1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019 HiSilicon Limited. */ 3 #include <asm/page.h> 4 #include <linux/acpi.h> 5 #include <linux/bitmap.h> 6 #include <linux/dma-mapping.h> 7 #include <linux/idr.h> 8 #include <linux/io.h> 9 #include <linux/irqreturn.h> 10 #include <linux/log2.h> 11 #include <linux/pm_runtime.h> 12 #include <linux/seq_file.h> 13 #include <linux/slab.h> 14 #include <linux/uacce.h> 15 #include <linux/uaccess.h> 16 #include <uapi/misc/uacce/hisi_qm.h> 17 #include <linux/hisi_acc_qm.h> 18 #include "qm_common.h" 19 20 /* eq/aeq irq enable */ 21 #define QM_VF_AEQ_INT_SOURCE 0x0 22 #define QM_VF_AEQ_INT_MASK 0x4 23 #define QM_VF_EQ_INT_SOURCE 0x8 24 #define QM_VF_EQ_INT_MASK 0xc 25 26 #define QM_IRQ_VECTOR_MASK GENMASK(15, 0) 27 #define QM_IRQ_TYPE_MASK GENMASK(15, 0) 28 #define QM_IRQ_TYPE_SHIFT 16 29 #define QM_ABN_IRQ_TYPE_MASK GENMASK(7, 0) 30 31 /* mailbox */ 32 #define QM_MB_PING_ALL_VFS 0xffff 33 #define QM_MB_CMD_DATA_SHIFT 32 34 #define QM_MB_CMD_DATA_MASK GENMASK(31, 0) 35 #define QM_MB_STATUS_MASK GENMASK(12, 9) 36 37 /* sqc shift */ 38 #define QM_SQ_HOP_NUM_SHIFT 0 39 #define QM_SQ_PAGE_SIZE_SHIFT 4 40 #define QM_SQ_BUF_SIZE_SHIFT 8 41 #define QM_SQ_SQE_SIZE_SHIFT 12 42 #define QM_SQ_PRIORITY_SHIFT 0 43 #define QM_SQ_ORDERS_SHIFT 4 44 #define QM_SQ_TYPE_SHIFT 8 45 #define QM_QC_PASID_ENABLE 0x1 46 #define QM_QC_PASID_ENABLE_SHIFT 7 47 48 #define QM_SQ_TYPE_MASK GENMASK(3, 0) 49 #define QM_SQ_TAIL_IDX(sqc) ((le16_to_cpu((sqc).w11) >> 6) & 0x1) 50 51 /* cqc shift */ 52 #define QM_CQ_HOP_NUM_SHIFT 0 53 #define QM_CQ_PAGE_SIZE_SHIFT 4 54 #define QM_CQ_BUF_SIZE_SHIFT 8 55 #define QM_CQ_CQE_SIZE_SHIFT 12 56 #define QM_CQ_PHASE_SHIFT 0 57 #define QM_CQ_FLAG_SHIFT 1 58 59 #define QM_CQE_PHASE(cqe) (le16_to_cpu((cqe)->w7) & 0x1) 60 #define QM_QC_CQE_SIZE 4 61 #define QM_CQ_TAIL_IDX(cqc) ((le16_to_cpu((cqc).w11) >> 6) & 0x1) 62 63 /* eqc shift */ 64 #define QM_EQE_AEQE_SIZE (2UL << 12) 65 #define QM_EQC_PHASE_SHIFT 16 66 67 #define QM_EQE_PHASE(eqe) ((le32_to_cpu((eqe)->dw0) >> 16) & 0x1) 68 #define QM_EQE_CQN_MASK GENMASK(15, 0) 69 70 #define QM_AEQE_PHASE(aeqe) ((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1) 71 #define QM_AEQE_TYPE_SHIFT 17 72 #define QM_AEQE_TYPE_MASK 0xf 73 #define QM_AEQE_CQN_MASK GENMASK(15, 0) 74 #define QM_CQ_OVERFLOW 0 75 #define QM_EQ_OVERFLOW 1 76 #define QM_CQE_ERROR 2 77 78 #define QM_XQ_DEPTH_SHIFT 16 79 #define QM_XQ_DEPTH_MASK GENMASK(15, 0) 80 81 #define QM_DOORBELL_CMD_SQ 0 82 #define QM_DOORBELL_CMD_CQ 1 83 #define QM_DOORBELL_CMD_EQ 2 84 #define QM_DOORBELL_CMD_AEQ 3 85 86 #define QM_DOORBELL_BASE_V1 0x340 87 #define QM_DB_CMD_SHIFT_V1 16 88 #define QM_DB_INDEX_SHIFT_V1 32 89 #define QM_DB_PRIORITY_SHIFT_V1 48 90 #define QM_PAGE_SIZE 0x0034 91 #define QM_QP_DB_INTERVAL 0x10000 92 #define QM_DB_TIMEOUT_CFG 0x100074 93 #define QM_DB_TIMEOUT_SET 0x1fffff 94 95 #define QM_MEM_START_INIT 0x100040 96 #define QM_MEM_INIT_DONE 0x100044 97 #define QM_VFT_CFG_RDY 0x10006c 98 #define QM_VFT_CFG_OP_WR 0x100058 99 #define QM_VFT_CFG_TYPE 0x10005c 100 #define QM_VFT_CFG 0x100060 101 #define QM_VFT_CFG_OP_ENABLE 0x100054 102 #define QM_PM_CTRL 0x100148 103 #define QM_IDLE_DISABLE BIT(9) 104 105 #define QM_VFT_CFG_DATA_L 0x100064 106 #define QM_VFT_CFG_DATA_H 0x100068 107 #define QM_SQC_VFT_BUF_SIZE (7ULL << 8) 108 #define QM_SQC_VFT_SQC_SIZE (5ULL << 12) 109 #define QM_SQC_VFT_INDEX_NUMBER (1ULL << 16) 110 #define QM_SQC_VFT_START_SQN_SHIFT 28 111 #define QM_SQC_VFT_VALID (1ULL << 44) 112 #define QM_SQC_VFT_SQN_SHIFT 45 113 #define QM_CQC_VFT_BUF_SIZE (7ULL << 8) 114 #define QM_CQC_VFT_SQC_SIZE (5ULL << 12) 115 #define QM_CQC_VFT_INDEX_NUMBER (1ULL << 16) 116 #define QM_CQC_VFT_VALID (1ULL << 28) 117 118 #define QM_SQC_VFT_BASE_SHIFT_V2 28 119 #define QM_SQC_VFT_BASE_MASK_V2 GENMASK(15, 0) 120 #define QM_SQC_VFT_NUM_SHIFT_V2 45 121 #define QM_SQC_VFT_NUM_MASK_V2 GENMASK(9, 0) 122 123 #define QM_ABNORMAL_INT_SOURCE 0x100000 124 #define QM_ABNORMAL_INT_MASK 0x100004 125 #define QM_ABNORMAL_INT_MASK_VALUE 0x7fff 126 #define QM_ABNORMAL_INT_STATUS 0x100008 127 #define QM_ABNORMAL_INT_SET 0x10000c 128 #define QM_ABNORMAL_INF00 0x100010 129 #define QM_FIFO_OVERFLOW_TYPE 0xc0 130 #define QM_FIFO_OVERFLOW_TYPE_SHIFT 6 131 #define QM_FIFO_OVERFLOW_VF 0x3f 132 #define QM_FIFO_OVERFLOW_QP_SHIFT 16 133 #define QM_ABNORMAL_INF01 0x100014 134 #define QM_DB_TIMEOUT_TYPE 0xc0 135 #define QM_DB_TIMEOUT_TYPE_SHIFT 6 136 #define QM_DB_TIMEOUT_VF 0x3f 137 #define QM_DB_TIMEOUT_QP_SHIFT 16 138 #define QM_ABNORMAL_INF02 0x100018 139 #define QM_AXI_POISON_ERR BIT(22) 140 #define QM_RAS_CE_ENABLE 0x1000ec 141 #define QM_RAS_FE_ENABLE 0x1000f0 142 #define QM_RAS_NFE_ENABLE 0x1000f4 143 #define QM_RAS_CE_THRESHOLD 0x1000f8 144 #define QM_RAS_CE_TIMES_PER_IRQ 1 145 #define QM_OOO_SHUTDOWN_SEL 0x1040f8 146 #define QM_AXI_RRESP_ERR BIT(0) 147 #define QM_ECC_MBIT BIT(2) 148 #define QM_DB_TIMEOUT BIT(10) 149 #define QM_OF_FIFO_OF BIT(11) 150 151 #define QM_RESET_WAIT_TIMEOUT 400 152 #define QM_PEH_VENDOR_ID 0x1000d8 153 #define ACC_VENDOR_ID_VALUE 0x5a5a 154 #define QM_PEH_DFX_INFO0 0x1000fc 155 #define QM_PEH_DFX_INFO1 0x100100 156 #define QM_PEH_DFX_MASK (BIT(0) | BIT(2)) 157 #define QM_PEH_MSI_FINISH_MASK GENMASK(19, 16) 158 #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT 3 159 #define ACC_PEH_MSI_DISABLE GENMASK(31, 