xref: /linux/drivers/crypto/hisilicon/qm.c (revision 70199359902f1c7187dcb28a1be679a7081de7cc)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 HiSilicon Limited. */
3 #include <asm/page.h>
4 #include <linux/acpi.h>
5 #include <linux/bitmap.h>
6 #include <linux/dma-mapping.h>
7 #include <linux/idr.h>
8 #include <linux/io.h>
9 #include <linux/irqreturn.h>
10 #include <linux/log2.h>
11 #include <linux/pm_runtime.h>
12 #include <linux/seq_file.h>
13 #include <linux/slab.h>
14 #include <linux/uacce.h>
15 #include <linux/uaccess.h>
16 #include <uapi/misc/uacce/hisi_qm.h>
17 #include <linux/hisi_acc_qm.h>
18 #include "qm_common.h"
19 
20 /* eq/aeq irq enable */
21 #define QM_VF_AEQ_INT_SOURCE		0x0
22 #define QM_VF_AEQ_INT_MASK		0x4
23 #define QM_VF_EQ_INT_SOURCE		0x8
24 #define QM_VF_EQ_INT_MASK		0xc
25 
26 #define QM_IRQ_VECTOR_MASK		GENMASK(15, 0)
27 #define QM_IRQ_TYPE_MASK		GENMASK(15, 0)
28 #define QM_IRQ_TYPE_SHIFT		16
29 #define QM_ABN_IRQ_TYPE_MASK		GENMASK(7, 0)
30 
31 /* mailbox */
32 #define QM_MB_PING_ALL_VFS		0xffff
33 #define QM_MB_CMD_DATA_SHIFT		32
34 #define QM_MB_CMD_DATA_MASK		GENMASK(31, 0)
35 #define QM_MB_STATUS_MASK		GENMASK(12, 9)
36 
37 /* sqc shift */
38 #define QM_SQ_HOP_NUM_SHIFT		0
39 #define QM_SQ_PAGE_SIZE_SHIFT		4
40 #define QM_SQ_BUF_SIZE_SHIFT		8
41 #define QM_SQ_SQE_SIZE_SHIFT		12
42 #define QM_SQ_PRIORITY_SHIFT		0
43 #define QM_SQ_ORDERS_SHIFT		4
44 #define QM_SQ_TYPE_SHIFT		8
45 #define QM_QC_PASID_ENABLE		0x1
46 #define QM_QC_PASID_ENABLE_SHIFT	7
47 
48 #define QM_SQ_TYPE_MASK			GENMASK(3, 0)
49 #define QM_SQ_TAIL_IDX(sqc)		((le16_to_cpu((sqc).w11) >> 6) & 0x1)
50 
51 /* cqc shift */
52 #define QM_CQ_HOP_NUM_SHIFT		0
53 #define QM_CQ_PAGE_SIZE_SHIFT		4
54 #define QM_CQ_BUF_SIZE_SHIFT		8
55 #define QM_CQ_CQE_SIZE_SHIFT		12
56 #define QM_CQ_PHASE_SHIFT		0
57 #define QM_CQ_FLAG_SHIFT		1
58 
59 #define QM_CQE_PHASE(cqe)		(le16_to_cpu((cqe)->w7) & 0x1)
60 #define QM_QC_CQE_SIZE			4
61 #define QM_CQ_TAIL_IDX(cqc)		((le16_to_cpu((cqc).w11) >> 6) & 0x1)
62 
63 /* eqc shift */
64 #define QM_EQE_AEQE_SIZE		(2UL << 12)
65 #define QM_EQC_PHASE_SHIFT		16
66 
67 #define QM_EQE_PHASE(eqe)		((le32_to_cpu((eqe)->dw0) >> 16) & 0x1)
68 #define QM_EQE_CQN_MASK			GENMASK(15, 0)
69 
70 #define QM_AEQE_PHASE(aeqe)		((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1)
71 #define QM_AEQE_TYPE_SHIFT		17
72 #define QM_AEQE_TYPE_MASK		0xf
73 #define QM_AEQE_CQN_MASK		GENMASK(15, 0)
74 #define QM_CQ_OVERFLOW			0
75 #define QM_EQ_OVERFLOW			1
76 #define QM_CQE_ERROR			2
77 
78 #define QM_XQ_DEPTH_SHIFT		16
79 #define QM_XQ_DEPTH_MASK		GENMASK(15, 0)
80 
81 #define QM_DOORBELL_CMD_SQ		0
82 #define QM_DOORBELL_CMD_CQ		1
83 #define QM_DOORBELL_CMD_EQ		2
84 #define QM_DOORBELL_CMD_AEQ		3
85 
86 #define QM_DOORBELL_BASE_V1		0x340
87 #define QM_DB_CMD_SHIFT_V1		16
88 #define QM_DB_INDEX_SHIFT_V1		32
89 #define QM_DB_PRIORITY_SHIFT_V1		48
90 #define QM_PAGE_SIZE			0x0034
91 #define QM_QP_DB_INTERVAL		0x10000
92 #define QM_DB_TIMEOUT_CFG		0x100074
93 #define QM_DB_TIMEOUT_SET		0x1fffff
94 
95 #define QM_MEM_START_INIT		0x100040
96 #define QM_MEM_INIT_DONE		0x100044
97 #define QM_VFT_CFG_RDY			0x10006c
98 #define QM_VFT_CFG_OP_WR		0x100058
99 #define QM_VFT_CFG_TYPE			0x10005c
100 #define QM_VFT_CFG			0x100060
101 #define QM_VFT_CFG_OP_ENABLE		0x100054
102 #define QM_PM_CTRL			0x100148
103 #define QM_IDLE_DISABLE			BIT(9)
104 
105 #define QM_VFT_CFG_DATA_L		0x100064
106 #define QM_VFT_CFG_DATA_H		0x100068
107 #define QM_SQC_VFT_BUF_SIZE		(7ULL << 8)
108 #define QM_SQC_VFT_SQC_SIZE		(5ULL << 12)
109 #define QM_SQC_VFT_INDEX_NUMBER		(1ULL << 16)
110 #define QM_SQC_VFT_START_SQN_SHIFT	28
111 #define QM_SQC_VFT_VALID		(1ULL << 44)
112 #define QM_SQC_VFT_SQN_SHIFT		45
113 #define QM_CQC_VFT_BUF_SIZE		(7ULL << 8)
114 #define QM_CQC_VFT_SQC_SIZE		(5ULL << 12)
115 #define QM_CQC_VFT_INDEX_NUMBER		(1ULL << 16)
116 #define QM_CQC_VFT_VALID		(1ULL << 28)
117 
118 #define QM_SQC_VFT_BASE_SHIFT_V2	28
119 #define QM_SQC_VFT_BASE_MASK_V2		GENMASK(15, 0)
120 #define QM_SQC_VFT_NUM_SHIFT_V2		45
121 #define QM_SQC_VFT_NUM_MASK_V2		GENMASK(9, 0)
122 
123 #define QM_ABNORMAL_INT_SOURCE		0x100000
124 #define QM_ABNORMAL_INT_MASK		0x100004
125 #define QM_ABNORMAL_INT_MASK_VALUE	0x7fff
126 #define QM_ABNORMAL_INT_STATUS		0x100008
127 #define QM_ABNORMAL_INT_SET		0x10000c
128 #define QM_ABNORMAL_INF00		0x100010
129 #define QM_FIFO_OVERFLOW_TYPE		0xc0
130 #define QM_FIFO_OVERFLOW_TYPE_SHIFT	6
131 #define QM_FIFO_OVERFLOW_VF		0x3f
132 #define QM_FIFO_OVERFLOW_QP_SHIFT	16
133 #define QM_ABNORMAL_INF01		0x100014
134 #define QM_DB_TIMEOUT_TYPE		0xc0
135 #define QM_DB_TIMEOUT_TYPE_SHIFT	6
136 #define QM_DB_TIMEOUT_VF		0x3f
137 #define QM_DB_TIMEOUT_QP_SHIFT		16
138 #define QM_ABNORMAL_INF02		0x100018
139 #define QM_AXI_POISON_ERR		BIT(22)
140 #define QM_RAS_CE_ENABLE		0x1000ec
141 #define QM_RAS_FE_ENABLE		0x1000f0
142 #define QM_RAS_NFE_ENABLE		0x1000f4
143 #define QM_RAS_CE_THRESHOLD		0x1000f8
144 #define QM_RAS_CE_TIMES_PER_IRQ		1
145 #define QM_OOO_SHUTDOWN_SEL		0x1040f8
146 #define QM_AXI_RRESP_ERR		BIT(0)
147 #define QM_ECC_MBIT			BIT(2)
148 #define QM_DB_TIMEOUT			BIT(10)
149 #define QM_OF_FIFO_OF			BIT(11)
150 
151 #define QM_RESET_WAIT_TIMEOUT		400
152 #define QM_PEH_VENDOR_ID		0x1000d8
153 #define ACC_VENDOR_ID_VALUE		0x5a5a
154 #define QM_PEH_DFX_INFO0		0x1000fc
155 #define QM_PEH_DFX_INFO1		0x100100
156 #define QM_PEH_DFX_MASK			(BIT(0) | BIT(2))
157 #define QM_PEH_MSI_FINISH_MASK		GENMASK(19, 16)
158 #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT	3
159 #define ACC_PEH_MSI_DISABLE		GENMASK(31, 0)
160 #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN	0x1
161 #define ACC_MASTER_TRANS_RETURN_RW	3
162 #define ACC_MASTER_TRANS_RETURN		0x300150
163 #define ACC_MASTER_GLOBAL_CTRL		0x300000
164 #define ACC_AM_CFG_PORT_WR_EN		0x30001c
165 #define QM_RAS_NFE_MBIT_DISABLE		~QM_ECC_MBIT
166 #define ACC_AM_ROB_ECC_INT_STS		0x300104
167 #define ACC_ROB_ECC_ERR_MULTPL		BIT(1)
168 #define QM_MSI_CAP_ENABLE		BIT(16)
169 
170 /* interfunction communication */
171 #define QM_IFC_READY_STATUS		0x100128
172 #define QM_IFC_INT_SET_P		0x100130
173 #define QM_IFC_INT_CFG			0x100134
174 #define QM_IFC_INT_SOURCE_P		0x100138
175 #define QM_IFC_INT_SOURCE_V		0x0020
176 #define QM_IFC_INT_MASK			0x0024
177 #define QM_IFC_INT_STATUS		0x0028
178 #define QM_IFC_INT_SET_V		0x002C
179 #define QM_IFC_SEND_ALL_VFS		GENMASK(6, 0)
180 #define QM_IFC_INT_SOURCE_CLR		GENMASK(63, 0)
181 #define QM_IFC_INT_SOURCE_MASK		BIT(0)
182 #define QM_IFC_INT_DISABLE		BIT(0)
183 #define QM_IFC_INT_STATUS_MASK		BIT(0)
184 #define QM_IFC_INT_SET_MASK		BIT(0)
185 #define QM_WAIT_DST_ACK			10
186 #define QM_MAX_PF_WAIT_COUNT		10
187 #define QM_MAX_VF_WAIT_COUNT		40
188 #define QM_VF_RESET_WAIT_US            20000
189 #define QM_VF_RESET_WAIT_CNT           3000
190 #define QM_VF_RESET_WAIT_TIMEOUT_US    \
191 	(QM_VF_RESET_WAIT_US * QM_VF_RESET_WAIT_CNT)
192 
193 #define POLL_PERIOD			10
194 #define POLL_TIMEOUT			1000
195 #define WAIT_PERIOD_US_MAX		200
196 #define WAIT_PERIOD_US_MIN		100
197 #define MAX_WAIT_COUNTS			1000
198 #define QM_CACHE_WB_START		0x204
199 #define QM_CACHE_WB_DONE		0x208
200 #define QM_FUNC_CAPS_REG		0x3100
201 #define QM_CAPBILITY_VERSION		GENMASK(7, 0)
202 
203 #define PCI_BAR_2			2
204 #define PCI_BAR_4			4
205 #define QMC_ALIGN(sz)			ALIGN(sz, 32)
206 
207 #define QM_DBG_READ_LEN		256
208 #define QM_PCI_COMMAND_INVALID		~0
209 #define QM_RESET_STOP_TX_OFFSET		1
210 #define QM_RESET_STOP_RX_OFFSET		2
211 
212 #define WAIT_PERIOD			20
213 #define REMOVE_WAIT_DELAY		10
214 
215 #define QM_QOS_PARAM_NUM		2
216 #define QM_QOS_MAX_VAL			1000
217 #define QM_QOS_RATE			100
218 #define QM_QOS_EXPAND_RATE		1000
219 #define QM_SHAPER_CIR_B_MASK		GENMASK(7, 0)
220 #define QM_SHAPER_CIR_U_MASK		GENMASK(10, 8)
221 #define QM_SHAPER_CIR_S_MASK		GENMASK(14, 11)
222 #define QM_SHAPER_FACTOR_CIR_U_SHIFT	8
223 #define QM_SHAPER_FACTOR_CIR_S_SHIFT	11
224 #define QM_SHAPER_FACTOR_CBS_B_SHIFT	15
225 #define QM_SHAPER_FACTOR_CBS_S_SHIFT	19
226 #define QM_SHAPER_CBS_B			1
227 #define QM_SHAPER_VFT_OFFSET		6
228 #define QM_QOS_MIN_ERROR_RATE		5
229 #define QM_SHAPER_MIN_CBS_S		8
230 #define QM_QOS_TICK			0x300U
231 #define QM_QOS_DIVISOR_CLK		0x1f40U
232 #define QM_QOS_MAX_CIR_B		200
233 #define QM_QOS_MIN_CIR_B		100
234 #define QM_QOS_MAX_CIR_U		6
235 #define QM_AUTOSUSPEND_DELAY		3000
236 
237 #define QM_DEV_ALG_MAX_LEN		256
238 
239  /* abnormal status value for stopping queue */
240 #define QM_STOP_QUEUE_FAIL		1
241 #define	QM_DUMP_SQC_FAIL		3
242 #define	QM_DUMP_CQC_FAIL		4
243 #define	QM_FINISH_WAIT			5
244 
245 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \
246 	(((hop_num) << QM_CQ_HOP_NUM_SHIFT) | \
247 	((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT) | \
248 	((buf_sz) << QM_CQ_BUF_SIZE_SHIFT) | \
249 	((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
250 
251 #define QM_MK_CQC_DW3_V2(cqe_sz, cq_depth) \
252 	((((u32)cq_depth) - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
253 
254 #define QM_MK_SQC_W13(priority, orders, alg_type) \
255 	(((priority) << QM_SQ_PRIORITY_SHIFT) | \
256 	((orders) << QM_SQ_ORDERS_SHIFT) | \
257 	(((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT))
258 
259 #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \
260 	(((hop_num) << QM_SQ_HOP_NUM_SHIFT) | \
261 	((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT) | \
262 	((buf_sz) << QM_SQ_BUF_SIZE_SHIFT) | \
263 	((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
264 
265 #define QM_MK_SQC_DW3_V2(sqe_sz, sq_depth) \
266 	((((u32)sq_depth) - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
267 
268 enum vft_type {
269 	SQC_VFT = 0,
270 	CQC_VFT,
271 	SHAPER_VFT,
272 };
273 
274 enum acc_err_result {
275 	ACC_ERR_NONE,
276 	ACC_ERR_NEED_RESET,
277 	ACC_ERR_RECOVERED,
278 };
279 
280 enum qm_alg_type {
281 	ALG_TYPE_0,
282 	ALG_TYPE_1,
283 };
284 
285 enum qm_mb_cmd {
286 	QM_PF_FLR_PREPARE = 0x01,
287 	QM_PF_SRST_PREPARE,
288 	QM_PF_RESET_DONE,
289 	QM_VF_PREPARE_DONE,
290 	QM_VF_PREPARE_FAIL,
291 	QM_VF_START_DONE,
292 	QM_VF_START_FAIL,
293 	QM_PF_SET_QOS,
294 	QM_VF_GET_QOS,
295 };
296 
297 enum qm_basic_type {
298 	QM_TOTAL_QP_NUM_CAP = 0x0,
299 	QM_FUNC_MAX_QP_CAP,
300 	QM_XEQ_DEPTH_CAP,
301 	QM_QP_DEPTH_CAP,
302 	QM_EQ_IRQ_TYPE_CAP,
303 	QM_AEQ_IRQ_TYPE_CAP,
304 	QM_ABN_IRQ_TYPE_CAP,
305 	QM_PF2VF_IRQ_TYPE_CAP,
306 	QM_PF_IRQ_NUM_CAP,
307 	QM_VF_IRQ_NUM_CAP,
308 };
309 
310 enum qm_pre_store_cap_idx {
311 	QM_EQ_IRQ_TYPE_CAP_IDX = 0x0,
312 	QM_AEQ_IRQ_TYPE_CAP_IDX,
313 	QM_ABN_IRQ_TYPE_CAP_IDX,
314 	QM_PF2VF_IRQ_TYPE_CAP_IDX,
315 };
316 
317 static const struct hisi_qm_cap_info qm_cap_info_comm[] = {
318 	{QM_SUPPORT_DB_ISOLATION, 0x30,   0, BIT(0),  0x0, 0x0, 0x0},
319 	{QM_SUPPORT_FUNC_QOS,     0x3100, 0, BIT(8),  0x0, 0x0, 0x1},
320 	{QM_SUPPORT_STOP_QP,      0x3100, 0, BIT(9),  0x0, 0x0, 0x1},
321 	{QM_SUPPORT_STOP_FUNC,     0x3100, 0, BIT(10), 0x0, 0x0, 0x1},
322 	{QM_SUPPORT_MB_COMMAND,   0x3100, 0, BIT(11), 0x0, 0x0, 0x1},
323 	{QM_SUPPORT_SVA_PREFETCH, 0x3100, 0, BIT(14), 0x0, 0x0, 0x1},
324 };
325 
326 static const struct hisi_qm_cap_info qm_cap_info_pf[] = {
327 	{QM_SUPPORT_RPM, 0x3100, 0, BIT(13), 0x0, 0x0, 0x1},
328 };
329 
330 static const struct hisi_qm_cap_info qm_cap_info_vf[] = {
331 	{QM_SUPPORT_RPM, 0x3100, 0, BIT(12), 0x0, 0x0, 0x0},
332 };
333 
334 static const struct hisi_qm_cap_info qm_basic_info[] = {
335 	{QM_TOTAL_QP_NUM_CAP,   0x100158, 0,  GENMASK(10, 0), 0x1000,    0x400,     0x400},
336 	{QM_FUNC_MAX_QP_CAP,    0x100158, 11, GENMASK(10, 0), 0x1000,    0x400,     0x400},
337 	{QM_XEQ_DEPTH_CAP,      0x3104,   0,  GENMASK(31, 0), 0x800,     0x4000800, 0x4000800},
338 	{QM_QP_DEPTH_CAP,       0x3108,   0,  GENMASK(31, 0), 0x4000400, 0x4000400, 0x4000400},
339 	{QM_EQ_IRQ_TYPE_CAP,    0x310c,   0,  GENMASK(31, 0), 0x10000,   0x10000,   0x10000},
340 	{QM_AEQ_IRQ_TYPE_CAP,   0x3110,   0,  GENMASK(31, 0), 0x0,       0x10001,   0x10001},
341 	{QM_ABN_IRQ_TYPE_CAP,   0x3114,   0,  GENMASK(31, 0), 0x0,       0x10003,   0x10003},
342 	{QM_PF2VF_IRQ_TYPE_CAP, 0x3118,   0,  GENMASK(31, 0), 0x0,       0x0,       0x10002},
343 	{QM_PF_IRQ_NUM_CAP,     0x311c,   16, GENMASK(15, 0), 0x1,       0x4,       0x4},
344 	{QM_VF_IRQ_NUM_CAP,     0x311c,   0,  GENMASK(15, 0), 0x1,       0x2,       0x3},
345 };
346 
347 static const u32 qm_pre_store_caps[] = {
348 	QM_EQ_IRQ_TYPE_CAP,
349 	QM_AEQ_IRQ_TYPE_CAP,
350 	QM_ABN_IRQ_TYPE_CAP,
351 	QM_PF2VF_IRQ_TYPE_CAP,
352 };
353 
354 struct qm_mailbox {
355 	__le16 w0;
356 	__le16 queue_num;
357 	__le32 base_l;
358 	__le32 base_h;
359 	__le32 rsvd;
360 };
361 
362 struct qm_doorbell {
363 	__le16 queue_num;
364 	__le16 cmd;
365 	__le16 index;
366 	__le16 priority;
367 };
368 
369 struct hisi_qm_resource {
370 	struct hisi_qm *qm;
371 	int distance;
372 	struct list_head list;
373 };
374 
375 /**
376  * struct qm_hw_err - Structure describing the device errors
377  * @list: hardware error list
378  * @timestamp: timestamp when the error occurred
379  */
380 struct qm_hw_err {
381 	struct list_head list;
382 	unsigned long long timestamp;
383 };
384 
385 struct hisi_qm_hw_ops {
386 	int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number);
387 	void (*qm_db)(struct hisi_qm *qm, u16 qn,
388 		      u8 cmd, u16 index, u8 priority);
389 	int (*debug_init)(struct hisi_qm *qm);
390 	void (*hw_error_init)(struct hisi_qm *qm);
391 	void (*hw_error_uninit)(struct hisi_qm *qm);
392 	enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm);
393 	int (*set_msi)(struct hisi_qm *qm, bool set);
394 };
395 
396 struct hisi_qm_hw_error {
397 	u32 int_msk;
398 	const char *msg;
399 };
400 
401 static const struct hisi_qm_hw_error qm_hw_error[] = {
402 	{ .int_msk = BIT(0), .msg = "qm_axi_rresp" },
403 	{ .int_msk = BIT(1), .msg = "qm_axi_bresp" },
404 	{ .int_msk = BIT(2), .msg = "qm_ecc_mbit" },
405 	{ .int_msk = BIT(3), .msg = "qm_ecc_1bit" },
406 	{ .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" },
407 	{ .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" },
408 	{ .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" },
409 	{ .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" },
410 	{ .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" },
411 	{ .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" },
412 	{ .int_msk = BIT(10), .msg = "qm_db_timeout" },
413 	{ .int_msk = BIT(11), .msg = "qm_of_fifo_of" },
414 	{ .int_msk = BIT(12), .msg = "qm_db_random_invalid" },
415 	{ .int_msk = BIT(13), .msg = "qm_mailbox_timeout" },
416 	{ .int_msk = BIT(14), .msg = "qm_flr_timeout" },
417 };
418 
419 static const char * const qm_db_timeout[] = {
420 	"sq", "cq", "eq", "aeq",
421 };
422 
423 static const char * const qm_fifo_overflow[] = {
424 	"cq", "eq", "aeq",
425 };
426 
427 struct qm_typical_qos_table {
428 	u32 start;
429 	u32 end;
430 	u32 val;
431 };
432 
433 /* the qos step is 100 */
434 static struct qm_typical_qos_table shaper_cir_s[] = {
435 	{100, 100, 4},
436 	{200, 200, 3},
437 	{300, 500, 2},
438 	{600, 1000, 1},
439 	{1100, 100000, 0},
440 };
441 
442 static struct qm_typical_qos_table shaper_cbs_s[] = {
443 	{100, 200, 9},
444 	{300, 500, 11},
445 	{600, 1000, 12},
446 	{1100, 10000, 16},
447 	{10100, 25000, 17},
448 	{25100, 50000, 18},
449 	{50100, 100000, 19}
450 };
451 
452 static void qm_irqs_unregister(struct hisi_qm *qm);
453 static int qm_reset_device(struct hisi_qm *qm);
454 int hisi_qm_q_num_set(const char *val, const struct kernel_param *kp,
455 		      unsigned int device)
456 {
457 	struct pci_dev *pdev;
458 	u32 n, q_num;
459 	int ret;
460 
461 	if (!val)
462 		return -EINVAL;
463 
464 	pdev = pci_get_device(PCI_VENDOR_ID_HUAWEI, device, NULL);
465 	if (!pdev) {
466 		q_num = min_t(u32, QM_QNUM_V1, QM_QNUM_V2);
467 		pr_info("No device found currently, suppose queue number is %u\n",
468 			q_num);
469 	} else {
470 		if (pdev->revision == QM_HW_V1)
471 			q_num = QM_QNUM_V1;
472 		else
473 			q_num = QM_QNUM_V2;
474 
475 		pci_dev_put(pdev);
476 	}
477 
478 	ret = kstrtou32(val, 10, &n);
479 	if (ret || n < QM_MIN_QNUM || n > q_num)
480 		return -EINVAL;
481 
482 	return param_set_int(val, kp);
483 }
484 EXPORT_SYMBOL_GPL(hisi_qm_q_num_set);
485 
486 static u32 qm_get_hw_error_status(struct hisi_qm *qm)
487 {
488 	return readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
489 }
490 
491 static u32 qm_get_dev_err_status(struct hisi_qm *qm)
492 {
493 	return qm->err_ini->get_dev_hw_err_status(qm);
494 }
495 
496 /* Check if the error causes the master ooo block */
497 static bool qm_check_dev_error(struct hisi_qm *qm)
498 {
499 	u32 val, dev_val;
500 
501 	if (qm->fun_type == QM_HW_VF)
502 		return false;
503 
504 	val = qm_get_hw_error_status(qm) & qm->err_info.qm_shutdown_mask;
505 	dev_val = qm_get_dev_err_status(qm) & qm->err_info.dev_shutdown_mask;
506 
507 	return val || dev_val;
508 }
509 
510 static int qm_wait_reset_finish(struct hisi_qm *qm)
511 {
512 	int delay = 0;
513 
514 	/* All reset requests need to be queued for processing */
515 	while (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
516 		msleep(++delay);
517 		if (delay > QM_RESET_WAIT_TIMEOUT)
518 			return -EBUSY;
519 	}
520 
521 	return 0;
522 }
523 
524 static int qm_reset_prepare_ready(struct hisi_qm *qm)
525 {
526 	struct pci_dev *pdev = qm->pdev;
527 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
528 
529 	/*
530 	 * PF and VF on host doesnot support resetting at the
531 	 * same time on Kunpeng920.
