1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019 HiSilicon Limited. */ 3 #include <asm/page.h> 4 #include <linux/acpi.h> 5 #include <linux/bitmap.h> 6 #include <linux/dma-mapping.h> 7 #include <linux/idr.h> 8 #include <linux/io.h> 9 #include <linux/irqreturn.h> 10 #include <linux/log2.h> 11 #include <linux/pm_runtime.h> 12 #include <linux/seq_file.h> 13 #include <linux/slab.h> 14 #include <linux/uacce.h> 15 #include <linux/uaccess.h> 16 #include <uapi/misc/uacce/hisi_qm.h> 17 #include <linux/hisi_acc_qm.h> 18 #include "qm_common.h" 19 20 /* eq/aeq irq enable */ 21 #define QM_VF_AEQ_INT_SOURCE 0x0 22 #define QM_VF_AEQ_INT_MASK 0x4 23 #define QM_VF_EQ_INT_SOURCE 0x8 24 #define QM_VF_EQ_INT_MASK 0xc 25 26 #define QM_IRQ_VECTOR_MASK GENMASK(15, 0) 27 #define QM_IRQ_TYPE_MASK GENMASK(15, 0) 28 #define QM_IRQ_TYPE_SHIFT 16 29 #define QM_ABN_IRQ_TYPE_MASK GENMASK(7, 0) 30 31 /* mailbox */ 32 #define QM_MB_PING_ALL_VFS 0xffff 33 #define QM_MB_CMD_DATA_SHIFT 32 34 #define QM_MB_CMD_DATA_MASK GENMASK(31, 0) 35 #define QM_MB_STATUS_MASK GENMASK(12, 9) 36 37 /* sqc shift */ 38 #define QM_SQ_HOP_NUM_SHIFT 0 39 #define QM_SQ_PAGE_SIZE_SHIFT 4 40 #define QM_SQ_BUF_SIZE_SHIFT 8 41 #define QM_SQ_SQE_SIZE_SHIFT 12 42 #define QM_SQ_PRIORITY_SHIFT 0 43 #define QM_SQ_ORDERS_SHIFT 4 44 #define QM_SQ_TYPE_SHIFT 8 45 #define QM_QC_PASID_ENABLE 0x1 46 #define QM_QC_PASID_ENABLE_SHIFT 7 47 48 #define QM_SQ_TYPE_MASK GENMASK(3, 0) 49 #define QM_SQ_TAIL_IDX(sqc) ((le16_to_cpu((sqc).w11) >> 6) & 0x1) 50 51 /* cqc shift */ 52 #define QM_CQ_HOP_NUM_SHIFT 0 53 #define QM_CQ_PAGE_SIZE_SHIFT 4 54 #define QM_CQ_BUF_SIZE_SHIFT 8 55 #define QM_CQ_CQE_SIZE_SHIFT 12 56 #define QM_CQ_PHASE_SHIFT 0 57 #define QM_CQ_FLAG_SHIFT 1 58 59 #define QM_CQE_PHASE(cqe) (le16_to_cpu((cqe)->w7) & 0x1) 60 #define QM_QC_CQE_SIZE 4 61 #define QM_CQ_TAIL_IDX(cqc) ((le16_to_cpu((cqc).w11) >> 6) & 0x1) 62 63 /* eqc shift */ 64 #define QM_EQE_AEQE_SIZE (2UL << 12) 65 #define QM_EQC_PHASE_SHIFT 16 66 67 #define QM_EQE_PHASE(eqe) ((le32_to_cpu((eqe)->dw0) >> 16) & 0x1) 68 #define QM_EQE_CQN_MASK GENMASK(15, 0) 69 70 #define QM_AEQE_PHASE(aeqe) ((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1) 71 #define QM_AEQE_TYPE_SHIFT 17 72 #define QM_AEQE_TYPE_MASK 0xf 73 #define QM_AEQE_CQN_MASK GENMASK(15, 0) 74 #define QM_CQ_OVERFLOW 0 75 #define QM_EQ_OVERFLOW 1 76 #define QM_CQE_ERROR 2 77 78 #define QM_XQ_DEPTH_SHIFT 16 79 #define QM_XQ_DEPTH_MASK GENMASK(15, 0) 80 81 #define QM_DOORBELL_CMD_SQ 0 82 #define QM_DOORBELL_CMD_CQ 1 83 #define QM_DOORBELL_CMD_EQ 2 84 #define QM_DOORBELL_CMD_AEQ 3 85 86 #define QM_DOORBELL_BASE_V1 0x340 87 #define QM_DB_CMD_SHIFT_V1 16 88 #define QM_DB_INDEX_SHIFT_V1 32 89 #define QM_DB_PRIORITY_SHIFT_V1 48 90 #define QM_PAGE_SIZE 0x0034 91 #define QM_QP_DB_INTERVAL 0x10000 92 #define QM_DB_TIMEOUT_CFG 0x100074 93 #define QM_DB_TIMEOUT_SET 0x1fffff 94 95 #define QM_MEM_START_INIT 0x100040 96 #define QM_MEM_INIT_DONE 0x100044 97 #define QM_VFT_CFG_RDY 0x10006c 98 #define QM_VFT_CFG_OP_WR 0x100058 99 #define QM_VFT_CFG_TYPE 0x10005c 100 #define QM_VFT_CFG 0x100060 101 #define QM_VFT_CFG_OP_ENABLE 0x100054 102 #define QM_PM_CTRL 0x100148 103 #define QM_IDLE_DISABLE BIT(9) 104 105 #define QM_VFT_CFG_DATA_L 0x100064 106 #define QM_VFT_CFG_DATA_H 0x100068 107 #define QM_SQC_VFT_BUF_SIZE (7ULL << 8) 108 #define QM_SQC_VFT_SQC_SIZE (5ULL << 12) 109 #define QM_SQC_VFT_INDEX_NUMBER (1ULL << 16) 110 #define QM_SQC_VFT_START_SQN_SHIFT 28 111 #define QM_SQC_VFT_VALID (1ULL << 44) 112 #define QM_SQC_VFT_SQN_SHIFT 45 113 #define QM_CQC_VFT_BUF_SIZE (7ULL << 8) 114 #define QM_CQC_VFT_SQC_SIZE (5ULL << 12) 115 #define QM_CQC_VFT_INDEX_NUMBER (1ULL << 16) 116 #define QM_CQC_VFT_VALID (1ULL << 28) 117 118 #define QM_SQC_VFT_BASE_SHIFT_V2 28 119 #define QM_SQC_VFT_BASE_MASK_V2 GENMASK(15, 0) 120 #define QM_SQC_VFT_NUM_SHIFT_V2 45 121 #define QM_SQC_VFT_NUM_MASK_V2 GENMASK(9, 0) 122 123 #define QM_ABNORMAL_INT_SOURCE 0x100000 124 #define QM_ABNORMAL_INT_MASK 0x100004 125 #define QM_ABNORMAL_INT_MASK_VALUE 0x7fff 126 #define QM_ABNORMAL_INT_STATUS 0x100008 127 #define QM_ABNORMAL_INT_SET 0x10000c 128 #define QM_ABNORMAL_INF00 0x100010 129 #define QM_FIFO_OVERFLOW_TYPE 0xc0 130 #define QM_FIFO_OVERFLOW_TYPE_SHIFT 6 131 #define QM_FIFO_OVERFLOW_VF 0x3f 132 #define QM_FIFO_OVERFLOW_QP_SHIFT 16 133 #define QM_ABNORMAL_INF01 0x100014 134 #define QM_DB_TIMEOUT_TYPE 0xc0 135 #define QM_DB_TIMEOUT_TYPE_SHIFT 6 136 #define QM_DB_TIMEOUT_VF 0x3f 137 #define QM_DB_TIMEOUT_QP_SHIFT 16 138 #define QM_ABNORMAL_INF02 0x100018 139 #define QM_AXI_POISON_ERR BIT(22) 140 #define QM_RAS_CE_ENABLE 0x1000ec 141 #define QM_RAS_FE_ENABLE 0x1000f0 142 #define QM_RAS_NFE_ENABLE 0x1000f4 143 #define QM_RAS_CE_THRESHOLD 0x1000f8 144 #define QM_RAS_CE_TIMES_PER_IRQ 1 145 #define QM_OOO_SHUTDOWN_SEL 0x1040f8 146 #define QM_AXI_RRESP_ERR BIT(0) 147 #define QM_ECC_MBIT BIT(2) 148 #define QM_DB_TIMEOUT BIT(10) 149 #define QM_OF_FIFO_OF BIT(11) 150 151 #define QM_RESET_WAIT_TIMEOUT 400 152 #define QM_PEH_VENDOR_ID 0x1000d8 153 #define ACC_VENDOR_ID_VALUE 0x5a5a 154 #define QM_PEH_DFX_INFO0 0x1000fc 155 #define QM_PEH_DFX_INFO1 0x100100 156 #define QM_PEH_DFX_MASK (BIT(0) | BIT(2)) 157 #define QM_PEH_MSI_FINISH_MASK GENMASK(19, 16) 158 #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT 3 159 #define ACC_PEH_MSI_DISABLE GENMASK(31, 0) 160 #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN 0x1 161 #define ACC_MASTER_TRANS_RETURN_RW 3 162 #define ACC_MASTER_TRANS_RETURN 0x300150 163 #define ACC_MASTER_GLOBAL_CTRL 0x300000 164 #define ACC_AM_CFG_PORT_WR_EN 0x30001c 165 #define QM_RAS_NFE_MBIT_DISABLE ~QM_ECC_MBIT 166 #define ACC_AM_ROB_ECC_INT_STS 0x300104 167 #define ACC_ROB_ECC_ERR_MULTPL BIT(1) 168 #define QM_MSI_CAP_ENABLE BIT(16) 169 170 /* interfunction communication */ 171 #define QM_IFC_READY_STATUS 0x100128 172 #define QM_IFC_INT_SET_P 0x100130 173 #define QM_IFC_INT_CFG 0x100134 174 #define QM_IFC_INT_SOURCE_P 0x100138 175 #define QM_IFC_INT_SOURCE_V 0x0020 176 #define QM_IFC_INT_MASK 0x0024 177 #define QM_IFC_INT_STATUS 0x0028 178 #define QM_IFC_INT_SET_V 0x002C 179 #define QM_IFC_SEND_ALL_VFS GENMASK(6, 0) 180 #define QM_IFC_INT_SOURCE_CLR GENMASK(63, 0) 181 #define QM_IFC_INT_SOURCE_MASK BIT(0) 182 #define QM_IFC_INT_DISABLE BIT(0) 183 #define QM_IFC_INT_STATUS_MASK BIT(0) 184 #define QM_IFC_INT_SET_MASK BIT(0) 185 #define QM_WAIT_DST_ACK 10 186 #define QM_MAX_PF_WAIT_COUNT 10 187 #define QM_MAX_VF_WAIT_COUNT 40 188 #define QM_VF_RESET_WAIT_US 20000 189 #define QM_VF_RESET_WAIT_CNT 3000 190 #define QM_VF_RESET_WAIT_TIMEOUT_US \ 191 (QM_VF_RESET_WAIT_US * QM_VF_RESET_WAIT_CNT) 192 193 #define POLL_PERIOD 10 194 #define POLL_TIMEOUT 1000 195 #define WAIT_PERIOD_US_MAX 200 196 #define WAIT_PERIOD_US_MIN 100 197 #define MAX_WAIT_COUNTS 1000 198 #define QM_CACHE_WB_START 0x204 199 #define QM_CACHE_WB_DONE 0x208 200 #define QM_FUNC_CAPS_REG 0x3100 201 #define QM_CAPBILITY_VERSION GENMASK(7, 0) 202 203 #define PCI_BAR_2 2 204 #define PCI_BAR_4 4 205 #define QMC_ALIGN(sz) ALIGN(sz, 32) 206 207 #define QM_DBG_READ_LEN 256 208 #define QM_PCI_COMMAND_INVALID ~0 209 #define QM_RESET_STOP_TX_OFFSET 1 210 #define QM_RESET_STOP_RX_OFFSET 2 211 212 #define WAIT_PERIOD 20 213 #define REMOVE_WAIT_DELAY 10 214 215 #define QM_QOS_PARAM_NUM 2 216 #define QM_QOS_MAX_VAL 1000 217 #define QM_QOS_RATE 100 218 #define QM_QOS_EXPAND_RATE 1000 219 #define QM_SHAPER_CIR_B_MASK GENMASK(7, 0) 220 #define QM_SHAPER_CIR_U_MASK GENMASK(10, 8) 221 #define QM_SHAPER_CIR_S_MASK GENMASK(14, 11) 222 #define QM_SHAPER_FACTOR_CIR_U_SHIFT 8 223 #define QM_SHAPER_FACTOR_CIR_S_SHIFT 11 224 #define QM_SHAPER_FACTOR_CBS_B_SHIFT 15 225 #define QM_SHAPER_FACTOR_CBS_S_SHIFT 19 226 #define QM_SHAPER_CBS_B 1 227 #define QM_SHAPER_VFT_OFFSET 6 228 #define QM_QOS_MIN_ERROR_RATE 5 229 #define QM_SHAPER_MIN_CBS_S 8 230 #define QM_QOS_TICK 0x300U 231 #define QM_QOS_DIVISOR_CLK 0x1f40U 232 #define QM_QOS_MAX_CIR_B 200 233 #define QM_QOS_MIN_CIR_B 100 234 #define QM_QOS_MAX_CIR_U 6 235 #define QM_AUTOSUSPEND_DELAY 3000 236 237 #define QM_DEV_ALG_MAX_LEN 256 238 239 /* abnormal status value for stopping queue */ 240 #define QM_STOP_QUEUE_FAIL 1 241 #define QM_DUMP_SQC_FAIL 3 242 #define QM_DUMP_CQC_FAIL 4 243 #define QM_FINISH_WAIT 5 244 245 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \ 246 (((hop_num) << QM_CQ_HOP_NUM_SHIFT) | \ 247 ((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT) | \ 248 ((buf_sz) << QM_CQ_BUF_SIZE_SHIFT) | \ 249 ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT)) 250 251 #define QM_MK_CQC_DW3_V2(cqe_sz, cq_depth) \ 252 ((((u32)cq_depth) - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT)) 253 254 #define QM_MK_SQC_W13(priority, orders, alg_type) \ 255 (((priority) << QM_SQ_PRIORITY_SHIFT) | \ 256 ((orders) << QM_SQ_ORDERS_SHIFT) | \ 257 (((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT)) 258 259 #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \ 260 (((hop_num) << QM_SQ_HOP_NUM_SHIFT) | \ 261 ((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT) | \ 262 ((buf_sz) << QM_SQ_BUF_SIZE_SHIFT) | \ 263 ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT)) 264 265 #define QM_MK_SQC_DW3_V2(sqe_sz, sq_depth) \ 266 ((((u32)sq_depth) - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT)) 267 268 enum vft_type { 269 SQC_VFT = 0, 270 CQC_VFT, 271 SHAPER_VFT, 272 }; 273 274 enum acc_err_result { 275 ACC_ERR_NONE, 276 ACC_ERR_NEED_RESET, 277 ACC_ERR_RECOVERED, 278 }; 279 280 enum qm_alg_type { 281 ALG_TYPE_0, 282 ALG_TYPE_1, 283 }; 284 285 enum qm_mb_cmd { 286 QM_PF_FLR_PREPARE = 0x01, 287 QM_PF_SRST_PREPARE, 288 QM_PF_RESET_DONE, 289 QM_VF_PREPARE_DONE, 290 QM_VF_PREPARE_FAIL, 291 QM_VF_START_DONE, 292 QM_VF_START_FAIL, 293 QM_PF_SET_QOS, 294 QM_VF_GET_QOS, 295 }; 296 297 enum qm_basic_type { 298 QM_TOTAL_QP_NUM_CAP = 0x0, 299 QM_FUNC_MAX_QP_CAP, 300 QM_XEQ_DEPTH_CAP, 301 QM_QP_DEPTH_CAP, 302 QM_EQ_IRQ_TYPE_CAP, 303 QM_AEQ_IRQ_TYPE_CAP, 304 QM_ABN_IRQ_TYPE_CAP, 305 QM_PF2VF_IRQ_TYPE_CAP, 306 QM_PF_IRQ_NUM_CAP, 307 QM_VF_IRQ_NUM_CAP, 308 }; 309 310 enum qm_pre_store_cap_idx { 311 QM_EQ_IRQ_TYPE_CAP_IDX = 0x0, 312 QM_AEQ_IRQ_TYPE_CAP_IDX, 313 QM_ABN_IRQ_TYPE_CAP_IDX, 314 QM_PF2VF_IRQ_TYPE_CAP_IDX, 315 }; 316 317 static const struct hisi_qm_cap_info qm_cap_info_comm[] = { 318 {QM_SUPPORT_DB_ISOLATION, 0x30, 0, BIT(0), 0x0, 0x0, 0x0}, 319 {QM_SUPPORT_FUNC_QOS, 0x3100, 0, BIT(8), 0x0, 0x0, 0x1}, 320 {QM_SUPPORT_STOP_QP, 0x3100, 0, BIT(9), 0x0, 0x0, 0x1}, 321 {QM_SUPPORT_STOP_FUNC, 0x3100, 0, BIT(10), 0x0, 0x0, 0x1}, 322 {QM_SUPPORT_MB_COMMAND, 0x3100, 0, BIT(11), 0x0, 0x0, 0x1}, 323 {QM_SUPPORT_SVA_PREFETCH, 0x3100, 0, BIT(14), 0x0, 0x0, 0x1}, 324 }; 325 326 static const struct hisi_qm_cap_info qm_cap_info_pf[] = { 327 {QM_SUPPORT_RPM, 0x3100, 0, BIT(13), 0x0, 0x0, 0x1}, 328 }; 329 330 static const struct hisi_qm_cap_info qm_cap_info_vf[] = { 331 {QM_SUPPORT_RPM, 0x3100, 0, BIT(12), 0x0, 0x0, 0x0}, 332 }; 333 334 static const struct hisi_qm_cap_info qm_basic_info[] = { 335 {QM_TOTAL_QP_NUM_CAP, 0x100158, 0, GENMASK(10, 0), 0x1000, 0x400, 0x400}, 336 {QM_FUNC_MAX_QP_CAP, 0x100158, 11, GENMASK(10, 0), 0x1000, 0x400, 0x400}, 337 {QM_XEQ_DEPTH_CAP, 0x3104, 0, GENMASK(31, 0), 0x800, 0x4000800, 0x4000800}, 338 {QM_QP_DEPTH_CAP, 0x3108, 0, GENMASK(31, 0), 0x4000400, 0x4000400, 0x4000400}, 339 {QM_EQ_IRQ_TYPE_CAP, 0x310c, 0, GENMASK(31, 0), 0x10000, 0x10000, 0x10000}, 340 {QM_AEQ_IRQ_TYPE_CAP, 0x3110, 0, GENMASK(31, 0), 0x0, 0x10001, 0x10001}, 341 {QM_ABN_IRQ_TYPE_CAP, 0x3114, 0, GENMASK(31, 0), 0x0, 0x10003, 0x10003}, 342 {QM_PF2VF_IRQ_TYPE_CAP, 0x3118, 0, GENMASK(31, 0), 0x0, 0x0, 0x10002}, 343 {QM_PF_IRQ_NUM_CAP, 0x311c, 16, GENMASK(15, 0), 0x1, 0x4, 0x4}, 344 {QM_VF_IRQ_NUM_CAP, 0x311c, 0, GENMASK(15, 0), 0x1, 0x2, 0x3}, 345 }; 346 347 static const u32 qm_pre_store_caps[] = { 348 QM_EQ_IRQ_TYPE_CAP, 349 QM_AEQ_IRQ_TYPE_CAP, 350 QM_ABN_IRQ_TYPE_CAP, 351 QM_PF2VF_IRQ_TYPE_CAP, 352 }; 353 354 struct qm_mailbox { 355 __le16 w0; 356 __le16 queue_num; 357 __le32 base_l; 358 __le32 base_h; 359 __le32 rsvd; 360 }; 361 362 struct qm_doorbell { 363 __le16 queue_num; 364 __le16 cmd; 365 __le16 index; 366 __le16 priority; 367 }; 368 369 struct hisi_qm_resource { 370 struct hisi_qm *qm; 371 int distance; 372 struct list_head list; 373 }; 374 375 /** 376 * struct qm_hw_err - Structure describing the device errors 377 * @list: hardware error list 378 * @timestamp: timestamp when the error occurred 379 */ 380 struct qm_hw_err { 381 struct list_head list; 382 unsigned long long timestamp; 383 }; 384 385 struct hisi_qm_hw_ops { 386 int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number); 387 void (*qm_db)(struct hisi_qm *qm, u16 qn, 388 u8 cmd, u16 index, u8 priority); 389 int (*debug_init)(struct hisi_qm *qm); 390 void (*hw_error_init)(struct hisi_qm *qm); 391 void (*hw_error_uninit)(struct hisi_qm *qm); 392 enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm); 393 int (*set_msi)(struct hisi_qm *qm, bool set); 394 }; 395 396 struct hisi_qm_hw_error { 397 u32 int_msk; 398 const char *msg; 399 }; 400 401 static const struct hisi_qm_hw_error qm_hw_error[] = { 402 { .int_msk = BIT(0), .msg = "qm_axi_rresp" }, 403 { .int_msk = BIT(1), .msg = "qm_axi_bresp" }, 404 { .int_msk = BIT(2), .msg = "qm_ecc_mbit" }, 405 { .int_msk = BIT(3), .msg = "qm_ecc_1bit" }, 406 { .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" }, 407 { .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" }, 408 { .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" }, 409 { .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" }, 410 { .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" }, 411 { .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" }, 412 { .int_msk = BIT(10), .msg = "qm_db_timeout" }, 413 { .int_msk = BIT(11), .msg = "qm_of_fifo_of" }, 414 { .int_msk = BIT(12), .msg = "qm_db_random_invalid" }, 415 { .int_msk = BIT(13), .msg = "qm_mailbox_timeout" }, 416 { .int_msk = BIT(14), .msg = "qm_flr_timeout" }, 417 }; 418 419 static const char * const qm_db_timeout[] = { 420 "sq", "cq", "eq", "aeq", 421 }; 422 423 static const char * const qm_fifo_overflow[] = { 424 "cq", "eq", "aeq", 425 }; 426 427 struct qm_typical_qos_table { 428 u32 start; 429 u32 end; 430 u32 val; 431 }; 432 433 /* the qos step is 100 */ 434 static struct qm_typical_qos_table shaper_cir_s[] = { 435 {100, 100, 4}, 436 {200, 200, 3}, 437 {300, 500, 2}, 438 {600, 1000, 1}, 439 {1100, 100000, 0}, 440 }; 441 442 static struct qm_typical_qos_table shaper_cbs_s[] = { 443 {100, 200, 9}, 444 {300, 500, 11}, 445 {600, 1000, 12}, 446 {1100, 10000, 16}, 447 {10100, 25000, 17}, 448 {25100, 50000, 18}, 449 {50100, 100000, 19} 450 }; 451 452 static void qm_irqs_unregister(struct hisi_qm *qm); 453 454 static u32 qm_get_hw_error_status(struct hisi_qm *qm) 455 { 456 return readl(qm->io_base + QM_ABNORMAL_INT_STATUS); 457 } 458 459 static u32 qm_get_dev_err_status(struct hisi_qm *qm) 460 { 461 return qm->err_ini->get_dev_hw_err_status(qm); 462 } 463 464 /* Check if the error causes the master ooo block */ 465 static bool qm_check_dev_error(struct hisi_qm *qm) 466 { 467 u32 val, dev_val; 468 469 if (qm->fun_type == QM_HW_VF) 470 return false; 471 472 val = qm_get_hw_error_status(qm) & qm->err_info.qm_shutdown_mask; 473 dev_val = qm_get_dev_err_status(qm) & qm->err_info.dev_shutdown_mask; 474 475 return val || dev_val; 476 } 477 478 static int qm_wait_reset_finish(struct hisi_qm *qm) 479 { 480 int delay = 0; 481 482 /* All reset requests need to be queued for processing */ 483 while (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 484 msleep(++delay); 485 if (delay > QM_RESET_WAIT_TIMEOUT) 486 return -EBUSY; 487 } 488 489 return 0; 490 } 491 492 static int qm_reset_prepare_ready(struct hisi_qm *qm) 493 { 494 struct pci_dev *pdev = qm->pdev; 495 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 496 497 /* 498 * PF and VF on host doesnot support resetting at the 499 * same time on Kunpeng920. 500 */ 501 if (qm->ver < QM_HW_V3) 502 return qm_wait_reset_finish(pf_qm); 503 504 return qm_wait_reset_finish(qm); 505 } 506 507 static void qm_reset_bit_clear(struct hisi_qm *qm) 508 { 509 struct pci_dev *pdev = qm->pdev; 510 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 511 512 if (qm->ver < QM_HW_V3) 513 clear_bit(QM_RESETTING, &pf_qm->misc_ctl); 514 515 clear_bit(QM_RESETTING, &qm->misc_ctl); 516 } 517 518 static void qm_mb_pre_init(struct qm_mailbox *mailbox, u8 cmd, 519 u64 base, u16 queue, bool op) 520 { 521 mailbox->w0 = cpu_to_le16((cmd) | 522 ((op) ? 0x1 << QM_MB_OP_SHIFT : 0) | 523 (0x1 << QM_MB_BUSY_SHIFT)); 524 mailbox->queue_num = cpu_to_le16(queue); 525 mailbox->base_l = cpu_to_le32(lower_32_bits(base)); 526 mailbox->base_h = cpu_to_le32(upper_32_bits(base)); 527 mailbox->rsvd = 0; 528 } 529 530 /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */ 531 int hisi_qm_wait_mb_ready(struct hisi_qm *qm) 532 { 533 u32 val; 534 535 return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE, 536 val, !((val >> QM_MB_BUSY_SHIFT) & 537 0x1), POLL_PERIOD, POLL_TIMEOUT); 538 } 539 EXPORT_SYMBOL_GPL(hisi_qm_wait_mb_ready); 540 541 /* 128 bit should be written to hardware at one time to trigger a mailbox */ 542 static void qm_mb_write(struct hisi_qm *qm, const void *src) 543 { 544 void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE; 545 546 #if IS_ENABLED(CONFIG_ARM64) 547 unsigned long tmp0 = 0, tmp1 = 0; 548 #endif 549 550 if (!IS_ENABLED(CONFIG_ARM64)) { 551 memcpy_toio(fun_base, src, 16); 552 dma_wmb(); 553 return; 554 } 555 556 #if IS_ENABLED(CONFIG_ARM64) 557 asm volatile("ldp %0, %1, %3\n" 558 "stp %0, %1, %2\n" 559 "dmb oshst\n" 560 : "=&r" (tmp0), 561 "=&r" (tmp1), 562 "+Q" (*((char __iomem *)fun_base)) 563 : "Q" (*((char *)src)) 564 : "memory"); 565 #endif 566 } 567 568 static int qm_mb_nolock(struct hisi_qm *qm, struct qm_mailbox *mailbox) 569 { 570 int ret; 571 u32 val; 572 573 if (unlikely(hisi_qm_wait_mb_ready(qm))) { 574 dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n"); 575 ret = -EBUSY; 576 goto mb_busy; 577 } 578 579 qm_mb_write(qm, mailbox); 580 581 if (unlikely(hisi_qm_wait_mb_ready(qm))) { 582 dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n"); 583 ret = -ETIMEDOUT; 584 goto mb_busy; 585 } 586 587 val = readl(qm->io_base + QM_MB_CMD_SEND_BASE); 588 if (val & QM_MB_STATUS_MASK) { 589 dev_err(&qm->pdev->dev, "QM mailbox operation failed!\n"); 590 ret = -EIO; 591 goto mb_busy; 592 } 593 594 return 0; 595 596 mb_busy: 597 atomic64_inc(&qm->debug.dfx.mb_err_cnt); 598 return ret; 599 } 600 601 int hisi_qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue, 602 bool op) 603 { 604 struct qm_mailbox mailbox; 605 int ret; 606 607 qm_mb_pre_init(&mailbox, cmd, dma_addr, queue, op); 608 609 mutex_lock(&qm->mailbox_lock); 610 ret = qm_mb_nolock(qm, &mailbox); 611 mutex_unlock(&qm->mailbox_lock); 612 613 return ret; 614 } 615 EXPORT_SYMBOL_GPL(hisi_qm_mb); 616 617 /* op 0: set xqc information to hardware, 1: get xqc information from hardware. */ 618 int qm_set_and_get_xqc(struct hisi_qm *qm, u8 cmd, void *xqc, u32 qp_id, bool op) 619 { 620 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 621 struct qm_mailbox mailbox; 622 dma_addr_t xqc_dma; 623 void *tmp_xqc; 624 size_t size; 625 int ret; 626 627 switch (cmd) { 628 case QM_MB_CMD_SQC: 629 size = sizeof(struct qm_sqc); 630 tmp_xqc = qm->xqc_buf.sqc; 631 xqc_dma = qm->xqc_buf.sqc_dma; 632 break; 633 case QM_MB_CMD_CQC: 634 size = sizeof(struct qm_cqc); 635 tmp_xqc = qm->xqc_buf.cqc; 636 xqc_dma = qm->xqc_buf.cqc_dma; 637 break; 638 case QM_MB_CMD_EQC: 639 size = sizeof(struct qm_eqc); 640 tmp_xqc = qm->xqc_buf.eqc; 641 xqc_dma = qm->xqc_buf.eqc_dma; 642 break; 643 case QM_MB_CMD_AEQC: 644 size = sizeof(struct qm_aeqc); 645 tmp_xqc = qm->xqc_buf.aeqc; 646 xqc_dma = qm->xqc_buf.aeqc_dma; 647 break; 648 } 649 650 /* Setting xqc will fail if master OOO is blocked. */ 651 if (qm_check_dev_error(pf_qm)) { 652 dev_err(&qm->pdev->dev, "failed to send mailbox since qm is stop!