0) 160 #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN 0x1 161 #define ACC_MASTER_TRANS_RETURN_RW 3 162 #define ACC_MASTER_TRANS_RETURN 0x300150 163 #define ACC_MASTER_GLOBAL_CTRL 0x300000 164 #define ACC_AM_CFG_PORT_WR_EN 0x30001c 165 #define QM_RAS_NFE_MBIT_DISABLE ~QM_ECC_MBIT 166 #define ACC_AM_ROB_ECC_INT_STS 0x300104 167 #define ACC_ROB_ECC_ERR_MULTPL BIT(1) 168 #define QM_MSI_CAP_ENABLE BIT(16) 169 170 /* interfunction communication */ 171 #define QM_IFC_READY_STATUS 0x100128 172 #define QM_IFC_INT_SET_P 0x100130 173 #define QM_IFC_INT_CFG 0x100134 174 #define QM_IFC_INT_SOURCE_P 0x100138 175 #define QM_IFC_INT_SOURCE_V 0x0020 176 #define QM_IFC_INT_MASK 0x0024 177 #define QM_IFC_INT_STATUS 0x0028 178 #define QM_IFC_INT_SET_V 0x002C 179 #define QM_IFC_SEND_ALL_VFS GENMASK(6, 0) 180 #define QM_IFC_INT_SOURCE_CLR GENMASK(63, 0) 181 #define QM_IFC_INT_SOURCE_MASK BIT(0) 182 #define QM_IFC_INT_DISABLE BIT(0) 183 #define QM_IFC_INT_STATUS_MASK BIT(0) 184 #define QM_IFC_INT_SET_MASK BIT(0) 185 #define QM_WAIT_DST_ACK 10 186 #define QM_MAX_PF_WAIT_COUNT 10 187 #define QM_MAX_VF_WAIT_COUNT 40 188 #define QM_VF_RESET_WAIT_US 20000 189 #define QM_VF_RESET_WAIT_CNT 3000 190 #define QM_VF_RESET_WAIT_TIMEOUT_US \ 191 (QM_VF_RESET_WAIT_US * QM_VF_RESET_WAIT_CNT) 192 193 #define POLL_PERIOD 10 194 #define POLL_TIMEOUT 1000 195 #define WAIT_PERIOD_US_MAX 200 196 #define WAIT_PERIOD_US_MIN 100 197 #define MAX_WAIT_COUNTS 1000 198 #define QM_CACHE_WB_START 0x204 199 #define QM_CACHE_WB_DONE 0x208 200 #define QM_FUNC_CAPS_REG 0x3100 201 #define QM_CAPBILITY_VERSION GENMASK(7, 0) 202 203 #define PCI_BAR_2 2 204 #define PCI_BAR_4 4 205 #define QMC_ALIGN(sz) ALIGN(sz, 32) 206 207 #define QM_DBG_READ_LEN 256 208 #define QM_PCI_COMMAND_INVALID ~0 209 #define QM_RESET_STOP_TX_OFFSET 1 210 #define QM_RESET_STOP_RX_OFFSET 2 211 212 #define WAIT_PERIOD 20 213 #define REMOVE_WAIT_DELAY 10 214 215 #define QM_QOS_PARAM_NUM 2 216 #define QM_QOS_MAX_VAL 1000 217 #define QM_QOS_RATE 100 218 #define QM_QOS_EXPAND_RATE 1000 219 #define QM_SHAPER_CIR_B_MASK GENMASK(7, 0) 220 #define QM_SHAPER_CIR_U_MASK GENMASK(10, 8) 221 #define QM_SHAPER_CIR_S_MASK GENMASK(14, 11) 222 #define QM_SHAPER_FACTOR_CIR_U_SHIFT 8 223 #define QM_SHAPER_FACTOR_CIR_S_SHIFT 11 224 #define QM_SHAPER_FACTOR_CBS_B_SHIFT 15 225 #define QM_SHAPER_FACTOR_CBS_S_SHIFT 19 226 #define QM_SHAPER_CBS_B 1 227 #define QM_SHAPER_VFT_OFFSET 6 228 #define QM_QOS_MIN_ERROR_RATE 5 229 #define QM_SHAPER_MIN_CBS_S 8 230 #define QM_QOS_TICK 0x300U 231 #define QM_QOS_DIVISOR_CLK 0x1f40U 232 #define QM_QOS_MAX_CIR_B 200 233 #define QM_QOS_MIN_CIR_B 100 234 #define QM_QOS_MAX_CIR_U 6 235 #define QM_AUTOSUSPEND_DELAY 3000 236 237 #define QM_DEV_ALG_MAX_LEN 256 238 239 /* abnormal status value for stopping queue */ 240 #define QM_STOP_QUEUE_FAIL 1 241 #define QM_DUMP_SQC_FAIL 3 242 #define QM_DUMP_CQC_FAIL 4 243 #define QM_FINISH_WAIT 5 244 245 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \ 246 (((hop_num) << QM_CQ_HOP_NUM_SHIFT) | \ 247 ((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT) | \ 248 ((buf_sz) << QM_CQ_BUF_SIZE_SHIFT) | \ 249 ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT)) 250 251 #define QM_MK_CQC_DW3_V2(cqe_sz, cq_depth) \ 252 ((((u32)cq_depth) - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT)) 253 254 #define QM_MK_SQC_W13(priority, orders, alg_type) \ 255 (((priority) << QM_SQ_PRIORITY_SHIFT) | \ 256 ((orders) << QM_SQ_ORDERS_SHIFT) | \ 257 (((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT)) 258 259 #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \ 260 (((hop_num) << QM_SQ_HOP_NUM_SHIFT) | \ 261 ((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT) | \ 262 ((buf_sz) << QM_SQ_BUF_SIZE_SHIFT) | \ 263 ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT)) 264 265 #define QM_MK_SQC_DW3_V2(sqe_sz, sq_depth) \ 266 ((((u32)sq_depth) - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT)) 267 268 enum vft_type { 269 SQC_VFT = 0, 270 CQC_VFT, 271 SHAPER_VFT, 272 }; 273 274 enum acc_err_result { 275 ACC_ERR_NONE, 276 ACC_ERR_NEED_RESET, 277 ACC_ERR_RECOVERED, 278 }; 279 280 enum qm_alg_type { 281 ALG_TYPE_0, 282 ALG_TYPE_1, 283 }; 284 285 enum qm_mb_cmd { 286 QM_PF_FLR_PREPARE = 0x01, 287 QM_PF_SRST_PREPARE, 288 QM_PF_RESET_DONE, 289 QM_VF_PREPARE_DONE, 290 QM_VF_PREPARE_FAIL, 291 QM_VF_START_DONE, 292 QM_VF_START_FAIL, 293 QM_PF_SET_QOS, 294 QM_VF_GET_QOS, 295 }; 296 297 enum qm_basic_type { 298 QM_TOTAL_QP_NUM_CAP = 0x0, 299 QM_FUNC_MAX_QP_CAP, 300 QM_XEQ_DEPTH_CAP, 301 QM_QP_DEPTH_CAP, 302 QM_EQ_IRQ_TYPE_CAP, 303 QM_AEQ_IRQ_TYPE_CAP, 304 QM_ABN_IRQ_TYPE_CAP, 305 QM_PF2VF_IRQ_TYPE_CAP, 306 QM_PF_IRQ_NUM_CAP, 307 QM_VF_IRQ_NUM_CAP, 308 }; 309 310 enum qm_pre_store_cap_idx { 311 QM_EQ_IRQ_TYPE_CAP_IDX = 0x0, 312 QM_AEQ_IRQ_TYPE_CAP_IDX, 313 QM_ABN_IRQ_TYPE_CAP_IDX, 314 QM_PF2VF_IRQ_TYPE_CAP_IDX, 315 }; 316 317 static const struct hisi_qm_cap_info qm_cap_info_comm[] = { 318 {QM_SUPPORT_DB_ISOLATION, 0x30, 0, BIT(0), 0x0, 0x0, 0x0}, 319 {QM_SUPPORT_FUNC_QOS, 0x3100, 0, BIT(8), 0x0, 0x0, 0x1}, 320 {QM_SUPPORT_STOP_QP, 0x3100, 0, BIT(9), 0x0, 0x0, 0x1}, 321 {QM_SUPPORT_STOP_FUNC, 0x3100, 0, BIT(10), 0x0, 0x0, 0x1}, 322 {QM_SUPPORT_MB_COMMAND, 0x3100, 0, BIT(11), 0x0, 0x0, 0x1}, 323 {QM_SUPPORT_SVA_PREFETCH, 0x3100, 0, BIT(14), 0x0, 0x0, 0x1}, 324 }; 325 326 static const struct