532 	 */
533 	if (qm->ver < QM_HW_V3)
534 		return qm_wait_reset_finish(pf_qm);
535 
536 	return qm_wait_reset_finish(qm);
537 }
538 
539 static void qm_reset_bit_clear(struct hisi_qm *qm)
540 {
541 	struct pci_dev *pdev = qm->pdev;
542 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
543 
544 	if (qm->ver < QM_HW_V3)
545 		clear_bit(QM_RESETTING, &pf_qm->misc_ctl);
546 
547 	clear_bit(QM_RESETTING, &qm->misc_ctl);
548 }
549 
550 static void qm_mb_pre_init(struct qm_mailbox *mailbox, u8 cmd,
551 			   u64 base, u16 queue, bool op)
552 {
553 	mailbox->w0 = cpu_to_le16((cmd) |
554 		((op) ? 0x1 << QM_MB_OP_SHIFT : 0) |
555 		(0x1 << QM_MB_BUSY_SHIFT));
556 	mailbox->queue_num = cpu_to_le16(queue);
557 	mailbox->base_l = cpu_to_le32(lower_32_bits(base));
558 	mailbox->base_h = cpu_to_le32(upper_32_bits(base));
559 	mailbox->rsvd = 0;
560 }
561 
562 /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */
563 int hisi_qm_wait_mb_ready(struct hisi_qm *qm)
564 {
565 	u32 val;
566 
567 	return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE,
568 					  val, !((val >> QM_MB_BUSY_SHIFT) &
569 					  0x1), POLL_PERIOD, POLL_TIMEOUT);
570 }
571 EXPORT_SYMBOL_GPL(hisi_qm_wait_mb_ready);
572 
573 /* 128 bit should be written to hardware at one time to trigger a mailbox */
574 static void qm_mb_write(struct hisi_qm *qm, const void *src)
575 {
576 	void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE;
577 
578 #if IS_ENABLED(CONFIG_ARM64)
579 	unsigned long tmp0 = 0, tmp1 = 0;
580 #endif
581 
582 	if (!IS_ENABLED(CONFIG_ARM64)) {
583 		memcpy_toio(fun_base, src, 16);
584 		dma_wmb();
585 		return;
586 	}
587 
588 #if IS_ENABLED(CONFIG_ARM64)
589 	asm volatile("ldp %0, %1, %3\n"
590 		     "stp %0, %1, %2\n"
591 		     "dmb oshst\n"
592 		     : "=&r" (tmp0),
593 		       "=&r" (tmp1),
594 		       "+Q" (*((char __iomem *)fun_base))
595 		     : "Q" (*((char *)src))
596 		     : "memory");
597 #endif
598 }
599 
600 static int qm_mb_nolock(struct hisi_qm *qm, struct qm_mailbox *mailbox)
601 {
602 	int ret;
603 	u32 val;
604 
605 	if (unlikely(hisi_qm_wait_mb_ready(qm))) {
606 		dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n");
607 		ret = -EBUSY;
608 		goto mb_busy;
609 	}
610 
611 	qm_mb_write(qm, mailbox);
612 
613 	if (unlikely(hisi_qm_wait_mb_ready(qm))) {
614 		dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n");
615 		ret = -ETIMEDOUT;
616 		goto mb_busy;
617 	}
618 
619 	val = readl(qm->io_base + QM_MB_CMD_SEND_BASE);
620 	if (val & QM_MB_STATUS_MASK) {
621 		dev_err(&qm->pdev->dev, "QM mailbox operation failed!\n");
622 		ret = -EIO;
623 		goto mb_busy;
624 	}
625 
626 	return 0;
627 
628 mb_busy:
629 	atomic64_inc(&qm->debug.dfx.mb_err_cnt);
630 	return ret;
631 }
632 
633 int hisi_qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue,
634 	       bool op)
635 {
636 	struct qm_mailbox mailbox;
637 	int ret;
638 
639 	qm_mb_pre_init(&mailbox, cmd, dma_addr, queue, op);
640 
641 	mutex_lock(&qm->mailbox_lock);
642 	ret = qm_mb_nolock(qm, &mailbox);
643 	mutex_unlock(&qm->mailbox_lock);
644 
645 	return ret;
646 }
647 EXPORT_SYMBOL_GPL(hisi_qm_mb);
648 
649 /* op 0: set xqc information to hardware, 1: get xqc information from hardware. */
650 int qm_set_and_get_xqc(struct hisi_qm *qm, u8 cmd, void *xqc, u32 qp_id, bool op)
651 {
652 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
653 	struct qm_mailbox mailbox;
654 	dma_addr_t xqc_dma;
655 	void *tmp_xqc;
656 	size_t size;
657 	int ret;
658 
659 	switch (cmd) {
660 	case QM_MB_CMD_SQC:
661 		size = sizeof(struct qm_sqc);
662 		tmp_xqc = qm->xqc_buf.sqc;
663 		xqc_dma = qm->xqc_buf.sqc_dma;
664 		break;
665 	case QM_MB_CMD_CQC:
666 		size = sizeof(struct qm_cqc);
667 		tmp_xqc = qm->xqc_buf.cqc;
668 		xqc_dma = qm->xqc_buf.cqc_dma;
669 		break;
670 	case QM_MB_CMD_EQC:
671 		size = sizeof(struct qm_eqc);
672 		tmp_xqc = qm->xqc_buf.eqc;
673 		xqc_dma = qm->xqc_buf.eqc_dma;
674 		break;
675 	case QM_MB_CMD_AEQC:
676 		size = sizeof(struct qm_aeqc);
677 		tmp_xqc = qm->xqc_buf.aeqc;
678 		xqc_dma = qm->xqc_buf.aeqc_dma;
679 		break;
680 	default:
681 		dev_err(&qm->pdev->dev, "unknown mailbox cmd %u\n", cmd);
682 		return -EINVAL;
683 	}
684 
685 	/* Setting xqc will fail if master OOO is blocked. */
686 	if (qm_check_dev_error(pf_qm)) {
687 		dev_err(&qm->pdev->dev, "failed to send mailbox since qm is stop!\n");
688 		return -EIO;
689 	}
690 
691 	mutex_lock(&qm->mailbox_lock);
692 	if (!op)
693 		memcpy(tmp_xqc, xqc, size);
694 
695 	qm_mb_pre_init(&mailbox, cmd, xqc_dma, qp_id, op);
696 	ret = qm_mb_nolock(qm, &mailbox);
697 	if (!ret && op)
698 		memcpy(xqc, tmp_xqc, size);
699 
700 	mutex_unlock(&qm->mailbox_lock);
701 
702 	return ret;
703 }
704 
705 static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
706 {
707 	u64 doorbell;
708 
709 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) |
710 		   ((u64)index << QM_DB_INDEX_SHIFT_V1)  |
711 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V1);
712 
713 	writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1);
714 }
715 
716 static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
717 {
718 	void __iomem *io_base = qm->io_base;
719 	u16 randata = 0;
720 	u64 doorbell;
721 
722 	if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ)
723 		io_base = qm->db_io_base + (u64)qn * qm->db_interval +
724 			  QM_DOORBELL_SQ_CQ_BASE_V2;
725 	else
726 		io_base += QM_DOORBELL_EQ_AEQ_BASE_V2;
727 
728 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) |
729 		   ((u64)randata << QM_DB_RAND_SHIFT_V2) |
730 		   ((u64)index << QM_DB_INDEX_SHIFT_V2) |
731 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V2);
732 
733 	writeq(doorbell, io_base);
734 }
735 
736 static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
737 {
738 	dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n",
739 		qn, cmd, index);
740 
741 	qm->ops->qm_db(qm, qn, cmd, index, priority);
742 }
743 
744 static void qm_disable_clock_gate(struct hisi_qm *qm)
745 {
746 	u32 val;
747 
748 	/* if qm enables clock gating in Kunpeng930, qos will be inaccurate. */
749 	if (qm->ver < QM_HW_V3)
750 		return;
751 
752 	val = readl(qm->io_base + QM_PM_CTRL);
753 	val |= QM_IDLE_DISABLE;
754 	writel(val, qm->io_base +  QM_PM_CTRL);
755 }
756 
757 static int qm_dev_mem_reset(struct hisi_qm *qm)
758 {
759 	u32 val;
760 
761 	writel(0x1, qm->io_base + QM_MEM_START_INIT);
762 	return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val,
763 					  val & BIT(0), POLL_PERIOD,
764 					  POLL_TIMEOUT);
765 }
766 
767 /**
768  * hisi_qm_get_hw_info() - Get device information.
769  * @qm: The qm which want to get information.
770  * @info_table: Array for storing device information.
771  * @index: Index in info_table.
772  * @is_read: Whether read from reg, 0: not support read from reg.
773  *
774  * This function returns device information the caller needs.
775  */
776 u32 hisi_qm_get_hw_info(struct hisi_qm *qm,
777 			const struct hisi_qm_cap_info *info_table,
778 			u32 index, bool is_read)
779 {
780 	u32 val;
781 
782 	switch (qm->ver) {
783 	case QM_HW_V1:
784 		return info_table[index].v1_val;
785 	case QM_HW_V2:
786 		return info_table[index].v2_val;
787 	default:
788 		if (!is_read)
789 			return info_table[index].v3_val;
790 
791 		val = readl(qm->io_base + info_table[index].offset);
792 		return (val >> info_table[index].shift) & info_table[index].mask;
793 	}
794 }
795 EXPORT_SYMBOL_GPL(hisi_qm_get_hw_info);
796 
797 static void qm_get_xqc_depth(struct hisi_qm *qm, u16 *low_bits,
798 			     u16 *high_bits, enum qm_basic_type type)
799 {
800 	u32 depth;
801 
802 	depth = hisi_qm_get_hw_info(qm, qm_basic_info, type, qm->cap_ver);
803 	*low_bits = depth & QM_XQ_DEPTH_MASK;
804 	*high_bits = (depth >> QM_XQ_DEPTH_SHIFT) & QM_XQ_DEPTH_MASK;
805 }
806 
807 int hisi_qm_set_algs(struct hisi_qm *qm, u64 alg_msk, const struct qm_dev_alg *dev_algs,
808 		     u32 dev_algs_size)
809 {
810 	struct device *dev = &qm->pdev->dev;
811 	char *algs, *ptr;
812 	int i;
813 
814 	if (!qm->uacce)
815 		return 0;
816 
817 	if (dev_algs_size >= QM_DEV_ALG_MAX_LEN) {
818 		dev_err(dev, "algs size %u is equal or larger than %d.\n",
819 			dev_algs_size, QM_DEV_ALG_MAX_LEN);
820 		return -EINVAL;
821 	}
822 
823 	algs = devm_kzalloc(dev, QM_DEV_ALG_MAX_LEN * sizeof(char), GFP_KERNEL);
824 	if (!algs)
825 		return -ENOMEM;
826 
827 	for (i = 0; i < dev_algs_size; i++)
828 		if (alg_msk & dev_algs[i].alg_msk)
829 			strcat(algs, dev_algs[i].alg);
830 
831 	ptr = strrchr(algs, '\n');
832 	if (ptr) {
833 		*ptr = '\0';
834 		qm->uacce->algs = algs;
835 	}
836 
837 	return 0;
838 }
839 EXPORT_SYMBOL_GPL(hisi_qm_set_algs);
840 
841 static u32 qm_get_irq_num(struct hisi_qm *qm)
842 {
843 	if (qm->fun_type == QM_HW_PF)
844 		return hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF_IRQ_NUM_CAP, qm->cap_ver);
845 
846 	return hisi_qm_get_hw_info(qm, qm_basic_info, QM_VF_IRQ_NUM_CAP, qm->cap_ver);
847 }
848 
849 static int qm_pm_get_sync(struct hisi_qm *qm)
850 {
851 	struct device *dev = &qm->pdev->dev;
852 	int ret;
853 
854 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
855 		return 0;
856 
857 	ret = pm_runtime_resume_and_get(dev);
858 	if (ret < 0) {
859 		dev_err(dev, "failed to get_sync(%d).\n", ret);
860 		return ret;
861 	}
862 
863 	return 0;
864 }
865 
866 static void qm_pm_put_sync(struct hisi_qm *qm)
867 {
868 	struct device *dev = &qm->pdev->dev;
869 
870 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
871 		return;
872 
873 	pm_runtime_mark_last_busy(dev);
874 	pm_runtime_put_autosuspend(dev);
875 }
876 
877 static void qm_cq_head_update(struct hisi_qp *qp)
878 {
879 	if (qp->qp_status.cq_head == qp->cq_depth - 1) {
880 		qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase;
881 		qp->qp_status.cq_head = 0;
882 	} else {
883 		qp->qp_status.cq_head++;
884 	}
885 }
886 
887 static void qm_poll_req_cb(struct hisi_qp *qp)
888 {
889 	struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
890 	struct hisi_qm *qm = qp->qm;
891 
892 	while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
893 		dma_rmb();
894 		qp->req_cb(qp, qp->sqe + qm->sqe_size *
895 			   le16_to_cpu(cqe->sq_head));
896 		qm_cq_head_update(qp);
897 		cqe = qp->cqe + qp->qp_status.cq_head;
898 		qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ,
899 		      qp->qp_status.cq_head, 0);
900 		atomic_dec(&qp->qp_status.used);
901 
902 		cond_resched();
903 	}
904 
905 	/* set c_flag */
906 	qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, qp->qp_status.cq_head, 1);
907 }
908 
909 static void qm_work_process(struct work_struct *work)
910 {
911 	struct hisi_qm_poll_data *poll_data =
912 		container_of(work, struct hisi_qm_poll_data, work);
913 	struct hisi_qm *qm = poll_data->qm;
914 	u16 eqe_num = poll_data->eqe_num;
915 	struct hisi_qp *qp;
916 	int i;
917 
918 	for (i = eqe_num - 1; i >= 0; i--) {
919 		qp = &qm->qp_array[poll_data->qp_finish_id[i]];
920 		if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP))
921 			continue;
922 
923 		if (qp->event_cb) {
924 			qp->event_cb(qp);
925 			continue;
926 		}
927 
928 		if (likely(qp->req_cb))
929 			qm_poll_req_cb(qp);
930 	}
931 }
932 
933 static void qm_get_complete_eqe_num(struct hisi_qm *qm)
934 {
935 	struct qm_eqe *eqe = qm->eqe + qm->status.eq_head;
936 	struct hisi_qm_poll_data *poll_data = NULL;
937 	u16 eq_depth = qm->eq_depth;
938 	u16 cqn, eqe_num = 0;
939 
940 	if (QM_EQE_PHASE(eqe) != qm->status.eqc_phase) {
941 		atomic64_inc(&qm->debug.dfx.err_irq_cnt);
942 		qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
943 		return;
944 	}
945 
946 	cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK;
947 	if (unlikely(cqn >= qm->qp_num))
948 		return;
949 	poll_data = &qm->poll_data[cqn];
950 
951 	while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) {
952 		cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK;
953 		poll_data->qp_finish_id[eqe_num] = cqn;
954 		eqe_num++;
955 
956 		if (qm->status.eq_head == eq_depth - 1) {
957 			qm->status.eqc_phase = !qm->status.eqc_phase;
958 			eqe = qm->eqe;
959 			qm->status.eq_head = 0;
960 		} else {
961 			eqe++;
962 			qm->status.eq_head++;
963 		}
964 
965 		if (eqe_num == (eq_depth >> 1) - 1)
966 			break;
967 	}
968 
969 	poll_data->eqe_num = eqe_num;
970 	queue_work(qm->wq, &poll_data->work);
971 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
972 }
973 
974 static irqreturn_t qm_eq_irq(int irq, void *data)
975 {
976 	struct hisi_qm *qm = data;
977 
978 	/* Get qp id of completed tasks and re-enable the interrupt */
979 	qm_get_complete_eqe_num(qm);
980 
981 	return IRQ_HANDLED;
982 }
983 
984 static irqreturn_t qm_mb_cmd_irq(int irq, void *data)
985 {
986 	struct hisi_qm *qm = data;
987 	u32 val;
988 
989 	val = readl(qm->io_base + QM_IFC_INT_STATUS);
990 	val &= QM_IFC_INT_STATUS_MASK;
991 	if (!val)
992 		return IRQ_NONE;
993 
994 	if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl)) {
995 		dev_warn(&qm->pdev->dev, "Driver is down, message cannot be processed!\n");
996 		return IRQ_HANDLED;
997 	}
998 
999 	schedule_work(&qm->cmd_process);
1000 
1001 	return IRQ_HANDLED;
1002 }
1003 
1004 static void qm_set_qp_disable(struct hisi_qp *qp, int offset)
1005 {
1006 	u32 *addr;
1007 
1008 	if (qp->is_in_kernel)
1009 		return;
1010 
1011 	addr = (u32 *)(qp->qdma.va + qp->qdma.size) - offset;
1012 	*addr = 1;
1013 
1014 	/* make sure setup is completed */
1015 	smp_wmb();
1016 }
1017 
1018 static void qm_disable_qp(struct hisi_qm *qm, u32 qp_id)
1019 {
1020 	struct hisi_qp *qp = &qm->qp_array[qp_id];
1021 
1022 	qm_set_qp_disable(qp, QM_RESET_STOP_TX_OFFSET);
1023 	hisi_qm_stop_qp(qp);
1024 	qm_set_qp_disable(qp, QM_RESET_STOP_RX_OFFSET);
1025 }
1026 
1027 static void qm_reset_function(struct hisi_qm *qm)
1028 {
1029 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
1030 	struct device *dev = &qm->pdev->dev;
1031 	int ret;
1032 
1033 	if (qm_check_dev_error(pf_qm))
1034 		return;
1035 
1036 	ret = qm_reset_prepare_ready(qm);
1037 	if (ret) {
1038 		dev_err(dev, "reset function not ready\n");
1039 		return;
1040 	}
1041 
1042 	ret = hisi_qm_stop(qm, QM_DOWN);
1043 	if (ret) {
1044 		dev_err(dev, "failed to stop qm when reset function\n");
1045 		goto clear_bit;
1046 	}
1047 
1048 	ret = hisi_qm_start(qm);
1049 	if (ret)
1050 		dev_err(dev, "failed to start qm when reset function\n");
1051 
1052 clear_bit:
1053 	qm_reset_bit_clear(qm);
1054 }
1055 
1056 static irqreturn_t qm_aeq_thread(int irq, void *data)
1057 {
1058 	struct hisi_qm *qm = data;
1059 	struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head;
1060 	u16 aeq_depth = qm->aeq_depth;
1061 	u32 type, qp_id;
1062 
1063 	atomic64_inc(&qm->debug.dfx.aeq_irq_cnt);
1064 
1065 	while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) {
1066 		type = (le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT) &
1067 			QM_AEQE_TYPE_MASK;
1068 		qp_id = le32_to_cpu(aeqe->dw0) & QM_AEQE_CQN_MASK;
1069 
1070 		switch (type) {
1071 		case QM_EQ_OVERFLOW:
1072 			dev_err(&qm->pdev->dev, "eq overflow, reset function\n");
1073 			qm_reset_function(qm);
1074 			return IRQ_HANDLED;
1075 		case QM_CQ_OVERFLOW:
1076 			dev_err(&qm->pdev->dev, "cq overflow, stop qp(%u)\n",
1077 				qp_id);
1078 			fallthrough;
1079 		case QM_CQE_ERROR:
1080 			qm_disable_qp(qm, qp_id);
1081 			break;
1082 		default:
1083 			dev_err(&qm->pdev->dev, "unknown error type %u\n",
1084 				type);
1085 			break;
1086 		}
1087 
1088 		if (qm->status.aeq_head == aeq_depth - 1) {
1089 			qm->status.aeqc_phase = !qm->status.aeqc_phase;
1090 			aeqe = qm->aeqe;
1091 			qm->status.aeq_head = 0;
1092 		} else {
1093 			aeqe++;
1094 			qm->status.aeq_head++;
1095 		}
1096 	}
1097 
1098 	qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
1099 
1100 	return IRQ_HANDLED;
1101 }
1102 
1103 static void qm_init_qp_status(struct hisi_qp *qp)
1104 {
1105 	struct hisi_qp_status *qp_status = &qp->qp_status;
1106 
1107 	qp_status->sq_tail = 0;
1108 	qp_status->cq_head = 0;
1109 	qp_status->cqc_phase = true;
1110 	atomic_set(&qp_status->used, 0);
1111 }
1112 
1113 static void qm_init_prefetch(struct hisi_qm *qm)
1114 {
1115 	struct device *dev = &qm->pdev->dev;
1116 	u32 page_type = 0x0;
1117 
1118 	if (!test_bit(QM_SUPPORT_SVA_PREFETCH, &qm->caps))
1119 		return;
1120 
1121 	switch (PAGE_SIZE) {
1122 	case SZ_4K:
1123 		page_type = 0x0;
1124 		break;
1125 	case SZ_16K:
1126 		page_type = 0x1;
1127 		break;
1128 	case SZ_64K:
1129 		page_type = 0x2;
1130 		break;
1131 	default:
1132 		dev_err(dev, "system page size is not support: %lu, default set to 4KB",
1133 			PAGE_SIZE);
1134 	}
1135 
1136 	writel(page_type, qm->io_base + QM_PAGE_SIZE);
1137 }
1138 
1139 /*
1140  * acc_shaper_para_calc() Get the IR value by the qos formula, the return value
1141  * is the expected qos calculated.
