 #define QM_QOS_MAX_CIR_B 200 241 #define QM_QOS_MIN_CIR_B 100 242 #define QM_QOS_MAX_CIR_U 6 243 #define QM_AUTOSUSPEND_DELAY 3000 244 245 /* abnormal status value for stopping queue */ 246 #define QM_STOP_QUEUE_FAIL 1 247 #define QM_DUMP_SQC_FAIL 3 248 #define QM_DUMP_CQC_FAIL 4 249 #define QM_FINISH_WAIT 5 250 251 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \ 252 (((hop_num) << QM_CQ_HOP_NUM_SHIFT) | \ 253 ((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT) | \ 254 ((buf_sz) << QM_CQ_BUF_SIZE_SHIFT) | \ 255 ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT)) 256 257 #define QM_MK_CQC_DW3_V2(cqe_sz, cq_depth) \ 258 ((((u32)cq_depth) - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT)) 259 260 #define QM_MK_SQC_W13(priority, orders, alg_type) \ 261 (((priority) << QM_SQ_PRIORITY_SHIFT) | \ 262 ((orders) << QM_SQ_ORDERS_SHIFT) | \ 263 (((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT)) 264 265 #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \ 266 (((hop_num) << QM_SQ_HOP_NUM_SHIFT) | \ 267 ((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT) | \ 268 ((buf_sz) << QM_SQ_BUF_SIZE_SHIFT) | \ 269 ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT)) 270 271 #define QM_MK_SQC_DW3_V2(sqe_sz, sq_depth) \ 272 ((((u32)sq_depth) - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT)) 273 274 enum vft_type { 275 SQC_VFT = 0, 276 CQC_VFT, 277 SHAPER_VFT, 278 }; 279 280 enum qm_alg_type { 281 ALG_TYPE_0, 282 ALG_TYPE_1, 283 }; 284 285 enum qm_ifc_cmd { 286 QM_PF_FLR_PREPARE = 0x01, 287 QM_PF_SRST_PREPARE, 288 QM_PF_RESET_DONE, 289 QM_VF_PREPARE_DONE, 290 QM_VF_PREPARE_FAIL, 291 QM_VF_START_DONE, 292 QM_VF_START_FAIL, 293 QM_PF_SET_QOS, 294 QM_VF_GET_QOS, 295 }; 296 297 enum qm_basic_type { 298 QM_TOTAL_QP_NUM_CAP = 0x0, 299 QM_FUNC_MAX_QP_CAP, 300 QM_XEQ_DEPTH_CAP, 301 QM_QP_DEPTH_CAP, 302 QM_EQ_IRQ_TYPE_CAP, 303 QM_AEQ_IRQ_TYPE_CAP, 304 QM_ABN_IRQ_TYPE_CAP, 305 QM_PF2VF_IRQ_TYPE_CAP, 306 QM_PF_IRQ_NUM_CAP, 307 QM_VF_IRQ_NUM_CAP, 308 }; 309 310 enum qm_cap_table_type { 311 QM_CAP_VF = 0x0, 312 QM_AEQE_NUM, 313 QM_SCQE_NUM, 314 QM_EQ_IRQ, 315 QM_AEQ_IRQ, 316 QM_ABNORMAL_IRQ, 317 QM_MB_IRQ, 318 MAX_IRQ_NUM, 319 EXT_BAR_INDEX, 320 }; 321 322 static const struct hisi_qm_cap_query_info qm_cap_query_info[] = { 323 {QM_CAP_VF, "QM_CAP_VF ", 0x3100, 0x0, 0x0, 0x6F01}, 324 {QM_AEQE_NUM, "QM_AEQE_NUM ", 0x3104, 0x800, 0x4000800, 0x4000800}, 325 {QM_SCQE_NUM, "QM_SCQE_NUM ", 326 0x3108, 0x4000400, 0x4000400, 0x4000400}, 327 {QM_EQ_IRQ, "QM_EQ_IRQ ", 0x310c, 0x10000, 0x10000, 0x10000}, 328 {QM_AEQ_IRQ, "QM_AEQ_IRQ ", 0x3110, 0x0, 0x10001, 0x10001}, 329 {QM_ABNORMAL_IRQ, "QM_ABNORMAL_IRQ ", 0x3114, 0x0, 0x10003, 0x10003}, 330 {QM_MB_IRQ, "QM_MB_IRQ ", 0x3118, 0x0, 0x0, 0x10002}, 331 {MAX_IRQ_NUM, "MAX_IRQ_NUM ", 0x311c, 0x10001, 0x40002, 0x40003}, 332 {EXT_BAR_INDEX, "EXT_BAR_INDEX ", 0x3120, 0x0, 0x0, 0x14}, 333 }; 334 335 static const struct hisi_qm_cap_info qm_cap_info_comm[] = { 336 {QM_SUPPORT_DB_ISOLATION, 0x30, 0, BIT(0), 0x0, 0x0, 0x0}, 337 {QM_SUPPORT_FUNC_QOS, 0x3100, 0, BIT(8), 0x0, 0x0, 0x1}, 338 {QM_SUPPORT_STOP_QP, 0x3100, 0, BIT(9), 0x0, 0x0, 0x1}, 339 {QM_SUPPORT_STOP_FUNC, 0x3100, 0, BIT(10), 0x0, 0x0, 0x1}, 340 {QM_SUPPORT_MB_COMMAND, 0x3100, 0, BIT(11), 0x0, 0x0, 0x1}, 341 {QM_SUPPORT_SVA_PREFETCH, 0x3100, 0, BIT(14), 0x0, 0x0, 0x1}, 342 {QM_SUPPORT_DAE, 0x3100, 0, BIT(15), 0x0, 0x0, 0x0}, 343 }; 344 345 static const struct hisi_qm_cap_info qm_cap_info_pf[] = { 346 {QM_SUPPORT_RPM, 0x3100, 0, BIT(13), 0x0, 0x0, 0x1}, 347 }; 348 349 static const struct hisi_qm_cap_info qm_cap_info_vf[] = { 350 {QM_SUPPORT_RPM, 0x3100, 0, BIT(12), 0x0, 0x0, 0x0}, 351 }; 352 353 static const struct hisi_qm_cap_info qm_basic_info[] = { 354 {QM_TOTAL_QP_NUM_CAP, 0x100158, 0, GENMASK(10, 0), 0x1000, 0x400, 0x400}, 355 {QM_FUNC_MAX_QP_CAP, 0x100158, 11, GENMASK(10, 0), 0x1000, 0x400, 0x400}, 356 {QM_XEQ_DEPTH_CAP, 0x3104, 0, GENMASK(31, 0), 0x800, 0x4000800, 0x4000800}, 357 {QM_QP_DEPTH_CAP, 0x3108, 0, GENMASK(31, 0), 0x4000400, 0x4000400, 0x4000400}, 358 {QM_EQ_IRQ_TYPE_CAP, 0x310c, 0, GENMASK(31, 0), 0x10000, 0x10000, 0x10000}, 359 {QM_AEQ_IRQ_TYPE_CAP, 0x3110, 0, GENMASK(31, 0), 0x0, 0x10001, 0x10001}, 360 {QM_ABN_IRQ_TYPE_CAP, 0x3114, 0, GENMASK(31, 0), 0x0, 0x10003, 0x10003}, 361 {QM_PF2VF_IRQ_TYPE_CAP, 0x3118, 0, GENMASK(31, 0), 0x0, 0x0, 0x10002}, 362 {QM_PF_IRQ_NUM_CAP, 0x311c, 16, GENMASK(15, 0), 0x1, 0x4, 0x4}, 363 {QM_VF_IRQ_NUM_CAP, 0x311c, 0, GENMASK(15, 0), 0x1, 0x2, 0x3}, 364 }; 365 366 struct qm_mailbox { 367 __le16 w0; 368 __le16 queue_num; 369 __le32 base_l; 370 __le32 base_h; 371 __le32 rsvd; 372 }; 373 374 struct qm_doorbell { 375 __le16 queue_num; 376 __le16 cmd; 377 __le16 index; 378 __le16 priority; 379 }; 380 381 struct hisi_qm_resource { 382 struct hisi_qm *qm; 383 int distance; 384 struct list_head list; 385 }; 386 387 /** 388 * struct qm_hw_err - Structure describing the device errors 389 * @list: hardware error list 390 * @timestamp: timestamp when the error occurred 391 */ 392 struct qm_hw_err { 393 struct list_head list; 394 unsigned long long timestamp; 395 }; 396 397 struct hisi_qm_hw_ops { 398 int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number); 399 void (*qm_db)(struct hisi_qm *qm, u16 qn, 400 u8 cmd, u16 index, u8 priority); 401 int (*debug_init)(struct hisi_qm *qm); 402 void (*hw_error_init)(struct hisi_qm *qm); 403 void (*hw_error_uninit)(struct hisi_qm *qm); 404 enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm); 405 int (*set_msi)(struct hisi_qm *qm, bool set); 406 407 /* (u64)msg = (u32)data << 32 | (enum qm_ifc_cmd)cmd */ 408 int (*set_ifc_begin)(struct hisi_qm *qm, enum qm_ifc_cmd cmd, u32 data, u32 fun_num); 409 void (*set_ifc_end)(struct hisi_qm *qm); 410 int (*get_ifc)(struct hisi_qm *qm, enum qm_ifc_cmd *cmd, u32 *data, u32 fun_num); 411 }; 412 413 struct hisi_qm_hw_error { 414 u32 int_msk; 415 const char *msg; 416 }; 417 418 static const struct hisi_qm_hw_error qm_hw_error[] = { 419 { .int_msk = BIT(0), .msg = "qm_axi_rresp" }, 420 { .int_msk = BIT(1), .msg = "qm_axi_bresp" }, 421 { .int_msk = BIT(2), .msg = "qm_ecc_mbit" }, 422 { .int_msk = BIT(3), .msg = "qm_ecc_1bit" }, 423 { .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" }, 424 { .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" }, 425 { .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" }, 426 { .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" }, 427 { .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" }, 428 { .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" }, 429 { .int_msk = BIT(10), .msg = "qm_db_timeout" }, 430 { .int_msk = BIT(11), .msg = "qm_of_fifo_of" }, 431 { .int_msk = BIT(12), .msg = "qm_db_random_invalid" }, 432 { .int_msk = BIT(13), .msg = "qm_mailbox_timeout" }, 433 { .int_msk = BIT(14), .msg = "qm_flr_timeout" }, 434 }; 435 436 static const char * const qm_db_timeout[] = { 437 "sq", "cq", "eq", "aeq", 438 }; 439 440 static const char * const qm_fifo_overflow[] = { 441 "cq", "eq", "aeq", 442 }; 443 444 struct qm_typical_qos_table { 445 u32 start; 446 u32 end; 447 u32 val; 448 }; 449 450 /* the qos step is 100 */ 451 static struct qm_typical_qos_table shaper_cir_s[] = { 452 {100, 100, 4}, 453 {200, 200, 3}, 454 {300, 500, 2}, 455 {600, 1000, 1}, 456 {1100, 100000, 0}, 457 }; 458 459 static struct qm_typical_qos_table shaper_cbs_s[] = { 460 {100, 200, 9}, 461 {300, 500, 11}, 462 {600, 1000, 12}, 463 {1100, 10000, 16}, 464 {10100, 25000, 17}, 465 {25100, 50000, 18}, 466 {50100, 100000, 19} 467 }; 468 469 static void qm_irqs_unregister(struct hisi_qm *qm); 470 static int qm_reset_device(struct hisi_qm *qm); 471 int hisi_qm_q_num_set(const char *val, const struct kernel_param *kp, 472 unsigned int device) 473 { 474 struct pci_dev *pdev; 475 u32 n, q_num; 476 int ret; 477 478 if (!val) 479 return -EINVAL; 480 481 pdev = pci_get_device(PCI_VENDOR_ID_HUAWEI, device, NULL); 482 if (!pdev) { 483 q_num = min_t(u32, QM_QNUM_V1, QM_QNUM_V2); 484 pr_info("No device found currently, suppose queue number is %u\n", 485 q_num); 486 } else { 487 if (pdev->revision == QM_HW_V1) 488 q_num = QM_QNUM_V1; 489 else 490 q_num = QM_QNUM_V2; 491 492 pci_dev_put(pdev); 493 } 494 495 ret = kstrtou32(val, 10, &n); 496 if (ret || n < QM_MIN_QNUM || n > q_num) 497 return -EINVAL; 498 499 return param_set_int(val, kp); 500 } 501 EXPORT_SYMBOL_GPL(hisi_qm_q_num_set); 502 503 static u32 qm_get_hw_error_status(struct hisi_qm *qm) 504 { 505 return readl(qm->io_base + QM_ABNORMAL_INT_STATUS); 506 } 507 508 static u32 qm_get_dev_err_status(struct hisi_qm *qm) 509 { 510 return qm->err_ini->get_dev_hw_err_status(qm); 511 } 512 513 /* Check if the error causes the master ooo block */ 514 static bool qm_check_dev_error(struct hisi_qm *qm) 515 { 516 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 517 u32 err_status; 518 519 if (pf_qm->fun_type == QM_HW_VF) 520 return false; 521 522 err_status = qm_get_hw_error_status(pf_qm); 523 if (err_status & pf_qm->err_info.qm_shutdown_mask) 524 return true; 525 526 if (pf_qm->err_ini->dev_is_abnormal) 527 return pf_qm->err_ini->dev_is_abnormal(pf_qm); 528 529 return false; 530 } 531 532 static int qm_wait_reset_finish(struct hisi_qm *qm) 533 { 534 int delay = 0; 535 536 /* All reset requests need to be queued for processing */ 537 while (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 538 msleep(++delay); 539 if (delay > QM_RESET_WAIT_TIMEOUT) 540 return -EBUSY; 541 } 542 543 return 0; 544 } 545 546 static int qm_reset_prepare_ready(struct hisi_qm *qm) 547 { 548 struct pci_dev *pdev = qm->pdev; 549 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 550 551 /* 552 * PF and VF on host doesnot support resetting at the 553 * same time on Kunpeng920. 554 */ 555 if (qm->ver < QM_HW_V3) 556 return qm_wait_reset_finish(pf_qm); 557 558 return qm_wait_reset_finish(qm); 559 } 560 561 static void qm_reset_bit_clear(struct hisi_qm *qm) 562 { 563 struct pci_dev *pdev = qm->pdev; 564 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 565 566 if (qm->ver < QM_HW_V3) 567 clear_bit(QM_RESETTING, &pf_qm->misc_ctl); 568 569 clear_bit(QM_RESETTING, &qm->misc_ctl); 570 } 571 572 static void qm_mb_pre_init(struct qm_mailbox *mailbox, u8 cmd, 573 u64 base, u16 queue, bool op) 574 { 575 mailbox->w0 = cpu_to_le16((cmd) | 576 ((op) ? 0x1 << QM_MB_OP_SHIFT : 0) | 577 (0x1 << QM_MB_BUSY_SHIFT)); 578 mailbox->queue_num = cpu_to_le16(queue); 579 mailbox->base_l = cpu_to_le32(lower_32_bits(base)); 580 mailbox->base_h = cpu_to_le32(upper_32_bits(base)); 581 mailbox->rsvd = 0; 582 } 583 584 /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */ 585 int hisi_qm_wait_mb_ready(struct hisi_qm *qm) 586 { 587 u32 val; 588 589 return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE, 590 val, !((val >> QM_MB_BUSY_SHIFT) & 591 0x1), POLL_PERIOD, POLL_TIMEOUT); 592 } 593 EXPORT_SYMBOL_GPL(hisi_qm_wait_mb_ready); 594 595 /* 128 bit should be written to hardware at one time to trigger a mailbox */ 596 static void qm_mb_write(struct hisi_qm *qm, const void *src) 597 { 598 void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE; 599 600 #if IS_ENABLED(CONFIG_ARM64) 601 unsigned long tmp0 = 0, tmp1 = 0; 602 #endif 603 604 if (!IS_ENABLED(CONFIG_ARM64)) { 605 memcpy_toio(fun_base, src, 16); 606 dma_wmb(); 607 return; 608 } 609 610 #if IS_ENABLED(CONFIG_ARM64) 611 asm volatile("ldp %0, %1, %3\n" 612 "stp %0, %1, %2\n" 613 "dmb oshst\n" 614 : "=&r" (tmp0), 615 "=&r" (tmp1), 616 "+Q" (*((char __iomem *)fun_base)) 617 : "Q" (*((char *)src)) 618 : "memory"); 619 #endif 620 } 621 622 static int qm_mb_nolock(struct hisi_qm *qm, struct qm_mailbox *mailbox) 623 { 624 int ret; 625 u32 val; 626 627 if (unlikely(hisi_qm_wait_mb_ready(qm))) { 628 dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n"); 629 ret = -EBUSY; 630 goto mb_busy; 631 } 632 633 qm_mb_write(qm, mailbox); 634 635 if (unlikely(hisi_qm_wait_mb_ready(qm))) { 636 dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n"); 637 ret = -ETIMEDOUT; 638 goto mb_busy; 639 } 640 641 val = readl(qm->io_base + QM_MB_CMD_SEND_BASE); 642 if (val & QM_MB_STATUS_MASK) { 643 dev_err(&qm->pdev->dev, "QM mailbox operation failed!\n"); 644 ret = -EIO; 645 goto mb_busy; 646 } 647 648 return 0; 649 650 mb_busy: 651 atomic64_inc(&qm->debug.dfx.mb_err_cnt); 652 return ret; 653 } 654 655 int hisi_qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue, 656 bool op) 657 { 658 struct qm_mailbox mailbox; 659 int ret; 660 661 qm_mb_pre_init(&mailbox, cmd, dma_addr, queue, op); 662 663 mutex_lock(&qm->mailbox_lock); 664 ret = qm_mb_nolock(qm, &mailbox); 665 mutex_unlock(&qm->mailbox_lock); 666 667 return ret; 668 } 669 EXPORT_SYMBOL_GPL(hisi_qm_mb); 670 671 /* op 0: set xqc information to hardware, 1: get xqc information from hardware. */ 672 int qm_set_and_get_xqc(struct hisi_qm *qm, u8 cmd, void *xqc, u32 qp_id, bool op) 673 { 674 struct qm_mailbox mailbox; 675 dma_addr_t xqc_dma; 676 void *tmp_xqc; 677 size_t size; 678 int ret; 679 680 switch (cmd) { 681 case QM_MB_CMD_SQC: 682 size = sizeof(struct qm_sqc); 683 tmp_xqc = qm->xqc_buf.sqc; 684 xqc_dma = qm->xqc_buf.sqc_dma; 685 break; 686 case QM_MB_CMD_CQC: 687 size = sizeof(struct qm_cqc); 688 tmp_xqc = qm->xqc_buf.cqc; 689 xqc_dma = qm->xqc_buf.cqc_dma; 690 break; 691 case QM_MB_CMD_EQC: 692 size = sizeof(struct qm_eqc); 693 tmp_xqc = qm->xqc_buf.eqc; 694 xqc_dma = qm->xqc_buf.eqc_dma; 695 break; 696 case QM_MB_CMD_AEQC: 697 size = sizeof(struct qm_aeqc); 698 tmp_xqc = qm->xqc_buf.aeqc; 699 xqc_dma = qm->xqc_buf.aeqc_dma; 700 break; 701 default: 702 dev_err(&qm->pdev->dev, "unknown mailbox cmd %u\n", cmd); 703 return -EINVAL; 704 } 705 706 /* Setting xqc will fail if master OOO is blocked. */ 707 if (qm_check_dev_error(qm)) { 708 dev_err(&qm->pdev->dev, "failed to send mailbox since qm is stop!\n"); 709 return -EIO; 710 } 711 712 mutex_lock(&qm->mailbox_lock); 713 if (!op) 714 memcpy(tmp_xqc, xqc, size); 715 716 qm_mb_pre_init(&mailbox, cmd, xqc_dma, qp_id, op); 717 ret = qm_mb_nolock(qm, &mailbox); 718 if (!ret && op) 719 memcpy(xqc, tmp_xqc, size); 720 721 mutex_unlock(&qm->mailbox_lock); 722 723 return ret; 724 } 725 726 static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 727 { 728 u64 doorbell; 729 730 doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) | 731 ((u64)index << QM_DB_INDEX_SHIFT_V1) | 732 ((u64)priority << QM_DB_PRIORITY_SHIFT_V1); 733 734 writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1); 735 } 736 737 static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 738 { 739 void __iomem *io_base = qm->io_base; 740 u16 randata = 0; 741 u64 doorbell; 742 743 if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ) 744 io_base = qm->db_io_base + (u64)qn * qm->db_interval + 745 QM_DOORBELL_SQ_CQ_BASE_V2; 746 else 747 io_base += QM_DOORBELL_EQ_AEQ_BASE_V2; 748 749 doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) | 750 ((u64)randata << QM_DB_RAND_SHIFT_V2) | 751 ((u64)index << QM_DB_INDEX_SHIFT_V2) | 752 ((u64)priority << QM_DB_PRIORITY_SHIFT_V2); 753 754 writeq(doorbell, io_base); 755 } 756 757 static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 758 { 759 dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n", 760 qn, cmd, index); 761 762 qm->ops->qm_db(qm, qn, cmd, index, priority); 763 } 764 765 static void qm_disable_clock_gate(struct hisi_qm *qm) 766 { 767 u32 val; 768 769 /* if qm enables clock gating in Kunpeng930, qos will be inaccurate. */ 770 if (qm->ver < QM_HW_V3) 771 return; 772 773 val = readl(qm->io_base + QM_PM_CTRL); 774 val |= QM_IDLE_DISABLE; 775 writel(val, qm->io_base + QM_PM_CTRL); 776 } 777 778 static int qm_dev_mem_reset(struct hisi_qm *qm) 779 { 780 u32 val; 781 782 writel(0x1, qm->io_base + QM_MEM_START_INIT); 783 return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val, 784 val & BIT(0), POLL_PERIOD, 785 POLL_TIMEOUT); 786 } 787 788 /** 789 * hisi_qm_get_hw_info() - Get device information. 790 * @qm: The qm which want to get information. 791 * @info_table: Array for storing device information. 792 * @index: Index in info_table. 793 * @is_read: Whether read from reg, 0: not support read from reg. 794 * 795 * This function returns device information the caller needs. 796 */ 797 u32 hisi_qm_get_hw_info(struct hisi_qm *qm, 798 const struct hisi_qm_cap_info *info_table, 799 u32 index, bool is_read) 800 { 801 u32 val; 802 803 switch (qm->ver) { 804 case QM_HW_V1: 805 return info_table[index].v1_val; 806 case QM_HW_V2: 807 return info_table[index].v2_val; 808 default: 809 if (!is_read) 810 return info_table[index].v3_val; 811 812 val = readl(qm->io_base + info_table[index].offset); 813 return (val >> info_table[index].shift) & info_table[index].mask; 814 } 815 } 816 EXPORT_SYMBOL_GPL(hisi_qm_get_hw_info); 817 818 u32 hisi_qm_get_cap_value(struct hisi_qm *qm, 819 const struct hisi_qm_cap_query_info *info_table, 820 u32 index, bool is_read) 821 { 822 u32 val; 823 824 switch (qm->ver) { 825 case QM_HW_V1: 826 return info_table[index].v1_val; 827 case QM_HW_V2: 828 return info_table[index].v2_val; 829 default: 830 if (!is_read) 831 return info_table[index].v3_val; 832 833 val = readl(qm->io_base + info_table[index].offset); 834 return val; 835 } 836 } 837 EXPORT_SYMBOL_GPL(hisi_qm_get_cap_value); 838 839 static void qm_get_xqc_depth(struct hisi_qm *qm, u16 *low_bits, 840 u16 *high_bits, enum qm_basic_type type) 841 { 842 u32 depth; 843 844 depth = hisi_qm_get_hw_info(qm, qm_basic_info, type, qm->cap_ver); 845 *low_bits = depth & QM_XQ_DEPTH_MASK; 846 *high_bits = (depth >> QM_XQ_DEPTH_SHIFT) & QM_XQ_DEPTH_MASK; 847 } 848 849 int hisi_qm_set_algs(struct hisi_qm *qm, u64 alg_msk, const struct qm_dev_alg *dev_algs, 850 u32 dev_algs_size) 851 { 852 struct device *dev = &qm->pdev->dev; 853 char *algs, *ptr; 854 int i; 855 856 if (!qm->uacce) 857 return 0; 858 859 if (dev_algs_size >= QM_DEV_ALG_MAX_LEN) { 860 dev_err(dev, "algs size %u is equal or larger than %d.\n", 861 dev_algs_size, QM_DEV_ALG_MAX_LEN); 862 return -EINVAL; 863 } 864 865 algs = devm_kzalloc(dev, QM_DEV_ALG_MAX_LEN, GFP_KERNEL); 866 if (!algs) 867 return -ENOMEM; 868 869 for (i = 0; i < dev_algs_size; i++) 870 if (alg_msk & dev_algs[i].alg_msk) 871 strcat(algs, dev_algs[i].alg); 872 873 ptr = strrchr(algs, '\n'); 874 if (ptr) 875 *ptr = '\0'; 876 877 qm->uacce->algs = algs; 878 879 return 0; 880 } 881 EXPORT_SYMBOL_GPL(hisi_qm_set_algs); 882 883 static u32 qm_get_irq_num(struct hisi_qm *qm) 884 { 885 if (qm->fun_type == QM_HW_PF) 886 return hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF_IRQ_NUM_CAP, qm->cap_ver); 887 888 return hisi_qm_get_hw_info(qm, qm_basic_info, QM_VF_IRQ_NUM_CAP, qm->cap_ver); 889 } 890 891 static int qm_pm_get_sync(struct hisi_qm *qm) 892 { 893 struct device *dev = &qm->pdev->dev; 894 int ret; 895 896 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 897 return 0; 898 899 ret = pm_runtime_resume_and_get(dev); 900 if (ret < 0) { 901 dev_err(dev, "failed to get_sync(%d).