hisi_qm_cap_info qm_cap_info_pf[] = { 327 {QM_SUPPORT_RPM, 0x3100, 0, BIT(13), 0x0, 0x0, 0x1}, 328 }; 329 330 static const struct hisi_qm_cap_info qm_cap_info_vf[] = { 331 {QM_SUPPORT_RPM, 0x3100, 0, BIT(12), 0x0, 0x0, 0x0}, 332 }; 333 334 static const struct hisi_qm_cap_info qm_basic_info[] = { 335 {QM_TOTAL_QP_NUM_CAP, 0x100158, 0, GENMASK(10, 0), 0x1000, 0x400, 0x400}, 336 {QM_FUNC_MAX_QP_CAP, 0x100158, 11, GENMASK(10, 0), 0x1000, 0x400, 0x400}, 337 {QM_XEQ_DEPTH_CAP, 0x3104, 0, GENMASK(31, 0), 0x800, 0x4000800, 0x4000800}, 338 {QM_QP_DEPTH_CAP, 0x3108, 0, GENMASK(31, 0), 0x4000400, 0x4000400, 0x4000400}, 339 {QM_EQ_IRQ_TYPE_CAP, 0x310c, 0, GENMASK(31, 0), 0x10000, 0x10000, 0x10000}, 340 {QM_AEQ_IRQ_TYPE_CAP, 0x3110, 0, GENMASK(31, 0), 0x0, 0x10001, 0x10001}, 341 {QM_ABN_IRQ_TYPE_CAP, 0x3114, 0, GENMASK(31, 0), 0x0, 0x10003, 0x10003}, 342 {QM_PF2VF_IRQ_TYPE_CAP, 0x3118, 0, GENMASK(31, 0), 0x0, 0x0, 0x10002}, 343 {QM_PF_IRQ_NUM_CAP, 0x311c, 16, GENMASK(15, 0), 0x1, 0x4, 0x4}, 344 {QM_VF_IRQ_NUM_CAP, 0x311c, 0, GENMASK(15, 0), 0x1, 0x2, 0x3}, 345 }; 346 347 static const u32 qm_pre_store_caps[] = { 348 QM_EQ_IRQ_TYPE_CAP, 349 QM_AEQ_IRQ_TYPE_CAP, 350 QM_ABN_IRQ_TYPE_CAP, 351 QM_PF2VF_IRQ_TYPE_CAP, 352 }; 353 354 struct qm_mailbox { 355 __le16 w0; 356 __le16 queue_num; 357 __le32 base_l; 358 __le32 base_h; 359 __le32 rsvd; 360 }; 361 362 struct qm_doorbell { 363 __le16 queue_num; 364 __le16 cmd; 365 __le16 index; 366 __le16 priority; 367 }; 368 369 struct hisi_qm_resource { 370 struct hisi_qm *qm; 371 int distance; 372 struct list_head list; 373 }; 374 375 /** 376 * struct qm_hw_err - Structure describing the device errors 377 * @list: hardware error list 378 * @timestamp: timestamp when the error occurred 379 */ 380 struct qm_hw_err { 381 struct list_head list; 382 unsigned long long timestamp; 383 }; 384 385 struct hisi_qm_hw_ops { 386 int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number); 387 void (*qm_db)(struct hisi_qm *qm, u16 qn, 388 u8 cmd, u16 index, u8 priority); 389 int (*debug_init)(struct hisi_qm *qm); 390 void (*hw_error_init)(struct hisi_qm *qm); 391 void (*hw_error_uninit)(struct hisi_qm *qm); 392 enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm); 393 int (*set_msi)(struct hisi_qm *qm, bool set); 394 }; 395 396 struct hisi_qm_hw_error { 397 u32 int_msk; 398 const char *msg; 399 }; 400 401 static const struct hisi_qm_hw_error qm_hw_error[] = { 402 { .int_msk = BIT(0), .msg = "qm_axi_rresp" }, 403 { .int_msk = BIT(1), .msg = "qm_axi_bresp" }, 404 { .int_msk = BIT(2), .msg = "qm_ecc_mbit" }, 405 { .int_msk = BIT(3), .msg = "qm_ecc_1bit" }, 406 { .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" }, 407 { .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" }, 408 { .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" }, 409 { .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" }, 410 { .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" }, 411 { .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" }, 412 { .int_msk = BIT(10), .msg = "qm_db_timeout" }, 413 { .int_msk = BIT(11), .msg = "qm_of_fifo_of" }, 414 { .int_msk = BIT(12), .msg = "qm_db_random_invalid" }, 415 { .int_msk = BIT(13), .msg = "qm_mailbox_timeout" }, 416 { .int_msk = BIT(14), .msg = "qm_flr_timeout" }, 417 }; 418 419 static const char * const qm_db_timeout[] = { 420 "sq", "cq", "eq", "aeq", 421 }; 422 423 static const char * const qm_fifo_overflow[] = { 424 "cq", "eq", "aeq", 425 }; 426 427 struct qm_typical_qos_table { 428 u32 start; 429 u32 end; 430 u32 val; 431 }; 432 433 /* the qos step is 100 */ 434 static struct qm_typical_qos_table shaper_cir_s[] = { 435 {100, 100, 4}, 436 {200, 200, 3}, 437 {300, 500, 2}, 438 {600, 1000, 1}, 439 {1100, 100000, 0}, 440 }; 441 442 static struct qm_typical_qos_table shaper_cbs_s[] = { 443 {100, 200, 9}, 444 {300, 500, 11}, 445 {600, 1000, 12}, 446 {1100, 10000, 16}, 447 {10100, 25000, 17}, 448 {25100, 50000, 18}, 449 {50100, 100000, 19} 450 }; 451 452 static void qm_irqs_unregister(struct hisi_qm *qm); 453 static int qm_reset_device(struct hisi_qm *qm); 454 455 static u32 qm_get_hw_error_status(struct hisi_qm *qm) 456 { 457 return readl(qm->io_base + QM_ABNORMAL_INT_STATUS); 458 } 459 460 static u32 qm_get_dev_err_status(struct hisi_qm *qm) 461 { 462 return qm->err_ini->get_dev_hw_err_status(qm); 463 } 464 465 /* Check if the error causes the master ooo block */ 466 static bool qm_check_dev_error(struct hisi_qm *qm) 467 { 468 u32 val, dev_val; 469 470 if (qm->fun_type == QM_HW_VF) 471 return false; 472 473 val = qm_get_hw_error_status(qm) & qm->err_info.qm_shutdown_mask; 474 dev_val = qm_get_dev_err_status(qm) & qm->err_info.dev_shutdown_mask; 475 476 return val || dev_val; 477 } 478 479 static int qm_wait_reset_finish(struct hisi_qm *qm) 480 { 481 int delay = 0; 482 483 /* All reset requests need to be queued for processing */ 484 while (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 485 msleep(++delay); 486 if (delay > QM_RESET_WAIT_TIMEOUT) 487 return -EBUSY; 488 } 489 490 return 0; 491 } 492 493 static int qm_reset_prepare_ready(struct hisi_qm *qm) 494 { 495 struct pci_dev *pdev = qm->pdev; 496 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 497 498 /* 499 * PF and VF on host doesnot support resetting at the 500 * same time on Kunpeng920. 