\n"); 653 return -EIO; 654 } 655 656 mutex_lock(&qm->mailbox_lock); 657 if (!op) 658 memcpy(tmp_xqc, xqc, size); 659 660 qm_mb_pre_init(&mailbox, cmd, xqc_dma, qp_id, op); 661 ret = qm_mb_nolock(qm, &mailbox); 662 if (!ret && op) 663 memcpy(xqc, tmp_xqc, size); 664 665 mutex_unlock(&qm->mailbox_lock); 666 667 return ret; 668 } 669 670 static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 671 { 672 u64 doorbell; 673 674 doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) | 675 ((u64)index << QM_DB_INDEX_SHIFT_V1) | 676 ((u64)priority << QM_DB_PRIORITY_SHIFT_V1); 677 678 writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1); 679 } 680 681 static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 682 { 683 void __iomem *io_base = qm->io_base; 684 u16 randata = 0; 685 u64 doorbell; 686 687 if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ) 688 io_base = qm->db_io_base + (u64)qn * qm->db_interval + 689 QM_DOORBELL_SQ_CQ_BASE_V2; 690 else 691 io_base += QM_DOORBELL_EQ_AEQ_BASE_V2; 692 693 doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) | 694 ((u64)randata << QM_DB_RAND_SHIFT_V2) | 695 ((u64)index << QM_DB_INDEX_SHIFT_V2) | 696 ((u64)priority << QM_DB_PRIORITY_SHIFT_V2); 697 698 writeq(doorbell, io_base); 699 } 700 701 static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 702 { 703 dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n", 704 qn, cmd, index); 705 706 qm->ops->qm_db(qm, qn, cmd, index, priority); 707 } 708 709 static void qm_disable_clock_gate(struct hisi_qm *qm) 710 { 711 u32 val; 712 713 /* if qm enables clock gating in Kunpeng930, qos will be inaccurate. */ 714 if (qm->ver < QM_HW_V3) 715 return; 716 717 val = readl(qm->io_base + QM_PM_CTRL); 718 val |= QM_IDLE_DISABLE; 719 writel(val, qm->io_base + QM_PM_CTRL); 720 } 721 722 static int qm_dev_mem_reset(struct hisi_qm *qm) 723 { 724 u32 val; 725 726 writel(0x1, qm->io_base + QM_MEM_START_INIT); 727 return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val, 728 val & BIT(0), POLL_PERIOD, 729 POLL_TIMEOUT); 730 } 731 732 /** 733 * hisi_qm_get_hw_info() - Get device information. 734 * @qm: The qm which want to get information. 735 * @info_table: Array for storing device information. 736 * @index: Index in info_table. 737 * @is_read: Whether read from reg, 0: not support read from reg. 738 * 739 * This function returns device information the caller needs. 740 */ 741 u32 hisi_qm_get_hw_info(struct hisi_qm *qm, 742 const struct hisi_qm_cap_info *info_table, 743 u32 index, bool is_read) 744 { 745 u32 val; 746 747 switch (qm->ver) { 748 case QM_HW_V1: 749 return info_table[index].v1_val; 750 case QM_HW_V2: 751 return info_table[index].v2_val; 752 default: 753 if (!is_read) 754 return info_table[index].v3_val; 755 756 val = readl(qm->io_base + info_table[index].offset); 757 return (val >> info_table[index].shift) & info_table[index].mask; 758 } 759 } 760 EXPORT_SYMBOL_GPL(hisi_qm_get_hw_info); 761 762 static void qm_get_xqc_depth(struct hisi_qm *qm, u16 *low_bits, 763 u16 *high_bits, enum qm_basic_type type) 764 { 765 u32 depth; 766 767 depth = hisi_qm_get_hw_info(qm, qm_basic_info, type, qm->cap_ver); 768 *low_bits = depth & QM_XQ_DEPTH_MASK; 769 *high_bits = (depth >> QM_XQ_DEPTH_SHIFT) & QM_XQ_DEPTH_MASK; 770 } 771 772 int hisi_qm_set_algs(struct hisi_qm *qm, u64 alg_msk, const struct qm_dev_alg *dev_algs, 773 u32 dev_algs_size) 774 { 775 struct device *dev = &qm->pdev->dev; 776 char *algs, *ptr; 777 int i; 778 779 if (!qm->uacce) 780 return 0; 781 782 if (dev_algs_size >= QM_DEV_ALG_MAX_LEN) { 783 dev_err(dev, "algs size %u is equal or larger than %d.\n", 784 dev_algs_size, QM_DEV_ALG_MAX_LEN); 785 return -EINVAL; 786 } 787 788 algs = devm_kzalloc(dev, QM_DEV_ALG_MAX_LEN * sizeof(char), GFP_KERNEL); 789 if (!algs) 790 return -ENOMEM; 791 792 for (i = 0; i < dev_algs_size; i++) 793 if (alg_msk & dev_algs[i].alg_msk) 794 strcat(algs, dev_algs[i].alg); 795 796 ptr = strrchr(algs, '\n'); 797 if (ptr) { 798 *ptr = '\0'; 799 qm->uacce->algs = algs; 800 } 801 802 return 0; 803 } 804 EXPORT_SYMBOL_GPL(hisi_qm_set_algs); 805 806 static u32 qm_get_irq_num(struct hisi_qm *qm) 807 { 808 if (qm->fun_type == QM_HW_PF) 809 return hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF_IRQ_NUM_CAP, qm->cap_ver); 810 811 return hisi_qm_get_hw_info(qm, qm_basic_info, QM_VF_IRQ_NUM_CAP, qm->cap_ver); 812 } 813 814 static int qm_pm_get_sync(struct hisi_qm *qm) 815 { 816 struct device *dev = &qm->pdev->dev; 817 int ret; 818 819 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 820 return 0; 821 822 ret = pm_runtime_resume_and_get(dev); 823 if (ret < 0) { 824 dev_err(dev, "failed to get_sync(%d).\n", ret); 825 return ret; 826 } 827 828 return 0; 829 } 830 831 static void qm_pm_put_sync(struct hisi_qm *qm) 832 { 833 struct device *dev = &qm->pdev->dev; 834 835 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 836 return; 837 838 pm_runtime_mark_last_busy(dev); 839 pm_runtime_put_autosuspend(dev); 840 } 841 842 static void qm_cq_head_update(struct hisi_qp *qp) 843 { 844 if (qp->qp_status.cq_head == qp->cq_depth - 1) { 845 qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase; 846 qp->qp_status.cq_head = 0; 847 } else { 848 qp->qp_status.cq_head++; 849 } 850 } 851 852 static void qm_poll_req_cb(struct hisi_qp *qp) 853 { 854 struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head; 855 struct hisi_qm *qm = qp->qm; 856 857 while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) { 858 dma_rmb(); 859 qp->req_cb(qp, qp->sqe + qm->sqe_size * 860 le16_to_cpu(cqe->sq_head)); 861 qm_cq_head_update(qp); 862 cqe = qp->cqe + qp->qp_status.cq_head; 863 qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, 864 qp->qp_status.cq_head, 0); 865 atomic_dec(&qp->qp_status.used); 866 867 cond_resched(); 868 } 869 870 /* set c_flag */ 871 qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, qp->qp_status.cq_head, 1); 872 } 873 874 static void qm_work_process(struct work_struct *work) 875 { 876 struct hisi_qm_poll_data *poll_data = 877 container_of(work, struct hisi_qm_poll_data, work); 878 struct hisi_qm *qm = poll_data->qm; 879 u16 eqe_num = poll_data->eqe_num; 880 struct hisi_qp *qp; 881 int i; 882 883 for (i = eqe_num - 1; i >= 0; i--) { 884 qp = &qm->qp_array[poll_data->qp_finish_id[i]]; 885 if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP)) 886 continue; 887 888 if (qp->event_cb) { 889 qp->event_cb(qp); 890 continue; 891 } 892 893 if (likely(qp->req_cb)) 894 qm_poll_req_cb(qp); 895 } 896 } 897 898 static void qm_get_complete_eqe_num(struct hisi_qm *qm) 899 { 900 struct qm_eqe *eqe = qm->eqe + qm->status.eq_head; 901 struct hisi_qm_poll_data *poll_data = NULL; 902 u16 eq_depth = qm->eq_depth; 903 u16 cqn, eqe_num = 0; 904 905 if (QM_EQE_PHASE(eqe) != qm->status.eqc_phase) { 906 atomic64_inc(&qm->debug.dfx.err_irq_cnt); 907 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 908 return; 909 } 910 911 cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK; 912 if (unlikely(cqn >= qm->qp_num)) 913 return; 914 poll_data = &qm->poll_data[cqn]; 915 916 while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) { 917 cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK; 918 poll_data->qp_finish_id[eqe_num] = cqn; 919 eqe_num++; 920 921 if (qm->status.eq_head == eq_depth - 1) { 922 qm->status.eqc_phase = !qm->status.eqc_phase; 923 eqe = qm->eqe; 924 qm->status.eq_head = 0; 925 } else { 926 eqe++; 927 qm->status.eq_head++; 928 } 929 930 if (eqe_num == (eq_depth >> 1) - 1) 931 break; 932 } 933 934 poll_data->eqe_num = eqe_num; 935 queue_work(qm->wq, &poll_data->work); 936 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 937 } 938 939 static irqreturn_t qm_eq_irq(int irq, void *data) 940 { 941 struct hisi_qm *qm = data; 942 943 /* Get qp id of completed tasks and re-enable the interrupt */ 944 qm_get_complete_eqe_num(qm); 945 946 return IRQ_HANDLED; 947 } 948 949 static irqreturn_t qm_mb_cmd_irq(int irq, void *data) 950 { 951 struct hisi_qm *qm = data; 952 u32 val; 953 954 val = readl(qm->io_base + QM_IFC_INT_STATUS); 955 val &= QM_IFC_INT_STATUS_MASK; 956 if (!val) 957 return IRQ_NONE; 958 959 if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl)) { 960 dev_warn(&qm->pdev->dev, "Driver is down, message cannot be processed!\n"); 961 return IRQ_HANDLED; 962 } 963 964 schedule_work(&qm->cmd_process); 965 966 return IRQ_HANDLED; 967 } 968 969 static void qm_set_qp_disable(struct hisi_qp *qp, int offset) 970 { 971 u32 *addr; 972 973 if (qp->is_in_kernel) 974 return; 975 976 addr = (u32 *)(qp->qdma.va + qp->qdma.size) - offset; 977 *addr = 1; 978 979 /* make sure setup is completed */ 980 smp_wmb(); 981 } 982 983 static void qm_disable_qp(struct hisi_qm *qm, u32 qp_id) 984 { 985 struct hisi_qp *qp = &qm->qp_array[qp_id]; 986 987 qm_set_qp_disable(qp, QM_RESET_STOP_TX_OFFSET); 988 hisi_qm_stop_qp(qp); 989 qm_set_qp_disable(qp, QM_RESET_STOP_RX_OFFSET); 990 } 991 992 static void qm_reset_function(struct hisi_qm *qm) 993 { 994 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 995 struct device *dev = &qm->pdev->dev; 996 int ret; 997 998 if (qm_check_dev_error(pf_qm)) 999 return; 1000 1001 ret = qm_reset_prepare_ready(qm); 1002 if (ret) { 1003 dev_err(dev, "reset function not ready\n"); 1004 return; 1005 } 1006 1007 ret = hisi_qm_stop(qm, QM_DOWN); 1008 if (ret) { 1009 dev_err(dev, "failed to stop qm when reset function\n"); 1010 goto clear_bit; 1011 } 1012 1013 ret = hisi_qm_start(qm); 1014 if (ret) 1015 dev_err(dev, "failed to start qm when reset function\n"); 1016 1017 clear_bit: 1018 qm_reset_bit_clear(qm); 1019 } 1020 1021 static irqreturn_t qm_aeq_thread(int irq, void *data) 1022 { 1023 struct hisi_qm *qm = data; 1024 struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head; 1025 u16 aeq_depth = qm->aeq_depth; 1026 u32 type, qp_id; 1027 1028 atomic64_inc(&qm->debug.dfx.aeq_irq_cnt); 1029 1030 while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) { 1031 type = (le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT) & 1032 QM_AEQE_TYPE_MASK; 1033 qp_id = le32_to_cpu(aeqe->dw0) & QM_AEQE_CQN_MASK; 1034 1035 switch (type) { 1036 case QM_EQ_OVERFLOW: 1037 dev_err(&qm->pdev->dev, "eq overflow, reset function\n"); 1038 qm_reset_function(qm); 1039 return IRQ_HANDLED; 1040 case QM_CQ_OVERFLOW: 1041 dev_err(&qm->pdev->dev, "cq overflow, stop qp(%u)\n", 1042 qp_id); 1043 fallthrough; 1044 case QM_CQE_ERROR: 1045 qm_disable_qp(qm, qp_id); 1046 break; 1047 default: 1048 dev_err(&qm->pdev->dev, "unknown error type %u\n", 1049 type); 1050 break; 1051 } 1052 1053 if (qm->status.aeq_head == aeq_depth - 1) { 1054 qm->status.aeqc_phase = !qm->status.aeqc_phase; 1055 aeqe = qm->aeqe; 1056 qm->status.aeq_head = 0; 1057 } else { 1058 aeqe++; 1059 qm->status.aeq_head++; 1060 } 1061 } 1062 1063 qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0); 1064 1065 return IRQ_HANDLED; 1066 } 1067 1068 static void qm_init_qp_status(struct hisi_qp *qp) 1069 { 1070 struct hisi_qp_status *qp_status = &qp->qp_status; 1071 1072 qp_status->sq_tail = 0; 1073 qp_status->cq_head = 0; 1074 qp_status->cqc_phase = true; 1075 atomic_set(&qp_status->used, 0); 1076 } 1077 1078 static void qm_init_prefetch(struct hisi_qm *qm) 1079 { 1080 struct device *dev = &qm->pdev->dev; 1081 u32 page_type = 0x0; 1082 1083 if (!test_bit(QM_SUPPORT_SVA_PREFETCH, &qm->caps)) 1084 return; 1085 1086 switch (PAGE_SIZE) { 1087 case SZ_4K: 1088 page_type = 0x0; 1089 break; 1090 case SZ_16K: 1091 page_type = 0x1; 1092 break; 1093 case SZ_64K: 1094 page_type = 0x2; 1095 break; 1096 default: 1097 dev_err(dev, "system page size is not support: %lu, default set to 4KB", 1098 PAGE_SIZE); 1099 } 1100 1101 writel(page_type, qm->io_base + QM_PAGE_SIZE); 1102 } 1103 1104 /* 1105 * acc_shaper_para_calc() Get the IR value by the qos formula, the return value 1106 * is the expected qos calculated. 1107 * the formula: 1108 * IR = X Mbps if ir = 1 means IR = 100 Mbps, if ir = 10000 means = 10Gbps 1109 * 1110 * IR_b * (2 ^ IR_u) * 8000 1111 * IR(Mbps) = ------------------------- 1112 * Tick * (2 ^ IR_s) 1113 */ 1114 static u32 acc_shaper_para_calc(u64 cir_b, u64 cir_u, u64 cir_s) 1115 { 1116 return ((cir_b * QM_QOS_DIVISOR_CLK) * (1 << cir_u)) / 1117 (QM_QOS_TICK * (1 << cir_s)); 1118 } 1119 1120 static u32 acc_shaper_calc_cbs_s(u32 ir) 1121 { 1122 int table_size = ARRAY_SIZE(shaper_cbs_s); 1123 int i; 1124 1125 for (i = 0; i < table_size; i++) { 1126 if (ir >= shaper_cbs_s[i].start && ir <= shaper_cbs_s[i].end) 1127 return shaper_cbs_s[i].val; 1128 } 1129 1130 return QM_SHAPER_MIN_CBS_S; 1131 } 1132 1133 static u32 acc_shaper_calc_cir_s(u32 ir) 1134 { 1135 int table_size = ARRAY_SIZE(shaper_cir_s); 1136 int i; 1137 1138 for (i = 0; i < table_size; i++) { 1139 if (ir >= shaper_cir_s[i].start && ir <= shaper_cir_s[i].end) 1140 return shaper_cir_s[i].val; 1141 } 1142 1143 return 0; 1144 } 1145 1146 static int qm_get_shaper_para(u32 ir, struct qm_shaper_factor *factor) 1147 { 1148 u32 cir_b, cir_u, cir_s, ir_calc; 1149 u32 error_rate; 1150 1151 factor->cbs_s = acc_shaper_calc_cbs_s(ir); 1152 cir_s = acc_shaper_calc_cir_s(ir); 1153 1154 for (cir_b = QM_QOS_MIN_CIR_B; cir_b <= QM_QOS_MAX_CIR_B; cir_b++) { 1155 for (cir_u = 0; cir_u <= QM_QOS_MAX_CIR_U; cir_u++) { 1156 ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s); 1157 1158 error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir; 1159 if (error_rate <= QM_QOS_MIN_ERROR_RATE) { 1160 factor->cir_b = cir_b; 1161 factor->cir_u = cir_u; 1162 factor->cir_s = cir_s; 1163 return 0; 1164 } 1165 } 1166 } 1167 1168 return -EINVAL; 1169 } 1170 1171 static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base, 1172 u32 number, struct qm_shaper_factor *factor) 1173 { 1174 u64 tmp = 0; 1175 1176 if (number > 0) { 1177 switch (type) { 1178 case SQC_VFT: 1179 if (qm->ver == QM_HW_V1) { 1180 tmp = QM_SQC_VFT_BUF_SIZE | 1181 QM_SQC_VFT_SQC_SIZE | 1182 QM_SQC_VFT_INDEX_NUMBER | 1183 QM_SQC_VFT_VALID | 1184 (u64)base << QM_SQC_VFT_START_SQN_SHIFT; 1185 } else { 1186 tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT | 1187 QM_SQC_VFT_VALID | 1188 (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT; 1189 } 1190 break; 1191 case CQC_VFT: 1192 if (qm->ver == QM_HW_V1) { 1193 tmp = QM_CQC_VFT_BUF_SIZE | 1194 QM_CQC_VFT_SQC_SIZE | 1195 QM_CQC_VFT_INDEX_NUMBER | 1196 QM_CQC_VFT_VALID; 1197 } else { 1198 tmp = QM_CQC_VFT_VALID; 1199 } 1200 break; 1201 case SHAPER_VFT: 1202 if (factor) { 1203 tmp = factor->cir_b | 1204 (factor->cir_u << QM_SHAPER_FACTOR_CIR_U_SHIFT) | 1205 (factor->cir_s << QM_SHAPER_FACTOR_CIR_S_SHIFT) | 1206 (QM_SHAPER_CBS_B << QM_SHAPER_FACTOR_CBS_B_SHIFT) | 1207 (factor->cbs_s << QM_SHAPER_FACTOR_CBS_S_SHIFT); 1208 } 1209 break; 1210 } 1211 } 1212 1213 writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L); 1214 writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H); 1215 } 1216 1217 static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type, 1218 u32 fun_num, u32 base, u32 number) 1219 { 1220 struct qm_shaper_factor *factor = NULL; 1221 unsigned int val; 1222 int ret; 1223 1224 if (type == SHAPER_VFT && test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 1225 factor = &qm->factor[fun_num]; 1226 1227 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 1228 val & BIT(0), POLL_PERIOD, 1229 POLL_TIMEOUT); 1230 if (ret) 1231 return ret; 1232 1233 writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR); 1234 writel(type, qm->io_base + QM_VFT_CFG_TYPE); 1235 if (type == SHAPER_VFT) 1236 fun_num |= base << QM_SHAPER_VFT_OFFSET; 1237 1238 writel(fun_num, qm->io_base + QM_VFT_CFG); 1239 1240 qm_vft_data_cfg(qm, type, base, number, factor); 1241 1242 writel(0x0, qm->io_base + QM_VFT_CFG_RDY); 1243 writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE); 1244 1245 return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 1246 val & BIT(0), POLL_PERIOD, 1247 POLL_TIMEOUT); 1248 } 1249 1250 static int qm_shaper_init_vft(struct hisi_qm *qm, u32 fun_num) 1251 { 1252 u32 qos = qm->factor[fun_num].func_qos; 1253 int ret, i; 1254 1255 ret = qm_get_shaper_para(qos * QM_QOS_RATE, &qm->factor[fun_num]); 1256 if (ret) { 1257 dev_err(&qm->pdev->dev, "failed to calculate shaper parameter!\n"); 1258 return ret; 1259 } 1260 writel(qm->type_rate, qm->io_base + QM_SHAPER_CFG); 1261 for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) { 1262 /* The base number of queue reuse for different alg type */ 1263 ret = qm_set_vft_common(qm, SHAPER_VFT, fun_num, i, 1); 1264 if (ret) 1265 return ret; 1266 } 1267 1268 return 0; 1269 } 1270 1271 /* The config should be conducted after qm_dev_mem_reset() */ 1272 static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base, 1273 u32 number) 1274 { 1275 int ret, i; 1276 1277 for (i = SQC_VFT; i <= CQC_VFT; i++) { 1278 ret = qm_set_vft_common(qm, i, fun_num, base, number); 1279 if (ret) 1280 return ret; 1281 } 1282 1283 /* init default shaper qos val */ 1284 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) { 1285 ret = qm_shaper_init_vft(qm, fun_num); 1286 if (ret) 1287 goto back_sqc_cqc; 1288 } 1289 1290 return 0; 1291 back_sqc_cqc: 1292 for (i = SQC_VFT; i <= CQC_VFT; i++) 1293 qm_set_vft_common(qm, i, fun_num, 0, 0); 1294 1295 return ret; 1296 } 1297 1298 static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number) 1299 { 1300 u64 sqc_vft; 1301 int ret; 1302 1303 ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1); 1304 if (ret) 1305 return ret; 1306 1307 sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) | 1308 ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32); 1309 *base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2); 1310 *number = (QM_SQC_VFT_NUM_MASK_V2 & 1311 (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1; 1312 1313 return 0; 1314 } 1315 1316 static void qm_hw_error_init_v1(struct hisi_qm *qm) 1317 { 1318 writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK); 1319 } 1320 1321 static void qm_hw_error_cfg(struct hisi_qm *qm) 1322 { 1323 struct hisi_qm_err_info *err_info = &qm->err_info; 1324 1325 qm->error_mask = err_info->nfe | err_info->ce | err_info->fe; 1326 /* clear QM hw residual error source */ 1327 writel(qm->error_mask, qm->io_base + QM_ABNORMAL_INT_SOURCE); 1328 1329 /* configure error type */ 1330 writel(err_info->ce, qm->io_base + QM_RAS_CE_ENABLE); 1331 writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD); 1332 writel(err_info->nfe, qm->io_base + QM_RAS_NFE_ENABLE); 1333 writel(err_info->fe, qm->io_base + QM_RAS_FE_ENABLE); 1334 } 1335 1336 static void qm_hw_error_init_v2(struct hisi_qm *qm) 1337 { 1338 u32 irq_unmask; 1339 1340 qm_hw_error_cfg(qm); 1341 1342 irq_unmask = ~qm->error_mask; 1343 irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1344 writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK); 1345 } 1346 1347 static void qm_hw_error_uninit_v2(struct hisi_qm *qm) 1348 { 1349 u32 irq_mask = qm->error_mask; 1350 1351 irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1352 writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK); 1353 } 1354 1355 static void qm_hw_error_init_v3(struct hisi_qm *qm) 1356 { 1357 u32 irq_unmask; 1358 1359 qm_hw_error_cfg(qm); 1360 1361 /* enable close master ooo when hardware error happened */ 1362 writel(qm->err_info.qm_shutdown_mask, qm->io_base + QM_OOO_SHUTDOWN_SEL); 1363 1364 irq_unmask = ~qm->error_mask; 1365 irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1366 writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK); 1367 } 1368 1369 static void qm_hw_error_uninit_v3(struct hisi_qm *qm) 1370 { 1371 u32 irq_mask = qm->error_mask; 1372 1373 irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1374 writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK); 1375 1376 /* disable close master ooo when hardware error happened */ 1377 writel(0x0, qm->io_base + QM_OOO_SHUTDOWN_SEL); 1378 } 1379 1380 static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status) 1381 { 1382 const struct hisi_qm_hw_error *err; 1383 struct device *dev = &qm->pdev->dev; 1384 u32 reg_val, type, vf_num, qp_id; 1385 int i; 1386 1387 for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) { 1388 err = &qm_hw_error[i]; 1389 if (!