\n", ret); 902 return ret; 903 } 904 905 return 0; 906 } 907 908 static void qm_pm_put_sync(struct hisi_qm *qm) 909 { 910 struct device *dev = &qm->pdev->dev; 911 912 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 913 return; 914 915 pm_runtime_put_autosuspend(dev); 916 } 917 918 static void qm_cq_head_update(struct hisi_qp *qp) 919 { 920 if (qp->qp_status.cq_head == qp->cq_depth - 1) { 921 qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase; 922 qp->qp_status.cq_head = 0; 923 } else { 924 qp->qp_status.cq_head++; 925 } 926 } 927 928 static void qm_poll_req_cb(struct hisi_qp *qp) 929 { 930 struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head; 931 struct hisi_qm *qm = qp->qm; 932 933 while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) { 934 dma_rmb(); 935 qp->req_cb(qp, qp->sqe + qm->sqe_size * 936 le16_to_cpu(cqe->sq_head)); 937 qm_cq_head_update(qp); 938 cqe = qp->cqe + qp->qp_status.cq_head; 939 qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, 940 qp->qp_status.cq_head, 0); 941 atomic_dec(&qp->qp_status.used); 942 943 cond_resched(); 944 } 945 946 /* set c_flag */ 947 qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, qp->qp_status.cq_head, 1); 948 } 949 950 static void qm_work_process(struct work_struct *work) 951 { 952 struct hisi_qm_poll_data *poll_data = 953 container_of(work, struct hisi_qm_poll_data, work); 954 struct hisi_qm *qm = poll_data->qm; 955 u16 eqe_num = poll_data->eqe_num; 956 struct hisi_qp *qp; 957 int i; 958 959 for (i = eqe_num - 1; i >= 0; i--) { 960 qp = &qm->qp_array[poll_data->qp_finish_id[i]]; 961 if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP)) 962 continue; 963 964 if (qp->event_cb) { 965 qp->event_cb(qp); 966 continue; 967 } 968 969 if (likely(qp->req_cb)) 970 qm_poll_req_cb(qp); 971 } 972 } 973 974 static void qm_get_complete_eqe_num(struct hisi_qm *qm) 975 { 976 struct qm_eqe *eqe = qm->eqe + qm->status.eq_head; 977 struct hisi_qm_poll_data *poll_data = NULL; 978 u16 eq_depth = qm->eq_depth; 979 u16 cqn, eqe_num = 0; 980 981 if (QM_EQE_PHASE(eqe) != qm->status.eqc_phase) { 982 atomic64_inc(&qm->debug.dfx.err_irq_cnt); 983 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 984 return; 985 } 986 987 cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK; 988 if (unlikely(cqn >= qm->qp_num)) 989 return; 990 poll_data = &qm->poll_data[cqn]; 991 992 while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) { 993 cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK; 994 poll_data->qp_finish_id[eqe_num] = cqn; 995 eqe_num++; 996 997 if (qm->status.eq_head == eq_depth - 1) { 998 qm->status.eqc_phase = !qm->status.eqc_phase; 999 eqe = qm->eqe; 1000 qm->status.eq_head = 0; 1001 } else { 1002 eqe++; 1003 qm->status.eq_head++; 1004 } 1005 1006 if (eqe_num == (eq_depth >> 1) - 1) 1007 break; 1008 } 1009 1010 poll_data->eqe_num = eqe_num; 1011 queue_work(qm->wq, &poll_data->work); 1012 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 1013 } 1014 1015 static irqreturn_t qm_eq_irq(int irq, void *data) 1016 { 1017 struct hisi_qm *qm = data; 1018 1019 /* Get qp id of completed tasks and re-enable the interrupt */ 1020 qm_get_complete_eqe_num(qm); 1021 1022 return IRQ_HANDLED; 1023 } 1024 1025 static irqreturn_t qm_mb_cmd_irq(int irq, void *data) 1026 { 1027 struct hisi_qm *qm = data; 1028 u32 val; 1029 1030 val = readl(qm->io_base + QM_IFC_INT_STATUS); 1031 val &= QM_IFC_INT_STATUS_MASK; 1032 if (!val) 1033 return IRQ_NONE; 1034 1035 if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl)) { 1036 dev_warn(&qm->pdev->dev, "Driver is down, message cannot be processed!\n"); 1037 return IRQ_HANDLED; 1038 } 1039 1040 schedule_work(&qm->cmd_process); 1041 1042 return IRQ_HANDLED; 1043 } 1044 1045 static void qm_set_qp_disable(struct hisi_qp *qp, int offset) 1046 { 1047 u32 *addr; 1048 1049 if (qp->is_in_kernel) 1050 return; 1051 1052 addr = (u32 *)(qp->qdma.va + qp->qdma.size) - offset; 1053 *addr = 1; 1054 1055 /* make sure setup is completed */ 1056 smp_wmb(); 1057 } 1058 1059 static void qm_disable_qp(struct hisi_qm *qm, u32 qp_id) 1060 { 1061 struct hisi_qp *qp = &qm->qp_array[qp_id]; 1062 1063 qm_set_qp_disable(qp, QM_RESET_STOP_TX_OFFSET); 1064 hisi_qm_stop_qp(qp); 1065 qm_set_qp_disable(qp, QM_RESET_STOP_RX_OFFSET); 1066 } 1067 1068 static void qm_reset_function(struct hisi_qm *qm) 1069 { 1070 struct device *dev = &qm->pdev->dev; 1071 int ret; 1072 1073 if (qm_check_dev_error(qm)) 1074 return; 1075 1076 ret = qm_reset_prepare_ready(qm); 1077 if (ret) { 1078 dev_err(dev, "reset function not ready\n"); 1079 return; 1080 } 1081 1082 ret = hisi_qm_stop(qm, QM_DOWN); 1083 if (ret) { 1084 dev_err(dev, "failed to stop qm when reset function\n"); 1085 goto clear_bit; 1086 } 1087 1088 ret = hisi_qm_start(qm); 1089 if (ret) 1090 dev_err(dev, "failed to start qm when reset function\n"); 1091 1092 clear_bit: 1093 qm_reset_bit_clear(qm); 1094 } 1095 1096 static irqreturn_t qm_aeq_thread(int irq, void *data) 1097 { 1098 struct hisi_qm *qm = data; 1099 struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head; 1100 u16 aeq_depth = qm->aeq_depth; 1101 u32 type, qp_id; 1102 1103 atomic64_inc(&qm->debug.dfx.aeq_irq_cnt); 1104 1105 while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) { 1106 type = (le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT) & 1107 QM_AEQE_TYPE_MASK; 1108 qp_id = le32_to_cpu(aeqe->dw0) & QM_AEQE_CQN_MASK; 1109 1110 switch (type) { 1111 case QM_EQ_OVERFLOW: 1112 dev_err(&qm->pdev->dev, "eq overflow, reset function\n"); 1113 qm_reset_function(qm); 1114 return IRQ_HANDLED; 1115 case QM_CQ_OVERFLOW: 1116 dev_err(&qm->pdev->dev, "cq overflow, stop qp(%u)\n", 1117 qp_id); 1118 fallthrough; 1119 case QM_CQE_ERROR: 1120 qm_disable_qp(qm, qp_id); 1121 break; 1122 default: 1123 dev_err(&qm->pdev->dev, "unknown error type %u\n", 1124 type); 1125 break; 1126 } 1127 1128 if (qm->status.aeq_head == aeq_depth - 1) { 1129 qm->status.aeqc_phase = !qm->status.aeqc_phase; 1130 aeqe = qm->aeqe; 1131 qm->status.aeq_head = 0; 1132 } else { 1133 aeqe++; 1134 qm->status.aeq_head++; 1135 } 1136 } 1137 1138 qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0); 1139 1140 return IRQ_HANDLED; 1141 } 1142 1143 static void qm_init_qp_status(struct hisi_qp *qp) 1144 { 1145 struct hisi_qp_status *qp_status = &qp->qp_status; 1146 1147 qp_status->sq_tail = 0; 1148 qp_status->cq_head = 0; 1149 qp_status->cqc_phase = true; 1150 atomic_set(&qp_status->used, 0); 1151 } 1152 1153 static void qm_init_prefetch(struct hisi_qm *qm) 1154 { 1155 struct device *dev = &qm->pdev->dev; 1156 u32 page_type = 0x0; 1157 1158 if (!test_bit(QM_SUPPORT_SVA_PREFETCH, &qm->caps)) 1159 return; 1160 1161 switch (PAGE_SIZE) { 1162 case SZ_4K: 1163 page_type = 0x0; 1164 break; 1165 case SZ_16K: 1166 page_type = 0x1; 1167 break; 1168 case SZ_64K: 1169 page_type = 0x2; 1170 break; 1171 default: 1172 dev_err(dev, "system page size is not support: %lu, default set to 4KB", 1173 PAGE_SIZE); 1174 } 1175 1176 writel(page_type, qm->io_base + QM_PAGE_SIZE); 1177 } 1178 1179 /* 1180 * acc_shaper_para_calc() Get the IR value by the qos formula, the return value 1181 * is the expected qos calculated. 1182 * the formula: 1183 * IR = X Mbps if ir = 1 means IR = 100 Mbps, if ir = 10000 means = 10Gbps 1184 * 1185 * IR_b * (2 ^ IR_u) * 8000 1186 * IR(Mbps) = ------------------------- 1187 * Tick * (2 ^ IR_s) 1188 */ 1189 static u32 acc_shaper_para_calc(u64 cir_b, u64 cir_u, u64 cir_s) 1190 { 1191 return ((cir_b * QM_QOS_DIVISOR_CLK) * (1 << cir_u)) / 1192 (QM_QOS_TICK * (1 << cir_s)); 1193 } 1194 1195 static u32 acc_shaper_calc_cbs_s(u32 ir) 1196 { 1197 int table_size = ARRAY_SIZE(shaper_cbs_s); 1198 int i; 1199 1200 for (i = 0; i < table_size; i++) { 1201 if (ir >= shaper_cbs_s[i].start && ir <= shaper_cbs_s[i].end) 1202 return shaper_cbs_s[i].val; 1203 } 1204 1205 return QM_SHAPER_MIN_CBS_S; 1206 } 1207 1208 static u32 acc_shaper_calc_cir_s(u32 ir) 1209 { 1210 int table_size = ARRAY_SIZE(shaper_cir_s); 1211 int i; 1212 1213 for (i = 0; i < table_size; i++) { 1214 if (ir >= shaper_cir_s[i].start && ir <= shaper_cir_s[i].end) 1215 return shaper_cir_s[i].val; 1216 } 1217 1218 return 0; 1219 } 1220 1221 static int qm_get_shaper_para(u32 ir, struct qm_shaper_factor *factor) 1222 { 1223 u32 cir_b, cir_u, cir_s, ir_calc; 1224 u32 error_rate; 1225 1226 factor->cbs_s = acc_shaper_calc_cbs_s(ir); 1227 cir_s = acc_shaper_calc_cir_s(ir); 1228 1229 for (cir_b = QM_QOS_MIN_CIR_B; cir_b <= QM_QOS_MAX_CIR_B; cir_b++) { 1230 for (cir_u = 0; cir_u <= QM_QOS_MAX_CIR_U; cir_u++) { 1231 ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s); 1232 1233 error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir; 1234 if (error_rate <= QM_QOS_MIN_ERROR_RATE) { 1235 factor->cir_b = cir_b; 1236 factor->cir_u = cir_u; 1237 factor->cir_s = cir_s; 1238 return 0; 1239 } 1240 } 1241 } 1242 1243 return -EINVAL; 1244 } 1245 1246 static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base, 1247 u32 number, struct qm_shaper_factor *factor) 1248 { 1249 u64 tmp = 0; 1250 1251 if (number > 0) { 1252 switch (type) { 1253 case SQC_VFT: 1254 if (qm->ver == QM_HW_V1) { 1255 tmp = QM_SQC_VFT_BUF_SIZE | 1256 QM_SQC_VFT_SQC_SIZE | 1257 QM_SQC_VFT_INDEX_NUMBER | 1258 QM_SQC_VFT_VALID | 1259 (u64)base << QM_SQC_VFT_START_SQN_SHIFT; 1260 } else { 1261 tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT | 1262 QM_SQC_VFT_VALID | 1263 (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT; 1264 } 1265 break; 1266 case CQC_VFT: 1267 if (qm->ver == QM_HW_V1) { 1268 tmp = QM_CQC_VFT_BUF_SIZE | 1269 QM_CQC_VFT_SQC_SIZE | 1270 QM_CQC_VFT_INDEX_NUMBER | 1271 QM_CQC_VFT_VALID; 1272 } else { 1273 tmp = QM_CQC_VFT_VALID; 1274 } 1275 break; 1276 case SHAPER_VFT: 1277 if (factor) { 1278 tmp = factor->cir_b | 1279 (factor->cir_u << QM_SHAPER_FACTOR_CIR_U_SHIFT) | 1280 (factor->cir_s << QM_SHAPER_FACTOR_CIR_S_SHIFT) | 1281 (QM_SHAPER_CBS_B << QM_SHAPER_FACTOR_CBS_B_SHIFT) | 1282 (factor->cbs_s << QM_SHAPER_FACTOR_CBS_S_SHIFT); 1283 } 1284 break; 1285 } 1286 } 1287 1288 writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L); 1289 writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H); 1290 } 1291 1292 static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type, 1293 u32 fun_num, u32 base, u32 number) 1294 { 1295 struct qm_shaper_factor *factor = NULL; 1296 unsigned int val; 1297 int ret; 1298 1299 if (type == SHAPER_VFT && test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 1300 factor = &qm->factor[fun_num]; 1301 1302 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 1303 val & BIT(0), POLL_PERIOD, 1304 POLL_TIMEOUT); 1305 if (ret) 1306 return ret; 1307 1308 writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR); 1309 writel(type, qm->io_base + QM_VFT_CFG_TYPE); 1310 if (type == SHAPER_VFT) 1311 fun_num |= base << QM_SHAPER_VFT_OFFSET; 1312 1313 writel(fun_num, qm->io_base + QM_VFT_CFG); 1314 1315 qm_vft_data_cfg(qm, type, base, number, factor); 1316 1317 writel(0x0, qm->io_base + QM_VFT_CFG_RDY); 1318 writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE); 1319 1320 return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 1321 val & BIT(0), POLL_PERIOD, 1322 POLL_TIMEOUT); 1323 } 1324 1325 static int qm_shaper_init_vft(struct hisi_qm *qm, u32 fun_num) 1326 { 1327 u32 qos = qm->factor[fun_num].func_qos; 1328 int ret, i; 1329 1330 ret = qm_get_shaper_para(qos * QM_QOS_RATE, &qm->factor[fun_num]); 1331 if (ret) { 1332 dev_err(&qm->pdev->dev, "failed to calculate shaper parameter!\n"); 1333 return ret; 1334 } 1335 writel(qm->type_rate, qm->io_base + QM_SHAPER_CFG); 1336 for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) { 1337 /* The base number of queue reuse for different alg type */ 1338 ret = qm_set_vft_common(qm, SHAPER_VFT, fun_num, i, 1); 1339 if (ret) 1340 return ret; 1341 } 1342 1343 return 0; 1344 } 1345 1346 /* The config should be conducted after qm_dev_mem_reset() */ 1347 static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base, 1348 u32 number) 1349 { 1350 int ret, i; 1351 1352 for (i = SQC_VFT; i <= CQC_VFT; i++) { 1353 ret = qm_set_vft_common(qm, i, fun_num, base, number); 1354 if (ret) 1355 return ret; 1356 } 1357 1358 /* init default shaper qos val */ 1359 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) { 1360 ret = qm_shaper_init_vft(qm, fun_num); 1361 if (ret) 1362 goto back_sqc_cqc; 1363 } 1364 1365 return 0; 1366 back_sqc_cqc: 1367 for (i = SQC_VFT; i <= CQC_VFT; i++) 1368 qm_set_vft_common(qm, i, fun_num, 0, 0); 1369 1370 return ret; 1371 } 1372 1373 static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number) 1374 { 1375 u64 sqc_vft; 1376 int ret; 1377 1378 ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1); 1379 if (ret) 1380 return ret; 1381 1382 sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) | 1383 ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32); 1384 *base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2); 1385 *number = (QM_SQC_VFT_NUM_MASK_V2 & 1386 (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1; 1387 1388 return 0; 1389 } 1390 1391 static void qm_hw_error_init_v1(struct hisi_qm *qm) 1392 { 1393 writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK); 1394 } 1395 1396 static void qm_hw_error_cfg(struct hisi_qm *qm) 1397 { 1398 struct hisi_qm_err_info *err_info = &qm->err_info; 1399 1400 qm->error_mask = err_info->nfe | err_info->ce | err_info->fe; 1401 /* clear QM hw residual error source */ 1402 writel(qm->error_mask, qm->io_base + QM_ABNORMAL_INT_SOURCE); 1403 1404 /* configure error type */ 1405 writel(err_info->ce, qm->io_base + QM_RAS_CE_ENABLE); 1406 writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD); 1407 writel(err_info->nfe, qm->io_base + QM_RAS_NFE_ENABLE); 1408 writel(err_info->fe, qm->io_base + QM_RAS_FE_ENABLE); 1409 } 1410 1411 static void qm_hw_error_init_v2(struct hisi_qm *qm) 1412 { 1413 u32 irq_unmask; 1414 1415 qm_hw_error_cfg(qm); 1416 1417 irq_unmask = ~qm->error_mask; 1418 irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1419 writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK); 1420 } 1421 1422 static void qm_hw_error_uninit_v2(struct hisi_qm *qm) 1423 { 1424 u32 irq_mask = qm->error_mask; 1425 1426 irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1427 writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK); 1428 } 1429 1430 static void qm_hw_error_init_v3(struct hisi_qm *qm) 1431 { 1432 u32 irq_unmask; 1433 1434 qm_hw_error_cfg(qm); 1435 1436 /* enable close master ooo when hardware error happened */ 1437 writel(qm->err_info.qm_shutdown_mask, qm->io_base + QM_OOO_SHUTDOWN_SEL); 1438 1439 irq_unmask = ~qm->error_mask; 1440 irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1441 writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK); 1442 } 1443 1444 static void qm_hw_error_uninit_v3(struct hisi_qm *qm) 1445 { 1446 u32 irq_mask = qm->error_mask; 1447 1448 irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1449 writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK); 1450 1451 /* disable close master ooo when hardware error happened */ 1452 writel(0x0, qm->io_base + QM_OOO_SHUTDOWN_SEL); 1453 } 1454 1455 static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status) 1456 { 1457 const struct hisi_qm_hw_error *err; 1458 struct device *dev = &qm->pdev->dev; 1459 u32 reg_val, type, vf_num, qp_id; 1460 int i; 1461 1462 for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) { 1463 err = &qm_hw_error[i]; 1464 if (!(err->int_msk & error_status)) 1465 continue; 1466 1467 dev_err(dev, "%s [error status=0x%x] found\n", 1468 err->msg, err->int_msk); 1469 1470 if (err->int_msk & QM_DB_TIMEOUT) { 1471 reg_val = readl(qm->io_base + QM_ABNORMAL_INF01); 1472 type = (reg_val & QM_DB_TIMEOUT_TYPE) >> 1473 QM_DB_TIMEOUT_TYPE_SHIFT; 1474 vf_num = reg_val & QM_DB_TIMEOUT_VF; 1475 qp_id = reg_val >> QM_DB_TIMEOUT_QP_SHIFT; 1476 dev_err(dev, "qm %s doorbell timeout in function %u qp %u\n", 1477 qm_db_timeout[type], vf_num, qp_id); 1478 } else if (err->int_msk & QM_OF_FIFO_OF) { 1479 reg_val = readl(qm->io_base + QM_ABNORMAL_INF00); 1480 type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >> 1481 QM_FIFO_OVERFLOW_TYPE_SHIFT; 1482 vf_num = reg_val & QM_FIFO_OVERFLOW_VF; 1483 qp_id = reg_val >> QM_FIFO_OVERFLOW_QP_SHIFT; 1484 if (type < ARRAY_SIZE(qm_fifo_overflow)) 1485 dev_err(dev, "qm %s fifo overflow in function %u qp %u\n", 1486 qm_fifo_overflow[type], vf_num, qp_id); 1487 else 1488 dev_err(dev, "unknown error type\n"); 1489 } else if (err->int_msk & QM_AXI_RRESP_ERR) { 1490 reg_val = readl(qm->io_base + QM_ABNORMAL_INF02); 1491 if (reg_val & QM_AXI_POISON_ERR) 1492 dev_err(dev, "qm axi poison error happened\n"); 1493 } 1494 } 1495 } 1496 1497 static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm) 1498 { 1499 u32 error_status; 1500 1501 error_status = qm_get_hw_error_status(qm); 1502 if (error_status & qm->error_mask) { 1503 if (error_status & QM_ECC_MBIT) 1504 qm->err_status.is_qm_ecc_mbit = true; 1505 1506 qm_log_hw_error(qm, error_status); 1507 if (error_status & qm->err_info.qm_reset_mask) { 1508 /* Disable the same error reporting until device is recovered. */ 1509 writel(qm->err_info.nfe & (~error_status), 1510 qm->io_base + QM_RAS_NFE_ENABLE); 1511 return ACC_ERR_NEED_RESET; 1512 } 1513 1514 /* Clear error source if not need reset. */ 1515 writel(error_status, qm->io_base + QM_ABNORMAL_INT_SOURCE); 1516 writel(qm->err_info.nfe, qm->io_base + QM_RAS_NFE_ENABLE); 1517 writel(qm->err_info.ce, qm->io_base + QM_RAS_CE_ENABLE); 1518 } 1519 1520 return ACC_ERR_RECOVERED; 1521 } 1522 1523 static int qm_get_mb_cmd(struct hisi_qm *qm, u64 *msg, u16 fun_num) 1524 { 1525 struct qm_mailbox mailbox; 1526 int ret; 1527 1528 qm_mb_pre_init(&mailbox, QM_MB_CMD_DST, 0, fun_num, 0); 1529 mutex_lock(&qm->mailbox_lock); 1530 ret = qm_mb_nolock(qm, &mailbox); 1531 if (ret) 1532 goto err_unlock; 1533 1534 *msg = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) | 1535 ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32); 1536 1537 err_unlock: 1538 mutex_unlock(&qm->mailbox_lock); 1539 return ret; 1540 } 1541 1542 static void qm_clear_cmd_interrupt(struct hisi_qm *qm, u64 vf_mask) 1543 { 1544 u32 val; 1545 1546 if (qm->fun_type == QM_HW_PF) 1547 writeq(vf_mask, qm->io_base + QM_IFC_INT_SOURCE_P); 1548 1549 val = readl(qm->io_base + QM_IFC_INT_SOURCE_V); 1550 val |= QM_IFC_INT_SOURCE_MASK; 1551 writel(val, qm->io_base + QM_IFC_INT_SOURCE_V); 1552 } 1553 1554 static void qm_handle_vf_msg(struct hisi_qm *qm, u32 vf_id) 1555 { 1556 struct device *dev = &qm->pdev->dev; 1557 enum qm_ifc_cmd cmd; 1558 int ret; 1559 1560 ret = qm->ops->get_ifc(qm, &cmd, NULL, vf_id); 1561 if (ret) { 1562 dev_err(dev, "failed to get command from VF(%u)!\n", vf_id); 1563 return; 1564 } 1565 1566 switch (cmd) { 1567 case QM_VF_PREPARE_FAIL: 1568 dev_err(dev, "failed to stop VF(%u)!\n", vf_id); 1569 break; 1570 case QM_VF_START_FAIL: 1571 dev_err(dev, "failed to start VF(%u)!\n", vf_id); 1572 break; 1573 case QM_VF_PREPARE_DONE: 1574 case QM_VF_START_DONE: 1575 break; 1576 default: 1577 dev_err(dev, "unsupported command(0x%x) sent by VF(%u)!