1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019 HiSilicon Limited. */ 3 #include <asm/page.h> 4 #include <linux/acpi.h> 5 #include <linux/bitmap.h> 6 #include <linux/dma-mapping.h> 7 #include <linux/idr.h> 8 #include <linux/io.h> 9 #include <linux/irqreturn.h> 10 #include <linux/log2.h> 11 #include <linux/pm_runtime.h> 12 #include <linux/seq_file.h> 13 #include <linux/slab.h> 14 #include <linux/uacce.h> 15 #include <linux/uaccess.h> 16 #include <uapi/misc/uacce/hisi_qm.h> 17 #include <linux/hisi_acc_qm.h> 18 #include "qm_common.h" 19 20 /* eq/aeq irq enable */ 21 #define QM_VF_AEQ_INT_SOURCE 0x0 22 #define QM_VF_AEQ_INT_MASK 0x4 23 #define QM_VF_EQ_INT_SOURCE 0x8 24 #define QM_VF_EQ_INT_MASK 0xc 25 26 #define QM_IRQ_VECTOR_MASK GENMASK(15, 0) 27 #define QM_IRQ_TYPE_MASK GENMASK(15, 0) 28 #define QM_IRQ_TYPE_SHIFT 16 29 #define QM_ABN_IRQ_TYPE_MASK GENMASK(7, 0) 30 31 /* mailbox */ 32 #define QM_MB_PING_ALL_VFS 0xffff 33 #define QM_MB_CMD_DATA_SHIFT 32 34 #define QM_MB_CMD_DATA_MASK GENMASK(31, 0) 35 #define QM_MB_STATUS_MASK GENMASK(12, 9) 36 37 /* sqc shift */ 38 #define QM_SQ_HOP_NUM_SHIFT 0 39 #define QM_SQ_PAGE_SIZE_SHIFT 4 40 #define QM_SQ_BUF_SIZE_SHIFT 8 41 #define QM_SQ_SQE_SIZE_SHIFT 12 42 #define QM_SQ_PRIORITY_SHIFT 0 43 #define QM_SQ_ORDERS_SHIFT 4 44 #define QM_SQ_TYPE_SHIFT 8 45 #define QM_QC_PASID_ENABLE 0x1 46 #define QM_QC_PASID_ENABLE_SHIFT 7 47 48 #define QM_SQ_TYPE_MASK GENMASK(3, 0) 49 #define QM_SQ_TAIL_IDX(sqc) ((le16_to_cpu((sqc).w11) >> 6) & 0x1) 50 51 /* cqc shift */ 52 #define QM_CQ_HOP_NUM_SHIFT 0 53 #define QM_CQ_PAGE_SIZE_SHIFT 4 54 #define QM_CQ_BUF_SIZE_SHIFT 8 55 #define QM_CQ_CQE_SIZE_SHIFT 12 56 #define QM_CQ_PHASE_SHIFT 0 57 #define QM_CQ_FLAG_SHIFT 1 58 59 #define QM_CQE_PHASE(cqe) (le16_to_cpu((cqe)->w7) & 0x1) 60 #define QM_QC_CQE_SIZE 4 61 #define QM_CQ_TAIL_IDX(cqc) ((le16_to_cpu((cqc).w11) >> 6) & 0x1) 62 63 /* eqc shift */ 64 #define QM_EQE_AEQE_SIZE (2UL << 12) 65 #define QM_EQC_PHASE_SHIFT 16 66 67 #define QM_EQE_PHASE(eqe) ((le32_to_cpu((eqe)->dw0) >> 16) & 0x1) 68 #define QM_EQE_CQN_MASK GENMASK(15, 0) 69 70 #define QM_AEQE_PHASE(aeqe) ((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1) 71 #define QM_AEQE_TYPE_SHIFT 17 72 #define QM_AEQE_TYPE_MASK 0xf 73 #define QM_AEQE_CQN_MASK GENMASK(15, 0) 74 #define QM_CQ_OVERFLOW 0 75 #define QM_EQ_OVERFLOW 1 76 #define QM_CQE_ERROR 2 77 78 #define QM_XQ_DEPTH_SHIFT 16 79 #define QM_XQ_DEPTH_MASK GENMASK(15, 0) 80 81 #define QM_DOORBELL_CMD_SQ 0 82 #define QM_DOORBELL_CMD_CQ 1 83 #define QM_DOORBELL_CMD_EQ 2 84 #define QM_DOORBELL_CMD_AEQ 3 85 86 #define QM_DOORBELL_BASE_V1 0x340 87 #define QM_DB_CMD_SHIFT_V1 16 88 #define QM_DB_INDEX_SHIFT_V1 32 89 #define QM_DB_PRIORITY_SHIFT_V1 48 90 #define QM_PAGE_SIZE 0x0034 91 #define QM_QP_DB_INTERVAL 0x10000 92 #define QM_DB_TIMEOUT_CFG 0x100074 93 #define QM_DB_TIMEOUT_SET 0x1fffff 94 95 #define QM_MEM_START_INIT 0x100040 96 #define QM_MEM_INIT_DONE 0x100044 97 #define QM_VFT_CFG_RDY 0x10006c 98 #define QM_VFT_CFG_OP_WR 0x100058 99 #define QM_VFT_CFG_TYPE 0x10005c 100 #define QM_VFT_CFG 0x100060 101 #define QM_VFT_CFG_OP_ENABLE 0x100054 102 #define QM_PM_CTRL 0x100148 103 #define QM_IDLE_DISABLE BIT(9) 104 105 #define QM_VFT_CFG_DATA_L 0x100064 106 #define QM_VFT_CFG_DATA_H 0x100068 107 #define QM_SQC_VFT_BUF_SIZE (7ULL << 8) 108 #define QM_SQC_VFT_SQC_SIZE (5ULL << 12) 109 #define QM_SQC_VFT_INDEX_NUMBER (1ULL << 16) 110 #define QM_SQC_VFT_START_SQN_SHIFT 28 111 #define QM_SQC_VFT_VALID (1ULL << 44) 112 #define QM_SQC_VFT_SQN_SHIFT 45 113 #define QM_CQC_VFT_BUF_SIZE (7ULL << 8) 114 #define QM_CQC_VFT_SQC_SIZE (5ULL << 12) 115 #define QM_CQC_VFT_INDEX_NUMBER (1ULL << 16) 116 #define QM_CQC_VFT_VALID (1ULL << 28) 117 118 #define QM_SQC_VFT_BASE_SHIFT_V2 28 119 #define QM_SQC_VFT_BASE_MASK_V2 GENMASK(15, 0) 120 #define QM_SQC_VFT_NUM_SHIFT_V2 45 121 #define QM_SQC_VFT_NUM_MASK_V2 GENMASK(9, 0) 122 123 #define QM_ABNORMAL_INT_SOURCE 0x100000 124 #define QM_ABNORMAL_INT_MASK 0x100004 125 #define QM_ABNORMAL_INT_MASK_VALUE 0x7fff 126 #define QM_ABNORMAL_INT_STATUS 0x100008 127 #define QM_ABNORMAL_INT_SET 0x10000c 128 #define QM_ABNORMAL_INF00 0x100010 129 #define QM_FIFO_OVERFLOW_TYPE 0xc0 130 #define QM_FIFO_OVERFLOW_TYPE_SHIFT 6 131 #define QM_FIFO_OVERFLOW_VF 0x3f 132 #define QM_FIFO_OVERFLOW_QP_SHIFT 16 133 #define QM_ABNORMAL_INF01 0x100014 134 #define QM_DB_TIMEOUT_TYPE 0xc0 135 #define QM_DB_TIMEOUT_TYPE_SHIFT 6 136 #define QM_DB_TIMEOUT_VF 0x3f 137 #define QM_DB_TIMEOUT_QP_SHIFT 16 138 #define QM_ABNORMAL_INF02 0x100018 139 #define QM_AXI_POISON_ERR BIT(22) 140 #define QM_RAS_CE_ENABLE 0x1000ec 141 #define QM_RAS_FE_ENABLE 0x1000f0 142 #define QM_RAS_NFE_ENABLE 0x1000f4 143 #define QM_RAS_CE_THRESHOLD 0x1000f8 144 #define QM_RAS_CE_TIMES_PER_IRQ 1 145 #define QM_OOO_SHUTDOWN_SEL 0x1040f8 146 #define QM_AXI_RRESP_ERR BIT(0) 147 #define QM_ECC_MBIT BIT(2) 148 #define QM_DB_TIMEOUT BIT(10) 149 #define QM_OF_FIFO_OF BIT(11) 150 151 #define QM_RESET_WAIT_TIMEOUT 400 152 #define QM_PEH_VENDOR_ID 0x1000d8 153 #define ACC_VENDOR_ID_VALUE 0x5a5a 154 #define QM_PEH_DFX_INFO0 0x1000fc 155 #define QM_PEH_DFX_INFO1 0x100100 156 #define QM_PEH_DFX_MASK (BIT(0) | BIT(2)) 157 #define QM_PEH_MSI_FINISH_MASK GENMASK(19, 16) 158 #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT 3 159 #define ACC_PEH_MSI_DISABLE GENMASK(31, 0) 160 #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN 0x1 161 #define ACC_MASTER_TRANS_RETURN_RW 3 162 #define ACC_MASTER_TRANS_RETURN 0x300150 163 #define ACC_MASTER_GLOBAL_CTRL 0x300000 164 #define ACC_AM_CFG_PORT_WR_EN 0x30001c 165 #define QM_RAS_NFE_MBIT_DISABLE ~QM_ECC_MBIT 166 #define ACC_AM_ROB_ECC_INT_STS 0x300104 167 #define ACC_ROB_ECC_ERR_MULTPL BIT(1) 168 #define QM_MSI_CAP_ENABLE BIT(16) 169 170 /* interfunction communication */ 171 #define QM_IFC_READY_STATUS 0x100128 172 #define QM_IFC_INT_SET_P 0x100130 173 #define QM_IFC_INT_CFG 0x100134 174 #define QM_IFC_INT_SOURCE_P 0x100138 175 #define QM_IFC_INT_SOURCE_V 0x0020 176 #define QM_IFC_INT_MASK 0x0024 177 #define QM_IFC_INT_STATUS 0x0028 178 #define QM_IFC_INT_SET_V 0x002C 179 #define QM_IFC_SEND_ALL_VFS GENMASK(6, 0) 180 #define QM_IFC_INT_SOURCE_CLR GENMASK(63, 0) 181 #define QM_IFC_INT_SOURCE_MASK BIT(0) 182 #define QM_IFC_INT_DISABLE BIT(0) 183 #define QM_IFC_INT_STATUS_MASK BIT(0) 184 #define QM_IFC_INT_SET_MASK BIT(0) 185 #define QM_WAIT_DST_ACK 10 186 #define QM_MAX_PF_WAIT_COUNT 10 187 #define QM_MAX_VF_WAIT_COUNT 40 188 #define QM_VF_RESET_WAIT_US 20000 189 #define QM_VF_RESET_WAIT_CNT 3000 190 #define QM_VF_RESET_WAIT_TIMEOUT_US \ 191 (QM_VF_RESET_WAIT_US * QM_VF_RESET_WAIT_CNT) 192 193 #define POLL_PERIOD 10 194 #define POLL_TIMEOUT 1000 195 #define WAIT_PERIOD_US_MAX 200 196 #define WAIT_PERIOD_US_MIN 100 197 #define MAX_WAIT_COUNTS 1000 198 #define QM_CACHE_WB_START 0x204 199 #define QM_CACHE_WB_DONE 0x208 200 #define QM_FUNC_CAPS_REG 0x3100 201 #define QM_CAPBILITY_VERSION GENMASK(7, 0) 202 203 #define PCI_BAR_2 2 204 #define PCI_BAR_4 4 205 #define QMC_ALIGN(sz) ALIGN(sz, 32) 206 207 #define QM_DBG_READ_LEN 256 208 #define QM_PCI_COMMAND_INVALID ~0 209 #define QM_RESET_STOP_TX_OFFSET 1 210 #define QM_RESET_STOP_RX_OFFSET 2 211 212 #define WAIT_PERIOD 20 213 #define REMOVE_WAIT_DELAY 10 214 215 #define QM_QOS_PARAM_NUM 2 216 #define QM_QOS_MAX_VAL 1000 217 #define QM_QOS_RATE 100 218 #define QM_QOS_EXPAND_RATE 1000 219 #define QM_SHAPER_CIR_B_MASK GENMASK(7, 0) 220 #define QM_SHAPER_CIR_U_MASK GENMASK(10, 8) 221 #define QM_SHAPER_CIR_S_MASK GENMASK(14, 11) 222 #define QM_SHAPER_FACTOR_CIR_U_SHIFT 8 223 #define QM_SHAPER_FACTOR_CIR_S_SHIFT 11 224 #define QM_SHAPER_FACTOR_CBS_B_SHIFT 15 225 #define QM_SHAPER_FACTOR_CBS_S_SHIFT 19 226 #define QM_SHAPER_CBS_B 1 227 #define QM_SHAPER_VFT_OFFSET 6 228 #define QM_QOS_MIN_ERROR_RATE 5 229 #define QM_SHAPER_MIN_CBS_S 8 230 #define QM_QOS_TICK 0x300U 231 #define QM_QOS_DIVISOR_CLK 0x1f40U 232 #define QM_QOS_MAX_CIR_B 200 233 #define QM_QOS_MIN_CIR_B 100 234 #define QM_QOS_MAX_CIR_U 6 235 #define QM_AUTOSUSPEND_DELAY 3000 236 237 #define QM_DEV_ALG_MAX_LEN 256 238 239 /* abnormal status value for stopping queue */ 240 #define QM_STOP_QUEUE_FAIL 1 241 #define QM_DUMP_SQC_FAIL 3 242 #define QM_DUMP_CQC_FAIL 4 243 #define QM_FINISH_WAIT 5 244 245 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \ 246 (((hop_num) << QM_CQ_HOP_NUM_SHIFT) | \ 247 ((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT) | \ 248 ((buf_sz) << QM_CQ_BUF_SIZE_SHIFT) | \ 249 ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT)) 250 251 #define QM_MK_CQC_DW3_V2(cqe_sz, cq_depth) \ 252 ((((u32)cq_depth) - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT)) 253 254 #define QM_MK_SQC_W13(priority, orders, alg_type) \ 255 (((priority) << QM_SQ_PRIORITY_SHIFT) | \ 256 ((orders) << QM_SQ_ORDERS_SHIFT) | \ 257 (((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT)) 258 259 #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \ 260 (((hop_num) << QM_SQ_HOP_NUM_SHIFT) | \ 261 ((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT) | \ 262 ((buf_sz) << QM_SQ_BUF_SIZE_SHIFT) | \ 263 ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT)) 264 265 #define QM_MK_SQC_DW3_V2(sqe_sz, sq_depth) \ 266 ((((u32)sq_depth) - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT)) 267 268 enum vft_type { 269 SQC_VFT = 0, 270 CQC_VFT, 271 SHAPER_VFT, 272 }; 273 274 enum acc_err_result { 275 ACC_ERR_NONE, 276 ACC_ERR_NEED_RESET, 277 ACC_ERR_RECOVERED, 278 }; 279 280 enum qm_alg_type { 281 ALG_TYPE_0, 282 ALG_TYPE_1, 283 }; 284 285 enum qm_mb_cmd { 286 QM_PF_FLR_PREPARE = 0x01, 287 QM_PF_SRST_PREPARE, 288 QM_PF_RESET_DONE, 289 QM_VF_PREPARE_DONE, 290 QM_VF_PREPARE_FAIL, 291 QM_VF_START_DONE, 292 QM_VF_START_FAIL, 293 QM_PF_SET_QOS, 294 QM_VF_GET_QOS, 295 }; 296 297 enum qm_basic_type { 298 QM_TOTAL_QP_NUM_CAP = 0x0, 299 QM_FUNC_MAX_QP_CAP, 300 QM_XEQ_DEPTH_CAP, 301 QM_QP_DEPTH_CAP, 302 QM_EQ_IRQ_TYPE_CAP, 303 QM_AEQ_IRQ_TYPE_CAP, 304 QM_ABN_IRQ_TYPE_CAP, 305 QM_PF2VF_IRQ_TYPE_CAP, 306 QM_PF_IRQ_NUM_CAP, 307 QM_VF_IRQ_NUM_CAP, 308 }; 309 310 enum qm_pre_store_cap_idx { 311 QM_EQ_IRQ_TYPE_CAP_IDX = 0x0, 312 QM_AEQ_IRQ_TYPE_CAP_IDX, 313 QM_ABN_IRQ_TYPE_CAP_IDX, 314 QM_PF2VF_IRQ_TYPE_CAP_IDX, 315 }; 316 317 static const struct hisi_qm_cap_info qm_cap_info_comm[] = { 318 {QM_SUPPORT_DB_ISOLATION, 0x30, 0, BIT(0), 0x0, 0x0, 0x0}, 319 {QM_SUPPORT_FUNC_QOS, 0x3100, 0, BIT(8), 0x0, 0x0, 0x1}, 320 {QM_SUPPORT_STOP_QP, 0x3100, 0, BIT(9), 0x0, 0x0, 0x1}, 321 {QM_SUPPORT_STOP_FUNC, 0x3100, 0, BIT(10), 0x0, 0x0, 0x1}, 322 {QM_SUPPORT_MB_COMMAND, 0x3100, 0, BIT(11), 0x0, 0x0, 0x1}, 323 {QM_SUPPORT_SVA_PREFETCH, 0x3100, 0, BIT(14), 0x0, 0x0, 0x1}, 324 }; 325 326 static const struct hisi_qm_cap_info qm_cap_info_pf[] = { 327 {QM_SUPPORT_RPM, 0x3100, 0, BIT(13), 0x0, 0x0, 0x1}, 328 }; 329 330 static const struct hisi_qm_cap_info qm_cap_info_vf[] = { 331 {QM_SUPPORT_RPM, 0x3100, 0, BIT(12), 0x0, 0x0, 0x0}, 332 }; 333 334 static const struct hisi_qm_cap_info qm_basic_info[] = { 335 {QM_TOTAL_QP_NUM_CAP, 0x100158, 0, GENMASK(10, 0), 0x1000, 0x400, 0x400}, 336 {QM_FUNC_MAX_QP_CAP, 0x100158, 11, GENMASK(10, 0), 0x1000, 0x400, 0x400}, 337 {QM_XEQ_DEPTH_CAP, 0x3104, 0, GENMASK(31, 0), 0x800, 0x4000800, 0x4000800}, 338 {QM_QP_DEPTH_CAP, 0x3108, 0, GENMASK(31, 0), 0x4000400, 0x4000400, 0x4000400}, 339 {QM_EQ_IRQ_TYPE_CAP, 0x310c, 0, GENMASK(31, 0), 0x10000, 0x10000, 0x10000}, 340 {QM_AEQ_IRQ_TYPE_CAP, 0x3110, 0, GENMASK(31, 0), 0x0, 0x10001, 0x10001}, 341 {QM_ABN_IRQ_TYPE_CAP, 0x3114, 0, GENMASK(31, 0), 0x0, 0x10003, 0x10003}, 342 {QM_PF2VF_IRQ_TYPE_CAP, 0x3118, 0, GENMASK(31, 0), 0x0, 0x0, 0x10002}, 343 {QM_PF_IRQ_NUM_CAP, 0x311c, 16, GENMASK(15, 0), 0x1, 0x4, 0x4}, 344 {QM_VF_IRQ_NUM_CAP, 0x311c, 0, GENMASK(15, 0), 0x1, 0x2, 0x3}, 345 }; 346 347 static const u32 qm_pre_store_caps[] = { 348 QM_EQ_IRQ_TYPE_CAP, 349 QM_AEQ_IRQ_TYPE_CAP, 350 QM_ABN_IRQ_TYPE_CAP, 351 QM_PF2VF_IRQ_TYPE_CAP, 352 }; 353 354 struct qm_mailbox { 355 __le16 w0; 356 __le16 queue_num; 357 __le32 base_l; 358 __le32 base_h; 359 __le32 rsvd; 360 }; 361 362 struct qm_doorbell { 363 __le16 queue_num; 364 __le16 cmd; 365 __le16 index; 366 __le16 priority; 367 }; 368 369 struct hisi_qm_resource { 370 struct hisi_qm *qm; 371 int distance; 372 struct list_head list; 373 }; 374 375 /** 376 * struct qm_hw_err - Structure describing the device errors 377 * @list: hardware error list 378 * @timestamp: timestamp when the error occurred 379 */ 380 struct qm_hw_err { 381 struct list_head list; 382 unsigned long long timestamp; 383 }; 384 385 struct hisi_qm_hw_ops { 386 int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number); 387 void (*qm_db)(struct hisi_qm *qm, u16 qn, 388 u8 cmd, u16 index, u8 priority); 389 int (*debug_init)(struct hisi_qm *qm); 390 void (*hw_error_init)(struct hisi_qm *qm); 391 void (*hw_error_uninit)(struct hisi_qm *qm); 392 enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm); 393 int (*set_msi)(struct hisi_qm *qm, bool set); 394 }; 395 396 struct hisi_qm_hw_error { 397 u32 int_msk; 398 const char *msg; 399 }; 400 401 static const struct hisi_qm_hw_error qm_hw_error[] = { 402 { .int_msk = BIT(0), .msg = "qm_axi_rresp" }, 403 { .int_msk = BIT(1), .msg = "qm_axi_bresp" }, 404 { .int_msk = BIT(2), .msg = "qm_ecc_mbit" }, 405 { .int_msk = BIT(3), .msg = "qm_ecc_1bit" }, 406 { .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" }, 407 { .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" }, 408 { .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" }, 409 { .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" }, 410 { .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" }, 411 { .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" }, 412 { .int_msk = BIT(10), .msg = "qm_db_timeout" }, 413 { .int_msk = BIT(11), .msg = "qm_of_fifo_of" }, 414 { .int_msk = BIT(12), .msg = "qm_db_random_invalid" }, 415 { .int_msk = BIT(13), .msg = "qm_mailbox_timeout" }, 416 { .int_msk = BIT(14), .msg = "qm_flr_timeout" }, 417 }; 418 419 static const char * const qm_db_timeout[] = { 420 "sq", "cq", "eq", "aeq", 421 }; 422 423 static const char * const qm_fifo_overflow[] = { 424 "cq", "eq", "aeq", 425 }; 426 427 struct qm_typical_qos_table { 428 u32 start; 429 u32 end; 430 u32 val; 431 }; 432 433 /* the qos step is 100 */ 434 static struct qm_typical_qos_table shaper_cir_s[] = { 435 {100, 100, 4}, 436 {200, 200, 3}, 437 {300, 500, 2}, 438 {600, 1000, 1}, 439 {1100, 100000, 0}, 440 }; 441 442 static struct qm_typical_qos_table shaper_cbs_s[] = { 443 {100, 200, 9}, 444 {300, 500, 11}, 445 {600, 1000, 12}, 446 {1100, 10000, 16}, 447 {10100, 25000, 17}, 448 {25100, 50000, 18}, 449 {50100, 100000, 19} 450 }; 451 452 static void qm_irqs_unregister(struct hisi_qm *qm); 453 static int qm_reset_device(struct hisi_qm *qm); 454 int hisi_qm_q_num_set(const char *val, const struct kernel_param *kp, 455 unsigned int device) 456 { 457 struct pci_dev *pdev; 458 u32 n, q_num; 459 int ret; 460 461 if (!val) 462 return -EINVAL; 463 464 pdev = pci_get_device(PCI_VENDOR_ID_HUAWEI, device, NULL); 465 if (!pdev) { 466 q_num = min_t(u32, QM_QNUM_V1, QM_QNUM_V2); 467 pr_info("No device found currently, suppose queue number is %u\n", 468 q_num); 469 } else { 470 if (pdev->revision == QM_HW_V1) 471 q_num = QM_QNUM_V1; 472 else 473 q_num = QM_QNUM_V2; 474 475 pci_dev_put(pdev); 476 } 477 478 ret = kstrtou32(val, 10, &n); 479 if (ret || n < QM_MIN_QNUM || n > q_num) 480 return -EINVAL; 481 482 return param_set_int(val, kp); 483 } 484 EXPORT_SYMBOL_GPL(hisi_qm_q_num_set); 485 486 static u32 qm_get_hw_error_status(struct hisi_qm *qm) 487 { 488 return readl(qm->io_base + QM_ABNORMAL_INT_STATUS); 489 } 490 491 static u32 qm_get_dev_err_status(struct hisi_qm *qm) 492 { 493 return qm->err_ini->get_dev_hw_err_status(qm); 494 } 495 496 /* Check if the error causes the master ooo block */ 497 static bool qm_check_dev_error(struct hisi_qm *qm) 498 { 499 u32 val, dev_val; 500 501 if (qm->fun_type == QM_HW_VF) 502 return false; 503 504 val = qm_get_hw_error_status(qm) & qm->err_info.qm_shutdown_mask; 505 dev_val = qm_get_dev_err_status(qm) & qm->err_info.dev_shutdown_mask; 506 507 return val || dev_val; 508 } 509 510 static int qm_wait_reset_finish(struct hisi_qm *qm) 511 { 512 int delay = 0; 513 514 /* All reset requests need to be queued for processing */ 515 while (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 516 msleep(++delay); 517 if (delay > QM_RESET_WAIT_TIMEOUT) 518 return -EBUSY; 519 } 520 521 return 0; 522 } 523 524 static int qm_reset_prepare_ready(struct hisi_qm *qm) 525 { 526 struct pci_dev *pdev = qm->pdev; 527 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 528 529 /* 530 * PF and VF on host doesnot support resetting at the 531 * same time on Kunpeng920. 532 */ 533 if (qm->ver < QM_HW_V3) 534 return qm_wait_reset_finish(pf_qm); 535 536 return qm_wait_reset_finish(qm); 537 } 538 539 static void qm_reset_bit_clear(struct hisi_qm *qm) 540 { 541 struct pci_dev *pdev = qm->pdev; 542 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 543 544 if (qm->ver < QM_HW_V3) 545 clear_bit(QM_RESETTING, &pf_qm->misc_ctl); 546 547 clear_bit(QM_RESETTING, &qm->misc_ctl); 548 } 549 550 static void qm_mb_pre_init(struct qm_mailbox *mailbox, u8 cmd, 551 u64 base, u16 queue, bool op) 552 { 553 mailbox->w0 = cpu_to_le16((cmd) | 554 ((op) ? 0x1 << QM_MB_OP_SHIFT : 0) | 555 (0x1 << QM_MB_BUSY_SHIFT)); 556 mailbox->queue_num = cpu_to_le16(queue); 557 mailbox->base_l = cpu_to_le32(lower_32_bits(base)); 558 mailbox->base_h = cpu_to_le32(upper_32_bits(base)); 559 mailbox->rsvd = 0; 560 } 561 562 /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */ 563 int hisi_qm_wait_mb_ready(struct hisi_qm *qm) 564 { 565 u32 val; 566 567 return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE, 568 val, !((val >> QM_MB_BUSY_SHIFT) & 569 0x1), POLL_PERIOD, POLL_TIMEOUT); 570 } 571 EXPORT_SYMBOL_GPL(hisi_qm_wait_mb_ready); 572 573 /* 128 bit should be written to hardware at one time to trigger a mailbox */ 574 static void qm_mb_write(struct hisi_qm *qm, const void *src) 575 { 576 void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE; 577 578 #if IS_ENABLED(CONFIG_ARM64) 579 unsigned long tmp0 = 0, tmp1 = 0; 580 #endif 581 582 if (!IS_ENABLED(CONFIG_ARM64)) { 583 memcpy_toio(fun_base, src, 16); 584 dma_wmb(); 585 return; 586 } 587 588 #if IS_ENABLED(CONFIG_ARM64) 589 asm volatile("ldp %0, %1, %3\n" 590 "stp %0, %1, %2\n" 591 "dmb oshst\n" 592 : "=&r" (tmp0), 593 "=&r" (tmp1), 594 "+Q" (*((char __iomem *)fun_base)) 595 : "Q" (*((char *)src)) 596 : "memory"); 597 #endif 598 } 599 600 static int qm_mb_nolock(struct hisi_qm *qm, struct qm_mailbox *mailbox) 601 { 602 int ret; 603 u32 val; 604 605 if (unlikely(hisi_qm_wait_mb_ready(qm))) { 606 dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n"); 607 ret = -EBUSY; 608 goto mb_busy; 609 } 610 611 qm_mb_write(qm, mailbox); 612 613 if (unlikely(hisi_qm_wait_mb_ready(qm))) { 614 dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n"); 615 ret = -ETIMEDOUT; 616 goto mb_busy; 617 } 618 619 val = readl(qm->io_base + QM_MB_CMD_SEND_BASE); 620 if (val & QM_MB_STATUS_MASK) { 621 dev_err(&qm->pdev->dev, "QM mailbox operation failed!