1142  * the formula:
1143  * IR = X Mbps if ir = 1 means IR = 100 Mbps, if ir = 10000 means = 10Gbps
1144  *
1145  *		IR_b * (2 ^ IR_u) * 8000
1146  * IR(Mbps) = -------------------------
1147  *		  Tick * (2 ^ IR_s)
1148  */
1149 static u32 acc_shaper_para_calc(u64 cir_b, u64 cir_u, u64 cir_s)
1150 {
1151 	return ((cir_b * QM_QOS_DIVISOR_CLK) * (1 << cir_u)) /
1152 					(QM_QOS_TICK * (1 << cir_s));
1153 }
1154 
1155 static u32 acc_shaper_calc_cbs_s(u32 ir)
1156 {
1157 	int table_size = ARRAY_SIZE(shaper_cbs_s);
1158 	int i;
1159 
1160 	for (i = 0; i < table_size; i++) {
1161 		if (ir >= shaper_cbs_s[i].start && ir <= shaper_cbs_s[i].end)
1162 			return shaper_cbs_s[i].val;
1163 	}
1164 
1165 	return QM_SHAPER_MIN_CBS_S;
1166 }
1167 
1168 static u32 acc_shaper_calc_cir_s(u32 ir)
1169 {
1170 	int table_size = ARRAY_SIZE(shaper_cir_s);
1171 	int i;
1172 
1173 	for (i = 0; i < table_size; i++) {
1174 		if (ir >= shaper_cir_s[i].start && ir <= shaper_cir_s[i].end)
1175 			return shaper_cir_s[i].val;
1176 	}
1177 
1178 	return 0;
1179 }
1180 
1181 static int qm_get_shaper_para(u32 ir, struct qm_shaper_factor *factor)
1182 {
1183 	u32 cir_b, cir_u, cir_s, ir_calc;
1184 	u32 error_rate;
1185 
1186 	factor->cbs_s = acc_shaper_calc_cbs_s(ir);
1187 	cir_s = acc_shaper_calc_cir_s(ir);
1188 
1189 	for (cir_b = QM_QOS_MIN_CIR_B; cir_b <= QM_QOS_MAX_CIR_B; cir_b++) {
1190 		for (cir_u = 0; cir_u <= QM_QOS_MAX_CIR_U; cir_u++) {
1191 			ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s);
1192 
1193 			error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir;
1194 			if (error_rate <= QM_QOS_MIN_ERROR_RATE) {
1195 				factor->cir_b = cir_b;
1196 				factor->cir_u = cir_u;
1197 				factor->cir_s = cir_s;
1198 				return 0;
1199 			}
1200 		}
1201 	}
1202 
1203 	return -EINVAL;
1204 }
1205 
1206 static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base,
1207 			    u32 number, struct qm_shaper_factor *factor)
1208 {
1209 	u64 tmp = 0;
1210 
1211 	if (number > 0) {
1212 		switch (type) {
1213 		case SQC_VFT:
1214 			if (qm->ver == QM_HW_V1) {
1215 				tmp = QM_SQC_VFT_BUF_SIZE	|
1216 				      QM_SQC_VFT_SQC_SIZE	|
1217 				      QM_SQC_VFT_INDEX_NUMBER	|
1218 				      QM_SQC_VFT_VALID		|
1219 				      (u64)base << QM_SQC_VFT_START_SQN_SHIFT;
1220 			} else {
1221 				tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT |
1222 				      QM_SQC_VFT_VALID |
1223 				      (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT;
1224 			}
1225 			break;
1226 		case CQC_VFT:
1227 			if (qm->ver == QM_HW_V1) {
1228 				tmp = QM_CQC_VFT_BUF_SIZE	|
1229 				      QM_CQC_VFT_SQC_SIZE	|
1230 				      QM_CQC_VFT_INDEX_NUMBER	|
1231 				      QM_CQC_VFT_VALID;
1232 			} else {
1233 				tmp = QM_CQC_VFT_VALID;
1234 			}
1235 			break;
1236 		case SHAPER_VFT:
1237 			if (factor) {
1238 				tmp = factor->cir_b |
1239 				(factor->cir_u << QM_SHAPER_FACTOR_CIR_U_SHIFT) |
1240 				(factor->cir_s << QM_SHAPER_FACTOR_CIR_S_SHIFT) |
1241 				(QM_SHAPER_CBS_B << QM_SHAPER_FACTOR_CBS_B_SHIFT) |
1242 				(factor->cbs_s << QM_SHAPER_FACTOR_CBS_S_SHIFT);
1243 			}
1244 			break;
1245 		}
1246 	}
1247 
1248 	writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L);
1249 	writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H);
1250 }
1251 
1252 static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type,
1253 			     u32 fun_num, u32 base, u32 number)
1254 {
1255 	struct qm_shaper_factor *factor = NULL;
1256 	unsigned int val;
1257 	int ret;
1258 
1259 	if (type == SHAPER_VFT && test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
1260 		factor = &qm->factor[fun_num];
1261 
1262 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
1263 					 val & BIT(0), POLL_PERIOD,
1264 					 POLL_TIMEOUT);
1265 	if (ret)
1266 		return ret;
1267 
1268 	writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR);
1269 	writel(type, qm->io_base + QM_VFT_CFG_TYPE);
1270 	if (type == SHAPER_VFT)
1271 		fun_num |= base << QM_SHAPER_VFT_OFFSET;
1272 
1273 	writel(fun_num, qm->io_base + QM_VFT_CFG);
1274 
1275 	qm_vft_data_cfg(qm, type, base, number, factor);
1276 
1277 	writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
1278 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
1279 
1280 	return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
1281 					  val & BIT(0), POLL_PERIOD,
1282 					  POLL_TIMEOUT);
1283 }
1284 
1285 static int qm_shaper_init_vft(struct hisi_qm *qm, u32 fun_num)
1286 {
1287 	u32 qos = qm->factor[fun_num].func_qos;
1288 	int ret, i;
1289 
1290 	ret = qm_get_shaper_para(qos * QM_QOS_RATE, &qm->factor[fun_num]);
1291 	if (ret) {
1292 		dev_err(&qm->pdev->dev, "failed to calculate shaper parameter!\n");
1293 		return ret;
1294 	}
1295 	writel(qm->type_rate, qm->io_base + QM_SHAPER_CFG);
1296 	for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) {
1297 		/* The base number of queue reuse for different alg type */
1298 		ret = qm_set_vft_common(qm, SHAPER_VFT, fun_num, i, 1);
1299 		if (ret)
1300 			return ret;
1301 	}
1302 
1303 	return 0;
1304 }
1305 
1306 /* The config should be conducted after qm_dev_mem_reset() */
1307 static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
1308 			      u32 number)
1309 {
1310 	int ret, i;
1311 
1312 	for (i = SQC_VFT; i <= CQC_VFT; i++) {
1313 		ret = qm_set_vft_common(qm, i, fun_num, base, number);
1314 		if (ret)
1315 			return ret;
1316 	}
1317 
1318 	/* init default shaper qos val */
1319 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) {
1320 		ret = qm_shaper_init_vft(qm, fun_num);
1321 		if (ret)
1322 			goto back_sqc_cqc;
1323 	}
1324 
1325 	return 0;
1326 back_sqc_cqc:
1327 	for (i = SQC_VFT; i <= CQC_VFT; i++)
1328 		qm_set_vft_common(qm, i, fun_num, 0, 0);
1329 
1330 	return ret;
1331 }
1332 
1333 static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number)
1334 {
1335 	u64 sqc_vft;
1336 	int ret;
1337 
1338 	ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1);
1339 	if (ret)
1340 		return ret;
1341 
1342 	sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
1343 		  ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
1344 	*base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2);
1345 	*number = (QM_SQC_VFT_NUM_MASK_V2 &
1346 		   (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1;
1347 
1348 	return 0;
1349 }
1350 
1351 static void qm_hw_error_init_v1(struct hisi_qm *qm)
1352 {
1353 	writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK);
1354 }
1355 
1356 static void qm_hw_error_cfg(struct hisi_qm *qm)
1357 {
1358 	struct hisi_qm_err_info *err_info = &qm->err_info;
1359 
1360 	qm->error_mask = err_info->nfe | err_info->ce | err_info->fe;
1361 	/* clear QM hw residual error source */
1362 	writel(qm->error_mask, qm->io_base + QM_ABNORMAL_INT_SOURCE);
1363 
1364 	/* configure error type */
1365 	writel(err_info->ce, qm->io_base + QM_RAS_CE_ENABLE);
1366 	writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD);
1367 	writel(err_info->nfe, qm->io_base + QM_RAS_NFE_ENABLE);
1368 	writel(err_info->fe, qm->io_base + QM_RAS_FE_ENABLE);
1369 }
1370 
1371 static void qm_hw_error_init_v2(struct hisi_qm *qm)
1372 {
1373 	u32 irq_unmask;
1374 
1375 	qm_hw_error_cfg(qm);
1376 
1377 	irq_unmask = ~qm->error_mask;
1378 	irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1379 	writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
1380 }
1381 
1382 static void qm_hw_error_uninit_v2(struct hisi_qm *qm)
1383 {
1384 	u32 irq_mask = qm->error_mask;
1385 
1386 	irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1387 	writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK);
1388 }
1389 
1390 static void qm_hw_error_init_v3(struct hisi_qm *qm)
1391 {
1392 	u32 irq_unmask;
1393 
1394 	qm_hw_error_cfg(qm);
1395 
1396 	/* enable close master ooo when hardware error happened */
1397 	writel(qm->err_info.qm_shutdown_mask, qm->io_base + QM_OOO_SHUTDOWN_SEL);
1398 
1399 	irq_unmask = ~qm->error_mask;
1400 	irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1401 	writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
1402 }
1403 
1404 static void qm_hw_error_uninit_v3(struct hisi_qm *qm)
1405 {
1406 	u32 irq_mask = qm->error_mask;
1407 
1408 	irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1409 	writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK);
1410 
1411 	/* disable close master ooo when hardware error happened */
1412 	writel(0x0, qm->io_base + QM_OOO_SHUTDOWN_SEL);
1413 }
1414 
1415 static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status)
1416 {
1417 	const struct hisi_qm_hw_error *err;
1418 	struct device *dev = &qm->pdev->dev;
1419 	u32 reg_val, type, vf_num, qp_id;
1420 	int i;
1421 
1422 	for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) {
1423 		err = &qm_hw_error[i];
1424 		if (!(err->int_msk & error_status))
1425 			continue;
1426 
1427 		dev_err(dev, "%s [error status=0x%x] found\n",
1428 			err->msg, err->int_msk);
1429 
1430 		if (err->int_msk & QM_DB_TIMEOUT) {
1431 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF01);
1432 			type = (reg_val & QM_DB_TIMEOUT_TYPE) >>
1433 			       QM_DB_TIMEOUT_TYPE_SHIFT;
1434 			vf_num = reg_val & QM_DB_TIMEOUT_VF;
1435 			qp_id = reg_val >> QM_DB_TIMEOUT_QP_SHIFT;
1436 			dev_err(dev, "qm %s doorbell timeout in function %u qp %u\n",
1437 				qm_db_timeout[type], vf_num, qp_id);
1438 		} else if (err->int_msk & QM_OF_FIFO_OF) {
1439 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF00);
1440 			type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >>
1441 			       QM_FIFO_OVERFLOW_TYPE_SHIFT;
1442 			vf_num = reg_val & QM_FIFO_OVERFLOW_VF;
1443 			qp_id = reg_val >> QM_FIFO_OVERFLOW_QP_SHIFT;
1444 			if (type < ARRAY_SIZE(qm_fifo_overflow))
1445 				dev_err(dev, "qm %s fifo overflow in function %u qp %u\n",
1446 					qm_fifo_overflow[type], vf_num, qp_id);
1447 			else
1448 				dev_err(dev, "unknown error type\n");
1449 		} else if (err->int_msk & QM_AXI_RRESP_ERR) {
1450 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF02);
1451 			if (reg_val & QM_AXI_POISON_ERR)
1452 				dev_err(dev, "qm axi poison error happened\n");
1453 		}
1454 	}
1455 }
1456 
1457 static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm)
1458 {
1459 	u32 error_status, tmp;
1460 
1461 	/* read err sts */
1462 	tmp = readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
1463 	error_status = qm->error_mask & tmp;
1464 
1465 	if (error_status) {
1466 		if (error_status & QM_ECC_MBIT)
1467 			qm->err_status.is_qm_ecc_mbit = true;
1468 
1469 		qm_log_hw_error(qm, error_status);
1470 		if (error_status & qm->err_info.qm_reset_mask)
1471 			return ACC_ERR_NEED_RESET;
1472 
1473 		writel(error_status, qm->io_base + QM_ABNORMAL_INT_SOURCE);
1474 		writel(qm->err_info.nfe, qm->io_base + QM_RAS_NFE_ENABLE);
1475 	}
1476 
1477 	return ACC_ERR_RECOVERED;
1478 }
1479 
1480 static int qm_get_mb_cmd(struct hisi_qm *qm, u64 *msg, u16 fun_num)
1481 {
1482 	struct qm_mailbox mailbox;
1483 	int ret;
1484 
1485 	qm_mb_pre_init(&mailbox, QM_MB_CMD_DST, 0, fun_num, 0);
1486 	mutex_lock(&qm->mailbox_lock);
1487 	ret = qm_mb_nolock(qm, &mailbox);
1488 	if (ret)
1489 		goto err_unlock;
1490 
1491 	*msg = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
1492 		  ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
1493 
1494 err_unlock:
1495 	mutex_unlock(&qm->mailbox_lock);
1496 	return ret;
1497 }
1498 
1499 static void qm_clear_cmd_interrupt(struct hisi_qm *qm, u64 vf_mask)
1500 {
1501 	u32 val;
1502 
1503 	if (qm->fun_type == QM_HW_PF)
1504 		writeq(vf_mask, qm->io_base + QM_IFC_INT_SOURCE_P);
1505 
1506 	val = readl(qm->io_base + QM_IFC_INT_SOURCE_V);
1507 	val |= QM_IFC_INT_SOURCE_MASK;
1508 	writel(val, qm->io_base + QM_IFC_INT_SOURCE_V);
1509 }
1510 
1511 static void qm_handle_vf_msg(struct hisi_qm *qm, u32 vf_id)
1512 {
1513 	struct device *dev = &qm->pdev->dev;
1514 	u32 cmd;
1515 	u64 msg;
1516 	int ret;
1517 
1518 	ret = qm_get_mb_cmd(qm, &msg, vf_id);
1519 	if (ret) {
1520 		dev_err(dev, "failed to get msg from VF(%u)!\n", vf_id);
1521 		return;
1522 	}
1523 
1524 	cmd = msg & QM_MB_CMD_DATA_MASK;
1525 	switch (cmd) {
1526 	case QM_VF_PREPARE_FAIL:
1527 		dev_err(dev, "failed to stop VF(%u)!\n", vf_id);
1528 		break;
1529 	case QM_VF_START_FAIL:
1530 		dev_err(dev, "failed to start VF(%u)!\n", vf_id);
1531 		break;
1532 	case QM_VF_PREPARE_DONE:
1533 	case QM_VF_START_DONE:
1534 		break;
1535 	default:
1536 		dev_err(dev, "unsupported cmd %u sent by VF(%u)!\n", cmd, vf_id);
1537 		break;
1538 	}
1539 }
1540 
1541 static int qm_wait_vf_prepare_finish(struct hisi_qm *qm)
1542 {
1543 	struct device *dev = &qm->pdev->dev;
1544 	u32 vfs_num = qm->vfs_num;
1545 	int cnt = 0;
1546 	int ret = 0;
1547 	u64 val;
1548 	u32 i;
1549 
1550 	if (!qm->vfs_num || !test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
1551 		return 0;
1552 
1553 	while (true) {
1554 		val = readq(qm->io_base + QM_IFC_INT_SOURCE_P);
1555 		/* All VFs send command to PF, break */
1556 		if ((val & GENMASK(vfs_num, 1)) == GENMASK(vfs_num, 1))
1557 			break;
1558 
1559 		if (++cnt > QM_MAX_PF_WAIT_COUNT) {
1560 			ret = -EBUSY;
1561 			break;
1562 		}
1563 
1564 		msleep(QM_WAIT_DST_ACK);
1565 	}
1566 
1567 	/* PF check VFs msg */
1568 	for (i = 1; i <= vfs_num; i++) {
1569 		if (val & BIT(i))
1570 			qm_handle_vf_msg(qm, i);
1571 		else
1572 			dev_err(dev, "VF(%u) not ping PF!\n", i);
1573 	}
1574 
1575 	/* PF clear interrupt to ack VFs */
1576 	qm_clear_cmd_interrupt(qm, val);
1577 
1578 	return ret;
1579 }
1580 
1581 static void qm_trigger_vf_interrupt(struct hisi_qm *qm, u32 fun_num)
1582 {
1583 	u32 val;
1584 
1585 	val = readl(qm->io_base + QM_IFC_INT_CFG);
1586 	val &= ~QM_IFC_SEND_ALL_VFS;
1587 	val |= fun_num;
1588 	writel(val, qm->io_base + QM_IFC_INT_CFG);
1589 
1590 	val = readl(qm->io_base + QM_IFC_INT_SET_P);
1591 	val |= QM_IFC_INT_SET_MASK;
1592 	writel(val, qm->io_base + QM_IFC_INT_SET_P);
1593 }
1594 
1595 static void qm_trigger_pf_interrupt(struct hisi_qm *qm)
1596 {
1597 	u32 val;
1598 
1599 	val = readl(qm->io_base + QM_IFC_INT_SET_V);
1600 	val |= QM_IFC_INT_SET_MASK;
1601 	writel(val, qm->io_base + QM_IFC_INT_SET_V);
1602 }
1603 
1604 static int qm_ping_single_vf(struct hisi_qm *qm, u64 cmd, u32 fun_num)
1605 {
1606 	struct device *dev = &qm->pdev->dev;
1607 	struct qm_mailbox mailbox;
1608 	int cnt = 0;
1609 	u64 val;
1610 	int ret;
1611 
1612 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, fun_num, 0);
1613 	mutex_lock(&qm->mailbox_lock);
1614 	ret = qm_mb_nolock(qm, &mailbox);
1615 	if (ret) {
1616 		dev_err(dev, "failed to send command to vf(%u)!\n", fun_num);
1617 		goto err_unlock;
1618 	}
1619 
1620 	qm_trigger_vf_interrupt(qm, fun_num);
1621 	while (true) {
1622 		msleep(QM_WAIT_DST_ACK);
1623 		val = readq(qm->io_base + QM_IFC_READY_STATUS);
1624 		/* if VF respond, PF notifies VF successfully. */
1625 		if (!(val & BIT(fun_num)))
1626 			goto err_unlock;
1627 
1628 		if (++cnt > QM_MAX_PF_WAIT_COUNT) {
1629 			dev_err(dev, "failed to get response from VF(%u)!\n", fun_num);
1630 			ret = -ETIMEDOUT;
1631 			break;
1632 		}
1633 	}
1634 
1635 err_unlock:
1636 	mutex_unlock(&qm->mailbox_lock);
1637 	return ret;
1638 }
1639 
1640 static int qm_ping_all_vfs(struct hisi_qm *qm, u64 cmd)
1641 {
1642 	struct device *dev = &qm->pdev->dev;
1643 	u32 vfs_num = qm->vfs_num;
1644 	struct qm_mailbox mailbox;
1645 	u64 val = 0;
1646 	int cnt = 0;
1647 	int ret;
1648 	u32 i;
1649 
1650 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, QM_MB_PING_ALL_VFS, 0);
1651 	mutex_lock(&qm->mailbox_lock);
1652 	/* PF sends command to all VFs by mailbox */
1653 	ret = qm_mb_nolock(qm, &mailbox);
1654 	if (ret) {
1655 		dev_err(dev, "failed to send command to VFs!\n");
1656 		mutex_unlock(&qm->mailbox_lock);
1657 		return ret;
1658 	}
1659 
1660 	qm_trigger_vf_interrupt(qm, QM_IFC_SEND_ALL_VFS);
1661 	while (true) {
1662 		msleep(QM_WAIT_DST_ACK);
1663 		val = readq(qm->io_base + QM_IFC_READY_STATUS);
1664 		/* If all VFs acked, PF notifies VFs successfully. */
1665 		if (!(val & GENMASK(vfs_num, 1))) {
1666 			mutex_unlock(&qm->mailbox_lock);
1667 			return 0;
1668 		}
1669 
1670 		if (++cnt > QM_MAX_PF_WAIT_COUNT)
1671 			break;
1672 	}
1673 
1674 	mutex_unlock(&qm->mailbox_lock);
1675 
1676 	/* Check which vf respond timeout. */
1677 	for (i = 1; i <= vfs_num; i++) {
1678 		if (val & BIT(i))
1679 			dev_err(dev, "failed to get response from VF(%u)!\n", i);
1680 	}
1681 
1682 	return -ETIMEDOUT;
1683 }
1684 
1685 static int qm_ping_pf(struct hisi_qm *qm, u64 cmd)
1686 {
1687 	struct qm_mailbox mailbox;
1688 	int cnt = 0;
1689 	u32 val;
1690 	int ret;
1691 
1692 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, 0, 0);
1693 	mutex_lock(&qm->mailbox_lock);
1694 	ret = qm_mb_nolock(qm, &mailbox);
1695 	if (ret) {
1696 		dev_err(&qm->pdev->dev, "failed to send command to PF!\n");
1697 		goto unlock;
1698 	}
1699 
1700 	qm_trigger_pf_interrupt(qm);
1701 	/* Waiting for PF response */
1702 	while (true) {
1703 		msleep(QM_WAIT_DST_ACK);
1704 		val = readl(qm->io_base + QM_IFC_INT_SET_V);
1705 		if (!(val & QM_IFC_INT_STATUS_MASK))
1706 			break;
1707 
1708 		if (++cnt > QM_MAX_VF_WAIT_COUNT) {
1709 			ret = -ETIMEDOUT;
1710 			break;
1711 		}
1712 	}
1713 
1714 unlock:
1715 	mutex_unlock(&qm->mailbox_lock);
1716 	return ret;
1717 }
1718 
1719 static int qm_drain_qm(struct hisi_qm *qm)
1720 {
1721 	return hisi_qm_mb(qm, QM_MB_CMD_FLUSH_QM, 0, 0, 0);
1722 }
1723 
1724 static int qm_stop_qp(struct hisi_qp *qp)
1725 {
1726 	return hisi_qm_mb(qp->qm, QM_MB_CMD_STOP_QP, 0, qp->qp_id, 0);
1727 }
1728 
1729 static int qm_set_msi(struct hisi_qm *qm, bool set)
1730 {
1731 	struct pci_dev *pdev = qm->pdev;
1732 
1733 	if (set) {
1734 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
1735 				       0);
1736 	} else {
1737 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
1738 				       ACC_PEH_MSI_DISABLE);
1739 		if (qm->err_status.is_qm_ecc_mbit ||
1740 		    qm->err_status.is_dev_ecc_mbit)
1741 			return 0;
1742 
1743 		mdelay(1);
1744 		if (readl(qm->io_base + QM_PEH_DFX_INFO0))
1745 			return -EFAULT;
1746 	}
1747 
1748 	return 0;
1749 }
1750 
1751 static void qm_wait_msi_finish(struct hisi_qm *qm)
1752 {
1753 	struct pci_dev *pdev = qm->pdev;
1754 	u32 cmd = ~0;
1755 	int cnt = 0;
1756 	u32 val;
1757 	int ret;
1758 
1759 	while (true) {
1760 		pci_read_config_dword(pdev, pdev->msi_cap +
1761 				      PCI_MSI_PENDING_64, &cmd);
1762 		if (!cmd)
1763 			break;
1764 
1765 		if (++cnt > MAX_WAIT_COUNTS) {
1766 			pci_warn(pdev, "failed to empty MSI PENDING!\n");
1767 			break;
1768 		}
1769 
1770 		udelay(1);
1771 	}
1772 
1773 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO0,
1774 					 val, !(val & QM_PEH_DFX_MASK),
1775 					 POLL_PERIOD, POLL_TIMEOUT);
1776 	if (ret)
1777 		pci_warn(pdev, "failed to empty PEH MSI!\n");
1778 
1779 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO1,
1780 					 val, !(val & QM_PEH_MSI_FINISH_MASK),
1781 					 POLL_PERIOD, POLL_TIMEOUT);
1782 	if (ret)
1783 		pci_warn(pdev, "failed to finish MSI operation!\n");
1784 }
1785 
1786 static int qm_set_msi_v3(struct hisi_qm *qm, bool set)
1787 {
1788 	struct pci_dev *pdev = qm->pdev;
1789 	int ret = -ETIMEDOUT;
1790 	u32 cmd, i;
1791 
1792 	pci_read_config_dword(pdev, pdev->msi_cap, &cmd);
1793 	if (set)
1794 		cmd |= QM_MSI_CAP_ENABLE;
1795 	else
1796 		cmd &= ~QM_MSI_CAP_ENABLE;
1797 
1798 	pci_write_config_dword(pdev, pdev->msi_cap, cmd);
1799 	if (set) {
1800 		for (i = 0; i < MAX_WAIT_COUNTS; i++) {
1801 			pci_read_config_dword(pdev, pdev->msi_cap, &cmd);
1802 			if (cmd & QM_MSI_CAP_ENABLE)
1803 				return 0;
1804 
1805 			udelay(1);
1806 		}
1807 	} else {
1808 		udelay(WAIT_PERIOD_US_MIN);
1809 		qm_wait_msi_finish(qm);
1810 		ret = 0;
1811 	}
1812 
1813 	return ret;
1814 }
1815 
1816 static const struct hisi_qm_hw_ops qm_hw_ops_v1 = {
1817 	.qm_db = qm_db_v1,
1818 	.hw_error_init = qm_hw_error_init_v1,
1819 	.set_msi = qm_set_msi,
1820 };
1821 
1822 static const struct hisi_qm_hw_ops qm_hw_ops_v2 = {
1823 	.get_vft = qm_get_vft_v2,
1824 	.qm_db = qm_db_v2,
1825 	.hw_error_init = qm_hw_error_init_v2,
1826 	.hw_error_uninit = qm_hw_error_uninit_v2,
1827 	.hw_error_handle = qm_hw_error_handle_v2,
1828 	.set_msi = qm_set_msi,
1829 };
1830 
1831 static const struct hisi_qm_hw_ops qm_hw_ops_v3 = {
1832 	.get_vft = qm_get_vft_v2,
1833 	.qm_db = qm_db_v2,
1834 	.hw_error_init = qm_hw_error_init_v3,
1835 	.hw_error_uninit = qm_hw_error_uninit_v3,
1836 	.hw_error_handle = qm_hw_error_handle_v2,
1837 	.set_msi = qm_set_msi_v3,
1838 };
1839 
1840 static void *qm_get_avail_sqe(struct hisi_qp *qp)
1841 {
1842 	struct hisi_qp_status *qp_status = &qp->qp_status;
1843 	u16 sq_tail = qp_status->sq_tail;
1844 
1845 	if (unlikely(atomic_read(&qp->qp_status.used) == qp->sq_depth - 1))
1846 		return NULL;
1847 
1848 	return qp->sqe + sq_tail * qp->qm->sqe_size;
1849 }
1850 
1851 static void hisi_qm_unset_hw_reset(struct hisi_qp *qp)
1852 {
1853 	u64 *addr;
1854 
1855 	/* Use last 64 bits of DUS to reset status. */
1856 	addr = (u64 *)(qp->qdma.va + qp->qdma.size) - QM_RESET_STOP_TX_OFFSET;
1857 	*addr = 0;
1858 }
1859 
1860 static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type)
1861 {
1862 	struct device *dev = &qm->pdev->dev;
1863 	struct hisi_qp *qp;
1864 	int qp_id;
1865 
1866 	if (atomic_read(&qm->status.flags) == QM_STOP) {
1867 		dev_info_ratelimited(dev, "failed to create qp as qm is stop!\n");
1868 		return ERR_PTR(-EPERM);
1869 	}
1870 
1871 	if (qm->qp_in_used == qm->qp_num) {
1872 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
1873 				     qm->qp_num);
1874 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
1875 		return ERR_PTR(-EBUSY);
1876 	}
1877 
1878 	qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC);
1879 	if (qp_id < 0) {
1880 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
1881 				    qm->qp_num);
1882 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
1883 		return ERR_PTR(-EBUSY);
1884 	}
1885 
1886 	qp = &qm->qp_array[qp_id];
1887 	hisi_qm_unset_hw_reset(qp);
1888 	memset(qp->cqe, 0, sizeof(struct qm_cqe) * qp->cq_depth);
1889 
1890 	qp->event_cb = NULL;
1891 	qp->req_cb = NULL;
1892 	qp->qp_id = qp_id;
1893 	qp->alg_type = alg_type;
1894 	qp->is_in_kernel = true;
1895 	qm->qp_in_used++;
1896 
1897 	return qp;
1898 }
1899 
1900 /**
1901  * hisi_qm_create_qp() - Create a queue pair from qm.
1902  * @qm: The qm we create a qp from.
1903  * @alg_type: Accelerator specific algorithm type in sqc.
1904  *
1905  * Return created qp, negative error code if failed.
1906  */
1907 static struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type)
1908 {
1909 	struct hisi_qp *qp;
1910 	int ret;
1911 
1912 	ret = qm_pm_get_sync(qm);
1913 	if (ret)
1914 		return ERR_PTR(ret);
1915 
1916 	down_write(&qm->qps_lock);
1917 	qp = qm_create_qp_nolock(qm, alg_type);
1918 	up_write(&qm->qps_lock);
1919 
1920 	if (IS_ERR(qp))
1921 		qm_pm_put_sync(qm);
1922 
1923 	return qp;
1924 }
1925 
1926 /**
1927  * hisi_qm_release_qp() - Release a qp back to its qm.
1928  * @qp: The qp we want to release.
1929  *
1930  * This function releases the resource of a qp.
1931  */
1932 static void hisi_qm_release_qp(struct hisi_qp *qp)
1933 {
1934 	struct hisi_qm *qm = qp->qm;
1935 
1936 	down_write(&qm->qps_lock);
1937 
1938 	qm->qp_in_used--;
1939 	idr_remove(&qm->qp_idr, qp->qp_id);
1940 
1941 	up_write(&qm->qps_lock);
1942 
1943 	qm_pm_put_sync(qm);
1944 }
1945 
1946 static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
1947 {
1948 	struct hisi_qm *qm = qp->qm;
1949 	enum qm_hw_ver ver = qm->ver;
1950 	struct qm_sqc sqc = {0};
1951 
1952 	if (ver == QM_HW_V1) {
1953 		sqc.dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size));
1954 		sqc.w8 = cpu_to_le16(qp->sq_depth - 1);
1955 	} else {
1956 		sqc.dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size, qp->sq_depth));
1957 		sqc.w8 = 0; /* rand_qc */
1958 	}
1959 	sqc.w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type));
1960 	sqc.base_l = cpu_to_le32(lower_32_bits(qp->sqe_dma));
1961 	sqc.base_h = cpu_to_le32(upper_32_bits(qp->sqe_dma));
1962 	sqc.cq_num = cpu_to_le16(qp_id);
1963 	sqc.pasid = cpu_to_le16(pasid);
1964 
1965 	if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
1966 		sqc.w11 = cpu_to_le16(QM_QC_PASID_ENABLE <<
1967 				      QM_QC_PASID_ENABLE_SHIFT);
1968 
1969 	return qm_set_and_get_xqc(qm, QM_MB_CMD_SQC, &sqc, qp_id, 0);
1970 }
1971 
1972 static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
1973 {
1974 	struct hisi_qm *qm = qp->qm;
1975 	enum qm_hw_ver ver = qm->ver;
1976 	struct qm_cqc cqc = {0};
1977 
1978 	if (ver == QM_HW_V1) {
1979 		cqc.dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0, QM_QC_CQE_SIZE));
1980 		cqc.w8 = cpu_to_le16(qp->cq_depth - 1);
1981 	} else {
1982 		cqc.dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE, qp->cq_depth));
1983 		cqc.w8 = 0; /* rand_qc */
1984 	}
1985 	/*
1986 	 * Enable request finishing interrupts defaultly.
1987 	 * So, there will be some interrupts until disabling
1988 	 * this.