\n", cmd, vf_id); 1578 break; 1579 } 1580 } 1581 1582 static int qm_wait_vf_prepare_finish(struct hisi_qm *qm) 1583 { 1584 struct device *dev = &qm->pdev->dev; 1585 u32 vfs_num = qm->vfs_num; 1586 int cnt = 0; 1587 int ret = 0; 1588 u64 val; 1589 u32 i; 1590 1591 if (!qm->vfs_num || !test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 1592 return 0; 1593 1594 while (true) { 1595 val = readq(qm->io_base + QM_IFC_INT_SOURCE_P); 1596 /* All VFs send command to PF, break */ 1597 if ((val & GENMASK(vfs_num, 1)) == GENMASK(vfs_num, 1)) 1598 break; 1599 1600 if (++cnt > QM_MAX_PF_WAIT_COUNT) { 1601 ret = -EBUSY; 1602 break; 1603 } 1604 1605 msleep(QM_WAIT_DST_ACK); 1606 } 1607 1608 /* PF check VFs msg */ 1609 for (i = 1; i <= vfs_num; i++) { 1610 if (val & BIT(i)) 1611 qm_handle_vf_msg(qm, i); 1612 else 1613 dev_err(dev, "VF(%u) not ping PF!\n", i); 1614 } 1615 1616 /* PF clear interrupt to ack VFs */ 1617 qm_clear_cmd_interrupt(qm, val); 1618 1619 return ret; 1620 } 1621 1622 static void qm_trigger_vf_interrupt(struct hisi_qm *qm, u32 fun_num) 1623 { 1624 u32 val; 1625 1626 val = readl(qm->io_base + QM_IFC_INT_CFG); 1627 val &= ~QM_IFC_SEND_ALL_VFS; 1628 val |= fun_num; 1629 writel(val, qm->io_base + QM_IFC_INT_CFG); 1630 1631 val = readl(qm->io_base + QM_IFC_INT_SET_P); 1632 val |= QM_IFC_INT_SET_MASK; 1633 writel(val, qm->io_base + QM_IFC_INT_SET_P); 1634 } 1635 1636 static void qm_trigger_pf_interrupt(struct hisi_qm *qm) 1637 { 1638 u32 val; 1639 1640 val = readl(qm->io_base + QM_IFC_INT_SET_V); 1641 val |= QM_IFC_INT_SET_MASK; 1642 writel(val, qm->io_base + QM_IFC_INT_SET_V); 1643 } 1644 1645 static int qm_ping_single_vf(struct hisi_qm *qm, enum qm_ifc_cmd cmd, u32 data, u32 fun_num) 1646 { 1647 struct device *dev = &qm->pdev->dev; 1648 int cnt = 0; 1649 u64 val; 1650 int ret; 1651 1652 ret = qm->ops->set_ifc_begin(qm, cmd, data, fun_num); 1653 if (ret) { 1654 dev_err(dev, "failed to send command to vf(%u)!\n", fun_num); 1655 goto err_unlock; 1656 } 1657 1658 qm_trigger_vf_interrupt(qm, fun_num); 1659 while (true) { 1660 msleep(QM_WAIT_DST_ACK); 1661 val = readq(qm->io_base + QM_IFC_READY_STATUS); 1662 /* if VF respond, PF notifies VF successfully. */ 1663 if (!(val & BIT(fun_num))) 1664 goto err_unlock; 1665 1666 if (++cnt > QM_MAX_PF_WAIT_COUNT) { 1667 dev_err(dev, "failed to get response from VF(%u)!\n", fun_num); 1668 ret = -ETIMEDOUT; 1669 break; 1670 } 1671 } 1672 1673 err_unlock: 1674 qm->ops->set_ifc_end(qm); 1675 return ret; 1676 } 1677 1678 static int qm_ping_all_vfs(struct hisi_qm *qm, enum qm_ifc_cmd cmd) 1679 { 1680 struct device *dev = &qm->pdev->dev; 1681 u32 vfs_num = qm->vfs_num; 1682 u64 val = 0; 1683 int cnt = 0; 1684 int ret; 1685 u32 i; 1686 1687 ret = qm->ops->set_ifc_begin(qm, cmd, 0, QM_MB_PING_ALL_VFS); 1688 if (ret) { 1689 dev_err(dev, "failed to send command(0x%x) to all vfs!\n", cmd); 1690 qm->ops->set_ifc_end(qm); 1691 return ret; 1692 } 1693 1694 qm_trigger_vf_interrupt(qm, QM_IFC_SEND_ALL_VFS); 1695 while (true) { 1696 msleep(QM_WAIT_DST_ACK); 1697 val = readq(qm->io_base + QM_IFC_READY_STATUS); 1698 /* If all VFs acked, PF notifies VFs successfully. */ 1699 if (!(val & GENMASK(vfs_num, 1))) { 1700 qm->ops->set_ifc_end(qm); 1701 return 0; 1702 } 1703 1704 if (++cnt > QM_MAX_PF_WAIT_COUNT) 1705 break; 1706 } 1707 1708 qm->ops->set_ifc_end(qm); 1709 1710 /* Check which vf respond timeout. */ 1711 for (i = 1; i <= vfs_num; i++) { 1712 if (val & BIT(i)) 1713 dev_err(dev, "failed to get response from VF(%u)!\n", i); 1714 } 1715 1716 return -ETIMEDOUT; 1717 } 1718 1719 static int qm_ping_pf(struct hisi_qm *qm, enum qm_ifc_cmd cmd) 1720 { 1721 int cnt = 0; 1722 u32 val; 1723 int ret; 1724 1725 ret = qm->ops->set_ifc_begin(qm, cmd, 0, 0); 1726 if (ret) { 1727 dev_err(&qm->pdev->dev, "failed to send command(0x%x) to PF!\n", cmd); 1728 goto unlock; 1729 } 1730 1731 qm_trigger_pf_interrupt(qm); 1732 /* Waiting for PF response */ 1733 while (true) { 1734 msleep(QM_WAIT_DST_ACK); 1735 val = readl(qm->io_base + QM_IFC_INT_SET_V); 1736 if (!(val & QM_IFC_INT_STATUS_MASK)) 1737 break; 1738 1739 if (++cnt > QM_MAX_VF_WAIT_COUNT) { 1740 ret = -ETIMEDOUT; 1741 break; 1742 } 1743 } 1744 1745 unlock: 1746 qm->ops->set_ifc_end(qm); 1747 1748 return ret; 1749 } 1750 1751 static int qm_drain_qm(struct hisi_qm *qm) 1752 { 1753 return hisi_qm_mb(qm, QM_MB_CMD_FLUSH_QM, 0, 0, 0); 1754 } 1755 1756 static int qm_stop_qp(struct hisi_qp *qp) 1757 { 1758 return hisi_qm_mb(qp->qm, QM_MB_CMD_STOP_QP, 0, qp->qp_id, 0); 1759 } 1760 1761 static int qm_set_msi(struct hisi_qm *qm, bool set) 1762 { 1763 struct pci_dev *pdev = qm->pdev; 1764 1765 if (set) { 1766 pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64, 1767 0); 1768 } else { 1769 pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64, 1770 ACC_PEH_MSI_DISABLE); 1771 if (qm->err_status.is_qm_ecc_mbit || 1772 qm->err_status.is_dev_ecc_mbit) 1773 return 0; 1774 1775 mdelay(1); 1776 if (readl(qm->io_base + QM_PEH_DFX_INFO0)) 1777 return -EFAULT; 1778 } 1779 1780 return 0; 1781 } 1782 1783 static void qm_wait_msi_finish(struct hisi_qm *qm) 1784 { 1785 struct pci_dev *pdev = qm->pdev; 1786 u32 cmd = ~0; 1787 int cnt = 0; 1788 u32 val; 1789 int ret; 1790 1791 while (true) { 1792 pci_read_config_dword(pdev, pdev->msi_cap + 1793 PCI_MSI_PENDING_64, &cmd); 1794 if (!cmd) 1795 break; 1796 1797 if (++cnt > MAX_WAIT_COUNTS) { 1798 pci_warn(pdev, "failed to empty MSI PENDING!\n"); 1799 break; 1800 } 1801 1802 udelay(1); 1803 } 1804 1805 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO0, 1806 val, !(val & QM_PEH_DFX_MASK), 1807 POLL_PERIOD, POLL_TIMEOUT); 1808 if (ret) 1809 pci_warn(pdev, "failed to empty PEH MSI!\n"); 1810 1811 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO1, 1812 val, !(val & QM_PEH_MSI_FINISH_MASK), 1813 POLL_PERIOD, POLL_TIMEOUT); 1814 if (ret) 1815 pci_warn(pdev, "failed to finish MSI operation!\n"); 1816 } 1817 1818 static int qm_set_msi_v3(struct hisi_qm *qm, bool set) 1819 { 1820 struct pci_dev *pdev = qm->pdev; 1821 int ret = -ETIMEDOUT; 1822 u32 cmd, i; 1823 1824 pci_read_config_dword(pdev, pdev->msi_cap, &cmd); 1825 if (set) 1826 cmd |= QM_MSI_CAP_ENABLE; 1827 else 1828 cmd &= ~QM_MSI_CAP_ENABLE; 1829 1830 pci_write_config_dword(pdev, pdev->msi_cap, cmd); 1831 if (set) { 1832 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 1833 pci_read_config_dword(pdev, pdev->msi_cap, &cmd); 1834 if (cmd & QM_MSI_CAP_ENABLE) 1835 return 0; 1836 1837 udelay(1); 1838 } 1839 } else { 1840 udelay(WAIT_PERIOD_US_MIN); 1841 qm_wait_msi_finish(qm); 1842 ret = 0; 1843 } 1844 1845 return ret; 1846 } 1847 1848 static int qm_set_ifc_begin_v3(struct hisi_qm *qm, enum qm_ifc_cmd cmd, u32 data, u32 fun_num) 1849 { 1850 struct qm_mailbox mailbox; 1851 u64 msg; 1852 1853 msg = cmd | (u64)data << QM_IFC_DATA_SHIFT; 1854 1855 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, msg, fun_num, 0); 1856 mutex_lock(&qm->mailbox_lock); 1857 return qm_mb_nolock(qm, &mailbox); 1858 } 1859 1860 static void qm_set_ifc_end_v3(struct hisi_qm *qm) 1861 { 1862 mutex_unlock(&qm->mailbox_lock); 1863 } 1864 1865 static int qm_get_ifc_v3(struct hisi_qm *qm, enum qm_ifc_cmd *cmd, u32 *data, u32 fun_num) 1866 { 1867 u64 msg; 1868 int ret; 1869 1870 ret = qm_get_mb_cmd(qm, &msg, fun_num); 1871 if (ret) 1872 return ret; 1873 1874 *cmd = msg & QM_IFC_CMD_MASK; 1875 1876 if (data) 1877 *data = msg >> QM_IFC_DATA_SHIFT; 1878 1879 return 0; 1880 } 1881 1882 static int qm_set_ifc_begin_v4(struct hisi_qm *qm, enum qm_ifc_cmd cmd, u32 data, u32 fun_num) 1883 { 1884 uintptr_t offset; 1885 u64 msg; 1886 1887 if (qm->fun_type == QM_HW_PF) 1888 offset = QM_PF2VF_PF_W; 1889 else 1890 offset = QM_VF2PF_VF_W; 1891 1892 msg = cmd | (u64)data << QM_IFC_DATA_SHIFT; 1893 1894 mutex_lock(&qm->ifc_lock); 1895 writeq(msg, qm->io_base + offset); 1896 1897 return 0; 1898 } 1899 1900 static void qm_set_ifc_end_v4(struct hisi_qm *qm) 1901 { 1902 mutex_unlock(&qm->ifc_lock); 1903 } 1904 1905 static u64 qm_get_ifc_pf(struct hisi_qm *qm, u32 fun_num) 1906 { 1907 uintptr_t offset; 1908 1909 offset = QM_VF2PF_PF_R + QM_VF2PF_REG_SIZE * fun_num; 1910 1911 return (u64)readl(qm->io_base + offset); 1912 } 1913 1914 static u64 qm_get_ifc_vf(struct hisi_qm *qm) 1915 { 1916 return readq(qm->io_base + QM_PF2VF_VF_R); 1917 } 1918 1919 static int qm_get_ifc_v4(struct hisi_qm *qm, enum qm_ifc_cmd *cmd, u32 *data, u32 fun_num) 1920 { 1921 u64 msg; 1922 1923 if (qm->fun_type == QM_HW_PF) 1924 msg = qm_get_ifc_pf(qm, fun_num); 1925 else 1926 msg = qm_get_ifc_vf(qm); 1927 1928 *cmd = msg & QM_IFC_CMD_MASK; 1929 1930 if (data) 1931 *data = msg >> QM_IFC_DATA_SHIFT; 1932 1933 return 0; 1934 } 1935 1936 static const struct hisi_qm_hw_ops qm_hw_ops_v1 = { 1937 .qm_db = qm_db_v1, 1938 .hw_error_init = qm_hw_error_init_v1, 1939 .set_msi = qm_set_msi, 1940 }; 1941 1942 static const struct hisi_qm_hw_ops qm_hw_ops_v2 = { 1943 .get_vft = qm_get_vft_v2, 1944 .qm_db = qm_db_v2, 1945 .hw_error_init = qm_hw_error_init_v2, 1946 .hw_error_uninit = qm_hw_error_uninit_v2, 1947 .hw_error_handle = qm_hw_error_handle_v2, 1948 .set_msi = qm_set_msi, 1949 }; 1950 1951 static const struct hisi_qm_hw_ops qm_hw_ops_v3 = { 1952 .get_vft = qm_get_vft_v2, 1953 .qm_db = qm_db_v2, 1954 .hw_error_init = qm_hw_error_init_v3, 1955 .hw_error_uninit = qm_hw_error_uninit_v3, 1956 .hw_error_handle = qm_hw_error_handle_v2, 1957 .set_msi = qm_set_msi_v3, 1958 .set_ifc_begin = qm_set_ifc_begin_v3, 1959 .set_ifc_end = qm_set_ifc_end_v3, 1960 .get_ifc = qm_get_ifc_v3, 1961 }; 1962 1963 static const struct hisi_qm_hw_ops qm_hw_ops_v4 = { 1964 .get_vft = qm_get_vft_v2, 1965 .qm_db = qm_db_v2, 1966 .hw_error_init = qm_hw_error_init_v3, 1967 .hw_error_uninit = qm_hw_error_uninit_v3, 1968 .hw_error_handle = qm_hw_error_handle_v2, 1969 .set_msi = qm_set_msi_v3, 1970 .set_ifc_begin = qm_set_ifc_begin_v4, 1971 .set_ifc_end = qm_set_ifc_end_v4, 1972 .get_ifc = qm_get_ifc_v4, 1973 }; 1974 1975 static void *qm_get_avail_sqe(struct hisi_qp *qp) 1976 { 1977 struct hisi_qp_status *qp_status = &qp->qp_status; 1978 u16 sq_tail = qp_status->sq_tail; 1979 1980 if (unlikely(atomic_read(&qp->qp_status.used) == qp->sq_depth - 1)) 1981 return NULL; 1982 1983 return qp->sqe + sq_tail * qp->qm->sqe_size; 1984 } 1985 1986 static void hisi_qm_unset_hw_reset(struct hisi_qp *qp) 1987 { 1988 u64 *addr; 1989 1990 /* Use last 64 bits of DUS to reset status. */ 1991 addr = (u64 *)(qp->qdma.va + qp->qdma.size) - QM_RESET_STOP_TX_OFFSET; 1992 *addr = 0; 1993 } 1994 1995 static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type) 1996 { 1997 struct device *dev = &qm->pdev->dev; 1998 struct hisi_qp *qp; 1999 int qp_id; 2000 2001 if (atomic_read(&qm->status.flags) == QM_STOP) { 2002 dev_info_ratelimited(dev, "failed to create qp as qm is stop!\n"); 2003 return ERR_PTR(-EPERM); 2004 } 2005 2006 if (qm->qp_in_used == qm->qp_num) { 2007 dev_info_ratelimited(dev, "All %u queues of QM are busy!\n", 2008 qm->qp_num); 2009 atomic64_inc(&qm->debug.dfx.create_qp_err_cnt); 2010 return ERR_PTR(-EBUSY); 2011 } 2012 2013 qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC); 2014 if (qp_id < 0) { 2015 dev_info_ratelimited(dev, "All %u queues of QM are busy!\n", 2016 qm->qp_num); 2017 atomic64_inc(&qm->debug.dfx.create_qp_err_cnt); 2018 return ERR_PTR(-EBUSY); 2019 } 2020 2021 qp = &qm->qp_array[qp_id]; 2022 hisi_qm_unset_hw_reset(qp); 2023 memset(qp->cqe, 0, sizeof(struct qm_cqe) * qp->cq_depth); 2024 2025 qp->event_cb = NULL; 2026 qp->req_cb = NULL; 2027 qp->qp_id = qp_id; 2028 qp->alg_type = alg_type; 2029 qp->is_in_kernel = true; 2030 qm->qp_in_used++; 2031 2032 return qp; 2033 } 2034 2035 /** 2036 * hisi_qm_create_qp() - Create a queue pair from qm. 2037 * @qm: The qm we create a qp from. 2038 * @alg_type: Accelerator specific algorithm type in sqc. 2039 * 2040 * Return created qp, negative error code if failed. 2041 */ 2042 static struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type) 2043 { 2044 struct hisi_qp *qp; 2045 int ret; 2046 2047 ret = qm_pm_get_sync(qm); 2048 if (ret) 2049 return ERR_PTR(ret); 2050 2051 down_write(&qm->qps_lock); 2052 qp = qm_create_qp_nolock(qm, alg_type); 2053 up_write(&qm->qps_lock); 2054 2055 if (IS_ERR(qp)) 2056 qm_pm_put_sync(qm); 2057 2058 return qp; 2059 } 2060 2061 /** 2062 * hisi_qm_release_qp() - Release a qp back to its qm. 2063 * @qp: The qp we want to release. 2064 * 2065 * This function releases the resource of a qp. 2066 */ 2067 static void hisi_qm_release_qp(struct hisi_qp *qp) 2068 { 2069 struct hisi_qm *qm = qp->qm; 2070 2071 down_write(&qm->qps_lock); 2072 2073 qm->qp_in_used--; 2074 idr_remove(&qm->qp_idr, qp->qp_id); 2075 2076 up_write(&qm->qps_lock); 2077 2078 qm_pm_put_sync(qm); 2079 } 2080 2081 static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 2082 { 2083 struct hisi_qm *qm = qp->qm; 2084 enum qm_hw_ver ver = qm->ver; 2085 struct qm_sqc sqc = {0}; 2086 2087 if (ver == QM_HW_V1) { 2088 sqc.dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size)); 2089 sqc.w8 = cpu_to_le16(qp->sq_depth - 1); 2090 } else { 2091 sqc.dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size, qp->sq_depth)); 2092 sqc.w8 = 0; /* rand_qc */ 2093 } 2094 sqc.w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type)); 2095 sqc.base_l = cpu_to_le32(lower_32_bits(qp->sqe_dma)); 2096 sqc.base_h = cpu_to_le32(upper_32_bits(qp->sqe_dma)); 2097 sqc.cq_num = cpu_to_le16(qp_id); 2098 sqc.pasid = cpu_to_le16(pasid); 2099 2100 if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel) 2101 sqc.w11 = cpu_to_le16(QM_QC_PASID_ENABLE << 2102 QM_QC_PASID_ENABLE_SHIFT); 2103 2104 return qm_set_and_get_xqc(qm, QM_MB_CMD_SQC, &sqc, qp_id, 0); 2105 } 2106 2107 static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 2108 { 2109 struct hisi_qm *qm = qp->qm; 2110 enum qm_hw_ver ver = qm->ver; 2111 struct qm_cqc cqc = {0}; 2112 2113 if (ver == QM_HW_V1) { 2114 cqc.dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0, QM_QC_CQE_SIZE)); 2115 cqc.w8 = cpu_to_le16(qp->cq_depth - 1); 2116 } else { 2117 cqc.dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE, qp->cq_depth)); 2118 cqc.w8 = 0; /* rand_qc */ 2119 } 2120 /* 2121 * Enable request finishing interrupts defaultly. 2122 * So, there will be some interrupts until disabling 2123 * this. 2124 */ 2125 cqc.dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT); 2126 cqc.base_l = cpu_to_le32(lower_32_bits(qp->cqe_dma)); 2127 cqc.base_h = cpu_to_le32(upper_32_bits(qp->cqe_dma)); 2128 cqc.pasid = cpu_to_le16(pasid); 2129 2130 if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel) 2131 cqc.w11 = cpu_to_le16(QM_QC_PASID_ENABLE); 2132 2133 return qm_set_and_get_xqc(qm, QM_MB_CMD_CQC, &cqc, qp_id, 0); 2134 } 2135 2136 static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 2137 { 2138 int ret; 2139 2140 qm_init_qp_status(qp); 2141 2142 ret = qm_sq_ctx_cfg(qp, qp_id, pasid); 2143 if (ret) 2144 return ret; 2145 2146 return qm_cq_ctx_cfg(qp, qp_id, pasid); 2147 } 2148 2149 static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg) 2150 { 2151 struct hisi_qm *qm = qp->qm; 2152 struct device *dev = &qm->pdev->dev; 2153 int qp_id = qp->qp_id; 2154 u32 pasid = arg; 2155 int ret; 2156 2157 if (atomic_read(&qm->status.flags) == QM_STOP) { 2158 dev_info_ratelimited(dev, "failed to start qp as qm is stop!\n"); 2159 return -EPERM; 2160 } 2161 2162 ret = qm_qp_ctx_cfg(qp, qp_id, pasid); 2163 if (ret) 2164 return ret; 2165 2166 atomic_set(&qp->qp_status.flags, QP_START); 2167 dev_dbg(dev, "queue %d started\n", qp_id); 2168 2169 return 0; 2170 } 2171 2172 /** 2173 * hisi_qm_start_qp() - Start a qp into running. 2174 * @qp: The qp we want to start to run. 2175 * @arg: Accelerator specific argument. 2176 * 2177 * After this function, qp can receive request from user. Return 0 if 2178 * successful, negative error code if failed. 2179 */ 2180 int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg) 2181 { 2182 struct hisi_qm *qm = qp->qm; 2183 int ret; 2184 2185 down_write(&qm->qps_lock); 2186 ret = qm_start_qp_nolock(qp, arg); 2187 up_write(&qm->qps_lock); 2188 2189 return ret; 2190 } 2191 EXPORT_SYMBOL_GPL(hisi_qm_start_qp); 2192 2193 /** 2194 * qp_stop_fail_cb() - call request cb. 2195 * @qp: stopped failed qp. 2196 * 2197 * Callback function should be called whether task completed or not. 2198 */ 2199 static void qp_stop_fail_cb(struct hisi_qp *qp) 2200 { 2201 int qp_used = atomic_read(&qp->qp_status.used); 2202 u16 cur_tail = qp->qp_status.sq_tail; 2203 u16 sq_depth = qp->sq_depth; 2204 u16 cur_head = (cur_tail + sq_depth - qp_used) % sq_depth; 2205 struct hisi_qm *qm = qp->qm; 2206 u16 pos; 2207 int i; 2208 2209 for (i = 0; i < qp_used; i++) { 2210 pos = (i + cur_head) % sq_depth; 2211 qp->req_cb(qp, qp->sqe + (u32)(qm->sqe_size * pos)); 2212 atomic_dec(&qp->qp_status.used); 2213 } 2214 } 2215 2216 static int qm_wait_qp_empty(struct hisi_qm *qm, u32 *state, u32 qp_id) 2217 { 2218 struct device *dev = &qm->pdev->dev; 2219 struct qm_sqc sqc; 2220 struct qm_cqc cqc; 2221 int ret, i = 0; 2222 2223 while (++i) { 2224 ret = qm_set_and_get_xqc(qm, QM_MB_CMD_SQC, &sqc, qp_id, 1); 2225 if (ret) { 2226 dev_err_ratelimited(dev, "Failed to dump sqc!\n"); 2227 *state = QM_DUMP_SQC_FAIL; 2228 return ret; 2229 } 2230 2231 ret = qm_set_and_get_xqc(qm, QM_MB_CMD_CQC, &cqc, qp_id, 1); 2232 if (ret) { 2233 dev_err_ratelimited(dev, "Failed to dump cqc!\n"); 2234 *state = QM_DUMP_CQC_FAIL; 2235 return ret; 2236 } 2237 2238 if ((sqc.tail == cqc.tail) && 2239 (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc))) 2240 break; 2241 2242 if (i == MAX_WAIT_COUNTS) { 2243 dev_err(dev, "Fail to empty queue %u!\n", qp_id); 2244 *state = QM_STOP_QUEUE_FAIL; 2245 return -ETIMEDOUT; 2246 } 2247 2248 usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX); 2249 } 2250 2251 return 0; 2252 } 2253 2254 /** 2255 * qm_drain_qp() - Drain a qp. 2256 * @qp: The qp we want to drain. 2257 * 2258 * If the device does not support stopping queue by sending mailbox, 2259 * determine whether the queue is cleared by judging the tail pointers of 2260 * sq and cq. 2261 */ 2262 static int qm_drain_qp(struct hisi_qp *qp) 2263 { 2264 struct hisi_qm *qm = qp->qm; 2265 u32 state = 0; 2266 int ret; 2267 2268 /* No need to judge if master OOO is blocked. */ 2269 if (qm_check_dev_error(qm)) 2270 return 0; 2271 2272 /* HW V3 supports drain qp by device */ 2273 if (test_bit(QM_SUPPORT_STOP_QP, &qm->caps)) { 2274 ret = qm_stop_qp(qp); 2275 if (ret) { 2276 dev_err(&qm->pdev->dev, "Failed to stop qp!\n"); 2277 state = QM_STOP_QUEUE_FAIL; 2278 goto set_dev_state; 2279 } 2280 return ret; 2281 } 2282 2283 ret = qm_wait_qp_empty(qm, &state, qp->qp_id); 2284 if (ret) 2285 goto set_dev_state; 2286 2287 return 0; 2288 2289 set_dev_state: 2290 if (qm->debug.dev_dfx.dev_timeout) 2291 qm->debug.dev_dfx.dev_state = state; 2292 2293 return ret; 2294 } 2295 2296 static void qm_stop_qp_nolock(struct hisi_qp *qp) 2297 { 2298 struct hisi_qm *qm = qp->qm; 2299 struct device *dev = &qm->pdev->dev; 2300 int ret; 2301 2302 /* 2303 * It is allowed to stop and release qp when reset, If the qp is 2304 * stopped when reset but still want to be released then, the 2305 * is_resetting flag should be set negative so that this qp will not 2306 * be restarted after reset. 2307 */ 2308 if (atomic_read(&qp->qp_status.flags) != QP_START) { 2309 qp->is_resetting = false; 2310 return; 2311 } 2312 2313 atomic_set(&qp->qp_status.flags, QP_STOP); 2314 2315 /* V3 supports direct stop function when FLR prepare */ 2316 if (qm->ver < QM_HW_V3 || qm->status.stop_reason == QM_NORMAL) { 2317 ret = qm_drain_qp(qp); 2318 if (ret) 2319 dev_err(dev, "Failed to drain out data for stopping qp(%u)!