\n"); 622 ret = -EIO; 623 goto mb_busy; 624 } 625 626 return 0; 627 628 mb_busy: 629 atomic64_inc(&qm->debug.dfx.mb_err_cnt); 630 return ret; 631 } 632 633 int hisi_qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue, 634 bool op) 635 { 636 struct qm_mailbox mailbox; 637 int ret; 638 639 qm_mb_pre_init(&mailbox, cmd, dma_addr, queue, op); 640 641 mutex_lock(&qm->mailbox_lock); 642 ret = qm_mb_nolock(qm, &mailbox); 643 mutex_unlock(&qm->mailbox_lock); 644 645 return ret; 646 } 647 EXPORT_SYMBOL_GPL(hisi_qm_mb); 648 649 /* op 0: set xqc information to hardware, 1: get xqc information from hardware. */ 650 int qm_set_and_get_xqc(struct hisi_qm *qm, u8 cmd, void *xqc, u32 qp_id, bool op) 651 { 652 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 653 struct qm_mailbox mailbox; 654 dma_addr_t xqc_dma; 655 void *tmp_xqc; 656 size_t size; 657 int ret; 658 659 switch (cmd) { 660 case QM_MB_CMD_SQC: 661 size = sizeof(struct qm_sqc); 662 tmp_xqc = qm->xqc_buf.sqc; 663 xqc_dma = qm->xqc_buf.sqc_dma; 664 break; 665 case QM_MB_CMD_CQC: 666 size = sizeof(struct qm_cqc); 667 tmp_xqc = qm->xqc_buf.cqc; 668 xqc_dma = qm->xqc_buf.cqc_dma; 669 break; 670 case QM_MB_CMD_EQC: 671 size = sizeof(struct qm_eqc); 672 tmp_xqc = qm->xqc_buf.eqc; 673 xqc_dma = qm->xqc_buf.eqc_dma; 674 break; 675 case QM_MB_CMD_AEQC: 676 size = sizeof(struct qm_aeqc); 677 tmp_xqc = qm->xqc_buf.aeqc; 678 xqc_dma = qm->xqc_buf.aeqc_dma; 679 break; 680 default: 681 dev_err(&qm->pdev->dev, "unknown mailbox cmd %u\n", cmd); 682 return -EINVAL; 683 } 684 685 /* Setting xqc will fail if master OOO is blocked. */ 686 if (qm_check_dev_error(pf_qm)) { 687 dev_err(&qm->pdev->dev, "failed to send mailbox since qm is stop!\n"); 688 return -EIO; 689 } 690 691 mutex_lock(&qm->mailbox_lock); 692 if (!op) 693 memcpy(tmp_xqc, xqc, size); 694 695 qm_mb_pre_init(&mailbox, cmd, xqc_dma, qp_id, op); 696 ret = qm_mb_nolock(qm, &mailbox); 697 if (!ret && op) 698 memcpy(xqc, tmp_xqc, size); 699 700 mutex_unlock(&qm->mailbox_lock); 701 702 return ret; 703 } 704 705 static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 706 { 707 u64 doorbell; 708 709 doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) | 710 ((u64)index << QM_DB_INDEX_SHIFT_V1) | 711 ((u64)priority << QM_DB_PRIORITY_SHIFT_V1); 712 713 writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1); 714 } 715 716 static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 717 { 718 void __iomem *io_base = qm->io_base; 719 u16 randata = 0; 720 u64 doorbell; 721 722 if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ) 723 io_base = qm->db_io_base + (u64)qn * qm->db_interval + 724 QM_DOORBELL_SQ_CQ_BASE_V2; 725 else 726 io_base += QM_DOORBELL_EQ_AEQ_BASE_V2; 727 728 doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) | 729 ((u64)randata << QM_DB_RAND_SHIFT_V2) | 730 ((u64)index << QM_DB_INDEX_SHIFT_V2) | 731 ((u64)priority << QM_DB_PRIORITY_SHIFT_V2); 732 733 writeq(doorbell, io_base); 734 } 735 736 static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 737 { 738 dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n", 739 qn, cmd, index); 740 741 qm->ops->qm_db(qm, qn, cmd, index, priority); 742 } 743 744 static void qm_disable_clock_gate(struct hisi_qm *qm) 745 { 746 u32 val; 747 748 /* if qm enables clock gating in Kunpeng930, qos will be inaccurate. */ 749 if (qm->ver < QM_HW_V3) 750 return; 751 752 val = readl(qm->io_base + QM_PM_CTRL); 753 val |= QM_IDLE_DISABLE; 754 writel(val, qm->io_base + QM_PM_CTRL); 755 } 756 757 static int qm_dev_mem_reset(struct hisi_qm *qm) 758 { 759 u32 val; 760 761 writel(0x1, qm->io_base + QM_MEM_START_INIT); 762 return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val, 763 val & BIT(0), POLL_PERIOD, 764 POLL_TIMEOUT); 765 } 766 767 /** 768 * hisi_qm_get_hw_info() - Get device information. 769 * @qm: The qm which want to get information. 770 * @info_table: Array for storing device information. 771 * @index: Index in info_table. 772 * @is_read: Whether read from reg, 0: not support read from reg. 773 * 774 * This function returns device information the caller needs. 775 */ 776 u32 hisi_qm_get_hw_info(struct hisi_qm *qm, 777 const struct hisi_qm_cap_info *info_table, 778 u32 index, bool is_read) 779 { 780 u32 val; 781 782 switch (qm->ver) { 783 case QM_HW_V1: 784 return info_table[index].v1_val; 785 case QM_HW_V2: 786 return info_table[index].v2_val; 787 default: 788 if (!is_read) 789 return info_table[index].v3_val; 790 791 val = readl(qm->io_base + info_table[index].offset); 792 return (val >> info_table[index].shift) & info_table[index].mask; 793 } 794 } 795 EXPORT_SYMBOL_GPL(hisi_qm_get_hw_info); 796 797 static void qm_get_xqc_depth(struct hisi_qm *qm, u16 *low_bits, 798 u16 *high_bits, enum qm_basic_type type) 799 { 800 u32 depth; 801 802 depth = hisi_qm_get_hw_info(qm, qm_basic_info, type, qm->cap_ver); 803 *low_bits = depth & QM_XQ_DEPTH_MASK; 804 *high_bits = (depth >> QM_XQ_DEPTH_SHIFT) & QM_XQ_DEPTH_MASK; 805 } 806 807 int hisi_qm_set_algs(struct hisi_qm *qm, u64 alg_msk, const struct qm_dev_alg *dev_algs, 808 u32 dev_algs_size) 809 { 810 struct device *dev = &qm->pdev->dev; 811 char *algs, *ptr; 812 int i; 813 814 if (!qm->uacce) 815 return 0; 816 817 if (dev_algs_size >= QM_DEV_ALG_MAX_LEN) { 818 dev_err(dev, "algs size %u is equal or larger than %d.\n", 819 dev_algs_size, QM_DEV_ALG_MAX_LEN); 820 return -EINVAL; 821 } 822 823 algs = devm_kzalloc(dev, QM_DEV_ALG_MAX_LEN * sizeof(char), GFP_KERNEL); 824 if (!algs) 825 return -ENOMEM; 826 827 for (i = 0; i < dev_algs_size; i++) 828 if (alg_msk & dev_algs[i].alg_msk) 829 strcat(algs, dev_algs[i].alg); 830 831 ptr = strrchr(algs, '\n'); 832 if (ptr) { 833 *ptr = '\0'; 834 qm->uacce->algs = algs; 835 } 836 837 return 0; 838 } 839 EXPORT_SYMBOL_GPL(hisi_qm_set_algs); 840 841 static u32 qm_get_irq_num(struct hisi_qm *qm) 842 { 843 if (qm->fun_type == QM_HW_PF) 844 return hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF_IRQ_NUM_CAP, qm->cap_ver); 845 846 return hisi_qm_get_hw_info(qm, qm_basic_info, QM_VF_IRQ_NUM_CAP, qm->cap_ver); 847 } 848 849 static int qm_pm_get_sync(struct hisi_qm *qm) 850 { 851 struct device *dev = &qm->pdev->dev; 852 int ret; 853 854 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 855 return 0; 856 857 ret = pm_runtime_resume_and_get(dev); 858 if (ret < 0) { 859 dev_err(dev, "failed to get_sync(%d).\n", ret); 860 return ret; 861 } 862 863 return 0; 864 } 865 866 static void qm_pm_put_sync(struct hisi_qm *qm) 867 { 868 struct device *dev = &qm->pdev->dev; 869 870 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 871 return; 872 873 pm_runtime_mark_last_busy(dev); 874 pm_runtime_put_autosuspend(dev); 875 } 876 877 static void qm_cq_head_update(struct hisi_qp *qp) 878 { 879 if (qp->qp_status.cq_head == qp->cq_depth - 1) { 880 qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase; 881 qp->qp_status.cq_head = 0; 882 } else { 883 qp->qp_status.cq_head++; 884 } 885 } 886 887 static void qm_poll_req_cb(struct hisi_qp *qp) 888 { 889 struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head; 890 struct hisi_qm *qm = qp->qm; 891 892 while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) { 893 dma_rmb(); 894 qp->req_cb(qp, qp->sqe + qm->sqe_size * 895 le16_to_cpu(cqe->sq_head)); 896 qm_cq_head_update(qp); 897 cqe = qp->cqe + qp->qp_status.cq_head; 898 qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, 899 qp->qp_status.cq_head, 0); 900 atomic_dec(&qp->qp_status.used); 901 902 cond_resched(); 903 } 904 905 /* set c_flag */ 906 qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, qp->qp_status.cq_head, 1); 907 } 908 909 static void qm_work_process(struct work_struct *work) 910 { 911 struct hisi_qm_poll_data *poll_data = 912 container_of(work, struct hisi_qm_poll_data, work); 913 struct hisi_qm *qm = poll_data->qm; 914 u16 eqe_num = poll_data->eqe_num; 915 struct hisi_qp *qp; 916 int i; 917 918 for (i = eqe_num - 1; i >= 0; i--) { 919 qp = &qm->qp_array[poll_data->qp_finish_id[i]]; 920 if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP)) 921 continue; 922 923 if (qp->event_cb) { 924 qp->event_cb(qp); 925 continue; 926 } 927 928 if (likely(qp->req_cb)) 929 qm_poll_req_cb(qp); 930 } 931 } 932 933 static void qm_get_complete_eqe_num(struct hisi_qm *qm) 934 { 935 struct qm_eqe *eqe = qm->eqe + qm->status.eq_head; 936 struct hisi_qm_poll_data *poll_data = NULL; 937 u16 eq_depth = qm->eq_depth; 938 u16 cqn, eqe_num = 0; 939 940 if (QM_EQE_PHASE(eqe) != qm->status.eqc_phase) { 941 atomic64_inc(&qm->debug.dfx.err_irq_cnt); 942 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 943 return; 944 } 945 946 cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK; 947 if (unlikely(cqn >= qm->qp_num)) 948 return; 949 poll_data = &qm->poll_data[cqn]; 950 951 while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) { 952 cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK; 953 poll_data->qp_finish_id[eqe_num] = cqn; 954 eqe_num++; 955 956 if (qm->status.eq_head == eq_depth - 1) { 957 qm->status.eqc_phase = !qm->status.eqc_phase; 958 eqe = qm->eqe; 959 qm->status.eq_head = 0; 960 } else { 961 eqe++; 962 qm->status.eq_head++; 963 } 964 965 if (eqe_num == (eq_depth >> 1) - 1) 966 break; 967 } 968 969 poll_data->eqe_num = eqe_num; 970 queue_work(qm->wq, &poll_data->work); 971 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 972 } 973 974 static irqreturn_t qm_eq_irq(int irq, void *data) 975 { 976 struct hisi_qm *qm = data; 977 978 /* Get qp id of completed tasks and re-enable the interrupt */ 979 qm_get_complete_eqe_num(qm); 980 981 return IRQ_HANDLED; 982 } 983 984 static irqreturn_t qm_mb_cmd_irq(int irq, void *data) 985 { 986 struct hisi_qm *qm = data; 987 u32 val; 988 989 val = readl(qm->io_base + QM_IFC_INT_STATUS); 990 val &= QM_IFC_INT_STATUS_MASK; 991 if (!val) 992 return IRQ_NONE; 993 994 if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl)) { 995 dev_warn(&qm->pdev->dev, "Driver is down, message cannot be processed!\n"); 996 return IRQ_HANDLED; 997 } 998 999 schedule_work(&qm->cmd_process); 1000 1001 return IRQ_HANDLED; 1002 } 1003 1004 static void qm_set_qp_disable(struct hisi_qp *qp, int offset) 1005 { 1006 u32 *addr; 1007 1008 if (qp->is_in_kernel) 1009 return; 1010 1011 addr = (u32 *)(qp->qdma.va + qp->qdma.size) - offset; 1012 *addr = 1; 1013 1014 /* make sure setup is completed */ 1015 smp_wmb(); 1016 } 1017 1018 static void qm_disable_qp(struct hisi_qm *qm, u32 qp_id) 1019 { 1020 struct hisi_qp *qp = &qm->qp_array[qp_id]; 1021 1022 qm_set_qp_disable(qp, QM_RESET_STOP_TX_OFFSET); 1023 hisi_qm_stop_qp(qp); 1024 qm_set_qp_disable(qp, QM_RESET_STOP_RX_OFFSET); 1025 } 1026 1027 static void qm_reset_function(struct hisi_qm *qm) 1028 { 1029 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 1030 struct device *dev = &qm->pdev->dev; 1031 int ret; 1032 1033 if (qm_check_dev_error(pf_qm)) 1034 return; 1035 1036 ret = qm_reset_prepare_ready(qm); 1037 if (ret) { 1038 dev_err(dev, "reset function not ready\n"); 1039 return; 1040 } 1041 1042 ret = hisi_qm_stop(qm, QM_DOWN); 1043 if (ret) { 1044 dev_err(dev, "failed to stop qm when reset function\n"); 1045 goto clear_bit; 1046 } 1047 1048 ret = hisi_qm_start(qm); 1049 if (ret) 1050 dev_err(dev, "failed to start qm when reset function\n"); 1051 1052 clear_bit: 1053 qm_reset_bit_clear(qm); 1054 } 1055 1056 static irqreturn_t qm_aeq_thread(int irq, void *data) 1057 { 1058 struct hisi_qm *qm = data; 1059 struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head; 1060 u16 aeq_depth = qm->aeq_depth; 1061 u32 type, qp_id; 1062 1063 atomic64_inc(&qm->debug.dfx.aeq_irq_cnt); 1064 1065 while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) { 1066 type = (le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT) & 1067 QM_AEQE_TYPE_MASK; 1068 qp_id = le32_to_cpu(aeqe->dw0) & QM_AEQE_CQN_MASK; 1069 1070 switch (type) { 1071 case QM_EQ_OVERFLOW: 1072 dev_err(&qm->pdev->dev, "eq overflow, reset function\n"); 1073 qm_reset_function(qm); 1074 return IRQ_HANDLED; 1075 case QM_CQ_OVERFLOW: 1076 dev_err(&qm->pdev->dev, "cq overflow, stop qp(%u)\n", 1077 qp_id); 1078 fallthrough; 1079 case QM_CQE_ERROR: 1080 qm_disable_qp(qm, qp_id); 1081 break; 1082 default: 1083 dev_err(&qm->pdev->dev, "unknown error type %u\n", 1084 type); 1085 break; 1086 } 1087 1088 if (qm->status.aeq_head == aeq_depth - 1) { 1089 qm->status.aeqc_phase = !qm->status.aeqc_phase; 1090 aeqe = qm->aeqe; 1091 qm->status.aeq_head = 0; 1092 } else { 1093 aeqe++; 1094 qm->status.aeq_head++; 1095 } 1096 } 1097 1098 qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0); 1099 1100 return IRQ_HANDLED; 1101 } 1102 1103 static void qm_init_qp_status(struct hisi_qp *qp) 1104 { 1105 struct hisi_qp_status *qp_status = &qp->qp_status; 1106 1107 qp_status->sq_tail = 0; 1108 qp_status->cq_head = 0; 1109 qp_status->cqc_phase = true; 1110 atomic_set(&qp_status->used, 0); 1111 } 1112 1113 static void qm_init_prefetch(struct hisi_qm *qm) 1114 { 1115 struct device *dev = &qm->pdev->dev; 1116 u32 page_type = 0x0; 1117 1118 if (!test_bit(QM_SUPPORT_SVA_PREFETCH, &qm->caps)) 1119 return; 1120 1121 switch (PAGE_SIZE) { 1122 case SZ_4K: 1123 page_type = 0x0; 1124 break; 1125 case SZ_16K: 1126 page_type = 0x1; 1127 break; 1128 case SZ_64K: 1129 page_type = 0x2; 1130 break; 1131 default: 1132 dev_err(dev, "system page size is not support: %lu, default set to 4KB", 1133 PAGE_SIZE); 1134 } 1135 1136 writel(page_type, qm->io_base + QM_PAGE_SIZE); 1137 } 1138 1139 /* 1140 * acc_shaper_para_calc() Get the IR value by the qos formula, the return value 1141 * is the expected qos calculated. 1142 * the formula: 1143 * IR = X Mbps if ir = 1 means IR = 100 Mbps, if ir = 10000 means = 10Gbps 1144 * 1145 * IR_b * (2 ^ IR_u) * 8000 1146 * IR(Mbps) = ------------------------- 1147 * Tick * (2 ^ IR_s) 1148 */ 1149 static u32 acc_shaper_para_calc(u64 cir_b, u64 cir_u, u64 cir_s) 1150 { 1151 return ((cir_b * QM_QOS_DIVISOR_CLK) * (1 << cir_u)) / 1152 (QM_QOS_TICK * (1 << cir_s)); 1153 } 1154 1155 static u32 acc_shaper_calc_cbs_s(u32 ir) 1156 { 1157 int table_size = ARRAY_SIZE(shaper_cbs_s); 1158 int i; 1159 1160 for (i = 0; i < table_size; i++) { 1161 if (ir >= shaper_cbs_s[i].start && ir <= shaper_cbs_s[i].end) 1162 return shaper_cbs_s[i].val; 1163 } 1164 1165 return QM_SHAPER_MIN_CBS_S; 1166 } 1167 1168 static u32 acc_shaper_calc_cir_s(u32 ir) 1169 { 1170 int table_size = ARRAY_SIZE(shaper_cir_s); 1171 int i; 1172 1173 for (i = 0; i < table_size; i++) { 1174 if (ir >= shaper_cir_s[i].start && ir <= shaper_cir_s[i].end) 1175 return shaper_cir_s[i].val; 1176 } 1177 1178 return 0; 1179 } 1180 1181 static int qm_get_shaper_para(u32 ir, struct qm_shaper_factor *factor) 1182 { 1183 u32 cir_b, cir_u, cir_s, ir_calc; 1184 u32 error_rate; 1185 1186 factor->cbs_s = acc_shaper_calc_cbs_s(ir); 1187 cir_s = acc_shaper_calc_cir_s(ir); 1188 1189 for (cir_b = QM_QOS_MIN_CIR_B; cir_b <= QM_QOS_MAX_CIR_B; cir_b++) { 1190 for (cir_u = 0; cir_u <= QM_QOS_MAX_CIR_U; cir_u++) { 1191 ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s); 1192 1193 error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir; 1194 if (error_rate <= QM_QOS_MIN_ERROR_RATE) { 1195 factor->cir_b = cir_b; 1196 factor->cir_u = cir_u; 1197 factor->cir_s = cir_s; 1198 return 0; 1199 } 1200 } 1201 } 1202 1203 return -EINVAL; 1204 } 1205 1206 static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base, 1207 u32 number, struct qm_shaper_factor *factor) 1208 { 1209 u64 tmp = 0; 1210 1211 if (number > 0) { 1212 switch (type) { 1213 case SQC_VFT: 1214 if (qm->ver == QM_HW_V1) { 1215 tmp = QM_SQC_VFT_BUF_SIZE | 1216 QM_SQC_VFT_SQC_SIZE | 1217 QM_SQC_VFT_INDEX_NUMBER | 1218 QM_SQC_VFT_VALID | 1219 (u64)base << QM_SQC_VFT_START_SQN_SHIFT; 1220 } else { 1221 tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT | 1222 QM_SQC_VFT_VALID | 1223 (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT; 1224 } 1225 break; 1226 case CQC_VFT: 1227 if (qm->ver == QM_HW_V1) { 1228 tmp = QM_CQC_VFT_BUF_SIZE | 1229 QM_CQC_VFT_SQC_SIZE | 1230 QM_CQC_VFT_INDEX_NUMBER | 1231 QM_CQC_VFT_VALID; 1232 } else { 1233 tmp = QM_CQC_VFT_VALID; 1234 } 1235 break; 1236 case SHAPER_VFT: 1237 if (factor) { 1238 tmp = factor->cir_b | 1239 (factor->cir_u << QM_SHAPER_FACTOR_CIR_U_SHIFT) | 1240 (factor->cir_s << QM_SHAPER_FACTOR_CIR_S_SHIFT) | 1241 (QM_SHAPER_CBS_B << QM_SHAPER_FACTOR_CBS_B_SHIFT) | 1242 (factor->cbs_s << QM_SHAPER_FACTOR_CBS_S_SHIFT); 1243 } 1244 break; 1245 } 1246 } 1247 1248 writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L); 1249 writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H); 1250 } 1251 1252 static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type, 1253 u32 fun_num, u32 base, u32 number) 1254 { 1255 struct qm_shaper_factor *factor = NULL; 1256 unsigned int val; 1257 int ret; 1258 1259 if (type == SHAPER_VFT && test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 1260 factor = &qm->factor[fun_num]; 1261 1262 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 1263 val & BIT(0), POLL_PERIOD, 1264 POLL_TIMEOUT); 1265 if (ret) 1266 return ret; 1267 1268 writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR); 1269 writel(type, qm->io_base + QM_VFT_CFG_TYPE); 1270 if (type == SHAPER_VFT) 1271 fun_num |= base << QM_SHAPER_VFT_OFFSET; 1272 1273 writel(fun_num, qm->io_base + QM_VFT_CFG); 1274 1275 qm_vft_data_cfg(qm, type, base, number, factor); 1276 1277 writel(0x0, qm->io_base + QM_VFT_CFG_RDY); 1278 writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE); 1279 1280 return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 1281 val & BIT(0), POLL_PERIOD, 1282 POLL_TIMEOUT); 1283 } 1284 1285 static int qm_shaper_init_vft(struct hisi_qm *qm, u32 fun_num) 1286 { 1287 u32 qos = qm->factor[fun_num].func_qos; 1288 int ret, i; 1289 1290 ret = qm_get_shaper_para(qos * QM_QOS_RATE, &qm->factor[fun_num]); 1291 if (ret) { 1292 dev_err(&qm->pdev->dev, "failed to calculate shaper parameter!\n"); 1293 return ret; 1294 } 1295 writel(qm->type_rate, qm->io_base + QM_SHAPER_CFG); 1296 for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) { 1297 /* The base number of queue reuse for different alg type */ 1298 ret = qm_set_vft_common(qm, SHAPER_VFT, fun_num, i, 1); 1299 if (ret) 1300 return ret; 1301 } 1302 1303 return 0; 1304 } 1305 1306 /* The config should be conducted after qm_dev_mem_reset() */ 1307 static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base, 1308 u32 number) 1309 { 1310 int ret, i; 1311 1312 for (i = SQC_VFT; i <= CQC_VFT; i++) { 1313 ret = qm_set_vft_common(qm, i, fun_num, base, number); 1314 if (ret) 1315 return ret; 1316 } 1317 1318 /* init default shaper qos val */ 1319 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) { 1320 ret = qm_shaper_init_vft(qm, fun_num); 1321 if (ret) 1322 goto back_sqc_cqc; 1323 } 1324 1325 return 0; 1326 back_sqc_cqc: 1327 for (i = SQC_VFT; i <= CQC_VFT; i++) 1328 qm_set_vft_common(qm, i, fun_num, 0, 0); 1329 1330 return ret; 1331 } 1332 1333 static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number) 1334 { 1335 u64 sqc_vft; 1336 int ret; 1337 1338 ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1); 1339 if (ret) 1340 return ret; 1341 1342 sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) | 1343 ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32); 1344 *base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2); 1345 *number = (QM_SQC_VFT_NUM_MASK_V2 & 1346 (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1; 1347 1348 return 0; 1349 } 1350 1351 static void qm_hw_error_init_v1(struct hisi_qm *qm) 1352 { 1353 writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK); 1354 } 1355 1356 static void qm_hw_error_cfg(struct hisi_qm *qm) 1357 { 1358 struct hisi_qm_err_info *err_info = &qm->err_info; 1359 1360 qm->error_mask = err_info->nfe | err_info->ce | err_info->fe; 1361 /* clear QM hw residual error source */ 1362 writel(qm->error_mask, qm->io_base + QM_ABNORMAL_INT_SOURCE); 1363 1364 /* configure error type */ 1365 writel(err_info->ce, qm->io_base + QM_RAS_CE_ENABLE); 1366 writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD); 1367 writel(err_info->nfe, qm->io_base + QM_RAS_NFE_ENABLE); 1368 writel(err_info->fe, qm->io_base + QM_RAS_FE_ENABLE); 1369 } 1370 1371 static void qm_hw_error_init_v2(struct hisi_qm *qm) 1372 { 1373 u32 irq_unmask; 1374 1375 qm_hw_error_cfg(qm); 1376 1377 irq_unmask = ~qm->error_mask; 1378 irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1379 writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK); 1380 } 1381 1382 static void qm_hw_error_uninit_v2(struct hisi_qm *qm) 1383 { 1384 u32 irq_mask = qm->error_mask; 1385 1386 irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1387 writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK); 1388 } 1389 1390 static void qm_hw_error_init_v3(struct hisi_qm *qm) 1391 { 1392 u32 irq_unmask; 1393 1394 qm_hw_error_cfg(qm); 1395 1396 /* enable close master ooo when hardware error happened */ 1397 writel(qm->err_info.qm_shutdown_mask, qm->io_base + QM_OOO_SHUTDOWN_SEL); 1398 1399 irq_unmask = ~qm->error_mask; 1400 irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1401 writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK); 1402 } 1403 1404 static void qm_hw_error_uninit_v3(struct hisi_qm *qm) 1405 { 1406 u32 irq_mask = qm->error_mask; 1407 1408 irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1409 writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK); 1410 1411 /* disable close master ooo when hardware error happened */ 1412 writel(0x0, qm->io_base + QM_OOO_SHUTDOWN_SEL); 1413 } 1414 1415 static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status) 1416 { 1417 const struct hisi_qm_hw_error *err; 1418 struct device *dev = &qm->pdev->dev; 1419 u32 reg_val, type, vf_num, qp_id; 1420 int i; 1421 1422 for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) { 1423 err = &qm_hw_error[i]; 1424 if (!