501 */ 502 if (qm->ver < QM_HW_V3) 503 return qm_wait_reset_finish(pf_qm); 504 505 return qm_wait_reset_finish(qm); 506 } 507 508 static void qm_reset_bit_clear(struct hisi_qm *qm) 509 { 510 struct pci_dev *pdev = qm->pdev; 511 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 512 513 if (qm->ver < QM_HW_V3) 514 clear_bit(QM_RESETTING, &pf_qm->misc_ctl); 515 516 clear_bit(QM_RESETTING, &qm->misc_ctl); 517 } 518 519 static void qm_mb_pre_init(struct qm_mailbox *mailbox, u8 cmd, 520 u64 base, u16 queue, bool op) 521 { 522 mailbox->w0 = cpu_to_le16((cmd) | 523 ((op) ? 0x1 << QM_MB_OP_SHIFT : 0) | 524 (0x1 << QM_MB_BUSY_SHIFT)); 525 mailbox->queue_num = cpu_to_le16(queue); 526 mailbox->base_l = cpu_to_le32(lower_32_bits(base)); 527 mailbox->base_h = cpu_to_le32(upper_32_bits(base)); 528 mailbox->rsvd = 0; 529 } 530 531 /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */ 532 int hisi_qm_wait_mb_ready(struct hisi_qm *qm) 533 { 534 u32 val; 535 536 return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE, 537 val, !((val >> QM_MB_BUSY_SHIFT) & 538 0x1), POLL_PERIOD, POLL_TIMEOUT); 539 } 540 EXPORT_SYMBOL_GPL(hisi_qm_wait_mb_ready); 541 542 /* 128 bit should be written to hardware at one time to trigger a mailbox */ 543 static void qm_mb_write(struct hisi_qm *qm, const void *src) 544 { 545 void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE; 546 547 #if IS_ENABLED(CONFIG_ARM64) 548 unsigned long tmp0 = 0, tmp1 = 0; 549 #endif 550 551 if (!IS_ENABLED(CONFIG_ARM64)) { 552 memcpy_toio(fun_base, src, 16); 553 dma_wmb(); 554 return; 555 } 556 557 #if IS_ENABLED(CONFIG_ARM64) 558 asm volatile("ldp %0, %1, %3\n" 559 "stp %0, %1, %2\n" 560 "dmb oshst\n" 561 : "=&r" (tmp0), 562 "=&r" (tmp1), 563 "+Q" (*((char __iomem *)fun_base)) 564 : "Q" (*((char *)src)) 565 : "memory"); 566 #endif 567 } 568 569 static int qm_mb_nolock(struct hisi_qm *qm, struct qm_mailbox *mailbox) 570 { 571 int ret; 572 u32 val; 573 574 if (unlikely(hisi_qm_wait_mb_ready(qm))) { 575 dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n"); 576 ret = -EBUSY; 577 goto mb_busy; 578 } 579 580 qm_mb_write(qm, mailbox); 581 582 if (unlikely(hisi_qm_wait_mb_ready(qm))) { 583 dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n"); 584 ret = -ETIMEDOUT; 585 goto mb_busy; 586 } 587 588 val = readl(qm->io_base + QM_MB_CMD_SEND_BASE); 589 if (val & QM_MB_STATUS_MASK) { 590 dev_err(&qm->pdev->dev, "QM mailbox operation failed!\n"); 591 ret = -EIO; 592 goto mb_busy; 593 } 594 595 return 0; 596 597 mb_busy: 598 atomic64_inc(&qm->debug.dfx.mb_err_cnt); 599 return ret; 600 } 601 602 int hisi_qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue, 603 bool op) 604 { 605 struct qm_mailbox mailbox; 606 int ret; 607 608 qm_mb_pre_init(&mailbox, cmd, dma_addr, queue, op); 609 610 mutex_lock(&qm->mailbox_lock); 611 ret = qm_mb_nolock(qm, &mailbox); 612 mutex_unlock(&qm->mailbox_lock); 613 614 return ret; 615 } 616 EXPORT_SYMBOL_GPL(hisi_qm_mb); 617 618 /* op 0: set xqc information to hardware, 1: get xqc information from hardware. */ 619 int qm_set_and_get_xqc(struct hisi_qm *qm, u8 cmd, void *xqc, u32 qp_id, bool op) 620 { 621 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 622 struct qm_mailbox mailbox; 623 dma_addr_t xqc_dma; 624 void *tmp_xqc; 625 size_t size; 626 int ret; 627 628 switch (cmd) { 629 case QM_MB_CMD_SQC: 630 size = sizeof(struct qm_sqc); 631 tmp_xqc = qm->xqc_buf.sqc; 632 xqc_dma = qm->xqc_buf.sqc_dma; 633 break; 634 case QM_MB_CMD_CQC: 635 size = sizeof(struct qm_cqc); 636 tmp_xqc = qm->xqc_buf.cqc; 637 xqc_dma = qm->xqc_buf.cqc_dma; 638 break; 639 case QM_MB_CMD_EQC: 640 size = sizeof(struct qm_eqc); 641 tmp_xqc = qm->xqc_buf.eqc; 642 xqc_dma = qm->xqc_buf.eqc_dma; 643 break; 644 case QM_MB_CMD_AEQC: 645 size = sizeof(struct qm_aeqc); 646 tmp_xqc = qm->xqc_buf.aeqc; 647 xqc_dma = qm->xqc_buf.aeqc_dma; 648 break; 649 default: 650 dev_err(&qm->pdev->dev, "unknown mailbox cmd %u\n", cmd); 651 return -EINVAL; 652 } 653 654 /* Setting xqc will fail if master OOO is blocked. */ 655 if (qm_check_dev_error(pf_qm)) { 656 dev_err(&qm->pdev->dev, "failed to send mailbox since qm is stop!\n"); 657 return -EIO; 658 } 659 660 mutex_lock(&qm->mailbox_lock); 661 if (!op) 662 memcpy(tmp_xqc, xqc, size); 663 664 qm_mb_pre_init(&mailbox, cmd, xqc_dma, qp_id, op); 665 ret = qm_mb_nolock(qm, &mailbox); 666 if (!ret && op) 667 memcpy(xqc, tmp_xqc, size); 668 669 mutex_unlock(&qm->mailbox_lock); 670 671 return ret; 672 } 673 674 static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 675 { 676 u64 doorbell; 677 678 doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) | 679 ((u64)index << QM_DB_INDEX_SHIFT_V1) | 680 ((u64)priority << QM_DB_PRIORITY_SHIFT_V1); 681 682 writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1); 683 } 684 685 static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 686 { 687 void __iomem *io_base = qm->io_base; 688 u16 randata = 0; 689 u64 doorbell; 690 691 if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ) 692 io_base = qm->db_io_base + (u64)qn * qm->db_interval + 693 QM_DOORBELL_SQ_CQ_BASE_V2; 694 else 695 io_base += QM_DOORBELL_EQ_AEQ_BASE_V2; 696 697 doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) | 698 ((u64)randata << QM_DB_RAND_SHIFT_V2) | 699 ((u64)index << QM_DB_INDEX_SHIFT_V2) | 700 ((u64)priority << QM_DB_PRIORITY_SHIFT_V2); 701 702 writeq(doorbell, io_base); 703 } 704 705 