\n", qp->qp_id); 2320 } 2321 2322 flush_workqueue(qm->wq); 2323 if (unlikely(qp->is_resetting && atomic_read(&qp->qp_status.used))) 2324 qp_stop_fail_cb(qp); 2325 2326 dev_dbg(dev, "stop queue %u!", qp->qp_id); 2327 } 2328 2329 /** 2330 * hisi_qm_stop_qp() - Stop a qp in qm. 2331 * @qp: The qp we want to stop. 2332 * 2333 * This function is reverse of hisi_qm_start_qp. 2334 */ 2335 void hisi_qm_stop_qp(struct hisi_qp *qp) 2336 { 2337 down_write(&qp->qm->qps_lock); 2338 qm_stop_qp_nolock(qp); 2339 up_write(&qp->qm->qps_lock); 2340 } 2341 EXPORT_SYMBOL_GPL(hisi_qm_stop_qp); 2342 2343 /** 2344 * hisi_qp_send() - Queue up a task in the hardware queue. 2345 * @qp: The qp in which to put the message. 2346 * @msg: The message. 2347 * 2348 * This function will return -EBUSY if qp is currently full, and -EAGAIN 2349 * if qp related qm is resetting. 2350 * 2351 * Note: This function may run with qm_irq_thread and ACC reset at same time. 2352 * It has no race with qm_irq_thread. However, during hisi_qp_send, ACC 2353 * reset may happen, we have no lock here considering performance. This 2354 * causes current qm_db sending fail or can not receive sended sqe. QM 2355 * sync/async receive function should handle the error sqe. ACC reset 2356 * done function should clear used sqe to 0. 2357 */ 2358 int hisi_qp_send(struct hisi_qp *qp, const void *msg) 2359 { 2360 struct hisi_qp_status *qp_status = &qp->qp_status; 2361 u16 sq_tail = qp_status->sq_tail; 2362 u16 sq_tail_next = (sq_tail + 1) % qp->sq_depth; 2363 void *sqe = qm_get_avail_sqe(qp); 2364 2365 if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP || 2366 atomic_read(&qp->qm->status.flags) == QM_STOP || 2367 qp->is_resetting)) { 2368 dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n"); 2369 return -EAGAIN; 2370 } 2371 2372 if (!sqe) 2373 return -EBUSY; 2374 2375 memcpy(sqe, msg, qp->qm->sqe_size); 2376 2377 qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0); 2378 atomic_inc(&qp->qp_status.used); 2379 qp_status->sq_tail = sq_tail_next; 2380 2381 return 0; 2382 } 2383 EXPORT_SYMBOL_GPL(hisi_qp_send); 2384 2385 static void hisi_qm_cache_wb(struct hisi_qm *qm) 2386 { 2387 unsigned int val; 2388 2389 if (qm->ver == QM_HW_V1) 2390 return; 2391 2392 writel(0x1, qm->io_base + QM_CACHE_WB_START); 2393 if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE, 2394 val, val & BIT(0), POLL_PERIOD, 2395 POLL_TIMEOUT)) 2396 dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n"); 2397 } 2398 2399 static void qm_qp_event_notifier(struct hisi_qp *qp) 2400 { 2401 wake_up_interruptible(&qp->uacce_q->wait); 2402 } 2403 2404 /* This function returns free number of qp in qm. */ 2405 static int hisi_qm_get_available_instances(struct uacce_device *uacce) 2406 { 2407 struct hisi_qm *qm = uacce->priv; 2408 int ret; 2409 2410 down_read(&qm->qps_lock); 2411 ret = qm->qp_num - qm->qp_in_used; 2412 up_read(&qm->qps_lock); 2413 2414 return ret; 2415 } 2416 2417 static void hisi_qm_set_hw_reset(struct hisi_qm *qm, int offset) 2418 { 2419 int i; 2420 2421 for (i = 0; i < qm->qp_num; i++) 2422 qm_set_qp_disable(&qm->qp_array[i], offset); 2423 } 2424 2425 static int hisi_qm_uacce_get_queue(struct uacce_device *uacce, 2426 unsigned long arg, 2427 struct uacce_queue *q) 2428 { 2429 struct hisi_qm *qm = uacce->priv; 2430 struct hisi_qp *qp; 2431 u8 alg_type = 0; 2432 2433 qp = hisi_qm_create_qp(qm, alg_type); 2434 if (IS_ERR(qp)) 2435 return PTR_ERR(qp); 2436 2437 q->priv = qp; 2438 q->uacce = uacce; 2439 qp->uacce_q = q; 2440 qp->event_cb = qm_qp_event_notifier; 2441 qp->pasid = arg; 2442 qp->is_in_kernel = false; 2443 2444 return 0; 2445 } 2446 2447 static void hisi_qm_uacce_put_queue(struct uacce_queue *q) 2448 { 2449 struct hisi_qp *qp = q->priv; 2450 2451 hisi_qm_release_qp(qp); 2452 } 2453 2454 /* map sq/cq/doorbell to user space */ 2455 static int hisi_qm_uacce_mmap(struct uacce_queue *q, 2456 struct vm_area_struct *vma, 2457 struct uacce_qfile_region *qfr) 2458 { 2459 struct hisi_qp *qp = q->priv; 2460 struct hisi_qm *qm = qp->qm; 2461 resource_size_t phys_base = qm->db_phys_base + 2462 qp->qp_id * qm->db_interval; 2463 size_t sz = vma->vm_end - vma->vm_start; 2464 struct pci_dev *pdev = qm->pdev; 2465 struct device *dev = &pdev->dev; 2466 unsigned long vm_pgoff; 2467 int ret; 2468 2469 switch (qfr->type) { 2470 case UACCE_QFRT_MMIO: 2471 if (qm->ver == QM_HW_V1) { 2472 if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR) 2473 return -EINVAL; 2474 } else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) { 2475 if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR + 2476 QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE)) 2477 return -EINVAL; 2478 } else { 2479 if (sz > qm->db_interval) 2480 return -EINVAL; 2481 } 2482 2483 vm_flags_set(vma, VM_IO); 2484 2485 return remap_pfn_range(vma, vma->vm_start, 2486 phys_base >> PAGE_SHIFT, 2487 sz, pgprot_noncached(vma->vm_page_prot)); 2488 case UACCE_QFRT_DUS: 2489 if (sz != qp->qdma.size) 2490 return -EINVAL; 2491 2492 /* 2493 * dma_mmap_coherent() requires vm_pgoff as 0 2494 * restore vm_pfoff to initial value for mmap() 2495 */ 2496 vm_pgoff = vma->vm_pgoff; 2497 vma->vm_pgoff = 0; 2498 ret = dma_mmap_coherent(dev, vma, qp->qdma.va, 2499 qp->qdma.dma, sz); 2500 vma->vm_pgoff = vm_pgoff; 2501 return ret; 2502 2503 default: 2504 return -EINVAL; 2505 } 2506 } 2507 2508 static int hisi_qm_uacce_start_queue(struct uacce_queue *q) 2509 { 2510 struct hisi_qp *qp = q->priv; 2511 2512 return hisi_qm_start_qp(qp, qp->pasid); 2513 } 2514 2515 static void hisi_qm_uacce_stop_queue(struct uacce_queue *q) 2516 { 2517 struct hisi_qp *qp = q->priv; 2518 struct hisi_qm *qm = qp->qm; 2519 struct qm_dev_dfx *dev_dfx = &qm->debug.dev_dfx; 2520 u32 i = 0; 2521 2522 hisi_qm_stop_qp(qp); 2523 2524 if (!dev_dfx->dev_timeout || !dev_dfx->dev_state) 2525 return; 2526 2527 /* 2528 * After the queue fails to be stopped, 2529 * wait for a period of time before releasing the queue. 2530 */ 2531 while (++i) { 2532 msleep(WAIT_PERIOD); 2533 2534 /* Since dev_timeout maybe modified, check i >= dev_timeout */ 2535 if (i >= dev_dfx->dev_timeout) { 2536 dev_err(&qm->pdev->dev, "Stop q %u timeout, state %u\n", 2537 qp->qp_id, dev_dfx->dev_state); 2538 dev_dfx->dev_state = QM_FINISH_WAIT; 2539 break; 2540 } 2541 } 2542 } 2543 2544 static int hisi_qm_is_q_updated(struct uacce_queue *q) 2545 { 2546 struct hisi_qp *qp = q->priv; 2547 struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head; 2548 int updated = 0; 2549 2550 while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) { 2551 /* make sure to read data from memory */ 2552 dma_rmb(); 2553 qm_cq_head_update(qp); 2554 cqe = qp->cqe + qp->qp_status.cq_head; 2555 updated = 1; 2556 } 2557 2558 return updated; 2559 } 2560 2561 static void qm_set_sqctype(struct uacce_queue *q, u16 type) 2562 { 2563 struct hisi_qm *qm = q->uacce->priv; 2564 struct hisi_qp *qp = q->priv; 2565 2566 down_write(&qm->qps_lock); 2567 qp->alg_type = type; 2568 up_write(&qm->qps_lock); 2569 } 2570 2571 static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd, 2572 unsigned long arg) 2573 { 2574 struct hisi_qp *qp = q->priv; 2575 struct hisi_qp_info qp_info; 2576 struct hisi_qp_ctx qp_ctx; 2577 2578 if (cmd == UACCE_CMD_QM_SET_QP_CTX) { 2579 if (copy_from_user(&qp_ctx, (void __user *)arg, 2580 sizeof(struct hisi_qp_ctx))) 2581 return -EFAULT; 2582 2583 if (qp_ctx.qc_type > QM_MAX_QC_TYPE) 2584 return -EINVAL; 2585 2586 qm_set_sqctype(q, qp_ctx.qc_type); 2587 qp_ctx.id = qp->qp_id; 2588 2589 if (copy_to_user((void __user *)arg, &qp_ctx, 2590 sizeof(struct hisi_qp_ctx))) 2591 return -EFAULT; 2592 2593 return 0; 2594 } else if (cmd == UACCE_CMD_QM_SET_QP_INFO) { 2595 if (copy_from_user(&qp_info, (void __user *)arg, 2596 sizeof(struct hisi_qp_info))) 2597 return -EFAULT; 2598 2599 qp_info.sqe_size = qp->qm->sqe_size; 2600 qp_info.sq_depth = qp->sq_depth; 2601 qp_info.cq_depth = qp->cq_depth; 2602 2603 if (copy_to_user((void __user *)arg, &qp_info, 2604 sizeof(struct hisi_qp_info))) 2605 return -EFAULT; 2606 2607 return 0; 2608 } 2609 2610 return -EINVAL; 2611 } 2612 2613 /** 2614 * qm_hw_err_isolate() - Try to set the isolation status of the uacce device 2615 * according to user's configuration of error threshold. 2616 * @qm: the uacce device 2617 */ 2618 static int qm_hw_err_isolate(struct hisi_qm *qm) 2619 { 2620 struct qm_hw_err *err, *tmp, *hw_err; 2621 struct qm_err_isolate *isolate; 2622 u32 count = 0; 2623 2624 isolate = &qm->isolate_data; 2625 2626 #define SECONDS_PER_HOUR 3600 2627 2628 /* All the hw errs are processed by PF driver */ 2629 if (qm->uacce->is_vf || isolate->is_isolate || !isolate->err_threshold) 2630 return 0; 2631 2632 hw_err = kzalloc(sizeof(*hw_err), GFP_KERNEL); 2633 if (!hw_err) 2634 return -ENOMEM; 2635 2636 /* 2637 * Time-stamp every slot AER error. Then check the AER error log when the 2638 * next device AER error occurred. if the device slot AER error count exceeds 2639 * the setting error threshold in one hour, the isolated state will be set 2640 * to true. And the AER error logs that exceed one hour will be cleared. 2641 */ 2642 mutex_lock(&isolate->isolate_lock); 2643 hw_err->timestamp = jiffies; 2644 list_for_each_entry_safe(err, tmp, &isolate->qm_hw_errs, list) { 2645 if ((hw_err->timestamp - err->timestamp) / HZ > 2646 SECONDS_PER_HOUR) { 2647 list_del(&err->list); 2648 kfree(err); 2649 } else { 2650 count++; 2651 } 2652 } 2653 list_add(&hw_err->list, &isolate->qm_hw_errs); 2654 mutex_unlock(&isolate->isolate_lock); 2655 2656 if (count >= isolate->err_threshold) 2657 isolate->is_isolate = true; 2658 2659 return 0; 2660 } 2661 2662 static void qm_hw_err_destroy(struct hisi_qm *qm) 2663 { 2664 struct qm_hw_err *err, *tmp; 2665 2666 mutex_lock(&qm->isolate_data.isolate_lock); 2667 list_for_each_entry_safe(err, tmp, &qm->isolate_data.qm_hw_errs, list) { 2668 list_del(&err->list); 2669 kfree(err); 2670 } 2671 mutex_unlock(&qm->isolate_data.isolate_lock); 2672 } 2673 2674 static enum uacce_dev_state hisi_qm_get_isolate_state(struct uacce_device *uacce) 2675 { 2676 struct hisi_qm *qm = uacce->priv; 2677 struct hisi_qm *pf_qm; 2678 2679 if (uacce->is_vf) 2680 pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 2681 else 2682 pf_qm = qm; 2683 2684 return pf_qm->isolate_data.is_isolate ? 2685 UACCE_DEV_ISOLATE : UACCE_DEV_NORMAL; 2686 } 2687 2688 static int hisi_qm_isolate_threshold_write(struct uacce_device *uacce, u32 num) 2689 { 2690 struct hisi_qm *qm = uacce->priv; 2691 2692 /* Must be set by PF */ 2693 if (uacce->is_vf) 2694 return -EPERM; 2695 2696 if (qm->isolate_data.is_isolate) 2697 return -EPERM; 2698 2699 qm->isolate_data.err_threshold = num; 2700 2701 /* After the policy is updated, need to reset the hardware err list */ 2702 qm_hw_err_destroy(qm); 2703 2704 return 0; 2705 } 2706 2707 static u32 hisi_qm_isolate_threshold_read(struct uacce_device *uacce) 2708 { 2709 struct hisi_qm *qm = uacce->priv; 2710 struct hisi_qm *pf_qm; 2711 2712 if (uacce->is_vf) { 2713 pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 2714 return pf_qm->isolate_data.err_threshold; 2715 } 2716 2717 return qm->isolate_data.err_threshold; 2718 } 2719 2720 static const struct uacce_ops uacce_qm_ops = { 2721 .get_available_instances = hisi_qm_get_available_instances, 2722 .get_queue = hisi_qm_uacce_get_queue, 2723 .put_queue = hisi_qm_uacce_put_queue, 2724 .start_queue = hisi_qm_uacce_start_queue, 2725 .stop_queue = hisi_qm_uacce_stop_queue, 2726 .mmap = hisi_qm_uacce_mmap, 2727 .ioctl = hisi_qm_uacce_ioctl, 2728 .is_q_updated = hisi_qm_is_q_updated, 2729 .get_isolate_state = hisi_qm_get_isolate_state, 2730 .isolate_err_threshold_write = hisi_qm_isolate_threshold_write, 2731 .isolate_err_threshold_read = hisi_qm_isolate_threshold_read, 2732 }; 2733 2734 static void qm_remove_uacce(struct hisi_qm *qm) 2735 { 2736 struct uacce_device *uacce = qm->uacce; 2737 2738 if (qm->use_sva) { 2739 qm_hw_err_destroy(qm); 2740 uacce_remove(uacce); 2741 qm->uacce = NULL; 2742 } 2743 } 2744 2745 static int qm_alloc_uacce(struct hisi_qm *qm) 2746 { 2747 struct pci_dev *pdev = qm->pdev; 2748 struct uacce_device *uacce; 2749 unsigned long mmio_page_nr; 2750 unsigned long dus_page_nr; 2751 u16 sq_depth, cq_depth; 2752 struct uacce_interface interface = { 2753 .flags = UACCE_DEV_SVA, 2754 .ops = &uacce_qm_ops, 2755 }; 2756 int ret; 2757 2758 ret = strscpy(interface.name, dev_driver_string(&pdev->dev), 2759 sizeof(interface.name)); 2760 if (ret < 0) 2761 return -ENAMETOOLONG; 2762 2763 uacce = uacce_alloc(&pdev->dev, &interface); 2764 if (IS_ERR(uacce)) 2765 return PTR_ERR(uacce); 2766 2767 if (uacce->flags & UACCE_DEV_SVA) { 2768 qm->use_sva = true; 2769 } else { 2770 /* only consider sva case */ 2771 qm_remove_uacce(qm); 2772 return -EINVAL; 2773 } 2774 2775 uacce->is_vf = pdev->is_virtfn; 2776 uacce->priv = qm; 2777 2778 if (qm->ver == QM_HW_V1) 2779 uacce->api_ver = HISI_QM_API_VER_BASE; 2780 else if (qm->ver == QM_HW_V2) 2781 uacce->api_ver = HISI_QM_API_VER2_BASE; 2782 else 2783 uacce->api_ver = HISI_QM_API_VER3_BASE; 2784 2785 if (qm->ver == QM_HW_V1) 2786 mmio_page_nr = QM_DOORBELL_PAGE_NR; 2787 else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) 2788 mmio_page_nr = QM_DOORBELL_PAGE_NR + 2789 QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE; 2790 else 2791 mmio_page_nr = qm->db_interval / PAGE_SIZE; 2792 2793 qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP); 2794 2795 /* Add one more page for device or qp status */ 2796 dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * sq_depth + 2797 sizeof(struct qm_cqe) * cq_depth + PAGE_SIZE) >> 2798 PAGE_SHIFT; 2799 2800 uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr; 2801 uacce->qf_pg_num[UACCE_QFRT_DUS] = dus_page_nr; 2802 2803 qm->uacce = uacce; 2804 INIT_LIST_HEAD(&qm->isolate_data.qm_hw_errs); 2805 mutex_init(&qm->isolate_data.isolate_lock); 2806 2807 return 0; 2808 } 2809 2810 /** 2811 * qm_frozen() - Try to froze QM to cut continuous queue request. If 2812 * there is user on the QM, return failure without doing anything. 2813 * @qm: The qm needed to be fronzen. 2814 * 2815 * This function frozes QM, then we can do SRIOV disabling. 2816 */ 2817 static int qm_frozen(struct hisi_qm *qm) 2818 { 2819 if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl)) 2820 return 0; 2821 2822 down_write(&qm->qps_lock); 2823 2824 if (!qm->qp_in_used) { 2825 qm->qp_in_used = qm->qp_num; 2826 up_write(&qm->qps_lock); 2827 set_bit(QM_DRIVER_REMOVING, &qm->misc_ctl); 2828 return 0; 2829 } 2830 2831 up_write(&qm->qps_lock); 2832 2833 return -EBUSY; 2834 } 2835 2836 static int qm_try_frozen_vfs(struct pci_dev *pdev, 2837 struct hisi_qm_list *qm_list) 2838 { 2839 struct hisi_qm *qm, *vf_qm; 2840 struct pci_dev *dev; 2841 int ret = 0; 2842 2843 if (!qm_list || !pdev) 2844 return -EINVAL; 2845 2846 /* Try to frozen all the VFs as disable SRIOV */ 2847 mutex_lock(&qm_list->lock); 2848 list_for_each_entry(qm, &qm_list->list, list) { 2849 dev = qm->pdev; 2850 if (dev == pdev) 2851 continue; 2852 if (pci_physfn(dev) == pdev) { 2853 vf_qm = pci_get_drvdata(dev); 2854 ret = qm_frozen(vf_qm); 2855 if (ret) 2856 goto frozen_fail; 2857 } 2858 } 2859 2860 frozen_fail: 2861 mutex_unlock(&qm_list->lock); 2862 2863 return ret; 2864 } 2865 2866 /** 2867 * hisi_qm_wait_task_finish() - Wait until the task is finished 2868 * when removing the driver. 2869 * @qm: The qm needed to wait for the task to finish. 2870 * @qm_list: The list of all available devices. 2871 */ 2872 void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 2873 { 2874 while (qm_frozen(qm) || 2875 ((qm->fun_type == QM_HW_PF) && 2876 qm_try_frozen_vfs(qm->pdev, qm_list))) { 2877 msleep(WAIT_PERIOD); 2878 } 2879 2880 while (test_bit(QM_RST_SCHED, &qm->misc_ctl) || 2881 test_bit(QM_RESETTING, &qm->misc_ctl)) 2882 msleep(WAIT_PERIOD); 2883 2884 if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 2885 flush_work(&qm->cmd_process); 2886 2887 udelay(REMOVE_WAIT_DELAY); 2888 } 2889 EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish); 2890 2891 static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num) 2892 { 2893 struct device *dev = &qm->pdev->dev; 2894 struct qm_dma *qdma; 2895 int i; 2896 2897 for (i = num - 1; i >= 0; i--) { 2898 qdma = &qm->qp_array[i].qdma; 2899 dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma); 2900 kfree(qm->poll_data[i].qp_finish_id); 2901 } 2902 2903 kfree(qm->poll_data); 2904 kfree(qm->qp_array); 2905 } 2906 2907 static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id, 2908 u16 sq_depth, u16 cq_depth) 2909 { 2910 struct device *dev = &qm->pdev->dev; 2911 size_t off = qm->sqe_size * sq_depth; 2912 struct hisi_qp *qp; 2913 int ret = -ENOMEM; 2914 2915 qm->poll_data[id].qp_finish_id = kcalloc(qm->qp_num, sizeof(u16), 2916 GFP_KERNEL); 2917 if (!qm->poll_data[id].qp_finish_id) 2918 return -ENOMEM; 2919 2920 qp = &qm->qp_array[id]; 2921 qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma, 2922 GFP_KERNEL); 2923 if (!qp->qdma.va) 2924 goto err_free_qp_finish_id; 2925 2926 qp->sqe = qp->qdma.va; 2927 qp->sqe_dma = qp->qdma.dma; 2928 qp->cqe = qp->qdma.va + off; 2929 qp->cqe_dma = qp->qdma.dma + off; 2930 qp->qdma.size = dma_size; 2931 qp->sq_depth = sq_depth; 2932 qp->cq_depth = cq_depth; 2933 qp->qm = qm; 2934 qp->qp_id = id; 2935 2936 return 0; 2937 2938 err_free_qp_finish_id: 2939 kfree(qm->poll_data[id].qp_finish_id); 2940 return ret; 2941 } 2942 2943 static void hisi_qm_pre_init(struct hisi_qm *qm) 2944 { 2945 struct pci_dev *pdev = qm->pdev; 2946 2947 if (qm->ver == QM_HW_V1) 2948 qm->ops = &qm_hw_ops_v1; 2949 else if (qm->ver == QM_HW_V2) 2950 qm->ops = &qm_hw_ops_v2; 2951 else if (qm->ver == QM_HW_V3) 2952 qm->ops = &qm_hw_ops_v3; 2953 else 2954 qm->ops = &qm_hw_ops_v4; 2955 2956 pci_set_drvdata(pdev, qm); 2957 mutex_init(&qm->mailbox_lock); 2958 mutex_init(&qm->ifc_lock); 2959 init_rwsem(&qm->qps_lock); 2960 qm->qp_in_used = 0; 2961 if (test_bit(QM_SUPPORT_RPM, &qm->caps)) { 2962 if (!acpi_device_power_manageable(ACPI_COMPANION(&pdev->dev))) 2963 dev_info(&pdev->dev, "_PS0 and _PR0 are not defined"); 2964 } 2965 } 2966 2967 static void qm_cmd_uninit(struct hisi_qm *qm) 2968 { 2969 u32 val; 2970 2971 if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 2972 return; 2973 2974 val = readl(qm->io_base + QM_IFC_INT_MASK); 2975 val |= QM_IFC_INT_DISABLE; 2976 writel(val, qm->io_base + QM_IFC_INT_MASK); 2977 } 2978 2979 static void qm_cmd_init(struct hisi_qm *qm) 2980 { 2981 u32 val; 2982 2983 if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 2984 return; 2985 2986 /* Clear communication interrupt source */ 2987 qm_clear_cmd_interrupt(qm, QM_IFC_INT_SOURCE_CLR); 2988 2989 /* Enable pf to vf communication reg. */ 2990 val = readl(qm->io_base + QM_IFC_INT_MASK); 2991 val &= ~QM_IFC_INT_DISABLE; 2992 writel(val, qm->io_base + QM_IFC_INT_MASK); 2993 } 2994 2995 static void qm_put_pci_res(struct hisi_qm *qm) 2996 { 2997 struct pci_dev *pdev = qm->pdev; 2998 2999 if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) 3000 iounmap(qm->db_io_base); 3001 3002 iounmap(qm->io_base); 3003 pci_release_mem_regions(pdev); 3004 } 3005 3006 static void hisi_qm_pci_uninit(struct hisi_qm *qm) 3007 { 3008 struct pci_dev *pdev = qm->pdev; 3009 3010 pci_free_irq_vectors(pdev); 3011 qm_put_pci_res(qm); 3012 pci_disable_device(pdev); 3013 } 3014 3015 static void hisi_qm_set_state(struct hisi_qm *qm, u8 state) 3016 { 3017 if (qm->ver > QM_HW_V2 && qm->fun_type == QM_HW_VF) 3018 writel(state, qm->io_base + QM_VF_STATE); 3019 } 3020 3021 static void hisi_qm_unint_work(struct hisi_qm *qm) 3022 { 3023 destroy_workqueue(qm->wq); 3024 } 3025 3026 static void hisi_qm_free_rsv_buf(struct hisi_qm *qm) 3027 { 3028 struct qm_dma *xqc_dma = &qm->xqc_buf.qcdma; 3029 struct device *dev = &qm->pdev->dev; 3030 3031 dma_free_coherent(dev, xqc_dma->size, xqc_dma->va, xqc_dma->dma); 3032 } 3033 3034 static void hisi_qm_memory_uninit(struct hisi_qm *qm) 3035 { 3036 struct device *dev = &qm->pdev->dev; 3037 3038 hisi_qp_memory_uninit(qm, qm->qp_num); 3039 hisi_qm_free_rsv_buf(qm); 3040 if (qm->qdma.va) { 3041 hisi_qm_cache_wb(qm); 3042 dma_free_coherent(dev, qm->qdma.size, 3043 qm->qdma.va, qm->qdma.dma); 3044 } 3045 3046 idr_destroy(&qm->qp_idr); 3047 3048 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 3049 kfree(qm->factor); 3050 } 3051 3052 /** 3053 * hisi_qm_uninit() - Uninitialize qm. 3054 * @qm: The qm needed uninit. 