(err->int_msk & error_status)) 1390 continue; 1391 1392 dev_err(dev, "%s [error status=0x%x] found\n", 1393 err->msg, err->int_msk); 1394 1395 if (err->int_msk & QM_DB_TIMEOUT) { 1396 reg_val = readl(qm->io_base + QM_ABNORMAL_INF01); 1397 type = (reg_val & QM_DB_TIMEOUT_TYPE) >> 1398 QM_DB_TIMEOUT_TYPE_SHIFT; 1399 vf_num = reg_val & QM_DB_TIMEOUT_VF; 1400 qp_id = reg_val >> QM_DB_TIMEOUT_QP_SHIFT; 1401 dev_err(dev, "qm %s doorbell timeout in function %u qp %u\n", 1402 qm_db_timeout[type], vf_num, qp_id); 1403 } else if (err->int_msk & QM_OF_FIFO_OF) { 1404 reg_val = readl(qm->io_base + QM_ABNORMAL_INF00); 1405 type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >> 1406 QM_FIFO_OVERFLOW_TYPE_SHIFT; 1407 vf_num = reg_val & QM_FIFO_OVERFLOW_VF; 1408 qp_id = reg_val >> QM_FIFO_OVERFLOW_QP_SHIFT; 1409 if (type < ARRAY_SIZE(qm_fifo_overflow)) 1410 dev_err(dev, "qm %s fifo overflow in function %u qp %u\n", 1411 qm_fifo_overflow[type], vf_num, qp_id); 1412 else 1413 dev_err(dev, "unknown error type\n"); 1414 } else if (err->int_msk & QM_AXI_RRESP_ERR) { 1415 reg_val = readl(qm->io_base + QM_ABNORMAL_INF02); 1416 if (reg_val & QM_AXI_POISON_ERR) 1417 dev_err(dev, "qm axi poison error happened\n"); 1418 } 1419 } 1420 } 1421 1422 static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm) 1423 { 1424 u32 error_status, tmp; 1425 1426 /* read err sts */ 1427 tmp = readl(qm->io_base + QM_ABNORMAL_INT_STATUS); 1428 error_status = qm->error_mask & tmp; 1429 1430 if (error_status) { 1431 if (error_status & QM_ECC_MBIT) 1432 qm->err_status.is_qm_ecc_mbit = true; 1433 1434 qm_log_hw_error(qm, error_status); 1435 if (error_status & qm->err_info.qm_reset_mask) 1436 return ACC_ERR_NEED_RESET; 1437 1438 writel(error_status, qm->io_base + QM_ABNORMAL_INT_SOURCE); 1439 writel(qm->err_info.nfe, qm->io_base + QM_RAS_NFE_ENABLE); 1440 } 1441 1442 return ACC_ERR_RECOVERED; 1443 } 1444 1445 static int qm_get_mb_cmd(struct hisi_qm *qm, u64 *msg, u16 fun_num) 1446 { 1447 struct qm_mailbox mailbox; 1448 int ret; 1449 1450 qm_mb_pre_init(&mailbox, QM_MB_CMD_DST, 0, fun_num, 0); 1451 mutex_lock(&qm->mailbox_lock); 1452 ret = qm_mb_nolock(qm, &mailbox); 1453 if (ret) 1454 goto err_unlock; 1455 1456 *msg = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) | 1457 ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32); 1458 1459 err_unlock: 1460 mutex_unlock(&qm->mailbox_lock); 1461 return ret; 1462 } 1463 1464 static void qm_clear_cmd_interrupt(struct hisi_qm *qm, u64 vf_mask) 1465 { 1466 u32 val; 1467 1468 if (qm->fun_type == QM_HW_PF) 1469 writeq(vf_mask, qm->io_base + QM_IFC_INT_SOURCE_P); 1470 1471 val = readl(qm->io_base + QM_IFC_INT_SOURCE_V); 1472 val |= QM_IFC_INT_SOURCE_MASK; 1473 writel(val, qm->io_base + QM_IFC_INT_SOURCE_V); 1474 } 1475 1476 static void qm_handle_vf_msg(struct hisi_qm *qm, u32 vf_id) 1477 { 1478 struct device *dev = &qm->pdev->dev; 1479 u32 cmd; 1480 u64 msg; 1481 int ret; 1482 1483 ret = qm_get_mb_cmd(qm, &msg, vf_id); 1484 if (ret) { 1485 dev_err(dev, "failed to get msg from VF(%u)!\n", vf_id); 1486 return; 1487 } 1488 1489 cmd = msg & QM_MB_CMD_DATA_MASK; 1490 switch (cmd) { 1491 case QM_VF_PREPARE_FAIL: 1492 dev_err(dev, "failed to stop VF(%u)!\n", vf_id); 1493 break; 1494 case QM_VF_START_FAIL: 1495 dev_err(dev, "failed to start VF(%u)!\n", vf_id); 1496 break; 1497 case QM_VF_PREPARE_DONE: 1498 case QM_VF_START_DONE: 1499 break; 1500 default: 1501 dev_err(dev, "unsupported cmd %u sent by VF(%u)!\n", cmd, vf_id); 1502 break; 1503 } 1504 } 1505 1506 static int qm_wait_vf_prepare_finish(struct hisi_qm *qm) 1507 { 1508 struct device *dev = &qm->pdev->dev; 1509 u32 vfs_num = qm->vfs_num; 1510 int cnt = 0; 1511 int ret = 0; 1512 u64 val; 1513 u32 i; 1514 1515 if (!qm->vfs_num || !test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 1516 return 0; 1517 1518 while (true) { 1519 val = readq(qm->io_base + QM_IFC_INT_SOURCE_P); 1520 /* All VFs send command to PF, break */ 1521 if ((val & GENMASK(vfs_num, 1)) == GENMASK(vfs_num, 1)) 1522 break; 1523 1524 if (++cnt > QM_MAX_PF_WAIT_COUNT) { 1525 ret = -EBUSY; 1526 break; 1527 } 1528 1529 msleep(QM_WAIT_DST_ACK); 1530 } 1531 1532 /* PF check VFs msg */ 1533 for (i = 1; i <= vfs_num; i++) { 1534 if (val & BIT(i)) 1535 qm_handle_vf_msg(qm, i); 1536 else 1537 dev_err(dev, "VF(%u) not ping PF!\n", i); 1538 } 1539 1540 /* PF clear interrupt to ack VFs */ 1541 qm_clear_cmd_interrupt(qm, val); 1542 1543 return ret; 1544 } 1545 1546 static void qm_trigger_vf_interrupt(struct hisi_qm *qm, u32 fun_num) 1547 { 1548 u32 val; 1549 1550 val = readl(qm->io_base + QM_IFC_INT_CFG); 1551 val &= ~QM_IFC_SEND_ALL_VFS; 1552 val |= fun_num; 1553 writel(val, qm->io_base + QM_IFC_INT_CFG); 1554 1555 val = readl(qm->io_base + QM_IFC_INT_SET_P); 1556 val |= QM_IFC_INT_SET_MASK; 1557 writel(val, qm->io_base + QM_IFC_INT_SET_P); 1558 } 1559 1560 static void qm_trigger_pf_interrupt(struct hisi_qm *qm) 1561 { 1562 u32 val; 1563 1564 val = readl(qm->io_base + QM_IFC_INT_SET_V); 1565 val |= QM_IFC_INT_SET_MASK; 1566 writel(val, qm->io_base + QM_IFC_INT_SET_V); 1567 } 1568 1569 static int qm_ping_single_vf(struct hisi_qm *qm, u64 cmd, u32 fun_num) 1570 { 1571 struct device *dev = &qm->pdev->dev; 1572 struct qm_mailbox mailbox; 1573 int cnt = 0; 1574 u64 val; 1575 int ret; 1576 1577 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, fun_num, 0); 1578 mutex_lock(&qm->mailbox_lock); 1579 ret = qm_mb_nolock(qm, &mailbox); 1580 if (ret) { 1581 dev_err(dev, "failed to send command to vf(%u)!\n", fun_num); 1582 goto err_unlock; 1583 } 1584 1585 qm_trigger_vf_interrupt(qm, fun_num); 1586 while (true) { 1587 msleep(QM_WAIT_DST_ACK); 1588 val = readq(qm->io_base + QM_IFC_READY_STATUS); 1589 /* if VF respond, PF notifies VF successfully. */ 1590 if (!(val & BIT(fun_num))) 1591 goto err_unlock; 1592 1593 if (++cnt > QM_MAX_PF_WAIT_COUNT) { 1594 dev_err(dev, "failed to get response from VF(%u)!\n", fun_num); 1595 ret = -ETIMEDOUT; 1596 break; 1597 } 1598 } 1599 1600 err_unlock: 1601 mutex_unlock(&qm->mailbox_lock); 1602 return ret; 1603 } 1604 1605 static int qm_ping_all_vfs(struct hisi_qm *qm, u64 cmd) 1606 { 1607 struct device *dev = &qm->pdev->dev; 1608 u32 vfs_num = qm->vfs_num; 1609 struct qm_mailbox mailbox; 1610 u64 val = 0; 1611 int cnt = 0; 1612 int ret; 1613 u32 i; 1614 1615 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, QM_MB_PING_ALL_VFS, 0); 1616 mutex_lock(&qm->mailbox_lock); 1617 /* PF sends command to all VFs by mailbox */ 1618 ret = qm_mb_nolock(qm, &mailbox); 1619 if (ret) { 1620 dev_err(dev, "failed to send command to VFs!\n"); 1621 mutex_unlock(&qm->mailbox_lock); 1622 return ret; 1623 } 1624 1625 qm_trigger_vf_interrupt(qm, QM_IFC_SEND_ALL_VFS); 1626 while (true) { 1627 msleep(QM_WAIT_DST_ACK); 1628 val = readq(qm->io_base + QM_IFC_READY_STATUS); 1629 /* If all VFs acked, PF notifies VFs successfully. */ 1630 if (!(val & GENMASK(vfs_num, 1))) { 1631 mutex_unlock(&qm->mailbox_lock); 1632 return 0; 1633 } 1634 1635 if (++cnt > QM_MAX_PF_WAIT_COUNT) 1636 break; 1637 } 1638 1639 mutex_unlock(&qm->mailbox_lock); 1640 1641 /* Check which vf respond timeout. */ 1642 for (i = 1; i <= vfs_num; i++) { 1643 if (val & BIT(i)) 1644 dev_err(dev, "failed to get response from VF(%u)!\n", i); 1645 } 1646 1647 return -ETIMEDOUT; 1648 } 1649 1650 static int qm_ping_pf(struct hisi_qm *qm, u64 cmd) 1651 { 1652 struct qm_mailbox mailbox; 1653 int cnt = 0; 1654 u32 val; 1655 int ret; 1656 1657 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, 0, 0); 1658 mutex_lock(&qm->mailbox_lock); 1659 ret = qm_mb_nolock(qm, &mailbox); 1660 if (ret) { 1661 dev_err(&qm->pdev->dev, "failed to send command to PF!\n"); 1662 goto unlock; 1663 } 1664 1665 qm_trigger_pf_interrupt(qm); 1666 /* Waiting for PF response */ 1667 while (true) { 1668 msleep(QM_WAIT_DST_ACK); 1669 val = readl(qm->io_base + QM_IFC_INT_SET_V); 1670 if (!(val & QM_IFC_INT_STATUS_MASK)) 1671 break; 1672 1673 if (++cnt > QM_MAX_VF_WAIT_COUNT) { 1674 ret = -ETIMEDOUT; 1675 break; 1676 } 1677 } 1678 1679 unlock: 1680 mutex_unlock(&qm->mailbox_lock); 1681 return ret; 1682 } 1683 1684 static int qm_drain_qm(struct hisi_qm *qm) 1685 { 1686 return hisi_qm_mb(qm, QM_MB_CMD_FLUSH_QM, 0, 0, 0); 1687 } 1688 1689 static int qm_stop_qp(struct hisi_qp *qp) 1690 { 1691 return hisi_qm_mb(qp->qm, QM_MB_CMD_STOP_QP, 0, qp->qp_id, 0); 1692 } 1693 1694 static int qm_set_msi(struct hisi_qm *qm, bool set) 1695 { 1696 struct pci_dev *pdev = qm->pdev; 1697 1698 if (set) { 1699 pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64, 1700 0); 1701 } else { 1702 pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64, 1703 ACC_PEH_MSI_DISABLE); 1704 if (qm->err_status.is_qm_ecc_mbit || 1705 qm->err_status.is_dev_ecc_mbit) 1706 return 0; 1707 1708 mdelay(1); 1709 if (readl(qm->io_base + QM_PEH_DFX_INFO0)) 1710 return -EFAULT; 1711 } 1712 1713 return 0; 1714 } 1715 1716 static void qm_wait_msi_finish(struct hisi_qm *qm) 1717 { 1718 struct pci_dev *pdev = qm->pdev; 1719 u32 cmd = ~0; 1720 int cnt = 0; 1721 u32 val; 1722 int ret; 1723 1724 while (true) { 1725 pci_read_config_dword(pdev, pdev->msi_cap + 1726 PCI_MSI_PENDING_64, &cmd); 1727 if (!cmd) 1728 break; 1729 1730 if (++cnt > MAX_WAIT_COUNTS) { 1731 pci_warn(pdev, "failed to empty MSI PENDING!\n"); 1732 break; 1733 } 1734 1735 udelay(1); 1736 } 1737 1738 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO0, 1739 val, !(val & QM_PEH_DFX_MASK), 1740 POLL_PERIOD, POLL_TIMEOUT); 1741 if (ret) 1742 pci_warn(pdev, "failed to empty PEH MSI!\n"); 1743 1744 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO1, 1745 val, !(val & QM_PEH_MSI_FINISH_MASK), 1746 POLL_PERIOD, POLL_TIMEOUT); 1747 if (ret) 1748 pci_warn(pdev, "failed to finish MSI operation!\n"); 1749 } 1750 1751 static int qm_set_msi_v3(struct hisi_qm *qm, bool set) 1752 { 1753 struct pci_dev *pdev = qm->pdev; 1754 int ret = -ETIMEDOUT; 1755 u32 cmd, i; 1756 1757 pci_read_config_dword(pdev, pdev->msi_cap, &cmd); 1758 if (set) 1759 cmd |= QM_MSI_CAP_ENABLE; 1760 else 1761 cmd &= ~QM_MSI_CAP_ENABLE; 1762 1763 pci_write_config_dword(pdev, pdev->msi_cap, cmd); 1764 if (set) { 1765 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 1766 pci_read_config_dword(pdev, pdev->msi_cap, &cmd); 1767 if (cmd & QM_MSI_CAP_ENABLE) 1768 return 0; 1769 1770 udelay(1); 1771 } 1772 } else { 1773 udelay(WAIT_PERIOD_US_MIN); 1774 qm_wait_msi_finish(qm); 1775 ret = 0; 1776 } 1777 1778 return ret; 1779 } 1780 1781 static const struct hisi_qm_hw_ops qm_hw_ops_v1 = { 1782 .qm_db = qm_db_v1, 1783 .hw_error_init = qm_hw_error_init_v1, 1784 .set_msi = qm_set_msi, 1785 }; 1786 1787 static const struct hisi_qm_hw_ops qm_hw_ops_v2 = { 1788 .get_vft = qm_get_vft_v2, 1789 .qm_db = qm_db_v2, 1790 .hw_error_init = qm_hw_error_init_v2, 1791 .hw_error_uninit = qm_hw_error_uninit_v2, 1792 .hw_error_handle = qm_hw_error_handle_v2, 1793 .set_msi = qm_set_msi, 1794 }; 1795 1796 static const struct hisi_qm_hw_ops qm_hw_ops_v3 = { 1797 .get_vft = qm_get_vft_v2, 1798 .qm_db = qm_db_v2, 1799 .hw_error_init = qm_hw_error_init_v3, 1800 .hw_error_uninit = qm_hw_error_uninit_v3, 1801 .hw_error_handle = qm_hw_error_handle_v2, 1802 .set_msi = qm_set_msi_v3, 1803 }; 1804 1805 static void *qm_get_avail_sqe(struct hisi_qp *qp) 1806 { 1807 struct hisi_qp_status *qp_status = &qp->qp_status; 1808 u16 sq_tail = qp_status->sq_tail; 1809 1810 if (unlikely(atomic_read(&qp->qp_status.used) == qp->sq_depth - 1)) 1811 return NULL; 1812 1813 return qp->sqe + sq_tail * qp->qm->sqe_size; 1814 } 1815 1816 static void hisi_qm_unset_hw_reset(struct hisi_qp *qp) 1817 { 1818 u64 *addr; 1819 1820 /* Use last 64 bits of DUS to reset status. */ 1821 addr = (u64 *)(qp->qdma.va + qp->qdma.size) - QM_RESET_STOP_TX_OFFSET; 1822 *addr = 0; 1823 } 1824 1825 static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type) 1826 { 1827 struct device *dev = &qm->pdev->dev; 1828 struct hisi_qp *qp; 1829 int qp_id; 1830 1831 if (atomic_read(&qm->status.flags) == QM_STOP) { 1832 dev_info_ratelimited(dev, "failed to create qp as qm is stop!\n"); 1833 return ERR_PTR(-EPERM); 1834 } 1835 1836 if (qm->qp_in_used == qm->qp_num) { 1837 dev_info_ratelimited(dev, "All %u queues of QM are busy!\n", 1838 qm->qp_num); 1839 atomic64_inc(&qm->debug.dfx.create_qp_err_cnt); 1840 return ERR_PTR(-EBUSY); 1841 } 1842 1843 qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC); 1844 if (qp_id < 0) { 1845 dev_info_ratelimited(dev, "All %u queues of QM are busy!\n", 1846 qm->qp_num); 1847 atomic64_inc(&qm->debug.dfx.create_qp_err_cnt); 1848 return ERR_PTR(-EBUSY); 1849 } 1850 1851 qp = &qm->qp_array[qp_id]; 1852 hisi_qm_unset_hw_reset(qp); 1853 memset(qp->cqe, 0, sizeof(struct qm_cqe) * qp->cq_depth); 1854 1855 qp->event_cb = NULL; 1856 qp->req_cb = NULL; 1857 qp->qp_id = qp_id; 1858 qp->alg_type = alg_type; 1859 qp->is_in_kernel = true; 1860 qm->qp_in_used++; 1861 1862 return qp; 1863 } 1864 1865 /** 1866 * hisi_qm_create_qp() - Create a queue pair from qm. 1867 * @qm: The qm we create a qp from. 1868 * @alg_type: Accelerator specific algorithm type in sqc. 1869 * 1870 * Return created qp, negative error code if failed. 1871 */ 1872 static struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type) 1873 { 1874 struct hisi_qp *qp; 1875 int ret; 1876 1877 ret = qm_pm_get_sync(qm); 1878 if (ret) 1879 return ERR_PTR(ret); 1880 1881 down_write(&qm->qps_lock); 1882 qp = qm_create_qp_nolock(qm, alg_type); 1883 up_write(&qm->qps_lock); 1884 1885 if (IS_ERR(qp)) 1886 qm_pm_put_sync(qm); 1887 1888 return qp; 1889 } 1890 1891 /** 1892 * hisi_qm_release_qp() - Release a qp back to its qm. 1893 * @qp: The qp we want to release. 1894 * 1895 * This function releases the resource of a qp. 1896 */ 1897 static void hisi_qm_release_qp(struct hisi_qp *qp) 1898 { 1899 struct hisi_qm *qm = qp->qm; 1900 1901 down_write(&qm->qps_lock); 1902 1903 qm->qp_in_used--; 1904 idr_remove(&qm->qp_idr, qp->qp_id); 1905 1906 up_write(&qm->qps_lock); 1907 1908 qm_pm_put_sync(qm); 1909 } 1910 1911 static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 1912 { 1913 struct hisi_qm *qm = qp->qm; 1914 enum qm_hw_ver ver = qm->ver; 1915 struct qm_sqc sqc = {0}; 1916 1917 if (ver == QM_HW_V1) { 1918 sqc.dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size)); 1919 sqc.w8 = cpu_to_le16(qp->sq_depth - 1); 1920 } else { 1921 sqc.dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size, qp->sq_depth)); 1922 sqc.w8 = 0; /* rand_qc */ 1923 } 1924 sqc.w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type)); 1925 sqc.base_l = cpu_to_le32(lower_32_bits(qp->sqe_dma)); 1926 sqc.base_h = cpu_to_le32(upper_32_bits(qp->sqe_dma)); 1927 sqc.cq_num = cpu_to_le16(qp_id); 1928 sqc.pasid = cpu_to_le16(pasid); 1929 1930 if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel) 1931 sqc.w11 = cpu_to_le16(QM_QC_PASID_ENABLE << 1932 QM_QC_PASID_ENABLE_SHIFT); 1933 1934 return qm_set_and_get_xqc(qm, QM_MB_CMD_SQC, &sqc, qp_id, 0); 1935 } 1936 1937 static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 1938 { 1939 struct hisi_qm *qm = qp->qm; 1940 enum qm_hw_ver ver = qm->ver; 1941 struct qm_cqc cqc = {0}; 1942 1943 if (ver == QM_HW_V1) { 1944 cqc.dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0, QM_QC_CQE_SIZE)); 1945 cqc.w8 = cpu_to_le16(qp->cq_depth - 1); 1946 } else { 1947 cqc.dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE, qp->cq_depth)); 1948 cqc.w8 = 0; /* rand_qc */ 1949 } 1950 /* 1951 * Enable request finishing interrupts defaultly. 1952 * So, there will be some interrupts until disabling 1953 * this. 1954 */ 1955 cqc.dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT); 1956 cqc.base_l = cpu_to_le32(lower_32_bits(qp->cqe_dma)); 1957 cqc.base_h = cpu_to_le32(upper_32_bits(qp->cqe_dma)); 1958 cqc.pasid = cpu_to_le16(pasid); 1959 1960 if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel) 1961 cqc.w11 = cpu_to_le16(QM_QC_PASID_ENABLE); 1962 1963 return qm_set_and_get_xqc(qm, QM_MB_CMD_CQC, &cqc, qp_id, 0); 1964 } 1965 1966 static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 1967 { 1968 int ret; 1969 1970 qm_init_qp_status(qp); 1971 1972 ret = qm_sq_ctx_cfg(qp, qp_id, pasid); 1973 if (ret) 1974 return ret; 1975 1976 return qm_cq_ctx_cfg(qp, qp_id, pasid); 1977 } 1978 1979 static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg) 1980 { 1981 struct hisi_qm *qm = qp->qm; 1982 struct device *dev = &qm->pdev->dev; 1983 int qp_id = qp->qp_id; 1984 u32 pasid = arg; 1985 int ret; 1986 1987 if (atomic_read(&qm->status.flags) == QM_STOP) { 1988 dev_info_ratelimited(dev, "failed to start qp as qm is stop!\n"); 1989 return -EPERM; 1990 } 1991 1992 ret = qm_qp_ctx_cfg(qp, qp_id, pasid); 1993 if (ret) 1994 return ret; 1995 1996 atomic_set(&qp->qp_status.flags, QP_START); 1997 dev_dbg(dev, "queue %d started\n", qp_id); 1998 1999 return 0; 2000 } 2001 2002 /** 2003 * hisi_qm_start_qp() - Start a qp into running. 2004 * @qp: The qp we want to start to run. 2005 * @arg: Accelerator specific argument. 2006 * 2007 * After this function, qp can receive request from user. Return 0 if 2008 * successful, negative error code if failed. 2009 */ 2010 int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg) 2011 { 2012 struct hisi_qm *qm = qp->qm; 2013 int ret; 2014 2015 down_write(&qm->qps_lock); 2016 ret = qm_start_qp_nolock(qp, arg); 2017 up_write(&qm->qps_lock); 2018 2019 return ret; 2020 } 2021 EXPORT_SYMBOL_GPL(hisi_qm_start_qp); 2022 2023 /** 2024 * qp_stop_fail_cb() - call request cb. 2025 * @qp: stopped failed qp. 2026 * 2027 * Callback function should be called whether task completed or not. 2028 */ 2029 static void qp_stop_fail_cb(struct hisi_qp *qp) 2030 { 2031 int qp_used = atomic_read(&qp->qp_status.used); 2032 u16 cur_tail = qp->qp_status.sq_tail; 2033 u16 sq_depth = qp->sq_depth; 2034 u16 cur_head = (cur_tail + sq_depth - qp_used) % sq_depth; 2035 struct hisi_qm *qm = qp->qm; 2036 u16 pos; 2037 int i; 2038 2039 for (i = 0; i < qp_used; i++) { 2040 pos = (i + cur_head) % sq_depth; 2041 qp->req_cb(qp, qp->sqe + (u32)(qm->sqe_size * pos)); 2042 atomic_dec(&qp->qp_status.used); 2043 } 2044 } 2045 2046 static int qm_wait_qp_empty(struct hisi_qm *qm, u32 *state, u32 qp_id) 2047 { 2048 struct device *dev = &qm->pdev->dev; 2049 struct qm_sqc sqc; 2050 struct qm_cqc cqc; 2051 int ret, i = 0; 2052 2053 while (++i) { 2054 ret = qm_set_and_get_xqc(qm, QM_MB_CMD_SQC, &sqc, qp_id, 1); 2055 if (ret) { 2056 dev_err_ratelimited(dev, "Failed to dump sqc!