static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 706 { 707 dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n", 708 qn, cmd, index); 709 710 qm->ops->qm_db(qm, qn, cmd, index, priority); 711 } 712 713 static void qm_disable_clock_gate(struct hisi_qm *qm) 714 { 715 u32 val; 716 717 /* if qm enables clock gating in Kunpeng930, qos will be inaccurate. */ 718 if (qm->ver < QM_HW_V3) 719 return; 720 721 val = readl(qm->io_base + QM_PM_CTRL); 722 val |= QM_IDLE_DISABLE; 723 writel(val, qm->io_base + QM_PM_CTRL); 724 } 725 726 static int qm_dev_mem_reset(struct hisi_qm *qm) 727 { 728 u32 val; 729 730 writel(0x1, qm->io_base + QM_MEM_START_INIT); 731 return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val, 732 val & BIT(0), POLL_PERIOD, 733 POLL_TIMEOUT); 734 } 735 736 /** 737 * hisi_qm_get_hw_info() - Get device information. 738 * @qm: The qm which want to get information. 739 * @info_table: Array for storing device information. 740 * @index: Index in info_table. 741 * @is_read: Whether read from reg, 0: not support read from reg. 742 * 743 * This function returns device information the caller needs. 744 */ 745 u32 hisi_qm_get_hw_info(struct hisi_qm *qm, 746 const struct hisi_qm_cap_info *info_table, 747 u32 index, bool is_read) 748 { 749 u32 val; 750 751 switch (qm->ver) { 752 case QM_HW_V1: 753 return info_table[index].v1_val; 754 case QM_HW_V2: 755 return info_table[index].v2_val; 756 default: 757 if (!is_read) 758 return info_table[index].v3_val; 759 760 val = readl(qm->io_base + info_table[index].offset); 761 return (val >> info_table[index].shift) & info_table[index].mask; 762 } 763 } 764 EXPORT_SYMBOL_GPL(hisi_qm_get_hw_info); 765 766 static void qm_get_xqc_depth(struct hisi_qm *qm, u16 *low_bits, 767 u16 *high_bits, enum qm_basic_type type) 768 { 769 u32 depth; 770 771 depth = hisi_qm_get_hw_info(qm, qm_basic_info, type, qm->cap_ver); 772 *low_bits = depth & QM_XQ_DEPTH_MASK; 773 *high_bits = (depth >> QM_XQ_DEPTH_SHIFT) & QM_XQ_DEPTH_MASK; 774 } 775 776 int hisi_qm_set_algs(struct hisi_qm *qm, u64 alg_msk, const struct qm_dev_alg *dev_algs, 777 u32 dev_algs_size) 778 { 779 struct device *dev = &qm->pdev->dev; 780 char *algs, *ptr; 781 int i; 782 783 if (!qm->uacce) 784 return 0; 785 786 if (dev_algs_size >= QM_DEV_ALG_MAX_LEN) { 787 dev_err(dev, "algs size %u is equal or larger than %d.\n", 788 dev_algs_size, QM_DEV_ALG_MAX_LEN); 789 return -EINVAL; 790 } 791 792 algs = devm_kzalloc(dev, QM_DEV_ALG_MAX_LEN * sizeof(char), GFP_KERNEL); 793 if (!algs) 794 return -ENOMEM; 795 796 for (i = 0; i < dev_algs_size; i++) 797 if (alg_msk & dev_algs[i].alg_msk) 798 strcat(algs, dev_algs[i].alg); 799 800 ptr = strrchr(algs, '\n'); 801 if (ptr) { 802 *ptr = '\0'; 803 qm->uacce->algs = algs; 804 } 805 806 return 0; 807 } 808 EXPORT_SYMBOL_GPL(hisi_qm_set_algs); 809 810 static u32 qm_get_irq_num(struct hisi_qm *qm) 811 { 812 if (qm->fun_type == QM_HW_PF) 813 return hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF_IRQ_NUM_CAP, qm->cap_ver); 814 815 return hisi_qm_get_hw_info(qm, qm_basic_info, QM_VF_IRQ_NUM_CAP, qm->cap_ver); 816 } 817 818 static int qm_pm_get_sync(struct hisi_qm *qm) 819 { 820 struct device *dev = &qm->pdev->dev; 821 int ret; 822 823 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 824 return 0; 825 826 ret = pm_runtime_resume_and_get(dev); 827 if (ret < 0) { 828 dev_err(dev, "failed to get_sync(%d).\n", ret); 829 return ret; 830 } 831 832 return 0; 833 } 834 835 static void qm_pm_put_sync(struct hisi_qm *qm) 836 { 837 struct device *dev = &qm->pdev->dev; 838 839 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 840 return; 841 842 pm_runtime_mark_last_busy(dev); 843 pm_runtime_put_autosuspend(dev); 844 } 845 846 static void qm_cq_head_update(struct hisi_qp *qp) 847 { 848 if (qp->qp_status.cq_head == qp->cq_depth - 1) { 849 qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase; 850 qp->qp_status.cq_head = 0; 851 } else { 852 qp->qp_status.cq_head++; 853 } 854 } 855 856 static void qm_poll_req_cb(struct hisi_qp *qp) 857 { 858 struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head; 859 struct hisi_qm *qm = qp->qm; 860 861 while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) { 862 dma_rmb(); 863 qp->req_cb(qp, qp->sqe + qm->sqe_size * 864 le16_to_cpu(cqe->sq_head)); 865 qm_cq_head_update(qp); 866 cqe = qp->cqe + qp->qp_status.cq_head; 867 qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, 868 qp->qp_status.cq_head, 0); 869 atomic_dec(&qp->qp_status.used); 870 871 cond_resched(); 872 } 873 874 /* set c_flag */ 875 qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, qp->qp_status.cq_head, 1); 876 } 877 878 static void qm_work_process(struct work_struct *work) 879 { 880 struct hisi_qm_poll_data *poll_data = 881 container_of(work, struct hisi_qm_poll_data, work); 882 struct hisi_qm *qm = poll_data->qm; 883 u16 eqe_num = poll_data->eqe_num; 884 struct hisi_qp *qp; 885 int i; 886 887 for (i = eqe_num - 1; i >= 0; i--) { 888 qp = &qm->qp_array[poll_data->qp_finish_id[i]]; 889 if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP)) 890 continue; 891 892 if (qp->event_cb) { 893 qp->event_cb(qp); 894 continue; 895 } 896 897 if (likely(qp->req_cb)) 898 qm_poll_req_cb(qp); 899 } 900 } 901 902 static void qm_get_complete_eqe_num(struct hisi_qm *qm) 903 { 904 struct qm_eqe *eqe = qm->eqe + qm->status.eq_head; 905 