1989 	 */
1990 	cqc.dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT);
1991 	cqc.base_l = cpu_to_le32(lower_32_bits(qp->cqe_dma));
1992 	cqc.base_h = cpu_to_le32(upper_32_bits(qp->cqe_dma));
1993 	cqc.pasid = cpu_to_le16(pasid);
1994 
1995 	if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
1996 		cqc.w11 = cpu_to_le16(QM_QC_PASID_ENABLE);
1997 
1998 	return qm_set_and_get_xqc(qm, QM_MB_CMD_CQC, &cqc, qp_id, 0);
1999 }
2000 
2001 static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
2002 {
2003 	int ret;
2004 
2005 	qm_init_qp_status(qp);
2006 
2007 	ret = qm_sq_ctx_cfg(qp, qp_id, pasid);
2008 	if (ret)
2009 		return ret;
2010 
2011 	return qm_cq_ctx_cfg(qp, qp_id, pasid);
2012 }
2013 
2014 static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg)
2015 {
2016 	struct hisi_qm *qm = qp->qm;
2017 	struct device *dev = &qm->pdev->dev;
2018 	int qp_id = qp->qp_id;
2019 	u32 pasid = arg;
2020 	int ret;
2021 
2022 	if (atomic_read(&qm->status.flags) == QM_STOP) {
2023 		dev_info_ratelimited(dev, "failed to start qp as qm is stop!\n");
2024 		return -EPERM;
2025 	}
2026 
2027 	ret = qm_qp_ctx_cfg(qp, qp_id, pasid);
2028 	if (ret)
2029 		return ret;
2030 
2031 	atomic_set(&qp->qp_status.flags, QP_START);
2032 	dev_dbg(dev, "queue %d started\n", qp_id);
2033 
2034 	return 0;
2035 }
2036 
2037 /**
2038  * hisi_qm_start_qp() - Start a qp into running.
2039  * @qp: The qp we want to start to run.
2040  * @arg: Accelerator specific argument.
2041  *
2042  * After this function, qp can receive request from user. Return 0 if
2043  * successful, negative error code if failed.
2044  */
2045 int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg)
2046 {
2047 	struct hisi_qm *qm = qp->qm;
2048 	int ret;
2049 
2050 	down_write(&qm->qps_lock);
2051 	ret = qm_start_qp_nolock(qp, arg);
2052 	up_write(&qm->qps_lock);
2053 
2054 	return ret;
2055 }
2056 EXPORT_SYMBOL_GPL(hisi_qm_start_qp);
2057 
2058 /**
2059  * qp_stop_fail_cb() - call request cb.
2060  * @qp: stopped failed qp.
2061  *
2062  * Callback function should be called whether task completed or not.
2063  */
2064 static void qp_stop_fail_cb(struct hisi_qp *qp)
2065 {
2066 	int qp_used = atomic_read(&qp->qp_status.used);
2067 	u16 cur_tail = qp->qp_status.sq_tail;
2068 	u16 sq_depth = qp->sq_depth;
2069 	u16 cur_head = (cur_tail + sq_depth - qp_used) % sq_depth;
2070 	struct hisi_qm *qm = qp->qm;
2071 	u16 pos;
2072 	int i;
2073 
2074 	for (i = 0; i < qp_used; i++) {
2075 		pos = (i + cur_head) % sq_depth;
2076 		qp->req_cb(qp, qp->sqe + (u32)(qm->sqe_size * pos));
2077 		atomic_dec(&qp->qp_status.used);
2078 	}
2079 }
2080 
2081 static int qm_wait_qp_empty(struct hisi_qm *qm, u32 *state, u32 qp_id)
2082 {
2083 	struct device *dev = &qm->pdev->dev;
2084 	struct qm_sqc sqc;
2085 	struct qm_cqc cqc;
2086 	int ret, i = 0;
2087 
2088 	while (++i) {
2089 		ret = qm_set_and_get_xqc(qm, QM_MB_CMD_SQC, &sqc, qp_id, 1);
2090 		if (ret) {
2091 			dev_err_ratelimited(dev, "Failed to dump sqc!\n");
2092 			*state = QM_DUMP_SQC_FAIL;
2093 			return ret;
2094 		}
2095 
2096 		ret = qm_set_and_get_xqc(qm, QM_MB_CMD_CQC, &cqc, qp_id, 1);
2097 		if (ret) {
2098 			dev_err_ratelimited(dev, "Failed to dump cqc!\n");
2099 			*state = QM_DUMP_CQC_FAIL;
2100 			return ret;
2101 		}
2102 
2103 		if ((sqc.tail == cqc.tail) &&
2104 		    (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc)))
2105 			break;
2106 
2107 		if (i == MAX_WAIT_COUNTS) {
2108 			dev_err(dev, "Fail to empty queue %u!\n", qp_id);
2109 			*state = QM_STOP_QUEUE_FAIL;
2110 			return -ETIMEDOUT;
2111 		}
2112 
2113 		usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX);
2114 	}
2115 
2116 	return 0;
2117 }
2118 
2119 /**
2120  * qm_drain_qp() - Drain a qp.
2121  * @qp: The qp we want to drain.
2122  *
2123  * If the device does not support stopping queue by sending mailbox,
2124  * determine whether the queue is cleared by judging the tail pointers of
2125  * sq and cq.
2126  */
2127 static int qm_drain_qp(struct hisi_qp *qp)
2128 {
2129 	struct hisi_qm *qm = qp->qm;
2130 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
2131 	u32 state = 0;
2132 	int ret;
2133 
2134 	/* No need to judge if master OOO is blocked. */
2135 	if (qm_check_dev_error(pf_qm))
2136 		return 0;
2137 
2138 	/* HW V3 supports drain qp by device */
2139 	if (test_bit(QM_SUPPORT_STOP_QP, &qm->caps)) {
2140 		ret = qm_stop_qp(qp);
2141 		if (ret) {
2142 			dev_err(&qm->pdev->dev, "Failed to stop qp!\n");
2143 			state = QM_STOP_QUEUE_FAIL;
2144 			goto set_dev_state;
2145 		}
2146 		return ret;
2147 	}
2148 
2149 	ret = qm_wait_qp_empty(qm, &state, qp->qp_id);
2150 	if (ret)
2151 		goto set_dev_state;
2152 
2153 	return 0;
2154 
2155 set_dev_state:
2156 	if (qm->debug.dev_dfx.dev_timeout)
2157 		qm->debug.dev_dfx.dev_state = state;
2158 
2159 	return ret;
2160 }
2161 
2162 static void qm_stop_qp_nolock(struct hisi_qp *qp)
2163 {
2164 	struct hisi_qm *qm = qp->qm;
2165 	struct device *dev = &qm->pdev->dev;
2166 	int ret;
2167 
2168 	/*
2169 	 * It is allowed to stop and release qp when reset, If the qp is
2170 	 * stopped when reset but still want to be released then, the
2171 	 * is_resetting flag should be set negative so that this qp will not
2172 	 * be restarted after reset.
2173 	 */
2174 	if (atomic_read(&qp->qp_status.flags) != QP_START) {
2175 		qp->is_resetting = false;
2176 		return;
2177 	}
2178 
2179 	atomic_set(&qp->qp_status.flags, QP_STOP);
2180 
2181 	/* V3 supports direct stop function when FLR prepare */
2182 	if (qm->ver < QM_HW_V3 || qm->status.stop_reason == QM_NORMAL) {
2183 		ret = qm_drain_qp(qp);
2184 		if (ret)
2185 			dev_err(dev, "Failed to drain out data for stopping qp(%u)!\n", qp->qp_id);
2186 	}
2187 
2188 	flush_workqueue(qm->wq);
2189 	if (unlikely(qp->is_resetting && atomic_read(&qp->qp_status.used)))
2190 		qp_stop_fail_cb(qp);
2191 
2192 	dev_dbg(dev, "stop queue %u!", qp->qp_id);
2193 }
2194 
2195 /**
2196  * hisi_qm_stop_qp() - Stop a qp in qm.
2197  * @qp: The qp we want to stop.
2198  *
2199  * This function is reverse of hisi_qm_start_qp.
2200  */
2201 void hisi_qm_stop_qp(struct hisi_qp *qp)
2202 {
2203 	down_write(&qp->qm->qps_lock);
2204 	qm_stop_qp_nolock(qp);
2205 	up_write(&qp->qm->qps_lock);
2206 }
2207 EXPORT_SYMBOL_GPL(hisi_qm_stop_qp);
2208 
2209 /**
2210  * hisi_qp_send() - Queue up a task in the hardware queue.
2211  * @qp: The qp in which to put the message.
2212  * @msg: The message.
2213  *
2214  * This function will return -EBUSY if qp is currently full, and -EAGAIN
2215  * if qp related qm is resetting.
2216  *
2217  * Note: This function may run with qm_irq_thread and ACC reset at same time.
2218  *       It has no race with qm_irq_thread. However, during hisi_qp_send, ACC
2219  *       reset may happen, we have no lock here considering performance. This
2220  *       causes current qm_db sending fail or can not receive sended sqe. QM
2221  *       sync/async receive function should handle the error sqe. ACC reset
2222  *       done function should clear used sqe to 0.
2223  */
2224 int hisi_qp_send(struct hisi_qp *qp, const void *msg)
2225 {
2226 	struct hisi_qp_status *qp_status = &qp->qp_status;
2227 	u16 sq_tail = qp_status->sq_tail;
2228 	u16 sq_tail_next = (sq_tail + 1) % qp->sq_depth;
2229 	void *sqe = qm_get_avail_sqe(qp);
2230 
2231 	if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP ||
2232 		     atomic_read(&qp->qm->status.flags) == QM_STOP ||
2233 		     qp->is_resetting)) {
2234 		dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n");
2235 		return -EAGAIN;
2236 	}
2237 
2238 	if (!sqe)
2239 		return -EBUSY;
2240 
2241 	memcpy(sqe, msg, qp->qm->sqe_size);
2242 
2243 	qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0);
2244 	atomic_inc(&qp->qp_status.used);
2245 	qp_status->sq_tail = sq_tail_next;
2246 
2247 	return 0;
2248 }
2249 EXPORT_SYMBOL_GPL(hisi_qp_send);
2250 
2251 static void hisi_qm_cache_wb(struct hisi_qm *qm)
2252 {
2253 	unsigned int val;
2254 
2255 	if (qm->ver == QM_HW_V1)
2256 		return;
2257 
2258 	writel(0x1, qm->io_base + QM_CACHE_WB_START);
2259 	if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE,
2260 				       val, val & BIT(0), POLL_PERIOD,
2261 				       POLL_TIMEOUT))
2262 		dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n");
2263 }
2264 
2265 static void qm_qp_event_notifier(struct hisi_qp *qp)
2266 {
2267 	wake_up_interruptible(&qp->uacce_q->wait);
2268 }
2269 
2270  /* This function returns free number of qp in qm. */
2271 static int hisi_qm_get_available_instances(struct uacce_device *uacce)
2272 {
2273 	struct hisi_qm *qm = uacce->priv;
2274 	int ret;
2275 
2276 	down_read(&qm->qps_lock);
2277 	ret = qm->qp_num - qm->qp_in_used;
2278 	up_read(&qm->qps_lock);
2279 
2280 	return ret;
2281 }
2282 
2283 static void hisi_qm_set_hw_reset(struct hisi_qm *qm, int offset)
2284 {
2285 	int i;
2286 
2287 	for (i = 0; i < qm->qp_num; i++)
2288 		qm_set_qp_disable(&qm->qp_array[i], offset);
2289 }
2290 
2291 static int hisi_qm_uacce_get_queue(struct uacce_device *uacce,
2292 				   unsigned long arg,
2293 				   struct uacce_queue *q)
2294 {
2295 	struct hisi_qm *qm = uacce->priv;
2296 	struct hisi_qp *qp;
2297 	u8 alg_type = 0;
2298 
2299 	qp = hisi_qm_create_qp(qm, alg_type);
2300 	if (IS_ERR(qp))
2301 		return PTR_ERR(qp);
2302 
2303 	q->priv = qp;
2304 	q->uacce = uacce;
2305 	qp->uacce_q = q;
2306 	qp->event_cb = qm_qp_event_notifier;
2307 	qp->pasid = arg;
2308 	qp->is_in_kernel = false;
2309 
2310 	return 0;
2311 }
2312 
2313 static void hisi_qm_uacce_put_queue(struct uacce_queue *q)
2314 {
2315 	struct hisi_qp *qp = q->priv;
2316 
2317 	hisi_qm_release_qp(qp);
2318 }
2319 
2320 /* map sq/cq/doorbell to user space */
2321 static int hisi_qm_uacce_mmap(struct uacce_queue *q,
2322 			      struct vm_area_struct *vma,
2323 			      struct uacce_qfile_region *qfr)
2324 {
2325 	struct hisi_qp *qp = q->priv;
2326 	struct hisi_qm *qm = qp->qm;
2327 	resource_size_t phys_base = qm->db_phys_base +
2328 				    qp->qp_id * qm->db_interval;
2329 	size_t sz = vma->vm_end - vma->vm_start;
2330 	struct pci_dev *pdev = qm->pdev;
2331 	struct device *dev = &pdev->dev;
2332 	unsigned long vm_pgoff;
2333 	int ret;
2334 
2335 	switch (qfr->type) {
2336 	case UACCE_QFRT_MMIO:
2337 		if (qm->ver == QM_HW_V1) {
2338 			if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR)
2339 				return -EINVAL;
2340 		} else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) {
2341 			if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR +
2342 			    QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE))
2343 				return -EINVAL;
2344 		} else {
2345 			if (sz > qm->db_interval)
2346 				return -EINVAL;
2347 		}
2348 
2349 		vm_flags_set(vma, VM_IO);
2350 
2351 		return remap_pfn_range(vma, vma->vm_start,
2352 				       phys_base >> PAGE_SHIFT,
2353 				       sz, pgprot_noncached(vma->vm_page_prot));
2354 	case UACCE_QFRT_DUS:
2355 		if (sz != qp->qdma.size)
2356 			return -EINVAL;
2357 
2358 		/*
2359 		 * dma_mmap_coherent() requires vm_pgoff as 0
2360 		 * restore vm_pfoff to initial value for mmap()
2361 		 */
2362 		vm_pgoff = vma->vm_pgoff;
2363 		vma->vm_pgoff = 0;
2364 		ret = dma_mmap_coherent(dev, vma, qp->qdma.va,
2365 					qp->qdma.dma, sz);
2366 		vma->vm_pgoff = vm_pgoff;
2367 		return ret;
2368 
2369 	default:
2370 		return -EINVAL;
2371 	}
2372 }
2373 
2374 static int hisi_qm_uacce_start_queue(struct uacce_queue *q)
2375 {
2376 	struct hisi_qp *qp = q->priv;
2377 
2378 	return hisi_qm_start_qp(qp, qp->pasid);
2379 }
2380 
2381 static void hisi_qm_uacce_stop_queue(struct uacce_queue *q)
2382 {
2383 	struct hisi_qp *qp = q->priv;
2384 	struct hisi_qm *qm = qp->qm;
2385 	struct qm_dev_dfx *dev_dfx = &qm->debug.dev_dfx;
2386 	u32 i = 0;
2387 
2388 	hisi_qm_stop_qp(qp);
2389 
2390 	if (!dev_dfx->dev_timeout || !dev_dfx->dev_state)
2391 		return;
2392 
2393 	/*
2394 	 * After the queue fails to be stopped,
2395 	 * wait for a period of time before releasing the queue.
2396 	 */
2397 	while (++i) {
2398 		msleep(WAIT_PERIOD);
2399 
2400 		/* Since dev_timeout maybe modified, check i >= dev_timeout */
2401 		if (i >= dev_dfx->dev_timeout) {
2402 			dev_err(&qm->pdev->dev, "Stop q %u timeout, state %u\n",
2403 			       qp->qp_id, dev_dfx->dev_state);
2404 			dev_dfx->dev_state = QM_FINISH_WAIT;
2405 			break;
2406 		}
2407 	}
2408 }
2409 
2410 static int hisi_qm_is_q_updated(struct uacce_queue *q)
2411 {
2412 	struct hisi_qp *qp = q->priv;
2413 	struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
2414 	int updated = 0;
2415 
2416 	while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
2417 		/* make sure to read data from memory */
2418 		dma_rmb();
2419 		qm_cq_head_update(qp);
2420 		cqe = qp->cqe + qp->qp_status.cq_head;
2421 		updated = 1;
2422 	}
2423 
2424 	return updated;
2425 }
2426 
2427 static void qm_set_sqctype(struct uacce_queue *q, u16 type)
2428 {
2429 	struct hisi_qm *qm = q->uacce->priv;
2430 	struct hisi_qp *qp = q->priv;
2431 
2432 	down_write(&qm->qps_lock);
2433 	qp->alg_type = type;
2434 	up_write(&qm->qps_lock);
2435 }
2436 
2437 static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd,
2438 				unsigned long arg)
2439 {
2440 	struct hisi_qp *qp = q->priv;
2441 	struct hisi_qp_info qp_info;
2442 	struct hisi_qp_ctx qp_ctx;
2443 
2444 	if (cmd == UACCE_CMD_QM_SET_QP_CTX) {
2445 		if (copy_from_user(&qp_ctx, (void __user *)arg,
2446 				   sizeof(struct hisi_qp_ctx)))
2447 			return -EFAULT;
2448 
2449 		if (qp_ctx.qc_type != 0 && qp_ctx.qc_type != 1)
2450 			return -EINVAL;
2451 
2452 		qm_set_sqctype(q, qp_ctx.qc_type);
2453 		qp_ctx.id = qp->qp_id;
2454 
2455 		if (copy_to_user((void __user *)arg, &qp_ctx,
2456 				 sizeof(struct hisi_qp_ctx)))
2457 			return -EFAULT;
2458 
2459 		return 0;
2460 	} else if (cmd == UACCE_CMD_QM_SET_QP_INFO) {
2461 		if (copy_from_user(&qp_info, (void __user *)arg,
2462 				   sizeof(struct hisi_qp_info)))
2463 			return -EFAULT;
2464 
2465 		qp_info.sqe_size = qp->qm->sqe_size;
2466 		qp_info.sq_depth = qp->sq_depth;
2467 		qp_info.cq_depth = qp->cq_depth;
2468 
2469 		if (copy_to_user((void __user *)arg, &qp_info,
2470 				  sizeof(struct hisi_qp_info)))
2471 			return -EFAULT;
2472 
2473 		return 0;
2474 	}
2475 
2476 	return -EINVAL;
2477 }
2478 
2479 /**
2480  * qm_hw_err_isolate() - Try to set the isolation status of the uacce device
2481  * according to user's configuration of error threshold.
2482  * @qm: the uacce device
2483  */
2484 static int qm_hw_err_isolate(struct hisi_qm *qm)
2485 {
2486 	struct qm_hw_err *err, *tmp, *hw_err;
2487 	struct qm_err_isolate *isolate;
2488 	u32 count = 0;
2489 
2490 	isolate = &qm->isolate_data;
2491 
2492 #define SECONDS_PER_HOUR	3600
2493 
2494 	/* All the hw errs are processed by PF driver */
2495 	if (qm->uacce->is_vf || isolate->is_isolate || !isolate->err_threshold)
2496 		return 0;
2497 
2498 	hw_err = kzalloc(sizeof(*hw_err), GFP_KERNEL);
2499 	if (!hw_err)
2500 		return -ENOMEM;
2501 
2502 	/*
2503 	 * Time-stamp every slot AER error. Then check the AER error log when the
2504 	 * next device AER error occurred. if the device slot AER error count exceeds
2505 	 * the setting error threshold in one hour, the isolated state will be set
2506 	 * to true. And the AER error logs that exceed one hour will be cleared.
2507 	 */
2508 	mutex_lock(&isolate->isolate_lock);
2509 	hw_err->timestamp = jiffies;
2510 	list_for_each_entry_safe(err, tmp, &isolate->qm_hw_errs, list) {
2511 		if ((hw_err->timestamp - err->timestamp) / HZ >
2512 		    SECONDS_PER_HOUR) {
2513 			list_del(&err->list);
2514 			kfree(err);
2515 		} else {
2516 			count++;
2517 		}
2518 	}
2519 	list_add(&hw_err->list, &isolate->qm_hw_errs);
2520 	mutex_unlock(&isolate->isolate_lock);
2521 
2522 	if (count >= isolate->err_threshold)
2523 		isolate->is_isolate = true;
2524 
2525 	return 0;
2526 }
2527 
2528 static void qm_hw_err_destroy(struct hisi_qm *qm)
2529 {
2530 	struct qm_hw_err *err, *tmp;
2531 
2532 	mutex_lock(&qm->isolate_data.isolate_lock);
2533 	list_for_each_entry_safe(err, tmp, &qm->isolate_data.qm_hw_errs, list) {
2534 		list_del(&err->list);
2535 		kfree(err);
2536 	}
2537 	mutex_unlock(&qm->isolate_data.isolate_lock);
2538 }
2539 
2540 static enum uacce_dev_state hisi_qm_get_isolate_state(struct uacce_device *uacce)
2541 {
2542 	struct hisi_qm *qm = uacce->priv;
2543 	struct hisi_qm *pf_qm;
2544 
2545 	if (uacce->is_vf)
2546 		pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
2547 	else
2548 		pf_qm = qm;
2549 
2550 	return pf_qm->isolate_data.is_isolate ?
2551 			UACCE_DEV_ISOLATE : UACCE_DEV_NORMAL;
2552 }
2553 
2554 static int hisi_qm_isolate_threshold_write(struct uacce_device *uacce, u32 num)
2555 {
2556 	struct hisi_qm *qm = uacce->priv;
2557 
2558 	/* Must be set by PF */
2559 	if (uacce->is_vf)
2560 		return -EPERM;
2561 
2562 	if (qm->isolate_data.is_isolate)
2563 		return -EPERM;
2564 
2565 	qm->isolate_data.err_threshold = num;
2566 
2567 	/* After the policy is updated, need to reset the hardware err list */
2568 	qm_hw_err_destroy(qm);
2569 
2570 	return 0;
2571 }
2572 
2573 static u32 hisi_qm_isolate_threshold_read(struct uacce_device *uacce)
2574 {
2575 	struct hisi_qm *qm = uacce->priv;
2576 	struct hisi_qm *pf_qm;
2577 
2578 	if (uacce->is_vf) {
2579 		pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
2580 		return pf_qm->isolate_data.err_threshold;
2581 	}
2582 
2583 	return qm->isolate_data.err_threshold;
2584 }
2585 
2586 static const struct uacce_ops uacce_qm_ops = {
2587 	.get_available_instances = hisi_qm_get_available_instances,
2588 	.get_queue = hisi_qm_uacce_get_queue,
2589 	.put_queue = hisi_qm_uacce_put_queue,
2590 	.start_queue = hisi_qm_uacce_start_queue,
2591 	.stop_queue = hisi_qm_uacce_stop_queue,
2592 	.mmap = hisi_qm_uacce_mmap,
2593 	.ioctl = hisi_qm_uacce_ioctl,
2594 	.is_q_updated = hisi_qm_is_q_updated,
2595 	.get_isolate_state = hisi_qm_get_isolate_state,
2596 	.isolate_err_threshold_write = hisi_qm_isolate_threshold_write,
2597 	.isolate_err_threshold_read = hisi_qm_isolate_threshold_read,
2598 };
2599 
2600 static void qm_remove_uacce(struct hisi_qm *qm)
2601 {
2602 	struct uacce_device *uacce = qm->uacce;
2603 
2604 	if (qm->use_sva) {
2605 		qm_hw_err_destroy(qm);
2606 		uacce_remove(uacce);
2607 		qm->uacce = NULL;
2608 	}
2609 }
2610 
2611 static int qm_alloc_uacce(struct hisi_qm *qm)
2612 {
2613 	struct pci_dev *pdev = qm->pdev;
2614 	struct uacce_device *uacce;
2615 	unsigned long mmio_page_nr;
2616 	unsigned long dus_page_nr;
2617 	u16 sq_depth, cq_depth;
2618 	struct uacce_interface interface = {
2619 		.flags = UACCE_DEV_SVA,
2620 		.ops = &uacce_qm_ops,
2621 	};
2622 	int ret;
2623 
2624 	ret = strscpy(interface.name, dev_driver_string(&pdev->dev),
2625 		      sizeof(interface.name));
2626 	if (ret < 0)
2627 		return -ENAMETOOLONG;
2628 
2629 	uacce = uacce_alloc(&pdev->dev, &interface);
2630 	if (IS_ERR(uacce))
2631 		return PTR_ERR(uacce);
2632 
2633 	if (uacce->flags & UACCE_DEV_SVA) {
2634 		qm->use_sva = true;
2635 	} else {
2636 		/* only consider sva case */
2637 		qm_remove_uacce(qm);
2638 		return -EINVAL;
2639 	}
2640 
2641 	uacce->is_vf = pdev->is_virtfn;
2642 	uacce->priv = qm;
2643 
2644 	if (qm->ver == QM_HW_V1)
2645 		uacce->api_ver = HISI_QM_API_VER_BASE;
2646 	else if (qm->ver == QM_HW_V2)
2647 		uacce->api_ver = HISI_QM_API_VER2_BASE;
2648 	else
2649 		uacce->api_ver = HISI_QM_API_VER3_BASE;
2650 
2651 	if (qm->ver == QM_HW_V1)
2652 		mmio_page_nr = QM_DOORBELL_PAGE_NR;
2653 	else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
2654 		mmio_page_nr = QM_DOORBELL_PAGE_NR +
2655 			QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE;
2656 	else
2657 		mmio_page_nr = qm->db_interval / PAGE_SIZE;
2658 
2659 	qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP);
2660 
2661 	/* Add one more page for device or qp status */
2662 	dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * sq_depth +
2663 		       sizeof(struct qm_cqe) * cq_depth  + PAGE_SIZE) >>
2664 					 PAGE_SHIFT;
2665 
2666 	uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr;
2667 	uacce->qf_pg_num[UACCE_QFRT_DUS]  = dus_page_nr;
2668 
2669 	qm->uacce = uacce;
2670 	INIT_LIST_HEAD(&qm->isolate_data.qm_hw_errs);
2671 	mutex_init(&qm->isolate_data.isolate_lock);
2672 
2673 	return 0;
2674 }
2675 
2676 /**
2677  * qm_frozen() - Try to froze QM to cut continuous queue request. If
2678  * there is user on the QM, return failure without doing anything.
2679  * @qm: The qm needed to be fronzen.
2680  *
2681  * This function frozes QM, then we can do SRIOV disabling.