3055 * 3056 * This function uninits qm related device resources. 3057 */ 3058 void hisi_qm_uninit(struct hisi_qm *qm) 3059 { 3060 qm_cmd_uninit(qm); 3061 hisi_qm_unint_work(qm); 3062 3063 down_write(&qm->qps_lock); 3064 hisi_qm_memory_uninit(qm); 3065 hisi_qm_set_state(qm, QM_NOT_READY); 3066 up_write(&qm->qps_lock); 3067 3068 qm_remove_uacce(qm); 3069 qm_irqs_unregister(qm); 3070 hisi_qm_pci_uninit(qm); 3071 } 3072 EXPORT_SYMBOL_GPL(hisi_qm_uninit); 3073 3074 /** 3075 * hisi_qm_get_vft() - Get vft from a qm. 3076 * @qm: The qm we want to get its vft. 3077 * @base: The base number of queue in vft. 3078 * @number: The number of queues in vft. 3079 * 3080 * We can allocate multiple queues to a qm by configuring virtual function 3081 * table. We get related configures by this function. Normally, we call this 3082 * function in VF driver to get the queue information. 3083 * 3084 * qm hw v1 does not support this interface. 3085 */ 3086 static int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number) 3087 { 3088 if (!base || !number) 3089 return -EINVAL; 3090 3091 if (!qm->ops->get_vft) { 3092 dev_err(&qm->pdev->dev, "Don't support vft read!\n"); 3093 return -EINVAL; 3094 } 3095 3096 return qm->ops->get_vft(qm, base, number); 3097 } 3098 3099 /** 3100 * hisi_qm_set_vft() - Set vft to a qm. 3101 * @qm: The qm we want to set its vft. 3102 * @fun_num: The function number. 3103 * @base: The base number of queue in vft. 3104 * @number: The number of queues in vft. 3105 * 3106 * This function is alway called in PF driver, it is used to assign queues 3107 * among PF and VFs. 3108 * 3109 * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1) 3110 * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1) 3111 * (VF function number 0x2) 3112 */ 3113 static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base, 3114 u32 number) 3115 { 3116 u32 max_q_num = qm->ctrl_qp_num; 3117 3118 if (base >= max_q_num || number > max_q_num || 3119 (base + number) > max_q_num) 3120 return -EINVAL; 3121 3122 return qm_set_sqc_cqc_vft(qm, fun_num, base, number); 3123 } 3124 3125 static void qm_init_eq_aeq_status(struct hisi_qm *qm) 3126 { 3127 struct hisi_qm_status *status = &qm->status; 3128 3129 status->eq_head = 0; 3130 status->aeq_head = 0; 3131 status->eqc_phase = true; 3132 status->aeqc_phase = true; 3133 } 3134 3135 static void qm_enable_eq_aeq_interrupts(struct hisi_qm *qm) 3136 { 3137 /* Clear eq/aeq interrupt source */ 3138 qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0); 3139 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 3140 3141 writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK); 3142 writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK); 3143 } 3144 3145 static void qm_disable_eq_aeq_interrupts(struct hisi_qm *qm) 3146 { 3147 writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK); 3148 writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK); 3149 } 3150 3151 static int qm_eq_ctx_cfg(struct hisi_qm *qm) 3152 { 3153 struct qm_eqc eqc = {0}; 3154 3155 eqc.base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma)); 3156 eqc.base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma)); 3157 if (qm->ver == QM_HW_V1) 3158 eqc.dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE); 3159 eqc.dw6 = cpu_to_le32(((u32)qm->eq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT)); 3160 3161 return qm_set_and_get_xqc(qm, QM_MB_CMD_EQC, &eqc, 0, 0); 3162 } 3163 3164 static int qm_aeq_ctx_cfg(struct hisi_qm *qm) 3165 { 3166 struct qm_aeqc aeqc = {0}; 3167 3168 aeqc.base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma)); 3169 aeqc.base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma)); 3170 aeqc.dw6 = cpu_to_le32(((u32)qm->aeq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT)); 3171 3172 return qm_set_and_get_xqc(qm, QM_MB_CMD_AEQC, &aeqc, 0, 0); 3173 } 3174 3175 static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm) 3176 { 3177 struct device *dev = &qm->pdev->dev; 3178 int ret; 3179 3180 qm_init_eq_aeq_status(qm); 3181 3182 ret = qm_eq_ctx_cfg(qm); 3183 if (ret) { 3184 dev_err(dev, "Set eqc failed!\n"); 3185 return ret; 3186 } 3187 3188 return qm_aeq_ctx_cfg(qm); 3189 } 3190 3191 static int __hisi_qm_start(struct hisi_qm *qm) 3192 { 3193 int ret; 3194 3195 WARN_ON(!qm->qdma.va); 3196 3197 if (qm->fun_type == QM_HW_PF) { 3198 ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num); 3199 if (ret) 3200 return ret; 3201 } 3202 3203 ret = qm_eq_aeq_ctx_cfg(qm); 3204 if (ret) 3205 return ret; 3206 3207 ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0); 3208 if (ret) 3209 return ret; 3210 3211 ret = hisi_qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0); 3212 if (ret) 3213 return ret; 3214 3215 qm_init_prefetch(qm); 3216 qm_enable_eq_aeq_interrupts(qm); 3217 3218 return 0; 3219 } 3220 3221 /** 3222 * hisi_qm_start() - start qm 3223 * @qm: The qm to be started. 3224 * 3225 * This function starts a qm, then we can allocate qp from this qm. 3226 */ 3227 int hisi_qm_start(struct hisi_qm *qm) 3228 { 3229 struct device *dev = &qm->pdev->dev; 3230 int ret = 0; 3231 3232 down_write(&qm->qps_lock); 3233 3234 dev_dbg(dev, "qm start with %u queue pairs\n", qm->qp_num); 3235 3236 if (!qm->qp_num) { 3237 dev_err(dev, "qp_num should not be 0\n"); 3238 ret = -EINVAL; 3239 goto err_unlock; 3240 } 3241 3242 ret = __hisi_qm_start(qm); 3243 if (ret) 3244 goto err_unlock; 3245 3246 atomic_set(&qm->status.flags, QM_WORK); 3247 hisi_qm_set_state(qm, QM_READY); 3248 3249 err_unlock: 3250 up_write(&qm->qps_lock); 3251 return ret; 3252 } 3253 EXPORT_SYMBOL_GPL(hisi_qm_start); 3254 3255 static int qm_restart(struct hisi_qm *qm) 3256 { 3257 struct device *dev = &qm->pdev->dev; 3258 struct hisi_qp *qp; 3259 int ret, i; 3260 3261 ret = hisi_qm_start(qm); 3262 if (ret < 0) 3263 return ret; 3264 3265 down_write(&qm->qps_lock); 3266 for (i = 0; i < qm->qp_num; i++) { 3267 qp = &qm->qp_array[i]; 3268 if (atomic_read(&qp->qp_status.flags) == QP_STOP && 3269 qp->is_resetting == true) { 3270 ret = qm_start_qp_nolock(qp, 0); 3271 if (ret < 0) { 3272 dev_err(dev, "Failed to start qp%d!\n", i); 3273 3274 up_write(&qm->qps_lock); 3275 return ret; 3276 } 3277 qp->is_resetting = false; 3278 } 3279 } 3280 up_write(&qm->qps_lock); 3281 3282 return 0; 3283 } 3284 3285 /* Stop started qps in reset flow */ 3286 static void qm_stop_started_qp(struct hisi_qm *qm) 3287 { 3288 struct hisi_qp *qp; 3289 int i; 3290 3291 for (i = 0; i < qm->qp_num; i++) { 3292 qp = &qm->qp_array[i]; 3293 if (atomic_read(&qp->qp_status.flags) == QP_START) { 3294 qp->is_resetting = true; 3295 qm_stop_qp_nolock(qp); 3296 } 3297 } 3298 } 3299 3300 /** 3301 * qm_clear_queues() - Clear all queues memory in a qm. 3302 * @qm: The qm in which the queues will be cleared. 3303 * 3304 * This function clears all queues memory in a qm. Reset of accelerator can 3305 * use this to clear queues. 3306 */ 3307 static void qm_clear_queues(struct hisi_qm *qm) 3308 { 3309 struct hisi_qp *qp; 3310 int i; 3311 3312 for (i = 0; i < qm->qp_num; i++) { 3313 qp = &qm->qp_array[i]; 3314 if (qp->is_in_kernel && qp->is_resetting) 3315 memset(qp->qdma.va, 0, qp->qdma.size); 3316 } 3317 3318 memset(qm->qdma.va, 0, qm->qdma.size); 3319 } 3320 3321 /** 3322 * hisi_qm_stop() - Stop a qm. 3323 * @qm: The qm which will be stopped. 3324 * @r: The reason to stop qm. 3325 * 3326 * This function stops qm and its qps, then qm can not accept request. 3327 * Related resources are not released at this state, we can use hisi_qm_start 3328 * to let qm start again. 3329 */ 3330 int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r) 3331 { 3332 struct device *dev = &qm->pdev->dev; 3333 int ret = 0; 3334 3335 down_write(&qm->qps_lock); 3336 3337 if (atomic_read(&qm->status.flags) == QM_STOP) 3338 goto err_unlock; 3339 3340 /* Stop all the request sending at first. */ 3341 atomic_set(&qm->status.flags, QM_STOP); 3342 qm->status.stop_reason = r; 3343 3344 if (qm->status.stop_reason != QM_NORMAL) { 3345 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 3346 /* 3347 * When performing soft reset, the hardware will no longer 3348 * do tasks, and the tasks in the device will be flushed 3349 * out directly since the master ooo is closed. 3350 */ 3351 if (test_bit(QM_SUPPORT_STOP_FUNC, &qm->caps) && 3352 r != QM_SOFT_RESET) { 3353 ret = qm_drain_qm(qm); 3354 if (ret) { 3355 dev_err(dev, "failed to drain qm!\n"); 3356 goto err_unlock; 3357 } 3358 } 3359 3360 qm_stop_started_qp(qm); 3361 3362 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 3363 } 3364 3365 qm_disable_eq_aeq_interrupts(qm); 3366 if (qm->fun_type == QM_HW_PF) { 3367 ret = hisi_qm_set_vft(qm, 0, 0, 0); 3368 if (ret < 0) { 3369 dev_err(dev, "Failed to set vft!\n"); 3370 ret = -EBUSY; 3371 goto err_unlock; 3372 } 3373 } 3374 3375 qm_clear_queues(qm); 3376 qm->status.stop_reason = QM_NORMAL; 3377 3378 err_unlock: 3379 up_write(&qm->qps_lock); 3380 return ret; 3381 } 3382 EXPORT_SYMBOL_GPL(hisi_qm_stop); 3383 3384 static void qm_hw_error_init(struct hisi_qm *qm) 3385 { 3386 if (!qm->ops->hw_error_init) { 3387 dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n"); 3388 return; 3389 } 3390 3391 qm->ops->hw_error_init(qm); 3392 } 3393 3394 static void qm_hw_error_uninit(struct hisi_qm *qm) 3395 { 3396 if (!qm->ops->hw_error_uninit) { 3397 dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n"); 3398 return; 3399 } 3400 3401 qm->ops->hw_error_uninit(qm); 3402 } 3403 3404 static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm) 3405 { 3406 if (!qm->ops->hw_error_handle) { 3407 dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n"); 3408 return ACC_ERR_NONE; 3409 } 3410 3411 return qm->ops->hw_error_handle(qm); 3412 } 3413 3414 /** 3415 * hisi_qm_dev_err_init() - Initialize device error configuration. 3416 * @qm: The qm for which we want to do error initialization. 3417 * 3418 * Initialize QM and device error related configuration. 3419 */ 3420 void hisi_qm_dev_err_init(struct hisi_qm *qm) 3421 { 3422 if (qm->fun_type == QM_HW_VF) 3423 return; 3424 3425 qm_hw_error_init(qm); 3426 3427 if (!qm->err_ini->hw_err_enable) { 3428 dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n"); 3429 return; 3430 } 3431 qm->err_ini->hw_err_enable(qm); 3432 } 3433 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init); 3434 3435 /** 3436 * hisi_qm_dev_err_uninit() - Uninitialize device error configuration. 3437 * @qm: The qm for which we want to do error uninitialization. 3438 * 3439 * Uninitialize QM and device error related configuration. 3440 */ 3441 void hisi_qm_dev_err_uninit(struct hisi_qm *qm) 3442 { 3443 if (qm->fun_type == QM_HW_VF) 3444 return; 3445 3446 qm_hw_error_uninit(qm); 3447 3448 if (!qm->err_ini->hw_err_disable) { 3449 dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n"); 3450 return; 3451 } 3452 qm->err_ini->hw_err_disable(qm); 3453 } 3454 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit); 3455 3456 /** 3457 * hisi_qm_free_qps() - free multiple queue pairs. 3458 * @qps: The queue pairs need to be freed. 3459 * @qp_num: The num of queue pairs. 3460 */ 3461 void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num) 3462 { 3463 int i; 3464 3465 if (!qps || qp_num <= 0) 3466 return; 3467 3468 for (i = qp_num - 1; i >= 0; i--) 3469 hisi_qm_release_qp(qps[i]); 3470 } 3471 EXPORT_SYMBOL_GPL(hisi_qm_free_qps); 3472 3473 static void free_list(struct list_head *head) 3474 { 3475 struct hisi_qm_resource *res, *tmp; 3476 3477 list_for_each_entry_safe(res, tmp, head, list) { 3478 list_del(&res->list); 3479 kfree(res); 3480 } 3481 } 3482 3483 static int hisi_qm_sort_devices(int node, struct list_head *head, 3484 struct hisi_qm_list *qm_list) 3485 { 3486 struct hisi_qm_resource *res, *tmp; 3487 struct hisi_qm *qm; 3488 struct list_head *n; 3489 struct device *dev; 3490 int dev_node; 3491 3492 list_for_each_entry(qm, &qm_list->list, list) { 3493 dev = &qm->pdev->dev; 3494 3495 dev_node = dev_to_node(dev); 3496 if (dev_node < 0) 3497 dev_node = 0; 3498 3499 res = kzalloc(sizeof(*res), GFP_KERNEL); 3500 if (!res) 3501 return -ENOMEM; 3502 3503 res->qm = qm; 3504 res->distance = node_distance(dev_node, node); 3505 n = head; 3506 list_for_each_entry(tmp, head, list) { 3507 if (res->distance < tmp->distance) { 3508 n = &tmp->list; 3509 break; 3510 } 3511 } 3512 list_add_tail(&res->list, n); 3513 } 3514 3515 return 0; 3516 } 3517 3518 /** 3519 * hisi_qm_alloc_qps_node() - Create multiple queue pairs. 3520 * @qm_list: The list of all available devices. 3521 * @qp_num: The number of queue pairs need created. 3522 * @alg_type: The algorithm type. 3523 * @node: The numa node. 3524 * @qps: The queue pairs need created. 3525 * 3526 * This function will sort all available device according to numa distance. 3527 * Then try to create all queue pairs from one device, if all devices do 3528 * not meet the requirements will return error. 3529 */ 3530 int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num, 3531 u8 alg_type, int node, struct hisi_qp **qps) 3532 { 3533 struct hisi_qm_resource *tmp; 3534 int ret = -ENODEV; 3535 LIST_HEAD(head); 3536 int i; 3537 3538 if (!qps || !qm_list || qp_num <= 0) 3539 return -EINVAL; 3540 3541 mutex_lock(&qm_list->lock); 3542 if (hisi_qm_sort_devices(node, &head, qm_list)) { 3543 mutex_unlock(&qm_list->lock); 3544 goto err; 3545 } 3546 3547 list_for_each_entry(tmp, &head, list) { 3548 for (i = 0; i < qp_num; i++) { 3549 qps[i] = hisi_qm_create_qp(tmp->qm, alg_type); 3550 if (IS_ERR(qps[i])) { 3551 hisi_qm_free_qps(qps, i); 3552 break; 3553 } 3554 } 3555 3556 if (i == qp_num) { 3557 ret = 0; 3558 break; 3559 } 3560 } 3561 3562 mutex_unlock(&qm_list->lock); 3563 if (ret) 3564 pr_info("Failed to create qps, node[%d], alg[%u], qp[%d]!\n", 3565 node, alg_type, qp_num); 3566 3567 err: 3568 free_list(&head); 3569 return ret; 3570 } 3571 EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node); 3572 3573 static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs) 3574 { 3575 u32 remain_q_num, vfs_q_num, act_q_num, q_num, i, j; 3576 u32 max_qp_num = qm->max_qp_num; 3577 u32 q_base = qm->qp_num; 3578 int ret; 3579 3580 if (!num_vfs) 3581 return -EINVAL; 3582 3583 vfs_q_num = qm->ctrl_qp_num - qm->qp_num; 3584 3585 /* If vfs_q_num is less than num_vfs, return error. */ 3586 if (vfs_q_num < num_vfs) 3587 return -EINVAL; 3588 3589 q_num = vfs_q_num / num_vfs; 3590 remain_q_num = vfs_q_num % num_vfs; 3591 3592 for (i = num_vfs; i > 0; i--) { 3593 /* 3594 * if q_num + remain_q_num > max_qp_num in last vf, divide the 3595 * remaining queues equally. 3596 */ 3597 if (i == num_vfs && q_num + remain_q_num <= max_qp_num) { 3598 act_q_num = q_num + remain_q_num; 3599 remain_q_num = 0; 3600 } else if (remain_q_num > 0) { 3601 act_q_num = q_num + 1; 3602 remain_q_num--; 3603 } else { 3604 act_q_num = q_num; 3605 } 3606 3607 act_q_num = min(act_q_num, max_qp_num); 3608 ret = hisi_qm_set_vft(qm, i, q_base, act_q_num); 3609 if (ret) { 3610 for (j = num_vfs; j > i; j--) 3611 hisi_qm_set_vft(qm, j, 0, 0); 3612 return ret; 3613 } 3614 q_base += act_q_num; 3615 } 3616 3617 return 0; 3618 } 3619 3620 static int qm_clear_vft_config(struct hisi_qm *qm) 3621 { 3622 int ret; 3623 u32 i; 3624 3625 for (i = 1; i <= qm->vfs_num; i++) { 3626 ret = hisi_qm_set_vft(qm, i, 0, 0); 3627 if (ret) 3628 return ret; 3629 } 3630 qm->vfs_num = 0; 3631 3632 return 0; 3633 } 3634 3635 static int qm_func_shaper_enable(struct hisi_qm *qm, u32 fun_index, u32 qos) 3636 { 3637 struct device *dev = &qm->pdev->dev; 3638 u32 ir = qos * QM_QOS_RATE; 3639 int ret, total_vfs, i; 3640 3641 total_vfs = pci_sriov_get_totalvfs(qm->pdev); 3642 if (fun_index > total_vfs) 3643 return -EINVAL; 3644 3645 qm->factor[fun_index].func_qos = qos; 3646 3647 ret = qm_get_shaper_para(ir, &qm->factor[fun_index]); 3648 if (ret) { 3649 dev_err(dev, "failed to calculate shaper parameter!\n"); 3650 return -EINVAL; 3651 } 3652 3653 for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) { 3654 /* The base number of queue reuse for different alg type */ 3655 ret = qm_set_vft_common(qm, SHAPER_VFT, fun_index, i, 1); 3656 if (ret) { 3657 dev_err(dev, "type: %d, failed to set shaper vft!\n", i); 3658 return -EINVAL; 3659 } 3660 } 3661 3662 return 0; 3663 } 3664 3665 static u32 qm_get_shaper_vft_qos(struct hisi_qm *qm, u32 fun_index) 3666 { 3667 u64 cir_u = 0, cir_b = 0, cir_s = 0; 3668 u64 shaper_vft, ir_calc, ir; 3669 unsigned int val; 3670 u32 error_rate; 3671 int ret; 3672 3673 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 3674 val & BIT(0), POLL_PERIOD, 3675 POLL_TIMEOUT); 3676 if (ret) 3677 return 0; 3678 3679 writel(0x1, qm->io_base + QM_VFT_CFG_OP_WR); 3680 writel(SHAPER_VFT, qm->io_base + QM_VFT_CFG_TYPE); 3681 writel(fun_index, qm->io_base + QM_VFT_CFG); 3682 3683 writel(0x0, qm->io_base + QM_VFT_CFG_RDY); 3684 writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE); 3685 3686 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 3687 val & BIT(0), POLL_PERIOD, 3688 POLL_TIMEOUT); 3689 if (ret) 3690 return 0; 3691 3692 shaper_vft = readl(qm->io_base + QM_VFT_CFG_DATA_L) | 3693 ((u64)readl(qm->io_base + QM_VFT_CFG_DATA_H) << 32); 3694 3695 cir_b = shaper_vft & QM_SHAPER_CIR_B_MASK; 3696 cir_u = shaper_vft & QM_SHAPER_CIR_U_MASK; 3697 cir_u = cir_u >> QM_SHAPER_FACTOR_CIR_U_SHIFT; 3698 3699 cir_s = shaper_vft & QM_SHAPER_CIR_S_MASK; 3700 cir_s = cir_s >> QM_SHAPER_FACTOR_CIR_S_SHIFT; 3701 3702 ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s); 3703 3704 ir = qm->factor[fun_index].func_qos * QM_QOS_RATE; 3705 3706 error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir; 3707 if (error_rate > QM_QOS_MIN_ERROR_RATE) { 3708 pci_err(qm->pdev, "error_rate: %u, get function qos is error!\n", error_rate); 3709 return 0; 3710 } 3711 3712 return ir; 3713 } 3714 3715 static void qm_vf_get_qos(struct hisi_qm *qm, u32 fun_num) 3716 { 3717 struct device *dev = &qm->pdev->dev; 3718 u32 qos; 3719 int ret; 3720 3721 qos = qm_get_shaper_vft_qos(qm, fun_num); 3722 if (!qos) { 3723 dev_err(dev, "function(%u) failed to get qos by PF!