(err->int_msk & error_status)) 1425 continue; 1426 1427 dev_err(dev, "%s [error status=0x%x] found\n", 1428 err->msg, err->int_msk); 1429 1430 if (err->int_msk & QM_DB_TIMEOUT) { 1431 reg_val = readl(qm->io_base + QM_ABNORMAL_INF01); 1432 type = (reg_val & QM_DB_TIMEOUT_TYPE) >> 1433 QM_DB_TIMEOUT_TYPE_SHIFT; 1434 vf_num = reg_val & QM_DB_TIMEOUT_VF; 1435 qp_id = reg_val >> QM_DB_TIMEOUT_QP_SHIFT; 1436 dev_err(dev, "qm %s doorbell timeout in function %u qp %u\n", 1437 qm_db_timeout[type], vf_num, qp_id); 1438 } else if (err->int_msk & QM_OF_FIFO_OF) { 1439 reg_val = readl(qm->io_base + QM_ABNORMAL_INF00); 1440 type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >> 1441 QM_FIFO_OVERFLOW_TYPE_SHIFT; 1442 vf_num = reg_val & QM_FIFO_OVERFLOW_VF; 1443 qp_id = reg_val >> QM_FIFO_OVERFLOW_QP_SHIFT; 1444 if (type < ARRAY_SIZE(qm_fifo_overflow)) 1445 dev_err(dev, "qm %s fifo overflow in function %u qp %u\n", 1446 qm_fifo_overflow[type], vf_num, qp_id); 1447 else 1448 dev_err(dev, "unknown error type\n"); 1449 } else if (err->int_msk & QM_AXI_RRESP_ERR) { 1450 reg_val = readl(qm->io_base + QM_ABNORMAL_INF02); 1451 if (reg_val & QM_AXI_POISON_ERR) 1452 dev_err(dev, "qm axi poison error happened\n"); 1453 } 1454 } 1455 } 1456 1457 static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm) 1458 { 1459 u32 error_status, tmp; 1460 1461 /* read err sts */ 1462 tmp = readl(qm->io_base + QM_ABNORMAL_INT_STATUS); 1463 error_status = qm->error_mask & tmp; 1464 1465 if (error_status) { 1466 if (error_status & QM_ECC_MBIT) 1467 qm->err_status.is_qm_ecc_mbit = true; 1468 1469 qm_log_hw_error(qm, error_status); 1470 if (error_status & qm->err_info.qm_reset_mask) 1471 return ACC_ERR_NEED_RESET; 1472 1473 writel(error_status, qm->io_base + QM_ABNORMAL_INT_SOURCE); 1474 writel(qm->err_info.nfe, qm->io_base + QM_RAS_NFE_ENABLE); 1475 } 1476 1477 return ACC_ERR_RECOVERED; 1478 } 1479 1480 static int qm_get_mb_cmd(struct hisi_qm *qm, u64 *msg, u16 fun_num) 1481 { 1482 struct qm_mailbox mailbox; 1483 int ret; 1484 1485 qm_mb_pre_init(&mailbox, QM_MB_CMD_DST, 0, fun_num, 0); 1486 mutex_lock(&qm->mailbox_lock); 1487 ret = qm_mb_nolock(qm, &mailbox); 1488 if (ret) 1489 goto err_unlock; 1490 1491 *msg = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) | 1492 ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32); 1493 1494 err_unlock: 1495 mutex_unlock(&qm->mailbox_lock); 1496 return ret; 1497 } 1498 1499 static void qm_clear_cmd_interrupt(struct hisi_qm *qm, u64 vf_mask) 1500 { 1501 u32 val; 1502 1503 if (qm->fun_type == QM_HW_PF) 1504 writeq(vf_mask, qm->io_base + QM_IFC_INT_SOURCE_P); 1505 1506 val = readl(qm->io_base + QM_IFC_INT_SOURCE_V); 1507 val |= QM_IFC_INT_SOURCE_MASK; 1508 writel(val, qm->io_base + QM_IFC_INT_SOURCE_V); 1509 } 1510 1511 static void qm_handle_vf_msg(struct hisi_qm *qm, u32 vf_id) 1512 { 1513 struct device *dev = &qm->pdev->dev; 1514 u32 cmd; 1515 u64 msg; 1516 int ret; 1517 1518 ret = qm_get_mb_cmd(qm, &msg, vf_id); 1519 if (ret) { 1520 dev_err(dev, "failed to get msg from VF(%u)!\n", vf_id); 1521 return; 1522 } 1523 1524 cmd = msg & QM_MB_CMD_DATA_MASK; 1525 switch (cmd) { 1526 case QM_VF_PREPARE_FAIL: 1527 dev_err(dev, "failed to stop VF(%u)!\n", vf_id); 1528 break; 1529 case QM_VF_START_FAIL: 1530 dev_err(dev, "failed to start VF(%u)!\n", vf_id); 1531 break; 1532 case QM_VF_PREPARE_DONE: 1533 case QM_VF_START_DONE: 1534 break; 1535 default: 1536 dev_err(dev, "unsupported cmd %u sent by VF(%u)!\n", cmd, vf_id); 1537 break; 1538 } 1539 } 1540 1541 static int qm_wait_vf_prepare_finish(struct hisi_qm *qm) 1542 { 1543 struct device *dev = &qm->pdev->dev; 1544 u32 vfs_num = qm->vfs_num; 1545 int cnt = 0; 1546 int ret = 0; 1547 u64 val; 1548 u32 i; 1549 1550 if (!qm->vfs_num || !test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 1551 return 0; 1552 1553 while (true) { 1554 val = readq(qm->io_base + QM_IFC_INT_SOURCE_P); 1555 /* All VFs send command to PF, break */ 1556 if ((val & GENMASK(vfs_num, 1)) == GENMASK(vfs_num, 1)) 1557 break; 1558 1559 if (++cnt > QM_MAX_PF_WAIT_COUNT) { 1560 ret = -EBUSY; 1561 break; 1562 } 1563 1564 msleep(QM_WAIT_DST_ACK); 1565 } 1566 1567 /* PF check VFs msg */ 1568 for (i = 1; i <= vfs_num; i++) { 1569 if (val & BIT(i)) 1570 qm_handle_vf_msg(qm, i); 1571 else 1572 dev_err(dev, "VF(%u) not ping PF!\n", i); 1573 } 1574 1575 /* PF clear interrupt to ack VFs */ 1576 qm_clear_cmd_interrupt(qm, val); 1577 1578 return ret; 1579 } 1580 1581 static void qm_trigger_vf_interrupt(struct hisi_qm *qm, u32 fun_num) 1582 { 1583 u32 val; 1584 1585 val = readl(qm->io_base + QM_IFC_INT_CFG); 1586 val &= ~QM_IFC_SEND_ALL_VFS; 1587 val |= fun_num; 1588 writel(val, qm->io_base + QM_IFC_INT_CFG); 1589 1590 val = readl(qm->io_base + QM_IFC_INT_SET_P); 1591 val |= QM_IFC_INT_SET_MASK; 1592 writel(val, qm->io_base + QM_IFC_INT_SET_P); 1593 } 1594 1595 static void qm_trigger_pf_interrupt(struct hisi_qm *qm) 1596 { 1597 u32 val; 1598 1599 val = readl(qm->io_base + QM_IFC_INT_SET_V); 1600 val |= QM_IFC_INT_SET_MASK; 1601 writel(val, qm->io_base + QM_IFC_INT_SET_V); 1602 } 1603 1604 static int qm_ping_single_vf(struct hisi_qm *qm, u64 cmd, u32 fun_num) 1605 { 1606 struct device *dev = &qm->pdev->dev; 1607 struct qm_mailbox mailbox; 1608 int cnt = 0; 1609 u64 val; 1610 int ret; 1611 1612 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, fun_num, 0); 1613 mutex_lock(&qm->mailbox_lock); 1614 ret = qm_mb_nolock(qm, &mailbox); 1615 if (ret) { 1616 dev_err(dev, "failed to send command to vf(%u)!\n", fun_num); 1617 goto err_unlock; 1618 } 1619 1620 qm_trigger_vf_interrupt(qm, fun_num); 1621 while (true) { 1622 msleep(QM_WAIT_DST_ACK); 1623 val = readq(qm->io_base + QM_IFC_READY_STATUS); 1624 /* if VF respond, PF notifies VF successfully. */ 1625 if (!(val & BIT(fun_num))) 1626 goto err_unlock; 1627 1628 if (++cnt > QM_MAX_PF_WAIT_COUNT) { 1629 dev_err(dev, "failed to get response from VF(%u)!\n", fun_num); 1630 ret = -ETIMEDOUT; 1631 break; 1632 } 1633 } 1634 1635 err_unlock: 1636 mutex_unlock(&qm->mailbox_lock); 1637 return ret; 1638 } 1639 1640 static int qm_ping_all_vfs(struct hisi_qm *qm, u64 cmd) 1641 { 1642 struct device *dev = &qm->pdev->dev; 1643 u32 vfs_num = qm->vfs_num; 1644 struct qm_mailbox mailbox; 1645 u64 val = 0; 1646 int cnt = 0; 1647 int ret; 1648 u32 i; 1649 1650 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, QM_MB_PING_ALL_VFS, 0); 1651 mutex_lock(&qm->mailbox_lock); 1652 /* PF sends command to all VFs by mailbox */ 1653 ret = qm_mb_nolock(qm, &mailbox); 1654 if (ret) { 1655 dev_err(dev, "failed to send command to VFs!\n"); 1656 mutex_unlock(&qm->mailbox_lock); 1657 return ret; 1658 } 1659 1660 qm_trigger_vf_interrupt(qm, QM_IFC_SEND_ALL_VFS); 1661 while (true) { 1662 msleep(QM_WAIT_DST_ACK); 1663 val = readq(qm->io_base + QM_IFC_READY_STATUS); 1664 /* If all VFs acked, PF notifies VFs successfully. */ 1665 if (!(val & GENMASK(vfs_num, 1))) { 1666 mutex_unlock(&qm->mailbox_lock); 1667 return 0; 1668 } 1669 1670 if (++cnt > QM_MAX_PF_WAIT_COUNT) 1671 break; 1672 } 1673 1674 mutex_unlock(&qm->mailbox_lock); 1675 1676 /* Check which vf respond timeout. */ 1677 for (i = 1; i <= vfs_num; i++) { 1678 if (val & BIT(i)) 1679 dev_err(dev, "failed to get response from VF(%u)!\n", i); 1680 } 1681 1682 return -ETIMEDOUT; 1683 } 1684 1685 static int qm_ping_pf(struct hisi_qm *qm, u64 cmd) 1686 { 1687 struct qm_mailbox mailbox; 1688 int cnt = 0; 1689 u32 val; 1690 int ret; 1691 1692 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, 0, 0); 1693 mutex_lock(&qm->mailbox_lock); 1694 ret = qm_mb_nolock(qm, &mailbox); 1695 if (ret) { 1696 dev_err(&qm->pdev->dev, "failed to send command to PF!\n"); 1697 goto unlock; 1698 } 1699 1700 qm_trigger_pf_interrupt(qm); 1701 /* Waiting for PF response */ 1702 while (true) { 1703 msleep(QM_WAIT_DST_ACK); 1704 val = readl(qm->io_base + QM_IFC_INT_SET_V); 1705 if (!(val & QM_IFC_INT_STATUS_MASK)) 1706 break; 1707 1708 if (++cnt > QM_MAX_VF_WAIT_COUNT) { 1709 ret = -ETIMEDOUT; 1710 break; 1711 } 1712 } 1713 1714 unlock: 1715 mutex_unlock(&qm->mailbox_lock); 1716 return ret; 1717 } 1718 1719 static int qm_drain_qm(struct hisi_qm *qm) 1720 { 1721 return hisi_qm_mb(qm, QM_MB_CMD_FLUSH_QM, 0, 0, 0); 1722 } 1723 1724 static int qm_stop_qp(struct hisi_qp *qp) 1725 { 1726 return hisi_qm_mb(qp->qm, QM_MB_CMD_STOP_QP, 0, qp->qp_id, 0); 1727 } 1728 1729 static int qm_set_msi(struct hisi_qm *qm, bool set) 1730 { 1731 struct pci_dev *pdev = qm->pdev; 1732 1733 if (set) { 1734 pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64, 1735 0); 1736 } else { 1737 pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64, 1738 ACC_PEH_MSI_DISABLE); 1739 if (qm->err_status.is_qm_ecc_mbit || 1740 qm->err_status.is_dev_ecc_mbit) 1741 return 0; 1742 1743 mdelay(1); 1744 if (readl(qm->io_base + QM_PEH_DFX_INFO0)) 1745 return -EFAULT; 1746 } 1747 1748 return 0; 1749 } 1750 1751 static void qm_wait_msi_finish(struct hisi_qm *qm) 1752 { 1753 struct pci_dev *pdev = qm->pdev; 1754 u32 cmd = ~0; 1755 int cnt = 0; 1756 u32 val; 1757 int ret; 1758 1759 while (true) { 1760 pci_read_config_dword(pdev, pdev->msi_cap + 1761 PCI_MSI_PENDING_64, &cmd); 1762 if (!cmd) 1763 break; 1764 1765 if (++cnt > MAX_WAIT_COUNTS) { 1766 pci_warn(pdev, "failed to empty MSI PENDING!\n"); 1767 break; 1768 } 1769 1770 udelay(1); 1771 } 1772 1773 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO0, 1774 val, !(val & QM_PEH_DFX_MASK), 1775 POLL_PERIOD, POLL_TIMEOUT); 1776 if (ret) 1777 pci_warn(pdev, "failed to empty PEH MSI!\n"); 1778 1779 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO1, 1780 val, !(val & QM_PEH_MSI_FINISH_MASK), 1781 POLL_PERIOD, POLL_TIMEOUT); 1782 if (ret) 1783 pci_warn(pdev, "failed to finish MSI operation!\n"); 1784 } 1785 1786 static int qm_set_msi_v3(struct hisi_qm *qm, bool set) 1787 { 1788 struct pci_dev *pdev = qm->pdev; 1789 int ret = -ETIMEDOUT; 1790 u32 cmd, i; 1791 1792 pci_read_config_dword(pdev, pdev->msi_cap, &cmd); 1793 if (set) 1794 cmd |= QM_MSI_CAP_ENABLE; 1795 else 1796 cmd &= ~QM_MSI_CAP_ENABLE; 1797 1798 pci_write_config_dword(pdev, pdev->msi_cap, cmd); 1799 if (set) { 1800 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 1801 pci_read_config_dword(pdev, pdev->msi_cap, &cmd); 1802 if (cmd & QM_MSI_CAP_ENABLE) 1803 return 0; 1804 1805 udelay(1); 1806 } 1807 } else { 1808 udelay(WAIT_PERIOD_US_MIN); 1809 qm_wait_msi_finish(qm); 1810 ret = 0; 1811 } 1812 1813 return ret; 1814 } 1815 1816 static const struct hisi_qm_hw_ops qm_hw_ops_v1 = { 1817 .qm_db = qm_db_v1, 1818 .hw_error_init = qm_hw_error_init_v1, 1819 .set_msi = qm_set_msi, 1820 }; 1821 1822 static const struct hisi_qm_hw_ops qm_hw_ops_v2 = { 1823 .get_vft = qm_get_vft_v2, 1824 .qm_db = qm_db_v2, 1825 .hw_error_init = qm_hw_error_init_v2, 1826 .hw_error_uninit = qm_hw_error_uninit_v2, 1827 .hw_error_handle = qm_hw_error_handle_v2, 1828 .set_msi = qm_set_msi, 1829 }; 1830 1831 static const struct hisi_qm_hw_ops qm_hw_ops_v3 = { 1832 .get_vft = qm_get_vft_v2, 1833 .qm_db = qm_db_v2, 1834 .hw_error_init = qm_hw_error_init_v3, 1835 .hw_error_uninit = qm_hw_error_uninit_v3, 1836 .hw_error_handle = qm_hw_error_handle_v2, 1837 .set_msi = qm_set_msi_v3, 1838 }; 1839 1840 static void *qm_get_avail_sqe(struct hisi_qp *qp) 1841 { 1842 struct hisi_qp_status *qp_status = &qp->qp_status; 1843 u16 sq_tail = qp_status->sq_tail; 1844 1845 if (unlikely(atomic_read(&qp->qp_status.used) == qp->sq_depth - 1)) 1846 return NULL; 1847 1848 return qp->sqe + sq_tail * qp->qm->sqe_size; 1849 } 1850 1851 static void hisi_qm_unset_hw_reset(struct hisi_qp *qp) 1852 { 1853 u64 *addr; 1854 1855 /* Use last 64 bits of DUS to reset status. */ 1856 addr = (u64 *)(qp->qdma.va + qp->qdma.size) - QM_RESET_STOP_TX_OFFSET; 1857 *addr = 0; 1858 } 1859 1860 static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type) 1861 { 1862 struct device *dev = &qm->pdev->dev; 1863 struct hisi_qp *qp; 1864 int qp_id; 1865 1866 if (atomic_read(&qm->status.flags) == QM_STOP) { 1867 dev_info_ratelimited(dev, "failed to create qp as qm is stop!\n"); 1868 return ERR_PTR(-EPERM); 1869 } 1870 1871 if (qm->qp_in_used == qm->qp_num) { 1872 dev_info_ratelimited(dev, "All %u queues of QM are busy!\n", 1873 qm->qp_num); 1874 atomic64_inc(&qm->debug.dfx.create_qp_err_cnt); 1875 return ERR_PTR(-EBUSY); 1876 } 1877 1878 qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC); 1879 if (qp_id < 0) { 1880 dev_info_ratelimited(dev, "All %u queues of QM are busy!\n", 1881 qm->qp_num); 1882 atomic64_inc(&qm->debug.dfx.create_qp_err_cnt); 1883 return ERR_PTR(-EBUSY); 1884 } 1885 1886 qp = &qm->qp_array[qp_id]; 1887 hisi_qm_unset_hw_reset(qp); 1888 memset(qp->cqe, 0, sizeof(struct qm_cqe) * qp->cq_depth); 1889 1890 qp->event_cb = NULL; 1891 qp->req_cb = NULL; 1892 qp->qp_id = qp_id; 1893 qp->alg_type = alg_type; 1894 qp->is_in_kernel = true; 1895 qm->qp_in_used++; 1896 1897 return qp; 1898 } 1899 1900 /** 1901 * hisi_qm_create_qp() - Create a queue pair from qm. 1902 * @qm: The qm we create a qp from. 1903 * @alg_type: Accelerator specific algorithm type in sqc. 1904 * 1905 * Return created qp, negative error code if failed. 1906 */ 1907 static struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type) 1908 { 1909 struct hisi_qp *qp; 1910 int ret; 1911 1912 ret = qm_pm_get_sync(qm); 1913 if (ret) 1914 return ERR_PTR(ret); 1915 1916 down_write(&qm->qps_lock); 1917 qp = qm_create_qp_nolock(qm, alg_type); 1918 up_write(&qm->qps_lock); 1919 1920 if (IS_ERR(qp)) 1921 qm_pm_put_sync(qm); 1922 1923 return qp; 1924 } 1925 1926 /** 1927 * hisi_qm_release_qp() - Release a qp back to its qm. 1928 * @qp: The qp we want to release. 1929 * 1930 * This function releases the resource of a qp. 1931 */ 1932 static void hisi_qm_release_qp(struct hisi_qp *qp) 1933 { 1934 struct hisi_qm *qm = qp->qm; 1935 1936 down_write(&qm->qps_lock); 1937 1938 qm->qp_in_used--; 1939 idr_remove(&qm->qp_idr, qp->qp_id); 1940 1941 up_write(&qm->qps_lock); 1942 1943 qm_pm_put_sync(qm); 1944 } 1945 1946 static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 1947 { 1948 struct hisi_qm *qm = qp->qm; 1949 enum qm_hw_ver ver = qm->ver; 1950 struct qm_sqc sqc = {0}; 1951 1952 if (ver == QM_HW_V1) { 1953 sqc.dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size)); 1954 sqc.w8 = cpu_to_le16(qp->sq_depth - 1); 1955 } else { 1956 sqc.dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size, qp->sq_depth)); 1957 sqc.w8 = 0; /* rand_qc */ 1958 } 1959 sqc.w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type)); 1960 sqc.base_l = cpu_to_le32(lower_32_bits(qp->sqe_dma)); 1961 sqc.base_h = cpu_to_le32(upper_32_bits(qp->sqe_dma)); 1962 sqc.cq_num = cpu_to_le16(qp_id); 1963 sqc.pasid = cpu_to_le16(pasid); 1964 1965 if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel) 1966 sqc.w11 = cpu_to_le16(QM_QC_PASID_ENABLE << 1967 QM_QC_PASID_ENABLE_SHIFT); 1968 1969 return qm_set_and_get_xqc(qm, QM_MB_CMD_SQC, &sqc, qp_id, 0); 1970 } 1971 1972 static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 1973 { 1974 struct hisi_qm *qm = qp->qm; 1975 enum qm_hw_ver ver = qm->ver; 1976 struct qm_cqc cqc = {0}; 1977 1978 if (ver == QM_HW_V1) { 1979 cqc.dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0, QM_QC_CQE_SIZE)); 1980 cqc.w8 = cpu_to_le16(qp->cq_depth - 1); 1981 } else { 1982 cqc.dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE, qp->cq_depth)); 1983 cqc.w8 = 0; /* rand_qc */ 1984 } 1985 /* 1986 * Enable request finishing interrupts defaultly. 1987 * So, there will be some interrupts until disabling 1988 * this. 1989 */ 1990 cqc.dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT); 1991 cqc.base_l = cpu_to_le32(lower_32_bits(qp->cqe_dma)); 1992 cqc.base_h = cpu_to_le32(upper_32_bits(qp->cqe_dma)); 1993 cqc.pasid = cpu_to_le16(pasid); 1994 1995 if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel) 1996 cqc.w11 = cpu_to_le16(QM_QC_PASID_ENABLE); 1997 1998 return qm_set_and_get_xqc(qm, QM_MB_CMD_CQC, &cqc, qp_id, 0); 1999 } 2000 2001 static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 2002 { 2003 int ret; 2004 2005 qm_init_qp_status(qp); 2006 2007 ret = qm_sq_ctx_cfg(qp, qp_id, pasid); 2008 if (ret) 2009 return ret; 2010 2011 return qm_cq_ctx_cfg(qp, qp_id, pasid); 2012 } 2013 2014 static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg) 2015 { 2016 struct hisi_qm *qm = qp->qm; 2017 struct device *dev = &qm->pdev->dev; 2018 int qp_id = qp->qp_id; 2019 u32 pasid = arg; 2020 int ret; 2021 2022 if (atomic_read(&qm->status.flags) == QM_STOP) { 2023 dev_info_ratelimited(dev, "failed to start qp as qm is stop!\n"); 2024 return -EPERM; 2025 } 2026 2027 ret = qm_qp_ctx_cfg(qp, qp_id, pasid); 2028 if (ret) 2029 return ret; 2030 2031 atomic_set(&qp->qp_status.flags, QP_START); 2032 dev_dbg(dev, "queue %d started\n", qp_id); 2033 2034 return 0; 2035 } 2036 2037 /** 2038 * hisi_qm_start_qp() - Start a qp into running. 2039 * @qp: The qp we want to start to run. 2040 * @arg: Accelerator specific argument. 2041 * 2042 * After this function, qp can receive request from user. Return 0 if 2043 * successful, negative error code if failed. 2044 */ 2045 int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg) 2046 { 2047 struct hisi_qm *qm = qp->qm; 2048 int ret; 2049 2050 down_write(&qm->qps_lock); 2051 ret = qm_start_qp_nolock(qp, arg); 2052 up_write(&qm->qps_lock); 2053 2054 return ret; 2055 } 2056 EXPORT_SYMBOL_GPL(hisi_qm_start_qp); 2057 2058 /** 2059 * qp_stop_fail_cb() - call request cb. 2060 * @qp: stopped failed qp. 2061 * 2062 * Callback function should be called whether task completed or not. 2063 */ 2064 static void qp_stop_fail_cb(struct hisi_qp *qp) 2065 { 2066 int qp_used = atomic_read(&qp->qp_status.used); 2067 u16 cur_tail = qp->qp_status.sq_tail; 2068 u16 sq_depth = qp->sq_depth; 2069 u16 cur_head = (cur_tail + sq_depth - qp_used) % sq_depth; 2070 struct hisi_qm *qm = qp->qm; 2071 u16 pos; 2072 int i; 2073 2074 for (i = 0; i < qp_used; i++) { 2075 pos = (i + cur_head) % sq_depth; 2076 qp->req_cb(qp, qp->sqe + (u32)(qm->sqe_size * pos)); 2077 atomic_dec(&qp->qp_status.used); 2078 } 2079 } 2080 2081 static int qm_wait_qp_empty(struct hisi_qm *qm, u32 *state, u32 qp_id) 2082 { 2083 struct device *dev = &qm->pdev->dev; 2084 struct qm_sqc sqc; 2085 struct qm_cqc cqc; 2086 int ret, i = 0; 2087 2088 while (++i) { 2089 ret = qm_set_and_get_xqc(qm, QM_MB_CMD_SQC, &sqc, qp_id, 1); 2090 if (ret) { 2091 dev_err_ratelimited(dev, "Failed to dump sqc!