\n"); 2057 *state = QM_DUMP_SQC_FAIL; 2058 return ret; 2059 } 2060 2061 ret = qm_set_and_get_xqc(qm, QM_MB_CMD_CQC, &cqc, qp_id, 1); 2062 if (ret) { 2063 dev_err_ratelimited(dev, "Failed to dump cqc!\n"); 2064 *state = QM_DUMP_CQC_FAIL; 2065 return ret; 2066 } 2067 2068 if ((sqc.tail == cqc.tail) && 2069 (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc))) 2070 break; 2071 2072 if (i == MAX_WAIT_COUNTS) { 2073 dev_err(dev, "Fail to empty queue %u!\n", qp_id); 2074 *state = QM_STOP_QUEUE_FAIL; 2075 return -ETIMEDOUT; 2076 } 2077 2078 usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX); 2079 } 2080 2081 return 0; 2082 } 2083 2084 /** 2085 * qm_drain_qp() - Drain a qp. 2086 * @qp: The qp we want to drain. 2087 * 2088 * If the device does not support stopping queue by sending mailbox, 2089 * determine whether the queue is cleared by judging the tail pointers of 2090 * sq and cq. 2091 */ 2092 static int qm_drain_qp(struct hisi_qp *qp) 2093 { 2094 struct hisi_qm *qm = qp->qm; 2095 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 2096 u32 state = 0; 2097 int ret; 2098 2099 /* No need to judge if master OOO is blocked. */ 2100 if (qm_check_dev_error(pf_qm)) 2101 return 0; 2102 2103 /* HW V3 supports drain qp by device */ 2104 if (test_bit(QM_SUPPORT_STOP_QP, &qm->caps)) { 2105 ret = qm_stop_qp(qp); 2106 if (ret) { 2107 dev_err(&qm->pdev->dev, "Failed to stop qp!\n"); 2108 state = QM_STOP_QUEUE_FAIL; 2109 goto set_dev_state; 2110 } 2111 return ret; 2112 } 2113 2114 ret = qm_wait_qp_empty(qm, &state, qp->qp_id); 2115 if (ret) 2116 goto set_dev_state; 2117 2118 return 0; 2119 2120 set_dev_state: 2121 if (qm->debug.dev_dfx.dev_timeout) 2122 qm->debug.dev_dfx.dev_state = state; 2123 2124 return ret; 2125 } 2126 2127 static void qm_stop_qp_nolock(struct hisi_qp *qp) 2128 { 2129 struct hisi_qm *qm = qp->qm; 2130 struct device *dev = &qm->pdev->dev; 2131 int ret; 2132 2133 /* 2134 * It is allowed to stop and release qp when reset, If the qp is 2135 * stopped when reset but still want to be released then, the 2136 * is_resetting flag should be set negative so that this qp will not 2137 * be restarted after reset. 2138 */ 2139 if (atomic_read(&qp->qp_status.flags) != QP_START) { 2140 qp->is_resetting = false; 2141 return; 2142 } 2143 2144 atomic_set(&qp->qp_status.flags, QP_STOP); 2145 2146 /* V3 supports direct stop function when FLR prepare */ 2147 if (qm->ver < QM_HW_V3 || qm->status.stop_reason == QM_NORMAL) { 2148 ret = qm_drain_qp(qp); 2149 if (ret) 2150 dev_err(dev, "Failed to drain out data for stopping qp(%u)!\n", qp->qp_id); 2151 } 2152 2153 flush_workqueue(qm->wq); 2154 if (unlikely(qp->is_resetting && atomic_read(&qp->qp_status.used))) 2155 qp_stop_fail_cb(qp); 2156 2157 dev_dbg(dev, "stop queue %u!", qp->qp_id); 2158 } 2159 2160 /** 2161 * hisi_qm_stop_qp() - Stop a qp in qm. 2162 * @qp: The qp we want to stop. 2163 * 2164 * This function is reverse of hisi_qm_start_qp. 2165 */ 2166 void hisi_qm_stop_qp(struct hisi_qp *qp) 2167 { 2168 down_write(&qp->qm->qps_lock); 2169 qm_stop_qp_nolock(qp); 2170 up_write(&qp->qm->qps_lock); 2171 } 2172 EXPORT_SYMBOL_GPL(hisi_qm_stop_qp); 2173 2174 /** 2175 * hisi_qp_send() - Queue up a task in the hardware queue. 2176 * @qp: The qp in which to put the message. 2177 * @msg: The message. 2178 * 2179 * This function will return -EBUSY if qp is currently full, and -EAGAIN 2180 * if qp related qm is resetting. 2181 * 2182 * Note: This function may run with qm_irq_thread and ACC reset at same time. 2183 * It has no race with qm_irq_thread. However, during hisi_qp_send, ACC 2184 * reset may happen, we have no lock here considering performance. This 2185 * causes current qm_db sending fail or can not receive sended sqe. QM 2186 * sync/async receive function should handle the error sqe. ACC reset 2187 * done function should clear used sqe to 0. 2188 */ 2189 int hisi_qp_send(struct hisi_qp *qp, const void *msg) 2190 { 2191 struct hisi_qp_status *qp_status = &qp->qp_status; 2192 u16 sq_tail = qp_status->sq_tail; 2193 u16 sq_tail_next = (sq_tail + 1) % qp->sq_depth; 2194 void *sqe = qm_get_avail_sqe(qp); 2195 2196 if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP || 2197 atomic_read(&qp->qm->status.flags) == QM_STOP || 2198 qp->is_resetting)) { 2199 dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n"); 2200 return -EAGAIN; 2201 } 2202 2203 if (!sqe) 2204 return -EBUSY; 2205 2206 memcpy(sqe, msg, qp->qm->sqe_size); 2207 2208 qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0); 2209 atomic_inc(&qp->qp_status.used); 2210 qp_status->sq_tail = sq_tail_next; 2211 2212 return 0; 2213 } 2214 EXPORT_SYMBOL_GPL(hisi_qp_send); 2215 2216 static void hisi_qm_cache_wb(struct hisi_qm *qm) 2217 { 2218 unsigned int val; 2219 2220 if (qm->ver == QM_HW_V1) 2221 return; 2222 2223 writel(0x1, qm->io_base + QM_CACHE_WB_START); 2224 if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE, 2225 val, val & BIT(0), POLL_PERIOD, 2226 POLL_TIMEOUT)) 2227 dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n"); 2228 } 2229 2230 static void qm_qp_event_notifier(struct hisi_qp *qp) 2231 { 2232 wake_up_interruptible(&qp->uacce_q->wait); 2233 } 2234 2235 /* This function returns free number of qp in qm. */ 2236 static int hisi_qm_get_available_instances(struct uacce_device *uacce) 2237 { 2238 struct hisi_qm *qm = uacce->priv; 2239 int ret; 2240 2241 down_read(&qm->qps_lock); 2242 ret = qm->qp_num - qm->qp_in_used; 2243 up_read(&qm->qps_lock); 2244 2245 return ret; 2246 } 2247 2248 static void hisi_qm_set_hw_reset(struct hisi_qm *qm, int offset) 2249 { 2250 int i; 2251 2252 for (i = 0; i < qm->qp_num; i++) 2253 qm_set_qp_disable(&qm->qp_array[i], offset); 2254 } 2255 2256 static int hisi_qm_uacce_get_queue(struct uacce_device *uacce, 2257 unsigned long arg, 2258 struct uacce_queue *q) 2259 { 2260 struct hisi_qm *qm = uacce->priv; 2261 struct hisi_qp *qp; 2262 u8 alg_type = 0; 2263 2264 qp = hisi_qm_create_qp(qm, alg_type); 2265 if (IS_ERR(qp)) 2266 return PTR_ERR(qp); 2267 2268 q->priv = qp; 2269 q->uacce = uacce; 2270 qp->uacce_q = q; 2271 qp->event_cb = qm_qp_event_notifier; 2272 qp->pasid = arg; 2273 qp->is_in_kernel = false; 2274 2275 return 0; 2276 } 2277 2278 static void hisi_qm_uacce_put_queue(struct uacce_queue *q) 2279 { 2280 struct hisi_qp *qp = q->priv; 2281 2282 hisi_qm_release_qp(qp); 2283 } 2284 2285 /* map sq/cq/doorbell to user space */ 2286 static int hisi_qm_uacce_mmap(struct uacce_queue *q, 2287 struct vm_area_struct *vma, 2288 struct uacce_qfile_region *qfr) 2289 { 2290 struct hisi_qp *qp = q->priv; 2291 struct hisi_qm *qm = qp->qm; 2292 resource_size_t phys_base = qm->db_phys_base + 2293 qp->qp_id * qm->db_interval; 2294 size_t sz = vma->vm_end - vma->vm_start; 2295 struct pci_dev *pdev = qm->pdev; 2296 struct device *dev = &pdev->dev; 2297 unsigned long vm_pgoff; 2298 int ret; 2299 2300 switch (qfr->type) { 2301 case UACCE_QFRT_MMIO: 2302 if (qm->ver == QM_HW_V1) { 2303 if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR) 2304 return -EINVAL; 2305 } else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) { 2306 if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR + 2307 QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE)) 2308 return -EINVAL; 2309 } else { 2310 if (sz > qm->db_interval) 2311 return -EINVAL; 2312 } 2313 2314 vm_flags_set(vma, VM_IO); 2315 2316 return remap_pfn_range(vma, vma->vm_start, 2317 phys_base >> PAGE_SHIFT, 2318 sz, pgprot_noncached(vma->vm_page_prot)); 2319 case UACCE_QFRT_DUS: 2320 if (sz != qp->qdma.size) 2321 return -EINVAL; 2322 2323 /* 2324 * dma_mmap_coherent() requires vm_pgoff as 0 2325 * restore vm_pfoff to initial value for mmap() 2326 */ 2327 vm_pgoff = vma->vm_pgoff; 2328 vma->vm_pgoff = 0; 2329 ret = dma_mmap_coherent(dev, vma, qp->qdma.va, 2330 qp->qdma.dma, sz); 2331 vma->vm_pgoff = vm_pgoff; 2332 return ret; 2333 2334 default: 2335 return -EINVAL; 2336 } 2337 } 2338 2339 static int hisi_qm_uacce_start_queue(struct uacce_queue *q) 2340 { 2341 struct hisi_qp *qp = q->priv; 2342 2343 return hisi_qm_start_qp(qp, qp->pasid); 2344 } 2345 2346 static void hisi_qm_uacce_stop_queue(struct uacce_queue *q) 2347 { 2348 struct hisi_qp *qp = q->priv; 2349 struct hisi_qm *qm = qp->qm; 2350 struct qm_dev_dfx *dev_dfx = &qm->debug.dev_dfx; 2351 u32 i = 0; 2352 2353 hisi_qm_stop_qp(qp); 2354 2355 if (!dev_dfx->dev_timeout || !dev_dfx->dev_state) 2356 return; 2357 2358 /* 2359 * After the queue fails to be stopped, 2360 * wait for a period of time before releasing the queue. 2361 */ 2362 while (++i) { 2363 msleep(WAIT_PERIOD); 2364 2365 /* Since dev_timeout maybe modified, check i >= dev_timeout */ 2366 if (i >= dev_dfx->dev_timeout) { 2367 dev_err(&qm->pdev->dev, "Stop q %u timeout, state %u\n", 2368 qp->qp_id, dev_dfx->dev_state); 2369 dev_dfx->dev_state = QM_FINISH_WAIT; 2370 break; 2371 } 2372 } 2373 } 2374 2375 static int hisi_qm_is_q_updated(struct uacce_queue *q) 2376 { 2377 struct hisi_qp *qp = q->priv; 2378 struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head; 2379 int updated = 0; 2380 2381 while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) { 2382 /* make sure to read data from memory */ 2383 dma_rmb(); 2384 qm_cq_head_update(qp); 2385 cqe = qp->cqe + qp->qp_status.cq_head; 2386 updated = 1; 2387 } 2388 2389 return updated; 2390 } 2391 2392 static void qm_set_sqctype(struct uacce_queue *q, u16 type) 2393 { 2394 struct hisi_qm *qm = q->uacce->priv; 2395 struct hisi_qp *qp = q->priv; 2396 2397 down_write(&qm->qps_lock); 2398 qp->alg_type = type; 2399 up_write(&qm->qps_lock); 2400 } 2401 2402 static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd, 2403 unsigned long arg) 2404 { 2405 struct hisi_qp *qp = q->priv; 2406 struct hisi_qp_info qp_info; 2407 struct hisi_qp_ctx qp_ctx; 2408 2409 if (cmd == UACCE_CMD_QM_SET_QP_CTX) { 2410 if (copy_from_user(&qp_ctx, (void __user *)arg, 2411 sizeof(struct hisi_qp_ctx))) 2412 return -EFAULT; 2413 2414 if (qp_ctx.qc_type != 0 && qp_ctx.qc_type != 1) 2415 return -EINVAL; 2416 2417 qm_set_sqctype(q, qp_ctx.qc_type); 2418 qp_ctx.id = qp->qp_id; 2419 2420 if (copy_to_user((void __user *)arg, &qp_ctx, 2421 sizeof(struct hisi_qp_ctx))) 2422 return -EFAULT; 2423 2424 return 0; 2425 } else if (cmd == UACCE_CMD_QM_SET_QP_INFO) { 2426 if (copy_from_user(&qp_info, (void __user *)arg, 2427 sizeof(struct hisi_qp_info))) 2428 return -EFAULT; 2429 2430 qp_info.sqe_size = qp->qm->sqe_size; 2431 qp_info.sq_depth = qp->sq_depth; 2432 qp_info.cq_depth = qp->cq_depth; 2433 2434 if (copy_to_user((void __user *)arg, &qp_info, 2435 sizeof(struct hisi_qp_info))) 2436 return -EFAULT; 2437 2438 return 0; 2439 } 2440 2441 return -EINVAL; 2442 } 2443 2444 /** 2445 * qm_hw_err_isolate() - Try to set the isolation status of the uacce device 2446 * according to user's configuration of error threshold. 2447 * @qm: the uacce device 2448 */ 2449 static int qm_hw_err_isolate(struct hisi_qm *qm) 2450 { 2451 struct qm_hw_err *err, *tmp, *hw_err; 2452 struct qm_err_isolate *isolate; 2453 u32 count = 0; 2454 2455 isolate = &qm->isolate_data; 2456 2457 #define SECONDS_PER_HOUR 3600 2458 2459 /* All the hw errs are processed by PF driver */ 2460 if (qm->uacce->is_vf || isolate->is_isolate || !isolate->err_threshold) 2461 return 0; 2462 2463 hw_err = kzalloc(sizeof(*hw_err), GFP_KERNEL); 2464 if (!hw_err) 2465 return -ENOMEM; 2466 2467 /* 2468 * Time-stamp every slot AER error. Then check the AER error log when the 2469 * next device AER error occurred. if the device slot AER error count exceeds 2470 * the setting error threshold in one hour, the isolated state will be set 2471 * to true. And the AER error logs that exceed one hour will be cleared. 2472 */ 2473 mutex_lock(&isolate->isolate_lock); 2474 hw_err->timestamp = jiffies; 2475 list_for_each_entry_safe(err, tmp, &isolate->qm_hw_errs, list) { 2476 if ((hw_err->timestamp - err->timestamp) / HZ > 2477 SECONDS_PER_HOUR) { 2478 list_del(&err->list); 2479 kfree(err); 2480 } else { 2481 count++; 2482 } 2483 } 2484 list_add(&hw_err->list, &isolate->qm_hw_errs); 2485 mutex_unlock(&isolate->isolate_lock); 2486 2487 if (count >= isolate->err_threshold) 2488 isolate->is_isolate = true; 2489 2490 return 0; 2491 } 2492 2493 static void qm_hw_err_destroy(struct hisi_qm *qm) 2494 { 2495 struct qm_hw_err *err, *tmp; 2496 2497 mutex_lock(&qm->isolate_data.isolate_lock); 2498 list_for_each_entry_safe(err, tmp, &qm->isolate_data.qm_hw_errs, list) { 2499 list_del(&err->list); 2500 kfree(err); 2501 } 2502 mutex_unlock(&qm->isolate_data.isolate_lock); 2503 } 2504 2505 static enum uacce_dev_state hisi_qm_get_isolate_state(struct uacce_device *uacce) 2506 { 2507 struct hisi_qm *qm = uacce->priv; 2508 struct hisi_qm *pf_qm; 2509 2510 if (uacce->is_vf) 2511 pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 2512 else 2513 pf_qm = qm; 2514 2515 return pf_qm->isolate_data.is_isolate ? 2516 UACCE_DEV_ISOLATE : UACCE_DEV_NORMAL; 2517 } 2518 2519 static int hisi_qm_isolate_threshold_write(struct uacce_device *uacce, u32 num) 2520 { 2521 struct hisi_qm *qm = uacce->priv; 2522 2523 /* Must be set by PF */ 2524 if (uacce->is_vf) 2525 return -EPERM; 2526 2527 if (qm->isolate_data.is_isolate) 2528 return -EPERM; 2529 2530 qm->isolate_data.err_threshold = num; 2531 2532 /* After the policy is updated, need to reset the hardware err list */ 2533 qm_hw_err_destroy(qm); 2534 2535 return 0; 2536 } 2537 2538 static u32 hisi_qm_isolate_threshold_read(struct uacce_device *uacce) 2539 { 2540 struct hisi_qm *qm = uacce->priv; 2541 struct hisi_qm *pf_qm; 2542 2543 if (uacce->is_vf) { 2544 pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 2545 return pf_qm->isolate_data.err_threshold; 2546 } 2547 2548 return qm->isolate_data.err_threshold; 2549 } 2550 2551 static const struct uacce_ops uacce_qm_ops = { 2552 .get_available_instances = hisi_qm_get_available_instances, 2553 .get_queue = hisi_qm_uacce_get_queue, 2554 .put_queue = hisi_qm_uacce_put_queue, 2555 .start_queue = hisi_qm_uacce_start_queue, 2556 .stop_queue = hisi_qm_uacce_stop_queue, 2557 .mmap = hisi_qm_uacce_mmap, 2558 .ioctl = hisi_qm_uacce_ioctl, 2559 .is_q_updated = hisi_qm_is_q_updated, 2560 .get_isolate_state = hisi_qm_get_isolate_state, 2561 .isolate_err_threshold_write = hisi_qm_isolate_threshold_write, 2562 .isolate_err_threshold_read = hisi_qm_isolate_threshold_read, 2563 }; 2564 2565 static void qm_remove_uacce(struct hisi_qm *qm) 2566 { 2567 struct uacce_device *uacce = qm->uacce; 2568 2569 if (qm->use_sva) { 2570 qm_hw_err_destroy(qm); 2571 uacce_remove(uacce); 2572 qm->uacce = NULL; 2573 } 2574 } 2575 2576 static int qm_alloc_uacce(struct hisi_qm *qm) 2577 { 2578 struct pci_dev *pdev = qm->pdev; 2579 struct uacce_device *uacce; 2580 unsigned long mmio_page_nr; 2581 unsigned long dus_page_nr; 2582 u16 sq_depth, cq_depth; 2583 struct uacce_interface interface = { 2584 .flags = UACCE_DEV_SVA, 2585 .ops = &uacce_qm_ops, 2586 }; 2587 int ret; 2588 2589 ret = strscpy(interface.name, dev_driver_string(&pdev->dev), 2590 sizeof(interface.name)); 2591 if (ret < 0) 2592 return -ENAMETOOLONG; 2593 2594 uacce = uacce_alloc(&pdev->dev, &interface); 2595 if (IS_ERR(uacce)) 2596 return PTR_ERR(uacce); 2597 2598 if (uacce->flags & UACCE_DEV_SVA) { 2599 qm->use_sva = true; 2600 } else { 2601 /* only consider sva case */ 2602 qm_remove_uacce(qm); 2603 return -EINVAL; 2604 } 2605 2606 uacce->is_vf = pdev->is_virtfn; 2607 uacce->priv = qm; 2608 2609 if (qm->ver == QM_HW_V1) 2610 uacce->api_ver = HISI_QM_API_VER_BASE; 2611 else if (qm->ver == QM_HW_V2) 2612 uacce->api_ver = HISI_QM_API_VER2_BASE; 2613 else 2614 uacce->api_ver = HISI_QM_API_VER3_BASE; 2615 2616 if (qm->ver == QM_HW_V1) 2617 mmio_page_nr = QM_DOORBELL_PAGE_NR; 2618 else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) 2619 mmio_page_nr = QM_DOORBELL_PAGE_NR + 2620 QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE; 2621 else 2622 mmio_page_nr = qm->db_interval / PAGE_SIZE; 2623 2624 qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP); 2625 2626 /* Add one more page for device or qp status */ 2627 dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * sq_depth + 2628 sizeof(struct qm_cqe) * cq_depth + PAGE_SIZE) >> 2629 PAGE_SHIFT; 2630 2631 uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr; 2632 uacce->qf_pg_num[UACCE_QFRT_DUS] = dus_page_nr; 2633 2634 qm->uacce = uacce; 2635 INIT_LIST_HEAD(&qm->isolate_data.qm_hw_errs); 2636 mutex_init(&qm->isolate_data.isolate_lock); 2637 2638 return 0; 2639 } 2640 2641 /** 2642 * qm_frozen() - Try to froze QM to cut continuous queue request. If 2643 * there is user on the QM, return failure without doing anything. 2644 * @qm: The qm needed to be fronzen. 2645 * 2646 * This function frozes QM, then we can do SRIOV disabling. 2647 */ 2648 static int qm_frozen(struct hisi_qm *qm) 2649 { 2650 if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl)) 2651 return 0; 2652 2653 down_write(&qm->qps_lock); 2654 2655 if (!qm->qp_in_used) { 2656 qm->qp_in_used = qm->qp_num; 2657 up_write(&qm->qps_lock); 2658 set_bit(QM_DRIVER_REMOVING, &qm->misc_ctl); 2659 return 0; 2660 } 2661 2662 up_write(&qm->qps_lock); 2663 2664 return -EBUSY; 2665 } 2666 2667 static int qm_try_frozen_vfs(struct pci_dev *pdev, 2668 struct hisi_qm_list *qm_list) 2669 { 2670 struct hisi_qm *qm, *vf_qm; 2671 struct pci_dev *dev; 2672 int ret = 0; 2673 2674 if (!qm_list || !pdev) 2675 return -EINVAL; 2676 2677 /* Try to frozen all the VFs as disable SRIOV */ 2678 mutex_lock(&qm_list->lock); 2679 list_for_each_entry(qm, &qm_list->list, list) { 2680 dev = qm->pdev; 2681 if (dev == pdev) 2682 continue; 2683 if (pci_physfn(dev) == pdev) { 2684 vf_qm = pci_get_drvdata(dev); 2685 ret = qm_frozen(vf_qm); 2686 if (ret) 2687 goto frozen_fail; 2688 } 2689 } 2690 2691 frozen_fail: 2692 mutex_unlock(&qm_list->lock); 2693 2694 return ret; 2695 } 2696 2697 /** 2698 * hisi_qm_wait_task_finish() - Wait until the task is finished 2699 * when removing the driver. 2700 * @qm: The qm needed to wait for the task to finish. 2701 * @qm_list: The list of all available devices. 