\n", fun_num); 3724 return; 3725 } 3726 3727 ret = qm_ping_single_vf(qm, QM_PF_SET_QOS, qos, fun_num); 3728 if (ret) 3729 dev_err(dev, "failed to send command(0x%x) to VF(%u)!\n", QM_PF_SET_QOS, fun_num); 3730 } 3731 3732 static int qm_vf_read_qos(struct hisi_qm *qm) 3733 { 3734 int cnt = 0; 3735 int ret = -EINVAL; 3736 3737 /* reset mailbox qos val */ 3738 qm->mb_qos = 0; 3739 3740 /* vf ping pf to get function qos */ 3741 ret = qm_ping_pf(qm, QM_VF_GET_QOS); 3742 if (ret) { 3743 pci_err(qm->pdev, "failed to send cmd to PF to get qos!\n"); 3744 return ret; 3745 } 3746 3747 while (true) { 3748 msleep(QM_WAIT_DST_ACK); 3749 if (qm->mb_qos) 3750 break; 3751 3752 if (++cnt > QM_MAX_VF_WAIT_COUNT) { 3753 pci_err(qm->pdev, "PF ping VF timeout!\n"); 3754 return -ETIMEDOUT; 3755 } 3756 } 3757 3758 return ret; 3759 } 3760 3761 static ssize_t qm_algqos_read(struct file *filp, char __user *buf, 3762 size_t count, loff_t *pos) 3763 { 3764 struct hisi_qm *qm = filp->private_data; 3765 char tbuf[QM_DBG_READ_LEN]; 3766 u32 qos_val, ir; 3767 int ret; 3768 3769 ret = hisi_qm_get_dfx_access(qm); 3770 if (ret) 3771 return ret; 3772 3773 /* Mailbox and reset cannot be operated at the same time */ 3774 if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 3775 pci_err(qm->pdev, "dev resetting, read alg qos failed!\n"); 3776 ret = -EAGAIN; 3777 goto err_put_dfx_access; 3778 } 3779 3780 if (qm->fun_type == QM_HW_PF) { 3781 ir = qm_get_shaper_vft_qos(qm, 0); 3782 } else { 3783 ret = qm_vf_read_qos(qm); 3784 if (ret) 3785 goto err_get_status; 3786 ir = qm->mb_qos; 3787 } 3788 3789 qos_val = ir / QM_QOS_RATE; 3790 ret = scnprintf(tbuf, QM_DBG_READ_LEN, "%u\n", qos_val); 3791 3792 ret = simple_read_from_buffer(buf, count, pos, tbuf, ret); 3793 3794 err_get_status: 3795 clear_bit(QM_RESETTING, &qm->misc_ctl); 3796 err_put_dfx_access: 3797 hisi_qm_put_dfx_access(qm); 3798 return ret; 3799 } 3800 3801 static ssize_t qm_get_qos_value(struct hisi_qm *qm, const char *buf, 3802 unsigned long *val, 3803 unsigned int *fun_index) 3804 { 3805 const struct bus_type *bus_type = qm->pdev->dev.bus; 3806 char tbuf_bdf[QM_DBG_READ_LEN] = {0}; 3807 char val_buf[QM_DBG_READ_LEN] = {0}; 3808 struct pci_dev *pdev; 3809 struct device *dev; 3810 int ret; 3811 3812 ret = sscanf(buf, "%s %s", tbuf_bdf, val_buf); 3813 if (ret != QM_QOS_PARAM_NUM) 3814 return -EINVAL; 3815 3816 ret = kstrtoul(val_buf, 10, val); 3817 if (ret || *val == 0 || *val > QM_QOS_MAX_VAL) { 3818 pci_err(qm->pdev, "input qos value is error, please set 1~1000!\n"); 3819 return -EINVAL; 3820 } 3821 3822 dev = bus_find_device_by_name(bus_type, NULL, tbuf_bdf); 3823 if (!dev) { 3824 pci_err(qm->pdev, "input pci bdf number is error!\n"); 3825 return -ENODEV; 3826 } 3827 3828 pdev = container_of(dev, struct pci_dev, dev); 3829 3830 *fun_index = pdev->devfn; 3831 3832 return 0; 3833 } 3834 3835 static ssize_t qm_algqos_write(struct file *filp, const char __user *buf, 3836 size_t count, loff_t *pos) 3837 { 3838 struct hisi_qm *qm = filp->private_data; 3839 char tbuf[QM_DBG_READ_LEN]; 3840 unsigned int fun_index; 3841 unsigned long val; 3842 int len, ret; 3843 3844 if (*pos != 0) 3845 return 0; 3846 3847 if (count >= QM_DBG_READ_LEN) 3848 return -ENOSPC; 3849 3850 len = simple_write_to_buffer(tbuf, QM_DBG_READ_LEN - 1, pos, buf, count); 3851 if (len < 0) 3852 return len; 3853 3854 tbuf[len] = '\0'; 3855 ret = qm_get_qos_value(qm, tbuf, &val, &fun_index); 3856 if (ret) 3857 return ret; 3858 3859 /* Mailbox and reset cannot be operated at the same time */ 3860 if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 3861 pci_err(qm->pdev, "dev resetting, write alg qos failed!\n"); 3862 return -EAGAIN; 3863 } 3864 3865 ret = qm_pm_get_sync(qm); 3866 if (ret) { 3867 ret = -EINVAL; 3868 goto err_get_status; 3869 } 3870 3871 ret = qm_func_shaper_enable(qm, fun_index, val); 3872 if (ret) { 3873 pci_err(qm->pdev, "failed to enable function shaper!\n"); 3874 ret = -EINVAL; 3875 goto err_put_sync; 3876 } 3877 3878 pci_info(qm->pdev, "the qos value of function%u is set to %lu.\n", 3879 fun_index, val); 3880 ret = count; 3881 3882 err_put_sync: 3883 qm_pm_put_sync(qm); 3884 err_get_status: 3885 clear_bit(QM_RESETTING, &qm->misc_ctl); 3886 return ret; 3887 } 3888 3889 static const struct file_operations qm_algqos_fops = { 3890 .owner = THIS_MODULE, 3891 .open = simple_open, 3892 .read = qm_algqos_read, 3893 .write = qm_algqos_write, 3894 }; 3895 3896 /** 3897 * hisi_qm_set_algqos_init() - Initialize function qos debugfs files. 3898 * @qm: The qm for which we want to add debugfs files. 3899 * 3900 * Create function qos debugfs files, VF ping PF to get function qos. 3901 */ 3902 void hisi_qm_set_algqos_init(struct hisi_qm *qm) 3903 { 3904 if (qm->fun_type == QM_HW_PF) 3905 debugfs_create_file("alg_qos", 0644, qm->debug.debug_root, 3906 qm, &qm_algqos_fops); 3907 else if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 3908 debugfs_create_file("alg_qos", 0444, qm->debug.debug_root, 3909 qm, &qm_algqos_fops); 3910 } 3911 3912 static void hisi_qm_init_vf_qos(struct hisi_qm *qm, int total_func) 3913 { 3914 int i; 3915 3916 for (i = 1; i <= total_func; i++) 3917 qm->factor[i].func_qos = QM_QOS_MAX_VAL; 3918 } 3919 3920 /** 3921 * hisi_qm_sriov_enable() - enable virtual functions 3922 * @pdev: the PCIe device 3923 * @max_vfs: the number of virtual functions to enable 3924 * 3925 * Returns the number of enabled VFs. If there are VFs enabled already or 3926 * max_vfs is more than the total number of device can be enabled, returns 3927 * failure. 3928 */ 3929 int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs) 3930 { 3931 struct hisi_qm *qm = pci_get_drvdata(pdev); 3932 int pre_existing_vfs, num_vfs, total_vfs, ret; 3933 3934 ret = qm_pm_get_sync(qm); 3935 if (ret) 3936 return ret; 3937 3938 total_vfs = pci_sriov_get_totalvfs(pdev); 3939 pre_existing_vfs = pci_num_vf(pdev); 3940 if (pre_existing_vfs) { 3941 pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n", 3942 pre_existing_vfs); 3943 goto err_put_sync; 3944 } 3945 3946 if (max_vfs > total_vfs) { 3947 pci_err(pdev, "%d VFs is more than total VFs %d!\n", max_vfs, total_vfs); 3948 ret = -ERANGE; 3949 goto err_put_sync; 3950 } 3951 3952 num_vfs = max_vfs; 3953 3954 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 3955 hisi_qm_init_vf_qos(qm, num_vfs); 3956 3957 ret = qm_vf_q_assign(qm, num_vfs); 3958 if (ret) { 3959 pci_err(pdev, "Can't assign queues for VF!\n"); 3960 goto err_put_sync; 3961 } 3962 3963 ret = pci_enable_sriov(pdev, num_vfs); 3964 if (ret) { 3965 pci_err(pdev, "Can't enable VF!\n"); 3966 qm_clear_vft_config(qm); 3967 goto err_put_sync; 3968 } 3969 qm->vfs_num = num_vfs; 3970 3971 pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs); 3972 3973 return num_vfs; 3974 3975 err_put_sync: 3976 qm_pm_put_sync(qm); 3977 return ret; 3978 } 3979 EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable); 3980 3981 /** 3982 * hisi_qm_sriov_disable - disable virtual functions 3983 * @pdev: the PCI device. 3984 * @is_frozen: true when all the VFs are frozen. 3985 * 3986 * Return failure if there are VFs assigned already or VF is in used. 3987 */ 3988 int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen) 3989 { 3990 struct hisi_qm *qm = pci_get_drvdata(pdev); 3991 3992 if (pci_vfs_assigned(pdev)) { 3993 pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n"); 3994 return -EPERM; 3995 } 3996 3997 /* While VF is in used, SRIOV cannot be disabled. */ 3998 if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) { 3999 pci_err(pdev, "Task is using its VF!\n"); 4000 return -EBUSY; 4001 } 4002 4003 pci_disable_sriov(pdev); 4004 4005 qm->vfs_num = 0; 4006 qm_pm_put_sync(qm); 4007 4008 return qm_clear_vft_config(qm); 4009 } 4010 EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable); 4011 4012 /** 4013 * hisi_qm_sriov_configure - configure the number of VFs 4014 * @pdev: The PCI device 4015 * @num_vfs: The number of VFs need enabled 4016 * 4017 * Enable SR-IOV according to num_vfs, 0 means disable. 4018 */ 4019 int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs) 4020 { 4021 if (num_vfs == 0) 4022 return hisi_qm_sriov_disable(pdev, false); 4023 else 4024 return hisi_qm_sriov_enable(pdev, num_vfs); 4025 } 4026 EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure); 4027 4028 static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm) 4029 { 4030 if (!qm->err_ini->get_err_result) { 4031 dev_err(&qm->pdev->dev, "Device doesn't support reset!\n"); 4032 return ACC_ERR_NONE; 4033 } 4034 4035 return qm->err_ini->get_err_result(qm); 4036 } 4037 4038 static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm) 4039 { 4040 enum acc_err_result qm_ret, dev_ret; 4041 4042 /* log qm error */ 4043 qm_ret = qm_hw_error_handle(qm); 4044 4045 /* log device error */ 4046 dev_ret = qm_dev_err_handle(qm); 4047 4048 return (qm_ret == ACC_ERR_NEED_RESET || 4049 dev_ret == ACC_ERR_NEED_RESET) ? 4050 ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED; 4051 } 4052 4053 /** 4054 * hisi_qm_dev_err_detected() - Get device and qm error status then log it. 4055 * @pdev: The PCI device which need report error. 4056 * @state: The connectivity between CPU and device. 4057 * 4058 * We register this function into PCIe AER handlers, It will report device or 4059 * qm hardware error status when error occur. 4060 */ 4061 pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev, 4062 pci_channel_state_t state) 4063 { 4064 struct hisi_qm *qm = pci_get_drvdata(pdev); 4065 enum acc_err_result ret; 4066 4067 if (pdev->is_virtfn) 4068 return PCI_ERS_RESULT_NONE; 4069 4070 pci_info(pdev, "PCI error detected, state(=%u)!!\n", state); 4071 if (state == pci_channel_io_perm_failure) 4072 return PCI_ERS_RESULT_DISCONNECT; 4073 4074 ret = qm_process_dev_error(qm); 4075 if (ret == ACC_ERR_NEED_RESET) 4076 return PCI_ERS_RESULT_NEED_RESET; 4077 4078 return PCI_ERS_RESULT_RECOVERED; 4079 } 4080 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected); 4081 4082 static int qm_check_req_recv(struct hisi_qm *qm) 4083 { 4084 struct pci_dev *pdev = qm->pdev; 4085 int ret; 4086 u32 val; 4087 4088 if (qm->ver >= QM_HW_V3) 4089 return 0; 4090 4091 writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID); 4092 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val, 4093 (val == ACC_VENDOR_ID_VALUE), 4094 POLL_PERIOD, POLL_TIMEOUT); 4095 if (ret) { 4096 dev_err(&pdev->dev, "Fails to read QM reg!\n"); 4097 return ret; 4098 } 4099 4100 writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID); 4101 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val, 4102 (val == PCI_VENDOR_ID_HUAWEI), 4103 POLL_PERIOD, POLL_TIMEOUT); 4104 if (ret) 4105 dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n"); 4106 4107 return ret; 4108 } 4109 4110 static int qm_set_pf_mse(struct hisi_qm *qm, bool set) 4111 { 4112 struct pci_dev *pdev = qm->pdev; 4113 u16 cmd; 4114 int i; 4115 4116 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 4117 if (set) 4118 cmd |= PCI_COMMAND_MEMORY; 4119 else 4120 cmd &= ~PCI_COMMAND_MEMORY; 4121 4122 pci_write_config_word(pdev, PCI_COMMAND, cmd); 4123 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 4124 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 4125 if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1)) 4126 return 0; 4127 4128 udelay(1); 4129 } 4130 4131 return -ETIMEDOUT; 4132 } 4133 4134 static int qm_set_vf_mse(struct hisi_qm *qm, bool set) 4135 { 4136 struct pci_dev *pdev = qm->pdev; 4137 u16 sriov_ctrl; 4138 int pos; 4139 int i; 4140 4141 /* 4142 * Since function qm_set_vf_mse is called only after SRIOV is enabled, 4143 * pci_find_ext_capability cannot return 0, pos does not need to be 4144 * checked. 4145 */ 4146 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); 4147 pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl); 4148 if (set) 4149 sriov_ctrl |= PCI_SRIOV_CTRL_MSE; 4150 else 4151 sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE; 4152 pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl); 4153 4154 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 4155 pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl); 4156 if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >> 4157 ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT) 4158 return 0; 4159 4160 udelay(1); 4161 } 4162 4163 return -ETIMEDOUT; 4164 } 4165 4166 static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm) 4167 { 4168 u32 nfe_enb = 0; 4169 4170 /* Kunpeng930 hardware automatically close master ooo when NFE occurs */ 4171 if (qm->ver >= QM_HW_V3) 4172 return; 4173 4174 if (!qm->err_status.is_dev_ecc_mbit && 4175 qm->err_status.is_qm_ecc_mbit && 4176 qm->err_ini->close_axi_master_ooo) { 4177 qm->err_ini->close_axi_master_ooo(qm); 4178 } else if (qm->err_status.is_dev_ecc_mbit && 4179 !qm->err_status.is_qm_ecc_mbit && 4180 !qm->err_ini->close_axi_master_ooo) { 4181 nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE); 4182 writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE, 4183 qm->io_base + QM_RAS_NFE_ENABLE); 4184 writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET); 4185 } 4186 } 4187 4188 static int qm_vf_reset_prepare(struct hisi_qm *qm, 4189 enum qm_stop_reason stop_reason) 4190 { 4191 struct hisi_qm_list *qm_list = qm->qm_list; 4192 struct pci_dev *pdev = qm->pdev; 4193 struct pci_dev *virtfn; 4194 struct hisi_qm *vf_qm; 4195 int ret = 0; 4196 4197 mutex_lock(&qm_list->lock); 4198 list_for_each_entry(vf_qm, &qm_list->list, list) { 4199 virtfn = vf_qm->pdev; 4200 if (virtfn == pdev) 4201 continue; 4202 4203 if (pci_physfn(virtfn) == pdev) { 4204 /* save VFs PCIE BAR configuration */ 4205 pci_save_state(virtfn); 4206 4207 ret = hisi_qm_stop(vf_qm, stop_reason); 4208 if (ret) 4209 goto stop_fail; 4210 } 4211 } 4212 4213 stop_fail: 4214 mutex_unlock(&qm_list->lock); 4215 return ret; 4216 } 4217 4218 static int qm_try_stop_vfs(struct hisi_qm *qm, enum qm_ifc_cmd cmd, 4219 enum qm_stop_reason stop_reason) 4220 { 4221 struct pci_dev *pdev = qm->pdev; 4222 int ret; 4223 4224 if (!qm->vfs_num) 4225 return 0; 4226 4227 /* Kunpeng930 supports to notify VFs to stop before PF reset */ 4228 if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) { 4229 ret = qm_ping_all_vfs(qm, cmd); 4230 if (ret) 4231 pci_err(pdev, "failed to send command to all VFs before PF reset!\n"); 4232 } else { 4233 ret = qm_vf_reset_prepare(qm, stop_reason); 4234 if (ret) 4235 pci_err(pdev, "failed to prepare reset, ret = %d.\n", ret); 4236 } 4237 4238 return ret; 4239 } 4240 4241 static int qm_controller_reset_prepare(struct hisi_qm *qm) 4242 { 4243 struct pci_dev *pdev = qm->pdev; 4244 int ret; 4245 4246 if (qm->err_ini->set_priv_status) { 4247 ret = qm->err_ini->set_priv_status(qm); 4248 if (ret) 4249 return ret; 4250 } 4251 4252 ret = qm_reset_prepare_ready(qm); 4253 if (ret) { 4254 pci_err(pdev, "Controller reset not ready!\n"); 4255 return ret; 4256 } 4257 4258 qm_dev_ecc_mbit_handle(qm); 4259 4260 /* PF obtains the information of VF by querying the register. */ 4261 qm_cmd_uninit(qm); 4262 4263 /* Whether VFs stop successfully, soft reset will continue. */ 4264 ret = qm_try_stop_vfs(qm, QM_PF_SRST_PREPARE, QM_SOFT_RESET); 4265 if (ret) 4266 pci_err(pdev, "failed to stop vfs by pf in soft reset.\n"); 4267 4268 ret = hisi_qm_stop(qm, QM_SOFT_RESET); 4269 if (ret) { 4270 pci_err(pdev, "Fails to stop QM!\n"); 4271 qm_reset_bit_clear(qm); 4272 return ret; 4273 } 4274 4275 if (qm->use_sva) { 4276 ret = qm_hw_err_isolate(qm); 4277 if (ret) 4278 pci_err(pdev, "failed to isolate hw err!\n"); 4279 } 4280 4281 ret = qm_wait_vf_prepare_finish(qm); 4282 if (ret) 4283 pci_err(pdev, "failed to stop by vfs in soft reset!\n"); 4284 4285 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 4286 4287 return 0; 4288 } 4289 4290 static int qm_master_ooo_check(struct hisi_qm *qm) 4291 { 4292 u32 val; 4293 int ret; 4294 4295 /* Check the ooo register of the device before resetting the device. */ 4296 writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN, qm->io_base + ACC_MASTER_GLOBAL_CTRL); 4297 ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN, 4298 val, (val == ACC_MASTER_TRANS_RETURN_RW), 4299 POLL_PERIOD, POLL_TIMEOUT); 4300 if (ret) 4301 pci_warn(qm->pdev, "Bus lock! Please reset system.\n"); 4302 4303 return ret; 4304 } 4305 4306 static int qm_soft_reset_prepare(struct hisi_qm *qm) 4307 { 4308 struct pci_dev *pdev = qm->pdev; 4309 int ret; 4310 4311 /* Ensure all doorbells and mailboxes received by QM */ 4312 ret = qm_check_req_recv(qm); 4313 if (ret) 4314 return ret; 4315 4316 if (qm->vfs_num) { 4317 ret = qm_set_vf_mse(qm, false); 4318 if (ret) { 4319 pci_err(pdev, "Fails to disable vf MSE bit.\n"); 4320 return ret; 4321 } 4322 } 4323 4324 ret = qm->ops->set_msi(qm, false); 4325 if (ret) { 4326 pci_err(pdev, "Fails to disable PEH MSI bit.\n"); 4327 return ret; 4328 } 4329 4330 ret = qm_master_ooo_check(qm); 4331 if (ret) 4332 return ret; 4333 4334 if (qm->err_ini->close_sva_prefetch) 4335 qm->err_ini->close_sva_prefetch(qm); 4336 4337 ret = qm_set_pf_mse(qm, false); 4338 if (ret) 4339 pci_err(pdev, "Fails to disable pf MSE bit.\n"); 4340 4341 return ret; 4342 } 4343 4344 static int qm_reset_device(struct hisi_qm *qm) 4345 { 4346 struct pci_dev *pdev = qm->pdev; 4347 4348 /* The reset related sub-control registers are not in PCI BAR */ 4349 if (ACPI_HANDLE(&pdev->dev)) { 4350 unsigned long long value = 0; 4351 acpi_status s; 4352 4353 s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev), 4354 qm->err_info.acpi_rst, 4355 NULL, &value); 4356 if (ACPI_FAILURE(s)) { 4357 pci_err(pdev, "NO controller reset method!\n"); 4358 return -EIO; 4359 } 4360 4361 if (value) { 4362 pci_err(pdev, "Reset step %llu failed!\n", value); 4363 return -EIO; 4364 } 4365 4366 return 0; 4367 } 4368 4369 pci_err(pdev, "No reset method!\n"); 4370 return -EINVAL; 4371 } 4372 4373 static int qm_soft_reset(struct hisi_qm *qm) 4374 { 4375 int ret; 4376 4377 ret = qm_soft_reset_prepare(qm); 4378 if (ret) 4379 return ret; 4380 4381 return qm_reset_device(qm); 4382 } 4383 4384 static int qm_vf_reset_done(struct hisi_qm *qm) 4385 { 4386 struct hisi_qm_list *qm_list = qm->qm_list; 4387 struct pci_dev *pdev = qm->pdev; 4388 struct pci_dev *virtfn; 4389 struct hisi_qm *vf_qm; 4390 int ret = 0; 4391 4392 mutex_lock(&qm_list->lock); 4393 list_for_each_entry(vf_qm, &qm_list->list, list) { 4394 virtfn = vf_qm->pdev; 4395 if (virtfn == pdev) 4396 continue; 4397 4398 if (pci_physfn(virtfn) == pdev) { 4399 /* enable VFs PCIE BAR configuration */ 4400 pci_restore_state(virtfn); 4401 4402 ret = qm_restart(vf_qm); 4403 if (ret) 4404 goto restart_fail; 4405 } 4406 } 4407 4408 restart_fail: 4409 mutex_unlock(&qm_list->lock); 4410 return ret; 4411 } 4412 4413 static int qm_try_start_vfs(struct hisi_qm *qm, enum qm_ifc_cmd cmd) 4414 { 4415 struct pci_dev *pdev = qm->pdev; 4416 int ret; 4417 4418 if (!qm->vfs_num) 4419 return 0; 4420 4421 ret = qm_vf_q_assign(qm, qm->vfs_num); 4422 if (ret) { 4423 pci_err(pdev, "failed to assign VFs, ret = %d.\n", ret); 4424 return ret; 4425 } 4426 4427 /* Kunpeng930 supports to notify VFs to start after PF reset. */ 4428 if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) { 4429 ret = qm_ping_all_vfs(qm, cmd); 4430 if (ret) 4431 pci_warn(pdev, "failed to send cmd to all VFs after PF reset!