\n"); 2092 *state = QM_DUMP_SQC_FAIL; 2093 return ret; 2094 } 2095 2096 ret = qm_set_and_get_xqc(qm, QM_MB_CMD_CQC, &cqc, qp_id, 1); 2097 if (ret) { 2098 dev_err_ratelimited(dev, "Failed to dump cqc!\n"); 2099 *state = QM_DUMP_CQC_FAIL; 2100 return ret; 2101 } 2102 2103 if ((sqc.tail == cqc.tail) && 2104 (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc))) 2105 break; 2106 2107 if (i == MAX_WAIT_COUNTS) { 2108 dev_err(dev, "Fail to empty queue %u!\n", qp_id); 2109 *state = QM_STOP_QUEUE_FAIL; 2110 return -ETIMEDOUT; 2111 } 2112 2113 usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX); 2114 } 2115 2116 return 0; 2117 } 2118 2119 /** 2120 * qm_drain_qp() - Drain a qp. 2121 * @qp: The qp we want to drain. 2122 * 2123 * If the device does not support stopping queue by sending mailbox, 2124 * determine whether the queue is cleared by judging the tail pointers of 2125 * sq and cq. 2126 */ 2127 static int qm_drain_qp(struct hisi_qp *qp) 2128 { 2129 struct hisi_qm *qm = qp->qm; 2130 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 2131 u32 state = 0; 2132 int ret; 2133 2134 /* No need to judge if master OOO is blocked. */ 2135 if (qm_check_dev_error(pf_qm)) 2136 return 0; 2137 2138 /* HW V3 supports drain qp by device */ 2139 if (test_bit(QM_SUPPORT_STOP_QP, &qm->caps)) { 2140 ret = qm_stop_qp(qp); 2141 if (ret) { 2142 dev_err(&qm->pdev->dev, "Failed to stop qp!\n"); 2143 state = QM_STOP_QUEUE_FAIL; 2144 goto set_dev_state; 2145 } 2146 return ret; 2147 } 2148 2149 ret = qm_wait_qp_empty(qm, &state, qp->qp_id); 2150 if (ret) 2151 goto set_dev_state; 2152 2153 return 0; 2154 2155 set_dev_state: 2156 if (qm->debug.dev_dfx.dev_timeout) 2157 qm->debug.dev_dfx.dev_state = state; 2158 2159 return ret; 2160 } 2161 2162 static void qm_stop_qp_nolock(struct hisi_qp *qp) 2163 { 2164 struct hisi_qm *qm = qp->qm; 2165 struct device *dev = &qm->pdev->dev; 2166 int ret; 2167 2168 /* 2169 * It is allowed to stop and release qp when reset, If the qp is 2170 * stopped when reset but still want to be released then, the 2171 * is_resetting flag should be set negative so that this qp will not 2172 * be restarted after reset. 2173 */ 2174 if (atomic_read(&qp->qp_status.flags) != QP_START) { 2175 qp->is_resetting = false; 2176 return; 2177 } 2178 2179 atomic_set(&qp->qp_status.flags, QP_STOP); 2180 2181 /* V3 supports direct stop function when FLR prepare */ 2182 if (qm->ver < QM_HW_V3 || qm->status.stop_reason == QM_NORMAL) { 2183 ret = qm_drain_qp(qp); 2184 if (ret) 2185 dev_err(dev, "Failed to drain out data for stopping qp(%u)!\n", qp->qp_id); 2186 } 2187 2188 flush_workqueue(qm->wq); 2189 if (unlikely(qp->is_resetting && atomic_read(&qp->qp_status.used))) 2190 qp_stop_fail_cb(qp); 2191 2192 dev_dbg(dev, "stop queue %u!", qp->qp_id); 2193 } 2194 2195 /** 2196 * hisi_qm_stop_qp() - Stop a qp in qm. 2197 * @qp: The qp we want to stop. 2198 * 2199 * This function is reverse of hisi_qm_start_qp. 2200 */ 2201 void hisi_qm_stop_qp(struct hisi_qp *qp) 2202 { 2203 down_write(&qp->qm->qps_lock); 2204 qm_stop_qp_nolock(qp); 2205 up_write(&qp->qm->qps_lock); 2206 } 2207 EXPORT_SYMBOL_GPL(hisi_qm_stop_qp); 2208 2209 /** 2210 * hisi_qp_send() - Queue up a task in the hardware queue. 2211 * @qp: The qp in which to put the message. 2212 * @msg: The message. 2213 * 2214 * This function will return -EBUSY if qp is currently full, and -EAGAIN 2215 * if qp related qm is resetting. 2216 * 2217 * Note: This function may run with qm_irq_thread and ACC reset at same time. 2218 * It has no race with qm_irq_thread. However, during hisi_qp_send, ACC 2219 * reset may happen, we have no lock here considering performance. This 2220 * causes current qm_db sending fail or can not receive sended sqe. QM 2221 * sync/async receive function should handle the error sqe. ACC reset 2222 * done function should clear used sqe to 0. 2223 */ 2224 int hisi_qp_send(struct hisi_qp *qp, const void *msg) 2225 { 2226 struct hisi_qp_status *qp_status = &qp->qp_status; 2227 u16 sq_tail = qp_status->sq_tail; 2228 u16 sq_tail_next = (sq_tail + 1) % qp->sq_depth; 2229 void *sqe = qm_get_avail_sqe(qp); 2230 2231 if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP || 2232 atomic_read(&qp->qm->status.flags) == QM_STOP || 2233 qp->is_resetting)) { 2234 dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n"); 2235 return -EAGAIN; 2236 } 2237 2238 if (!sqe) 2239 return -EBUSY; 2240 2241 memcpy(sqe, msg, qp->qm->sqe_size); 2242 2243 qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0); 2244 atomic_inc(&qp->qp_status.used); 2245 qp_status->sq_tail = sq_tail_next; 2246 2247 return 0; 2248 } 2249 EXPORT_SYMBOL_GPL(hisi_qp_send); 2250 2251 static void hisi_qm_cache_wb(struct hisi_qm *qm) 2252 { 2253 unsigned int val; 2254 2255 if (qm->ver == QM_HW_V1) 2256 return; 2257 2258 writel(0x1, qm->io_base + QM_CACHE_WB_START); 2259 if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE, 2260 val, val & BIT(0), POLL_PERIOD, 2261 POLL_TIMEOUT)) 2262 dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n"); 2263 } 2264 2265 static void qm_qp_event_notifier(struct hisi_qp *qp) 2266 { 2267 wake_up_interruptible(&qp->uacce_q->wait); 2268 } 2269 2270 /* This function returns free number of qp in qm. */ 2271 static int hisi_qm_get_available_instances(struct uacce_device *uacce) 2272 { 2273 struct hisi_qm *qm = uacce->priv; 2274 int ret; 2275 2276 down_read(&qm->qps_lock); 2277 ret = qm->qp_num - qm->qp_in_used; 2278 up_read(&qm->qps_lock); 2279 2280 return ret; 2281 } 2282 2283 static void hisi_qm_set_hw_reset(struct hisi_qm *qm, int offset) 2284 { 2285 int i; 2286 2287 for (i = 0; i < qm->qp_num; i++) 2288 qm_set_qp_disable(&qm->qp_array[i], offset); 2289 } 2290 2291 static int hisi_qm_uacce_get_queue(struct uacce_device *uacce, 2292 unsigned long arg, 2293 struct uacce_queue *q) 2294 { 2295 struct hisi_qm *qm = uacce->priv; 2296 struct hisi_qp *qp; 2297 u8 alg_type = 0; 2298 2299 qp = hisi_qm_create_qp(qm, alg_type); 2300 if (IS_ERR(qp)) 2301 return PTR_ERR(qp); 2302 2303 q->priv = qp; 2304 q->uacce = uacce; 2305 qp->uacce_q = q; 2306 qp->event_cb = qm_qp_event_notifier; 2307 qp->pasid = arg; 2308 qp->is_in_kernel = false; 2309 2310 return 0; 2311 } 2312 2313 static void hisi_qm_uacce_put_queue(struct uacce_queue *q) 2314 { 2315 struct hisi_qp *qp = q->priv; 2316 2317 hisi_qm_release_qp(qp); 2318 } 2319 2320 /* map sq/cq/doorbell to user space */ 2321 static int hisi_qm_uacce_mmap(struct uacce_queue *q, 2322 struct vm_area_struct *vma, 2323 struct uacce_qfile_region *qfr) 2324 { 2325 struct hisi_qp *qp = q->priv; 2326 struct hisi_qm *qm = qp->qm; 2327 resource_size_t phys_base = qm->db_phys_base + 2328 qp->qp_id * qm->db_interval; 2329 size_t sz = vma->vm_end - vma->vm_start; 2330 struct pci_dev *pdev = qm->pdev; 2331 struct device *dev = &pdev->dev; 2332 unsigned long vm_pgoff; 2333 int ret; 2334 2335 switch (qfr->type) { 2336 case UACCE_QFRT_MMIO: 2337 if (qm->ver == QM_HW_V1) { 2338 if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR) 2339 return -EINVAL; 2340 } else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) { 2341 if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR + 2342 QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE)) 2343 return -EINVAL; 2344 } else { 2345 if (sz > qm->db_interval) 2346 return -EINVAL; 2347 } 2348 2349 vm_flags_set(vma, VM_IO); 2350 2351 return remap_pfn_range(vma, vma->vm_start, 2352 phys_base >> PAGE_SHIFT, 2353 sz, pgprot_noncached(vma->vm_page_prot)); 2354 case UACCE_QFRT_DUS: 2355 if (sz != qp->qdma.size) 2356 return -EINVAL; 2357 2358 /* 2359 * dma_mmap_coherent() requires vm_pgoff as 0 2360 * restore vm_pfoff to initial value for mmap() 2361 */ 2362 vm_pgoff = vma->vm_pgoff; 2363 vma->vm_pgoff = 0; 2364 ret = dma_mmap_coherent(dev, vma, qp->qdma.va, 2365 qp->qdma.dma, sz); 2366 vma->vm_pgoff = vm_pgoff; 2367 return ret; 2368 2369 default: 2370 return -EINVAL; 2371 } 2372 } 2373 2374 static int hisi_qm_uacce_start_queue(struct uacce_queue *q) 2375 { 2376 struct hisi_qp *qp = q->priv; 2377 2378 return hisi_qm_start_qp(qp, qp->pasid); 2379 } 2380 2381 static void hisi_qm_uacce_stop_queue(struct uacce_queue *q) 2382 { 2383 struct hisi_qp *qp = q->priv; 2384 struct hisi_qm *qm = qp->qm; 2385 struct qm_dev_dfx *dev_dfx = &qm->debug.dev_dfx; 2386 u32 i = 0; 2387 2388 hisi_qm_stop_qp(qp); 2389 2390 if (!dev_dfx->dev_timeout || !dev_dfx->dev_state) 2391 return; 2392 2393 /* 2394 * After the queue fails to be stopped, 2395 * wait for a period of time before releasing the queue. 2396 */ 2397 while (++i) { 2398 msleep(WAIT_PERIOD); 2399 2400 /* Since dev_timeout maybe modified, check i >= dev_timeout */ 2401 if (i >= dev_dfx->dev_timeout) { 2402 dev_err(&qm->pdev->dev, "Stop q %u timeout, state %u\n", 2403 qp->qp_id, dev_dfx->dev_state); 2404 dev_dfx->dev_state = QM_FINISH_WAIT; 2405 break; 2406 } 2407 } 2408 } 2409 2410 static int hisi_qm_is_q_updated(struct uacce_queue *q) 2411 { 2412 struct hisi_qp *qp = q->priv; 2413 struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head; 2414 int updated = 0; 2415 2416 while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) { 2417 /* make sure to read data from memory */ 2418 dma_rmb(); 2419 qm_cq_head_update(qp); 2420 cqe = qp->cqe + qp->qp_status.cq_head; 2421 updated = 1; 2422 } 2423 2424 return updated; 2425 } 2426 2427 static void qm_set_sqctype(struct uacce_queue *q, u16 type) 2428 { 2429 struct hisi_qm *qm = q->uacce->priv; 2430 struct hisi_qp *qp = q->priv; 2431 2432 down_write(&qm->qps_lock); 2433 qp->alg_type = type; 2434 up_write(&qm->qps_lock); 2435 } 2436 2437 static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd, 2438 unsigned long arg) 2439 { 2440 struct hisi_qp *qp = q->priv; 2441 struct hisi_qp_info qp_info; 2442 struct hisi_qp_ctx qp_ctx; 2443 2444 if (cmd == UACCE_CMD_QM_SET_QP_CTX) { 2445 if (copy_from_user(&qp_ctx, (void __user *)arg, 2446 sizeof(struct hisi_qp_ctx))) 2447 return -EFAULT; 2448 2449 if (qp_ctx.qc_type != 0 && qp_ctx.qc_type != 1) 2450 return -EINVAL; 2451 2452 qm_set_sqctype(q, qp_ctx.qc_type); 2453 qp_ctx.id = qp->qp_id; 2454 2455 if (copy_to_user((void __user *)arg, &qp_ctx, 2456 sizeof(struct hisi_qp_ctx))) 2457 return -EFAULT; 2458 2459 return 0; 2460 } else if (cmd == UACCE_CMD_QM_SET_QP_INFO) { 2461 if (copy_from_user(&qp_info, (void __user *)arg, 2462 sizeof(struct hisi_qp_info))) 2463 return -EFAULT; 2464 2465 qp_info.sqe_size = qp->qm->sqe_size; 2466 qp_info.sq_depth = qp->sq_depth; 2467 qp_info.cq_depth = qp->cq_depth; 2468 2469 if (copy_to_user((void __user *)arg, &qp_info, 2470 sizeof(struct hisi_qp_info))) 2471 return -EFAULT; 2472 2473 return 0; 2474 } 2475 2476 return -EINVAL; 2477 } 2478 2479 /** 2480 * qm_hw_err_isolate() - Try to set the isolation status of the uacce device 2481 * according to user's configuration of error threshold. 2482 * @qm: the uacce device 2483 */ 2484 static int qm_hw_err_isolate(struct hisi_qm *qm) 2485 { 2486 struct qm_hw_err *err, *tmp, *hw_err; 2487 struct qm_err_isolate *isolate; 2488 u32 count = 0; 2489 2490 isolate = &qm->isolate_data; 2491 2492 #define SECONDS_PER_HOUR 3600 2493 2494 /* All the hw errs are processed by PF driver */ 2495 if (qm->uacce->is_vf || isolate->is_isolate || !isolate->err_threshold) 2496 return 0; 2497 2498 hw_err = kzalloc(sizeof(*hw_err), GFP_KERNEL); 2499 if (!hw_err) 2500 return -ENOMEM; 2501 2502 /* 2503 * Time-stamp every slot AER error. Then check the AER error log when the 2504 * next device AER error occurred. if the device slot AER error count exceeds 2505 * the setting error threshold in one hour, the isolated state will be set 2506 * to true. And the AER error logs that exceed one hour will be cleared. 2507 */ 2508 mutex_lock(&isolate->isolate_lock); 2509 hw_err->timestamp = jiffies; 2510 list_for_each_entry_safe(err, tmp, &isolate->qm_hw_errs, list) { 2511 if ((hw_err->timestamp - err->timestamp) / HZ > 2512 SECONDS_PER_HOUR) { 2513 list_del(&err->list); 2514 kfree(err); 2515 } else { 2516 count++; 2517 } 2518 } 2519 list_add(&hw_err->list, &isolate->qm_hw_errs); 2520 mutex_unlock(&isolate->isolate_lock); 2521 2522 if (count >= isolate->err_threshold) 2523 isolate->is_isolate = true; 2524 2525 return 0; 2526 } 2527 2528 static void qm_hw_err_destroy(struct hisi_qm *qm) 2529 { 2530 struct qm_hw_err *err, *tmp; 2531 2532 mutex_lock(&qm->isolate_data.isolate_lock); 2533 list_for_each_entry_safe(err, tmp, &qm->isolate_data.qm_hw_errs, list) { 2534 list_del(&err->list); 2535 kfree(err); 2536 } 2537 mutex_unlock(&qm->isolate_data.isolate_lock); 2538 } 2539 2540 static enum uacce_dev_state hisi_qm_get_isolate_state(struct uacce_device *uacce) 2541 { 2542 struct hisi_qm *qm = uacce->priv; 2543 struct hisi_qm *pf_qm; 2544 2545 if (uacce->is_vf) 2546 pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 2547 else 2548 pf_qm = qm; 2549 2550 return pf_qm->isolate_data.is_isolate ? 2551 UACCE_DEV_ISOLATE : UACCE_DEV_NORMAL; 2552 } 2553 2554 static int hisi_qm_isolate_threshold_write(struct uacce_device *uacce, u32 num) 2555 { 2556 struct hisi_qm *qm = uacce->priv; 2557 2558 /* Must be set by PF */ 2559 if (uacce->is_vf) 2560 return -EPERM; 2561 2562 if (qm->isolate_data.is_isolate) 2563 return -EPERM; 2564 2565 qm->isolate_data.err_threshold = num; 2566 2567 /* After the policy is updated, need to reset the hardware err list */ 2568 qm_hw_err_destroy(qm); 2569 2570 return 0; 2571 } 2572 2573 static u32 hisi_qm_isolate_threshold_read(struct uacce_device *uacce) 2574 { 2575 struct hisi_qm *qm = uacce->priv; 2576 struct hisi_qm *pf_qm; 2577 2578 if (uacce->is_vf) { 2579 pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 2580 return pf_qm->isolate_data.err_threshold; 2581 } 2582 2583 return qm->isolate_data.err_threshold; 2584 } 2585 2586 static const struct uacce_ops uacce_qm_ops = { 2587 .get_available_instances = hisi_qm_get_available_instances, 2588 .get_queue = hisi_qm_uacce_get_queue, 2589 .put_queue = hisi_qm_uacce_put_queue, 2590 .start_queue = hisi_qm_uacce_start_queue, 2591 .stop_queue = hisi_qm_uacce_stop_queue, 2592 .mmap = hisi_qm_uacce_mmap, 2593 .ioctl = hisi_qm_uacce_ioctl, 2594 .is_q_updated = hisi_qm_is_q_updated, 2595 .get_isolate_state = hisi_qm_get_isolate_state, 2596 .isolate_err_threshold_write = hisi_qm_isolate_threshold_write, 2597 .isolate_err_threshold_read = hisi_qm_isolate_threshold_read, 2598 }; 2599 2600 static void qm_remove_uacce(struct hisi_qm *qm) 2601 { 2602 struct uacce_device *uacce = qm->uacce; 2603 2604 if (qm->use_sva) { 2605 qm_hw_err_destroy(qm); 2606 uacce_remove(uacce); 2607 qm->uacce = NULL; 2608 } 2609 } 2610 2611 static int qm_alloc_uacce(struct hisi_qm *qm) 2612 { 2613 struct pci_dev *pdev = qm->pdev; 2614 struct uacce_device *uacce; 2615 unsigned long mmio_page_nr; 2616 unsigned long dus_page_nr; 2617 u16 sq_depth, cq_depth; 2618 struct uacce_interface interface = { 2619 .flags = UACCE_DEV_SVA, 2620 .ops = &uacce_qm_ops, 2621 }; 2622 int ret; 2623 2624 ret = strscpy(interface.name, dev_driver_string(&pdev->dev), 2625 sizeof(interface.name)); 2626 if (ret < 0) 2627 return -ENAMETOOLONG; 2628 2629 uacce = uacce_alloc(&pdev->dev, &interface); 2630 if (IS_ERR(uacce)) 2631 return PTR_ERR(uacce); 2632 2633 if (uacce->flags & UACCE_DEV_SVA) { 2634 qm->use_sva = true; 2635 } else { 2636 /* only consider sva case */ 2637 qm_remove_uacce(qm); 2638 return -EINVAL; 2639 } 2640 2641 uacce->is_vf = pdev->is_virtfn; 2642 uacce->priv = qm; 2643 2644 if (qm->ver == QM_HW_V1) 2645 uacce->api_ver = HISI_QM_API_VER_BASE; 2646 else if (qm->ver == QM_HW_V2) 2647 uacce->api_ver = HISI_QM_API_VER2_BASE; 2648 else 2649 uacce->api_ver = HISI_QM_API_VER3_BASE; 2650 2651 if (qm->ver == QM_HW_V1) 2652 mmio_page_nr = QM_DOORBELL_PAGE_NR; 2653 else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) 2654 mmio_page_nr = QM_DOORBELL_PAGE_NR + 2655 QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE; 2656 else 2657 mmio_page_nr = qm->db_interval / PAGE_SIZE; 2658 2659 qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP); 2660 2661 /* Add one more page for device or qp status */ 2662 dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * sq_depth + 2663 sizeof(struct qm_cqe) * cq_depth + PAGE_SIZE) >> 2664 PAGE_SHIFT; 2665 2666 uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr; 2667 uacce->qf_pg_num[UACCE_QFRT_DUS] = dus_page_nr; 2668 2669 qm->uacce = uacce; 2670 INIT_LIST_HEAD(&qm->isolate_data.qm_hw_errs); 2671 mutex_init(&qm->isolate_data.isolate_lock); 2672 2673 return 0; 2674 } 2675 2676 /** 2677 * qm_frozen() - Try to froze QM to cut continuous queue request. If 2678 * there is user on the QM, return failure without doing anything. 2679 * @qm: The qm needed to be fronzen. 2680 * 2681 * This function frozes QM, then we can do SRIOV disabling. 2682 */ 2683 static int qm_frozen(struct hisi_qm *qm) 2684 { 2685 if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl)) 2686 return 0; 2687 2688 down_write(&qm->qps_lock); 2689 2690 if (!qm->qp_in_used) { 2691 qm->qp_in_used = qm->qp_num; 2692 up_write(&qm->qps_lock); 2693 set_bit(QM_DRIVER_REMOVING, &qm->misc_ctl); 2694 return 0; 2695 } 2696 2697 up_write(&qm->qps_lock); 2698 2699 return -EBUSY; 2700 } 2701 2702 static int qm_try_frozen_vfs(struct pci_dev *pdev, 2703 struct hisi_qm_list *qm_list) 2704 { 2705 struct hisi_qm *qm, *vf_qm; 2706 struct pci_dev *dev; 2707 int ret = 0; 2708 2709 if (!qm_list || !pdev) 2710 return -EINVAL; 2711 2712 /* Try to frozen all the VFs as disable SRIOV */ 2713 mutex_lock(&qm_list->lock); 2714 list_for_each_entry(qm, &qm_list->list, list) { 2715 dev = qm->pdev; 2716 if (dev == pdev) 2717 continue; 2718 if (pci_physfn(dev) == pdev) { 2719 vf_qm = pci_get_drvdata(dev); 2720 ret = qm_frozen(vf_qm); 2721 if (ret) 2722 goto frozen_fail; 2723 } 2724 } 2725 2726 frozen_fail: 2727 mutex_unlock(&qm_list->lock); 2728 2729 return ret; 2730 } 2731 2732 /** 2733 * hisi_qm_wait_task_finish() - Wait until the task is finished 2734 * when removing the driver. 2735 * @qm: The qm needed to wait for the task to finish. 2736 * @qm_list: The list of all available devices. 