2702 */ 2703 void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 2704 { 2705 while (qm_frozen(qm) || 2706 ((qm->fun_type == QM_HW_PF) && 2707 qm_try_frozen_vfs(qm->pdev, qm_list))) { 2708 msleep(WAIT_PERIOD); 2709 } 2710 2711 while (test_bit(QM_RST_SCHED, &qm->misc_ctl) || 2712 test_bit(QM_RESETTING, &qm->misc_ctl)) 2713 msleep(WAIT_PERIOD); 2714 2715 if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 2716 flush_work(&qm->cmd_process); 2717 2718 udelay(REMOVE_WAIT_DELAY); 2719 } 2720 EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish); 2721 2722 static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num) 2723 { 2724 struct device *dev = &qm->pdev->dev; 2725 struct qm_dma *qdma; 2726 int i; 2727 2728 for (i = num - 1; i >= 0; i--) { 2729 qdma = &qm->qp_array[i].qdma; 2730 dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma); 2731 kfree(qm->poll_data[i].qp_finish_id); 2732 } 2733 2734 kfree(qm->poll_data); 2735 kfree(qm->qp_array); 2736 } 2737 2738 static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id, 2739 u16 sq_depth, u16 cq_depth) 2740 { 2741 struct device *dev = &qm->pdev->dev; 2742 size_t off = qm->sqe_size * sq_depth; 2743 struct hisi_qp *qp; 2744 int ret = -ENOMEM; 2745 2746 qm->poll_data[id].qp_finish_id = kcalloc(qm->qp_num, sizeof(u16), 2747 GFP_KERNEL); 2748 if (!qm->poll_data[id].qp_finish_id) 2749 return -ENOMEM; 2750 2751 qp = &qm->qp_array[id]; 2752 qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma, 2753 GFP_KERNEL); 2754 if (!qp->qdma.va) 2755 goto err_free_qp_finish_id; 2756 2757 qp->sqe = qp->qdma.va; 2758 qp->sqe_dma = qp->qdma.dma; 2759 qp->cqe = qp->qdma.va + off; 2760 qp->cqe_dma = qp->qdma.dma + off; 2761 qp->qdma.size = dma_size; 2762 qp->sq_depth = sq_depth; 2763 qp->cq_depth = cq_depth; 2764 qp->qm = qm; 2765 qp->qp_id = id; 2766 2767 return 0; 2768 2769 err_free_qp_finish_id: 2770 kfree(qm->poll_data[id].qp_finish_id); 2771 return ret; 2772 } 2773 2774 static void hisi_qm_pre_init(struct hisi_qm *qm) 2775 { 2776 struct pci_dev *pdev = qm->pdev; 2777 2778 if (qm->ver == QM_HW_V1) 2779 qm->ops = &qm_hw_ops_v1; 2780 else if (qm->ver == QM_HW_V2) 2781 qm->ops = &qm_hw_ops_v2; 2782 else 2783 qm->ops = &qm_hw_ops_v3; 2784 2785 pci_set_drvdata(pdev, qm); 2786 mutex_init(&qm->mailbox_lock); 2787 init_rwsem(&qm->qps_lock); 2788 qm->qp_in_used = 0; 2789 if (test_bit(QM_SUPPORT_RPM, &qm->caps)) { 2790 if (!acpi_device_power_manageable(ACPI_COMPANION(&pdev->dev))) 2791 dev_info(&pdev->dev, "_PS0 and _PR0 are not defined"); 2792 } 2793 } 2794 2795 static void qm_cmd_uninit(struct hisi_qm *qm) 2796 { 2797 u32 val; 2798 2799 if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 2800 return; 2801 2802 val = readl(qm->io_base + QM_IFC_INT_MASK); 2803 val |= QM_IFC_INT_DISABLE; 2804 writel(val, qm->io_base + QM_IFC_INT_MASK); 2805 } 2806 2807 static void qm_cmd_init(struct hisi_qm *qm) 2808 { 2809 u32 val; 2810 2811 if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 2812 return; 2813 2814 /* Clear communication interrupt source */ 2815 qm_clear_cmd_interrupt(qm, QM_IFC_INT_SOURCE_CLR); 2816 2817 /* Enable pf to vf communication reg. */ 2818 val = readl(qm->io_base + QM_IFC_INT_MASK); 2819 val &= ~QM_IFC_INT_DISABLE; 2820 writel(val, qm->io_base + QM_IFC_INT_MASK); 2821 } 2822 2823 static void qm_put_pci_res(struct hisi_qm *qm) 2824 { 2825 struct pci_dev *pdev = qm->pdev; 2826 2827 if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) 2828 iounmap(qm->db_io_base); 2829 2830 iounmap(qm->io_base); 2831 pci_release_mem_regions(pdev); 2832 } 2833 2834 static void hisi_qm_pci_uninit(struct hisi_qm *qm) 2835 { 2836 struct pci_dev *pdev = qm->pdev; 2837 2838 pci_free_irq_vectors(pdev); 2839 qm_put_pci_res(qm); 2840 pci_disable_device(pdev); 2841 } 2842 2843 static void hisi_qm_set_state(struct hisi_qm *qm, u8 state) 2844 { 2845 if (qm->ver > QM_HW_V2 && qm->fun_type == QM_HW_VF) 2846 writel(state, qm->io_base + QM_VF_STATE); 2847 } 2848 2849 static void hisi_qm_unint_work(struct hisi_qm *qm) 2850 { 2851 destroy_workqueue(qm->wq); 2852 } 2853 2854 static void hisi_qm_free_rsv_buf(struct hisi_qm *qm) 2855 { 2856 struct qm_dma *xqc_dma = &qm->xqc_buf.qcdma; 2857 struct device *dev = &qm->pdev->dev; 2858 2859 dma_free_coherent(dev, xqc_dma->size, xqc_dma->va, xqc_dma->dma); 2860 } 2861 2862 static void hisi_qm_memory_uninit(struct hisi_qm *qm) 2863 { 2864 struct device *dev = &qm->pdev->dev; 2865 2866 hisi_qp_memory_uninit(qm, qm->qp_num); 2867 hisi_qm_free_rsv_buf(qm); 2868 if (qm->qdma.va) { 2869 hisi_qm_cache_wb(qm); 2870 dma_free_coherent(dev, qm->qdma.size, 2871 qm->qdma.va, qm->qdma.dma); 2872 } 2873 2874 idr_destroy(&qm->qp_idr); 2875 2876 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 2877 kfree(qm->factor); 2878 } 2879 2880 /** 2881 * hisi_qm_uninit() - Uninitialize qm. 2882 * @qm: The qm needed uninit. 2883 * 2884 * This function uninits qm related device resources. 2885 */ 2886 void hisi_qm_uninit(struct hisi_qm *qm) 2887 { 2888 qm_cmd_uninit(qm); 2889 hisi_qm_unint_work(qm); 2890 2891 down_write(&qm->qps_lock); 2892 hisi_qm_memory_uninit(qm); 2893 hisi_qm_set_state(qm, QM_NOT_READY); 2894 up_write(&qm->qps_lock); 2895 2896 qm_irqs_unregister(qm); 2897 hisi_qm_pci_uninit(qm); 2898 if (qm->use_sva) { 2899 uacce_remove(qm->uacce); 2900 qm->uacce = NULL; 2901 } 2902 } 2903 EXPORT_SYMBOL_GPL(hisi_qm_uninit); 2904 2905 /** 2906 * hisi_qm_get_vft() - Get vft from a qm. 2907 * @qm: The qm we want to get its vft. 2908 * @base: The base number of queue in vft. 2909 * @number: The number of queues in vft. 2910 * 2911 * We can allocate multiple queues to a qm by configuring virtual function 2912 * table. We get related configures by this function. Normally, we call this 2913 * function in VF driver to get the queue information. 2914 * 2915 * qm hw v1 does not support this interface. 2916 */ 2917 static int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number) 2918 { 2919 if (!base || !number) 2920 return -EINVAL; 2921 2922 if (!qm->ops->get_vft) { 2923 dev_err(&qm->pdev->dev, "Don't support vft read!\n"); 2924 return -EINVAL; 2925 } 2926 2927 return qm->ops->get_vft(qm, base, number); 2928 } 2929 2930 /** 2931 * hisi_qm_set_vft() - Set vft to a qm. 2932 * @qm: The qm we want to set its vft. 2933 * @fun_num: The function number. 2934 * @base: The base number of queue in vft. 2935 * @number: The number of queues in vft. 2936 * 2937 * This function is alway called in PF driver, it is used to assign queues 2938 * among PF and VFs. 2939 * 2940 * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1) 2941 * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1) 2942 * (VF function number 0x2) 2943 */ 2944 static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base, 2945 u32 number) 2946 { 2947 u32 max_q_num = qm->ctrl_qp_num; 2948 2949 if (base >= max_q_num || number > max_q_num || 2950 (base + number) > max_q_num) 2951 return -EINVAL; 2952 2953 return qm_set_sqc_cqc_vft(qm, fun_num, base, number); 2954 } 2955 2956 static void qm_init_eq_aeq_status(struct hisi_qm *qm) 2957 { 2958 struct hisi_qm_status *status = &qm->status; 2959 2960 status->eq_head = 0; 2961 status->aeq_head = 0; 2962 status->eqc_phase = true; 2963 status->aeqc_phase = true; 2964 } 2965 2966 static void qm_enable_eq_aeq_interrupts(struct hisi_qm *qm) 2967 { 2968 /* Clear eq/aeq interrupt source */ 2969 qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0); 2970 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 2971 2972 writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK); 2973 writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK); 2974 } 2975 2976 static void qm_disable_eq_aeq_interrupts(struct hisi_qm *qm) 2977 { 2978 writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK); 2979 writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK); 2980 } 2981 2982 static int qm_eq_ctx_cfg(struct hisi_qm *qm) 2983 { 2984 struct qm_eqc eqc = {0}; 2985 2986 eqc.base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma)); 2987 eqc.base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma)); 2988 if (qm->ver == QM_HW_V1) 2989 eqc.dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE); 2990 eqc.dw6 = cpu_to_le32(((u32)qm->eq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT)); 2991 2992 return qm_set_and_get_xqc(qm, QM_MB_CMD_EQC, &eqc, 0, 0); 2993 } 2994 2995 static int qm_aeq_ctx_cfg(struct hisi_qm *qm) 2996 { 2997 struct qm_aeqc aeqc = {0}; 2998 2999 aeqc.base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma)); 3000 aeqc.base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma)); 3001 aeqc.dw6 = cpu_to_le32(((u32)qm->aeq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT)); 3002 3003 return qm_set_and_get_xqc(qm, QM_MB_CMD_AEQC, &aeqc, 0, 0); 3004 } 3005 3006 static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm) 3007 { 3008 struct device *dev = &qm->pdev->dev; 3009 int ret; 3010 3011 qm_init_eq_aeq_status(qm); 3012 3013 ret = qm_eq_ctx_cfg(qm); 3014 if (ret) { 3015 dev_err(dev, "Set eqc failed!\n"); 3016 return ret; 3017 } 3018 3019 return qm_aeq_ctx_cfg(qm); 3020 } 3021 3022 static int __hisi_qm_start(struct hisi_qm *qm) 3023 { 3024 int ret; 3025 3026 WARN_ON(!qm->qdma.va); 3027 3028 if (qm->fun_type == QM_HW_PF) { 3029 ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num); 3030 if (ret) 3031 return ret; 3032 } 3033 3034 ret = qm_eq_aeq_ctx_cfg(qm); 3035 if (ret) 3036 return ret; 3037 3038 ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0); 3039 if (ret) 3040 return ret; 3041 3042 ret = hisi_qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0); 3043 if (ret) 3044 return ret; 3045 3046 qm_init_prefetch(qm); 3047 qm_enable_eq_aeq_interrupts(qm); 3048 3049 return 0; 3050 } 3051 3052 /** 3053 * hisi_qm_start() - start qm 3054 * @qm: The qm to be started. 3055 * 3056 * This function starts a qm, then we can allocate qp from this qm. 3057 */ 3058 int hisi_qm_start(struct hisi_qm *qm) 3059 { 3060 struct device *dev = &qm->pdev->dev; 3061 int ret = 0; 3062 3063 down_write(&qm->qps_lock); 3064 3065 dev_dbg(dev, "qm start with %u queue pairs\n", qm->qp_num); 3066 3067 if (!qm->qp_num) { 3068 dev_err(dev, "qp_num should not be 0\n"); 3069 ret = -EINVAL; 3070 goto err_unlock; 3071 } 3072 3073 ret = __hisi_qm_start(qm); 3074 if (ret) 3075 goto err_unlock; 3076 3077 atomic_set(&qm->status.flags, QM_WORK); 3078 hisi_qm_set_state(qm, QM_READY); 3079 3080 err_unlock: 3081 up_write(&qm->qps_lock); 3082 return ret; 3083 } 3084 EXPORT_SYMBOL_GPL(hisi_qm_start); 3085 3086 static int qm_restart(struct hisi_qm *qm) 3087 { 3088 struct device *dev = &qm->pdev->dev; 3089 struct hisi_qp *qp; 3090 int ret, i; 3091 3092 ret = hisi_qm_start(qm); 3093 if (ret < 0) 3094 return ret; 3095 3096 down_write(&qm->qps_lock); 3097 for (i = 0; i < qm->qp_num; i++) { 3098 qp = &qm->qp_array[i]; 3099 if (atomic_read(&qp->qp_status.flags) == QP_STOP && 3100 qp->is_resetting == true) { 3101 ret = qm_start_qp_nolock(qp, 0); 3102 if (ret < 0) { 3103 dev_err(dev, "Failed to start qp%d!\n", i); 3104 3105 up_write(&qm->qps_lock); 3106 return ret; 3107 } 3108 qp->is_resetting = false; 3109 } 3110 } 3111 up_write(&qm->qps_lock); 3112 3113 return 0; 3114 } 3115 3116 /* Stop started qps in reset flow */ 3117 static void qm_stop_started_qp(struct hisi_qm *qm) 3118 { 3119 struct hisi_qp *qp; 3120 int i; 3121 3122 for (i = 0; i < qm->qp_num; i++) { 3123 qp = &qm->qp_array[i]; 3124 if (atomic_read(&qp->qp_status.flags) == QP_START) { 3125 qp->is_resetting = true; 3126 qm_stop_qp_nolock(qp); 3127 } 3128 } 3129 } 3130 3131 /** 3132 * qm_clear_queues() - Clear all queues memory in a qm. 3133 * @qm: The qm in which the queues will be cleared. 3134 * 3135 * This function clears all queues memory in a qm. Reset of accelerator can 3136 * use this to clear queues. 3137 */ 3138 static void qm_clear_queues(struct hisi_qm *qm) 3139 { 3140 struct hisi_qp *qp; 3141 int i; 3142 3143 for (i = 0; i < qm->qp_num; i++) { 3144 qp = &qm->qp_array[i]; 3145 if (qp->is_in_kernel && qp->is_resetting) 3146 memset(qp->qdma.va, 0, qp->qdma.size); 3147 } 3148 3149 memset(qm->qdma.va, 0, qm->qdma.size); 3150 } 3151 3152 /** 3153 * hisi_qm_stop() - Stop a qm. 3154 * @qm: The qm which will be stopped. 3155 * @r: The reason to stop qm. 3156 * 3157 * This function stops qm and its qps, then qm can not accept request. 3158 * Related resources are not released at this state, we can use hisi_qm_start 3159 * to let qm start again. 3160 */ 3161 int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r) 3162 { 3163 struct device *dev = &qm->pdev->dev; 3164 int ret = 0; 3165 3166 down_write(&qm->qps_lock); 3167 3168 if (atomic_read(&qm->status.flags) == QM_STOP) 3169 goto err_unlock; 3170 3171 /* Stop all the request sending at first. */ 3172 atomic_set(&qm->status.flags, QM_STOP); 3173 qm->status.stop_reason = r; 3174 3175 if (qm->status.stop_reason != QM_NORMAL) { 3176 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 3177 /* 3178 * When performing soft reset, the hardware will no longer 3179 * do tasks, and the tasks in the device will be flushed 3180 * out directly since the master ooo is closed. 3181 */ 3182 if (test_bit(QM_SUPPORT_STOP_FUNC, &qm->caps) && 3183 r != QM_SOFT_RESET) { 3184 ret = qm_drain_qm(qm); 3185 if (ret) { 3186 dev_err(dev, "failed to drain qm!\n"); 3187 goto err_unlock; 3188 } 3189 } 3190 3191 qm_stop_started_qp(qm); 3192 3193 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 3194 } 3195 3196 qm_disable_eq_aeq_interrupts(qm); 3197 if (qm->fun_type == QM_HW_PF) { 3198 ret = hisi_qm_set_vft(qm, 0, 0, 0); 3199 if (ret < 0) { 3200 dev_err(dev, "Failed to set vft!\n"); 3201 ret = -EBUSY; 3202 goto err_unlock; 3203 } 3204 } 3205 3206 qm_clear_queues(qm); 3207 qm->status.stop_reason = QM_NORMAL; 3208 3209 err_unlock: 3210 up_write(&qm->qps_lock); 3211 return ret; 3212 } 3213 EXPORT_SYMBOL_GPL(hisi_qm_stop); 3214 3215 static void qm_hw_error_init(struct hisi_qm *qm) 3216 { 3217 if (!qm->ops->hw_error_init) { 3218 dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n"); 3219 return; 3220 } 3221 3222 qm->ops->hw_error_init(qm); 3223 } 3224 3225 static void qm_hw_error_uninit(struct hisi_qm *qm) 3226 { 3227 if (!qm->ops->hw_error_uninit) { 3228 dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n"); 3229 return; 3230 } 3231 3232 qm->ops->hw_error_uninit(qm); 3233 } 3234 3235 static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm) 3236 { 3237 if (!qm->ops->hw_error_handle) { 3238 dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n"); 3239 return ACC_ERR_NONE; 3240 } 3241 3242 return qm->ops->hw_error_handle(qm); 3243 } 3244 3245 /** 3246 * hisi_qm_dev_err_init() - Initialize device error configuration. 3247 * @qm: The qm for which we want to do error initialization. 3248 * 3249 * Initialize QM and device error related configuration. 3250 */ 3251 void hisi_qm_dev_err_init(struct hisi_qm *qm) 3252 { 3253 if (qm->fun_type == QM_HW_VF) 3254 return; 3255 3256 qm_hw_error_init(qm); 3257 3258 if (!qm->err_ini->hw_err_enable) { 3259 dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n"); 3260 return; 3261 } 3262 qm->err_ini->hw_err_enable(qm); 3263 } 3264 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init); 3265 3266 /** 3267 * hisi_qm_dev_err_uninit() - Uninitialize device error configuration. 3268 * @qm: The qm for which we want to do error uninitialization. 3269 * 3270 * Uninitialize QM and device error related configuration. 3271 */ 3272 void hisi_qm_dev_err_uninit(struct hisi_qm *qm) 3273 { 3274 if (qm->fun_type == QM_HW_VF) 3275 return; 3276 3277 qm_hw_error_uninit(qm); 3278 3279 if (!qm->err_ini->hw_err_disable) { 3280 dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n"); 3281 return; 3282 } 3283 qm->err_ini->hw_err_disable(qm); 3284 } 3285 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit); 3286 3287 /** 3288 * hisi_qm_free_qps() - free multiple queue pairs. 3289 * @qps: The queue pairs need to be freed. 3290 * @qp_num: The num of queue pairs. 3291 */ 3292 void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num) 3293 { 3294 int i; 3295 3296 if (!qps || qp_num <= 0) 3297 return; 3298 3299 for (i = qp_num - 1; i >= 0; i--) 3300 hisi_qm_release_qp(qps[i]); 3301 } 3302 EXPORT_SYMBOL_GPL(hisi_qm_free_qps); 3303 3304 static void free_list(struct list_head *head) 3305 { 3306 struct hisi_qm_resource *res, *tmp; 3307 3308 list_for_each_entry_safe(res, tmp, head, list) { 3309 list_del(&res->list); 3310 kfree(res); 3311 } 3312 } 3313 3314 static int hisi_qm_sort_devices(int node, struct list_head *head, 3315 struct hisi_qm_list *qm_list) 3316 { 3317 struct hisi_qm_resource *res, *tmp; 3318 struct hisi_qm *qm; 3319 struct list_head *n; 3320 struct device *dev; 3321 int dev_node; 3322 3323 list_for_each_entry(qm, &qm_list->list, list) { 3324 dev = &qm->pdev->dev; 3325 3326 dev_node = dev_to_node(dev); 3327 if (dev_node < 0) 3328 dev_node = 0; 3329 3330 res = kzalloc(sizeof(*res), GFP_KERNEL); 3331 if (!res) 3332 return -ENOMEM; 3333 3334 res->qm = qm; 3335 res->distance = node_distance(dev_node, node); 3336 n = head; 3337 list_for_each_entry(tmp, head, list) { 3338 if (res->distance < tmp->distance) { 3339 n = &tmp->list; 3340 break; 3341 } 3342 } 3343 list_add_tail(&res->list, n); 3344 } 3345 3346 return 0; 3347 } 3348 3349 /** 3350 * hisi_qm_alloc_qps_node() - Create multiple queue pairs. 3351 * @qm_list: The list of all available devices. 3352 * @qp_num: The number of queue pairs need created. 3353 * @alg_type: The algorithm type. 3354 * @node: The numa node. 3355 * @qps: The queue pairs need created. 3356 * 3357 * This function will sort all available device according to numa distance. 3358 * Then try to create all queue pairs from one device, if all devices do 3359 * not meet the requirements will return error. 3360 */ 3361 int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num, 3362 u8 alg_type, int node, struct hisi_qp **qps) 3363 { 3364 struct hisi_qm_resource *tmp; 3365 int ret = -ENODEV; 3366 LIST_HEAD(head); 3367 int i; 3368 3369 if (!qps || !qm_list || qp_num <= 0) 3370 return -EINVAL; 3371 3372 mutex_lock(&qm_list->lock); 3373 if (hisi_qm_sort_devices(node, &head, qm_list)) { 3374 mutex_unlock(&qm_list->lock); 3375 goto err; 3376 } 3377 3378 list_for_each_entry(tmp, &head, list) { 3379 for (i = 0; i < qp_num; i++) { 3380 qps[i] = hisi_qm_create_qp(tmp->qm, alg_type); 3381 if (IS_ERR(qps[i])) { 3382 hisi_qm_free_qps(qps, i); 3383 break; 3384 } 3385 } 3386 3387 if (i == qp_num) { 3388 ret = 0; 3389 break; 3390 } 3391 } 3392 3393 mutex_unlock(&qm_list->lock); 3394 if (ret) 3395 pr_info("Failed to create qps, node[%d], alg[%u], qp[%d]!\n", 3396 node, alg_type, qp_num); 3397 3398 err: 3399 free_list(&head); 3400 return ret; 3401 } 3402 EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node); 3403 3404 static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs) 3405 { 3406 u32 remain_q_num, vfs_q_num, act_q_num, q_num, i, j; 3407 u32 max_qp_num = qm->max_qp_num; 3408 u32 q_base = qm->qp_num; 3409 int ret; 3410 3411 if (!num_vfs) 3412 return -EINVAL; 3413 3414 vfs_q_num = qm->ctrl_qp_num - qm->qp_num; 3415 3416 /* If vfs_q_num is less than num_vfs, return error. */ 3417 if (vfs_q_num < num_vfs) 3418 return -EINVAL; 3419 3420 q_num = vfs_q_num / num_vfs; 3421 remain_q_num = vfs_q_num % num_vfs; 3422 3423 for (i = num_vfs; i > 0; i--) { 3424 /* 3425 * if q_num + remain_q_num > max_qp_num in last vf, divide the 3426 * remaining queues equally. 3427 */ 3428 if (i == num_vfs && q_num + remain_q_num <= max_qp_num) { 3429 act_q_num = q_num + remain_q_num; 3430 remain_q_num = 0; 3431 } else if (remain_q_num > 0) { 3432 act_q_num = q_num + 1; 3433 remain_q_num--; 3434 } else { 3435 act_q_num = q_num; 3436 } 3437 3438 act_q_num = min(act_q_num, max_qp_num); 3439 ret = hisi_qm_set_vft(qm, i, q_base, act_q_num); 3440 if (ret) { 3441 for (j = num_vfs; j > i; j--) 3442 hisi_qm_set_vft(qm, j, 0, 0); 3443 return ret; 3444 } 3445 q_base += act_q_num; 3446 } 3447 3448 return 0; 3449 } 3450 3451 static int qm_clear_vft_config(struct hisi_qm *qm) 3452 { 3453 int ret; 3454 u32 i; 3455 3456 for (i = 1; i <= qm->vfs_num; i++) { 3457 ret = hisi_qm_set_vft(qm, i, 0, 0); 3458 if (ret) 3459 return ret; 3460 } 3461 qm->vfs_num = 0; 3462 3463 return 0; 3464 } 3465 3466 static int qm_func_shaper_enable(struct hisi_qm *qm, u32 fun_index, u32 qos) 3467 { 3468 struct device *dev = &qm->pdev->dev; 3469 u32 ir = qos * QM_QOS_RATE; 3470 int ret, total_vfs, i; 3471 3472 total_vfs = pci_sriov_get_totalvfs(qm->pdev); 3473 if (fun_index > total_vfs) 3474 return -EINVAL; 3475 3476 qm->factor[fun_index].func_qos = qos; 3477 3478 ret = qm_get_shaper_para(ir, &qm->factor[fun_index]); 3479 if (ret) { 3480 dev_err(dev, "failed to calculate shaper parameter!\n"); 3481 return -EINVAL; 3482 } 3483 3484 for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) { 3485 /* The base number of queue reuse for different alg type */ 3486 ret = qm_set_vft_common(qm, SHAPER_VFT, fun_index, i, 1); 3487 if (ret) { 3488 dev_err(dev, "type: %d, failed to set shaper vft!