\n"); 4432 } else { 4433 ret = qm_vf_reset_done(qm); 4434 if (ret) 4435 pci_warn(pdev, "failed to start vfs, ret = %d.\n", ret); 4436 } 4437 4438 return ret; 4439 } 4440 4441 static int qm_dev_hw_init(struct hisi_qm *qm) 4442 { 4443 return qm->err_ini->hw_init(qm); 4444 } 4445 4446 static void qm_restart_prepare(struct hisi_qm *qm) 4447 { 4448 u32 value; 4449 4450 if (qm->err_ini->open_sva_prefetch) 4451 qm->err_ini->open_sva_prefetch(qm); 4452 4453 if (qm->ver >= QM_HW_V3) 4454 return; 4455 4456 if (!qm->err_status.is_qm_ecc_mbit && 4457 !qm->err_status.is_dev_ecc_mbit) 4458 return; 4459 4460 /* temporarily close the OOO port used for PEH to write out MSI */ 4461 value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4462 writel(value & ~qm->err_info.msi_wr_port, 4463 qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4464 4465 /* clear dev ecc 2bit error source if having */ 4466 value = qm_get_dev_err_status(qm) & qm->err_info.ecc_2bits_mask; 4467 if (value && qm->err_ini->clear_dev_hw_err_status) 4468 qm->err_ini->clear_dev_hw_err_status(qm, value); 4469 4470 /* clear QM ecc mbit error source */ 4471 writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE); 4472 4473 /* clear AM Reorder Buffer ecc mbit source */ 4474 writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS); 4475 } 4476 4477 static void qm_restart_done(struct hisi_qm *qm) 4478 { 4479 u32 value; 4480 4481 if (qm->ver >= QM_HW_V3) 4482 goto clear_flags; 4483 4484 if (!qm->err_status.is_qm_ecc_mbit && 4485 !qm->err_status.is_dev_ecc_mbit) 4486 return; 4487 4488 /* open the OOO port for PEH to write out MSI */ 4489 value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4490 value |= qm->err_info.msi_wr_port; 4491 writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4492 4493 clear_flags: 4494 qm->err_status.is_qm_ecc_mbit = false; 4495 qm->err_status.is_dev_ecc_mbit = false; 4496 } 4497 4498 static int qm_controller_reset_done(struct hisi_qm *qm) 4499 { 4500 struct pci_dev *pdev = qm->pdev; 4501 int ret; 4502 4503 ret = qm->ops->set_msi(qm, true); 4504 if (ret) { 4505 pci_err(pdev, "Fails to enable PEH MSI bit!\n"); 4506 return ret; 4507 } 4508 4509 ret = qm_set_pf_mse(qm, true); 4510 if (ret) { 4511 pci_err(pdev, "Fails to enable pf MSE bit!\n"); 4512 return ret; 4513 } 4514 4515 if (qm->vfs_num) { 4516 ret = qm_set_vf_mse(qm, true); 4517 if (ret) { 4518 pci_err(pdev, "Fails to enable vf MSE bit!\n"); 4519 return ret; 4520 } 4521 } 4522 4523 ret = qm_dev_hw_init(qm); 4524 if (ret) { 4525 pci_err(pdev, "Failed to init device\n"); 4526 return ret; 4527 } 4528 4529 qm_restart_prepare(qm); 4530 hisi_qm_dev_err_init(qm); 4531 if (qm->err_ini->open_axi_master_ooo) 4532 qm->err_ini->open_axi_master_ooo(qm); 4533 4534 ret = qm_dev_mem_reset(qm); 4535 if (ret) { 4536 pci_err(pdev, "failed to reset device memory\n"); 4537 return ret; 4538 } 4539 4540 ret = qm_restart(qm); 4541 if (ret) { 4542 pci_err(pdev, "Failed to start QM!\n"); 4543 return ret; 4544 } 4545 4546 ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE); 4547 if (ret) 4548 pci_err(pdev, "failed to start vfs by pf in soft reset.\n"); 4549 4550 ret = qm_wait_vf_prepare_finish(qm); 4551 if (ret) 4552 pci_err(pdev, "failed to start by vfs in soft reset!\n"); 4553 4554 qm_cmd_init(qm); 4555 qm_restart_done(qm); 4556 4557 qm_reset_bit_clear(qm); 4558 4559 return 0; 4560 } 4561 4562 static int qm_controller_reset(struct hisi_qm *qm) 4563 { 4564 struct pci_dev *pdev = qm->pdev; 4565 int ret; 4566 4567 pci_info(pdev, "Controller resetting...\n"); 4568 4569 ret = qm_controller_reset_prepare(qm); 4570 if (ret) { 4571 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 4572 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 4573 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 4574 return ret; 4575 } 4576 4577 hisi_qm_show_last_dfx_regs(qm); 4578 if (qm->err_ini->show_last_dfx_regs) 4579 qm->err_ini->show_last_dfx_regs(qm); 4580 4581 ret = qm_soft_reset(qm); 4582 if (ret) 4583 goto err_reset; 4584 4585 ret = qm_controller_reset_done(qm); 4586 if (ret) 4587 goto err_reset; 4588 4589 pci_info(pdev, "Controller reset complete\n"); 4590 4591 return 0; 4592 4593 err_reset: 4594 pci_err(pdev, "Controller reset failed (%d)\n", ret); 4595 qm_reset_bit_clear(qm); 4596 4597 /* if resetting fails, isolate the device */ 4598 if (qm->use_sva) 4599 qm->isolate_data.is_isolate = true; 4600 return ret; 4601 } 4602 4603 /** 4604 * hisi_qm_dev_slot_reset() - slot reset 4605 * @pdev: the PCIe device 4606 * 4607 * This function offers QM relate PCIe device reset interface. Drivers which 4608 * use QM can use this function as slot_reset in its struct pci_error_handlers. 4609 */ 4610 pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev) 4611 { 4612 struct hisi_qm *qm = pci_get_drvdata(pdev); 4613 int ret; 4614 4615 if (pdev->is_virtfn) 4616 return PCI_ERS_RESULT_RECOVERED; 4617 4618 /* reset pcie device controller */ 4619 ret = qm_controller_reset(qm); 4620 if (ret) { 4621 pci_err(pdev, "Controller reset failed (%d)\n", ret); 4622 return PCI_ERS_RESULT_DISCONNECT; 4623 } 4624 4625 return PCI_ERS_RESULT_RECOVERED; 4626 } 4627 EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset); 4628 4629 void hisi_qm_reset_prepare(struct pci_dev *pdev) 4630 { 4631 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 4632 struct hisi_qm *qm = pci_get_drvdata(pdev); 4633 u32 delay = 0; 4634 int ret; 4635 4636 hisi_qm_dev_err_uninit(pf_qm); 4637 4638 /* 4639 * Check whether there is an ECC mbit error, If it occurs, need to 4640 * wait for soft reset to fix it. 4641 */ 4642 while (qm_check_dev_error(qm)) { 4643 msleep(++delay); 4644 if (delay > QM_RESET_WAIT_TIMEOUT) 4645 return; 4646 } 4647 4648 ret = qm_reset_prepare_ready(qm); 4649 if (ret) { 4650 pci_err(pdev, "FLR not ready!\n"); 4651 return; 4652 } 4653 4654 /* PF obtains the information of VF by querying the register. */ 4655 if (qm->fun_type == QM_HW_PF) 4656 qm_cmd_uninit(qm); 4657 4658 ret = qm_try_stop_vfs(qm, QM_PF_FLR_PREPARE, QM_DOWN); 4659 if (ret) 4660 pci_err(pdev, "failed to stop vfs by pf in FLR.\n"); 4661 4662 ret = hisi_qm_stop(qm, QM_DOWN); 4663 if (ret) { 4664 pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret); 4665 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 4666 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 4667 return; 4668 } 4669 4670 ret = qm_wait_vf_prepare_finish(qm); 4671 if (ret) 4672 pci_err(pdev, "failed to stop by vfs in FLR!\n"); 4673 4674 pci_info(pdev, "FLR resetting...\n"); 4675 } 4676 EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare); 4677 4678 static bool qm_flr_reset_complete(struct pci_dev *pdev) 4679 { 4680 struct pci_dev *pf_pdev = pci_physfn(pdev); 4681 struct hisi_qm *qm = pci_get_drvdata(pf_pdev); 4682 u32 id; 4683 4684 pci_read_config_dword(qm->pdev, PCI_COMMAND, &id); 4685 if (id == QM_PCI_COMMAND_INVALID) { 4686 pci_err(pdev, "Device can not be used!\n"); 4687 return false; 4688 } 4689 4690 return true; 4691 } 4692 4693 void hisi_qm_reset_done(struct pci_dev *pdev) 4694 { 4695 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 4696 struct hisi_qm *qm = pci_get_drvdata(pdev); 4697 int ret; 4698 4699 if (qm->fun_type == QM_HW_PF) { 4700 ret = qm_dev_hw_init(qm); 4701 if (ret) { 4702 pci_err(pdev, "Failed to init PF, ret = %d.\n", ret); 4703 goto flr_done; 4704 } 4705 } 4706 4707 hisi_qm_dev_err_init(pf_qm); 4708 4709 ret = qm_restart(qm); 4710 if (ret) { 4711 pci_err(pdev, "Failed to start QM, ret = %d.\n", ret); 4712 goto flr_done; 4713 } 4714 4715 ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE); 4716 if (ret) 4717 pci_err(pdev, "failed to start vfs by pf in FLR.\n"); 4718 4719 ret = qm_wait_vf_prepare_finish(qm); 4720 if (ret) 4721 pci_err(pdev, "failed to start by vfs in FLR!\n"); 4722 4723 flr_done: 4724 if (qm->fun_type == QM_HW_PF) 4725 qm_cmd_init(qm); 4726 4727 if (qm_flr_reset_complete(pdev)) 4728 pci_info(pdev, "FLR reset complete\n"); 4729 4730 qm_reset_bit_clear(qm); 4731 } 4732 EXPORT_SYMBOL_GPL(hisi_qm_reset_done); 4733 4734 static irqreturn_t qm_abnormal_irq(int irq, void *data) 4735 { 4736 struct hisi_qm *qm = data; 4737 enum acc_err_result ret; 4738 4739 atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt); 4740 ret = qm_process_dev_error(qm); 4741 if (ret == ACC_ERR_NEED_RESET && 4742 !test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl) && 4743 !test_and_set_bit(QM_RST_SCHED, &qm->misc_ctl)) 4744 schedule_work(&qm->rst_work); 4745 4746 return IRQ_HANDLED; 4747 } 4748 4749 /** 4750 * hisi_qm_dev_shutdown() - Shutdown device. 4751 * @pdev: The device will be shutdown. 4752 * 4753 * This function will stop qm when OS shutdown or rebooting. 4754 */ 4755 void hisi_qm_dev_shutdown(struct pci_dev *pdev) 4756 { 4757 struct hisi_qm *qm = pci_get_drvdata(pdev); 4758 int ret; 4759 4760 ret = hisi_qm_stop(qm, QM_DOWN); 4761 if (ret) 4762 dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n"); 4763 4764 hisi_qm_cache_wb(qm); 4765 } 4766 EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown); 4767 4768 static void hisi_qm_controller_reset(struct work_struct *rst_work) 4769 { 4770 struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work); 4771 int ret; 4772 4773 ret = qm_pm_get_sync(qm); 4774 if (ret) { 4775 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 4776 return; 4777 } 4778 4779 /* reset pcie device controller */ 4780 ret = qm_controller_reset(qm); 4781 if (ret) 4782 dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret); 4783 4784 qm_pm_put_sync(qm); 4785 } 4786 4787 static void qm_pf_reset_vf_prepare(struct hisi_qm *qm, 4788 enum qm_stop_reason stop_reason) 4789 { 4790 enum qm_ifc_cmd cmd = QM_VF_PREPARE_DONE; 4791 struct pci_dev *pdev = qm->pdev; 4792 int ret; 4793 4794 ret = qm_reset_prepare_ready(qm); 4795 if (ret) { 4796 dev_err(&pdev->dev, "reset prepare not ready!\n"); 4797 atomic_set(&qm->status.flags, QM_STOP); 4798 cmd = QM_VF_PREPARE_FAIL; 4799 goto err_prepare; 4800 } 4801 4802 ret = hisi_qm_stop(qm, stop_reason); 4803 if (ret) { 4804 dev_err(&pdev->dev, "failed to stop QM, ret = %d.\n", ret); 4805 atomic_set(&qm->status.flags, QM_STOP); 4806 cmd = QM_VF_PREPARE_FAIL; 4807 goto err_prepare; 4808 } else { 4809 goto out; 4810 } 4811 4812 err_prepare: 4813 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 4814 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 4815 out: 4816 pci_save_state(pdev); 4817 ret = qm_ping_pf(qm, cmd); 4818 if (ret) 4819 dev_warn(&pdev->dev, "PF responds timeout in reset prepare!\n"); 4820 } 4821 4822 static void qm_pf_reset_vf_done(struct hisi_qm *qm) 4823 { 4824 enum qm_ifc_cmd cmd = QM_VF_START_DONE; 4825 struct pci_dev *pdev = qm->pdev; 4826 int ret; 4827 4828 pci_restore_state(pdev); 4829 ret = hisi_qm_start(qm); 4830 if (ret) { 4831 dev_err(&pdev->dev, "failed to start QM, ret = %d.\n", ret); 4832 cmd = QM_VF_START_FAIL; 4833 } 4834 4835 qm_cmd_init(qm); 4836 ret = qm_ping_pf(qm, cmd); 4837 if (ret) 4838 dev_warn(&pdev->dev, "PF responds timeout in reset done!\n"); 4839 4840 qm_reset_bit_clear(qm); 4841 } 4842 4843 static int qm_wait_pf_reset_finish(struct hisi_qm *qm) 4844 { 4845 struct device *dev = &qm->pdev->dev; 4846 u32 val, cmd; 4847 int ret; 4848 4849 /* Wait for reset to finish */ 4850 ret = readl_relaxed_poll_timeout(qm->io_base + QM_IFC_INT_SOURCE_V, val, 4851 val == BIT(0), QM_VF_RESET_WAIT_US, 4852 QM_VF_RESET_WAIT_TIMEOUT_US); 4853 /* hardware completion status should be available by this time */ 4854 if (ret) { 4855 dev_err(dev, "couldn't get reset done status from PF, timeout!\n"); 4856 return -ETIMEDOUT; 4857 } 4858 4859 /* 4860 * Whether message is got successfully, 4861 * VF needs to ack PF by clearing the interrupt. 4862 */ 4863 ret = qm->ops->get_ifc(qm, &cmd, NULL, 0); 4864 qm_clear_cmd_interrupt(qm, 0); 4865 if (ret) { 4866 dev_err(dev, "failed to get command from PF in reset done!\n"); 4867 return ret; 4868 } 4869 4870 if (cmd != QM_PF_RESET_DONE) { 4871 dev_err(dev, "the command(0x%x) is not reset done!\n", cmd); 4872 ret = -EINVAL; 4873 } 4874 4875 return ret; 4876 } 4877 4878 static void qm_pf_reset_vf_process(struct hisi_qm *qm, 4879 enum qm_stop_reason stop_reason) 4880 { 4881 struct device *dev = &qm->pdev->dev; 4882 int ret; 4883 4884 dev_info(dev, "device reset start...\n"); 4885 4886 /* The message is obtained by querying the register during resetting */ 4887 qm_cmd_uninit(qm); 4888 qm_pf_reset_vf_prepare(qm, stop_reason); 4889 4890 ret = qm_wait_pf_reset_finish(qm); 4891 if (ret) 4892 goto err_get_status; 4893 4894 qm_pf_reset_vf_done(qm); 4895 4896 dev_info(dev, "device reset done.\n"); 4897 4898 return; 4899 4900 err_get_status: 4901 qm_cmd_init(qm); 4902 qm_reset_bit_clear(qm); 4903 } 4904 4905 static void qm_handle_cmd_msg(struct hisi_qm *qm, u32 fun_num) 4906 { 4907 struct device *dev = &qm->pdev->dev; 4908 enum qm_ifc_cmd cmd; 4909 u32 data; 4910 int ret; 4911 4912 /* 4913 * Get the msg from source by sending mailbox. Whether message is got 4914 * successfully, destination needs to ack source by clearing the interrupt. 4915 */ 4916 ret = qm->ops->get_ifc(qm, &cmd, &data, fun_num); 4917 qm_clear_cmd_interrupt(qm, BIT(fun_num)); 4918 if (ret) { 4919 dev_err(dev, "failed to get command from source!\n"); 4920 return; 4921 } 4922 4923 switch (cmd) { 4924 case QM_PF_FLR_PREPARE: 4925 qm_pf_reset_vf_process(qm, QM_DOWN); 4926 break; 4927 case QM_PF_SRST_PREPARE: 4928 qm_pf_reset_vf_process(qm, QM_SOFT_RESET); 4929 break; 4930 case QM_VF_GET_QOS: 4931 qm_vf_get_qos(qm, fun_num); 4932 break; 4933 case QM_PF_SET_QOS: 4934 qm->mb_qos = data; 4935 break; 4936 default: 4937 dev_err(dev, "unsupported command(0x%x) sent by function(%u)!\n", cmd, fun_num); 4938 break; 4939 } 4940 } 4941 4942 static void qm_cmd_process(struct work_struct *cmd_process) 4943 { 4944 struct hisi_qm *qm = container_of(cmd_process, 4945 struct hisi_qm, cmd_process); 4946 u32 vfs_num = qm->vfs_num; 4947 u64 val; 4948 u32 i; 4949 4950 if (qm->fun_type == QM_HW_PF) { 4951 val = readq(qm->io_base + QM_IFC_INT_SOURCE_P); 4952 if (!val) 4953 return; 4954 4955 for (i = 1; i <= vfs_num; i++) { 4956 if (val & BIT(i)) 4957 qm_handle_cmd_msg(qm, i); 4958 } 4959 4960 return; 4961 } 4962 4963 qm_handle_cmd_msg(qm, 0); 4964 } 4965 4966 /** 4967 * hisi_qm_alg_register() - Register alg to crypto. 4968 * @qm: The qm needs add. 4969 * @qm_list: The qm list. 4970 * @guard: Guard of qp_num. 4971 * 4972 * Register algorithm to crypto when the function is satisfy guard. 4973 */ 4974 int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list, int guard) 4975 { 4976 struct device *dev = &qm->pdev->dev; 4977 4978 if (qm->ver <= QM_HW_V2 && qm->use_sva) { 4979 dev_info(dev, "HW V2 not both use uacce sva mode and hardware crypto algs.\n"); 4980 return 0; 4981 } 4982 4983 if (qm->qp_num < guard) { 4984 dev_info(dev, "qp_num is less than task need.\n"); 4985 return 0; 4986 } 4987 4988 return qm_list->register_to_crypto(qm); 4989 } 4990 EXPORT_SYMBOL_GPL(hisi_qm_alg_register); 4991 4992 /** 4993 * hisi_qm_alg_unregister() - Unregister alg from crypto. 4994 * @qm: The qm needs delete. 4995 * @qm_list: The qm list. 4996 * @guard: Guard of qp_num. 4997 * 4998 * Unregister algorithm from crypto when the last function is satisfy guard. 4999 */ 5000 void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list, int guard) 5001 { 5002 if (qm->ver <= QM_HW_V2 && qm->use_sva) 5003 return; 5004 5005 if (qm->qp_num < guard) 5006 return; 5007 5008 qm_list->unregister_from_crypto(qm); 5009 } 5010 EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister); 5011 5012 static void qm_unregister_abnormal_irq(struct hisi_qm *qm) 5013 { 5014 struct pci_dev *pdev = qm->pdev; 5015 u32 irq_vector, val; 5016 5017 if (qm->fun_type == QM_HW_VF) 5018 return; 5019 5020 val = qm->cap_tables.qm_cap_table[QM_ABNORMAL_IRQ].cap_val; 5021 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK)) 5022 return; 5023 5024 irq_vector = val & QM_IRQ_VECTOR_MASK; 5025 free_irq(pci_irq_vector(pdev, irq_vector), qm); 5026 } 5027 5028 static int qm_register_abnormal_irq(struct hisi_qm *qm) 5029 { 5030 struct pci_dev *pdev = qm->pdev; 5031 u32 irq_vector, val; 5032 int ret; 5033 5034 if (qm->fun_type == QM_HW_VF) 5035 return 0; 5036 5037 val = qm->cap_tables.qm_cap_table[QM_ABNORMAL_IRQ].cap_val; 5038 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK)) 5039 return 0; 5040 5041 irq_vector = val & QM_IRQ_VECTOR_MASK; 5042 ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_abnormal_irq, 0, qm->dev_name, qm); 5043 if (ret) 5044 dev_err(&qm->pdev->dev, "failed to request abnormal irq, ret = %d", ret); 5045 5046 return ret; 5047 } 5048 5049 static void qm_unregister_mb_cmd_irq(struct hisi_qm *qm) 5050 { 5051 struct pci_dev *pdev = qm->pdev; 5052 u32 irq_vector, val; 5053 5054 val = qm->cap_tables.qm_cap_table[QM_MB_IRQ].cap_val; 5055 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5056 return; 5057 5058 irq_vector = val & QM_IRQ_VECTOR_MASK; 5059 free_irq(pci_irq_vector(pdev, irq_vector), qm); 5060 } 5061 5062 static int qm_register_mb_cmd_irq(struct hisi_qm *qm) 5063 { 5064 struct pci_dev *pdev = qm->pdev; 5065 u32 irq_vector, val; 5066 int ret; 5067 5068 val = qm->cap_tables.qm_cap_table[QM_MB_IRQ].cap_val; 5069 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5070 return 0; 5071 5072 irq_vector = val & QM_IRQ_VECTOR_MASK; 5073 ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_mb_cmd_irq, 0, qm->dev_name, qm); 5074 if (ret) 5075 dev_err(&pdev->dev, "failed to request function communication irq, ret = %d", ret); 5076 5077 return ret; 5078 } 5079 5080 static void qm_unregister_aeq_irq(struct hisi_qm *qm) 5081 { 5082 struct pci_dev *pdev = qm->pdev; 5083 u32 irq_vector, val; 5084 5085 val = qm->cap_tables.qm_cap_table[QM_AEQ_IRQ].cap_val; 5086 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5087 return; 5088 5089 irq_vector = val & QM_IRQ_VECTOR_MASK; 5090 free_irq(pci_irq_vector(pdev, irq_vector), qm); 5091 } 5092 5093 static int qm_register_aeq_irq(struct hisi_qm *qm) 5094 { 5095 struct pci_dev *pdev = qm->pdev; 5096 u32 irq_vector, val; 5097 int ret; 5098 5099 val = qm->cap_tables.qm_cap_table[QM_AEQ_IRQ].cap_val; 5100 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5101 return 0; 5102 5103 irq_vector = val & QM_IRQ_VECTOR_MASK; 5104 ret = request_threaded_irq(pci_irq_vector(pdev, irq_vector), NULL, 5105 qm_aeq_thread, IRQF_ONESHOT, qm->dev_name, qm); 5106 if (ret) 5107 dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret); 5108 5109 return ret; 5110 } 5111 5112 static void qm_unregister_eq_irq(struct hisi_qm *qm) 5113 { 5114 struct pci_dev *pdev = qm->pdev; 5115 u32 irq_vector, val; 5116 5117 val = qm->cap_tables.qm_cap_table[QM_EQ_IRQ].cap_val; 5118 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5119 return; 5120 5121 irq_vector = val & QM_IRQ_VECTOR_MASK; 5122 free_irq(pci_irq_vector(pdev, irq_vector), qm); 5123 } 5124 5125 static int qm_register_eq_irq(struct hisi_qm *qm) 5126 { 5127 struct pci_dev *pdev = qm->pdev; 5128 u32 irq_vector, val; 5129 int ret; 5130 5131 val = qm->cap_tables.qm_cap_table[QM_EQ_IRQ].cap_val; 5132 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5133 return 0; 5134 5135 irq_vector = val & QM_IRQ_VECTOR_MASK; 5136 ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_eq_irq, 0, qm->dev_name, qm); 5137 if (ret) 5138 dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret); 5139 5140 return ret; 5141 } 5142 5143 static void qm_irqs_unregister(struct hisi_qm *qm) 5144 { 5145 qm_unregister_mb_cmd_irq(qm); 5146 qm_unregister_abnormal_irq(qm); 5147 qm_unregister_aeq_irq(qm); 5148 qm_unregister_eq_irq(qm); 5149 } 5150 5151 static int qm_irqs_register(struct hisi_qm *qm) 5152 { 5153 int ret; 5154 5155 ret = qm_register_eq_irq(qm); 5156 if (ret) 5157 return ret; 5158 5159 ret = qm_register_aeq_irq(qm); 5160 if (ret) 5161 goto free_eq_irq; 5162 5163 ret = qm_register_abnormal_irq(qm); 5164 if (ret) 5165 goto free_aeq_irq; 5166 5167 ret = qm_register_mb_cmd_irq(qm); 5168 if (ret) 5169 goto free_abnormal_irq; 5170 5171 return 0; 5172 5173 free_abnormal_irq: 5174 qm_unregister_abnormal_irq(qm); 5175 free_aeq_irq: 5176 qm_unregister_aeq_irq(qm); 5177 free_eq_irq: 5178 qm_unregister_eq_irq(qm); 5179 return ret; 5180 } 5181 5182 static int qm_get_qp_num(struct hisi_qm *qm) 5183 { 5184 struct device *dev = &qm->pdev->dev; 5185 bool is_db_isolation; 5186 5187 /* VF's qp_num assigned by PF in v2, and VF can get qp_num by vft. */ 5188 if (qm->fun_type == QM_HW_VF) { 5189 if (qm->ver != QM_HW_V1) 5190 /* v2 starts to support get vft by mailbox */ 5191 return hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num); 5192 5193 return 0; 5194 } 5195 5196 is_db_isolation = test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps); 5197 qm->ctrl_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, QM_TOTAL_QP_NUM_CAP, true); 5198 qm->max_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, 5199 QM_FUNC_MAX_QP_CAP, is_db_isolation); 5200 5201 if (qm->qp_num <= qm->max_qp_num) 5202 return 0; 5203 5204 if (test_bit(QM_MODULE_PARAM, &qm->misc_ctl)) { 5205 /* Check whether the set qp number is valid */ 5206 dev_err(dev, "qp num(%u) is more than max qp num(%u)!