2737 */ 2738 void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 2739 { 2740 while (qm_frozen(qm) || 2741 ((qm->fun_type == QM_HW_PF) && 2742 qm_try_frozen_vfs(qm->pdev, qm_list))) { 2743 msleep(WAIT_PERIOD); 2744 } 2745 2746 while (test_bit(QM_RST_SCHED, &qm->misc_ctl) || 2747 test_bit(QM_RESETTING, &qm->misc_ctl)) 2748 msleep(WAIT_PERIOD); 2749 2750 if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 2751 flush_work(&qm->cmd_process); 2752 2753 udelay(REMOVE_WAIT_DELAY); 2754 } 2755 EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish); 2756 2757 static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num) 2758 { 2759 struct device *dev = &qm->pdev->dev; 2760 struct qm_dma *qdma; 2761 int i; 2762 2763 for (i = num - 1; i >= 0; i--) { 2764 qdma = &qm->qp_array[i].qdma; 2765 dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma); 2766 kfree(qm->poll_data[i].qp_finish_id); 2767 } 2768 2769 kfree(qm->poll_data); 2770 kfree(qm->qp_array); 2771 } 2772 2773 static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id, 2774 u16 sq_depth, u16 cq_depth) 2775 { 2776 struct device *dev = &qm->pdev->dev; 2777 size_t off = qm->sqe_size * sq_depth; 2778 struct hisi_qp *qp; 2779 int ret = -ENOMEM; 2780 2781 qm->poll_data[id].qp_finish_id = kcalloc(qm->qp_num, sizeof(u16), 2782 GFP_KERNEL); 2783 if (!qm->poll_data[id].qp_finish_id) 2784 return -ENOMEM; 2785 2786 qp = &qm->qp_array[id]; 2787 qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma, 2788 GFP_KERNEL); 2789 if (!qp->qdma.va) 2790 goto err_free_qp_finish_id; 2791 2792 qp->sqe = qp->qdma.va; 2793 qp->sqe_dma = qp->qdma.dma; 2794 qp->cqe = qp->qdma.va + off; 2795 qp->cqe_dma = qp->qdma.dma + off; 2796 qp->qdma.size = dma_size; 2797 qp->sq_depth = sq_depth; 2798 qp->cq_depth = cq_depth; 2799 qp->qm = qm; 2800 qp->qp_id = id; 2801 2802 return 0; 2803 2804 err_free_qp_finish_id: 2805 kfree(qm->poll_data[id].qp_finish_id); 2806 return ret; 2807 } 2808 2809 static void hisi_qm_pre_init(struct hisi_qm *qm) 2810 { 2811 struct pci_dev *pdev = qm->pdev; 2812 2813 if (qm->ver == QM_HW_V1) 2814 qm->ops = &qm_hw_ops_v1; 2815 else if (qm->ver == QM_HW_V2) 2816 qm->ops = &qm_hw_ops_v2; 2817 else 2818 qm->ops = &qm_hw_ops_v3; 2819 2820 pci_set_drvdata(pdev, qm); 2821 mutex_init(&qm->mailbox_lock); 2822 init_rwsem(&qm->qps_lock); 2823 qm->qp_in_used = 0; 2824 if (test_bit(QM_SUPPORT_RPM, &qm->caps)) { 2825 if (!acpi_device_power_manageable(ACPI_COMPANION(&pdev->dev))) 2826 dev_info(&pdev->dev, "_PS0 and _PR0 are not defined"); 2827 } 2828 } 2829 2830 static void qm_cmd_uninit(struct hisi_qm *qm) 2831 { 2832 u32 val; 2833 2834 if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 2835 return; 2836 2837 val = readl(qm->io_base + QM_IFC_INT_MASK); 2838 val |= QM_IFC_INT_DISABLE; 2839 writel(val, qm->io_base + QM_IFC_INT_MASK); 2840 } 2841 2842 static void qm_cmd_init(struct hisi_qm *qm) 2843 { 2844 u32 val; 2845 2846 if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 2847 return; 2848 2849 /* Clear communication interrupt source */ 2850 qm_clear_cmd_interrupt(qm, QM_IFC_INT_SOURCE_CLR); 2851 2852 /* Enable pf to vf communication reg. */ 2853 val = readl(qm->io_base + QM_IFC_INT_MASK); 2854 val &= ~QM_IFC_INT_DISABLE; 2855 writel(val, qm->io_base + QM_IFC_INT_MASK); 2856 } 2857 2858 static void qm_put_pci_res(struct hisi_qm *qm) 2859 { 2860 struct pci_dev *pdev = qm->pdev; 2861 2862 if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) 2863 iounmap(qm->db_io_base); 2864 2865 iounmap(qm->io_base); 2866 pci_release_mem_regions(pdev); 2867 } 2868 2869 static void hisi_qm_pci_uninit(struct hisi_qm *qm) 2870 { 2871 struct pci_dev *pdev = qm->pdev; 2872 2873 pci_free_irq_vectors(pdev); 2874 qm_put_pci_res(qm); 2875 pci_disable_device(pdev); 2876 } 2877 2878 static void hisi_qm_set_state(struct hisi_qm *qm, u8 state) 2879 { 2880 if (qm->ver > QM_HW_V2 && qm->fun_type == QM_HW_VF) 2881 writel(state, qm->io_base + QM_VF_STATE); 2882 } 2883 2884 static void hisi_qm_unint_work(struct hisi_qm *qm) 2885 { 2886 destroy_workqueue(qm->wq); 2887 } 2888 2889 static void hisi_qm_free_rsv_buf(struct hisi_qm *qm) 2890 { 2891 struct qm_dma *xqc_dma = &qm->xqc_buf.qcdma; 2892 struct device *dev = &qm->pdev->dev; 2893 2894 dma_free_coherent(dev, xqc_dma->size, xqc_dma->va, xqc_dma->dma); 2895 } 2896 2897 static void hisi_qm_memory_uninit(struct hisi_qm *qm) 2898 { 2899 struct device *dev = &qm->pdev->dev; 2900 2901 hisi_qp_memory_uninit(qm, qm->qp_num); 2902 hisi_qm_free_rsv_buf(qm); 2903 if (qm->qdma.va) { 2904 hisi_qm_cache_wb(qm); 2905 dma_free_coherent(dev, qm->qdma.size, 2906 qm->qdma.va, qm->qdma.dma); 2907 } 2908 2909 idr_destroy(&qm->qp_idr); 2910 2911 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 2912 kfree(qm->factor); 2913 } 2914 2915 /** 2916 * hisi_qm_uninit() - Uninitialize qm. 2917 * @qm: The qm needed uninit. 2918 * 2919 * This function uninits qm related device resources. 2920 */ 2921 void hisi_qm_uninit(struct hisi_qm *qm) 2922 { 2923 qm_cmd_uninit(qm); 2924 hisi_qm_unint_work(qm); 2925 2926 down_write(&qm->qps_lock); 2927 hisi_qm_memory_uninit(qm); 2928 hisi_qm_set_state(qm, QM_NOT_READY); 2929 up_write(&qm->qps_lock); 2930 2931 qm_remove_uacce(qm); 2932 qm_irqs_unregister(qm); 2933 hisi_qm_pci_uninit(qm); 2934 } 2935 EXPORT_SYMBOL_GPL(hisi_qm_uninit); 2936 2937 /** 2938 * hisi_qm_get_vft() - Get vft from a qm. 2939 * @qm: The qm we want to get its vft. 2940 * @base: The base number of queue in vft. 2941 * @number: The number of queues in vft. 2942 * 2943 * We can allocate multiple queues to a qm by configuring virtual function 2944 * table. We get related configures by this function. Normally, we call this 2945 * function in VF driver to get the queue information. 2946 * 2947 * qm hw v1 does not support this interface. 2948 */ 2949 static int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number) 2950 { 2951 if (!base || !number) 2952 return -EINVAL; 2953 2954 if (!qm->ops->get_vft) { 2955 dev_err(&qm->pdev->dev, "Don't support vft read!\n"); 2956 return -EINVAL; 2957 } 2958 2959 return qm->ops->get_vft(qm, base, number); 2960 } 2961 2962 /** 2963 * hisi_qm_set_vft() - Set vft to a qm. 2964 * @qm: The qm we want to set its vft. 2965 * @fun_num: The function number. 2966 * @base: The base number of queue in vft. 2967 * @number: The number of queues in vft. 2968 * 2969 * This function is alway called in PF driver, it is used to assign queues 2970 * among PF and VFs. 2971 * 2972 * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1) 2973 * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1) 2974 * (VF function number 0x2) 2975 */ 2976 static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base, 2977 u32 number) 2978 { 2979 u32 max_q_num = qm->ctrl_qp_num; 2980 2981 if (base >= max_q_num || number > max_q_num || 2982 (base + number) > max_q_num) 2983 return -EINVAL; 2984 2985 return qm_set_sqc_cqc_vft(qm, fun_num, base, number); 2986 } 2987 2988 static void qm_init_eq_aeq_status(struct hisi_qm *qm) 2989 { 2990 struct hisi_qm_status *status = &qm->status; 2991 2992 status->eq_head = 0; 2993 status->aeq_head = 0; 2994 status->eqc_phase = true; 2995 status->aeqc_phase = true; 2996 } 2997 2998 static void qm_enable_eq_aeq_interrupts(struct hisi_qm *qm) 2999 { 3000 /* Clear eq/aeq interrupt source */ 3001 qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0); 3002 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 3003 3004 writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK); 3005 writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK); 3006 } 3007 3008 static void qm_disable_eq_aeq_interrupts(struct hisi_qm *qm) 3009 { 3010 writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK); 3011 writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK); 3012 } 3013 3014 static int qm_eq_ctx_cfg(struct hisi_qm *qm) 3015 { 3016 struct qm_eqc eqc = {0}; 3017 3018 eqc.base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma)); 3019 eqc.base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma)); 3020 if (qm->ver == QM_HW_V1) 3021 eqc.dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE); 3022 eqc.dw6 = cpu_to_le32(((u32)qm->eq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT)); 3023 3024 return qm_set_and_get_xqc(qm, QM_MB_CMD_EQC, &eqc, 0, 0); 3025 } 3026 3027 static int qm_aeq_ctx_cfg(struct hisi_qm *qm) 3028 { 3029 struct qm_aeqc aeqc = {0}; 3030 3031 aeqc.base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma)); 3032 aeqc.base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma)); 3033 aeqc.dw6 = cpu_to_le32(((u32)qm->aeq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT)); 3034 3035 return qm_set_and_get_xqc(qm, QM_MB_CMD_AEQC, &aeqc, 0, 0); 3036 } 3037 3038 static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm) 3039 { 3040 struct device *dev = &qm->pdev->dev; 3041 int ret; 3042 3043 qm_init_eq_aeq_status(qm); 3044 3045 ret = qm_eq_ctx_cfg(qm); 3046 if (ret) { 3047 dev_err(dev, "Set eqc failed!\n"); 3048 return ret; 3049 } 3050 3051 return qm_aeq_ctx_cfg(qm); 3052 } 3053 3054 static int __hisi_qm_start(struct hisi_qm *qm) 3055 { 3056 int ret; 3057 3058 WARN_ON(!qm->qdma.va); 3059 3060 if (qm->fun_type == QM_HW_PF) { 3061 ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num); 3062 if (ret) 3063 return ret; 3064 } 3065 3066 ret = qm_eq_aeq_ctx_cfg(qm); 3067 if (ret) 3068 return ret; 3069 3070 ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0); 3071 if (ret) 3072 return ret; 3073 3074 ret = hisi_qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0); 3075 if (ret) 3076 return ret; 3077 3078 qm_init_prefetch(qm); 3079 qm_enable_eq_aeq_interrupts(qm); 3080 3081 return 0; 3082 } 3083 3084 /** 3085 * hisi_qm_start() - start qm 3086 * @qm: The qm to be started. 3087 * 3088 * This function starts a qm, then we can allocate qp from this qm. 3089 */ 3090 int hisi_qm_start(struct hisi_qm *qm) 3091 { 3092 struct device *dev = &qm->pdev->dev; 3093 int ret = 0; 3094 3095 down_write(&qm->qps_lock); 3096 3097 dev_dbg(dev, "qm start with %u queue pairs\n", qm->qp_num); 3098 3099 if (!qm->qp_num) { 3100 dev_err(dev, "qp_num should not be 0\n"); 3101 ret = -EINVAL; 3102 goto err_unlock; 3103 } 3104 3105 ret = __hisi_qm_start(qm); 3106 if (ret) 3107 goto err_unlock; 3108 3109 atomic_set(&qm->status.flags, QM_WORK); 3110 hisi_qm_set_state(qm, QM_READY); 3111 3112 err_unlock: 3113 up_write(&qm->qps_lock); 3114 return ret; 3115 } 3116 EXPORT_SYMBOL_GPL(hisi_qm_start); 3117 3118 static int qm_restart(struct hisi_qm *qm) 3119 { 3120 struct device *dev = &qm->pdev->dev; 3121 struct hisi_qp *qp; 3122 int ret, i; 3123 3124 ret = hisi_qm_start(qm); 3125 if (ret < 0) 3126 return ret; 3127 3128 down_write(&qm->qps_lock); 3129 for (i = 0; i < qm->qp_num; i++) { 3130 qp = &qm->qp_array[i]; 3131 if (atomic_read(&qp->qp_status.flags) == QP_STOP && 3132 qp->is_resetting == true) { 3133 ret = qm_start_qp_nolock(qp, 0); 3134 if (ret < 0) { 3135 dev_err(dev, "Failed to start qp%d!\n", i); 3136 3137 up_write(&qm->qps_lock); 3138 return ret; 3139 } 3140 qp->is_resetting = false; 3141 } 3142 } 3143 up_write(&qm->qps_lock); 3144 3145 return 0; 3146 } 3147 3148 /* Stop started qps in reset flow */ 3149 static void qm_stop_started_qp(struct hisi_qm *qm) 3150 { 3151 struct hisi_qp *qp; 3152 int i; 3153 3154 for (i = 0; i < qm->qp_num; i++) { 3155 qp = &qm->qp_array[i]; 3156 if (atomic_read(&qp->qp_status.flags) == QP_START) { 3157 qp->is_resetting = true; 3158 qm_stop_qp_nolock(qp); 3159 } 3160 } 3161 } 3162 3163 /** 3164 * qm_clear_queues() - Clear all queues memory in a qm. 3165 * @qm: The qm in which the queues will be cleared. 3166 * 3167 * This function clears all queues memory in a qm. Reset of accelerator can 3168 * use this to clear queues. 3169 */ 3170 static void qm_clear_queues(struct hisi_qm *qm) 3171 { 3172 struct hisi_qp *qp; 3173 int i; 3174 3175 for (i = 0; i < qm->qp_num; i++) { 3176 qp = &qm->qp_array[i]; 3177 if (qp->is_in_kernel && qp->is_resetting) 3178 memset(qp->qdma.va, 0, qp->qdma.size); 3179 } 3180 3181 memset(qm->qdma.va, 0, qm->qdma.size); 3182 } 3183 3184 /** 3185 * hisi_qm_stop() - Stop a qm. 3186 * @qm: The qm which will be stopped. 3187 * @r: The reason to stop qm. 3188 * 3189 * This function stops qm and its qps, then qm can not accept request. 3190 * Related resources are not released at this state, we can use hisi_qm_start 3191 * to let qm start again. 3192 */ 3193 int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r) 3194 { 3195 struct device *dev = &qm->pdev->dev; 3196 int ret = 0; 3197 3198 down_write(&qm->qps_lock); 3199 3200 if (atomic_read(&qm->status.flags) == QM_STOP) 3201 goto err_unlock; 3202 3203 /* Stop all the request sending at first. */ 3204 atomic_set(&qm->status.flags, QM_STOP); 3205 qm->status.stop_reason = r; 3206 3207 if (qm->status.stop_reason != QM_NORMAL) { 3208 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 3209 /* 3210 * When performing soft reset, the hardware will no longer 3211 * do tasks, and the tasks in the device will be flushed 3212 * out directly since the master ooo is closed. 3213 */ 3214 if (test_bit(QM_SUPPORT_STOP_FUNC, &qm->caps) && 3215 r != QM_SOFT_RESET) { 3216 ret = qm_drain_qm(qm); 3217 if (ret) { 3218 dev_err(dev, "failed to drain qm!\n"); 3219 goto err_unlock; 3220 } 3221 } 3222 3223 qm_stop_started_qp(qm); 3224 3225 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 3226 } 3227 3228 qm_disable_eq_aeq_interrupts(qm); 3229 if (qm->fun_type == QM_HW_PF) { 3230 ret = hisi_qm_set_vft(qm, 0, 0, 0); 3231 if (ret < 0) { 3232 dev_err(dev, "Failed to set vft!\n"); 3233 ret = -EBUSY; 3234 goto err_unlock; 3235 } 3236 } 3237 3238 qm_clear_queues(qm); 3239 qm->status.stop_reason = QM_NORMAL; 3240 3241 err_unlock: 3242 up_write(&qm->qps_lock); 3243 return ret; 3244 } 3245 EXPORT_SYMBOL_GPL(hisi_qm_stop); 3246 3247 static void qm_hw_error_init(struct hisi_qm *qm) 3248 { 3249 if (!qm->ops->hw_error_init) { 3250 dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n"); 3251 return; 3252 } 3253 3254 qm->ops->hw_error_init(qm); 3255 } 3256 3257 static void qm_hw_error_uninit(struct hisi_qm *qm) 3258 { 3259 if (!qm->ops->hw_error_uninit) { 3260 dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n"); 3261 return; 3262 } 3263 3264 qm->ops->hw_error_uninit(qm); 3265 } 3266 3267 static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm) 3268 { 3269 if (!qm->ops->hw_error_handle) { 3270 dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n"); 3271 return ACC_ERR_NONE; 3272 } 3273 3274 return qm->ops->hw_error_handle(qm); 3275 } 3276 3277 /** 3278 * hisi_qm_dev_err_init() - Initialize device error configuration. 3279 * @qm: The qm for which we want to do error initialization. 3280 * 3281 * Initialize QM and device error related configuration. 3282 */ 3283 void hisi_qm_dev_err_init(struct hisi_qm *qm) 3284 { 3285 if (qm->fun_type == QM_HW_VF) 3286 return; 3287 3288 qm_hw_error_init(qm); 3289 3290 if (!qm->err_ini->hw_err_enable) { 3291 dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n"); 3292 return; 3293 } 3294 qm->err_ini->hw_err_enable(qm); 3295 } 3296 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init); 3297 3298 /** 3299 * hisi_qm_dev_err_uninit() - Uninitialize device error configuration. 3300 * @qm: The qm for which we want to do error uninitialization. 3301 * 3302 * Uninitialize QM and device error related configuration. 3303 */ 3304 void hisi_qm_dev_err_uninit(struct hisi_qm *qm) 3305 { 3306 if (qm->fun_type == QM_HW_VF) 3307 return; 3308 3309 qm_hw_error_uninit(qm); 3310 3311 if (!qm->err_ini->hw_err_disable) { 3312 dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n"); 3313 return; 3314 } 3315 qm->err_ini->hw_err_disable(qm); 3316 } 3317 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit); 3318 3319 /** 3320 * hisi_qm_free_qps() - free multiple queue pairs. 3321 * @qps: The queue pairs need to be freed. 3322 * @qp_num: The num of queue pairs. 3323 */ 3324 void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num) 3325 { 3326 int i; 3327 3328 if (!qps || qp_num <= 0) 3329 return; 3330 3331 for (i = qp_num - 1; i >= 0; i--) 3332 hisi_qm_release_qp(qps[i]); 3333 } 3334 EXPORT_SYMBOL_GPL(hisi_qm_free_qps); 3335 3336 static void free_list(struct list_head *head) 3337 { 3338 struct hisi_qm_resource *res, *tmp; 3339 3340 list_for_each_entry_safe(res, tmp, head, list) { 3341 list_del(&res->list); 3342 kfree(res); 3343 } 3344 } 3345 3346 static int hisi_qm_sort_devices(int node, struct list_head *head, 3347 struct hisi_qm_list *qm_list) 3348 { 3349 struct hisi_qm_resource *res, *tmp; 3350 struct hisi_qm *qm; 3351 struct list_head *n; 3352 struct device *dev; 3353 int dev_node; 3354 3355 list_for_each_entry(qm, &qm_list->list, list) { 3356 dev = &qm->pdev->dev; 3357 3358 dev_node = dev_to_node(dev); 3359 if (dev_node < 0) 3360 dev_node = 0; 3361 3362 res = kzalloc(sizeof(*res), GFP_KERNEL); 3363 if (!res) 3364 return -ENOMEM; 3365 3366 res->qm = qm; 3367 res->distance = node_distance(dev_node, node); 3368 n = head; 3369 list_for_each_entry(tmp, head, list) { 3370 if (res->distance < tmp->distance) { 3371 n = &tmp->list; 3372 break; 3373 } 3374 } 3375 list_add_tail(&res->list, n); 3376 } 3377 3378 return 0; 3379 } 3380 3381 /** 3382 * hisi_qm_alloc_qps_node() - Create multiple queue pairs. 3383 * @qm_list: The list of all available devices. 3384 * @qp_num: The number of queue pairs need created. 3385 * @alg_type: The algorithm type. 3386 * @node: The numa node. 3387 * @qps: The queue pairs need created. 3388 * 3389 * This function will sort all available device according to numa distance. 3390 * Then try to create all queue pairs from one device, if all devices do 3391 * not meet the requirements will return error. 3392 */ 3393 int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num, 3394 u8 alg_type, int node, struct hisi_qp **qps) 3395 { 3396 struct hisi_qm_resource *tmp; 3397 int ret = -ENODEV; 3398 LIST_HEAD(head); 3399 int i; 3400 3401 if (!qps || !qm_list || qp_num <= 0) 3402 return -EINVAL; 3403 3404 mutex_lock(&qm_list->lock); 3405 if (hisi_qm_sort_devices(node, &head, qm_list)) { 3406 mutex_unlock(&qm_list->lock); 3407 goto err; 3408 } 3409 3410 list_for_each_entry(tmp, &head, list) { 3411 for (i = 0; i < qp_num; i++) { 3412 qps[i] = hisi_qm_create_qp(tmp->qm, alg_type); 3413 if (IS_ERR(qps[i])) { 3414 hisi_qm_free_qps(qps, i); 3415 break; 3416 } 3417 } 3418 3419 if (i == qp_num) { 3420 ret = 0; 3421 break; 3422 } 3423 } 3424 3425 mutex_unlock(&qm_list->lock); 3426 if (ret) 3427 pr_info("Failed to create qps, node[%d], alg[%u], qp[%d]!\n", 3428 node, alg_type, qp_num); 3429 3430 err: 3431 free_list(&head); 3432 return ret; 3433 } 3434 EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node); 3435 3436 static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs) 3437 { 3438 u32 remain_q_num, vfs_q_num, act_q_num, q_num, i, j; 3439 u32 max_qp_num = qm->max_qp_num; 3440 u32 q_base = qm->qp_num; 3441 int ret; 3442 3443 if (!num_vfs) 3444 return -EINVAL; 3445 3446 vfs_q_num = qm->ctrl_qp_num - qm->qp_num; 3447 3448 /* If vfs_q_num is less than num_vfs, return error. */ 3449 if (vfs_q_num < num_vfs) 3450 return -EINVAL; 3451 3452 q_num = vfs_q_num / num_vfs; 3453 remain_q_num = vfs_q_num % num_vfs; 3454 3455 for (i = num_vfs; i > 0; i--) { 3456 /* 3457 * if q_num + remain_q_num > max_qp_num in last vf, divide the 3458 * remaining queues equally. 3459 */ 3460 if (i == num_vfs && q_num + remain_q_num <= max_qp_num) { 3461 act_q_num = q_num + remain_q_num; 3462 remain_q_num = 0; 3463 } else if (remain_q_num > 0) { 3464 act_q_num = q_num + 1; 3465 remain_q_num--; 3466 } else { 3467 act_q_num = q_num; 3468 } 3469 3470 act_q_num = min(act_q_num, max_qp_num); 3471 ret = hisi_qm_set_vft(qm, i, q_base, act_q_num); 3472 if (ret) { 3473 for (j = num_vfs; j > i; j--) 3474 hisi_qm_set_vft(qm, j, 0, 0); 3475 return ret; 3476 } 3477 q_base += act_q_num; 3478 } 3479 3480 return 0; 3481 } 3482 3483 static int qm_clear_vft_config(struct hisi_qm *qm) 3484 { 3485 int ret; 3486 u32 i; 3487 3488 for (i = 1; i <= qm->vfs_num; i++) { 3489 ret = hisi_qm_set_vft(qm, i, 0, 0); 3490 if (ret) 3491 return ret; 3492 } 3493 qm->vfs_num = 0; 3494 3495 return 0; 3496 } 3497 3498 static int qm_func_shaper_enable(struct hisi_qm *qm, u32 fun_index, u32 qos) 3499 { 3500 struct device *dev = &qm->pdev->dev; 3501 u32 ir = qos * QM_QOS_RATE; 3502 int ret, total_vfs, i; 3503 3504 total_vfs = pci_sriov_get_totalvfs(qm->pdev); 3505 if (fun_index > total_vfs) 3506 return -EINVAL; 3507 3508 qm->factor[fun_index].func_qos = qos; 3509 3510 ret = qm_get_shaper_para(ir, &qm->factor[fun_index]); 3511 if (ret) { 3512 dev_err(dev, "failed to calculate shaper parameter!\n"); 3513 return -EINVAL; 3514 } 3515 3516 for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) { 3517 /* The base number of queue reuse for different alg type */ 3518 ret = qm_set_vft_common(qm, SHAPER_VFT, fun_index, i, 1); 3519 if (ret) { 3520 dev_err(dev, "type: %d, failed to set shaper vft!