\n", i); 3489 return -EINVAL; 3490 } 3491 } 3492 3493 return 0; 3494 } 3495 3496 static u32 qm_get_shaper_vft_qos(struct hisi_qm *qm, u32 fun_index) 3497 { 3498 u64 cir_u = 0, cir_b = 0, cir_s = 0; 3499 u64 shaper_vft, ir_calc, ir; 3500 unsigned int val; 3501 u32 error_rate; 3502 int ret; 3503 3504 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 3505 val & BIT(0), POLL_PERIOD, 3506 POLL_TIMEOUT); 3507 if (ret) 3508 return 0; 3509 3510 writel(0x1, qm->io_base + QM_VFT_CFG_OP_WR); 3511 writel(SHAPER_VFT, qm->io_base + QM_VFT_CFG_TYPE); 3512 writel(fun_index, qm->io_base + QM_VFT_CFG); 3513 3514 writel(0x0, qm->io_base + QM_VFT_CFG_RDY); 3515 writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE); 3516 3517 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 3518 val & BIT(0), POLL_PERIOD, 3519 POLL_TIMEOUT); 3520 if (ret) 3521 return 0; 3522 3523 shaper_vft = readl(qm->io_base + QM_VFT_CFG_DATA_L) | 3524 ((u64)readl(qm->io_base + QM_VFT_CFG_DATA_H) << 32); 3525 3526 cir_b = shaper_vft & QM_SHAPER_CIR_B_MASK; 3527 cir_u = shaper_vft & QM_SHAPER_CIR_U_MASK; 3528 cir_u = cir_u >> QM_SHAPER_FACTOR_CIR_U_SHIFT; 3529 3530 cir_s = shaper_vft & QM_SHAPER_CIR_S_MASK; 3531 cir_s = cir_s >> QM_SHAPER_FACTOR_CIR_S_SHIFT; 3532 3533 ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s); 3534 3535 ir = qm->factor[fun_index].func_qos * QM_QOS_RATE; 3536 3537 error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir; 3538 if (error_rate > QM_QOS_MIN_ERROR_RATE) { 3539 pci_err(qm->pdev, "error_rate: %u, get function qos is error!\n", error_rate); 3540 return 0; 3541 } 3542 3543 return ir; 3544 } 3545 3546 static void qm_vf_get_qos(struct hisi_qm *qm, u32 fun_num) 3547 { 3548 struct device *dev = &qm->pdev->dev; 3549 u64 mb_cmd; 3550 u32 qos; 3551 int ret; 3552 3553 qos = qm_get_shaper_vft_qos(qm, fun_num); 3554 if (!qos) { 3555 dev_err(dev, "function(%u) failed to get qos by PF!\n", fun_num); 3556 return; 3557 } 3558 3559 mb_cmd = QM_PF_SET_QOS | (u64)qos << QM_MB_CMD_DATA_SHIFT; 3560 ret = qm_ping_single_vf(qm, mb_cmd, fun_num); 3561 if (ret) 3562 dev_err(dev, "failed to send cmd to VF(%u)!\n", fun_num); 3563 } 3564 3565 static int qm_vf_read_qos(struct hisi_qm *qm) 3566 { 3567 int cnt = 0; 3568 int ret = -EINVAL; 3569 3570 /* reset mailbox qos val */ 3571 qm->mb_qos = 0; 3572 3573 /* vf ping pf to get function qos */ 3574 ret = qm_ping_pf(qm, QM_VF_GET_QOS); 3575 if (ret) { 3576 pci_err(qm->pdev, "failed to send cmd to PF to get qos!\n"); 3577 return ret; 3578 } 3579 3580 while (true) { 3581 msleep(QM_WAIT_DST_ACK); 3582 if (qm->mb_qos) 3583 break; 3584 3585 if (++cnt > QM_MAX_VF_WAIT_COUNT) { 3586 pci_err(qm->pdev, "PF ping VF timeout!\n"); 3587 return -ETIMEDOUT; 3588 } 3589 } 3590 3591 return ret; 3592 } 3593 3594 static ssize_t qm_algqos_read(struct file *filp, char __user *buf, 3595 size_t count, loff_t *pos) 3596 { 3597 struct hisi_qm *qm = filp->private_data; 3598 char tbuf[QM_DBG_READ_LEN]; 3599 u32 qos_val, ir; 3600 int ret; 3601 3602 ret = hisi_qm_get_dfx_access(qm); 3603 if (ret) 3604 return ret; 3605 3606 /* Mailbox and reset cannot be operated at the same time */ 3607 if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 3608 pci_err(qm->pdev, "dev resetting, read alg qos failed!\n"); 3609 ret = -EAGAIN; 3610 goto err_put_dfx_access; 3611 } 3612 3613 if (qm->fun_type == QM_HW_PF) { 3614 ir = qm_get_shaper_vft_qos(qm, 0); 3615 } else { 3616 ret = qm_vf_read_qos(qm); 3617 if (ret) 3618 goto err_get_status; 3619 ir = qm->mb_qos; 3620 } 3621 3622 qos_val = ir / QM_QOS_RATE; 3623 ret = scnprintf(tbuf, QM_DBG_READ_LEN, "%u\n", qos_val); 3624 3625 ret = simple_read_from_buffer(buf, count, pos, tbuf, ret); 3626 3627 err_get_status: 3628 clear_bit(QM_RESETTING, &qm->misc_ctl); 3629 err_put_dfx_access: 3630 hisi_qm_put_dfx_access(qm); 3631 return ret; 3632 } 3633 3634 static ssize_t qm_get_qos_value(struct hisi_qm *qm, const char *buf, 3635 unsigned long *val, 3636 unsigned int *fun_index) 3637 { 3638 const struct bus_type *bus_type = qm->pdev->dev.bus; 3639 char tbuf_bdf[QM_DBG_READ_LEN] = {0}; 3640 char val_buf[QM_DBG_READ_LEN] = {0}; 3641 struct pci_dev *pdev; 3642 struct device *dev; 3643 int ret; 3644 3645 ret = sscanf(buf, "%s %s", tbuf_bdf, val_buf); 3646 if (ret != QM_QOS_PARAM_NUM) 3647 return -EINVAL; 3648 3649 ret = kstrtoul(val_buf, 10, val); 3650 if (ret || *val == 0 || *val > QM_QOS_MAX_VAL) { 3651 pci_err(qm->pdev, "input qos value is error, please set 1~1000!\n"); 3652 return -EINVAL; 3653 } 3654 3655 dev = bus_find_device_by_name(bus_type, NULL, tbuf_bdf); 3656 if (!dev) { 3657 pci_err(qm->pdev, "input pci bdf number is error!\n"); 3658 return -ENODEV; 3659 } 3660 3661 pdev = container_of(dev, struct pci_dev, dev); 3662 3663 *fun_index = pdev->devfn; 3664 3665 return 0; 3666 } 3667 3668 static ssize_t qm_algqos_write(struct file *filp, const char __user *buf, 3669 size_t count, loff_t *pos) 3670 { 3671 struct hisi_qm *qm = filp->private_data; 3672 char tbuf[QM_DBG_READ_LEN]; 3673 unsigned int fun_index; 3674 unsigned long val; 3675 int len, ret; 3676 3677 if (*pos != 0) 3678 return 0; 3679 3680 if (count >= QM_DBG_READ_LEN) 3681 return -ENOSPC; 3682 3683 len = simple_write_to_buffer(tbuf, QM_DBG_READ_LEN - 1, pos, buf, count); 3684 if (len < 0) 3685 return len; 3686 3687 tbuf[len] = '\0'; 3688 ret = qm_get_qos_value(qm, tbuf, &val, &fun_index); 3689 if (ret) 3690 return ret; 3691 3692 /* Mailbox and reset cannot be operated at the same time */ 3693 if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 3694 pci_err(qm->pdev, "dev resetting, write alg qos failed!\n"); 3695 return -EAGAIN; 3696 } 3697 3698 ret = qm_pm_get_sync(qm); 3699 if (ret) { 3700 ret = -EINVAL; 3701 goto err_get_status; 3702 } 3703 3704 ret = qm_func_shaper_enable(qm, fun_index, val); 3705 if (ret) { 3706 pci_err(qm->pdev, "failed to enable function shaper!\n"); 3707 ret = -EINVAL; 3708 goto err_put_sync; 3709 } 3710 3711 pci_info(qm->pdev, "the qos value of function%u is set to %lu.\n", 3712 fun_index, val); 3713 ret = count; 3714 3715 err_put_sync: 3716 qm_pm_put_sync(qm); 3717 err_get_status: 3718 clear_bit(QM_RESETTING, &qm->misc_ctl); 3719 return ret; 3720 } 3721 3722 static const struct file_operations qm_algqos_fops = { 3723 .owner = THIS_MODULE, 3724 .open = simple_open, 3725 .read = qm_algqos_read, 3726 .write = qm_algqos_write, 3727 }; 3728 3729 /** 3730 * hisi_qm_set_algqos_init() - Initialize function qos debugfs files. 3731 * @qm: The qm for which we want to add debugfs files. 3732 * 3733 * Create function qos debugfs files, VF ping PF to get function qos. 3734 */ 3735 void hisi_qm_set_algqos_init(struct hisi_qm *qm) 3736 { 3737 if (qm->fun_type == QM_HW_PF) 3738 debugfs_create_file("alg_qos", 0644, qm->debug.debug_root, 3739 qm, &qm_algqos_fops); 3740 else if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 3741 debugfs_create_file("alg_qos", 0444, qm->debug.debug_root, 3742 qm, &qm_algqos_fops); 3743 } 3744 3745 static void hisi_qm_init_vf_qos(struct hisi_qm *qm, int total_func) 3746 { 3747 int i; 3748 3749 for (i = 1; i <= total_func; i++) 3750 qm->factor[i].func_qos = QM_QOS_MAX_VAL; 3751 } 3752 3753 /** 3754 * hisi_qm_sriov_enable() - enable virtual functions 3755 * @pdev: the PCIe device 3756 * @max_vfs: the number of virtual functions to enable 3757 * 3758 * Returns the number of enabled VFs. If there are VFs enabled already or 3759 * max_vfs is more than the total number of device can be enabled, returns 3760 * failure. 3761 */ 3762 int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs) 3763 { 3764 struct hisi_qm *qm = pci_get_drvdata(pdev); 3765 int pre_existing_vfs, num_vfs, total_vfs, ret; 3766 3767 ret = qm_pm_get_sync(qm); 3768 if (ret) 3769 return ret; 3770 3771 total_vfs = pci_sriov_get_totalvfs(pdev); 3772 pre_existing_vfs = pci_num_vf(pdev); 3773 if (pre_existing_vfs) { 3774 pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n", 3775 pre_existing_vfs); 3776 goto err_put_sync; 3777 } 3778 3779 if (max_vfs > total_vfs) { 3780 pci_err(pdev, "%d VFs is more than total VFs %d!\n", max_vfs, total_vfs); 3781 ret = -ERANGE; 3782 goto err_put_sync; 3783 } 3784 3785 num_vfs = max_vfs; 3786 3787 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 3788 hisi_qm_init_vf_qos(qm, num_vfs); 3789 3790 ret = qm_vf_q_assign(qm, num_vfs); 3791 if (ret) { 3792 pci_err(pdev, "Can't assign queues for VF!\n"); 3793 goto err_put_sync; 3794 } 3795 3796 qm->vfs_num = num_vfs; 3797 3798 ret = pci_enable_sriov(pdev, num_vfs); 3799 if (ret) { 3800 pci_err(pdev, "Can't enable VF!\n"); 3801 qm_clear_vft_config(qm); 3802 goto err_put_sync; 3803 } 3804 3805 pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs); 3806 3807 return num_vfs; 3808 3809 err_put_sync: 3810 qm_pm_put_sync(qm); 3811 return ret; 3812 } 3813 EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable); 3814 3815 /** 3816 * hisi_qm_sriov_disable - disable virtual functions 3817 * @pdev: the PCI device. 3818 * @is_frozen: true when all the VFs are frozen. 3819 * 3820 * Return failure if there are VFs assigned already or VF is in used. 3821 */ 3822 int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen) 3823 { 3824 struct hisi_qm *qm = pci_get_drvdata(pdev); 3825 int ret; 3826 3827 if (pci_vfs_assigned(pdev)) { 3828 pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n"); 3829 return -EPERM; 3830 } 3831 3832 /* While VF is in used, SRIOV cannot be disabled. */ 3833 if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) { 3834 pci_err(pdev, "Task is using its VF!\n"); 3835 return -EBUSY; 3836 } 3837 3838 pci_disable_sriov(pdev); 3839 3840 ret = qm_clear_vft_config(qm); 3841 if (ret) 3842 return ret; 3843 3844 qm_pm_put_sync(qm); 3845 3846 return 0; 3847 } 3848 EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable); 3849 3850 /** 3851 * hisi_qm_sriov_configure - configure the number of VFs 3852 * @pdev: The PCI device 3853 * @num_vfs: The number of VFs need enabled 3854 * 3855 * Enable SR-IOV according to num_vfs, 0 means disable. 3856 */ 3857 int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs) 3858 { 3859 if (num_vfs == 0) 3860 return hisi_qm_sriov_disable(pdev, false); 3861 else 3862 return hisi_qm_sriov_enable(pdev, num_vfs); 3863 } 3864 EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure); 3865 3866 static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm) 3867 { 3868 u32 err_sts; 3869 3870 if (!qm->err_ini->get_dev_hw_err_status) { 3871 dev_err(&qm->pdev->dev, "Device doesn't support get hw error status!\n"); 3872 return ACC_ERR_NONE; 3873 } 3874 3875 /* get device hardware error status */ 3876 err_sts = qm->err_ini->get_dev_hw_err_status(qm); 3877 if (err_sts) { 3878 if (err_sts & qm->err_info.ecc_2bits_mask) 3879 qm->err_status.is_dev_ecc_mbit = true; 3880 3881 if (qm->err_ini->log_dev_hw_err) 3882 qm->err_ini->log_dev_hw_err(qm, err_sts); 3883 3884 if (err_sts & qm->err_info.dev_reset_mask) 3885 return ACC_ERR_NEED_RESET; 3886 3887 if (qm->err_ini->clear_dev_hw_err_status) 3888 qm->err_ini->clear_dev_hw_err_status(qm, err_sts); 3889 } 3890 3891 return ACC_ERR_RECOVERED; 3892 } 3893 3894 static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm) 3895 { 3896 enum acc_err_result qm_ret, dev_ret; 3897 3898 /* log qm error */ 3899 qm_ret = qm_hw_error_handle(qm); 3900 3901 /* log device error */ 3902 dev_ret = qm_dev_err_handle(qm); 3903 3904 return (qm_ret == ACC_ERR_NEED_RESET || 3905 dev_ret == ACC_ERR_NEED_RESET) ? 3906 ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED; 3907 } 3908 3909 /** 3910 * hisi_qm_dev_err_detected() - Get device and qm error status then log it. 3911 * @pdev: The PCI device which need report error. 3912 * @state: The connectivity between CPU and device. 3913 * 3914 * We register this function into PCIe AER handlers, It will report device or 3915 * qm hardware error status when error occur. 3916 */ 3917 pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev, 3918 pci_channel_state_t state) 3919 { 3920 struct hisi_qm *qm = pci_get_drvdata(pdev); 3921 enum acc_err_result ret; 3922 3923 if (pdev->is_virtfn) 3924 return PCI_ERS_RESULT_NONE; 3925 3926 pci_info(pdev, "PCI error detected, state(=%u)!!\n", state); 3927 if (state == pci_channel_io_perm_failure) 3928 return PCI_ERS_RESULT_DISCONNECT; 3929 3930 ret = qm_process_dev_error(qm); 3931 if (ret == ACC_ERR_NEED_RESET) 3932 return PCI_ERS_RESULT_NEED_RESET; 3933 3934 return PCI_ERS_RESULT_RECOVERED; 3935 } 3936 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected); 3937 3938 static int qm_check_req_recv(struct hisi_qm *qm) 3939 { 3940 struct pci_dev *pdev = qm->pdev; 3941 int ret; 3942 u32 val; 3943 3944 if (qm->ver >= QM_HW_V3) 3945 return 0; 3946 3947 writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID); 3948 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val, 3949 (val == ACC_VENDOR_ID_VALUE), 3950 POLL_PERIOD, POLL_TIMEOUT); 3951 if (ret) { 3952 dev_err(&pdev->dev, "Fails to read QM reg!\n"); 3953 return ret; 3954 } 3955 3956 writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID); 3957 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val, 3958 (val == PCI_VENDOR_ID_HUAWEI), 3959 POLL_PERIOD, POLL_TIMEOUT); 3960 if (ret) 3961 dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n"); 3962 3963 return ret; 3964 } 3965 3966 static int qm_set_pf_mse(struct hisi_qm *qm, bool set) 3967 { 3968 struct pci_dev *pdev = qm->pdev; 3969 u16 cmd; 3970 int i; 3971 3972 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 3973 if (set) 3974 cmd |= PCI_COMMAND_MEMORY; 3975 else 3976 cmd &= ~PCI_COMMAND_MEMORY; 3977 3978 pci_write_config_word(pdev, PCI_COMMAND, cmd); 3979 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 3980 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 3981 if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1)) 3982 return 0; 3983 3984 udelay(1); 3985 } 3986 3987 return -ETIMEDOUT; 3988 } 3989 3990 static int qm_set_vf_mse(struct hisi_qm *qm, bool set) 3991 { 3992 struct pci_dev *pdev = qm->pdev; 3993 u16 sriov_ctrl; 3994 int pos; 3995 int i; 3996 3997 /* 3998 * Since function qm_set_vf_mse is called only after SRIOV is enabled, 3999 * pci_find_ext_capability cannot return 0, pos does not need to be 4000 * checked. 4001 */ 4002 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); 4003 pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl); 4004 if (set) 4005 sriov_ctrl |= PCI_SRIOV_CTRL_MSE; 4006 else 4007 sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE; 4008 pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl); 4009 4010 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 4011 pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl); 4012 if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >> 4013 ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT) 4014 return 0; 4015 4016 udelay(1); 4017 } 4018 4019 return -ETIMEDOUT; 4020 } 4021 4022 static int qm_vf_reset_prepare(struct hisi_qm *qm, 4023 enum qm_stop_reason stop_reason) 4024 { 4025 struct hisi_qm_list *qm_list = qm->qm_list; 4026 struct pci_dev *pdev = qm->pdev; 4027 struct pci_dev *virtfn; 4028 struct hisi_qm *vf_qm; 4029 int ret = 0; 4030 4031 mutex_lock(&qm_list->lock); 4032 list_for_each_entry(vf_qm, &qm_list->list, list) { 4033 virtfn = vf_qm->pdev; 4034 if (virtfn == pdev) 4035 continue; 4036 4037 if (pci_physfn(virtfn) == pdev) { 4038 /* save VFs PCIE BAR configuration */ 4039 pci_save_state(virtfn); 4040 4041 ret = hisi_qm_stop(vf_qm, stop_reason); 4042 if (ret) 4043 goto stop_fail; 4044 } 4045 } 4046 4047 stop_fail: 4048 mutex_unlock(&qm_list->lock); 4049 return ret; 4050 } 4051 4052 static int qm_try_stop_vfs(struct hisi_qm *qm, u64 cmd, 4053 enum qm_stop_reason stop_reason) 4054 { 4055 struct pci_dev *pdev = qm->pdev; 4056 int ret; 4057 4058 if (!qm->vfs_num) 4059 return 0; 4060 4061 /* Kunpeng930 supports to notify VFs to stop before PF reset */ 4062 if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) { 4063 ret = qm_ping_all_vfs(qm, cmd); 4064 if (ret) 4065 pci_err(pdev, "failed to send cmd to all VFs before PF reset!\n"); 4066 } else { 4067 ret = qm_vf_reset_prepare(qm, stop_reason); 4068 if (ret) 4069 pci_err(pdev, "failed to prepare reset, ret = %d.\n", ret); 4070 } 4071 4072 return ret; 4073 } 4074 4075 static int qm_controller_reset_prepare(struct hisi_qm *qm) 4076 { 4077 struct pci_dev *pdev = qm->pdev; 4078 int ret; 4079 4080 ret = qm_reset_prepare_ready(qm); 4081 if (ret) { 4082 pci_err(pdev, "Controller reset not ready!\n"); 4083 return ret; 4084 } 4085 4086 /* PF obtains the information of VF by querying the register. */ 4087 qm_cmd_uninit(qm); 4088 4089 /* Whether VFs stop successfully, soft reset will continue. */ 4090 ret = qm_try_stop_vfs(qm, QM_PF_SRST_PREPARE, QM_SOFT_RESET); 4091 if (ret) 4092 pci_err(pdev, "failed to stop vfs by pf in soft reset.\n"); 4093 4094 ret = hisi_qm_stop(qm, QM_SOFT_RESET); 4095 if (ret) { 4096 pci_err(pdev, "Fails to stop QM!\n"); 4097 qm_reset_bit_clear(qm); 4098 return ret; 4099 } 4100 4101 if (qm->use_sva) { 4102 ret = qm_hw_err_isolate(qm); 4103 if (ret) 4104 pci_err(pdev, "failed to isolate hw err!\n"); 4105 } 4106 4107 ret = qm_wait_vf_prepare_finish(qm); 4108 if (ret) 4109 pci_err(pdev, "failed to stop by vfs in soft reset!\n"); 4110 4111 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 4112 4113 return 0; 4114 } 4115 4116 static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm) 4117 { 4118 u32 nfe_enb = 0; 4119 4120 /* Kunpeng930 hardware automatically close master ooo when NFE occurs */ 4121 if (qm->ver >= QM_HW_V3) 4122 return; 4123 4124 if (!qm->err_status.is_dev_ecc_mbit && 4125 qm->err_status.is_qm_ecc_mbit && 4126 qm->err_ini->close_axi_master_ooo) { 4127 qm->err_ini->close_axi_master_ooo(qm); 4128 } else if (qm->err_status.is_dev_ecc_mbit && 4129 !qm->err_status.is_qm_ecc_mbit && 4130 !qm->err_ini->close_axi_master_ooo) { 4131 nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE); 4132 writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE, 4133 qm->io_base + QM_RAS_NFE_ENABLE); 4134 writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET); 4135 } 4136 } 4137 4138 static int qm_soft_reset(struct hisi_qm *qm) 4139 { 4140 struct pci_dev *pdev = qm->pdev; 4141 int ret; 4142 u32 val; 4143 4144 /* Ensure all doorbells and mailboxes received by QM */ 4145 ret = qm_check_req_recv(qm); 4146 if (ret) 4147 return ret; 4148 4149 if (qm->vfs_num) { 4150 ret = qm_set_vf_mse(qm, false); 4151 if (ret) { 4152 pci_err(pdev, "Fails to disable vf MSE bit.\n"); 4153 return ret; 4154 } 4155 } 4156 4157 ret = qm->ops->set_msi(qm, false); 4158 if (ret) { 4159 pci_err(pdev, "Fails to disable PEH MSI bit.\n"); 4160 return ret; 4161 } 4162 4163 qm_dev_ecc_mbit_handle(qm); 4164 4165 /* OOO register set and check */ 4166 writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN, 4167 qm->io_base + ACC_MASTER_GLOBAL_CTRL); 4168 4169 /* If bus lock, reset chip */ 4170 ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN, 4171 val, 4172 (val == ACC_MASTER_TRANS_RETURN_RW), 4173 POLL_PERIOD, POLL_TIMEOUT); 4174 if (ret) { 4175 pci_emerg(pdev, "Bus lock! Please reset system.\n"); 4176 return ret; 4177 } 4178 4179 if (qm->err_ini->close_sva_prefetch) 4180 qm->err_ini->close_sva_prefetch(qm); 4181 4182 ret = qm_set_pf_mse(qm, false); 4183 if (ret) { 4184 pci_err(pdev, "Fails to disable pf MSE bit.\n"); 4185 return ret; 4186 } 4187 4188 /* The reset related sub-control registers are not in PCI BAR */ 4189 if (ACPI_HANDLE(&pdev->dev)) { 4190 unsigned long long value = 0; 4191 acpi_status s; 4192 4193 s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev), 4194 qm->err_info.acpi_rst, 4195 NULL, &value); 4196 if (ACPI_FAILURE(s)) { 4197 pci_err(pdev, "NO controller reset method!