struct hisi_qm_poll_data *poll_data = NULL; 906 u16 eq_depth = qm->eq_depth; 907 u16 cqn, eqe_num = 0; 908 909 if (QM_EQE_PHASE(eqe) != qm->status.eqc_phase) { 910 atomic64_inc(&qm->debug.dfx.err_irq_cnt); 911 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 912 return; 913 } 914 915 cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK; 916 if (unlikely(cqn >= qm->qp_num)) 917 return; 918 poll_data = &qm->poll_data[cqn]; 919 920 while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) { 921 cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK; 922 poll_data->qp_finish_id[eqe_num] = cqn; 923 eqe_num++; 924 925 if (qm->status.eq_head == eq_depth - 1) { 926 qm->status.eqc_phase = !qm->status.eqc_phase; 927 eqe = qm->eqe; 928 qm->status.eq_head = 0; 929 } else { 930 eqe++; 931 qm->status.eq_head++; 932 } 933 934 if (eqe_num == (eq_depth >> 1) - 1) 935 break; 936 } 937 938 poll_data->eqe_num = eqe_num; 939 queue_work(qm->wq, &poll_data->work); 940 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 941 } 942 943 static irqreturn_t qm_eq_irq(int irq, void *data) 944 { 945 struct hisi_qm *qm = data; 946 947 /* Get qp id of completed tasks and re-enable the interrupt */ 948 qm_get_complete_eqe_num(qm); 949 950 return IRQ_HANDLED; 951 } 952 953 static irqreturn_t qm_mb_cmd_irq(int irq, void *data) 954 { 955 struct hisi_qm *qm = data; 956 u32 val; 957 958 val = readl(qm->io_base + QM_IFC_INT_STATUS); 959 val &= QM_IFC_INT_STATUS_MASK; 960 if (!val) 961 return IRQ_NONE; 962 963 if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl)) { 964 dev_warn(&qm->pdev->dev, "Driver is down, message cannot be processed!\n"); 965 return IRQ_HANDLED; 966 } 967 968 schedule_work(&qm->cmd_process); 969 970 return IRQ_HANDLED; 971 } 972 973 static void qm_set_qp_disable(struct hisi_qp *qp, int offset) 974 { 975 u32 *addr; 976 977 if (qp->is_in_kernel) 978 return; 979 980 addr = (u32 *)(qp->qdma.va + qp->qdma.size) - offset; 981 *addr = 1; 982 983 /* make sure setup is completed */ 984 smp_wmb(); 985 } 986 987 static void qm_disable_qp(struct hisi_qm *qm, u32 qp_id) 988 { 989 struct hisi_qp *qp = &qm->qp_array[qp_id]; 990 991 qm_set_qp_disable(qp, QM_RESET_STOP_TX_OFFSET); 992 hisi_qm_stop_qp(qp); 993 qm_set_qp_disable(qp, QM_RESET_STOP_RX_OFFSET); 994 } 995 996 static void qm_reset_function(struct hisi_qm *qm) 997 { 998 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 999 struct device *dev = &qm->pdev->dev; 1000 int ret; 1001 1002 if (qm_check_dev_error(pf_qm)) 1003 return; 1004 1005 ret = qm_reset_prepare_ready(qm); 1006 if (ret) { 1007 dev_err(dev, "reset function not ready\n"); 1008 return; 1009 } 1010 1011 ret = hisi_qm_stop(qm, QM_DOWN); 1012 if (ret) { 1013 dev_err(dev, "failed to stop qm when reset function\n"); 1014 goto clear_bit; 1015 } 1016 1017 ret = hisi_qm_start(qm); 1018 if (ret) 1019 dev_err(dev, "failed to start qm when reset function\n"); 1020 1021 clear_bit: 1022 qm_reset_bit_clear(qm); 1023 } 1024 1025 static irqreturn_t qm_aeq_thread(int irq, void *data) 1026 { 1027 struct hisi_qm *qm = data; 1028 struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head; 1029 u16 aeq_depth = qm->aeq_depth; 1030 u32 type, qp_id; 1031 1032 atomic64_inc(&qm->debug.dfx.aeq_irq_cnt); 1033 1034 while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) { 1035 type = (le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT) & 1036 QM_AEQE_TYPE_MASK; 1037 qp_id = le32_to_cpu(aeqe->dw0) & QM_AEQE_CQN_MASK; 1038 1039 switch (type) { 1040 case QM_EQ_OVERFLOW: 1041 dev_err(&qm->pdev->dev, "eq overflow, reset function\n"); 1042 qm_reset_function(qm); 1043 return IRQ_HANDLED; 1044 case QM_CQ_OVERFLOW: 1045 dev_err(&qm->pdev->dev, "cq overflow, stop qp(%u)\n", 1046 qp_id); 1047 fallthrough; 1048 case QM_CQE_ERROR: 1049 qm_disable_qp(qm, qp_id); 1050 break; 1051 default: 1052 dev_err(&qm->pdev->dev, "unknown error type %u\n", 1053 type); 1054 break; 1055 } 1056 1057 if (qm->status.aeq_head == aeq_depth - 1) { 1058 qm->status.aeqc_phase = !qm->status.aeqc_phase; 1059 aeqe = qm->aeqe; 1060 qm->status.aeq_head = 0; 1061 } else { 1062 aeqe++; 1063 qm->status.aeq_head++; 1064 } 1065 } 1066 1067 qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0); 1068 1069 return IRQ_HANDLED; 1070 } 1071 1072 static void qm_init_qp_status(struct hisi_qp *qp) 1073 { 1074 struct hisi_qp_status *qp_status = &qp->qp_status; 1075 1076 qp_status->sq_tail = 0; 1077 qp_status->cq_head = 0; 1078 qp_status->cqc_phase = true; 1079 atomic_set(&qp_status->used, 0); 1080 } 1081 1082 static void qm_init_prefetch(struct hisi_qm *qm) 1083 { 1084 struct device *dev = &qm->pdev->dev; 1085 u32 page_type = 0x0; 1086 1087 if (!test_bit(QM_SUPPORT_SVA_PREFETCH, &qm->caps)) 1088 return; 1089 1090 switch (PAGE_SIZE) { 1091 case SZ_4K: 1092 page_type = 0x0; 1093 break; 1094 case SZ_16K: 1095 page_type = 0x1; 1096 break; 1097 case SZ_64K: 1098 page_type = 0x2; 1099 break; 1100 default: 1101 dev_err(dev, "system page size is not support: %lu, default set to 4KB", 1102 PAGE_SIZE); 1103 } 1104 1105 writel(page_type, qm->io_base + QM_PAGE_SIZE); 1106 } 1107 1108 /* 1109 * acc_shaper_para_calc() Get the IR value by the qos formula, the return value 1110 * is the expected qos calculated. 