\n", i); 3521 return -EINVAL; 3522 } 3523 } 3524 3525 return 0; 3526 } 3527 3528 static u32 qm_get_shaper_vft_qos(struct hisi_qm *qm, u32 fun_index) 3529 { 3530 u64 cir_u = 0, cir_b = 0, cir_s = 0; 3531 u64 shaper_vft, ir_calc, ir; 3532 unsigned int val; 3533 u32 error_rate; 3534 int ret; 3535 3536 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 3537 val & BIT(0), POLL_PERIOD, 3538 POLL_TIMEOUT); 3539 if (ret) 3540 return 0; 3541 3542 writel(0x1, qm->io_base + QM_VFT_CFG_OP_WR); 3543 writel(SHAPER_VFT, qm->io_base + QM_VFT_CFG_TYPE); 3544 writel(fun_index, qm->io_base + QM_VFT_CFG); 3545 3546 writel(0x0, qm->io_base + QM_VFT_CFG_RDY); 3547 writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE); 3548 3549 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 3550 val & BIT(0), POLL_PERIOD, 3551 POLL_TIMEOUT); 3552 if (ret) 3553 return 0; 3554 3555 shaper_vft = readl(qm->io_base + QM_VFT_CFG_DATA_L) | 3556 ((u64)readl(qm->io_base + QM_VFT_CFG_DATA_H) << 32); 3557 3558 cir_b = shaper_vft & QM_SHAPER_CIR_B_MASK; 3559 cir_u = shaper_vft & QM_SHAPER_CIR_U_MASK; 3560 cir_u = cir_u >> QM_SHAPER_FACTOR_CIR_U_SHIFT; 3561 3562 cir_s = shaper_vft & QM_SHAPER_CIR_S_MASK; 3563 cir_s = cir_s >> QM_SHAPER_FACTOR_CIR_S_SHIFT; 3564 3565 ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s); 3566 3567 ir = qm->factor[fun_index].func_qos * QM_QOS_RATE; 3568 3569 error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir; 3570 if (error_rate > QM_QOS_MIN_ERROR_RATE) { 3571 pci_err(qm->pdev, "error_rate: %u, get function qos is error!\n", error_rate); 3572 return 0; 3573 } 3574 3575 return ir; 3576 } 3577 3578 static void qm_vf_get_qos(struct hisi_qm *qm, u32 fun_num) 3579 { 3580 struct device *dev = &qm->pdev->dev; 3581 u64 mb_cmd; 3582 u32 qos; 3583 int ret; 3584 3585 qos = qm_get_shaper_vft_qos(qm, fun_num); 3586 if (!qos) { 3587 dev_err(dev, "function(%u) failed to get qos by PF!\n", fun_num); 3588 return; 3589 } 3590 3591 mb_cmd = QM_PF_SET_QOS | (u64)qos << QM_MB_CMD_DATA_SHIFT; 3592 ret = qm_ping_single_vf(qm, mb_cmd, fun_num); 3593 if (ret) 3594 dev_err(dev, "failed to send cmd to VF(%u)!\n", fun_num); 3595 } 3596 3597 static int qm_vf_read_qos(struct hisi_qm *qm) 3598 { 3599 int cnt = 0; 3600 int ret = -EINVAL; 3601 3602 /* reset mailbox qos val */ 3603 qm->mb_qos = 0; 3604 3605 /* vf ping pf to get function qos */ 3606 ret = qm_ping_pf(qm, QM_VF_GET_QOS); 3607 if (ret) { 3608 pci_err(qm->pdev, "failed to send cmd to PF to get qos!\n"); 3609 return ret; 3610 } 3611 3612 while (true) { 3613 msleep(QM_WAIT_DST_ACK); 3614 if (qm->mb_qos) 3615 break; 3616 3617 if (++cnt > QM_MAX_VF_WAIT_COUNT) { 3618 pci_err(qm->pdev, "PF ping VF timeout!\n"); 3619 return -ETIMEDOUT; 3620 } 3621 } 3622 3623 return ret; 3624 } 3625 3626 static ssize_t qm_algqos_read(struct file *filp, char __user *buf, 3627 size_t count, loff_t *pos) 3628 { 3629 struct hisi_qm *qm = filp->private_data; 3630 char tbuf[QM_DBG_READ_LEN]; 3631 u32 qos_val, ir; 3632 int ret; 3633 3634 ret = hisi_qm_get_dfx_access(qm); 3635 if (ret) 3636 return ret; 3637 3638 /* Mailbox and reset cannot be operated at the same time */ 3639 if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 3640 pci_err(qm->pdev, "dev resetting, read alg qos failed!\n"); 3641 ret = -EAGAIN; 3642 goto err_put_dfx_access; 3643 } 3644 3645 if (qm->fun_type == QM_HW_PF) { 3646 ir = qm_get_shaper_vft_qos(qm, 0); 3647 } else { 3648 ret = qm_vf_read_qos(qm); 3649 if (ret) 3650 goto err_get_status; 3651 ir = qm->mb_qos; 3652 } 3653 3654 qos_val = ir / QM_QOS_RATE; 3655 ret = scnprintf(tbuf, QM_DBG_READ_LEN, "%u\n", qos_val); 3656 3657 ret = simple_read_from_buffer(buf, count, pos, tbuf, ret); 3658 3659 err_get_status: 3660 clear_bit(QM_RESETTING, &qm->misc_ctl); 3661 err_put_dfx_access: 3662 hisi_qm_put_dfx_access(qm); 3663 return ret; 3664 } 3665 3666 static ssize_t qm_get_qos_value(struct hisi_qm *qm, const char *buf, 3667 unsigned long *val, 3668 unsigned int *fun_index) 3669 { 3670 const struct bus_type *bus_type = qm->pdev->dev.bus; 3671 char tbuf_bdf[QM_DBG_READ_LEN] = {0}; 3672 char val_buf[QM_DBG_READ_LEN] = {0}; 3673 struct pci_dev *pdev; 3674 struct device *dev; 3675 int ret; 3676 3677 ret = sscanf(buf, "%s %s", tbuf_bdf, val_buf); 3678 if (ret != QM_QOS_PARAM_NUM) 3679 return -EINVAL; 3680 3681 ret = kstrtoul(val_buf, 10, val); 3682 if (ret || *val == 0 || *val > QM_QOS_MAX_VAL) { 3683 pci_err(qm->pdev, "input qos value is error, please set 1~1000!\n"); 3684 return -EINVAL; 3685 } 3686 3687 dev = bus_find_device_by_name(bus_type, NULL, tbuf_bdf); 3688 if (!dev) { 3689 pci_err(qm->pdev, "input pci bdf number is error!\n"); 3690 return -ENODEV; 3691 } 3692 3693 pdev = container_of(dev, struct pci_dev, dev); 3694 3695 *fun_index = pdev->devfn; 3696 3697 return 0; 3698 } 3699 3700 static ssize_t qm_algqos_write(struct file *filp, const char __user *buf, 3701 size_t count, loff_t *pos) 3702 { 3703 struct hisi_qm *qm = filp->private_data; 3704 char tbuf[QM_DBG_READ_LEN]; 3705 unsigned int fun_index; 3706 unsigned long val; 3707 int len, ret; 3708 3709 if (*pos != 0) 3710 return 0; 3711 3712 if (count >= QM_DBG_READ_LEN) 3713 return -ENOSPC; 3714 3715 len = simple_write_to_buffer(tbuf, QM_DBG_READ_LEN - 1, pos, buf, count); 3716 if (len < 0) 3717 return len; 3718 3719 tbuf[len] = '\0'; 3720 ret = qm_get_qos_value(qm, tbuf, &val, &fun_index); 3721 if (ret) 3722 return ret; 3723 3724 /* Mailbox and reset cannot be operated at the same time */ 3725 if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 3726 pci_err(qm->pdev, "dev resetting, write alg qos failed!\n"); 3727 return -EAGAIN; 3728 } 3729 3730 ret = qm_pm_get_sync(qm); 3731 if (ret) { 3732 ret = -EINVAL; 3733 goto err_get_status; 3734 } 3735 3736 ret = qm_func_shaper_enable(qm, fun_index, val); 3737 if (ret) { 3738 pci_err(qm->pdev, "failed to enable function shaper!\n"); 3739 ret = -EINVAL; 3740 goto err_put_sync; 3741 } 3742 3743 pci_info(qm->pdev, "the qos value of function%u is set to %lu.\n", 3744 fun_index, val); 3745 ret = count; 3746 3747 err_put_sync: 3748 qm_pm_put_sync(qm); 3749 err_get_status: 3750 clear_bit(QM_RESETTING, &qm->misc_ctl); 3751 return ret; 3752 } 3753 3754 static const struct file_operations qm_algqos_fops = { 3755 .owner = THIS_MODULE, 3756 .open = simple_open, 3757 .read = qm_algqos_read, 3758 .write = qm_algqos_write, 3759 }; 3760 3761 /** 3762 * hisi_qm_set_algqos_init() - Initialize function qos debugfs files. 3763 * @qm: The qm for which we want to add debugfs files. 3764 * 3765 * Create function qos debugfs files, VF ping PF to get function qos. 3766 */ 3767 void hisi_qm_set_algqos_init(struct hisi_qm *qm) 3768 { 3769 if (qm->fun_type == QM_HW_PF) 3770 debugfs_create_file("alg_qos", 0644, qm->debug.debug_root, 3771 qm, &qm_algqos_fops); 3772 else if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 3773 debugfs_create_file("alg_qos", 0444, qm->debug.debug_root, 3774 qm, &qm_algqos_fops); 3775 } 3776 3777 static void hisi_qm_init_vf_qos(struct hisi_qm *qm, int total_func) 3778 { 3779 int i; 3780 3781 for (i = 1; i <= total_func; i++) 3782 qm->factor[i].func_qos = QM_QOS_MAX_VAL; 3783 } 3784 3785 /** 3786 * hisi_qm_sriov_enable() - enable virtual functions 3787 * @pdev: the PCIe device 3788 * @max_vfs: the number of virtual functions to enable 3789 * 3790 * Returns the number of enabled VFs. If there are VFs enabled already or 3791 * max_vfs is more than the total number of device can be enabled, returns 3792 * failure. 3793 */ 3794 int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs) 3795 { 3796 struct hisi_qm *qm = pci_get_drvdata(pdev); 3797 int pre_existing_vfs, num_vfs, total_vfs, ret; 3798 3799 ret = qm_pm_get_sync(qm); 3800 if (ret) 3801 return ret; 3802 3803 total_vfs = pci_sriov_get_totalvfs(pdev); 3804 pre_existing_vfs = pci_num_vf(pdev); 3805 if (pre_existing_vfs) { 3806 pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n", 3807 pre_existing_vfs); 3808 goto err_put_sync; 3809 } 3810 3811 if (max_vfs > total_vfs) { 3812 pci_err(pdev, "%d VFs is more than total VFs %d!\n", max_vfs, total_vfs); 3813 ret = -ERANGE; 3814 goto err_put_sync; 3815 } 3816 3817 num_vfs = max_vfs; 3818 3819 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 3820 hisi_qm_init_vf_qos(qm, num_vfs); 3821 3822 ret = qm_vf_q_assign(qm, num_vfs); 3823 if (ret) { 3824 pci_err(pdev, "Can't assign queues for VF!\n"); 3825 goto err_put_sync; 3826 } 3827 3828 ret = pci_enable_sriov(pdev, num_vfs); 3829 if (ret) { 3830 pci_err(pdev, "Can't enable VF!\n"); 3831 qm_clear_vft_config(qm); 3832 goto err_put_sync; 3833 } 3834 qm->vfs_num = num_vfs; 3835 3836 pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs); 3837 3838 return num_vfs; 3839 3840 err_put_sync: 3841 qm_pm_put_sync(qm); 3842 return ret; 3843 } 3844 EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable); 3845 3846 /** 3847 * hisi_qm_sriov_disable - disable virtual functions 3848 * @pdev: the PCI device. 3849 * @is_frozen: true when all the VFs are frozen. 3850 * 3851 * Return failure if there are VFs assigned already or VF is in used. 3852 */ 3853 int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen) 3854 { 3855 struct hisi_qm *qm = pci_get_drvdata(pdev); 3856 3857 if (pci_vfs_assigned(pdev)) { 3858 pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n"); 3859 return -EPERM; 3860 } 3861 3862 /* While VF is in used, SRIOV cannot be disabled. */ 3863 if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) { 3864 pci_err(pdev, "Task is using its VF!\n"); 3865 return -EBUSY; 3866 } 3867 3868 pci_disable_sriov(pdev); 3869 3870 qm->vfs_num = 0; 3871 qm_pm_put_sync(qm); 3872 3873 return qm_clear_vft_config(qm); 3874 } 3875 EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable); 3876 3877 /** 3878 * hisi_qm_sriov_configure - configure the number of VFs 3879 * @pdev: The PCI device 3880 * @num_vfs: The number of VFs need enabled 3881 * 3882 * Enable SR-IOV according to num_vfs, 0 means disable. 3883 */ 3884 int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs) 3885 { 3886 if (num_vfs == 0) 3887 return hisi_qm_sriov_disable(pdev, false); 3888 else 3889 return hisi_qm_sriov_enable(pdev, num_vfs); 3890 } 3891 EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure); 3892 3893 static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm) 3894 { 3895 u32 err_sts; 3896 3897 if (!qm->err_ini->get_dev_hw_err_status) { 3898 dev_err(&qm->pdev->dev, "Device doesn't support get hw error status!\n"); 3899 return ACC_ERR_NONE; 3900 } 3901 3902 /* get device hardware error status */ 3903 err_sts = qm->err_ini->get_dev_hw_err_status(qm); 3904 if (err_sts) { 3905 if (err_sts & qm->err_info.ecc_2bits_mask) 3906 qm->err_status.is_dev_ecc_mbit = true; 3907 3908 if (qm->err_ini->log_dev_hw_err) 3909 qm->err_ini->log_dev_hw_err(qm, err_sts); 3910 3911 if (err_sts & qm->err_info.dev_reset_mask) 3912 return ACC_ERR_NEED_RESET; 3913 3914 if (qm->err_ini->clear_dev_hw_err_status) 3915 qm->err_ini->clear_dev_hw_err_status(qm, err_sts); 3916 } 3917 3918 return ACC_ERR_RECOVERED; 3919 } 3920 3921 static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm) 3922 { 3923 enum acc_err_result qm_ret, dev_ret; 3924 3925 /* log qm error */ 3926 qm_ret = qm_hw_error_handle(qm); 3927 3928 /* log device error */ 3929 dev_ret = qm_dev_err_handle(qm); 3930 3931 return (qm_ret == ACC_ERR_NEED_RESET || 3932 dev_ret == ACC_ERR_NEED_RESET) ? 3933 ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED; 3934 } 3935 3936 /** 3937 * hisi_qm_dev_err_detected() - Get device and qm error status then log it. 3938 * @pdev: The PCI device which need report error. 3939 * @state: The connectivity between CPU and device. 3940 * 3941 * We register this function into PCIe AER handlers, It will report device or 3942 * qm hardware error status when error occur. 3943 */ 3944 pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev, 3945 pci_channel_state_t state) 3946 { 3947 struct hisi_qm *qm = pci_get_drvdata(pdev); 3948 enum acc_err_result ret; 3949 3950 if (pdev->is_virtfn) 3951 return PCI_ERS_RESULT_NONE; 3952 3953 pci_info(pdev, "PCI error detected, state(=%u)!!\n", state); 3954 if (state == pci_channel_io_perm_failure) 3955 return PCI_ERS_RESULT_DISCONNECT; 3956 3957 ret = qm_process_dev_error(qm); 3958 if (ret == ACC_ERR_NEED_RESET) 3959 return PCI_ERS_RESULT_NEED_RESET; 3960 3961 return PCI_ERS_RESULT_RECOVERED; 3962 } 3963 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected); 3964 3965 static int qm_check_req_recv(struct hisi_qm *qm) 3966 { 3967 struct pci_dev *pdev = qm->pdev; 3968 int ret; 3969 u32 val; 3970 3971 if (qm->ver >= QM_HW_V3) 3972 return 0; 3973 3974 writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID); 3975 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val, 3976 (val == ACC_VENDOR_ID_VALUE), 3977 POLL_PERIOD, POLL_TIMEOUT); 3978 if (ret) { 3979 dev_err(&pdev->dev, "Fails to read QM reg!\n"); 3980 return ret; 3981 } 3982 3983 writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID); 3984 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val, 3985 (val == PCI_VENDOR_ID_HUAWEI), 3986 POLL_PERIOD, POLL_TIMEOUT); 3987 if (ret) 3988 dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n"); 3989 3990 return ret; 3991 } 3992 3993 static int qm_set_pf_mse(struct hisi_qm *qm, bool set) 3994 { 3995 struct pci_dev *pdev = qm->pdev; 3996 u16 cmd; 3997 int i; 3998 3999 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 4000 if (set) 4001 cmd |= PCI_COMMAND_MEMORY; 4002 else 4003 cmd &= ~PCI_COMMAND_MEMORY; 4004 4005 pci_write_config_word(pdev, PCI_COMMAND, cmd); 4006 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 4007 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 4008 if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1)) 4009 return 0; 4010 4011 udelay(1); 4012 } 4013 4014 return -ETIMEDOUT; 4015 } 4016 4017 static int qm_set_vf_mse(struct hisi_qm *qm, bool set) 4018 { 4019 struct pci_dev *pdev = qm->pdev; 4020 u16 sriov_ctrl; 4021 int pos; 4022 int i; 4023 4024 /* 4025 * Since function qm_set_vf_mse is called only after SRIOV is enabled, 4026 * pci_find_ext_capability cannot return 0, pos does not need to be 4027 * checked. 4028 */ 4029 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); 4030 pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl); 4031 if (set) 4032 sriov_ctrl |= PCI_SRIOV_CTRL_MSE; 4033 else 4034 sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE; 4035 pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl); 4036 4037 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 4038 pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl); 4039 if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >> 4040 ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT) 4041 return 0; 4042 4043 udelay(1); 4044 } 4045 4046 return -ETIMEDOUT; 4047 } 4048 4049 static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm) 4050 { 4051 u32 nfe_enb = 0; 4052 4053 /* Kunpeng930 hardware automatically close master ooo when NFE occurs */ 4054 if (qm->ver >= QM_HW_V3) 4055 return; 4056 4057 if (!qm->err_status.is_dev_ecc_mbit && 4058 qm->err_status.is_qm_ecc_mbit && 4059 qm->err_ini->close_axi_master_ooo) { 4060 qm->err_ini->close_axi_master_ooo(qm); 4061 } else if (qm->err_status.is_dev_ecc_mbit && 4062 !qm->err_status.is_qm_ecc_mbit && 4063 !qm->err_ini->close_axi_master_ooo) { 4064 nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE); 4065 writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE, 4066 qm->io_base + QM_RAS_NFE_ENABLE); 4067 writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET); 4068 } 4069 } 4070 4071 static int qm_vf_reset_prepare(struct hisi_qm *qm, 4072 enum qm_stop_reason stop_reason) 4073 { 4074 struct hisi_qm_list *qm_list = qm->qm_list; 4075 struct pci_dev *pdev = qm->pdev; 4076 struct pci_dev *virtfn; 4077 struct hisi_qm *vf_qm; 4078 int ret = 0; 4079 4080 mutex_lock(&qm_list->lock); 4081 list_for_each_entry(vf_qm, &qm_list->list, list) { 4082 virtfn = vf_qm->pdev; 4083 if (virtfn == pdev) 4084 continue; 4085 4086 if (pci_physfn(virtfn) == pdev) { 4087 /* save VFs PCIE BAR configuration */ 4088 pci_save_state(virtfn); 4089 4090 ret = hisi_qm_stop(vf_qm, stop_reason); 4091 if (ret) 4092 goto stop_fail; 4093 } 4094 } 4095 4096 stop_fail: 4097 mutex_unlock(&qm_list->lock); 4098 return ret; 4099 } 4100 4101 static int qm_try_stop_vfs(struct hisi_qm *qm, u64 cmd, 4102 enum qm_stop_reason stop_reason) 4103 { 4104 struct pci_dev *pdev = qm->pdev; 4105 int ret; 4106 4107 if (!qm->vfs_num) 4108 return 0; 4109 4110 /* Kunpeng930 supports to notify VFs to stop before PF reset */ 4111 if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) { 4112 ret = qm_ping_all_vfs(qm, cmd); 4113 if (ret) 4114 pci_err(pdev, "failed to send cmd to all VFs before PF reset!\n"); 4115 } else { 4116 ret = qm_vf_reset_prepare(qm, stop_reason); 4117 if (ret) 4118 pci_err(pdev, "failed to prepare reset, ret = %d.\n", ret); 4119 } 4120 4121 return ret; 4122 } 4123 4124 static int qm_controller_reset_prepare(struct hisi_qm *qm) 4125 { 4126 struct pci_dev *pdev = qm->pdev; 4127 int ret; 4128 4129 ret = qm_reset_prepare_ready(qm); 4130 if (ret) { 4131 pci_err(pdev, "Controller reset not ready!\n"); 4132 return ret; 4133 } 4134 4135 qm_dev_ecc_mbit_handle(qm); 4136 4137 /* PF obtains the information of VF by querying the register. */ 4138 qm_cmd_uninit(qm); 4139 4140 /* Whether VFs stop successfully, soft reset will continue. */ 4141 ret = qm_try_stop_vfs(qm, QM_PF_SRST_PREPARE, QM_SOFT_RESET); 4142 if (ret) 4143 pci_err(pdev, "failed to stop vfs by pf in soft reset.\n"); 4144 4145 ret = hisi_qm_stop(qm, QM_SOFT_RESET); 4146 if (ret) { 4147 pci_err(pdev, "Fails to stop QM!\n"); 4148 qm_reset_bit_clear(qm); 4149 return ret; 4150 } 4151 4152 if (qm->use_sva) { 4153 ret = qm_hw_err_isolate(qm); 4154 if (ret) 4155 pci_err(pdev, "failed to isolate hw err!\n"); 4156 } 4157 4158 ret = qm_wait_vf_prepare_finish(qm); 4159 if (ret) 4160 pci_err(pdev, "failed to stop by vfs in soft reset!\n"); 4161 4162 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 4163 4164 return 0; 4165 } 4166 4167 static int qm_master_ooo_check(struct hisi_qm *qm) 4168 { 4169 u32 val; 4170 int ret; 4171 4172 /* Check the ooo register of the device before resetting the device. */ 4173 writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN, qm->io_base + ACC_MASTER_GLOBAL_CTRL); 4174 ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN, 4175 val, (val == ACC_MASTER_TRANS_RETURN_RW), 4176 POLL_PERIOD, POLL_TIMEOUT); 4177 if (ret) 4178 pci_warn(qm->pdev, "Bus lock! Please reset system.\n"); 4179 4180 return ret; 4181 } 4182 4183 static int qm_soft_reset_prepare(struct hisi_qm *qm) 4184 { 4185 struct pci_dev *pdev = qm->pdev; 4186 int ret; 4187 4188 /* Ensure all doorbells and mailboxes received by QM */ 4189 ret = qm_check_req_recv(qm); 4190 if (ret) 4191 return ret; 4192 4193 if (qm->vfs_num) { 4194 ret = qm_set_vf_mse(qm, false); 4195 if (ret) { 4196 pci_err(pdev, "Fails to disable vf MSE bit.\n"); 4197 return ret; 4198 } 4199 } 4200 4201 ret = qm->ops->set_msi(qm, false); 4202 if (ret) { 4203 pci_err(pdev, "Fails to disable PEH MSI bit.\n"); 4204 return ret; 4205 } 4206 4207 ret = qm_master_ooo_check(qm); 4208 if (ret) 4209 return ret; 4210 4211 if (qm->err_ini->close_sva_prefetch) 4212 qm->err_ini->close_sva_prefetch(qm); 4213 4214 ret = qm_set_pf_mse(qm, false); 4215 if (ret) 4216 pci_err(pdev, "Fails to disable pf MSE bit.\n"); 4217 4218 return ret; 4219 } 4220 4221 static int qm_reset_device(struct hisi_qm *qm) 4222 { 4223 struct pci_dev *pdev = qm->pdev; 4224 4225 /* The reset related sub-control registers are not in PCI BAR */ 4226 if (ACPI_HANDLE(&pdev->dev)) { 4227 unsigned long long value = 0; 4228 acpi_status s; 4229 4230 s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev), 4231 qm->err_info.acpi_rst, 4232 NULL, &value); 4233 if (ACPI_FAILURE(s)) { 4234 pci_err(pdev, "NO controller reset method!\n"); 4235 return -EIO; 4236 } 4237 4238 if (value) { 4239 pci_err(pdev, "Reset step %llu failed!