\n", 5207 qm->qp_num, qm->max_qp_num); 5208 return -EINVAL; 5209 } 5210 5211 dev_info(dev, "Default qp num(%u) is too big, reset it to Function's max qp num(%u)!\n", 5212 qm->qp_num, qm->max_qp_num); 5213 qm->qp_num = qm->max_qp_num; 5214 qm->debug.curr_qm_qp_num = qm->qp_num; 5215 5216 return 0; 5217 } 5218 5219 static int qm_pre_store_caps(struct hisi_qm *qm) 5220 { 5221 struct hisi_qm_cap_record *qm_cap; 5222 struct pci_dev *pdev = qm->pdev; 5223 size_t i, size; 5224 5225 size = ARRAY_SIZE(qm_cap_query_info); 5226 qm_cap = devm_kcalloc(&pdev->dev, sizeof(*qm_cap), size, GFP_KERNEL); 5227 if (!qm_cap) 5228 return -ENOMEM; 5229 5230 for (i = 0; i < size; i++) { 5231 qm_cap[i].type = qm_cap_query_info[i].type; 5232 qm_cap[i].name = qm_cap_query_info[i].name; 5233 qm_cap[i].cap_val = hisi_qm_get_cap_value(qm, qm_cap_query_info, 5234 i, qm->cap_ver); 5235 } 5236 5237 qm->cap_tables.qm_cap_table = qm_cap; 5238 qm->cap_tables.qm_cap_size = size; 5239 5240 return 0; 5241 } 5242 5243 static int qm_get_hw_caps(struct hisi_qm *qm) 5244 { 5245 const struct hisi_qm_cap_info *cap_info = qm->fun_type == QM_HW_PF ? 5246 qm_cap_info_pf : qm_cap_info_vf; 5247 u32 size = qm->fun_type == QM_HW_PF ? ARRAY_SIZE(qm_cap_info_pf) : 5248 ARRAY_SIZE(qm_cap_info_vf); 5249 u32 val, i; 5250 5251 /* Doorbell isolate register is a independent register. */ 5252 val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, QM_SUPPORT_DB_ISOLATION, true); 5253 if (val) 5254 set_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps); 5255 5256 if (qm->ver >= QM_HW_V3) { 5257 val = readl(qm->io_base + QM_FUNC_CAPS_REG); 5258 qm->cap_ver = val & QM_CAPBILITY_VERSION; 5259 } 5260 5261 /* Get PF/VF common capbility */ 5262 for (i = 1; i < ARRAY_SIZE(qm_cap_info_comm); i++) { 5263 val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, i, qm->cap_ver); 5264 if (val) 5265 set_bit(qm_cap_info_comm[i].type, &qm->caps); 5266 } 5267 5268 /* Get PF/VF different capbility */ 5269 for (i = 0; i < size; i++) { 5270 val = hisi_qm_get_hw_info(qm, cap_info, i, qm->cap_ver); 5271 if (val) 5272 set_bit(cap_info[i].type, &qm->caps); 5273 } 5274 5275 /* Fetch and save the value of qm capability registers */ 5276 return qm_pre_store_caps(qm); 5277 } 5278 5279 static void qm_get_version(struct hisi_qm *qm) 5280 { 5281 struct pci_dev *pdev = qm->pdev; 5282 u32 sub_version_id; 5283 5284 qm->ver = pdev->revision; 5285 5286 if (pdev->revision == QM_HW_V3) { 5287 sub_version_id = readl(qm->io_base + QM_SUB_VERSION_ID); 5288 if (sub_version_id) 5289 qm->ver = sub_version_id; 5290 } 5291 } 5292 5293 static int qm_get_pci_res(struct hisi_qm *qm) 5294 { 5295 struct pci_dev *pdev = qm->pdev; 5296 struct device *dev = &pdev->dev; 5297 int ret; 5298 5299 ret = pci_request_mem_regions(pdev, qm->dev_name); 5300 if (ret < 0) { 5301 dev_err(dev, "Failed to request mem regions!\n"); 5302 return ret; 5303 } 5304 5305 qm->phys_base = pci_resource_start(pdev, PCI_BAR_2); 5306 qm->io_base = ioremap(qm->phys_base, pci_resource_len(pdev, PCI_BAR_2)); 5307 if (!qm->io_base) { 5308 ret = -EIO; 5309 goto err_request_mem_regions; 5310 } 5311 5312 qm_get_version(qm); 5313 5314 ret = qm_get_hw_caps(qm); 5315 if (ret) 5316 goto err_ioremap; 5317 5318 if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) { 5319 qm->db_interval = QM_QP_DB_INTERVAL; 5320 qm->db_phys_base = pci_resource_start(pdev, PCI_BAR_4); 5321 qm->db_io_base = ioremap(qm->db_phys_base, 5322 pci_resource_len(pdev, PCI_BAR_4)); 5323 if (!qm->db_io_base) { 5324 ret = -EIO; 5325 goto err_ioremap; 5326 } 5327 } else { 5328 qm->db_phys_base = qm->phys_base; 5329 qm->db_io_base = qm->io_base; 5330 qm->db_interval = 0; 5331 } 5332 5333 hisi_qm_pre_init(qm); 5334 ret = qm_get_qp_num(qm); 5335 if (ret) 5336 goto err_db_ioremap; 5337 5338 return 0; 5339 5340 err_db_ioremap: 5341 if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) 5342 iounmap(qm->db_io_base); 5343 err_ioremap: 5344 iounmap(qm->io_base); 5345 err_request_mem_regions: 5346 pci_release_mem_regions(pdev); 5347 return ret; 5348 } 5349 5350 static int qm_clear_device(struct hisi_qm *qm) 5351 { 5352 acpi_handle handle = ACPI_HANDLE(&qm->pdev->dev); 5353 int ret; 5354 5355 if (qm->fun_type == QM_HW_VF) 5356 return 0; 5357 5358 /* Device does not support reset, return */ 5359 if (!qm->err_ini->err_info_init) 5360 return 0; 5361 qm->err_ini->err_info_init(qm); 5362 5363 if (!handle) 5364 return 0; 5365 5366 /* No reset method, return */ 5367 if (!acpi_has_method(handle, qm->err_info.acpi_rst)) 5368 return 0; 5369 5370 ret = qm_master_ooo_check(qm); 5371 if (ret) { 5372 writel(0x0, qm->io_base + ACC_MASTER_GLOBAL_CTRL); 5373 return ret; 5374 } 5375 5376 if (qm->err_ini->set_priv_status) { 5377 ret = qm->err_ini->set_priv_status(qm); 5378 if (ret) { 5379 writel(0x0, qm->io_base + ACC_MASTER_GLOBAL_CTRL); 5380 return ret; 5381 } 5382 } 5383 5384 return qm_reset_device(qm); 5385 } 5386 5387 static int hisi_qm_pci_init(struct hisi_qm *qm) 5388 { 5389 struct pci_dev *pdev = qm->pdev; 5390 struct device *dev = &pdev->dev; 5391 unsigned int num_vec; 5392 int ret; 5393 5394 ret = pci_enable_device_mem(pdev); 5395 if (ret < 0) { 5396 dev_err(dev, "Failed to enable device mem!\n"); 5397 return ret; 5398 } 5399 5400 ret = qm_get_pci_res(qm); 5401 if (ret) 5402 goto err_disable_pcidev; 5403 5404 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5405 if (ret < 0) 5406 goto err_get_pci_res; 5407 pci_set_master(pdev); 5408 5409 num_vec = qm_get_irq_num(qm); 5410 ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI); 5411 if (ret < 0) { 5412 dev_err(dev, "Failed to enable MSI vectors!\n"); 5413 goto err_get_pci_res; 5414 } 5415 5416 ret = qm_clear_device(qm); 5417 if (ret) 5418 goto err_free_vectors; 5419 5420 return 0; 5421 5422 err_free_vectors: 5423 pci_free_irq_vectors(pdev); 5424 err_get_pci_res: 5425 qm_put_pci_res(qm); 5426 err_disable_pcidev: 5427 pci_disable_device(pdev); 5428 return ret; 5429 } 5430 5431 static int hisi_qm_init_work(struct hisi_qm *qm) 5432 { 5433 int i; 5434 5435 for (i = 0; i < qm->qp_num; i++) 5436 INIT_WORK(&qm->poll_data[i].work, qm_work_process); 5437 5438 if (qm->fun_type == QM_HW_PF) 5439 INIT_WORK(&qm->rst_work, hisi_qm_controller_reset); 5440 5441 if (qm->ver > QM_HW_V2) 5442 INIT_WORK(&qm->cmd_process, qm_cmd_process); 5443 5444 qm->wq = alloc_workqueue("%s", WQ_HIGHPRI | WQ_MEM_RECLAIM | 5445 WQ_UNBOUND, num_online_cpus(), 5446 pci_name(qm->pdev)); 5447 if (!qm->wq) { 5448 pci_err(qm->pdev, "failed to alloc workqueue!\n"); 5449 return -ENOMEM; 5450 } 5451 5452 return 0; 5453 } 5454 5455 static int hisi_qp_alloc_memory(struct hisi_qm *qm) 5456 { 5457 struct device *dev = &qm->pdev->dev; 5458 u16 sq_depth, cq_depth; 5459 size_t qp_dma_size; 5460 int i, ret; 5461 5462 qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL); 5463 if (!qm->qp_array) 5464 return -ENOMEM; 5465 5466 qm->poll_data = kcalloc(qm->qp_num, sizeof(struct hisi_qm_poll_data), GFP_KERNEL); 5467 if (!qm->poll_data) { 5468 kfree(qm->qp_array); 5469 return -ENOMEM; 5470 } 5471 5472 qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP); 5473 5474 /* one more page for device or qp statuses */ 5475 qp_dma_size = qm->sqe_size * sq_depth + sizeof(struct qm_cqe) * cq_depth; 5476 qp_dma_size = PAGE_ALIGN(qp_dma_size) + PAGE_SIZE; 5477 for (i = 0; i < qm->qp_num; i++) { 5478 qm->poll_data[i].qm = qm; 5479 ret = hisi_qp_memory_init(qm, qp_dma_size, i, sq_depth, cq_depth); 5480 if (ret) 5481 goto err_init_qp_mem; 5482 5483 dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size); 5484 } 5485 5486 return 0; 5487 err_init_qp_mem: 5488 hisi_qp_memory_uninit(qm, i); 5489 5490 return ret; 5491 } 5492 5493 static int hisi_qm_alloc_rsv_buf(struct hisi_qm *qm) 5494 { 5495 struct qm_rsv_buf *xqc_buf = &qm->xqc_buf; 5496 struct qm_dma *xqc_dma = &xqc_buf->qcdma; 5497 struct device *dev = &qm->pdev->dev; 5498 size_t off = 0; 5499 5500 #define QM_XQC_BUF_INIT(xqc_buf, type) do { \ 5501 (xqc_buf)->type = ((xqc_buf)->qcdma.va + (off)); \ 5502 (xqc_buf)->type##_dma = (xqc_buf)->qcdma.dma + (off); \ 5503 off += QMC_ALIGN(sizeof(struct qm_##type)); \ 5504 } while (0) 5505 5506 xqc_dma->size = QMC_ALIGN(sizeof(struct qm_eqc)) + 5507 QMC_ALIGN(sizeof(struct qm_aeqc)) + 5508 QMC_ALIGN(sizeof(struct qm_sqc)) + 5509 QMC_ALIGN(sizeof(struct qm_cqc)); 5510 xqc_dma->va = dma_alloc_coherent(dev, xqc_dma->size, 5511 &xqc_dma->dma, GFP_KERNEL); 5512 if (!xqc_dma->va) 5513 return -ENOMEM; 5514 5515 QM_XQC_BUF_INIT(xqc_buf, eqc); 5516 QM_XQC_BUF_INIT(xqc_buf, aeqc); 5517 QM_XQC_BUF_INIT(xqc_buf, sqc); 5518 QM_XQC_BUF_INIT(xqc_buf, cqc); 5519 5520 return 0; 5521 } 5522 5523 static int hisi_qm_memory_init(struct hisi_qm *qm) 5524 { 5525 struct device *dev = &qm->pdev->dev; 5526 int ret, total_func; 5527 size_t off = 0; 5528 5529 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) { 5530 total_func = pci_sriov_get_totalvfs(qm->pdev) + 1; 5531 qm->factor = kcalloc(total_func, sizeof(struct qm_shaper_factor), GFP_KERNEL); 5532 if (!qm->factor) 5533 return -ENOMEM; 5534 5535 /* Only the PF value needs to be initialized */ 5536 qm->factor[0].func_qos = QM_QOS_MAX_VAL; 5537 } 5538 5539 #define QM_INIT_BUF(qm, type, num) do { \ 5540 (qm)->type = ((qm)->qdma.va + (off)); \ 5541 (qm)->type##_dma = (qm)->qdma.dma + (off); \ 5542 off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \ 5543 } while (0) 5544 5545 idr_init(&qm->qp_idr); 5546 qm_get_xqc_depth(qm, &qm->eq_depth, &qm->aeq_depth, QM_XEQ_DEPTH_CAP); 5547 qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * qm->eq_depth) + 5548 QMC_ALIGN(sizeof(struct qm_aeqe) * qm->aeq_depth) + 5549 QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) + 5550 QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num); 5551 qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma, 5552 GFP_ATOMIC); 5553 dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size); 5554 if (!qm->qdma.va) { 5555 ret = -ENOMEM; 5556 goto err_destroy_idr; 5557 } 5558 5559 QM_INIT_BUF(qm, eqe, qm->eq_depth); 5560 QM_INIT_BUF(qm, aeqe, qm->aeq_depth); 5561 QM_INIT_BUF(qm, sqc, qm->qp_num); 5562 QM_INIT_BUF(qm, cqc, qm->qp_num); 5563 5564 ret = hisi_qm_alloc_rsv_buf(qm); 5565 if (ret) 5566 goto err_free_qdma; 5567 5568 ret = hisi_qp_alloc_memory(qm); 5569 if (ret) 5570 goto err_free_reserve_buf; 5571 5572 return 0; 5573 5574 err_free_reserve_buf: 5575 hisi_qm_free_rsv_buf(qm); 5576 err_free_qdma: 5577 dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma); 5578 err_destroy_idr: 5579 idr_destroy(&qm->qp_idr); 5580 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 5581 kfree(qm->factor); 5582 5583 return ret; 5584 } 5585 5586 /** 5587 * hisi_qm_init() - Initialize configures about qm. 5588 * @qm: The qm needing init. 5589 * 5590 * This function init qm, then we can call hisi_qm_start to put qm into work. 5591 */ 5592 int hisi_qm_init(struct hisi_qm *qm) 5593 { 5594 struct pci_dev *pdev = qm->pdev; 5595 struct device *dev = &pdev->dev; 5596 int ret; 5597 5598 ret = hisi_qm_pci_init(qm); 5599 if (ret) 5600 return ret; 5601 5602 ret = qm_irqs_register(qm); 5603 if (ret) 5604 goto err_pci_init; 5605 5606 if (qm->fun_type == QM_HW_PF) { 5607 /* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */ 5608 writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG); 5609 qm_disable_clock_gate(qm); 5610 ret = qm_dev_mem_reset(qm); 5611 if (ret) { 5612 dev_err(dev, "failed to reset device memory\n"); 5613 goto err_irq_register; 5614 } 5615 } 5616 5617 if (qm->mode == UACCE_MODE_SVA) { 5618 ret = qm_alloc_uacce(qm); 5619 if (ret < 0) 5620 dev_warn(dev, "fail to alloc uacce (%d)\n", ret); 5621 } 5622 5623 ret = hisi_qm_memory_init(qm); 5624 if (ret) 5625 goto err_alloc_uacce; 5626 5627 ret = hisi_qm_init_work(qm); 5628 if (ret) 5629 goto err_free_qm_memory; 5630 5631 qm_cmd_init(qm); 5632 5633 return 0; 5634 5635 err_free_qm_memory: 5636 hisi_qm_memory_uninit(qm); 5637 err_alloc_uacce: 5638 qm_remove_uacce(qm); 5639 err_irq_register: 5640 qm_irqs_unregister(qm); 5641 err_pci_init: 5642 hisi_qm_pci_uninit(qm); 5643 return ret; 5644 } 5645 EXPORT_SYMBOL_GPL(hisi_qm_init); 5646 5647 /** 5648 * hisi_qm_get_dfx_access() - Try to get dfx access. 5649 * @qm: pointer to accelerator device. 5650 * 5651 * Try to get dfx access, then user can get message. 5652 * 5653 * If device is in suspended, return failure, otherwise 5654 * bump up the runtime PM usage counter. 5655 */ 5656 int hisi_qm_get_dfx_access(struct hisi_qm *qm) 5657 { 5658 struct device *dev = &qm->pdev->dev; 5659 5660 if (pm_runtime_suspended(dev)) { 5661 dev_info(dev, "can not read/write - device in suspended.\n"); 5662 return -EAGAIN; 5663 } 5664 5665 return qm_pm_get_sync(qm); 5666 } 5667 EXPORT_SYMBOL_GPL(hisi_qm_get_dfx_access); 5668 5669 /** 5670 * hisi_qm_put_dfx_access() - Put dfx access. 5671 * @qm: pointer to accelerator device. 5672 * 5673 * Put dfx access, drop runtime PM usage counter. 5674 */ 5675 void hisi_qm_put_dfx_access(struct hisi_qm *qm) 5676 { 5677 qm_pm_put_sync(qm); 5678 } 5679 EXPORT_SYMBOL_GPL(hisi_qm_put_dfx_access); 5680 5681 /** 5682 * hisi_qm_pm_init() - Initialize qm runtime PM. 5683 * @qm: pointer to accelerator device. 5684 * 5685 * Function that initialize qm runtime PM. 5686 */ 5687 void hisi_qm_pm_init(struct hisi_qm *qm) 5688 { 5689 struct device *dev = &qm->pdev->dev; 5690 5691 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 5692 return; 5693 5694 pm_runtime_set_autosuspend_delay(dev, QM_AUTOSUSPEND_DELAY); 5695 pm_runtime_use_autosuspend(dev); 5696 pm_runtime_put_noidle(dev); 5697 } 5698 EXPORT_SYMBOL_GPL(hisi_qm_pm_init); 5699 5700 /** 5701 * hisi_qm_pm_uninit() - Uninitialize qm runtime PM. 5702 * @qm: pointer to accelerator device. 5703 * 5704 * Function that uninitialize qm runtime PM. 5705 */ 5706 void hisi_qm_pm_uninit(struct hisi_qm *qm) 5707 { 5708 struct device *dev = &qm->pdev->dev; 5709 5710 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 5711 return; 5712 5713 pm_runtime_get_noresume(dev); 5714 pm_runtime_dont_use_autosuspend(dev); 5715 } 5716 EXPORT_SYMBOL_GPL(hisi_qm_pm_uninit); 5717 5718 static int qm_prepare_for_suspend(struct hisi_qm *qm) 5719 { 5720 struct pci_dev *pdev = qm->pdev; 5721 int ret; 5722 5723 ret = qm->ops->set_msi(qm, false); 5724 if (ret) { 5725 pci_err(pdev, "failed to disable MSI before suspending!\n"); 5726 return ret; 5727 } 5728 5729 ret = qm_master_ooo_check(qm); 5730 if (ret) 5731 return ret; 5732 5733 if (qm->err_ini->set_priv_status) { 5734 ret = qm->err_ini->set_priv_status(qm); 5735 if (ret) 5736 return ret; 5737 } 5738 5739 ret = qm_set_pf_mse(qm, false); 5740 if (ret) 5741 pci_err(pdev, "failed to disable MSE before suspending!\n"); 5742 5743 return ret; 5744 } 5745 5746 static int qm_rebuild_for_resume(struct hisi_qm *qm) 5747 { 5748 struct pci_dev *pdev = qm->pdev; 5749 int ret; 5750 5751 ret = qm_set_pf_mse(qm, true); 5752 if (ret) { 5753 pci_err(pdev, "failed to enable MSE after resuming!\n"); 5754 return ret; 5755 } 5756 5757 ret = qm->ops->set_msi(qm, true); 5758 if (ret) { 5759 pci_err(pdev, "failed to enable MSI after resuming!\n"); 5760 return ret; 5761 } 5762 5763 ret = qm_dev_hw_init(qm); 5764 if (ret) { 5765 pci_err(pdev, "failed to init device after resuming\n"); 5766 return ret; 5767 } 5768 5769 qm_cmd_init(qm); 5770 hisi_qm_dev_err_init(qm); 5771 /* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */ 5772 writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG); 5773 qm_disable_clock_gate(qm); 5774 ret = qm_dev_mem_reset(qm); 5775 if (ret) 5776 pci_err(pdev, "failed to reset device memory\n"); 5777 5778 return ret; 5779 } 5780 5781 /** 5782 * hisi_qm_suspend() - Runtime suspend of given device. 5783 * @dev: device to suspend. 5784 * 5785 * Function that suspend the device. 5786 */ 5787 int hisi_qm_suspend(struct device *dev) 5788 { 5789 struct pci_dev *pdev = to_pci_dev(dev); 5790 struct hisi_qm *qm = pci_get_drvdata(pdev); 5791 int ret; 5792 5793 pci_info(pdev, "entering suspended state\n"); 5794 5795 ret = hisi_qm_stop(qm, QM_NORMAL); 5796 if (ret) { 5797 pci_err(pdev, "failed to stop qm(%d)\n", ret); 5798 return ret; 5799 } 5800 5801 ret = qm_prepare_for_suspend(qm); 5802 if (ret) 5803 pci_err(pdev, "failed to prepare suspended(%d)\n", ret); 5804 5805 return ret; 5806 } 5807 EXPORT_SYMBOL_GPL(hisi_qm_suspend); 5808 5809 /** 5810 * hisi_qm_resume() - Runtime resume of given device. 5811 * @dev: device to resume. 5812 * 5813 * Function that resume the device. 5814 */ 5815 int hisi_qm_resume(struct device *dev) 5816 { 5817 struct pci_dev *pdev = to_pci_dev(dev); 5818 struct hisi_qm *qm = pci_get_drvdata(pdev); 5819 int ret; 5820 5821 pci_info(pdev, "resuming from suspend state\n"); 5822 5823 ret = qm_rebuild_for_resume(qm); 5824 if (ret) { 5825 pci_err(pdev, "failed to rebuild resume(%d)\n", ret); 5826 return ret; 5827 } 5828 5829 ret = hisi_qm_start(qm); 5830 if (ret) { 5831 if (qm_check_dev_error(qm)) { 5832 pci_info(pdev, "failed to start qm due to device error, device will be reset!\n"); 5833 return 0; 5834 } 5835 5836 pci_err(pdev, "failed to start qm(%d)!\n", ret); 5837 } 5838 5839 return ret; 5840 } 5841 EXPORT_SYMBOL_GPL(hisi_qm_resume); 5842 5843 MODULE_LICENSE("GPL v2"); 5844 MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>"); 5845 MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver"); 5846