1111 * the formula: 1112 * IR = X Mbps if ir = 1 means IR = 100 Mbps, if ir = 10000 means = 10Gbps 1113 * 1114 * IR_b * (2 ^ IR_u) * 8000 1115 * IR(Mbps) = ------------------------- 1116 * Tick * (2 ^ IR_s) 1117 */ 1118 static u32 acc_shaper_para_calc(u64 cir_b, u64 cir_u, u64 cir_s) 1119 { 1120 return ((cir_b * QM_QOS_DIVISOR_CLK) * (1 << cir_u)) / 1121 (QM_QOS_TICK * (1 << cir_s)); 1122 } 1123 1124 static u32 acc_shaper_calc_cbs_s(u32 ir) 1125 { 1126 int table_size = ARRAY_SIZE(shaper_cbs_s); 1127 int i; 1128 1129 for (i = 0; i < table_size; i++) { 1130 if (ir >= shaper_cbs_s[i].start && ir <= shaper_cbs_s[i].end) 1131 return shaper_cbs_s[i].val; 1132 } 1133 1134 return QM_SHAPER_MIN_CBS_S; 1135 } 1136 1137 static u32 acc_shaper_calc_cir_s(u32 ir) 1138 { 1139 int table_size = ARRAY_SIZE(shaper_cir_s); 1140 int i; 1141 1142 for (i = 0; i < table_size; i++) { 1143 if (ir >= shaper_cir_s[i].start && ir <= shaper_cir_s[i].end) 1144 return shaper_cir_s[i].val; 1145 } 1146 1147 return 0; 1148 } 1149 1150 static int qm_get_shaper_para(u32 ir, struct qm_shaper_factor *factor) 1151 { 1152 u32 cir_b, cir_u, cir_s, ir_calc; 1153 u32 error_rate; 1154 1155 factor->cbs_s = acc_shaper_calc_cbs_s(ir); 1156 cir_s = acc_shaper_calc_cir_s(ir); 1157 1158 for (cir_b = QM_QOS_MIN_CIR_B; cir_b <= QM_QOS_MAX_CIR_B; cir_b++) { 1159 for (cir_u = 0; cir_u <= QM_QOS_MAX_CIR_U; cir_u++) { 1160 ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s); 1161 1162 error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir; 1163 if (error_rate <= QM_QOS_MIN_ERROR_RATE) { 1164 factor->cir_b = cir_b; 1165 factor->cir_u = cir_u; 1166 factor->cir_s = cir_s; 1167 return 0; 1168 } 1169 } 1170 } 1171 1172 return -EINVAL; 1173 } 1174 1175 static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base, 1176 u32 number, struct qm_shaper_factor *factor) 1177 { 1178 u64 tmp = 0; 1179 1180 if (number > 0) { 1181 switch (type) { 1182 case SQC_VFT: 1183 if (qm->ver == QM_HW_V1) { 1184 tmp = QM_SQC_VFT_BUF_SIZE | 1185 QM_SQC_VFT_SQC_SIZE | 1186 QM_SQC_VFT_INDEX_NUMBER | 1187 QM_SQC_VFT_VALID | 1188 (u64)base << QM_SQC_VFT_START_SQN_SHIFT; 1189 } else { 1190 tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT | 1191 QM_SQC_VFT_VALID | 1192 (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT; 1193 } 1194 break; 1195 case CQC_VFT: 1196 if (qm->ver == QM_HW_V1) { 1197 tmp = QM_CQC_VFT_BUF_SIZE | 1198 QM_CQC_VFT_SQC_SIZE | 1199 QM_CQC_VFT_INDEX_NUMBER | 1200 QM_CQC_VFT_VALID; 1201 } else { 1202 tmp = QM_CQC_VFT_VALID; 1203 } 1204 break; 1205 case SHAPER_VFT: 1206 if (factor) { 1207 tmp = factor->cir_b | 1208 (factor->cir_u << QM_SHAPER_FACTOR_CIR_U_SHIFT) | 1209 (factor->cir_s << QM_SHAPER_FACTOR_CIR_S_SHIFT) | 1210 (QM_SHAPER_CBS_B << QM_SHAPER_FACTOR_CBS_B_SHIFT) | 1211 (factor->cbs_s << QM_SHAPER_FACTOR_CBS_S_SHIFT); 1212 } 1213 break; 1214 } 1215 } 1216 1217 writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L); 1218 writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H); 1219 } 1220 1221 static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type, 1222 u32 fun_num, u32 base, u32 number) 1223 { 1224 struct qm_shaper_factor *factor = NULL; 1225 unsigned int val; 1226 int ret; 1227 1228 if (type == SHAPER_VFT && test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 1229 factor = &qm->factor[fun_num]; 1230 1231 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 1232 val & BIT(0), POLL_PERIOD, 1233 POLL_TIMEOUT); 1234 if (ret) 1235 return ret; 1236 1237 writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR); 1238 writel(type, qm->io_base + QM_VFT_CFG_TYPE); 1239 if (type == SHAPER_VFT) 1240 fun_num |= base << QM_SHAPER_VFT_OFFSET; 1241 1242 writel(fun_num, qm->io_base + QM_VFT_CFG); 1243 1244 qm_vft_data_cfg(qm, type, base, number, factor); 1245 1246 writel(0x0, qm->io_base + QM_VFT_CFG_RDY); 1247 writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE); 1248 1249 return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 1250 val & BIT(0), POLL_PERIOD, 1251 POLL_TIMEOUT); 1252 } 1253 1254 static int qm_shaper_init_vft(struct hisi_qm *qm, u32 fun_num) 1255 { 1256 u32 qos = qm->factor[fun_num].func_qos; 1257 int ret, i; 1258 1259 ret = qm_get_shaper_para(qos * QM_QOS_RATE, &qm->factor[fun_num]); 1260 if (ret) { 1261 dev_err(&qm->pdev->dev, "failed to calculate shaper parameter!\n"); 1262 return ret; 1263 } 1264 writel(qm->type_rate, qm->io_base + QM_SHAPER_CFG); 1265 for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) { 1266 /* The base number of queue reuse for different alg type */ 1267 ret = qm_set_vft_common(qm, SHAPER_VFT, fun_num, i, 1); 1268 if (ret) 1269 return ret; 1270 } 1271 1272 return 0; 1273 } 1274 1275 /* The config should be conducted after qm_dev_mem_reset() */ 1276 static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base, 1277 u32 number) 1278 { 1279 int ret, i; 1280 1281 for (i = SQC_VFT; i <= CQC_VFT; i++) { 1282 ret = qm_set_vft_common(qm, i, fun_num, base, number); 1283 if (ret) 1284 return ret; 1285 } 1286 1287 /* init default shaper qos val */ 1288 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) { 1289 ret = qm_shaper_init_vft(qm, fun_num); 1290 if (ret) 1291 goto back_sqc_cqc; 1292 } 1293 1294 return 0; 1295 back_sqc_cqc: 1296 for (i = SQC_VFT; i <= CQC_VFT; i++) 1297 qm_set_vft_common(qm, i, fun_num, 0, 0); 1298 1299 return ret; 1300 } 1301 1302 static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number) 1303 { 1304 u64 sqc_vft; 1305 int ret; 1306 