\n", value); 4240 return -EIO; 4241 } 4242 4243 return 0; 4244 } 4245 4246 pci_err(pdev, "No reset method!\n"); 4247 return -EINVAL; 4248 } 4249 4250 static int qm_soft_reset(struct hisi_qm *qm) 4251 { 4252 int ret; 4253 4254 ret = qm_soft_reset_prepare(qm); 4255 if (ret) 4256 return ret; 4257 4258 return qm_reset_device(qm); 4259 } 4260 4261 static int qm_vf_reset_done(struct hisi_qm *qm) 4262 { 4263 struct hisi_qm_list *qm_list = qm->qm_list; 4264 struct pci_dev *pdev = qm->pdev; 4265 struct pci_dev *virtfn; 4266 struct hisi_qm *vf_qm; 4267 int ret = 0; 4268 4269 mutex_lock(&qm_list->lock); 4270 list_for_each_entry(vf_qm, &qm_list->list, list) { 4271 virtfn = vf_qm->pdev; 4272 if (virtfn == pdev) 4273 continue; 4274 4275 if (pci_physfn(virtfn) == pdev) { 4276 /* enable VFs PCIE BAR configuration */ 4277 pci_restore_state(virtfn); 4278 4279 ret = qm_restart(vf_qm); 4280 if (ret) 4281 goto restart_fail; 4282 } 4283 } 4284 4285 restart_fail: 4286 mutex_unlock(&qm_list->lock); 4287 return ret; 4288 } 4289 4290 static int qm_try_start_vfs(struct hisi_qm *qm, enum qm_mb_cmd cmd) 4291 { 4292 struct pci_dev *pdev = qm->pdev; 4293 int ret; 4294 4295 if (!qm->vfs_num) 4296 return 0; 4297 4298 ret = qm_vf_q_assign(qm, qm->vfs_num); 4299 if (ret) { 4300 pci_err(pdev, "failed to assign VFs, ret = %d.\n", ret); 4301 return ret; 4302 } 4303 4304 /* Kunpeng930 supports to notify VFs to start after PF reset. */ 4305 if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) { 4306 ret = qm_ping_all_vfs(qm, cmd); 4307 if (ret) 4308 pci_warn(pdev, "failed to send cmd to all VFs after PF reset!\n"); 4309 } else { 4310 ret = qm_vf_reset_done(qm); 4311 if (ret) 4312 pci_warn(pdev, "failed to start vfs, ret = %d.\n", ret); 4313 } 4314 4315 return ret; 4316 } 4317 4318 static int qm_dev_hw_init(struct hisi_qm *qm) 4319 { 4320 return qm->err_ini->hw_init(qm); 4321 } 4322 4323 static void qm_restart_prepare(struct hisi_qm *qm) 4324 { 4325 u32 value; 4326 4327 if (qm->err_ini->open_sva_prefetch) 4328 qm->err_ini->open_sva_prefetch(qm); 4329 4330 if (qm->ver >= QM_HW_V3) 4331 return; 4332 4333 if (!qm->err_status.is_qm_ecc_mbit && 4334 !qm->err_status.is_dev_ecc_mbit) 4335 return; 4336 4337 /* temporarily close the OOO port used for PEH to write out MSI */ 4338 value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4339 writel(value & ~qm->err_info.msi_wr_port, 4340 qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4341 4342 /* clear dev ecc 2bit error source if having */ 4343 value = qm_get_dev_err_status(qm) & qm->err_info.ecc_2bits_mask; 4344 if (value && qm->err_ini->clear_dev_hw_err_status) 4345 qm->err_ini->clear_dev_hw_err_status(qm, value); 4346 4347 /* clear QM ecc mbit error source */ 4348 writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE); 4349 4350 /* clear AM Reorder Buffer ecc mbit source */ 4351 writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS); 4352 } 4353 4354 static void qm_restart_done(struct hisi_qm *qm) 4355 { 4356 u32 value; 4357 4358 if (qm->ver >= QM_HW_V3) 4359 goto clear_flags; 4360 4361 if (!qm->err_status.is_qm_ecc_mbit && 4362 !qm->err_status.is_dev_ecc_mbit) 4363 return; 4364 4365 /* open the OOO port for PEH to write out MSI */ 4366 value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4367 value |= qm->err_info.msi_wr_port; 4368 writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4369 4370 clear_flags: 4371 qm->err_status.is_qm_ecc_mbit = false; 4372 qm->err_status.is_dev_ecc_mbit = false; 4373 } 4374 4375 static int qm_controller_reset_done(struct hisi_qm *qm) 4376 { 4377 struct pci_dev *pdev = qm->pdev; 4378 int ret; 4379 4380 ret = qm->ops->set_msi(qm, true); 4381 if (ret) { 4382 pci_err(pdev, "Fails to enable PEH MSI bit!\n"); 4383 return ret; 4384 } 4385 4386 ret = qm_set_pf_mse(qm, true); 4387 if (ret) { 4388 pci_err(pdev, "Fails to enable pf MSE bit!\n"); 4389 return ret; 4390 } 4391 4392 if (qm->vfs_num) { 4393 ret = qm_set_vf_mse(qm, true); 4394 if (ret) { 4395 pci_err(pdev, "Fails to enable vf MSE bit!\n"); 4396 return ret; 4397 } 4398 } 4399 4400 ret = qm_dev_hw_init(qm); 4401 if (ret) { 4402 pci_err(pdev, "Failed to init device\n"); 4403 return ret; 4404 } 4405 4406 qm_restart_prepare(qm); 4407 hisi_qm_dev_err_init(qm); 4408 if (qm->err_ini->open_axi_master_ooo) 4409 qm->err_ini->open_axi_master_ooo(qm); 4410 4411 ret = qm_dev_mem_reset(qm); 4412 if (ret) { 4413 pci_err(pdev, "failed to reset device memory\n"); 4414 return ret; 4415 } 4416 4417 ret = qm_restart(qm); 4418 if (ret) { 4419 pci_err(pdev, "Failed to start QM!\n"); 4420 return ret; 4421 } 4422 4423 ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE); 4424 if (ret) 4425 pci_err(pdev, "failed to start vfs by pf in soft reset.\n"); 4426 4427 ret = qm_wait_vf_prepare_finish(qm); 4428 if (ret) 4429 pci_err(pdev, "failed to start by vfs in soft reset!\n"); 4430 4431 qm_cmd_init(qm); 4432 qm_restart_done(qm); 4433 4434 qm_reset_bit_clear(qm); 4435 4436 return 0; 4437 } 4438 4439 static int qm_controller_reset(struct hisi_qm *qm) 4440 { 4441 struct pci_dev *pdev = qm->pdev; 4442 int ret; 4443 4444 pci_info(pdev, "Controller resetting...\n"); 4445 4446 ret = qm_controller_reset_prepare(qm); 4447 if (ret) { 4448 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 4449 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 4450 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 4451 return ret; 4452 } 4453 4454 hisi_qm_show_last_dfx_regs(qm); 4455 if (qm->err_ini->show_last_dfx_regs) 4456 qm->err_ini->show_last_dfx_regs(qm); 4457 4458 ret = qm_soft_reset(qm); 4459 if (ret) 4460 goto err_reset; 4461 4462 ret = qm_controller_reset_done(qm); 4463 if (ret) 4464 goto err_reset; 4465 4466 pci_info(pdev, "Controller reset complete\n"); 4467 4468 return 0; 4469 4470 err_reset: 4471 pci_err(pdev, "Controller reset failed (%d)\n", ret); 4472 qm_reset_bit_clear(qm); 4473 4474 /* if resetting fails, isolate the device */ 4475 if (qm->use_sva) 4476 qm->isolate_data.is_isolate = true; 4477 return ret; 4478 } 4479 4480 /** 4481 * hisi_qm_dev_slot_reset() - slot reset 4482 * @pdev: the PCIe device 4483 * 4484 * This function offers QM relate PCIe device reset interface. Drivers which 4485 * use QM can use this function as slot_reset in its struct pci_error_handlers. 4486 */ 4487 pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev) 4488 { 4489 struct hisi_qm *qm = pci_get_drvdata(pdev); 4490 int ret; 4491 4492 if (pdev->is_virtfn) 4493 return PCI_ERS_RESULT_RECOVERED; 4494 4495 /* reset pcie device controller */ 4496 ret = qm_controller_reset(qm); 4497 if (ret) { 4498 pci_err(pdev, "Controller reset failed (%d)\n", ret); 4499 return PCI_ERS_RESULT_DISCONNECT; 4500 } 4501 4502 return PCI_ERS_RESULT_RECOVERED; 4503 } 4504 EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset); 4505 4506 void hisi_qm_reset_prepare(struct pci_dev *pdev) 4507 { 4508 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 4509 struct hisi_qm *qm = pci_get_drvdata(pdev); 4510 u32 delay = 0; 4511 int ret; 4512 4513 hisi_qm_dev_err_uninit(pf_qm); 4514 4515 /* 4516 * Check whether there is an ECC mbit error, If it occurs, need to 4517 * wait for soft reset to fix it. 4518 */ 4519 while (qm_check_dev_error(pf_qm)) { 4520 msleep(++delay); 4521 if (delay > QM_RESET_WAIT_TIMEOUT) 4522 return; 4523 } 4524 4525 ret = qm_reset_prepare_ready(qm); 4526 if (ret) { 4527 pci_err(pdev, "FLR not ready!\n"); 4528 return; 4529 } 4530 4531 /* PF obtains the information of VF by querying the register. */ 4532 if (qm->fun_type == QM_HW_PF) 4533 qm_cmd_uninit(qm); 4534 4535 ret = qm_try_stop_vfs(qm, QM_PF_FLR_PREPARE, QM_DOWN); 4536 if (ret) 4537 pci_err(pdev, "failed to stop vfs by pf in FLR.\n"); 4538 4539 ret = hisi_qm_stop(qm, QM_DOWN); 4540 if (ret) { 4541 pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret); 4542 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 4543 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 4544 return; 4545 } 4546 4547 ret = qm_wait_vf_prepare_finish(qm); 4548 if (ret) 4549 pci_err(pdev, "failed to stop by vfs in FLR!\n"); 4550 4551 pci_info(pdev, "FLR resetting...\n"); 4552 } 4553 EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare); 4554 4555 static bool qm_flr_reset_complete(struct pci_dev *pdev) 4556 { 4557 struct pci_dev *pf_pdev = pci_physfn(pdev); 4558 struct hisi_qm *qm = pci_get_drvdata(pf_pdev); 4559 u32 id; 4560 4561 pci_read_config_dword(qm->pdev, PCI_COMMAND, &id); 4562 if (id == QM_PCI_COMMAND_INVALID) { 4563 pci_err(pdev, "Device can not be used!\n"); 4564 return false; 4565 } 4566 4567 return true; 4568 } 4569 4570 void hisi_qm_reset_done(struct pci_dev *pdev) 4571 { 4572 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 4573 struct hisi_qm *qm = pci_get_drvdata(pdev); 4574 int ret; 4575 4576 if (qm->fun_type == QM_HW_PF) { 4577 ret = qm_dev_hw_init(qm); 4578 if (ret) { 4579 pci_err(pdev, "Failed to init PF, ret = %d.\n", ret); 4580 goto flr_done; 4581 } 4582 } 4583 4584 hisi_qm_dev_err_init(pf_qm); 4585 4586 ret = qm_restart(qm); 4587 if (ret) { 4588 pci_err(pdev, "Failed to start QM, ret = %d.\n", ret); 4589 goto flr_done; 4590 } 4591 4592 ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE); 4593 if (ret) 4594 pci_err(pdev, "failed to start vfs by pf in FLR.\n"); 4595 4596 ret = qm_wait_vf_prepare_finish(qm); 4597 if (ret) 4598 pci_err(pdev, "failed to start by vfs in FLR!\n"); 4599 4600 flr_done: 4601 if (qm->fun_type == QM_HW_PF) 4602 qm_cmd_init(qm); 4603 4604 if (qm_flr_reset_complete(pdev)) 4605 pci_info(pdev, "FLR reset complete\n"); 4606 4607 qm_reset_bit_clear(qm); 4608 } 4609 EXPORT_SYMBOL_GPL(hisi_qm_reset_done); 4610 4611 static irqreturn_t qm_abnormal_irq(int irq, void *data) 4612 { 4613 struct hisi_qm *qm = data; 4614 enum acc_err_result ret; 4615 4616 atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt); 4617 ret = qm_process_dev_error(qm); 4618 if (ret == ACC_ERR_NEED_RESET && 4619 !test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl) && 4620 !test_and_set_bit(QM_RST_SCHED, &qm->misc_ctl)) 4621 schedule_work(&qm->rst_work); 4622 4623 return IRQ_HANDLED; 4624 } 4625 4626 /** 4627 * hisi_qm_dev_shutdown() - Shutdown device. 4628 * @pdev: The device will be shutdown. 4629 * 4630 * This function will stop qm when OS shutdown or rebooting. 4631 */ 4632 void hisi_qm_dev_shutdown(struct pci_dev *pdev) 4633 { 4634 struct hisi_qm *qm = pci_get_drvdata(pdev); 4635 int ret; 4636 4637 ret = hisi_qm_stop(qm, QM_DOWN); 4638 if (ret) 4639 dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n"); 4640 4641 hisi_qm_cache_wb(qm); 4642 } 4643 EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown); 4644 4645 static void hisi_qm_controller_reset(struct work_struct *rst_work) 4646 { 4647 struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work); 4648 int ret; 4649 4650 ret = qm_pm_get_sync(qm); 4651 if (ret) { 4652 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 4653 return; 4654 } 4655 4656 /* reset pcie device controller */ 4657 ret = qm_controller_reset(qm); 4658 if (ret) 4659 dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret); 4660 4661 qm_pm_put_sync(qm); 4662 } 4663 4664 static void qm_pf_reset_vf_prepare(struct hisi_qm *qm, 4665 enum qm_stop_reason stop_reason) 4666 { 4667 enum qm_mb_cmd cmd = QM_VF_PREPARE_DONE; 4668 struct pci_dev *pdev = qm->pdev; 4669 int ret; 4670 4671 ret = qm_reset_prepare_ready(qm); 4672 if (ret) { 4673 dev_err(&pdev->dev, "reset prepare not ready!\n"); 4674 atomic_set(&qm->status.flags, QM_STOP); 4675 cmd = QM_VF_PREPARE_FAIL; 4676 goto err_prepare; 4677 } 4678 4679 ret = hisi_qm_stop(qm, stop_reason); 4680 if (ret) { 4681 dev_err(&pdev->dev, "failed to stop QM, ret = %d.\n", ret); 4682 atomic_set(&qm->status.flags, QM_STOP); 4683 cmd = QM_VF_PREPARE_FAIL; 4684 goto err_prepare; 4685 } else { 4686 goto out; 4687 } 4688 4689 err_prepare: 4690 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 4691 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 4692 out: 4693 pci_save_state(pdev); 4694 ret = qm_ping_pf(qm, cmd); 4695 if (ret) 4696 dev_warn(&pdev->dev, "PF responds timeout in reset prepare!\n"); 4697 } 4698 4699 static void qm_pf_reset_vf_done(struct hisi_qm *qm) 4700 { 4701 enum qm_mb_cmd cmd = QM_VF_START_DONE; 4702 struct pci_dev *pdev = qm->pdev; 4703 int ret; 4704 4705 pci_restore_state(pdev); 4706 ret = hisi_qm_start(qm); 4707 if (ret) { 4708 dev_err(&pdev->dev, "failed to start QM, ret = %d.\n", ret); 4709 cmd = QM_VF_START_FAIL; 4710 } 4711 4712 qm_cmd_init(qm); 4713 ret = qm_ping_pf(qm, cmd); 4714 if (ret) 4715 dev_warn(&pdev->dev, "PF responds timeout in reset done!\n"); 4716 4717 qm_reset_bit_clear(qm); 4718 } 4719 4720 static int qm_wait_pf_reset_finish(struct hisi_qm *qm) 4721 { 4722 struct device *dev = &qm->pdev->dev; 4723 u32 val, cmd; 4724 u64 msg; 4725 int ret; 4726 4727 /* Wait for reset to finish */ 4728 ret = readl_relaxed_poll_timeout(qm->io_base + QM_IFC_INT_SOURCE_V, val, 4729 val == BIT(0), QM_VF_RESET_WAIT_US, 4730 QM_VF_RESET_WAIT_TIMEOUT_US); 4731 /* hardware completion status should be available by this time */ 4732 if (ret) { 4733 dev_err(dev, "couldn't get reset done status from PF, timeout!\n"); 4734 return -ETIMEDOUT; 4735 } 4736 4737 /* 4738 * Whether message is got successfully, 4739 * VF needs to ack PF by clearing the interrupt. 4740 */ 4741 ret = qm_get_mb_cmd(qm, &msg, 0); 4742 qm_clear_cmd_interrupt(qm, 0); 4743 if (ret) { 4744 dev_err(dev, "failed to get msg from PF in reset done!\n"); 4745 return ret; 4746 } 4747 4748 cmd = msg & QM_MB_CMD_DATA_MASK; 4749 if (cmd != QM_PF_RESET_DONE) { 4750 dev_err(dev, "the cmd(%u) is not reset done!\n", cmd); 4751 ret = -EINVAL; 4752 } 4753 4754 return ret; 4755 } 4756 4757 static void qm_pf_reset_vf_process(struct hisi_qm *qm, 4758 enum qm_stop_reason stop_reason) 4759 { 4760 struct device *dev = &qm->pdev->dev; 4761 int ret; 4762 4763 dev_info(dev, "device reset start...\n"); 4764 4765 /* The message is obtained by querying the register during resetting */ 4766 qm_cmd_uninit(qm); 4767 qm_pf_reset_vf_prepare(qm, stop_reason); 4768 4769 ret = qm_wait_pf_reset_finish(qm); 4770 if (ret) 4771 goto err_get_status; 4772 4773 qm_pf_reset_vf_done(qm); 4774 4775 dev_info(dev, "device reset done.\n"); 4776 4777 return; 4778 4779 err_get_status: 4780 qm_cmd_init(qm); 4781 qm_reset_bit_clear(qm); 4782 } 4783 4784 static void qm_handle_cmd_msg(struct hisi_qm *qm, u32 fun_num) 4785 { 4786 struct device *dev = &qm->pdev->dev; 4787 u64 msg; 4788 u32 cmd; 4789 int ret; 4790 4791 /* 4792 * Get the msg from source by sending mailbox. Whether message is got 4793 * successfully, destination needs to ack source by clearing the interrupt. 4794 */ 4795 ret = qm_get_mb_cmd(qm, &msg, fun_num); 4796 qm_clear_cmd_interrupt(qm, BIT(fun_num)); 4797 if (ret) { 4798 dev_err(dev, "failed to get msg from source!\n"); 4799 return; 4800 } 4801 4802 cmd = msg & QM_MB_CMD_DATA_MASK; 4803 switch (cmd) { 4804 case QM_PF_FLR_PREPARE: 4805 qm_pf_reset_vf_process(qm, QM_DOWN); 4806 break; 4807 case QM_PF_SRST_PREPARE: 4808 qm_pf_reset_vf_process(qm, QM_SOFT_RESET); 4809 break; 4810 case QM_VF_GET_QOS: 4811 qm_vf_get_qos(qm, fun_num); 4812 break; 4813 case QM_PF_SET_QOS: 4814 qm->mb_qos = msg >> QM_MB_CMD_DATA_SHIFT; 4815 break; 4816 default: 4817 dev_err(dev, "unsupported cmd %u sent by function(%u)!\n", cmd, fun_num); 4818 break; 4819 } 4820 } 4821 4822 static void qm_cmd_process(struct work_struct *cmd_process) 4823 { 4824 struct hisi_qm *qm = container_of(cmd_process, 4825 struct hisi_qm, cmd_process); 4826 u32 vfs_num = qm->vfs_num; 4827 u64 val; 4828 u32 i; 4829 4830 if (qm->fun_type == QM_HW_PF) { 4831 val = readq(qm->io_base + QM_IFC_INT_SOURCE_P); 4832 if (!val) 4833 return; 4834 4835 for (i = 1; i <= vfs_num; i++) { 4836 if (val & BIT(i)) 4837 qm_handle_cmd_msg(qm, i); 4838 } 4839 4840 return; 4841 } 4842 4843 qm_handle_cmd_msg(qm, 0); 4844 } 4845 4846 /** 4847 * hisi_qm_alg_register() - Register alg to crypto. 4848 * @qm: The qm needs add. 4849 * @qm_list: The qm list. 4850 * @guard: Guard of qp_num. 4851 * 4852 * Register algorithm to crypto when the function is satisfy guard. 4853 */ 4854 int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list, int guard) 4855 { 4856 struct device *dev = &qm->pdev->dev; 4857 4858 if (qm->ver <= QM_HW_V2 && qm->use_sva) { 4859 dev_info(dev, "HW V2 not both use uacce sva mode and hardware crypto algs.\n"); 4860 return 0; 4861 } 4862 4863 if (qm->qp_num < guard) { 4864 dev_info(dev, "qp_num is less than task need.\n"); 4865 return 0; 4866 } 4867 4868 return qm_list->register_to_crypto(qm); 4869 } 4870 EXPORT_SYMBOL_GPL(hisi_qm_alg_register); 4871 4872 /** 4873 * hisi_qm_alg_unregister() - Unregister alg from crypto. 4874 * @qm: The qm needs delete. 4875 * @qm_list: The qm list. 4876 * @guard: Guard of qp_num. 4877 * 4878 * Unregister algorithm from crypto when the last function is satisfy guard. 