2682  */
2683 static int qm_frozen(struct hisi_qm *qm)
2684 {
2685 	if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl))
2686 		return 0;
2687 
2688 	down_write(&qm->qps_lock);
2689 
2690 	if (!qm->qp_in_used) {
2691 		qm->qp_in_used = qm->qp_num;
2692 		up_write(&qm->qps_lock);
2693 		set_bit(QM_DRIVER_REMOVING, &qm->misc_ctl);
2694 		return 0;
2695 	}
2696 
2697 	up_write(&qm->qps_lock);
2698 
2699 	return -EBUSY;
2700 }
2701 
2702 static int qm_try_frozen_vfs(struct pci_dev *pdev,
2703 			     struct hisi_qm_list *qm_list)
2704 {
2705 	struct hisi_qm *qm, *vf_qm;
2706 	struct pci_dev *dev;
2707 	int ret = 0;
2708 
2709 	if (!qm_list || !pdev)
2710 		return -EINVAL;
2711 
2712 	/* Try to frozen all the VFs as disable SRIOV */
2713 	mutex_lock(&qm_list->lock);
2714 	list_for_each_entry(qm, &qm_list->list, list) {
2715 		dev = qm->pdev;
2716 		if (dev == pdev)
2717 			continue;
2718 		if (pci_physfn(dev) == pdev) {
2719 			vf_qm = pci_get_drvdata(dev);
2720 			ret = qm_frozen(vf_qm);
2721 			if (ret)
2722 				goto frozen_fail;
2723 		}
2724 	}
2725 
2726 frozen_fail:
2727 	mutex_unlock(&qm_list->lock);
2728 
2729 	return ret;
2730 }
2731 
2732 /**
2733  * hisi_qm_wait_task_finish() - Wait until the task is finished
2734  * when removing the driver.
2735  * @qm: The qm needed to wait for the task to finish.
2736  * @qm_list: The list of all available devices.
2737  */
2738 void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
2739 {
2740 	while (qm_frozen(qm) ||
2741 	       ((qm->fun_type == QM_HW_PF) &&
2742 	       qm_try_frozen_vfs(qm->pdev, qm_list))) {
2743 		msleep(WAIT_PERIOD);
2744 	}
2745 
2746 	while (test_bit(QM_RST_SCHED, &qm->misc_ctl) ||
2747 	       test_bit(QM_RESETTING, &qm->misc_ctl))
2748 		msleep(WAIT_PERIOD);
2749 
2750 	if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
2751 		flush_work(&qm->cmd_process);
2752 
2753 	udelay(REMOVE_WAIT_DELAY);
2754 }
2755 EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish);
2756 
2757 static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num)
2758 {
2759 	struct device *dev = &qm->pdev->dev;
2760 	struct qm_dma *qdma;
2761 	int i;
2762 
2763 	for (i = num - 1; i >= 0; i--) {
2764 		qdma = &qm->qp_array[i].qdma;
2765 		dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma);
2766 		kfree(qm->poll_data[i].qp_finish_id);
2767 	}
2768 
2769 	kfree(qm->poll_data);
2770 	kfree(qm->qp_array);
2771 }
2772 
2773 static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id,
2774 			       u16 sq_depth, u16 cq_depth)
2775 {
2776 	struct device *dev = &qm->pdev->dev;
2777 	size_t off = qm->sqe_size * sq_depth;
2778 	struct hisi_qp *qp;
2779 	int ret = -ENOMEM;
2780 
2781 	qm->poll_data[id].qp_finish_id = kcalloc(qm->qp_num, sizeof(u16),
2782 						 GFP_KERNEL);
2783 	if (!qm->poll_data[id].qp_finish_id)
2784 		return -ENOMEM;
2785 
2786 	qp = &qm->qp_array[id];
2787 	qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma,
2788 					 GFP_KERNEL);
2789 	if (!qp->qdma.va)
2790 		goto err_free_qp_finish_id;
2791 
2792 	qp->sqe = qp->qdma.va;
2793 	qp->sqe_dma = qp->qdma.dma;
2794 	qp->cqe = qp->qdma.va + off;
2795 	qp->cqe_dma = qp->qdma.dma + off;
2796 	qp->qdma.size = dma_size;
2797 	qp->sq_depth = sq_depth;
2798 	qp->cq_depth = cq_depth;
2799 	qp->qm = qm;
2800 	qp->qp_id = id;
2801 
2802 	return 0;
2803 
2804 err_free_qp_finish_id:
2805 	kfree(qm->poll_data[id].qp_finish_id);
2806 	return ret;
2807 }
2808 
2809 static void hisi_qm_pre_init(struct hisi_qm *qm)
2810 {
2811 	struct pci_dev *pdev = qm->pdev;
2812 
2813 	if (qm->ver == QM_HW_V1)
2814 		qm->ops = &qm_hw_ops_v1;
2815 	else if (qm->ver == QM_HW_V2)
2816 		qm->ops = &qm_hw_ops_v2;
2817 	else
2818 		qm->ops = &qm_hw_ops_v3;
2819 
2820 	pci_set_drvdata(pdev, qm);
2821 	mutex_init(&qm->mailbox_lock);
2822 	init_rwsem(&qm->qps_lock);
2823 	qm->qp_in_used = 0;
2824 	if (test_bit(QM_SUPPORT_RPM, &qm->caps)) {
2825 		if (!acpi_device_power_manageable(ACPI_COMPANION(&pdev->dev)))
2826 			dev_info(&pdev->dev, "_PS0 and _PR0 are not defined");
2827 	}
2828 }
2829 
2830 static void qm_cmd_uninit(struct hisi_qm *qm)
2831 {
2832 	u32 val;
2833 
2834 	if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
2835 		return;
2836 
2837 	val = readl(qm->io_base + QM_IFC_INT_MASK);
2838 	val |= QM_IFC_INT_DISABLE;
2839 	writel(val, qm->io_base + QM_IFC_INT_MASK);
2840 }
2841 
2842 static void qm_cmd_init(struct hisi_qm *qm)
2843 {
2844 	u32 val;
2845 
2846 	if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
2847 		return;
2848 
2849 	/* Clear communication interrupt source */
2850 	qm_clear_cmd_interrupt(qm, QM_IFC_INT_SOURCE_CLR);
2851 
2852 	/* Enable pf to vf communication reg. */
2853 	val = readl(qm->io_base + QM_IFC_INT_MASK);
2854 	val &= ~QM_IFC_INT_DISABLE;
2855 	writel(val, qm->io_base + QM_IFC_INT_MASK);
2856 }
2857 
2858 static void qm_put_pci_res(struct hisi_qm *qm)
2859 {
2860 	struct pci_dev *pdev = qm->pdev;
2861 
2862 	if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
2863 		iounmap(qm->db_io_base);
2864 
2865 	iounmap(qm->io_base);
2866 	pci_release_mem_regions(pdev);
2867 }
2868 
2869 static void hisi_qm_pci_uninit(struct hisi_qm *qm)
2870 {
2871 	struct pci_dev *pdev = qm->pdev;
2872 
2873 	pci_free_irq_vectors(pdev);
2874 	qm_put_pci_res(qm);
2875 	pci_disable_device(pdev);
2876 }
2877 
2878 static void hisi_qm_set_state(struct hisi_qm *qm, u8 state)
2879 {
2880 	if (qm->ver > QM_HW_V2 && qm->fun_type == QM_HW_VF)
2881 		writel(state, qm->io_base + QM_VF_STATE);
2882 }
2883 
2884 static void hisi_qm_unint_work(struct hisi_qm *qm)
2885 {
2886 	destroy_workqueue(qm->wq);
2887 }
2888 
2889 static void hisi_qm_free_rsv_buf(struct hisi_qm *qm)
2890 {
2891 	struct qm_dma *xqc_dma = &qm->xqc_buf.qcdma;
2892 	struct device *dev = &qm->pdev->dev;
2893 
2894 	dma_free_coherent(dev, xqc_dma->size, xqc_dma->va, xqc_dma->dma);
2895 }
2896 
2897 static void hisi_qm_memory_uninit(struct hisi_qm *qm)
2898 {
2899 	struct device *dev = &qm->pdev->dev;
2900 
2901 	hisi_qp_memory_uninit(qm, qm->qp_num);
2902 	hisi_qm_free_rsv_buf(qm);
2903 	if (qm->qdma.va) {
2904 		hisi_qm_cache_wb(qm);
2905 		dma_free_coherent(dev, qm->qdma.size,
2906 				  qm->qdma.va, qm->qdma.dma);
2907 	}
2908 
2909 	idr_destroy(&qm->qp_idr);
2910 
2911 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
2912 		kfree(qm->factor);
2913 }
2914 
2915 /**
2916  * hisi_qm_uninit() - Uninitialize qm.
2917  * @qm: The qm needed uninit.
2918  *
2919  * This function uninits qm related device resources.
2920  */
2921 void hisi_qm_uninit(struct hisi_qm *qm)
2922 {
2923 	qm_cmd_uninit(qm);
2924 	hisi_qm_unint_work(qm);
2925 
2926 	down_write(&qm->qps_lock);
2927 	hisi_qm_memory_uninit(qm);
2928 	hisi_qm_set_state(qm, QM_NOT_READY);
2929 	up_write(&qm->qps_lock);
2930 
2931 	qm_remove_uacce(qm);
2932 	qm_irqs_unregister(qm);
2933 	hisi_qm_pci_uninit(qm);
2934 }
2935 EXPORT_SYMBOL_GPL(hisi_qm_uninit);
2936 
2937 /**
2938  * hisi_qm_get_vft() - Get vft from a qm.
2939  * @qm: The qm we want to get its vft.
2940  * @base: The base number of queue in vft.
2941  * @number: The number of queues in vft.
2942  *
2943  * We can allocate multiple queues to a qm by configuring virtual function
2944  * table. We get related configures by this function. Normally, we call this
2945  * function in VF driver to get the queue information.
2946  *
2947  * qm hw v1 does not support this interface.
2948  */
2949 static int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number)
2950 {
2951 	if (!base || !number)
2952 		return -EINVAL;
2953 
2954 	if (!qm->ops->get_vft) {
2955 		dev_err(&qm->pdev->dev, "Don't support vft read!\n");
2956 		return -EINVAL;
2957 	}
2958 
2959 	return qm->ops->get_vft(qm, base, number);
2960 }
2961 
2962 /**
2963  * hisi_qm_set_vft() - Set vft to a qm.
2964  * @qm: The qm we want to set its vft.
2965  * @fun_num: The function number.
2966  * @base: The base number of queue in vft.
2967  * @number: The number of queues in vft.
2968  *
2969  * This function is alway called in PF driver, it is used to assign queues
2970  * among PF and VFs.
2971  *
2972  * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1)
2973  * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1)
2974  * (VF function number 0x2)
2975  */
2976 static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
2977 		    u32 number)
2978 {
2979 	u32 max_q_num = qm->ctrl_qp_num;
2980 
2981 	if (base >= max_q_num || number > max_q_num ||
2982 	    (base + number) > max_q_num)
2983 		return -EINVAL;
2984 
2985 	return qm_set_sqc_cqc_vft(qm, fun_num, base, number);
2986 }
2987 
2988 static void qm_init_eq_aeq_status(struct hisi_qm *qm)
2989 {
2990 	struct hisi_qm_status *status = &qm->status;
2991 
2992 	status->eq_head = 0;
2993 	status->aeq_head = 0;
2994 	status->eqc_phase = true;
2995 	status->aeqc_phase = true;
2996 }
2997 
2998 static void qm_enable_eq_aeq_interrupts(struct hisi_qm *qm)
2999 {
3000 	/* Clear eq/aeq interrupt source */
3001 	qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
3002 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
3003 
3004 	writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK);
3005 	writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK);
3006 }
3007 
3008 static void qm_disable_eq_aeq_interrupts(struct hisi_qm *qm)
3009 {
3010 	writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK);
3011 	writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK);
3012 }
3013 
3014 static int qm_eq_ctx_cfg(struct hisi_qm *qm)
3015 {
3016 	struct qm_eqc eqc = {0};
3017 
3018 	eqc.base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma));
3019 	eqc.base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma));
3020 	if (qm->ver == QM_HW_V1)
3021 		eqc.dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE);
3022 	eqc.dw6 = cpu_to_le32(((u32)qm->eq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT));
3023 
3024 	return qm_set_and_get_xqc(qm, QM_MB_CMD_EQC, &eqc, 0, 0);
3025 }
3026 
3027 static int qm_aeq_ctx_cfg(struct hisi_qm *qm)
3028 {
3029 	struct qm_aeqc aeqc = {0};
3030 
3031 	aeqc.base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma));
3032 	aeqc.base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma));
3033 	aeqc.dw6 = cpu_to_le32(((u32)qm->aeq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT));
3034 
3035 	return qm_set_and_get_xqc(qm, QM_MB_CMD_AEQC, &aeqc, 0, 0);
3036 }
3037 
3038 static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm)
3039 {
3040 	struct device *dev = &qm->pdev->dev;
3041 	int ret;
3042 
3043 	qm_init_eq_aeq_status(qm);
3044 
3045 	ret = qm_eq_ctx_cfg(qm);
3046 	if (ret) {
3047 		dev_err(dev, "Set eqc failed!\n");
3048 		return ret;
3049 	}
3050 
3051 	return qm_aeq_ctx_cfg(qm);
3052 }
3053 
3054 static int __hisi_qm_start(struct hisi_qm *qm)
3055 {
3056 	int ret;
3057 
3058 	WARN_ON(!qm->qdma.va);
3059 
3060 	if (qm->fun_type == QM_HW_PF) {
3061 		ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num);
3062 		if (ret)
3063 			return ret;
3064 	}
3065 
3066 	ret = qm_eq_aeq_ctx_cfg(qm);
3067 	if (ret)
3068 		return ret;
3069 
3070 	ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0);
3071 	if (ret)
3072 		return ret;
3073 
3074 	ret = hisi_qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0);
3075 	if (ret)
3076 		return ret;
3077 
3078 	qm_init_prefetch(qm);
3079 	qm_enable_eq_aeq_interrupts(qm);
3080 
3081 	return 0;
3082 }
3083 
3084 /**
3085  * hisi_qm_start() - start qm
3086  * @qm: The qm to be started.
3087  *
3088  * This function starts a qm, then we can allocate qp from this qm.
3089  */
3090 int hisi_qm_start(struct hisi_qm *qm)
3091 {
3092 	struct device *dev = &qm->pdev->dev;
3093 	int ret = 0;
3094 
3095 	down_write(&qm->qps_lock);
3096 
3097 	dev_dbg(dev, "qm start with %u queue pairs\n", qm->qp_num);
3098 
3099 	if (!qm->qp_num) {
3100 		dev_err(dev, "qp_num should not be 0\n");
3101 		ret = -EINVAL;
3102 		goto err_unlock;
3103 	}
3104 
3105 	ret = __hisi_qm_start(qm);
3106 	if (ret)
3107 		goto err_unlock;
3108 
3109 	atomic_set(&qm->status.flags, QM_WORK);
3110 	hisi_qm_set_state(qm, QM_READY);
3111 
3112 err_unlock:
3113 	up_write(&qm->qps_lock);
3114 	return ret;
3115 }
3116 EXPORT_SYMBOL_GPL(hisi_qm_start);
3117 
3118 static int qm_restart(struct hisi_qm *qm)
3119 {
3120 	struct device *dev = &qm->pdev->dev;
3121 	struct hisi_qp *qp;
3122 	int ret, i;
3123 
3124 	ret = hisi_qm_start(qm);
3125 	if (ret < 0)
3126 		return ret;
3127 
3128 	down_write(&qm->qps_lock);
3129 	for (i = 0; i < qm->qp_num; i++) {
3130 		qp = &qm->qp_array[i];
3131 		if (atomic_read(&qp->qp_status.flags) == QP_STOP &&
3132 		    qp->is_resetting == true) {
3133 			ret = qm_start_qp_nolock(qp, 0);
3134 			if (ret < 0) {
3135 				dev_err(dev, "Failed to start qp%d!\n", i);
3136 
3137 				up_write(&qm->qps_lock);
3138 				return ret;
3139 			}
3140 			qp->is_resetting = false;
3141 		}
3142 	}
3143 	up_write(&qm->qps_lock);
3144 
3145 	return 0;
3146 }
3147 
3148 /* Stop started qps in reset flow */
3149 static void qm_stop_started_qp(struct hisi_qm *qm)
3150 {
3151 	struct hisi_qp *qp;
3152 	int i;
3153 
3154 	for (i = 0; i < qm->qp_num; i++) {
3155 		qp = &qm->qp_array[i];
3156 		if (atomic_read(&qp->qp_status.flags) == QP_START) {
3157 			qp->is_resetting = true;
3158 			qm_stop_qp_nolock(qp);
3159 		}
3160 	}
3161 }
3162 
3163 /**
3164  * qm_clear_queues() - Clear all queues memory in a qm.
3165  * @qm: The qm in which the queues will be cleared.
3166  *
3167  * This function clears all queues memory in a qm. Reset of accelerator can
3168  * use this to clear queues.
3169  */
3170 static void qm_clear_queues(struct hisi_qm *qm)
3171 {
3172 	struct hisi_qp *qp;
3173 	int i;
3174 
3175 	for (i = 0; i < qm->qp_num; i++) {
3176 		qp = &qm->qp_array[i];
3177 		if (qp->is_in_kernel && qp->is_resetting)
3178 			memset(qp->qdma.va, 0, qp->qdma.size);
3179 	}
3180 
3181 	memset(qm->qdma.va, 0, qm->qdma.size);
3182 }
3183 
3184 /**
3185  * hisi_qm_stop() - Stop a qm.
3186  * @qm: The qm which will be stopped.
3187  * @r: The reason to stop qm.
3188  *
3189  * This function stops qm and its qps, then qm can not accept request.
3190  * Related resources are not released at this state, we can use hisi_qm_start
3191  * to let qm start again.
3192  */
3193 int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r)
3194 {
3195 	struct device *dev = &qm->pdev->dev;
3196 	int ret = 0;
3197 
3198 	down_write(&qm->qps_lock);
3199 
3200 	if (atomic_read(&qm->status.flags) == QM_STOP)
3201 		goto err_unlock;
3202 
3203 	/* Stop all the request sending at first. */
3204 	atomic_set(&qm->status.flags, QM_STOP);
3205 	qm->status.stop_reason = r;
3206 
3207 	if (qm->status.stop_reason != QM_NORMAL) {
3208 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
3209 		/*
3210 		 * When performing soft reset, the hardware will no longer
3211 		 * do tasks, and the tasks in the device will be flushed
3212 		 * out directly since the master ooo is closed.
3213 		 */
3214 		if (test_bit(QM_SUPPORT_STOP_FUNC, &qm->caps) &&
3215 		    r != QM_SOFT_RESET) {
3216 			ret = qm_drain_qm(qm);
3217 			if (ret) {
3218 				dev_err(dev, "failed to drain qm!\n");
3219 				goto err_unlock;
3220 			}
3221 		}
3222 
3223 		qm_stop_started_qp(qm);
3224 
3225 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
3226 	}
3227 
3228 	qm_disable_eq_aeq_interrupts(qm);
3229 	if (qm->fun_type == QM_HW_PF) {
3230 		ret = hisi_qm_set_vft(qm, 0, 0, 0);
3231 		if (ret < 0) {
3232 			dev_err(dev, "Failed to set vft!\n");
3233 			ret = -EBUSY;
3234 			goto err_unlock;
3235 		}
3236 	}
3237 
3238 	qm_clear_queues(qm);
3239 	qm->status.stop_reason = QM_NORMAL;
3240 
3241 err_unlock:
3242 	up_write(&qm->qps_lock);
3243 	return ret;
3244 }
3245 EXPORT_SYMBOL_GPL(hisi_qm_stop);
3246 
3247 static void qm_hw_error_init(struct hisi_qm *qm)
3248 {
3249 	if (!qm->ops->hw_error_init) {
3250 		dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n");
3251 		return;
3252 	}
3253 
3254 	qm->ops->hw_error_init(qm);
3255 }
3256 
3257 static void qm_hw_error_uninit(struct hisi_qm *qm)
3258 {
3259 	if (!qm->ops->hw_error_uninit) {
3260 		dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n");
3261 		return;
3262 	}
3263 
3264 	qm->ops->hw_error_uninit(qm);
3265 }
3266 
3267 static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm)
3268 {
3269 	if (!qm->ops->hw_error_handle) {
3270 		dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n");
3271 		return ACC_ERR_NONE;
3272 	}
3273 
3274 	return qm->ops->hw_error_handle(qm);
3275 }
3276 
3277 /**
3278  * hisi_qm_dev_err_init() - Initialize device error configuration.
3279  * @qm: The qm for which we want to do error initialization.
3280  *
3281  * Initialize QM and device error related configuration.
3282  */
3283 void hisi_qm_dev_err_init(struct hisi_qm *qm)
3284 {
3285 	if (qm->fun_type == QM_HW_VF)
3286 		return;
3287 
3288 	qm_hw_error_init(qm);
3289 
3290 	if (!qm->err_ini->hw_err_enable) {
3291 		dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n");
3292 		return;
3293 	}
3294 	qm->err_ini->hw_err_enable(qm);
3295 }
3296 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init);
3297 
3298 /**
3299  * hisi_qm_dev_err_uninit() - Uninitialize device error configuration.
3300  * @qm: The qm for which we want to do error uninitialization.
3301  *
3302  * Uninitialize QM and device error related configuration.
3303  */
3304 void hisi_qm_dev_err_uninit(struct hisi_qm *qm)
3305 {
3306 	if (qm->fun_type == QM_HW_VF)
3307 		return;
3308 
3309 	qm_hw_error_uninit(qm);
3310 
3311 	if (!qm->err_ini->hw_err_disable) {
3312 		dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n");
3313 		return;
3314 	}
3315 	qm->err_ini->hw_err_disable(qm);
3316 }
3317 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit);
3318 
3319 /**
3320  * hisi_qm_free_qps() - free multiple queue pairs.
3321  * @qps: The queue pairs need to be freed.
3322  * @qp_num: The num of queue pairs.
3323  */
3324 void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num)
3325 {
3326 	int i;
3327 
3328 	if (!qps || qp_num <= 0)
3329 		return;
3330 
3331 	for (i = qp_num - 1; i >= 0; i--)
3332 		hisi_qm_release_qp(qps[i]);
3333 }
3334 EXPORT_SYMBOL_GPL(hisi_qm_free_qps);
3335 
3336 static void free_list(struct list_head *head)
3337 {
3338 	struct hisi_qm_resource *res, *tmp;
3339 
3340 	list_for_each_entry_safe(res, tmp, head, list) {
3341 		list_del(&res->list);
3342 		kfree(res);
3343 	}
3344 }
3345 
3346 static int hisi_qm_sort_devices(int node, struct list_head *head,
3347 				struct hisi_qm_list *qm_list)
3348 {
3349 	struct hisi_qm_resource *res, *tmp;
3350 	struct hisi_qm *qm;
3351 	struct list_head *n;
3352 	struct device *dev;
3353 	int dev_node;
3354 
3355 	list_for_each_entry(qm, &qm_list->list, list) {
3356 		dev = &qm->pdev->dev;
3357 
3358 		dev_node = dev_to_node(dev);
3359 		if (dev_node < 0)
3360 			dev_node = 0;
3361 
3362 		res = kzalloc(sizeof(*res), GFP_KERNEL);
3363 		if (!res)
3364 			return -ENOMEM;
3365 
3366 		res->qm = qm;
3367 		res->distance = node_distance(dev_node, node);
3368 		n = head;
3369 		list_for_each_entry(tmp, head, list) {
3370 			if (res->distance < tmp->distance) {
3371 				n = &tmp->list;
3372 				break;
3373 			}
3374 		}
3375 		list_add_tail(&res->list, n);
3376 	}
3377 
3378 	return 0;
3379 }
3380 
3381 /**
3382  * hisi_qm_alloc_qps_node() - Create multiple queue pairs.
3383  * @qm_list: The list of all available devices.
3384  * @qp_num: The number of queue pairs need created.
3385  * @alg_type: The algorithm type.
3386  * @node: The numa node.
3387  * @qps: The queue pairs need created.
3388  *
3389  * This function will sort all available device according to numa distance.
3390  * Then try to create all queue pairs from one device, if all devices do
3391  * not meet the requirements will return error.
3392  */
3393 int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num,
3394 			   u8 alg_type, int node, struct hisi_qp **qps)
3395 {
3396 	struct hisi_qm_resource *tmp;
3397 	int ret = -ENODEV;
3398 	LIST_HEAD(head);
3399 	int i;
3400 
3401 	if (!qps || !qm_list || qp_num <= 0)
3402 		return -EINVAL;
3403 
3404 	mutex_lock(&qm_list->lock);
3405 	if (hisi_qm_sort_devices(node, &head, qm_list)) {
3406 		mutex_unlock(&qm_list->lock);
3407 		goto err;
3408 	}
3409 
3410 	list_for_each_entry(tmp, &head, list) {
3411 		for (i = 0; i < qp_num; i++) {
3412 			qps[i] = hisi_qm_create_qp(tmp->qm, alg_type);
3413 			if (IS_ERR(qps[i])) {
3414 				hisi_qm_free_qps(qps, i);
3415 				break;
3416 			}
3417 		}
3418 
3419 		if (i == qp_num) {
3420 			ret = 0;
3421 			break;
3422 		}
3423 	}
3424 
3425 	mutex_unlock(&qm_list->lock);
3426 	if (ret)
3427 		pr_info("Failed to create qps, node[%d], alg[%u], qp[%d]!\n",
3428 			node, alg_type, qp_num);
3429 
3430 err:
3431 	free_list(&head);
3432 	return ret;
3433 }
3434 EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node);
3435 
3436 static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs)
3437 {
3438 	u32 remain_q_num, vfs_q_num, act_q_num, q_num, i, j;
3439 	u32 max_qp_num = qm->max_qp_num;
3440 	u32 q_base = qm->qp_num;
3441 	int ret;
3442 
3443 	if (!num_vfs)
3444 		return -EINVAL;
3445 
3446 	vfs_q_num = qm->ctrl_qp_num - qm->qp_num;
3447 
3448 	/* If vfs_q_num is less than num_vfs, return error. */
3449 	if (vfs_q_num < num_vfs)
3450 		return -EINVAL;
3451 
3452 	q_num = vfs_q_num / num_vfs;
3453 	remain_q_num = vfs_q_num % num_vfs;
3454 
3455 	for (i = num_vfs; i > 0; i--) {
3456 		/*
3457 		 * if q_num + remain_q_num > max_qp_num in last vf, divide the
3458 		 * remaining queues equally.