\n"); 4198 return -EIO; 4199 } 4200 4201 if (value) { 4202 pci_err(pdev, "Reset step %llu failed!\n", value); 4203 return -EIO; 4204 } 4205 } else { 4206 pci_err(pdev, "No reset method!\n"); 4207 return -EINVAL; 4208 } 4209 4210 return 0; 4211 } 4212 4213 static int qm_vf_reset_done(struct hisi_qm *qm) 4214 { 4215 struct hisi_qm_list *qm_list = qm->qm_list; 4216 struct pci_dev *pdev = qm->pdev; 4217 struct pci_dev *virtfn; 4218 struct hisi_qm *vf_qm; 4219 int ret = 0; 4220 4221 mutex_lock(&qm_list->lock); 4222 list_for_each_entry(vf_qm, &qm_list->list, list) { 4223 virtfn = vf_qm->pdev; 4224 if (virtfn == pdev) 4225 continue; 4226 4227 if (pci_physfn(virtfn) == pdev) { 4228 /* enable VFs PCIE BAR configuration */ 4229 pci_restore_state(virtfn); 4230 4231 ret = qm_restart(vf_qm); 4232 if (ret) 4233 goto restart_fail; 4234 } 4235 } 4236 4237 restart_fail: 4238 mutex_unlock(&qm_list->lock); 4239 return ret; 4240 } 4241 4242 static int qm_try_start_vfs(struct hisi_qm *qm, enum qm_mb_cmd cmd) 4243 { 4244 struct pci_dev *pdev = qm->pdev; 4245 int ret; 4246 4247 if (!qm->vfs_num) 4248 return 0; 4249 4250 ret = qm_vf_q_assign(qm, qm->vfs_num); 4251 if (ret) { 4252 pci_err(pdev, "failed to assign VFs, ret = %d.\n", ret); 4253 return ret; 4254 } 4255 4256 /* Kunpeng930 supports to notify VFs to start after PF reset. */ 4257 if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) { 4258 ret = qm_ping_all_vfs(qm, cmd); 4259 if (ret) 4260 pci_warn(pdev, "failed to send cmd to all VFs after PF reset!\n"); 4261 } else { 4262 ret = qm_vf_reset_done(qm); 4263 if (ret) 4264 pci_warn(pdev, "failed to start vfs, ret = %d.\n", ret); 4265 } 4266 4267 return ret; 4268 } 4269 4270 static int qm_dev_hw_init(struct hisi_qm *qm) 4271 { 4272 return qm->err_ini->hw_init(qm); 4273 } 4274 4275 static void qm_restart_prepare(struct hisi_qm *qm) 4276 { 4277 u32 value; 4278 4279 if (qm->err_ini->open_sva_prefetch) 4280 qm->err_ini->open_sva_prefetch(qm); 4281 4282 if (qm->ver >= QM_HW_V3) 4283 return; 4284 4285 if (!qm->err_status.is_qm_ecc_mbit && 4286 !qm->err_status.is_dev_ecc_mbit) 4287 return; 4288 4289 /* temporarily close the OOO port used for PEH to write out MSI */ 4290 value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4291 writel(value & ~qm->err_info.msi_wr_port, 4292 qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4293 4294 /* clear dev ecc 2bit error source if having */ 4295 value = qm_get_dev_err_status(qm) & qm->err_info.ecc_2bits_mask; 4296 if (value && qm->err_ini->clear_dev_hw_err_status) 4297 qm->err_ini->clear_dev_hw_err_status(qm, value); 4298 4299 /* clear QM ecc mbit error source */ 4300 writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE); 4301 4302 /* clear AM Reorder Buffer ecc mbit source */ 4303 writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS); 4304 } 4305 4306 static void qm_restart_done(struct hisi_qm *qm) 4307 { 4308 u32 value; 4309 4310 if (qm->ver >= QM_HW_V3) 4311 goto clear_flags; 4312 4313 if (!qm->err_status.is_qm_ecc_mbit && 4314 !qm->err_status.is_dev_ecc_mbit) 4315 return; 4316 4317 /* open the OOO port for PEH to write out MSI */ 4318 value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4319 value |= qm->err_info.msi_wr_port; 4320 writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4321 4322 clear_flags: 4323 qm->err_status.is_qm_ecc_mbit = false; 4324 qm->err_status.is_dev_ecc_mbit = false; 4325 } 4326 4327 static int qm_controller_reset_done(struct hisi_qm *qm) 4328 { 4329 struct pci_dev *pdev = qm->pdev; 4330 int ret; 4331 4332 ret = qm->ops->set_msi(qm, true); 4333 if (ret) { 4334 pci_err(pdev, "Fails to enable PEH MSI bit!\n"); 4335 return ret; 4336 } 4337 4338 ret = qm_set_pf_mse(qm, true); 4339 if (ret) { 4340 pci_err(pdev, "Fails to enable pf MSE bit!\n"); 4341 return ret; 4342 } 4343 4344 if (qm->vfs_num) { 4345 ret = qm_set_vf_mse(qm, true); 4346 if (ret) { 4347 pci_err(pdev, "Fails to enable vf MSE bit!\n"); 4348 return ret; 4349 } 4350 } 4351 4352 ret = qm_dev_hw_init(qm); 4353 if (ret) { 4354 pci_err(pdev, "Failed to init device\n"); 4355 return ret; 4356 } 4357 4358 qm_restart_prepare(qm); 4359 hisi_qm_dev_err_init(qm); 4360 if (qm->err_ini->open_axi_master_ooo) 4361 qm->err_ini->open_axi_master_ooo(qm); 4362 4363 ret = qm_dev_mem_reset(qm); 4364 if (ret) { 4365 pci_err(pdev, "failed to reset device memory\n"); 4366 return ret; 4367 } 4368 4369 ret = qm_restart(qm); 4370 if (ret) { 4371 pci_err(pdev, "Failed to start QM!\n"); 4372 return ret; 4373 } 4374 4375 ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE); 4376 if (ret) 4377 pci_err(pdev, "failed to start vfs by pf in soft reset.\n"); 4378 4379 ret = qm_wait_vf_prepare_finish(qm); 4380 if (ret) 4381 pci_err(pdev, "failed to start by vfs in soft reset!\n"); 4382 4383 qm_cmd_init(qm); 4384 qm_restart_done(qm); 4385 4386 qm_reset_bit_clear(qm); 4387 4388 return 0; 4389 } 4390 4391 static int qm_controller_reset(struct hisi_qm *qm) 4392 { 4393 struct pci_dev *pdev = qm->pdev; 4394 int ret; 4395 4396 pci_info(pdev, "Controller resetting...\n"); 4397 4398 ret = qm_controller_reset_prepare(qm); 4399 if (ret) { 4400 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 4401 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 4402 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 4403 return ret; 4404 } 4405 4406 hisi_qm_show_last_dfx_regs(qm); 4407 if (qm->err_ini->show_last_dfx_regs) 4408 qm->err_ini->show_last_dfx_regs(qm); 4409 4410 ret = qm_soft_reset(qm); 4411 if (ret) 4412 goto err_reset; 4413 4414 ret = qm_controller_reset_done(qm); 4415 if (ret) 4416 goto err_reset; 4417 4418 pci_info(pdev, "Controller reset complete\n"); 4419 4420 return 0; 4421 4422 err_reset: 4423 pci_err(pdev, "Controller reset failed (%d)\n", ret); 4424 qm_reset_bit_clear(qm); 4425 4426 /* if resetting fails, isolate the device */ 4427 if (qm->use_sva) 4428 qm->isolate_data.is_isolate = true; 4429 return ret; 4430 } 4431 4432 /** 4433 * hisi_qm_dev_slot_reset() - slot reset 4434 * @pdev: the PCIe device 4435 * 4436 * This function offers QM relate PCIe device reset interface. Drivers which 4437 * use QM can use this function as slot_reset in its struct pci_error_handlers. 4438 */ 4439 pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev) 4440 { 4441 struct hisi_qm *qm = pci_get_drvdata(pdev); 4442 int ret; 4443 4444 if (pdev->is_virtfn) 4445 return PCI_ERS_RESULT_RECOVERED; 4446 4447 /* reset pcie device controller */ 4448 ret = qm_controller_reset(qm); 4449 if (ret) { 4450 pci_err(pdev, "Controller reset failed (%d)\n", ret); 4451 return PCI_ERS_RESULT_DISCONNECT; 4452 } 4453 4454 return PCI_ERS_RESULT_RECOVERED; 4455 } 4456 EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset); 4457 4458 void hisi_qm_reset_prepare(struct pci_dev *pdev) 4459 { 4460 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 4461 struct hisi_qm *qm = pci_get_drvdata(pdev); 4462 u32 delay = 0; 4463 int ret; 4464 4465 hisi_qm_dev_err_uninit(pf_qm); 4466 4467 /* 4468 * Check whether there is an ECC mbit error, If it occurs, need to 4469 * wait for soft reset to fix it. 4470 */ 4471 while (qm_check_dev_error(pf_qm)) { 4472 msleep(++delay); 4473 if (delay > QM_RESET_WAIT_TIMEOUT) 4474 return; 4475 } 4476 4477 ret = qm_reset_prepare_ready(qm); 4478 if (ret) { 4479 pci_err(pdev, "FLR not ready!\n"); 4480 return; 4481 } 4482 4483 /* PF obtains the information of VF by querying the register. */ 4484 if (qm->fun_type == QM_HW_PF) 4485 qm_cmd_uninit(qm); 4486 4487 ret = qm_try_stop_vfs(qm, QM_PF_FLR_PREPARE, QM_DOWN); 4488 if (ret) 4489 pci_err(pdev, "failed to stop vfs by pf in FLR.\n"); 4490 4491 ret = hisi_qm_stop(qm, QM_DOWN); 4492 if (ret) { 4493 pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret); 4494 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 4495 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 4496 return; 4497 } 4498 4499 ret = qm_wait_vf_prepare_finish(qm); 4500 if (ret) 4501 pci_err(pdev, "failed to stop by vfs in FLR!\n"); 4502 4503 pci_info(pdev, "FLR resetting...\n"); 4504 } 4505 EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare); 4506 4507 static bool qm_flr_reset_complete(struct pci_dev *pdev) 4508 { 4509 struct pci_dev *pf_pdev = pci_physfn(pdev); 4510 struct hisi_qm *qm = pci_get_drvdata(pf_pdev); 4511 u32 id; 4512 4513 pci_read_config_dword(qm->pdev, PCI_COMMAND, &id); 4514 if (id == QM_PCI_COMMAND_INVALID) { 4515 pci_err(pdev, "Device can not be used!\n"); 4516 return false; 4517 } 4518 4519 return true; 4520 } 4521 4522 void hisi_qm_reset_done(struct pci_dev *pdev) 4523 { 4524 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 4525 struct hisi_qm *qm = pci_get_drvdata(pdev); 4526 int ret; 4527 4528 if (qm->fun_type == QM_HW_PF) { 4529 ret = qm_dev_hw_init(qm); 4530 if (ret) { 4531 pci_err(pdev, "Failed to init PF, ret = %d.\n", ret); 4532 goto flr_done; 4533 } 4534 } 4535 4536 hisi_qm_dev_err_init(pf_qm); 4537 4538 ret = qm_restart(qm); 4539 if (ret) { 4540 pci_err(pdev, "Failed to start QM, ret = %d.\n", ret); 4541 goto flr_done; 4542 } 4543 4544 ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE); 4545 if (ret) 4546 pci_err(pdev, "failed to start vfs by pf in FLR.\n"); 4547 4548 ret = qm_wait_vf_prepare_finish(qm); 4549 if (ret) 4550 pci_err(pdev, "failed to start by vfs in FLR!\n"); 4551 4552 flr_done: 4553 if (qm->fun_type == QM_HW_PF) 4554 qm_cmd_init(qm); 4555 4556 if (qm_flr_reset_complete(pdev)) 4557 pci_info(pdev, "FLR reset complete\n"); 4558 4559 qm_reset_bit_clear(qm); 4560 } 4561 EXPORT_SYMBOL_GPL(hisi_qm_reset_done); 4562 4563 static irqreturn_t qm_abnormal_irq(int irq, void *data) 4564 { 4565 struct hisi_qm *qm = data; 4566 enum acc_err_result ret; 4567 4568 atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt); 4569 ret = qm_process_dev_error(qm); 4570 if (ret == ACC_ERR_NEED_RESET && 4571 !test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl) && 4572 !test_and_set_bit(QM_RST_SCHED, &qm->misc_ctl)) 4573 schedule_work(&qm->rst_work); 4574 4575 return IRQ_HANDLED; 4576 } 4577 4578 /** 4579 * hisi_qm_dev_shutdown() - Shutdown device. 4580 * @pdev: The device will be shutdown. 4581 * 4582 * This function will stop qm when OS shutdown or rebooting. 4583 */ 4584 void hisi_qm_dev_shutdown(struct pci_dev *pdev) 4585 { 4586 struct hisi_qm *qm = pci_get_drvdata(pdev); 4587 int ret; 4588 4589 ret = hisi_qm_stop(qm, QM_DOWN); 4590 if (ret) 4591 dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n"); 4592 4593 hisi_qm_cache_wb(qm); 4594 } 4595 EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown); 4596 4597 static void hisi_qm_controller_reset(struct work_struct *rst_work) 4598 { 4599 struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work); 4600 int ret; 4601 4602 ret = qm_pm_get_sync(qm); 4603 if (ret) { 4604 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 4605 return; 4606 } 4607 4608 /* reset pcie device controller */ 4609 ret = qm_controller_reset(qm); 4610 if (ret) 4611 dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret); 4612 4613 qm_pm_put_sync(qm); 4614 } 4615 4616 static void qm_pf_reset_vf_prepare(struct hisi_qm *qm, 4617 enum qm_stop_reason stop_reason) 4618 { 4619 enum qm_mb_cmd cmd = QM_VF_PREPARE_DONE; 4620 struct pci_dev *pdev = qm->pdev; 4621 int ret; 4622 4623 ret = qm_reset_prepare_ready(qm); 4624 if (ret) { 4625 dev_err(&pdev->dev, "reset prepare not ready!\n"); 4626 atomic_set(&qm->status.flags, QM_STOP); 4627 cmd = QM_VF_PREPARE_FAIL; 4628 goto err_prepare; 4629 } 4630 4631 ret = hisi_qm_stop(qm, stop_reason); 4632 if (ret) { 4633 dev_err(&pdev->dev, "failed to stop QM, ret = %d.\n", ret); 4634 atomic_set(&qm->status.flags, QM_STOP); 4635 cmd = QM_VF_PREPARE_FAIL; 4636 goto err_prepare; 4637 } else { 4638 goto out; 4639 } 4640 4641 err_prepare: 4642 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 4643 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 4644 out: 4645 pci_save_state(pdev); 4646 ret = qm_ping_pf(qm, cmd); 4647 if (ret) 4648 dev_warn(&pdev->dev, "PF responds timeout in reset prepare!\n"); 4649 } 4650 4651 static void qm_pf_reset_vf_done(struct hisi_qm *qm) 4652 { 4653 enum qm_mb_cmd cmd = QM_VF_START_DONE; 4654 struct pci_dev *pdev = qm->pdev; 4655 int ret; 4656 4657 pci_restore_state(pdev); 4658 ret = hisi_qm_start(qm); 4659 if (ret) { 4660 dev_err(&pdev->dev, "failed to start QM, ret = %d.\n", ret); 4661 cmd = QM_VF_START_FAIL; 4662 } 4663 4664 qm_cmd_init(qm); 4665 ret = qm_ping_pf(qm, cmd); 4666 if (ret) 4667 dev_warn(&pdev->dev, "PF responds timeout in reset done!\n"); 4668 4669 qm_reset_bit_clear(qm); 4670 } 4671 4672 static int qm_wait_pf_reset_finish(struct hisi_qm *qm) 4673 { 4674 struct device *dev = &qm->pdev->dev; 4675 u32 val, cmd; 4676 u64 msg; 4677 int ret; 4678 4679 /* Wait for reset to finish */ 4680 ret = readl_relaxed_poll_timeout(qm->io_base + QM_IFC_INT_SOURCE_V, val, 4681 val == BIT(0), QM_VF_RESET_WAIT_US, 4682 QM_VF_RESET_WAIT_TIMEOUT_US); 4683 /* hardware completion status should be available by this time */ 4684 if (ret) { 4685 dev_err(dev, "couldn't get reset done status from PF, timeout!\n"); 4686 return -ETIMEDOUT; 4687 } 4688 4689 /* 4690 * Whether message is got successfully, 4691 * VF needs to ack PF by clearing the interrupt. 4692 */ 4693 ret = qm_get_mb_cmd(qm, &msg, 0); 4694 qm_clear_cmd_interrupt(qm, 0); 4695 if (ret) { 4696 dev_err(dev, "failed to get msg from PF in reset done!\n"); 4697 return ret; 4698 } 4699 4700 cmd = msg & QM_MB_CMD_DATA_MASK; 4701 if (cmd != QM_PF_RESET_DONE) { 4702 dev_err(dev, "the cmd(%u) is not reset done!\n", cmd); 4703 ret = -EINVAL; 4704 } 4705 4706 return ret; 4707 } 4708 4709 static void qm_pf_reset_vf_process(struct hisi_qm *qm, 4710 enum qm_stop_reason stop_reason) 4711 { 4712 struct device *dev = &qm->pdev->dev; 4713 int ret; 4714 4715 dev_info(dev, "device reset start...\n"); 4716 4717 /* The message is obtained by querying the register during resetting */ 4718 qm_cmd_uninit(qm); 4719 qm_pf_reset_vf_prepare(qm, stop_reason); 4720 4721 ret = qm_wait_pf_reset_finish(qm); 4722 if (ret) 4723 goto err_get_status; 4724 4725 qm_pf_reset_vf_done(qm); 4726 4727 dev_info(dev, "device reset done.\n"); 4728 4729 return; 4730 4731 err_get_status: 4732 qm_cmd_init(qm); 4733 qm_reset_bit_clear(qm); 4734 } 4735 4736 static void qm_handle_cmd_msg(struct hisi_qm *qm, u32 fun_num) 4737 { 4738 struct device *dev = &qm->pdev->dev; 4739 u64 msg; 4740 u32 cmd; 4741 int ret; 4742 4743 /* 4744 * Get the msg from source by sending mailbox. Whether message is got 4745 * successfully, destination needs to ack source by clearing the interrupt. 4746 */ 4747 ret = qm_get_mb_cmd(qm, &msg, fun_num); 4748 qm_clear_cmd_interrupt(qm, BIT(fun_num)); 4749 if (ret) { 4750 dev_err(dev, "failed to get msg from source!\n"); 4751 return; 4752 } 4753 4754 cmd = msg & QM_MB_CMD_DATA_MASK; 4755 switch (cmd) { 4756 case QM_PF_FLR_PREPARE: 4757 qm_pf_reset_vf_process(qm, QM_DOWN); 4758 break; 4759 case QM_PF_SRST_PREPARE: 4760 qm_pf_reset_vf_process(qm, QM_SOFT_RESET); 4761 break; 4762 case QM_VF_GET_QOS: 4763 qm_vf_get_qos(qm, fun_num); 4764 break; 4765 case QM_PF_SET_QOS: 4766 qm->mb_qos = msg >> QM_MB_CMD_DATA_SHIFT; 4767 break; 4768 default: 4769 dev_err(dev, "unsupported cmd %u sent by function(%u)!\n", cmd, fun_num); 4770 break; 4771 } 4772 } 4773 4774 static void qm_cmd_process(struct work_struct *cmd_process) 4775 { 4776 struct hisi_qm *qm = container_of(cmd_process, 4777 struct hisi_qm, cmd_process); 4778 u32 vfs_num = qm->vfs_num; 4779 u64 val; 4780 u32 i; 4781 4782 if (qm->fun_type == QM_HW_PF) { 4783 val = readq(qm->io_base + QM_IFC_INT_SOURCE_P); 4784 if (!val) 4785 return; 4786 4787 for (i = 1; i <= vfs_num; i++) { 4788 if (val & BIT(i)) 4789 qm_handle_cmd_msg(qm, i); 4790 } 4791 4792 return; 4793 } 4794 4795 qm_handle_cmd_msg(qm, 0); 4796 } 4797 4798 /** 4799 * hisi_qm_alg_register() - Register alg to crypto. 4800 * @qm: The qm needs add. 4801 * @qm_list: The qm list. 4802 * @guard: Guard of qp_num. 4803 * 4804 * Register algorithm to crypto when the function is satisfy guard. 4805 */ 4806 int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list, int guard) 4807 { 4808 struct device *dev = &qm->pdev->dev; 4809 4810 if (qm->ver <= QM_HW_V2 && qm->use_sva) { 4811 dev_info(dev, "HW V2 not both use uacce sva mode and hardware crypto algs.\n"); 4812 return 0; 4813 } 4814 4815 if (qm->qp_num < guard) { 4816 dev_info(dev, "qp_num is less than task need.\n"); 4817 return 0; 4818 } 4819 4820 return qm_list->register_to_crypto(qm); 4821 } 4822 EXPORT_SYMBOL_GPL(hisi_qm_alg_register); 4823 4824 /** 4825 * hisi_qm_alg_unregister() - Unregister alg from crypto. 4826 * @qm: The qm needs delete. 4827 * @qm_list: The qm list. 4828 * @guard: Guard of qp_num. 4829 * 4830 * Unregister algorithm from crypto when the last function is satisfy guard. 