4879 */ 4880 void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list, int guard) 4881 { 4882 if (qm->ver <= QM_HW_V2 && qm->use_sva) 4883 return; 4884 4885 if (qm->qp_num < guard) 4886 return; 4887 4888 qm_list->unregister_from_crypto(qm); 4889 } 4890 EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister); 4891 4892 static void qm_unregister_abnormal_irq(struct hisi_qm *qm) 4893 { 4894 struct pci_dev *pdev = qm->pdev; 4895 u32 irq_vector, val; 4896 4897 if (qm->fun_type == QM_HW_VF) 4898 return; 4899 4900 val = qm->cap_tables.qm_cap_table[QM_ABN_IRQ_TYPE_CAP_IDX].cap_val; 4901 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK)) 4902 return; 4903 4904 irq_vector = val & QM_IRQ_VECTOR_MASK; 4905 free_irq(pci_irq_vector(pdev, irq_vector), qm); 4906 } 4907 4908 static int qm_register_abnormal_irq(struct hisi_qm *qm) 4909 { 4910 struct pci_dev *pdev = qm->pdev; 4911 u32 irq_vector, val; 4912 int ret; 4913 4914 if (qm->fun_type == QM_HW_VF) 4915 return 0; 4916 4917 val = qm->cap_tables.qm_cap_table[QM_ABN_IRQ_TYPE_CAP_IDX].cap_val; 4918 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK)) 4919 return 0; 4920 4921 irq_vector = val & QM_IRQ_VECTOR_MASK; 4922 ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_abnormal_irq, 0, qm->dev_name, qm); 4923 if (ret) 4924 dev_err(&qm->pdev->dev, "failed to request abnormal irq, ret = %d", ret); 4925 4926 return ret; 4927 } 4928 4929 static void qm_unregister_mb_cmd_irq(struct hisi_qm *qm) 4930 { 4931 struct pci_dev *pdev = qm->pdev; 4932 u32 irq_vector, val; 4933 4934 val = qm->cap_tables.qm_cap_table[QM_PF2VF_IRQ_TYPE_CAP_IDX].cap_val; 4935 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 4936 return; 4937 4938 irq_vector = val & QM_IRQ_VECTOR_MASK; 4939 free_irq(pci_irq_vector(pdev, irq_vector), qm); 4940 } 4941 4942 static int qm_register_mb_cmd_irq(struct hisi_qm *qm) 4943 { 4944 struct pci_dev *pdev = qm->pdev; 4945 u32 irq_vector, val; 4946 int ret; 4947 4948 val = qm->cap_tables.qm_cap_table[QM_PF2VF_IRQ_TYPE_CAP_IDX].cap_val; 4949 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 4950 return 0; 4951 4952 irq_vector = val & QM_IRQ_VECTOR_MASK; 4953 ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_mb_cmd_irq, 0, qm->dev_name, qm); 4954 if (ret) 4955 dev_err(&pdev->dev, "failed to request function communication irq, ret = %d", ret); 4956 4957 return ret; 4958 } 4959 4960 static void qm_unregister_aeq_irq(struct hisi_qm *qm) 4961 { 4962 struct pci_dev *pdev = qm->pdev; 4963 u32 irq_vector, val; 4964 4965 val = qm->cap_tables.qm_cap_table[QM_AEQ_IRQ_TYPE_CAP_IDX].cap_val; 4966 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 4967 return; 4968 4969 irq_vector = val & QM_IRQ_VECTOR_MASK; 4970 free_irq(pci_irq_vector(pdev, irq_vector), qm); 4971 } 4972 4973 static int qm_register_aeq_irq(struct hisi_qm *qm) 4974 { 4975 struct pci_dev *pdev = qm->pdev; 4976 u32 irq_vector, val; 4977 int ret; 4978 4979 val = qm->cap_tables.qm_cap_table[QM_AEQ_IRQ_TYPE_CAP_IDX].cap_val; 4980 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 4981 return 0; 4982 4983 irq_vector = val & QM_IRQ_VECTOR_MASK; 4984 ret = request_threaded_irq(pci_irq_vector(pdev, irq_vector), NULL, 4985 qm_aeq_thread, IRQF_ONESHOT, qm->dev_name, qm); 4986 if (ret) 4987 dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret); 4988 4989 return ret; 4990 } 4991 4992 static void qm_unregister_eq_irq(struct hisi_qm *qm) 4993 { 4994 struct pci_dev *pdev = qm->pdev; 4995 u32 irq_vector, val; 4996 4997 val = qm->cap_tables.qm_cap_table[QM_EQ_IRQ_TYPE_CAP_IDX].cap_val; 4998 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 4999 return; 5000 5001 irq_vector = val & QM_IRQ_VECTOR_MASK; 5002 free_irq(pci_irq_vector(pdev, irq_vector), qm); 5003 } 5004 5005 static int qm_register_eq_irq(struct hisi_qm *qm) 5006 { 5007 struct pci_dev *pdev = qm->pdev; 5008 u32 irq_vector, val; 5009 int ret; 5010 5011 val = qm->cap_tables.qm_cap_table[QM_EQ_IRQ_TYPE_CAP_IDX].cap_val; 5012 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 5013 return 0; 5014 5015 irq_vector = val & QM_IRQ_VECTOR_MASK; 5016 ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_eq_irq, 0, qm->dev_name, qm); 5017 if (ret) 5018 dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret); 5019 5020 return ret; 5021 } 5022 5023 static void qm_irqs_unregister(struct hisi_qm *qm) 5024 { 5025 qm_unregister_mb_cmd_irq(qm); 5026 qm_unregister_abnormal_irq(qm); 5027 qm_unregister_aeq_irq(qm); 5028 qm_unregister_eq_irq(qm); 5029 } 5030 5031 static int qm_irqs_register(struct hisi_qm *qm) 5032 { 5033 int ret; 5034 5035 ret = qm_register_eq_irq(qm); 5036 if (ret) 5037 return ret; 5038 5039 ret = qm_register_aeq_irq(qm); 5040 if (ret) 5041 goto free_eq_irq; 5042 5043 ret = qm_register_abnormal_irq(qm); 5044 if (ret) 5045 goto free_aeq_irq; 5046 5047 ret = qm_register_mb_cmd_irq(qm); 5048 if (ret) 5049 goto free_abnormal_irq; 5050 5051 return 0; 5052 5053 free_abnormal_irq: 5054 qm_unregister_abnormal_irq(qm); 5055 free_aeq_irq: 5056 qm_unregister_aeq_irq(qm); 5057 free_eq_irq: 5058 qm_unregister_eq_irq(qm); 5059 return ret; 5060 } 5061 5062 static int qm_get_qp_num(struct hisi_qm *qm) 5063 { 5064 struct device *dev = &qm->pdev->dev; 5065 bool is_db_isolation; 5066 5067 /* VF's qp_num assigned by PF in v2, and VF can get qp_num by vft. */ 5068 if (qm->fun_type == QM_HW_VF) { 5069 if (qm->ver != QM_HW_V1) 5070 /* v2 starts to support get vft by mailbox */ 5071 return hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num); 5072 5073 return 0; 5074 } 5075 5076 is_db_isolation = test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps); 5077 qm->ctrl_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, QM_TOTAL_QP_NUM_CAP, true); 5078 qm->max_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, 5079 QM_FUNC_MAX_QP_CAP, is_db_isolation); 5080 5081 if (qm->qp_num <= qm->max_qp_num) 5082 return 0; 5083 5084 if (test_bit(QM_MODULE_PARAM, &qm->misc_ctl)) { 5085 /* Check whether the set qp number is valid */ 5086 dev_err(dev, "qp num(%u) is more than max qp num(%u)!\n", 5087 qm->qp_num, qm->max_qp_num); 5088 return -EINVAL; 5089 } 5090 5091 dev_info(dev, "Default qp num(%u) is too big, reset it to Function's max qp num(%u)!\n", 5092 qm->qp_num, qm->max_qp_num); 5093 qm->qp_num = qm->max_qp_num; 5094 qm->debug.curr_qm_qp_num = qm->qp_num; 5095 5096 return 0; 5097 } 5098 5099 static int qm_pre_store_irq_type_caps(struct hisi_qm *qm) 5100 { 5101 struct hisi_qm_cap_record *qm_cap; 5102 struct pci_dev *pdev = qm->pdev; 5103 size_t i, size; 5104 5105 size = ARRAY_SIZE(qm_pre_store_caps); 5106 qm_cap = devm_kzalloc(&pdev->dev, sizeof(*qm_cap) * size, GFP_KERNEL); 5107 if (!qm_cap) 5108 return -ENOMEM; 5109 5110 for (i = 0; i < size; i++) { 5111 qm_cap[i].type = qm_pre_store_caps[i]; 5112 qm_cap[i].cap_val = hisi_qm_get_hw_info(qm, qm_basic_info, 5113 qm_pre_store_caps[i], qm->cap_ver); 5114 } 5115 5116 qm->cap_tables.qm_cap_table = qm_cap; 5117 5118 return 0; 5119 } 5120 5121 static int qm_get_hw_caps(struct hisi_qm *qm) 5122 { 5123 const struct hisi_qm_cap_info *cap_info = qm->fun_type == QM_HW_PF ? 5124 qm_cap_info_pf : qm_cap_info_vf; 5125 u32 size = qm->fun_type == QM_HW_PF ? ARRAY_SIZE(qm_cap_info_pf) : 5126 ARRAY_SIZE(qm_cap_info_vf); 5127 u32 val, i; 5128 5129 /* Doorbell isolate register is a independent register. */ 5130 val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, QM_SUPPORT_DB_ISOLATION, true); 5131 if (val) 5132 set_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps); 5133 5134 if (qm->ver >= QM_HW_V3) { 5135 val = readl(qm->io_base + QM_FUNC_CAPS_REG); 5136 qm->cap_ver = val & QM_CAPBILITY_VERSION; 5137 } 5138 5139 /* Get PF/VF common capbility */ 5140 for (i = 1; i < ARRAY_SIZE(qm_cap_info_comm); i++) { 5141 val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, i, qm->cap_ver); 5142 if (val) 5143 set_bit(qm_cap_info_comm[i].type, &qm->caps); 5144 } 5145 5146 /* Get PF/VF different capbility */ 5147 for (i = 0; i < size; i++) { 5148 val = hisi_qm_get_hw_info(qm, cap_info, i, qm->cap_ver); 5149 if (val) 5150 set_bit(cap_info[i].type, &qm->caps); 5151 } 5152 5153 /* Fetch and save the value of irq type related capability registers */ 5154 return qm_pre_store_irq_type_caps(qm); 5155 } 5156 5157 static int qm_get_pci_res(struct hisi_qm *qm) 5158 { 5159 struct pci_dev *pdev = qm->pdev; 5160 struct device *dev = &pdev->dev; 5161 int ret; 5162 5163 ret = pci_request_mem_regions(pdev, qm->dev_name); 5164 if (ret < 0) { 5165 dev_err(dev, "Failed to request mem regions!\n"); 5166 return ret; 5167 } 5168 5169 qm->phys_base = pci_resource_start(pdev, PCI_BAR_2); 5170 qm->io_base = ioremap(qm->phys_base, pci_resource_len(pdev, PCI_BAR_2)); 5171 if (!qm->io_base) { 5172 ret = -EIO; 5173 goto err_request_mem_regions; 5174 } 5175 5176 ret = qm_get_hw_caps(qm); 5177 if (ret) 5178 goto err_ioremap; 5179 5180 if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) { 5181 qm->db_interval = QM_QP_DB_INTERVAL; 5182 qm->db_phys_base = pci_resource_start(pdev, PCI_BAR_4); 5183 qm->db_io_base = ioremap(qm->db_phys_base, 5184 pci_resource_len(pdev, PCI_BAR_4)); 5185 if (!qm->db_io_base) { 5186 ret = -EIO; 5187 goto err_ioremap; 5188 } 5189 } else { 5190 qm->db_phys_base = qm->phys_base; 5191 qm->db_io_base = qm->io_base; 5192 qm->db_interval = 0; 5193 } 5194 5195 ret = qm_get_qp_num(qm); 5196 if (ret) 5197 goto err_db_ioremap; 5198 5199 return 0; 5200 5201 err_db_ioremap: 5202 if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) 5203 iounmap(qm->db_io_base); 5204 err_ioremap: 5205 iounmap(qm->io_base); 5206 err_request_mem_regions: 5207 pci_release_mem_regions(pdev); 5208 return ret; 5209 } 5210 5211 static int qm_clear_device(struct hisi_qm *qm) 5212 { 5213 acpi_handle handle = ACPI_HANDLE(&qm->pdev->dev); 5214 int ret; 5215 5216 if (qm->fun_type == QM_HW_VF) 5217 return 0; 5218 5219 /* Device does not support reset, return */ 5220 if (!qm->err_ini->err_info_init) 5221 return 0; 5222 qm->err_ini->err_info_init(qm); 5223 5224 if (!handle) 5225 return 0; 5226 5227 /* No reset method, return */ 5228 if (!acpi_has_method(handle, qm->err_info.acpi_rst)) 5229 return 0; 5230 5231 ret = qm_master_ooo_check(qm); 5232 if (ret) { 5233 writel(0x0, qm->io_base + ACC_MASTER_GLOBAL_CTRL); 5234 return ret; 5235 } 5236 5237 return qm_reset_device(qm); 5238 } 5239 5240 static int hisi_qm_pci_init(struct hisi_qm *qm) 5241 { 5242 struct pci_dev *pdev = qm->pdev; 5243 struct device *dev = &pdev->dev; 5244 unsigned int num_vec; 5245 int ret; 5246 5247 ret = pci_enable_device_mem(pdev); 5248 if (ret < 0) { 5249 dev_err(dev, "Failed to enable device mem!\n"); 5250 return ret; 5251 } 5252 5253 ret = qm_get_pci_res(qm); 5254 if (ret) 5255 goto err_disable_pcidev; 5256 5257 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5258 if (ret < 0) 5259 goto err_get_pci_res; 5260 pci_set_master(pdev); 5261 5262 num_vec = qm_get_irq_num(qm); 5263 ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI); 5264 if (ret < 0) { 5265 dev_err(dev, "Failed to enable MSI vectors!\n"); 5266 goto err_get_pci_res; 5267 } 5268 5269 ret = qm_clear_device(qm); 5270 if (ret) 5271 goto err_free_vectors; 5272 5273 return 0; 5274 5275 err_free_vectors: 5276 pci_free_irq_vectors(pdev); 5277 err_get_pci_res: 5278 qm_put_pci_res(qm); 5279 err_disable_pcidev: 5280 pci_disable_device(pdev); 5281 return ret; 5282 } 5283 5284 static int hisi_qm_init_work(struct hisi_qm *qm) 5285 { 5286 int i; 5287 5288 for (i = 0; i < qm->qp_num; i++) 5289 INIT_WORK(&qm->poll_data[i].work, qm_work_process); 5290 5291 if (qm->fun_type == QM_HW_PF) 5292 INIT_WORK(&qm->rst_work, hisi_qm_controller_reset); 5293 5294 if (qm->ver > QM_HW_V2) 5295 INIT_WORK(&qm->cmd_process, qm_cmd_process); 5296 5297 qm->wq = alloc_workqueue("%s", WQ_HIGHPRI | WQ_MEM_RECLAIM | 5298 WQ_UNBOUND, num_online_cpus(), 5299 pci_name(qm->pdev)); 5300 if (!qm->wq) { 5301 pci_err(qm->pdev, "failed to alloc workqueue!\n"); 5302 return -ENOMEM; 5303 } 5304 5305 return 0; 5306 } 5307 5308 static int hisi_qp_alloc_memory(struct hisi_qm *qm) 5309 { 5310 struct device *dev = &qm->pdev->dev; 5311 u16 sq_depth, cq_depth; 5312 size_t qp_dma_size; 5313 int i, ret; 5314 5315 qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL); 5316 if (!qm->qp_array) 5317 return -ENOMEM; 5318 5319 qm->poll_data = kcalloc(qm->qp_num, sizeof(struct hisi_qm_poll_data), GFP_KERNEL); 5320 if (!qm->poll_data) { 5321 kfree(qm->qp_array); 5322 return -ENOMEM; 5323 } 5324 5325 qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP); 5326 5327 /* one more page for device or qp statuses */ 5328 qp_dma_size = qm->sqe_size * sq_depth + sizeof(struct qm_cqe) * cq_depth; 5329 qp_dma_size = PAGE_ALIGN(qp_dma_size) + PAGE_SIZE; 5330 for (i = 0; i < qm->qp_num; i++) { 5331 qm->poll_data[i].qm = qm; 5332 ret = hisi_qp_memory_init(qm, qp_dma_size, i, sq_depth, cq_depth); 5333 if (ret) 5334 goto err_init_qp_mem; 5335 5336 dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size); 5337 } 5338 5339 return 0; 5340 err_init_qp_mem: 5341 hisi_qp_memory_uninit(qm, i); 5342 5343 return ret; 5344 } 5345 5346 static int hisi_qm_alloc_rsv_buf(struct hisi_qm *qm) 5347 { 5348 struct qm_rsv_buf *xqc_buf = &qm->xqc_buf; 5349 struct qm_dma *xqc_dma = &xqc_buf->qcdma; 5350 struct device *dev = &qm->pdev->dev; 5351 size_t off = 0; 5352 5353 #define QM_XQC_BUF_INIT(xqc_buf, type) do { \ 5354 (xqc_buf)->type = ((xqc_buf)->qcdma.va + (off)); \ 5355 (xqc_buf)->type##_dma = (xqc_buf)->qcdma.dma + (off); \ 5356 off += QMC_ALIGN(sizeof(struct qm_##type)); \ 5357 } while (0) 5358 5359 xqc_dma->size = QMC_ALIGN(sizeof(struct qm_eqc)) + 5360 QMC_ALIGN(sizeof(struct qm_aeqc)) + 5361 QMC_ALIGN(sizeof(struct qm_sqc)) + 5362 QMC_ALIGN(sizeof(struct qm_cqc)); 5363 xqc_dma->va = dma_alloc_coherent(dev, xqc_dma->size, 5364 &xqc_dma->dma, GFP_KERNEL); 5365 if (!xqc_dma->va) 5366 return -ENOMEM; 5367 5368 QM_XQC_BUF_INIT(xqc_buf, eqc); 5369 QM_XQC_BUF_INIT(xqc_buf, aeqc); 5370 QM_XQC_BUF_INIT(xqc_buf, sqc); 5371 QM_XQC_BUF_INIT(xqc_buf, cqc); 5372 5373 return 0; 5374 } 5375 5376 static int hisi_qm_memory_init(struct hisi_qm *qm) 5377 { 5378 struct device *dev = &qm->pdev->dev; 5379 int ret, total_func; 5380 size_t off = 0; 5381 5382 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) { 5383 total_func = pci_sriov_get_totalvfs(qm->pdev) + 1; 5384 qm->factor = kcalloc(total_func, sizeof(struct qm_shaper_factor), GFP_KERNEL); 5385 if (!qm->factor) 5386 return -ENOMEM; 5387 5388 /* Only the PF value needs to be initialized */ 5389 qm->factor[0].func_qos = QM_QOS_MAX_VAL; 5390 } 5391 5392 #define QM_INIT_BUF(qm, type, num) do { \ 5393 (qm)->type = ((qm)->qdma.va + (off)); \ 5394 (qm)->type##_dma = (qm)->qdma.dma + (off); \ 5395 off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \ 5396 } while (0) 5397 5398 idr_init(&qm->qp_idr); 5399 qm_get_xqc_depth(qm, &qm->eq_depth, &qm->aeq_depth, QM_XEQ_DEPTH_CAP); 5400 qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * qm->eq_depth) + 5401 QMC_ALIGN(sizeof(struct qm_aeqe) * qm->aeq_depth) + 5402 QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) + 5403 QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num); 5404 qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma, 5405 GFP_ATOMIC); 5406 dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size); 5407 if (!qm->qdma.va) { 5408 ret = -ENOMEM; 5409 goto err_destroy_idr; 5410 } 5411 5412 QM_INIT_BUF(qm, eqe, qm->eq_depth); 5413 QM_INIT_BUF(qm, aeqe, qm->aeq_depth); 5414 QM_INIT_BUF(qm, sqc, qm->qp_num); 5415 QM_INIT_BUF(qm, cqc, qm->qp_num); 5416 5417 ret = hisi_qm_alloc_rsv_buf(qm); 5418 if (ret) 5419 goto err_free_qdma; 5420 5421 ret = hisi_qp_alloc_memory(qm); 5422 if (ret) 5423 goto err_free_reserve_buf; 5424 5425 return 0; 5426 5427 err_free_reserve_buf: 5428 hisi_qm_free_rsv_buf(qm); 5429 err_free_qdma: 5430 dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma); 5431 err_destroy_idr: 5432 idr_destroy(&qm->qp_idr); 5433 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 5434 kfree(qm->factor); 5435 5436 return ret; 5437 } 5438 5439 /** 5440 * hisi_qm_init() - Initialize configures about qm. 5441 * @qm: The qm needing init. 5442 * 5443 * This function init qm, then we can call hisi_qm_start to put qm into work. 5444 */ 5445 int hisi_qm_init(struct hisi_qm *qm) 5446 { 5447 struct pci_dev *pdev = qm->pdev; 5448 struct device *dev = &pdev->dev; 5449 int ret; 5450 5451 hisi_qm_pre_init(qm); 5452 5453 ret = hisi_qm_pci_init(qm); 5454 if (ret) 5455 return ret; 5456 5457 ret = qm_irqs_register(qm); 5458 if (ret) 5459 goto err_pci_init; 5460 5461 if (qm->fun_type == QM_HW_PF) { 5462 /* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */ 5463 writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG); 5464 qm_disable_clock_gate(qm); 5465 ret = qm_dev_mem_reset(qm); 5466 if (ret) { 5467 dev_err(dev, "failed to reset device memory\n"); 5468 goto err_irq_register; 5469 } 5470 } 5471 5472 if (qm->mode == UACCE_MODE_SVA) { 5473 ret = qm_alloc_uacce(qm); 5474 if (ret < 0) 5475 dev_warn(dev, "fail to alloc uacce (%d)\n", ret); 5476 } 5477 5478 ret = hisi_qm_memory_init(qm); 5479 if (ret) 5480 goto err_alloc_uacce; 5481 5482 ret = hisi_qm_init_work(qm); 5483 if (ret) 5484 goto err_free_qm_memory; 5485 5486 qm_cmd_init(qm); 5487 5488 return 0; 5489 5490 err_free_qm_memory: 5491 hisi_qm_memory_uninit(qm); 5492 err_alloc_uacce: 5493 qm_remove_uacce(qm); 5494 err_irq_register: 5495 qm_irqs_unregister(qm); 5496 err_pci_init: 5497 hisi_qm_pci_uninit(qm); 5498 return ret; 5499 } 5500 EXPORT_SYMBOL_GPL(hisi_qm_init); 5501 5502 /** 5503 * hisi_qm_get_dfx_access() - Try to get dfx access. 5504 * @qm: pointer to accelerator device. 5505 * 5506 * Try to get dfx access, then user can get message. 5507 * 5508 * If device is in suspended, return failure, otherwise 5509 * bump up the runtime PM usage counter. 5510 */ 5511 int hisi_qm_get_dfx_access(struct hisi_qm *qm) 5512 { 5513 struct device *dev = &qm->pdev->dev; 5514 5515 if (pm_runtime_suspended(dev)) { 5516 dev_info(dev, "can not read/write - device in suspended.\n"); 5517 return -EAGAIN; 5518 } 5519 5520 return qm_pm_get_sync(qm); 5521 } 5522 EXPORT_SYMBOL_GPL(hisi_qm_get_dfx_access); 5523 5524 /** 5525 * hisi_qm_put_dfx_access() - Put dfx access. 5526 * @qm: pointer to accelerator device. 5527 * 5528 * Put dfx access, drop runtime PM usage counter. 5529 */ 5530 void hisi_qm_put_dfx_access(struct hisi_qm *qm) 5531 { 5532 qm_pm_put_sync(qm); 5533 } 5534 EXPORT_SYMBOL_GPL(hisi_qm_put_dfx_access); 5535 5536 /** 5537 * hisi_qm_pm_init() - Initialize qm runtime PM. 5538 * @qm: pointer to accelerator device. 5539 * 5540 * Function that initialize qm runtime PM. 5541 */ 5542 void hisi_qm_pm_init(struct hisi_qm *qm) 5543 { 5544 struct device *dev = &qm->pdev->dev; 5545 5546 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 5547 return; 5548 5549 pm_runtime_set_autosuspend_delay(dev, QM_AUTOSUSPEND_DELAY); 5550 pm_runtime_use_autosuspend(dev); 5551 pm_runtime_put_noidle(dev); 5552 } 5553 EXPORT_SYMBOL_GPL(hisi_qm_pm_init); 5554 5555 /** 5556 * hisi_qm_pm_uninit() - Uninitialize qm runtime PM. 5557 * @qm: pointer to accelerator device. 5558 * 5559 * Function that uninitialize qm runtime PM. 5560 */ 5561 void hisi_qm_pm_uninit(struct hisi_qm *qm) 5562 { 5563 struct device *dev = &qm->pdev->dev; 5564 5565 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 5566 return; 5567 5568 pm_runtime_get_noresume(dev); 5569 pm_runtime_dont_use_autosuspend(dev); 5570 } 5571 EXPORT_SYMBOL_GPL(hisi_qm_pm_uninit); 5572 5573 static int qm_prepare_for_suspend(struct hisi_qm *qm) 5574 { 5575 struct pci_dev *pdev = qm->pdev; 5576 int ret; 5577 5578 ret = qm->ops->set_msi(qm, false); 5579 if (ret) { 5580 pci_err(pdev, "failed to disable MSI before suspending!\n"); 5581 return ret; 5582 } 5583 5584 ret = qm_master_ooo_check(qm); 5585 if (ret) 5586 return ret; 5587 5588 ret = qm_set_pf_mse(qm, false); 5589 if (ret) 5590 pci_err(pdev, "failed to disable MSE before suspending!\n"); 5591 5592 return ret; 5593 } 5594 5595 static int qm_rebuild_for_resume(struct hisi_qm *qm) 5596 { 5597 struct pci_dev *pdev = qm->pdev; 5598 int ret; 5599 5600 ret = qm_set_pf_mse(qm, true); 5601 if (ret) { 5602 pci_err(pdev, "failed to enable MSE after resuming!\n"); 5603 return ret; 5604 } 5605 5606 ret = qm->ops->set_msi(qm, true); 5607 if (ret) { 5608 pci_err(pdev, "failed to enable MSI after resuming!\n"); 5609 return ret; 5610 } 5611 5612 ret = qm_dev_hw_init(qm); 5613 if (ret) { 5614 pci_err(pdev, "failed to init device after resuming\n"); 5615 return ret; 5616 } 5617 5618 qm_cmd_init(qm); 5619 hisi_qm_dev_err_init(qm); 5620 /* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */ 5621 writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG); 5622 qm_disable_clock_gate(qm); 5623 ret = qm_dev_mem_reset(qm); 5624 if (ret) 5625 pci_err(pdev, "failed to reset device memory\n"); 5626 5627 return ret; 5628 } 5629 5630 /** 5631 * hisi_qm_suspend() - Runtime suspend of given device. 5632 * @dev: device to suspend. 5633 * 5634 * Function that suspend the device. 5635 */ 5636 int hisi_qm_suspend(struct device *dev) 5637 { 5638 struct pci_dev *pdev = to_pci_dev(dev); 5639 struct hisi_qm *qm = pci_get_drvdata(pdev); 5640 int ret; 5641 5642 pci_info(pdev, "entering suspended state\n"); 5643 5644 ret = hisi_qm_stop(qm, QM_NORMAL); 5645 if (ret) { 5646 pci_err(pdev, "failed to stop qm(%d)\n", ret); 5647 return ret; 5648 } 5649 5650 ret = qm_prepare_for_suspend(qm); 5651 if (ret) 5652 pci_err(pdev, "failed to prepare suspended(%d)\n", ret); 5653 5654 return ret; 5655 } 5656 EXPORT_SYMBOL_GPL(hisi_qm_suspend); 5657 5658 /** 5659 * hisi_qm_resume() - Runtime resume of given device. 5660 * @dev: device to resume. 5661 * 5662 * Function that resume the device. 5663 */ 5664 int hisi_qm_resume(struct device *dev) 5665 { 5666 struct pci_dev *pdev = to_pci_dev(dev); 5667 struct hisi_qm *qm = pci_get_drvdata(pdev); 5668 int ret; 5669 5670 pci_info(pdev, "resuming from suspend state\n"); 5671 5672 ret = qm_rebuild_for_resume(qm); 5673 if (ret) { 5674 pci_err(pdev, "failed to rebuild resume(%d)\n", ret); 5675 return ret; 5676 } 5677 5678 ret = hisi_qm_start(qm); 5679 if (ret) { 5680 if (qm_check_dev_error(qm)) { 5681 pci_info(pdev, "failed to start qm due to device error, device will be reset!\n"); 5682 return 0; 5683 } 5684 5685 pci_err(pdev, "failed to start qm(%d)!\n", ret); 5686 } 5687 5688 return ret; 5689 } 5690 EXPORT_SYMBOL_GPL(hisi_qm_resume); 5691 5692 MODULE_LICENSE("GPL v2"); 5693 MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>"); 5694 MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver"); 5695