3459 		 */
3460 		if (i == num_vfs && q_num + remain_q_num <= max_qp_num) {
3461 			act_q_num = q_num + remain_q_num;
3462 			remain_q_num = 0;
3463 		} else if (remain_q_num > 0) {
3464 			act_q_num = q_num + 1;
3465 			remain_q_num--;
3466 		} else {
3467 			act_q_num = q_num;
3468 		}
3469 
3470 		act_q_num = min(act_q_num, max_qp_num);
3471 		ret = hisi_qm_set_vft(qm, i, q_base, act_q_num);
3472 		if (ret) {
3473 			for (j = num_vfs; j > i; j--)
3474 				hisi_qm_set_vft(qm, j, 0, 0);
3475 			return ret;
3476 		}
3477 		q_base += act_q_num;
3478 	}
3479 
3480 	return 0;
3481 }
3482 
3483 static int qm_clear_vft_config(struct hisi_qm *qm)
3484 {
3485 	int ret;
3486 	u32 i;
3487 
3488 	for (i = 1; i <= qm->vfs_num; i++) {
3489 		ret = hisi_qm_set_vft(qm, i, 0, 0);
3490 		if (ret)
3491 			return ret;
3492 	}
3493 	qm->vfs_num = 0;
3494 
3495 	return 0;
3496 }
3497 
3498 static int qm_func_shaper_enable(struct hisi_qm *qm, u32 fun_index, u32 qos)
3499 {
3500 	struct device *dev = &qm->pdev->dev;
3501 	u32 ir = qos * QM_QOS_RATE;
3502 	int ret, total_vfs, i;
3503 
3504 	total_vfs = pci_sriov_get_totalvfs(qm->pdev);
3505 	if (fun_index > total_vfs)
3506 		return -EINVAL;
3507 
3508 	qm->factor[fun_index].func_qos = qos;
3509 
3510 	ret = qm_get_shaper_para(ir, &qm->factor[fun_index]);
3511 	if (ret) {
3512 		dev_err(dev, "failed to calculate shaper parameter!\n");
3513 		return -EINVAL;
3514 	}
3515 
3516 	for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) {
3517 		/* The base number of queue reuse for different alg type */
3518 		ret = qm_set_vft_common(qm, SHAPER_VFT, fun_index, i, 1);
3519 		if (ret) {
3520 			dev_err(dev, "type: %d, failed to set shaper vft!\n", i);
3521 			return -EINVAL;
3522 		}
3523 	}
3524 
3525 	return 0;
3526 }
3527 
3528 static u32 qm_get_shaper_vft_qos(struct hisi_qm *qm, u32 fun_index)
3529 {
3530 	u64 cir_u = 0, cir_b = 0, cir_s = 0;
3531 	u64 shaper_vft, ir_calc, ir;
3532 	unsigned int val;
3533 	u32 error_rate;
3534 	int ret;
3535 
3536 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
3537 					 val & BIT(0), POLL_PERIOD,
3538 					 POLL_TIMEOUT);
3539 	if (ret)
3540 		return 0;
3541 
3542 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_WR);
3543 	writel(SHAPER_VFT, qm->io_base + QM_VFT_CFG_TYPE);
3544 	writel(fun_index, qm->io_base + QM_VFT_CFG);
3545 
3546 	writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
3547 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
3548 
3549 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
3550 					 val & BIT(0), POLL_PERIOD,
3551 					 POLL_TIMEOUT);
3552 	if (ret)
3553 		return 0;
3554 
3555 	shaper_vft = readl(qm->io_base + QM_VFT_CFG_DATA_L) |
3556 		  ((u64)readl(qm->io_base + QM_VFT_CFG_DATA_H) << 32);
3557 
3558 	cir_b = shaper_vft & QM_SHAPER_CIR_B_MASK;
3559 	cir_u = shaper_vft & QM_SHAPER_CIR_U_MASK;
3560 	cir_u = cir_u >> QM_SHAPER_FACTOR_CIR_U_SHIFT;
3561 
3562 	cir_s = shaper_vft & QM_SHAPER_CIR_S_MASK;
3563 	cir_s = cir_s >> QM_SHAPER_FACTOR_CIR_S_SHIFT;
3564 
3565 	ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s);
3566 
3567 	ir = qm->factor[fun_index].func_qos * QM_QOS_RATE;
3568 
3569 	error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir;
3570 	if (error_rate > QM_QOS_MIN_ERROR_RATE) {
3571 		pci_err(qm->pdev, "error_rate: %u, get function qos is error!\n", error_rate);
3572 		return 0;
3573 	}
3574 
3575 	return ir;
3576 }
3577 
3578 static void qm_vf_get_qos(struct hisi_qm *qm, u32 fun_num)
3579 {
3580 	struct device *dev = &qm->pdev->dev;
3581 	u64 mb_cmd;
3582 	u32 qos;
3583 	int ret;
3584 
3585 	qos = qm_get_shaper_vft_qos(qm, fun_num);
3586 	if (!qos) {
3587 		dev_err(dev, "function(%u) failed to get qos by PF!\n", fun_num);
3588 		return;
3589 	}
3590 
3591 	mb_cmd = QM_PF_SET_QOS | (u64)qos << QM_MB_CMD_DATA_SHIFT;
3592 	ret = qm_ping_single_vf(qm, mb_cmd, fun_num);
3593 	if (ret)
3594 		dev_err(dev, "failed to send cmd to VF(%u)!\n", fun_num);
3595 }
3596 
3597 static int qm_vf_read_qos(struct hisi_qm *qm)
3598 {
3599 	int cnt = 0;
3600 	int ret = -EINVAL;
3601 
3602 	/* reset mailbox qos val */
3603 	qm->mb_qos = 0;
3604 
3605 	/* vf ping pf to get function qos */
3606 	ret = qm_ping_pf(qm, QM_VF_GET_QOS);
3607 	if (ret) {
3608 		pci_err(qm->pdev, "failed to send cmd to PF to get qos!\n");
3609 		return ret;
3610 	}
3611 
3612 	while (true) {
3613 		msleep(QM_WAIT_DST_ACK);
3614 		if (qm->mb_qos)
3615 			break;
3616 
3617 		if (++cnt > QM_MAX_VF_WAIT_COUNT) {
3618 			pci_err(qm->pdev, "PF ping VF timeout!\n");
3619 			return  -ETIMEDOUT;
3620 		}
3621 	}
3622 
3623 	return ret;
3624 }
3625 
3626 static ssize_t qm_algqos_read(struct file *filp, char __user *buf,
3627 			       size_t count, loff_t *pos)
3628 {
3629 	struct hisi_qm *qm = filp->private_data;
3630 	char tbuf[QM_DBG_READ_LEN];
3631 	u32 qos_val, ir;
3632 	int ret;
3633 
3634 	ret = hisi_qm_get_dfx_access(qm);
3635 	if (ret)
3636 		return ret;
3637 
3638 	/* Mailbox and reset cannot be operated at the same time */
3639 	if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
3640 		pci_err(qm->pdev, "dev resetting, read alg qos failed!\n");
3641 		ret = -EAGAIN;
3642 		goto err_put_dfx_access;
3643 	}
3644 
3645 	if (qm->fun_type == QM_HW_PF) {
3646 		ir = qm_get_shaper_vft_qos(qm, 0);
3647 	} else {
3648 		ret = qm_vf_read_qos(qm);
3649 		if (ret)
3650 			goto err_get_status;
3651 		ir = qm->mb_qos;
3652 	}
3653 
3654 	qos_val = ir / QM_QOS_RATE;
3655 	ret = scnprintf(tbuf, QM_DBG_READ_LEN, "%u\n", qos_val);
3656 
3657 	ret = simple_read_from_buffer(buf, count, pos, tbuf, ret);
3658 
3659 err_get_status:
3660 	clear_bit(QM_RESETTING, &qm->misc_ctl);
3661 err_put_dfx_access:
3662 	hisi_qm_put_dfx_access(qm);
3663 	return ret;
3664 }
3665 
3666 static ssize_t qm_get_qos_value(struct hisi_qm *qm, const char *buf,
3667 			       unsigned long *val,
3668 			       unsigned int *fun_index)
3669 {
3670 	const struct bus_type *bus_type = qm->pdev->dev.bus;
3671 	char tbuf_bdf[QM_DBG_READ_LEN] = {0};
3672 	char val_buf[QM_DBG_READ_LEN] = {0};
3673 	struct pci_dev *pdev;
3674 	struct device *dev;
3675 	int ret;
3676 
3677 	ret = sscanf(buf, "%s %s", tbuf_bdf, val_buf);
3678 	if (ret != QM_QOS_PARAM_NUM)
3679 		return -EINVAL;
3680 
3681 	ret = kstrtoul(val_buf, 10, val);
3682 	if (ret || *val == 0 || *val > QM_QOS_MAX_VAL) {
3683 		pci_err(qm->pdev, "input qos value is error, please set 1~1000!\n");
3684 		return -EINVAL;
3685 	}
3686 
3687 	dev = bus_find_device_by_name(bus_type, NULL, tbuf_bdf);
3688 	if (!dev) {
3689 		pci_err(qm->pdev, "input pci bdf number is error!\n");
3690 		return -ENODEV;
3691 	}
3692 
3693 	pdev = container_of(dev, struct pci_dev, dev);
3694 
3695 	*fun_index = pdev->devfn;
3696 
3697 	return 0;
3698 }
3699 
3700 static ssize_t qm_algqos_write(struct file *filp, const char __user *buf,
3701 			       size_t count, loff_t *pos)
3702 {
3703 	struct hisi_qm *qm = filp->private_data;
3704 	char tbuf[QM_DBG_READ_LEN];
3705 	unsigned int fun_index;
3706 	unsigned long val;
3707 	int len, ret;
3708 
3709 	if (*pos != 0)
3710 		return 0;
3711 
3712 	if (count >= QM_DBG_READ_LEN)
3713 		return -ENOSPC;
3714 
3715 	len = simple_write_to_buffer(tbuf, QM_DBG_READ_LEN - 1, pos, buf, count);
3716 	if (len < 0)
3717 		return len;
3718 
3719 	tbuf[len] = '\0';
3720 	ret = qm_get_qos_value(qm, tbuf, &val, &fun_index);
3721 	if (ret)
3722 		return ret;
3723 
3724 	/* Mailbox and reset cannot be operated at the same time */
3725 	if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
3726 		pci_err(qm->pdev, "dev resetting, write alg qos failed!\n");
3727 		return -EAGAIN;
3728 	}
3729 
3730 	ret = qm_pm_get_sync(qm);
3731 	if (ret) {
3732 		ret = -EINVAL;
3733 		goto err_get_status;
3734 	}
3735 
3736 	ret = qm_func_shaper_enable(qm, fun_index, val);
3737 	if (ret) {
3738 		pci_err(qm->pdev, "failed to enable function shaper!\n");
3739 		ret = -EINVAL;
3740 		goto err_put_sync;
3741 	}
3742 
3743 	pci_info(qm->pdev, "the qos value of function%u is set to %lu.\n",
3744 		 fun_index, val);
3745 	ret = count;
3746 
3747 err_put_sync:
3748 	qm_pm_put_sync(qm);
3749 err_get_status:
3750 	clear_bit(QM_RESETTING, &qm->misc_ctl);
3751 	return ret;
3752 }
3753 
3754 static const struct file_operations qm_algqos_fops = {
3755 	.owner = THIS_MODULE,
3756 	.open = simple_open,
3757 	.read = qm_algqos_read,
3758 	.write = qm_algqos_write,
3759 };
3760 
3761 /**
3762  * hisi_qm_set_algqos_init() - Initialize function qos debugfs files.
3763  * @qm: The qm for which we want to add debugfs files.
3764  *
3765  * Create function qos debugfs files, VF ping PF to get function qos.
3766  */
3767 void hisi_qm_set_algqos_init(struct hisi_qm *qm)
3768 {
3769 	if (qm->fun_type == QM_HW_PF)
3770 		debugfs_create_file("alg_qos", 0644, qm->debug.debug_root,
3771 				    qm, &qm_algqos_fops);
3772 	else if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
3773 		debugfs_create_file("alg_qos", 0444, qm->debug.debug_root,
3774 				    qm, &qm_algqos_fops);
3775 }
3776 
3777 static void hisi_qm_init_vf_qos(struct hisi_qm *qm, int total_func)
3778 {
3779 	int i;
3780 
3781 	for (i = 1; i <= total_func; i++)
3782 		qm->factor[i].func_qos = QM_QOS_MAX_VAL;
3783 }
3784 
3785 /**
3786  * hisi_qm_sriov_enable() - enable virtual functions
3787  * @pdev: the PCIe device
3788  * @max_vfs: the number of virtual functions to enable
3789  *
3790  * Returns the number of enabled VFs. If there are VFs enabled already or
3791  * max_vfs is more than the total number of device can be enabled, returns
3792  * failure.
3793  */
3794 int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs)
3795 {
3796 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3797 	int pre_existing_vfs, num_vfs, total_vfs, ret;
3798 
3799 	ret = qm_pm_get_sync(qm);
3800 	if (ret)
3801 		return ret;
3802 
3803 	total_vfs = pci_sriov_get_totalvfs(pdev);
3804 	pre_existing_vfs = pci_num_vf(pdev);
3805 	if (pre_existing_vfs) {
3806 		pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n",
3807 			pre_existing_vfs);
3808 		goto err_put_sync;
3809 	}
3810 
3811 	if (max_vfs > total_vfs) {
3812 		pci_err(pdev, "%d VFs is more than total VFs %d!\n", max_vfs, total_vfs);
3813 		ret = -ERANGE;
3814 		goto err_put_sync;
3815 	}
3816 
3817 	num_vfs = max_vfs;
3818 
3819 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
3820 		hisi_qm_init_vf_qos(qm, num_vfs);
3821 
3822 	ret = qm_vf_q_assign(qm, num_vfs);
3823 	if (ret) {
3824 		pci_err(pdev, "Can't assign queues for VF!\n");
3825 		goto err_put_sync;
3826 	}
3827 
3828 	ret = pci_enable_sriov(pdev, num_vfs);
3829 	if (ret) {
3830 		pci_err(pdev, "Can't enable VF!\n");
3831 		qm_clear_vft_config(qm);
3832 		goto err_put_sync;
3833 	}
3834 	qm->vfs_num = num_vfs;
3835 
3836 	pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs);
3837 
3838 	return num_vfs;
3839 
3840 err_put_sync:
3841 	qm_pm_put_sync(qm);
3842 	return ret;
3843 }
3844 EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable);
3845 
3846 /**
3847  * hisi_qm_sriov_disable - disable virtual functions
3848  * @pdev: the PCI device.
3849  * @is_frozen: true when all the VFs are frozen.
3850  *
3851  * Return failure if there are VFs assigned already or VF is in used.
3852  */
3853 int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen)
3854 {
3855 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3856 
3857 	if (pci_vfs_assigned(pdev)) {
3858 		pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n");
3859 		return -EPERM;
3860 	}
3861 
3862 	/* While VF is in used, SRIOV cannot be disabled. */
3863 	if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) {
3864 		pci_err(pdev, "Task is using its VF!\n");
3865 		return -EBUSY;
3866 	}
3867 
3868 	pci_disable_sriov(pdev);
3869 
3870 	qm->vfs_num = 0;
3871 	qm_pm_put_sync(qm);
3872 
3873 	return qm_clear_vft_config(qm);
3874 }
3875 EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable);
3876 
3877 /**
3878  * hisi_qm_sriov_configure - configure the number of VFs
3879  * @pdev: The PCI device
3880  * @num_vfs: The number of VFs need enabled
3881  *
3882  * Enable SR-IOV according to num_vfs, 0 means disable.
3883  */
3884 int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs)
3885 {
3886 	if (num_vfs == 0)
3887 		return hisi_qm_sriov_disable(pdev, false);
3888 	else
3889 		return hisi_qm_sriov_enable(pdev, num_vfs);
3890 }
3891 EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure);
3892 
3893 static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm)
3894 {
3895 	u32 err_sts;
3896 
3897 	if (!qm->err_ini->get_dev_hw_err_status) {
3898 		dev_err(&qm->pdev->dev, "Device doesn't support get hw error status!\n");
3899 		return ACC_ERR_NONE;
3900 	}
3901 
3902 	/* get device hardware error status */
3903 	err_sts = qm->err_ini->get_dev_hw_err_status(qm);
3904 	if (err_sts) {
3905 		if (err_sts & qm->err_info.ecc_2bits_mask)
3906 			qm->err_status.is_dev_ecc_mbit = true;
3907 
3908 		if (qm->err_ini->log_dev_hw_err)
3909 			qm->err_ini->log_dev_hw_err(qm, err_sts);
3910 
3911 		if (err_sts & qm->err_info.dev_reset_mask)
3912 			return ACC_ERR_NEED_RESET;
3913 
3914 		if (qm->err_ini->clear_dev_hw_err_status)
3915 			qm->err_ini->clear_dev_hw_err_status(qm, err_sts);
3916 	}
3917 
3918 	return ACC_ERR_RECOVERED;
3919 }
3920 
3921 static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm)
3922 {
3923 	enum acc_err_result qm_ret, dev_ret;
3924 
3925 	/* log qm error */
3926 	qm_ret = qm_hw_error_handle(qm);
3927 
3928 	/* log device error */
3929 	dev_ret = qm_dev_err_handle(qm);
3930 
3931 	return (qm_ret == ACC_ERR_NEED_RESET ||
3932 		dev_ret == ACC_ERR_NEED_RESET) ?
3933 		ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED;
3934 }
3935 
3936 /**
3937  * hisi_qm_dev_err_detected() - Get device and qm error status then log it.
3938  * @pdev: The PCI device which need report error.
3939  * @state: The connectivity between CPU and device.
3940  *
3941  * We register this function into PCIe AER handlers, It will report device or
3942  * qm hardware error status when error occur.
3943  */
3944 pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev,
3945 					  pci_channel_state_t state)
3946 {
3947 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3948 	enum acc_err_result ret;
3949 
3950 	if (pdev->is_virtfn)
3951 		return PCI_ERS_RESULT_NONE;
3952 
3953 	pci_info(pdev, "PCI error detected, state(=%u)!!\n", state);
3954 	if (state == pci_channel_io_perm_failure)
3955 		return PCI_ERS_RESULT_DISCONNECT;
3956 
3957 	ret = qm_process_dev_error(qm);
3958 	if (ret == ACC_ERR_NEED_RESET)
3959 		return PCI_ERS_RESULT_NEED_RESET;
3960 
3961 	return PCI_ERS_RESULT_RECOVERED;
3962 }
3963 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected);
3964 
3965 static int qm_check_req_recv(struct hisi_qm *qm)
3966 {
3967 	struct pci_dev *pdev = qm->pdev;
3968 	int ret;
3969 	u32 val;
3970 
3971 	if (qm->ver >= QM_HW_V3)
3972 		return 0;
3973 
3974 	writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID);
3975 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
3976 					 (val == ACC_VENDOR_ID_VALUE),
3977 					 POLL_PERIOD, POLL_TIMEOUT);
3978 	if (ret) {
3979 		dev_err(&pdev->dev, "Fails to read QM reg!\n");
3980 		return ret;
3981 	}
3982 
3983 	writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID);
3984 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
3985 					 (val == PCI_VENDOR_ID_HUAWEI),
3986 					 POLL_PERIOD, POLL_TIMEOUT);
3987 	if (ret)
3988 		dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n");
3989 
3990 	return ret;
3991 }
3992 
3993 static int qm_set_pf_mse(struct hisi_qm *qm, bool set)
3994 {
3995 	struct pci_dev *pdev = qm->pdev;
3996 	u16 cmd;
3997 	int i;
3998 
3999 	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
4000 	if (set)
4001 		cmd |= PCI_COMMAND_MEMORY;
4002 	else
4003 		cmd &= ~PCI_COMMAND_MEMORY;
4004 
4005 	pci_write_config_word(pdev, PCI_COMMAND, cmd);
4006 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
4007 		pci_read_config_word(pdev, PCI_COMMAND, &cmd);
4008 		if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1))
4009 			return 0;
4010 
4011 		udelay(1);
4012 	}
4013 
4014 	return -ETIMEDOUT;
4015 }
4016 
4017 static int qm_set_vf_mse(struct hisi_qm *qm, bool set)
4018 {
4019 	struct pci_dev *pdev = qm->pdev;
4020 	u16 sriov_ctrl;
4021 	int pos;
4022 	int i;
4023 
4024 	/*
4025 	 * Since function qm_set_vf_mse is called only after SRIOV is enabled,
4026 	 * pci_find_ext_capability cannot return 0, pos does not need to be
4027 	 * checked.