4831 */ 4832 void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list, int guard) 4833 { 4834 if (qm->ver <= QM_HW_V2 && qm->use_sva) 4835 return; 4836 4837 if (qm->qp_num < guard) 4838 return; 4839 4840 qm_list->unregister_from_crypto(qm); 4841 } 4842 EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister); 4843 4844 static void qm_unregister_abnormal_irq(struct hisi_qm *qm) 4845 { 4846 struct pci_dev *pdev = qm->pdev; 4847 u32 irq_vector, val; 4848 4849 if (qm->fun_type == QM_HW_VF) 4850 return; 4851 4852 val = qm->cap_tables.qm_cap_table[QM_ABN_IRQ_TYPE_CAP_IDX].cap_val; 4853 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK)) 4854 return; 4855 4856 irq_vector = val & QM_IRQ_VECTOR_MASK; 4857 free_irq(pci_irq_vector(pdev, irq_vector), qm); 4858 } 4859 4860 static int qm_register_abnormal_irq(struct hisi_qm *qm) 4861 { 4862 struct pci_dev *pdev = qm->pdev; 4863 u32 irq_vector, val; 4864 int ret; 4865 4866 if (qm->fun_type == QM_HW_VF) 4867 return 0; 4868 4869 val = qm->cap_tables.qm_cap_table[QM_ABN_IRQ_TYPE_CAP_IDX].cap_val; 4870 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK)) 4871 return 0; 4872 4873 irq_vector = val & QM_IRQ_VECTOR_MASK; 4874 ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_abnormal_irq, 0, qm->dev_name, qm); 4875 if (ret) 4876 dev_err(&qm->pdev->dev, "failed to request abnormal irq, ret = %d", ret); 4877 4878 return ret; 4879 } 4880 4881 static void qm_unregister_mb_cmd_irq(struct hisi_qm *qm) 4882 { 4883 struct pci_dev *pdev = qm->pdev; 4884 u32 irq_vector, val; 4885 4886 val = qm->cap_tables.qm_cap_table[QM_PF2VF_IRQ_TYPE_CAP_IDX].cap_val; 4887 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 4888 return; 4889 4890 irq_vector = val & QM_IRQ_VECTOR_MASK; 4891 free_irq(pci_irq_vector(pdev, irq_vector), qm); 4892 } 4893 4894 static int qm_register_mb_cmd_irq(struct hisi_qm *qm) 4895 { 4896 struct pci_dev *pdev = qm->pdev; 4897 u32 irq_vector, val; 4898 int ret; 4899 4900 val = qm->cap_tables.qm_cap_table[QM_PF2VF_IRQ_TYPE_CAP_IDX].cap_val; 4901 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 4902 return 0; 4903 4904 irq_vector = val & QM_IRQ_VECTOR_MASK; 4905 ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_mb_cmd_irq, 0, qm->dev_name, qm); 4906 if (ret) 4907 dev_err(&pdev->dev, "failed to request function communication irq, ret = %d", ret); 4908 4909 return ret; 4910 } 4911 4912 static void qm_unregister_aeq_irq(struct hisi_qm *qm) 4913 { 4914 struct pci_dev *pdev = qm->pdev; 4915 u32 irq_vector, val; 4916 4917 val = qm->cap_tables.qm_cap_table[QM_AEQ_IRQ_TYPE_CAP_IDX].cap_val; 4918 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 4919 return; 4920 4921 irq_vector = val & QM_IRQ_VECTOR_MASK; 4922 free_irq(pci_irq_vector(pdev, irq_vector), qm); 4923 } 4924 4925 static int qm_register_aeq_irq(struct hisi_qm *qm) 4926 { 4927 struct pci_dev *pdev = qm->pdev; 4928 u32 irq_vector, val; 4929 int ret; 4930 4931 val = qm->cap_tables.qm_cap_table[QM_AEQ_IRQ_TYPE_CAP_IDX].cap_val; 4932 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 4933 return 0; 4934 4935 irq_vector = val & QM_IRQ_VECTOR_MASK; 4936 ret = request_threaded_irq(pci_irq_vector(pdev, irq_vector), NULL, 4937 qm_aeq_thread, IRQF_ONESHOT, qm->dev_name, qm); 4938 if (ret) 4939 dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret); 4940 4941 return ret; 4942 } 4943 4944 static void qm_unregister_eq_irq(struct hisi_qm *qm) 4945 { 4946 struct pci_dev *pdev = qm->pdev; 4947 u32 irq_vector, val; 4948 4949 val = qm->cap_tables.qm_cap_table[QM_EQ_IRQ_TYPE_CAP_IDX].cap_val; 4950 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 4951 return; 4952 4953 irq_vector = val & QM_IRQ_VECTOR_MASK; 4954 free_irq(pci_irq_vector(pdev, irq_vector), qm); 4955 } 4956 4957 static int qm_register_eq_irq(struct hisi_qm *qm) 4958 { 4959 struct pci_dev *pdev = qm->pdev; 4960 u32 irq_vector, val; 4961 int ret; 4962 4963 val = qm->cap_tables.qm_cap_table[QM_EQ_IRQ_TYPE_CAP_IDX].cap_val; 4964 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 4965 return 0; 4966 4967 irq_vector = val & QM_IRQ_VECTOR_MASK; 4968 ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_eq_irq, 0, qm->dev_name, qm); 4969 if (ret) 4970 dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret); 4971 4972 return ret; 4973 } 4974 4975 static void qm_irqs_unregister(struct hisi_qm *qm) 4976 { 4977 qm_unregister_mb_cmd_irq(qm); 4978 qm_unregister_abnormal_irq(qm); 4979 qm_unregister_aeq_irq(qm); 4980 qm_unregister_eq_irq(qm); 4981 } 4982 4983 static int qm_irqs_register(struct hisi_qm *qm) 4984 { 4985 int ret; 4986 4987 ret = qm_register_eq_irq(qm); 4988 if (ret) 4989 return ret; 4990 4991 ret = qm_register_aeq_irq(qm); 4992 if (ret) 4993 goto free_eq_irq; 4994 4995 ret = qm_register_abnormal_irq(qm); 4996 if (ret) 4997 goto free_aeq_irq; 4998 4999 ret = qm_register_mb_cmd_irq(qm); 5000 if (ret) 5001 goto free_abnormal_irq; 5002 5003 return 0; 5004 5005 free_abnormal_irq: 5006 qm_unregister_abnormal_irq(qm); 5007 free_aeq_irq: 5008 qm_unregister_aeq_irq(qm); 5009 free_eq_irq: 5010 qm_unregister_eq_irq(qm); 5011 return ret; 5012 } 5013 5014 static int qm_get_qp_num(struct hisi_qm *qm) 5015 { 5016 struct device *dev = &qm->pdev->dev; 5017 bool is_db_isolation; 5018 5019 /* VF's qp_num assigned by PF in v2, and VF can get qp_num by vft. */ 5020 if (qm->fun_type == QM_HW_VF) { 5021 if (qm->ver != QM_HW_V1) 5022 /* v2 starts to support get vft by mailbox */ 5023 return hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num); 5024 5025 return 0; 5026 } 5027 5028 is_db_isolation = test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps); 5029 qm->ctrl_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, QM_TOTAL_QP_NUM_CAP, true); 5030 qm->max_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, 5031 QM_FUNC_MAX_QP_CAP, is_db_isolation); 5032 5033 if (qm->qp_num <= qm->max_qp_num) 5034 return 0; 5035 5036 if (test_bit(QM_MODULE_PARAM, &qm->misc_ctl)) { 5037 /* Check whether the set qp number is valid */ 5038 dev_err(dev, "qp num(%u) is more than max qp num(%u)!\n", 5039 qm->qp_num, qm->max_qp_num); 5040 return -EINVAL; 5041 } 5042 5043 dev_info(dev, "Default qp num(%u) is too big, reset it to Function's max qp num(%u)!\n", 5044 qm->qp_num, qm->max_qp_num); 5045 qm->qp_num = qm->max_qp_num; 5046 qm->debug.curr_qm_qp_num = qm->qp_num; 5047 5048 return 0; 5049 } 5050 5051 static int qm_pre_store_irq_type_caps(struct hisi_qm *qm) 5052 { 5053 struct hisi_qm_cap_record *qm_cap; 5054 struct pci_dev *pdev = qm->pdev; 5055 size_t i, size; 5056 5057 size = ARRAY_SIZE(qm_pre_store_caps); 5058 qm_cap = devm_kzalloc(&pdev->dev, sizeof(*qm_cap) * size, GFP_KERNEL); 5059 if (!qm_cap) 5060 return -ENOMEM; 5061 5062 for (i = 0; i < size; i++) { 5063 qm_cap[i].type = qm_pre_store_caps[i]; 5064 qm_cap[i].cap_val = hisi_qm_get_hw_info(qm, qm_basic_info, 5065 qm_pre_store_caps[i], qm->cap_ver); 5066 } 5067 5068 qm->cap_tables.qm_cap_table = qm_cap; 5069 5070 return 0; 5071 } 5072 5073 static int qm_get_hw_caps(struct hisi_qm *qm) 5074 { 5075 const struct hisi_qm_cap_info *cap_info = qm->fun_type == QM_HW_PF ? 5076 qm_cap_info_pf : qm_cap_info_vf; 5077 u32 size = qm->fun_type == QM_HW_PF ? ARRAY_SIZE(qm_cap_info_pf) : 5078 ARRAY_SIZE(qm_cap_info_vf); 5079 u32 val, i; 5080 5081 /* Doorbell isolate register is a independent register. */ 5082 val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, QM_SUPPORT_DB_ISOLATION, true); 5083 if (val) 5084 set_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps); 5085 5086 if (qm->ver >= QM_HW_V3) { 5087 val = readl(qm->io_base + QM_FUNC_CAPS_REG); 5088 qm->cap_ver = val & QM_CAPBILITY_VERSION; 5089 } 5090 5091 /* Get PF/VF common capbility */ 5092 for (i = 1; i < ARRAY_SIZE(qm_cap_info_comm); i++) { 5093 val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, i, qm->cap_ver); 5094 if (val) 5095 set_bit(qm_cap_info_comm[i].type, &qm->caps); 5096 } 5097 5098 /* Get PF/VF different capbility */ 5099 for (i = 0; i < size; i++) { 5100 val = hisi_qm_get_hw_info(qm, cap_info, i, qm->cap_ver); 5101 if (val) 5102 set_bit(cap_info[i].type, &qm->caps); 5103 } 5104 5105 /* Fetch and save the value of irq type related capability registers */ 5106 return qm_pre_store_irq_type_caps(qm); 5107 } 5108 5109 static int qm_get_pci_res(struct hisi_qm *qm) 5110 { 5111 struct pci_dev *pdev = qm->pdev; 5112 struct device *dev = &pdev->dev; 5113 int ret; 5114 5115 ret = pci_request_mem_regions(pdev, qm->dev_name); 5116 if (ret < 0) { 5117 dev_err(dev, "Failed to request mem regions!\n"); 5118 return ret; 5119 } 5120 5121 qm->phys_base = pci_resource_start(pdev, PCI_BAR_2); 5122 qm->io_base = ioremap(qm->phys_base, pci_resource_len(pdev, PCI_BAR_2)); 5123 if (!qm->io_base) { 5124 ret = -EIO; 5125 goto err_request_mem_regions; 5126 } 5127 5128 ret = qm_get_hw_caps(qm); 5129 if (ret) 5130 goto err_ioremap; 5131 5132 if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) { 5133 qm->db_interval = QM_QP_DB_INTERVAL; 5134 qm->db_phys_base = pci_resource_start(pdev, PCI_BAR_4); 5135 qm->db_io_base = ioremap(qm->db_phys_base, 5136 pci_resource_len(pdev, PCI_BAR_4)); 5137 if (!qm->db_io_base) { 5138 ret = -EIO; 5139 goto err_ioremap; 5140 } 5141 } else { 5142 qm->db_phys_base = qm->phys_base; 5143 qm->db_io_base = qm->io_base; 5144 qm->db_interval = 0; 5145 } 5146 5147 ret = qm_get_qp_num(qm); 5148 if (ret) 5149 goto err_db_ioremap; 5150 5151 return 0; 5152 5153 err_db_ioremap: 5154 if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) 5155 iounmap(qm->db_io_base); 5156 err_ioremap: 5157 iounmap(qm->io_base); 5158 err_request_mem_regions: 5159 pci_release_mem_regions(pdev); 5160 return ret; 5161 } 5162 5163 static int hisi_qm_pci_init(struct hisi_qm *qm) 5164 { 5165 struct pci_dev *pdev = qm->pdev; 5166 struct device *dev = &pdev->dev; 5167 unsigned int num_vec; 5168 int ret; 5169 5170 ret = pci_enable_device_mem(pdev); 5171 if (ret < 0) { 5172 dev_err(dev, "Failed to enable device mem!\n"); 5173 return ret; 5174 } 5175 5176 ret = qm_get_pci_res(qm); 5177 if (ret) 5178 goto err_disable_pcidev; 5179 5180 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5181 if (ret < 0) 5182 goto err_get_pci_res; 5183 pci_set_master(pdev); 5184 5185 num_vec = qm_get_irq_num(qm); 5186 ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI); 5187 if (ret < 0) { 5188 dev_err(dev, "Failed to enable MSI vectors!\n"); 5189 goto err_get_pci_res; 5190 } 5191 5192 return 0; 5193 5194 err_get_pci_res: 5195 qm_put_pci_res(qm); 5196 err_disable_pcidev: 5197 pci_disable_device(pdev); 5198 return ret; 5199 } 5200 5201 static int hisi_qm_init_work(struct hisi_qm *qm) 5202 { 5203 int i; 5204 5205 for (i = 0; i < qm->qp_num; i++) 5206 INIT_WORK(&qm->poll_data[i].work, qm_work_process); 5207 5208 if (qm->fun_type == QM_HW_PF) 5209 INIT_WORK(&qm->rst_work, hisi_qm_controller_reset); 5210 5211 if (qm->ver > QM_HW_V2) 5212 INIT_WORK(&qm->cmd_process, qm_cmd_process); 5213 5214 qm->wq = alloc_workqueue("%s", WQ_HIGHPRI | WQ_MEM_RECLAIM | 5215 WQ_UNBOUND, num_online_cpus(), 5216 pci_name(qm->pdev)); 5217 if (!qm->wq) { 5218 pci_err(qm->pdev, "failed to alloc workqueue!\n"); 5219 return -ENOMEM; 5220 } 5221 5222 return 0; 5223 } 5224 5225 static int hisi_qp_alloc_memory(struct hisi_qm *qm) 5226 { 5227 struct device *dev = &qm->pdev->dev; 5228 u16 sq_depth, cq_depth; 5229 size_t qp_dma_size; 5230 int i, ret; 5231 5232 qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL); 5233 if (!qm->qp_array) 5234 return -ENOMEM; 5235 5236 qm->poll_data = kcalloc(qm->qp_num, sizeof(struct hisi_qm_poll_data), GFP_KERNEL); 5237 if (!qm->poll_data) { 5238 kfree(qm->qp_array); 5239 return -ENOMEM; 5240 } 5241 5242 qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP); 5243 5244 /* one more page for device or qp statuses */ 5245 qp_dma_size = qm->sqe_size * sq_depth + sizeof(struct qm_cqe) * cq_depth; 5246 qp_dma_size = PAGE_ALIGN(qp_dma_size) + PAGE_SIZE; 5247 for (i = 0; i < qm->qp_num; i++) { 5248 qm->poll_data[i].qm = qm; 5249 ret = hisi_qp_memory_init(qm, qp_dma_size, i, sq_depth, cq_depth); 5250 if (ret) 5251 goto err_init_qp_mem; 5252 5253 dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size); 5254 } 5255 5256 return 0; 5257 err_init_qp_mem: 5258 hisi_qp_memory_uninit(qm, i); 5259 5260 return ret; 5261 } 5262 5263 static int hisi_qm_alloc_rsv_buf(struct hisi_qm *qm) 5264 { 5265 struct qm_rsv_buf *xqc_buf = &qm->xqc_buf; 5266 struct qm_dma *xqc_dma = &xqc_buf->qcdma; 5267 struct device *dev = &qm->pdev->dev; 5268 size_t off = 0; 5269 5270 #define QM_XQC_BUF_INIT(xqc_buf, type) do { \ 5271 (xqc_buf)->type = ((xqc_buf)->qcdma.va + (off)); \ 5272 (xqc_buf)->type##_dma = (xqc_buf)->qcdma.dma + (off); \ 5273 off += QMC_ALIGN(sizeof(struct qm_##type)); \ 5274 } while (0) 5275 5276 xqc_dma->size = QMC_ALIGN(sizeof(struct qm_eqc)) + 5277 QMC_ALIGN(sizeof(struct qm_aeqc)) + 5278 QMC_ALIGN(sizeof(struct qm_sqc)) + 5279 QMC_ALIGN(sizeof(struct qm_cqc)); 5280 xqc_dma->va = dma_alloc_coherent(dev, xqc_dma->size, 5281 &xqc_dma->dma, GFP_KERNEL); 5282 if (!xqc_dma->va) 5283 return -ENOMEM; 5284 5285 QM_XQC_BUF_INIT(xqc_buf, eqc); 5286 QM_XQC_BUF_INIT(xqc_buf, aeqc); 5287 QM_XQC_BUF_INIT(xqc_buf, sqc); 5288 QM_XQC_BUF_INIT(xqc_buf, cqc); 5289 5290 return 0; 5291 } 5292 5293 static int hisi_qm_memory_init(struct hisi_qm *qm) 5294 { 5295 struct device *dev = &qm->pdev->dev; 5296 int ret, total_func; 5297 size_t off = 0; 5298 5299 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) { 5300 total_func = pci_sriov_get_totalvfs(qm->pdev) + 1; 5301 qm->factor = kcalloc(total_func, sizeof(struct qm_shaper_factor), GFP_KERNEL); 5302 if (!qm->factor) 5303 return -ENOMEM; 5304 5305 /* Only the PF value needs to be initialized */ 5306 qm->factor[0].func_qos = QM_QOS_MAX_VAL; 5307 } 5308 5309 #define QM_INIT_BUF(qm, type, num) do { \ 5310 (qm)->type = ((qm)->qdma.va + (off)); \ 5311 (qm)->type##_dma = (qm)->qdma.dma + (off); \ 5312 off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \ 5313 } while (0) 5314 5315 idr_init(&qm->qp_idr); 5316 qm_get_xqc_depth(qm, &qm->eq_depth, &qm->aeq_depth, QM_XEQ_DEPTH_CAP); 5317 qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * qm->eq_depth) + 5318 QMC_ALIGN(sizeof(struct qm_aeqe) * qm->aeq_depth) + 5319 QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) + 5320 QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num); 5321 qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma, 5322 GFP_ATOMIC); 5323 dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size); 5324 if (!qm->qdma.va) { 5325 ret = -ENOMEM; 5326 goto err_destroy_idr; 5327 } 5328 5329 QM_INIT_BUF(qm, eqe, qm->eq_depth); 5330 QM_INIT_BUF(qm, aeqe, qm->aeq_depth); 5331 QM_INIT_BUF(qm, sqc, qm->qp_num); 5332 QM_INIT_BUF(qm, cqc, qm->qp_num); 5333 5334 ret = hisi_qm_alloc_rsv_buf(qm); 5335 if (ret) 5336 goto err_free_qdma; 5337 5338 ret = hisi_qp_alloc_memory(qm); 5339 if (ret) 5340 goto err_free_reserve_buf; 5341 5342 return 0; 5343 5344 err_free_reserve_buf: 5345 hisi_qm_free_rsv_buf(qm); 5346 err_free_qdma: 5347 dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma); 5348 err_destroy_idr: 5349 idr_destroy(&qm->qp_idr); 5350 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 5351 kfree(qm->factor); 5352 5353 return ret; 5354 } 5355 5356 /** 5357 * hisi_qm_init() - Initialize configures about qm. 5358 * @qm: The qm needing init. 5359 * 5360 * This function init qm, then we can call hisi_qm_start to put qm into work. 5361 */ 5362 int hisi_qm_init(struct hisi_qm *qm) 5363 { 5364 struct pci_dev *pdev = qm->pdev; 5365 struct device *dev = &pdev->dev; 5366 int ret; 5367 5368 hisi_qm_pre_init(qm); 5369 5370 ret = hisi_qm_pci_init(qm); 5371 if (ret) 5372 return ret; 5373 5374 ret = qm_irqs_register(qm); 5375 if (ret) 5376 goto err_pci_init; 5377 5378 if (qm->fun_type == QM_HW_PF) { 5379 /* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */ 5380 writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG); 5381 qm_disable_clock_gate(qm); 5382 ret = qm_dev_mem_reset(qm); 5383 if (ret) { 5384 dev_err(dev, "failed to reset device memory\n"); 5385 goto err_irq_register; 5386 } 5387 } 5388 5389 if (qm->mode == UACCE_MODE_SVA) { 5390 ret = qm_alloc_uacce(qm); 5391 if (ret < 0) 5392 dev_warn(dev, "fail to alloc uacce (%d)\n", ret); 5393 } 5394 5395 ret = hisi_qm_memory_init(qm); 5396 if (ret) 5397 goto err_alloc_uacce; 5398 5399 ret = hisi_qm_init_work(qm); 5400 if (ret) 5401 goto err_free_qm_memory; 5402 5403 qm_cmd_init(qm); 5404 5405 return 0; 5406 5407 err_free_qm_memory: 5408 hisi_qm_memory_uninit(qm); 5409 err_alloc_uacce: 5410 qm_remove_uacce(qm); 5411 err_irq_register: 5412 qm_irqs_unregister(qm); 5413 err_pci_init: 5414 hisi_qm_pci_uninit(qm); 5415 return ret; 5416 } 5417 EXPORT_SYMBOL_GPL(hisi_qm_init); 5418 5419 /** 5420 * hisi_qm_get_dfx_access() - Try to get dfx access. 5421 * @qm: pointer to accelerator device. 5422 * 5423 * Try to get dfx access, then user can get message. 5424 * 5425 * If device is in suspended, return failure, otherwise 5426 * bump up the runtime PM usage counter. 5427 */ 5428 int hisi_qm_get_dfx_access(struct hisi_qm *qm) 5429 { 5430 struct device *dev = &qm->pdev->dev; 5431 5432 if (pm_runtime_suspended(dev)) { 5433 dev_info(dev, "can not read/write - device in suspended.\n"); 5434 return -EAGAIN; 5435 } 5436 5437 return qm_pm_get_sync(qm); 5438 } 5439 EXPORT_SYMBOL_GPL(hisi_qm_get_dfx_access); 5440 5441 /** 5442 * hisi_qm_put_dfx_access() - Put dfx access. 5443 * @qm: pointer to accelerator device. 5444 * 5445 * Put dfx access, drop runtime PM usage counter. 5446 */ 5447 void hisi_qm_put_dfx_access(struct hisi_qm *qm) 5448 { 5449 qm_pm_put_sync(qm); 5450 } 5451 EXPORT_SYMBOL_GPL(hisi_qm_put_dfx_access); 5452 5453 /** 5454 * hisi_qm_pm_init() - Initialize qm runtime PM. 5455 * @qm: pointer to accelerator device. 5456 * 5457 * Function that initialize qm runtime PM. 5458 */ 5459 void hisi_qm_pm_init(struct hisi_qm *qm) 5460 { 5461 struct device *dev = &qm->pdev->dev; 5462 5463 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 5464 return; 5465 5466 pm_runtime_set_autosuspend_delay(dev, QM_AUTOSUSPEND_DELAY); 5467 pm_runtime_use_autosuspend(dev); 5468 pm_runtime_put_noidle(dev); 5469 } 5470 EXPORT_SYMBOL_GPL(hisi_qm_pm_init); 5471 5472 /** 5473 * hisi_qm_pm_uninit() - Uninitialize qm runtime PM. 5474 * @qm: pointer to accelerator device. 5475 * 5476 * Function that uninitialize qm runtime PM. 5477 */ 5478 void hisi_qm_pm_uninit(struct hisi_qm *qm) 5479 { 5480 struct device *dev = &qm->pdev->dev; 5481 5482 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 5483 return; 5484 5485 pm_runtime_get_noresume(dev); 5486 pm_runtime_dont_use_autosuspend(dev); 5487 } 5488 EXPORT_SYMBOL_GPL(hisi_qm_pm_uninit); 5489 5490 static int qm_prepare_for_suspend(struct hisi_qm *qm) 5491 { 5492 struct pci_dev *pdev = qm->pdev; 5493 int ret; 5494 u32 val; 5495 5496 ret = qm->ops->set_msi(qm, false); 5497 if (ret) { 5498 pci_err(pdev, "failed to disable MSI before suspending!\n"); 5499 return ret; 5500 } 5501 5502 /* shutdown OOO register */ 5503 writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN, 5504 qm->io_base + ACC_MASTER_GLOBAL_CTRL); 5505 5506 ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN, 5507 val, 5508 (val == ACC_MASTER_TRANS_RETURN_RW), 5509 POLL_PERIOD, POLL_TIMEOUT); 5510 if (ret) { 5511 pci_emerg(pdev, "Bus lock! Please reset system.\n"); 5512 return ret; 5513 } 5514 5515 ret = qm_set_pf_mse(qm, false); 5516 if (ret) 5517 pci_err(pdev, "failed to disable MSE before suspending!\n"); 5518 5519 return ret; 5520 } 5521 5522 static int qm_rebuild_for_resume(struct hisi_qm *qm) 5523 { 5524 struct pci_dev *pdev = qm->pdev; 5525 int ret; 5526 5527 ret = qm_set_pf_mse(qm, true); 5528 if (ret) { 5529 pci_err(pdev, "failed to enable MSE after resuming!\n"); 5530 return ret; 5531 } 5532 5533 ret = qm->ops->set_msi(qm, true); 5534 if (ret) { 5535 pci_err(pdev, "failed to enable MSI after resuming!\n"); 5536 return ret; 5537 } 5538 5539 ret = qm_dev_hw_init(qm); 5540 if (ret) { 5541 pci_err(pdev, "failed to init device after resuming\n"); 5542 return ret; 5543 } 5544 5545 qm_cmd_init(qm); 5546 hisi_qm_dev_err_init(qm); 5547 /* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */ 5548 writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG); 5549 qm_disable_clock_gate(qm); 5550 ret = qm_dev_mem_reset(qm); 5551 if (ret) 5552 pci_err(pdev, "failed to reset device memory\n"); 5553 5554 return ret; 5555 } 5556 5557 /** 5558 * hisi_qm_suspend() - Runtime suspend of given device. 5559 * @dev: device to suspend. 5560 * 5561 * Function that suspend the device. 5562 */ 5563 int hisi_qm_suspend(struct device *dev) 5564 { 5565 struct pci_dev *pdev = to_pci_dev(dev); 5566 struct hisi_qm *qm = pci_get_drvdata(pdev); 5567 int ret; 5568 5569 pci_info(pdev, "entering suspended state\n"); 5570 5571 ret = hisi_qm_stop(qm, QM_NORMAL); 5572 if (ret) { 5573 pci_err(pdev, "failed to stop qm(%d)\n", ret); 5574 return ret; 5575 } 5576 5577 ret = qm_prepare_for_suspend(qm); 5578 if (ret) 5579 pci_err(pdev, "failed to prepare suspended(%d)\n", ret); 5580 5581 return ret; 5582 } 5583 EXPORT_SYMBOL_GPL(hisi_qm_suspend); 5584 5585 /** 5586 * hisi_qm_resume() - Runtime resume of given device. 5587 * @dev: device to resume. 5588 * 5589 * Function that resume the device. 5590 */ 5591 int hisi_qm_resume(struct device *dev) 5592 { 5593 struct pci_dev *pdev = to_pci_dev(dev); 5594 struct hisi_qm *qm = pci_get_drvdata(pdev); 5595 int ret; 5596 5597 pci_info(pdev, "resuming from suspend state\n"); 5598 5599 ret = qm_rebuild_for_resume(qm); 5600 if (ret) { 5601 pci_err(pdev, "failed to rebuild resume(%d)\n", ret); 5602 return ret; 5603 } 5604 5605 ret = hisi_qm_start(qm); 5606 if (ret) { 5607 if (qm_check_dev_error(qm)) { 5608 pci_info(pdev, "failed to start qm due to device error, device will be reset!\n"); 5609 return 0; 5610 } 5611 5612 pci_err(pdev, "failed to start qm(%d)!\n", ret); 5613 } 5614 5615 return ret; 5616 } 5617 EXPORT_SYMBOL_GPL(hisi_qm_resume); 5618 5619 MODULE_LICENSE("GPL v2"); 5620 MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>"); 5621 MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver"); 5622