4028 	 */
4029 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
4030 	pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
4031 	if (set)
4032 		sriov_ctrl |= PCI_SRIOV_CTRL_MSE;
4033 	else
4034 		sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE;
4035 	pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl);
4036 
4037 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
4038 		pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
4039 		if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >>
4040 		    ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT)
4041 			return 0;
4042 
4043 		udelay(1);
4044 	}
4045 
4046 	return -ETIMEDOUT;
4047 }
4048 
4049 static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm)
4050 {
4051 	u32 nfe_enb = 0;
4052 
4053 	/* Kunpeng930 hardware automatically close master ooo when NFE occurs */
4054 	if (qm->ver >= QM_HW_V3)
4055 		return;
4056 
4057 	if (!qm->err_status.is_dev_ecc_mbit &&
4058 	    qm->err_status.is_qm_ecc_mbit &&
4059 	    qm->err_ini->close_axi_master_ooo) {
4060 		qm->err_ini->close_axi_master_ooo(qm);
4061 	} else if (qm->err_status.is_dev_ecc_mbit &&
4062 		   !qm->err_status.is_qm_ecc_mbit &&
4063 		   !qm->err_ini->close_axi_master_ooo) {
4064 		nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE);
4065 		writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE,
4066 		       qm->io_base + QM_RAS_NFE_ENABLE);
4067 		writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET);
4068 	}
4069 }
4070 
4071 static int qm_vf_reset_prepare(struct hisi_qm *qm,
4072 			       enum qm_stop_reason stop_reason)
4073 {
4074 	struct hisi_qm_list *qm_list = qm->qm_list;
4075 	struct pci_dev *pdev = qm->pdev;
4076 	struct pci_dev *virtfn;
4077 	struct hisi_qm *vf_qm;
4078 	int ret = 0;
4079 
4080 	mutex_lock(&qm_list->lock);
4081 	list_for_each_entry(vf_qm, &qm_list->list, list) {
4082 		virtfn = vf_qm->pdev;
4083 		if (virtfn == pdev)
4084 			continue;
4085 
4086 		if (pci_physfn(virtfn) == pdev) {
4087 			/* save VFs PCIE BAR configuration */
4088 			pci_save_state(virtfn);
4089 
4090 			ret = hisi_qm_stop(vf_qm, stop_reason);
4091 			if (ret)
4092 				goto stop_fail;
4093 		}
4094 	}
4095 
4096 stop_fail:
4097 	mutex_unlock(&qm_list->lock);
4098 	return ret;
4099 }
4100 
4101 static int qm_try_stop_vfs(struct hisi_qm *qm, u64 cmd,
4102 			   enum qm_stop_reason stop_reason)
4103 {
4104 	struct pci_dev *pdev = qm->pdev;
4105 	int ret;
4106 
4107 	if (!qm->vfs_num)
4108 		return 0;
4109 
4110 	/* Kunpeng930 supports to notify VFs to stop before PF reset */
4111 	if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) {
4112 		ret = qm_ping_all_vfs(qm, cmd);
4113 		if (ret)
4114 			pci_err(pdev, "failed to send cmd to all VFs before PF reset!\n");
4115 	} else {
4116 		ret = qm_vf_reset_prepare(qm, stop_reason);
4117 		if (ret)
4118 			pci_err(pdev, "failed to prepare reset, ret = %d.\n", ret);
4119 	}
4120 
4121 	return ret;
4122 }
4123 
4124 static int qm_controller_reset_prepare(struct hisi_qm *qm)
4125 {
4126 	struct pci_dev *pdev = qm->pdev;
4127 	int ret;
4128 
4129 	ret = qm_reset_prepare_ready(qm);
4130 	if (ret) {
4131 		pci_err(pdev, "Controller reset not ready!\n");
4132 		return ret;
4133 	}
4134 
4135 	qm_dev_ecc_mbit_handle(qm);
4136 
4137 	/* PF obtains the information of VF by querying the register. */
4138 	qm_cmd_uninit(qm);
4139 
4140 	/* Whether VFs stop successfully, soft reset will continue. */
4141 	ret = qm_try_stop_vfs(qm, QM_PF_SRST_PREPARE, QM_SOFT_RESET);
4142 	if (ret)
4143 		pci_err(pdev, "failed to stop vfs by pf in soft reset.\n");
4144 
4145 	ret = hisi_qm_stop(qm, QM_SOFT_RESET);
4146 	if (ret) {
4147 		pci_err(pdev, "Fails to stop QM!\n");
4148 		qm_reset_bit_clear(qm);
4149 		return ret;
4150 	}
4151 
4152 	if (qm->use_sva) {
4153 		ret = qm_hw_err_isolate(qm);
4154 		if (ret)
4155 			pci_err(pdev, "failed to isolate hw err!\n");
4156 	}
4157 
4158 	ret = qm_wait_vf_prepare_finish(qm);
4159 	if (ret)
4160 		pci_err(pdev, "failed to stop by vfs in soft reset!\n");
4161 
4162 	clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4163 
4164 	return 0;
4165 }
4166 
4167 static int qm_master_ooo_check(struct hisi_qm *qm)
4168 {
4169 	u32 val;
4170 	int ret;
4171 
4172 	/* Check the ooo register of the device before resetting the device. */
4173 	writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN, qm->io_base + ACC_MASTER_GLOBAL_CTRL);
4174 	ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN,
4175 					 val, (val == ACC_MASTER_TRANS_RETURN_RW),
4176 					 POLL_PERIOD, POLL_TIMEOUT);
4177 	if (ret)
4178 		pci_warn(qm->pdev, "Bus lock! Please reset system.\n");
4179 
4180 	return ret;
4181 }
4182 
4183 static int qm_soft_reset_prepare(struct hisi_qm *qm)
4184 {
4185 	struct pci_dev *pdev = qm->pdev;
4186 	int ret;
4187 
4188 	/* Ensure all doorbells and mailboxes received by QM */
4189 	ret = qm_check_req_recv(qm);
4190 	if (ret)
4191 		return ret;
4192 
4193 	if (qm->vfs_num) {
4194 		ret = qm_set_vf_mse(qm, false);
4195 		if (ret) {
4196 			pci_err(pdev, "Fails to disable vf MSE bit.\n");
4197 			return ret;
4198 		}
4199 	}
4200 
4201 	ret = qm->ops->set_msi(qm, false);
4202 	if (ret) {
4203 		pci_err(pdev, "Fails to disable PEH MSI bit.\n");
4204 		return ret;
4205 	}
4206 
4207 	ret = qm_master_ooo_check(qm);
4208 	if (ret)
4209 		return ret;
4210 
4211 	if (qm->err_ini->close_sva_prefetch)
4212 		qm->err_ini->close_sva_prefetch(qm);
4213 
4214 	ret = qm_set_pf_mse(qm, false);
4215 	if (ret)
4216 		pci_err(pdev, "Fails to disable pf MSE bit.\n");
4217 
4218 	return ret;
4219 }
4220 
4221 static int qm_reset_device(struct hisi_qm *qm)
4222 {
4223 	struct pci_dev *pdev = qm->pdev;
4224 
4225 	/* The reset related sub-control registers are not in PCI BAR */
4226 	if (ACPI_HANDLE(&pdev->dev)) {
4227 		unsigned long long value = 0;
4228 		acpi_status s;
4229 
4230 		s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev),
4231 					  qm->err_info.acpi_rst,
4232 					  NULL, &value);
4233 		if (ACPI_FAILURE(s)) {
4234 			pci_err(pdev, "NO controller reset method!\n");
4235 			return -EIO;
4236 		}
4237 
4238 		if (value) {
4239 			pci_err(pdev, "Reset step %llu failed!\n", value);
4240 			return -EIO;
4241 		}
4242 
4243 		return 0;
4244 	}
4245 
4246 	pci_err(pdev, "No reset method!\n");
4247 	return -EINVAL;
4248 }
4249 
4250 static int qm_soft_reset(struct hisi_qm *qm)
4251 {
4252 	int ret;
4253 
4254 	ret = qm_soft_reset_prepare(qm);
4255 	if (ret)
4256 		return ret;
4257 
4258 	return qm_reset_device(qm);
4259 }
4260 
4261 static int qm_vf_reset_done(struct hisi_qm *qm)
4262 {
4263 	struct hisi_qm_list *qm_list = qm->qm_list;
4264 	struct pci_dev *pdev = qm->pdev;
4265 	struct pci_dev *virtfn;
4266 	struct hisi_qm *vf_qm;
4267 	int ret = 0;
4268 
4269 	mutex_lock(&qm_list->lock);
4270 	list_for_each_entry(vf_qm, &qm_list->list, list) {
4271 		virtfn = vf_qm->pdev;
4272 		if (virtfn == pdev)
4273 			continue;
4274 
4275 		if (pci_physfn(virtfn) == pdev) {
4276 			/* enable VFs PCIE BAR configuration */
4277 			pci_restore_state(virtfn);
4278 
4279 			ret = qm_restart(vf_qm);
4280 			if (ret)
4281 				goto restart_fail;
4282 		}
4283 	}
4284 
4285 restart_fail:
4286 	mutex_unlock(&qm_list->lock);
4287 	return ret;
4288 }
4289 
4290 static int qm_try_start_vfs(struct hisi_qm *qm, enum qm_mb_cmd cmd)
4291 {
4292 	struct pci_dev *pdev = qm->pdev;
4293 	int ret;
4294 
4295 	if (!qm->vfs_num)
4296 		return 0;
4297 
4298 	ret = qm_vf_q_assign(qm, qm->vfs_num);
4299 	if (ret) {
4300 		pci_err(pdev, "failed to assign VFs, ret = %d.\n", ret);
4301 		return ret;
4302 	}
4303 
4304 	/* Kunpeng930 supports to notify VFs to start after PF reset. */
4305 	if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) {
4306 		ret = qm_ping_all_vfs(qm, cmd);
4307 		if (ret)
4308 			pci_warn(pdev, "failed to send cmd to all VFs after PF reset!\n");
4309 	} else {
4310 		ret = qm_vf_reset_done(qm);
4311 		if (ret)
4312 			pci_warn(pdev, "failed to start vfs, ret = %d.\n", ret);
4313 	}
4314 
4315 	return ret;
4316 }
4317 
4318 static int qm_dev_hw_init(struct hisi_qm *qm)
4319 {
4320 	return qm->err_ini->hw_init(qm);
4321 }
4322 
4323 static void qm_restart_prepare(struct hisi_qm *qm)
4324 {
4325 	u32 value;
4326 
4327 	if (qm->err_ini->open_sva_prefetch)
4328 		qm->err_ini->open_sva_prefetch(qm);
4329 
4330 	if (qm->ver >= QM_HW_V3)
4331 		return;
4332 
4333 	if (!qm->err_status.is_qm_ecc_mbit &&
4334 	    !qm->err_status.is_dev_ecc_mbit)
4335 		return;
4336 
4337 	/* temporarily close the OOO port used for PEH to write out MSI */
4338 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4339 	writel(value & ~qm->err_info.msi_wr_port,
4340 	       qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4341 
4342 	/* clear dev ecc 2bit error source if having */
4343 	value = qm_get_dev_err_status(qm) & qm->err_info.ecc_2bits_mask;
4344 	if (value && qm->err_ini->clear_dev_hw_err_status)
4345 		qm->err_ini->clear_dev_hw_err_status(qm, value);
4346 
4347 	/* clear QM ecc mbit error source */
4348 	writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE);
4349 
4350 	/* clear AM Reorder Buffer ecc mbit source */
4351 	writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS);
4352 }
4353 
4354 static void qm_restart_done(struct hisi_qm *qm)
4355 {
4356 	u32 value;
4357 
4358 	if (qm->ver >= QM_HW_V3)
4359 		goto clear_flags;
4360 
4361 	if (!qm->err_status.is_qm_ecc_mbit &&
4362 	    !qm->err_status.is_dev_ecc_mbit)
4363 		return;
4364 
4365 	/* open the OOO port for PEH to write out MSI */
4366 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4367 	value |= qm->err_info.msi_wr_port;
4368 	writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4369 
4370 clear_flags:
4371 	qm->err_status.is_qm_ecc_mbit = false;
4372 	qm->err_status.is_dev_ecc_mbit = false;
4373 }
4374 
4375 static int qm_controller_reset_done(struct hisi_qm *qm)
4376 {
4377 	struct pci_dev *pdev = qm->pdev;
4378 	int ret;
4379 
4380 	ret = qm->ops->set_msi(qm, true);
4381 	if (ret) {
4382 		pci_err(pdev, "Fails to enable PEH MSI bit!\n");
4383 		return ret;
4384 	}
4385 
4386 	ret = qm_set_pf_mse(qm, true);
4387 	if (ret) {
4388 		pci_err(pdev, "Fails to enable pf MSE bit!\n");
4389 		return ret;
4390 	}
4391 
4392 	if (qm->vfs_num) {
4393 		ret = qm_set_vf_mse(qm, true);
4394 		if (ret) {
4395 			pci_err(pdev, "Fails to enable vf MSE bit!\n");
4396 			return ret;
4397 		}
4398 	}
4399 
4400 	ret = qm_dev_hw_init(qm);
4401 	if (ret) {
4402 		pci_err(pdev, "Failed to init device\n");
4403 		return ret;
4404 	}
4405 
4406 	qm_restart_prepare(qm);
4407 	hisi_qm_dev_err_init(qm);
4408 	if (qm->err_ini->open_axi_master_ooo)
4409 		qm->err_ini->open_axi_master_ooo(qm);
4410 
4411 	ret = qm_dev_mem_reset(qm);
4412 	if (ret) {
4413 		pci_err(pdev, "failed to reset device memory\n");
4414 		return ret;
4415 	}
4416 
4417 	ret = qm_restart(qm);
4418 	if (ret) {
4419 		pci_err(pdev, "Failed to start QM!\n");
4420 		return ret;
4421 	}
4422 
4423 	ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE);
4424 	if (ret)
4425 		pci_err(pdev, "failed to start vfs by pf in soft reset.\n");
4426 
4427 	ret = qm_wait_vf_prepare_finish(qm);
4428 	if (ret)
4429 		pci_err(pdev, "failed to start by vfs in soft reset!\n");
4430 
4431 	qm_cmd_init(qm);
4432 	qm_restart_done(qm);
4433 
4434 	qm_reset_bit_clear(qm);
4435 
4436 	return 0;
4437 }
4438 
4439 static int qm_controller_reset(struct hisi_qm *qm)
4440 {
4441 	struct pci_dev *pdev = qm->pdev;
4442 	int ret;
4443 
4444 	pci_info(pdev, "Controller resetting...\n");
4445 
4446 	ret = qm_controller_reset_prepare(qm);
4447 	if (ret) {
4448 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4449 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4450 		clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4451 		return ret;
4452 	}
4453 
4454 	hisi_qm_show_last_dfx_regs(qm);
4455 	if (qm->err_ini->show_last_dfx_regs)
4456 		qm->err_ini->show_last_dfx_regs(qm);
4457 
4458 	ret = qm_soft_reset(qm);
4459 	if (ret)
4460 		goto err_reset;
4461 
4462 	ret = qm_controller_reset_done(qm);
4463 	if (ret)
4464 		goto err_reset;
4465 
4466 	pci_info(pdev, "Controller reset complete\n");
4467 
4468 	return 0;
4469 
4470 err_reset:
4471 	pci_err(pdev, "Controller reset failed (%d)\n", ret);
4472 	qm_reset_bit_clear(qm);
4473 
4474 	/* if resetting fails, isolate the device */
4475 	if (qm->use_sva)
4476 		qm->isolate_data.is_isolate = true;
4477 	return ret;
4478 }
4479 
4480 /**
4481  * hisi_qm_dev_slot_reset() - slot reset
4482  * @pdev: the PCIe device
4483  *
4484  * This function offers QM relate PCIe device reset interface. Drivers which
4485  * use QM can use this function as slot_reset in its struct pci_error_handlers.
4486  */
4487 pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev)
4488 {
4489 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4490 	int ret;
4491 
4492 	if (pdev->is_virtfn)
4493 		return PCI_ERS_RESULT_RECOVERED;
4494 
4495 	/* reset pcie device controller */
4496 	ret = qm_controller_reset(qm);
4497 	if (ret) {
4498 		pci_err(pdev, "Controller reset failed (%d)\n", ret);
4499 		return PCI_ERS_RESULT_DISCONNECT;
4500 	}
4501 
4502 	return PCI_ERS_RESULT_RECOVERED;
4503 }
4504 EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset);
4505 
4506 void hisi_qm_reset_prepare(struct pci_dev *pdev)
4507 {
4508 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
4509 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4510 	u32 delay = 0;
4511 	int ret;
4512 
4513 	hisi_qm_dev_err_uninit(pf_qm);
4514 
4515 	/*
4516 	 * Check whether there is an ECC mbit error, If it occurs, need to
4517 	 * wait for soft reset to fix it.
4518 	 */
4519 	while (qm_check_dev_error(pf_qm)) {
4520 		msleep(++delay);
4521 		if (delay > QM_RESET_WAIT_TIMEOUT)
4522 			return;
4523 	}
4524 
4525 	ret = qm_reset_prepare_ready(qm);
4526 	if (ret) {
4527 		pci_err(pdev, "FLR not ready!\n");
4528 		return;
4529 	}
4530 
4531 	/* PF obtains the information of VF by querying the register. */
4532 	if (qm->fun_type == QM_HW_PF)
4533 		qm_cmd_uninit(qm);
4534 
4535 	ret = qm_try_stop_vfs(qm, QM_PF_FLR_PREPARE, QM_DOWN);
4536 	if (ret)
4537 		pci_err(pdev, "failed to stop vfs by pf in FLR.\n");
4538 
4539 	ret = hisi_qm_stop(qm, QM_DOWN);
4540 	if (ret) {
4541 		pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret);
4542 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4543 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4544 		return;
4545 	}
4546 
4547 	ret = qm_wait_vf_prepare_finish(qm);
4548 	if (ret)
4549 		pci_err(pdev, "failed to stop by vfs in FLR!\n");
4550 
4551 	pci_info(pdev, "FLR resetting...\n");
4552 }
4553 EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare);
4554 
4555 static bool qm_flr_reset_complete(struct pci_dev *pdev)
4556 {
4557 	struct pci_dev *pf_pdev = pci_physfn(pdev);
4558 	struct hisi_qm *qm = pci_get_drvdata(pf_pdev);
4559 	u32 id;
4560 
4561 	pci_read_config_dword(qm->pdev, PCI_COMMAND, &id);
4562 	if (id == QM_PCI_COMMAND_INVALID) {
4563 		pci_err(pdev, "Device can not be used!\n");
4564 		return false;
4565 	}
4566 
4567 	return true;
4568 }
4569 
4570 void hisi_qm_reset_done(struct pci_dev *pdev)
4571 {
4572 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
4573 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4574 	int ret;
4575 
4576 	if (qm->fun_type == QM_HW_PF) {
4577 		ret = qm_dev_hw_init(qm);
4578 		if (ret) {
4579 			pci_err(pdev, "Failed to init PF, ret = %d.\n", ret);
4580 			goto flr_done;
4581 		}
4582 	}
4583 
4584 	hisi_qm_dev_err_init(pf_qm);
4585 
4586 	ret = qm_restart(qm);
4587 	if (ret) {
4588 		pci_err(pdev, "Failed to start QM, ret = %d.\n", ret);
4589 		goto flr_done;
4590 	}
4591 
4592 	ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE);
4593 	if (ret)
4594 		pci_err(pdev, "failed to start vfs by pf in FLR.\n");
4595 
4596 	ret = qm_wait_vf_prepare_finish(qm);
4597 	if (ret)
4598 		pci_err(pdev, "failed to start by vfs in FLR!\n");
4599 
4600 flr_done:
4601 	if (qm->fun_type == QM_HW_PF)
4602 		qm_cmd_init(qm);
4603 
4604 	if (qm_flr_reset_complete(pdev))
4605 		pci_info(pdev, "FLR reset complete\n");
4606 
4607 	qm_reset_bit_clear(qm);
4608 }
4609 EXPORT_SYMBOL_GPL(hisi_qm_reset_done);
4610 
4611 static irqreturn_t qm_abnormal_irq(int irq, void *data)
4612 {
4613 	struct hisi_qm *qm = data;
4614 	enum acc_err_result ret;
4615 
4616 	atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt);
4617 	ret = qm_process_dev_error(qm);
4618 	if (ret == ACC_ERR_NEED_RESET &&
4619 	    !test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl) &&
4620 	    !test_and_set_bit(QM_RST_SCHED, &qm->misc_ctl))
4621 		schedule_work(&qm->rst_work);
4622 
4623 	return IRQ_HANDLED;
4624 }
4625 
4626 /**
4627  * hisi_qm_dev_shutdown() - Shutdown device.
4628  * @pdev: The device will be shutdown.
4629  *
4630  * This function will stop qm when OS shutdown or rebooting.
4631  */
4632 void hisi_qm_dev_shutdown(struct pci_dev *pdev)
4633 {
4634 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4635 	int ret;
4636 
4637 	ret = hisi_qm_stop(qm, QM_DOWN);
4638 	if (ret)
4639 		dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n");
4640 
4641 	hisi_qm_cache_wb(qm);
4642 }
4643 EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown);
4644 
4645 static void hisi_qm_controller_reset(struct work_struct *rst_work)
4646 {
4647 	struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work);
4648 	int ret;
4649 
4650 	ret = qm_pm_get_sync(qm);
4651 	if (ret) {
4652 		clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4653 		return;
4654 	}
4655 
4656 	/* reset pcie device controller */
4657 	ret = qm_controller_reset(qm);
4658 	if (ret)
4659 		dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret);
4660 
4661 	qm_pm_put_sync(qm);
4662 }
4663 
4664 static void qm_pf_reset_vf_prepare(struct hisi_qm *qm,
4665 				   enum qm_stop_reason stop_reason)
4666 {
4667 	enum qm_mb_cmd cmd = QM_VF_PREPARE_DONE;
4668 	struct pci_dev *pdev = qm->pdev;
4669 	int ret;
4670 
4671 	ret = qm_reset_prepare_ready(qm);
4672 	if (ret) {
4673 		dev_err(&pdev->dev, "reset prepare not ready!\n");
4674 		atomic_set(&qm->status.flags, QM_STOP);
4675 		cmd = QM_VF_PREPARE_FAIL;
4676 		goto err_prepare;
4677 	}
4678 
4679 	ret = hisi_qm_stop(qm, stop_reason);
4680 	if (ret) {
4681 		dev_err(&pdev->dev, "failed to stop QM, ret = %d.\n", ret);
4682 		atomic_set(&qm->status.flags, QM_STOP);
4683 		cmd = QM_VF_PREPARE_FAIL;
4684 		goto err_prepare;
4685 	} else {
4686 		goto out;
4687 	}
4688 
4689 err_prepare:
4690 	hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4691 	hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4692 out:
4693 	pci_save_state(pdev);
4694 	ret = qm_ping_pf(qm, cmd);
4695 	if (ret)
4696 		dev_warn(&pdev->dev, "PF responds timeout in reset prepare!\n");
4697 }
4698 
4699 static void qm_pf_reset_vf_done(struct hisi_qm *qm)
4700 {
4701 	enum qm_mb_cmd cmd = QM_VF_START_DONE;
4702 	struct pci_dev *pdev = qm->pdev;
4703 	int ret;
4704 
4705 	pci_restore_state(pdev);
4706 	ret = hisi_qm_start(qm);
4707 	if (ret) {
4708 		dev_err(&pdev->dev, "failed to start QM, ret = %d.\n", ret);
4709 		cmd = QM_VF_START_FAIL;
4710 	}
4711 
4712 	qm_cmd_init(qm);
4713 	ret = qm_ping_pf(qm, cmd);
4714 	if (ret)
4715 		dev_warn(&pdev->dev, "PF responds timeout in reset done!\n");
4716 
4717 	qm_reset_bit_clear(qm);
4718 }
4719 
4720 static int qm_wait_pf_reset_finish(struct hisi_qm *qm)
4721 {
4722 	struct device *dev = &qm->pdev->dev;
4723 	u32 val, cmd;
4724 	u64 msg;
4725 	int ret;
4726 
4727 	/* Wait for reset to finish */
4728 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_IFC_INT_SOURCE_V, val,
4729 					 val == BIT(0), QM_VF_RESET_WAIT_US,
4730 					 QM_VF_RESET_WAIT_TIMEOUT_US);
4731 	/* hardware completion status should be available by this time */
4732 	if (ret) {
4733 		dev_err(dev, "couldn't get reset done status from PF, timeout!\n");
4734 		return -ETIMEDOUT;
4735 	}
4736 
4737 	/*
4738 	 * Whether message is got successfully,
4739 	 * VF needs to ack PF by clearing the interrupt.
4740 	 */
4741 	ret = qm_get_mb_cmd(qm, &msg, 0);
4742 	qm_clear_cmd_interrupt(qm, 0);
4743 	if (ret) {
4744 		dev_err(dev, "failed to get msg from PF in reset done!\n");
4745 		return ret;
4746 	}
4747 
4748 	cmd = msg & QM_MB_CMD_DATA_MASK;
4749 	if (cmd != QM_PF_RESET_DONE) {
4750 		dev_err(dev, "the cmd(%u) is not reset done!\n", cmd);
4751 		ret = -EINVAL;
4752 	}
4753 
4754 	return ret;
4755 }
4756 
4757 static void qm_pf_reset_vf_process(struct hisi_qm *qm,
4758 				   enum qm_stop_reason stop_reason)
4759 {
4760 	struct device *dev = &qm->pdev->dev;
4761 	int ret;
4762 
4763 	dev_info(dev, "device reset start...\n");
4764 
4765 	/* The message is obtained by querying the register during resetting */
4766 	qm_cmd_uninit(qm);
4767 	qm_pf_reset_vf_prepare(qm, stop_reason);
4768 
4769 	ret = qm_wait_pf_reset_finish(qm);
4770 	if (ret)
4771 		goto err_get_status;
4772 
4773 	qm_pf_reset_vf_done(qm);
4774 
4775 	dev_info(dev, "device reset done.\n");
4776 
4777 	return;
4778 
4779 err_get_status:
4780 	qm_cmd_init(qm);
4781 	qm_reset_bit_clear(qm);
4782 }
4783 
4784 static void qm_handle_cmd_msg(struct hisi_qm *qm, u32 fun_num)
4785 {
4786 	struct device *dev = &qm->pdev->dev;
4787 	u64 msg;
4788 	u32 cmd;
4789 	int ret;
4790 
4791 	/*
4792 	 * Get the msg from source by sending mailbox. Whether message is got
4793 	 * successfully, destination needs to ack source by clearing the interrupt.
4794 	 */
4795 	ret = qm_get_mb_cmd(qm, &msg, fun_num);
4796 	qm_clear_cmd_interrupt(qm, BIT(fun_num));
4797 	if (ret) {
4798 		dev_err(dev, "failed to get msg from source!\n");
4799 		return;
4800 	}
4801 
4802 	cmd = msg & QM_MB_CMD_DATA_MASK;
4803 	switch (cmd) {
4804 	case QM_PF_FLR_PREPARE:
4805 		qm_pf_reset_vf_process(qm, QM_DOWN);
4806 		break;
4807 	case QM_PF_SRST_PREPARE:
4808 		qm_pf_reset_vf_process(qm, QM_SOFT_RESET);
4809 		break;
4810 	case QM_VF_GET_QOS:
4811 		qm_vf_get_qos(qm, fun_num);
4812 		break;
4813 	case QM_PF_SET_QOS:
4814 		qm->mb_qos = msg >> QM_MB_CMD_DATA_SHIFT;
4815 		break;
4816 	default:
4817 		dev_err(dev, "unsupported cmd %u sent by function(%u)!\n", cmd, fun_num);
4818 		break;
4819 	}
4820 }
4821 
4822 static void qm_cmd_process(struct work_struct *cmd_process)
4823 {
4824 	struct hisi_qm *qm = container_of(cmd_process,
4825 					struct hisi_qm, cmd_process);
4826 	u32 vfs_num = qm->vfs_num;
4827 	u64 val;
4828 	u32 i;
4829 
4830 	if (qm->fun_type == QM_HW_PF) {
4831 		val = readq(qm->io_base + QM_IFC_INT_SOURCE_P);
4832 		if (!val)
4833 			return;
4834 
4835 		for (i = 1; i <= vfs_num; i++) {
4836 			if (val & BIT(i))
4837 				qm_handle_cmd_msg(qm, i);
4838 		}
4839 
4840 		return;
4841 	}
4842 
4843 	qm_handle_cmd_msg(qm, 0);
4844 }
4845 
4846 /**
4847  * hisi_qm_alg_register() - Register alg to crypto.
4848  * @qm: The qm needs add.
4849  * @qm_list: The qm list.
4850  * @guard: Guard of qp_num.
4851  *
4852  * Register algorithm to crypto when the function is satisfy guard.
4853  */
4854 int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list, int guard)
4855 {
4856 	struct device *dev = &qm->pdev->dev;
4857 
4858 	if (qm->ver <= QM_HW_V2 && qm->use_sva) {
4859 		dev_info(dev, "HW V2 not both use uacce sva mode and hardware crypto algs.\n");
4860 		return 0;
4861 	}
4862 
4863 	if (qm->qp_num < guard) {
4864 		dev_info(dev, "qp_num is less than task need.\n");
4865 		return 0;
4866 	}
4867 
4868 	return qm_list->register_to_crypto(qm);
4869 }
4870 EXPORT_SYMBOL_GPL(hisi_qm_alg_register);
4871 
4872 /**
4873  * hisi_qm_alg_unregister() - Unregister alg from crypto.
4874  * @qm: The qm needs delete.
4875  * @qm_list: The qm list.
4876  * @guard: Guard of qp_num.
4877  *
4878  * Unregister algorithm from crypto when the last function is satisfy guard.
4879  */
4880 void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list, int guard)
4881 {
4882 	if (qm->ver <= QM_HW_V2 && qm->use_sva)
4883 		return;
4884 
4885 	if (qm->qp_num < guard)
4886 		return;
4887 
4888 	qm_list->unregister_from_crypto(qm);
4889 }
4890 EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister);
4891 
4892 static void qm_unregister_abnormal_irq(struct hisi_qm *qm)
4893 {
4894 	struct pci_dev *pdev = qm->pdev;
4895 	u32 irq_vector, val;
4896 
4897 	if (qm->fun_type == QM_HW_VF)
4898 		return;
4899 
4900 	val = qm->cap_tables.qm_cap_table[QM_ABN_IRQ_TYPE_CAP_IDX].cap_val;
4901 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK))
4902 		return;
4903 
4904 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4905 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
4906 }
4907 
4908 static int qm_register_abnormal_irq(struct hisi_qm *qm)
4909 {
4910 	struct pci_dev *pdev = qm->pdev;
4911 	u32 irq_vector, val;
4912 	int ret;
4913 
4914 	if (qm->fun_type == QM_HW_VF)
4915 		return 0;
4916 
4917 	val = qm->cap_tables.qm_cap_table[QM_ABN_IRQ_TYPE_CAP_IDX].cap_val;
4918 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK))
4919 		return 0;
4920 
4921 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4922 	ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_abnormal_irq, 0, qm->dev_name, qm);
4923 	if (ret)
4924 		dev_err(&qm->pdev->dev, "failed to request abnormal irq, ret = %d", ret);
4925 
4926 	return ret;
4927 }
4928 
4929 static void qm_unregister_mb_cmd_irq(struct hisi_qm *qm)
4930 {
4931 	struct pci_dev *pdev = qm->pdev;
4932 	u32 irq_vector, val;
4933 
4934 	val = qm->cap_tables.qm_cap_table[QM_PF2VF_IRQ_TYPE_CAP_IDX].cap_val;
4935 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4936 		return;
4937 
4938 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4939 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
4940 }
4941 
4942 static int qm_register_mb_cmd_irq(struct hisi_qm *qm)
4943 {
4944 	struct pci_dev *pdev = qm->pdev;
4945 	u32 irq_vector, val;
4946 	int ret;
4947 
4948 	val = qm->cap_tables.qm_cap_table[QM_PF2VF_IRQ_TYPE_CAP_IDX].cap_val;
4949 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4950 		return 0;
4951 
4952 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4953 	ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_mb_cmd_irq, 0, qm->dev_name, qm);
4954 	if (ret)
4955 		dev_err(&pdev->dev, "failed to request function communication irq, ret = %d", ret);
4956 
4957 	return ret;
4958 }
4959 
4960 static void qm_unregister_aeq_irq(struct hisi_qm *qm)
4961 {
4962 	struct pci_dev *pdev = qm->pdev;
4963 	u32 irq_vector, val;
4964 
4965 	val = qm->cap_tables.qm_cap_table[QM_AEQ_IRQ_TYPE_CAP_IDX].cap_val;
4966 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4967 		return;
4968 
4969 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4970 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
4971 }
4972 
4973 static int qm_register_aeq_irq(struct hisi_qm *qm)
4974 {
4975 	struct pci_dev *pdev = qm->pdev;
4976 	u32 irq_vector, val;
4977 	int ret;
4978 
4979 	val = qm->cap_tables.qm_cap_table[QM_AEQ_IRQ_TYPE_CAP_IDX].cap_val;
4980 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4981 		return 0;
4982 
4983 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4984 	ret = request_threaded_irq(pci_irq_vector(pdev, irq_vector), NULL,
4985 						   qm_aeq_thread, IRQF_ONESHOT, qm->dev_name, qm);
4986 	if (ret)
4987 		dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret);
4988 
4989 	return ret;
4990 }
4991 
4992 static void qm_unregister_eq_irq(struct hisi_qm *qm)
4993 {
4994 	struct pci_dev *pdev = qm->pdev;
4995 	u32 irq_vector, val;
4996 
4997 	val = qm->cap_tables.qm_cap_table[QM_EQ_IRQ_TYPE_CAP_IDX].cap_val;
4998 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4999 		return;
5000 
5001 	irq_vector = val & QM_IRQ_VECTOR_MASK;
5002 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
5003 }
5004 
5005 static int qm_register_eq_irq(struct hisi_qm *qm)
5006 {
5007 	struct pci_dev *pdev = qm->pdev;
5008 	u32 irq_vector, val;
5009 	int ret;
5010 
5011 	val = qm->cap_tables.qm_cap_table[QM_EQ_IRQ_TYPE_CAP_IDX].cap_val;
5012 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
5013 		return 0;
5014 
5015 	irq_vector = val & QM_IRQ_VECTOR_MASK;
5016 	ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_eq_irq, 0, qm->dev_name, qm);
5017 	if (ret)
5018 		dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret);
5019 
5020 	return ret;
5021 }
5022 
5023 static void qm_irqs_unregister(struct hisi_qm *qm)
5024 {
5025 	qm_unregister_mb_cmd_irq(qm);
5026 	qm_unregister_abnormal_irq(qm);
5027 	qm_unregister_aeq_irq(qm);
5028 	qm_unregister_eq_irq(qm);
5029 }
5030 
5031 static int qm_irqs_register(struct hisi_qm *qm)
5032 {
5033 	int ret;
5034 
5035 	ret = qm_register_eq_irq(qm);
5036 	if (ret)
5037 		return ret;
5038 
5039 	ret = qm_register_aeq_irq(qm);
5040 	if (ret)
5041 		goto free_eq_irq;
5042 
5043 	ret = qm_register_abnormal_irq(qm);
5044 	if (ret)
5045 		goto free_aeq_irq;
5046 
5047 	ret = qm_register_mb_cmd_irq(qm);
5048 	if (ret)
5049 		goto free_abnormal_irq;
5050 
5051 	return 0;
5052 
5053 free_abnormal_irq:
5054 	qm_unregister_abnormal_irq(qm);
5055 free_aeq_irq:
5056 	qm_unregister_aeq_irq(qm);
5057 free_eq_irq:
5058 	qm_unregister_eq_irq(qm);
5059 	return ret;
5060 }
5061 
5062 static int qm_get_qp_num(struct hisi_qm *qm)
5063 {
5064 	struct device *dev = &qm->pdev->dev;
5065 	bool is_db_isolation;
5066 
5067 	/* VF's qp_num assigned by PF in v2, and VF can get qp_num by vft. */
5068 	if (qm->fun_type == QM_HW_VF) {
5069 		if (qm->ver != QM_HW_V1)
5070 			/* v2 starts to support get vft by mailbox */
5071 			return hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num);
5072 
5073 		return 0;
5074 	}
5075 
5076 	is_db_isolation = test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps);
5077 	qm->ctrl_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, QM_TOTAL_QP_NUM_CAP, true);
5078 	qm->max_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info,
5079 					     QM_FUNC_MAX_QP_CAP, is_db_isolation);
5080 
5081 	if (qm->qp_num <= qm->max_qp_num)
5082 		return 0;
5083 
5084 	if (test_bit(QM_MODULE_PARAM, &qm->misc_ctl)) {
5085 		/* Check whether the set qp number is valid */
5086 		dev_err(dev, "qp num(%u) is more than max qp num(%u)!\n",
5087 			qm->qp_num, qm->max_qp_num);
5088 		return -EINVAL;
5089 	}
5090 
5091 	dev_info(dev, "Default qp num(%u) is too big, reset it to Function's max qp num(%u)!\n",
5092 		 qm->qp_num, qm->max_qp_num);
5093 	qm->qp_num = qm->max_qp_num;
5094 	qm->debug.curr_qm_qp_num = qm->qp_num;
5095 
5096 	return 0;
5097 }
5098 
5099 static int qm_pre_store_irq_type_caps(struct hisi_qm *qm)
5100 {
5101 	struct hisi_qm_cap_record *qm_cap;
5102 	struct pci_dev *pdev = qm->pdev;
5103 	size_t i, size;
5104 
5105 	size = ARRAY_SIZE(qm_pre_store_caps);
5106 	qm_cap = devm_kzalloc(&pdev->dev, sizeof(*qm_cap) * size, GFP_KERNEL);
5107 	if (!qm_cap)
5108 		return -ENOMEM;
5109 
5110 	for (i = 0; i < size; i++) {
5111 		qm_cap[i].type = qm_pre_store_caps[i];
5112 		qm_cap[i].cap_val = hisi_qm_get_hw_info(qm, qm_basic_info,
5113 							qm_pre_store_caps[i], qm->cap_ver);
5114 	}
5115 
5116 	qm->cap_tables.qm_cap_table = qm_cap;
5117 
5118 	return 0;
5119 }
5120 
5121 static int qm_get_hw_caps(struct hisi_qm *qm)
5122 {
5123 	const struct hisi_qm_cap_info *cap_info = qm->fun_type == QM_HW_PF ?
5124 						  qm_cap_info_pf : qm_cap_info_vf;
5125 	u32 size = qm->fun_type == QM_HW_PF ? ARRAY_SIZE(qm_cap_info_pf) :
5126 				   ARRAY_SIZE(qm_cap_info_vf);
5127 	u32 val, i;
5128 
5129 	/* Doorbell isolate register is a independent register. */
5130 	val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, QM_SUPPORT_DB_ISOLATION, true);
5131 	if (val)
5132 		set_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps);
5133 
5134 	if (qm->ver >= QM_HW_V3) {
5135 		val = readl(qm->io_base + QM_FUNC_CAPS_REG);
5136 		qm->cap_ver = val & QM_CAPBILITY_VERSION;
5137 	}
5138 
5139 	/* Get PF/VF common capbility */
5140 	for (i = 1; i < ARRAY_SIZE(qm_cap_info_comm); i++) {
5141 		val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, i, qm->cap_ver);
5142 		if (val)
5143 			set_bit(qm_cap_info_comm[i].type, &qm->caps);
5144 	}
5145 
5146 	/* Get PF/VF different capbility */
5147 	for (i = 0; i < size; i++) {
5148 		val = hisi_qm_get_hw_info(qm, cap_info, i, qm->cap_ver);
5149 		if (val)
5150 			set_bit(cap_info[i].type, &qm->caps);
5151 	}
5152 
5153 	/* Fetch and save the value of irq type related capability registers */
5154 	return qm_pre_store_irq_type_caps(qm);
5155 }
5156 
5157 static int qm_get_pci_res(struct hisi_qm *qm)
5158 {
5159 	struct pci_dev *pdev = qm->pdev;
5160 	struct device *dev = &pdev->dev;
5161 	int ret;
5162 
5163 	ret = pci_request_mem_regions(pdev, qm->dev_name);
5164 	if (ret < 0) {
5165 		dev_err(dev, "Failed to request mem regions!\n");
5166 		return ret;
5167 	}
5168 
5169 	qm->phys_base = pci_resource_start(pdev, PCI_BAR_2);
5170 	qm->io_base = ioremap(qm->phys_base, pci_resource_len(pdev, PCI_BAR_2));
5171 	if (!qm->io_base) {
5172 		ret = -EIO;
5173 		goto err_request_mem_regions;
5174 	}
5175 
5176 	ret = qm_get_hw_caps(qm);
5177 	if (ret)
5178 		goto err_ioremap;
5179 
5180 	if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) {
5181 		qm->db_interval = QM_QP_DB_INTERVAL;
5182 		qm->db_phys_base = pci_resource_start(pdev, PCI_BAR_4);
5183 		qm->db_io_base = ioremap(qm->db_phys_base,
5184 					 pci_resource_len(pdev, PCI_BAR_4));
5185 		if (!qm->db_io_base) {
5186 			ret = -EIO;
5187 			goto err_ioremap;
5188 		}
5189 	} else {
5190 		qm->db_phys_base = qm->phys_base;
5191 		qm->db_io_base = qm->io_base;
5192 		qm->db_interval = 0;
5193 	}
5194 
5195 	ret = qm_get_qp_num(qm);
5196 	if (ret)
5197 		goto err_db_ioremap;
5198 
5199 	return 0;
5200 
5201 err_db_ioremap:
5202 	if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
5203 		iounmap(qm->db_io_base);
5204 err_ioremap:
5205 	iounmap(qm->io_base);
5206 err_request_mem_regions:
5207 	pci_release_mem_regions(pdev);
5208 	return ret;
5209 }
5210 
5211 static int qm_clear_device(struct hisi_qm *qm)
5212 {
5213 	acpi_handle handle = ACPI_HANDLE(&qm->pdev->dev);
5214 	int ret;
5215 
5216 	if (qm->fun_type == QM_HW_VF)
5217 		return 0;
5218 
5219 	/* Device does not support reset, return */
5220 	if (!qm->err_ini->err_info_init)
5221 		return 0;
5222 	qm->err_ini->err_info_init(qm);
5223 
5224 	if (!handle)
5225 		return 0;
5226 
5227 	/* No reset method, return */
5228 	if (!acpi_has_method(handle, qm->err_info.acpi_rst))
5229 		return 0;
5230 
5231 	ret = qm_master_ooo_check(qm);
5232 	if (ret) {
5233 		writel(0x0, qm->io_base + ACC_MASTER_GLOBAL_CTRL);
5234 		return ret;
5235 	}
5236 
5237 	return qm_reset_device(qm);
5238 }
5239 
5240 static int hisi_qm_pci_init(struct hisi_qm *qm)
5241 {
5242 	struct pci_dev *pdev = qm->pdev;
5243 	struct device *dev = &pdev->dev;
5244 	unsigned int num_vec;
5245 	int ret;
5246 
5247 	ret = pci_enable_device_mem(pdev);
5248 	if (ret < 0) {
5249 		dev_err(dev, "Failed to enable device mem!\n");
5250 		return ret;
5251 	}
5252 
5253 	ret = qm_get_pci_res(qm);
5254 	if (ret)
5255 		goto err_disable_pcidev;
5256 
5257 	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
5258 	if (ret < 0)
5259 		goto err_get_pci_res;
5260 	pci_set_master(pdev);
5261 
5262 	num_vec = qm_get_irq_num(qm);
5263 	ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI);
5264 	if (ret < 0) {
5265 		dev_err(dev, "Failed to enable MSI vectors!\n");
5266 		goto err_get_pci_res;
5267 	}
5268 
5269 	ret = qm_clear_device(qm);
5270 	if (ret)
5271 		goto err_free_vectors;
5272 
5273 	return 0;
5274 
5275 err_free_vectors:
5276 	pci_free_irq_vectors(pdev);
5277 err_get_pci_res:
5278 	qm_put_pci_res(qm);
5279 err_disable_pcidev:
5280 	pci_disable_device(pdev);
5281 	return ret;
5282 }
5283 
5284 static int hisi_qm_init_work(struct hisi_qm *qm)
5285 {
5286 	int i;
5287 
5288 	for (i = 0; i < qm->qp_num; i++)
5289 		INIT_WORK(&qm->poll_data[i].work, qm_work_process);
5290 
5291 	if (qm->fun_type == QM_HW_PF)
5292 		INIT_WORK(&qm->rst_work, hisi_qm_controller_reset);
5293 
5294 	if (qm->ver > QM_HW_V2)
5295 		INIT_WORK(&qm->cmd_process, qm_cmd_process);
5296 
5297 	qm->wq = alloc_workqueue("%s", WQ_HIGHPRI | WQ_MEM_RECLAIM |
5298 				 WQ_UNBOUND, num_online_cpus(),
5299 				 pci_name(qm->pdev));
5300 	if (!qm->wq) {
5301 		pci_err(qm->pdev, "failed to alloc workqueue!\n");
5302 		return -ENOMEM;
5303 	}
5304 
5305 	return 0;
5306 }
5307 
5308 static int hisi_qp_alloc_memory(struct hisi_qm *qm)
5309 {
5310 	struct device *dev = &qm->pdev->dev;
5311 	u16 sq_depth, cq_depth;
5312 	size_t qp_dma_size;
5313 	int i, ret;
5314 
5315 	qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL);
5316 	if (!qm->qp_array)
5317 		return -ENOMEM;
5318 
5319 	qm->poll_data = kcalloc(qm->qp_num, sizeof(struct hisi_qm_poll_data), GFP_KERNEL);
5320 	if (!qm->poll_data) {
5321 		kfree(qm->qp_array);
5322 		return -ENOMEM;
5323 	}
5324 
5325 	qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP);
5326 
5327 	/* one more page for device or qp statuses */
5328 	qp_dma_size = qm->sqe_size * sq_depth + sizeof(struct qm_cqe) * cq_depth;
5329 	qp_dma_size = PAGE_ALIGN(qp_dma_size) + PAGE_SIZE;
5330 	for (i = 0; i < qm->qp_num; i++) {
5331 		qm->poll_data[i].qm = qm;
5332 		ret = hisi_qp_memory_init(qm, qp_dma_size, i, sq_depth, cq_depth);
5333 		if (ret)
5334 			goto err_init_qp_mem;
5335 
5336 		dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size);
5337 	}
5338 
5339 	return 0;
5340 err_init_qp_mem:
5341 	hisi_qp_memory_uninit(qm, i);
5342 
5343 	return ret;
5344 }
5345 
5346 static int hisi_qm_alloc_rsv_buf(struct hisi_qm *qm)
5347 {
5348 	struct qm_rsv_buf *xqc_buf = &qm->xqc_buf;
5349 	struct qm_dma *xqc_dma = &xqc_buf->qcdma;
5350 	struct device *dev = &qm->pdev->dev;
5351 	size_t off = 0;
5352 
5353 #define QM_XQC_BUF_INIT(xqc_buf, type) do { \
5354 	(xqc_buf)->type = ((xqc_buf)->qcdma.va + (off)); \
5355 	(xqc_buf)->type##_dma = (xqc_buf)->qcdma.dma + (off); \
5356 	off += QMC_ALIGN(sizeof(struct qm_##type)); \
5357 } while (0)
5358 
5359 	xqc_dma->size = QMC_ALIGN(sizeof(struct qm_eqc)) +
5360 			QMC_ALIGN(sizeof(struct qm_aeqc)) +
5361 			QMC_ALIGN(sizeof(struct qm_sqc)) +
5362 			QMC_ALIGN(sizeof(struct qm_cqc));
5363 	xqc_dma->va = dma_alloc_coherent(dev, xqc_dma->size,
5364 					 &xqc_dma->dma, GFP_KERNEL);
5365 	if (!xqc_dma->va)
5366 		return -ENOMEM;
5367 
5368 	QM_XQC_BUF_INIT(xqc_buf, eqc);
5369 	QM_XQC_BUF_INIT(xqc_buf, aeqc);
5370 	QM_XQC_BUF_INIT(xqc_buf, sqc);
5371 	QM_XQC_BUF_INIT(xqc_buf, cqc);
5372 
5373 	return 0;
5374 }
5375 
5376 static int hisi_qm_memory_init(struct hisi_qm *qm)
5377 {
5378 	struct device *dev = &qm->pdev->dev;
5379 	int ret, total_func;
5380 	size_t off = 0;
5381 
5382 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) {
5383 		total_func = pci_sriov_get_totalvfs(qm->pdev) + 1;
5384 		qm->factor = kcalloc(total_func, sizeof(struct qm_shaper_factor), GFP_KERNEL);
5385 		if (!qm->factor)
5386 			return -ENOMEM;
5387 
5388 		/* Only the PF value needs to be initialized */
5389 		qm->factor[0].func_qos = QM_QOS_MAX_VAL;
5390 	}
5391 
5392 #define QM_INIT_BUF(qm, type, num) do { \
5393 	(qm)->type = ((qm)->qdma.va + (off)); \
5394 	(qm)->type##_dma = (qm)->qdma.dma + (off); \
5395 	off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \
5396 } while (0)
5397 
5398 	idr_init(&qm->qp_idr);
5399 	qm_get_xqc_depth(qm, &qm->eq_depth, &qm->aeq_depth, QM_XEQ_DEPTH_CAP);
5400 	qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * qm->eq_depth) +
5401 			QMC_ALIGN(sizeof(struct qm_aeqe) * qm->aeq_depth) +
5402 			QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) +
5403 			QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num);
5404 	qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma,
5405 					 GFP_ATOMIC);
5406 	dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size);
5407 	if (!qm->qdma.va) {
5408 		ret = -ENOMEM;
5409 		goto err_destroy_idr;
5410 	}
5411 
5412 	QM_INIT_BUF(qm, eqe, qm->eq_depth);
5413 	QM_INIT_BUF(qm, aeqe, qm->aeq_depth);
5414 	QM_INIT_BUF(qm, sqc, qm->qp_num);
5415 	QM_INIT_BUF(qm, cqc, qm->qp_num);
5416 
5417 	ret = hisi_qm_alloc_rsv_buf(qm);
5418 	if (ret)
5419 		goto err_free_qdma;
5420 
5421 	ret = hisi_qp_alloc_memory(qm);
5422 	if (ret)
5423 		goto err_free_reserve_buf;
5424 
5425 	return 0;
5426 
5427 err_free_reserve_buf:
5428 	hisi_qm_free_rsv_buf(qm);
5429 err_free_qdma:
5430 	dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma);
5431 err_destroy_idr:
5432 	idr_destroy(&qm->qp_idr);
5433 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
5434 		kfree(qm->factor);
5435 
5436 	return ret;
5437 }
5438 
5439 /**
5440  * hisi_qm_init() - Initialize configures about qm.
5441  * @qm: The qm needing init.
5442  *
5443  * This function init qm, then we can call hisi_qm_start to put qm into work.
5444  */
5445 int hisi_qm_init(struct hisi_qm *qm)
5446 {
5447 	struct pci_dev *pdev = qm->pdev;
5448 	struct device *dev = &pdev->dev;
5449 	int ret;
5450 
5451 	hisi_qm_pre_init(qm);
5452 
5453 	ret = hisi_qm_pci_init(qm);
5454 	if (ret)
5455 		return ret;
5456 
5457 	ret = qm_irqs_register(qm);
5458 	if (ret)
5459 		goto err_pci_init;
5460 
5461 	if (qm->fun_type == QM_HW_PF) {
5462 		/* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */
5463 		writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG);
5464 		qm_disable_clock_gate(qm);
5465 		ret = qm_dev_mem_reset(qm);
5466 		if (ret) {
5467 			dev_err(dev, "failed to reset device memory\n");
5468 			goto err_irq_register;
5469 		}
5470 	}
5471 
5472 	if (qm->mode == UACCE_MODE_SVA) {
5473 		ret = qm_alloc_uacce(qm);
5474 		if (ret < 0)
5475 			dev_warn(dev, "fail to alloc uacce (%d)\n", ret);
5476 	}
5477 
5478 	ret = hisi_qm_memory_init(qm);
5479 	if (ret)
5480 		goto err_alloc_uacce;
5481 
5482 	ret = hisi_qm_init_work(qm);
5483 	if (ret)
5484 		goto err_free_qm_memory;
5485 
5486 	qm_cmd_init(qm);
5487 
5488 	return 0;
5489 
5490 err_free_qm_memory:
5491 	hisi_qm_memory_uninit(qm);
5492 err_alloc_uacce:
5493 	qm_remove_uacce(qm);
5494 err_irq_register:
5495 	qm_irqs_unregister(qm);
5496 err_pci_init:
5497 	hisi_qm_pci_uninit(qm);
5498 	return ret;
5499 }
5500 EXPORT_SYMBOL_GPL(hisi_qm_init);
5501 
5502 /**
5503  * hisi_qm_get_dfx_access() - Try to get dfx access.
5504  * @qm: pointer to accelerator device.
5505  *
5506  * Try to get dfx access, then user can get message.
5507  *
5508  * If device is in suspended, return failure, otherwise
5509  * bump up the runtime PM usage counter.
5510  */
5511 int hisi_qm_get_dfx_access(struct hisi_qm *qm)
5512 {
5513 	struct device *dev = &qm->pdev->dev;
5514 
5515 	if (pm_runtime_suspended(dev)) {
5516 		dev_info(dev, "can not read/write - device in suspended.\n");
5517 		return -EAGAIN;
5518 	}
5519 
5520 	return qm_pm_get_sync(qm);
5521 }
5522 EXPORT_SYMBOL_GPL(hisi_qm_get_dfx_access);
5523 
5524 /**
5525  * hisi_qm_put_dfx_access() - Put dfx access.
5526  * @qm: pointer to accelerator device.
5527  *
5528  * Put dfx access, drop runtime PM usage counter.
5529  */
5530 void hisi_qm_put_dfx_access(struct hisi_qm *qm)
5531 {
5532 	qm_pm_put_sync(qm);
5533 }
5534 EXPORT_SYMBOL_GPL(hisi_qm_put_dfx_access);
5535 
5536 /**
5537  * hisi_qm_pm_init() - Initialize qm runtime PM.
5538  * @qm: pointer to accelerator device.
5539  *
5540  * Function that initialize qm runtime PM.
5541  */
5542 void hisi_qm_pm_init(struct hisi_qm *qm)
5543 {
5544 	struct device *dev = &qm->pdev->dev;
5545 
5546 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
5547 		return;
5548 
5549 	pm_runtime_set_autosuspend_delay(dev, QM_AUTOSUSPEND_DELAY);
5550 	pm_runtime_use_autosuspend(dev);
5551 	pm_runtime_put_noidle(dev);
5552 }
5553 EXPORT_SYMBOL_GPL(hisi_qm_pm_init);
5554 
5555 /**
5556  * hisi_qm_pm_uninit() - Uninitialize qm runtime PM.
5557  * @qm: pointer to accelerator device.
5558  *
5559  * Function that uninitialize qm runtime PM.
5560  */
5561 void hisi_qm_pm_uninit(struct hisi_qm *qm)
5562 {
5563 	struct device *dev = &qm->pdev->dev;
5564 
5565 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
5566 		return;
5567 
5568 	pm_runtime_get_noresume(dev);
5569 	pm_runtime_dont_use_autosuspend(dev);
5570 }
5571 EXPORT_SYMBOL_GPL(hisi_qm_pm_uninit);
5572 
5573 static int qm_prepare_for_suspend(struct hisi_qm *qm)
5574 {
5575 	struct pci_dev *pdev = qm->pdev;
5576 	int ret;
5577 
5578 	ret = qm->ops->set_msi(qm, false);
5579 	if (ret) {
5580 		pci_err(pdev, "failed to disable MSI before suspending!\n");
5581 		return ret;
5582 	}
5583 
5584 	ret = qm_master_ooo_check(qm);
5585 	if (ret)
5586 		return ret;
5587 
5588 	ret = qm_set_pf_mse(qm, false);
5589 	if (ret)
5590 		pci_err(pdev, "failed to disable MSE before suspending!\n");
5591 
5592 	return ret;
5593 }
5594 
5595 static int qm_rebuild_for_resume(struct hisi_qm *qm)
5596 {
5597 	struct pci_dev *pdev = qm->pdev;
5598 	int ret;
5599 
5600 	ret = qm_set_pf_mse(qm, true);
5601 	if (ret) {
5602 		pci_err(pdev, "failed to enable MSE after resuming!\n");
5603 		return ret;
5604 	}
5605 
5606 	ret = qm->ops->set_msi(qm, true);
5607 	if (ret) {
5608 		pci_err(pdev, "failed to enable MSI after resuming!\n");
5609 		return ret;
5610 	}
5611 
5612 	ret = qm_dev_hw_init(qm);
5613 	if (ret) {
5614 		pci_err(pdev, "failed to init device after resuming\n");
5615 		return ret;
5616 	}
5617 
5618 	qm_cmd_init(qm);
5619 	hisi_qm_dev_err_init(qm);
5620 	/* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */
5621 	writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG);
5622 	qm_disable_clock_gate(qm);
5623 	ret = qm_dev_mem_reset(qm);
5624 	if (ret)
5625 		pci_err(pdev, "failed to reset device memory\n");
5626 
5627 	return ret;
5628 }
5629 
5630 /**
5631  * hisi_qm_suspend() - Runtime suspend of given device.
5632  * @dev: device to suspend.
5633  *
5634  * Function that suspend the device.
5635  */
5636 int hisi_qm_suspend(struct device *dev)
5637 {
5638 	struct pci_dev *pdev = to_pci_dev(dev);
5639 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5640 	int ret;
5641 
5642 	pci_info(pdev, "entering suspended state\n");
5643 
5644 	ret = hisi_qm_stop(qm, QM_NORMAL);
5645 	if (ret) {
5646 		pci_err(pdev, "failed to stop qm(%d)\n", ret);
5647 		return ret;
5648 	}
5649 
5650 	ret = qm_prepare_for_suspend(qm);
5651 	if (ret)
5652 		pci_err(pdev, "failed to prepare suspended(%d)\n", ret);
5653 
5654 	return ret;
5655 }
5656 EXPORT_SYMBOL_GPL(hisi_qm_suspend);
5657 
5658 /**
5659  * hisi_qm_resume() - Runtime resume of given device.
5660  * @dev: device to resume.
5661  *
5662  * Function that resume the device.
5663  */
5664 int hisi_qm_resume(struct device *dev)
5665 {
5666 	struct pci_dev *pdev = to_pci_dev(dev);
5667 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5668 	int ret;
5669 
5670 	pci_info(pdev, "resuming from suspend state\n");
5671 
5672 	ret = qm_rebuild_for_resume(qm);
5673 	if (ret) {
5674 		pci_err(pdev, "failed to rebuild resume(%d)\n", ret);
5675 		return ret;
5676 	}
5677 
5678 	ret = hisi_qm_start(qm);
5679 	if (ret) {
5680 		if (qm_check_dev_error(qm)) {
5681 			pci_info(pdev, "failed to start qm due to device error, device will be reset!\n");
5682 			return 0;
5683 		}
5684 
5685 		pci_err(pdev, "failed to start qm(%d)!\n", ret);
5686 	}
5687 
5688 	return ret;
5689 }
5690 EXPORT_SYMBOL_GPL(hisi_qm_resume);
5691 
5692 MODULE_LICENSE("GPL v2");
5693 MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>");
5694 MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver");
5695