1307 ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1); 1308 if (ret) 1309 return ret; 1310 1311 sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) | 1312 ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32); 1313 *base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2); 1314 *number = (QM_SQC_VFT_NUM_MASK_V2 & 1315 (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1; 1316 1317 return 0; 1318 } 1319 1320 static void qm_hw_error_init_v1(struct hisi_qm *qm) 1321 { 1322 writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK); 1323 } 1324 1325 static void qm_hw_error_cfg(struct hisi_qm *qm) 1326 { 1327 struct hisi_qm_err_info *err_info = &qm->err_info; 1328 1329 qm->error_mask = err_info->nfe | err_info->ce | err_info->fe; 1330 /* clear QM hw residual error source */ 1331 writel(qm->error_mask, qm->io_base + QM_ABNORMAL_INT_SOURCE); 1332 1333 /* configure error type */ 1334 writel(err_info->ce, qm->io_base + QM_RAS_CE_ENABLE); 1335 writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD); 1336 writel(err_info->nfe, qm->io_base + QM_RAS_NFE_ENABLE); 1337 writel(err_info->fe, qm->io_base + QM_RAS_FE_ENABLE); 1338 } 1339 1340 static void qm_hw_error_init_v2(struct hisi_qm *qm) 1341 { 1342 u32 irq_unmask; 1343 1344 qm_hw_error_cfg(qm); 1345 1346 irq_unmask = ~qm->error_mask; 1347 irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1348 writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK); 1349 } 1350 1351 static void qm_hw_error_uninit_v2(struct hisi_qm *qm) 1352 { 1353 u32 irq_mask = qm->error_mask; 1354 1355 irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1356 writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK); 1357 } 1358 1359 static void qm_hw_error_init_v3(struct hisi_qm *qm) 1360 { 1361 u32 irq_unmask; 1362 1363 qm_hw_error_cfg(qm); 1364 1365 /* enable close master ooo when hardware error happened */ 1366 writel(qm->err_info.qm_shutdown_mask, qm->io_base + QM_OOO_SHUTDOWN_SEL); 1367 1368 irq_unmask = ~qm->error_mask; 1369 irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1370 writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK); 1371 } 1372 1373 static void qm_hw_error_uninit_v3(struct hisi_qm *qm) 1374 { 1375 u32 irq_mask = qm->error_mask; 1376 1377 irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1378 writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK); 1379 1380 /* disable close master ooo when hardware error happened */ 1381 writel(0x0, qm->io_base + QM_OOO_SHUTDOWN_SEL); 1382 } 1383 1384 static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status) 1385 { 1386 const struct hisi_qm_hw_error *err; 1387 struct device *dev = &qm->pdev->dev; 1388 u32 reg_val, type, vf_num, qp_id; 1389 int i; 1390 1391 for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) { 1392 err = &qm_hw_error[i]; 1393 if (!(err->int_msk & error_status)) 1394 continue; 1395 1396 dev_err(dev, "%s [error status=0x%x] found\n", 1397 err->msg, err->int_msk); 1398 1399 if (err->int_msk & QM_DB_TIMEOUT) { 1400 reg_val = readl(qm->io_base + QM_ABNORMAL_INF01); 1401 type = (reg_val & QM_DB_TIMEOUT_TYPE) >> 1402 QM_DB_TIMEOUT_TYPE_SHIFT; 1403 vf_num = reg_val & QM_DB_TIMEOUT_VF; 1404 qp_id = reg_val >> QM_DB_TIMEOUT_QP_SHIFT; 1405 dev_err(dev, "qm %s doorbell timeout in function %u qp %u\n", 1406 qm_db_timeout[type], vf_num, qp_id); 1407 } else if (err->int_msk & QM_OF_FIFO_OF) { 1408 reg_val = readl(qm->io_base + QM_ABNORMAL_INF00); 1409 type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >> 1410 QM_FIFO_OVERFLOW_TYPE_SHIFT; 1411 vf_num = reg_val & QM_FIFO_OVERFLOW_VF; 1412 qp_id = reg_val >> QM_FIFO_OVERFLOW_QP_SHIFT; 1413 if (type < ARRAY_SIZE(qm_fifo_overflow)) 1414 dev_err(dev, "qm %s fifo overflow in function %u qp %u\n", 1415 qm_fifo_overflow[type], vf_num, qp_id); 1416 else 1417 dev_err(dev, "unknown error type\n"); 1418 } else if (err->int_msk & QM_AXI_RRESP_ERR) { 1419 reg_val = readl(qm->io_base + QM_ABNORMAL_INF02); 1420 if (reg_val & QM_AXI_POISON_ERR) 1421 dev_err(dev, "qm axi poison error happened\n"); 1422 } 1423 } 1424 } 1425 1426 static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm) 1427 { 1428 u32 error_status, tmp; 1429 1430 /* read err sts */ 1431 tmp = readl(qm->io_base + QM_ABNORMAL_INT_STATUS); 1432 error_status = qm->error_mask & tmp; 1433 1434 if (error_status) { 1435 if (error_status & QM_ECC_MBIT) 1436 qm->err_status.is_qm_ecc_mbit = true; 1437 1438 qm_log_hw_error(qm, error_status); 1439 if (error_status & qm->err_info.qm_reset_mask) 1440 return ACC_ERR_NEED_RESET; 1441 1442 writel(error_status, qm->io_base + QM_ABNORMAL_INT_SOURCE); 1443 writel(qm->err_info.nfe, qm->io_base + QM_RAS_NFE_ENABLE); 1444 } 1445 1446 return ACC_ERR_RECOVERED; 1447 } 1448 1449 static int qm_get_mb_cmd(struct hisi_qm *qm, u64 *msg, u16 fun_num) 1450 { 1451 struct qm_mailbox mailbox; 1452 int ret; 1453 1454 qm_mb_pre_init(&mailbox, QM_MB_CMD_DST, 0, fun_num, 0); 1455 mutex_lock(&qm->mailbox_lock); 1456 ret = qm_mb_nolock(qm, &mailbox); 1457 if (ret) 1458 goto err_unlock; 1459 1460 *msg = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) | 1461 ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32); 1462 1463 err_unlock: 1464 mutex_unlock(&qm->mailbox_lock); 1465 return ret; 1466 } 1467 1468 static void qm_clear_cmd_interrupt(struct hisi_qm *qm, u64 vf_mask) 1469 { 1470 u32 val; 1471 1472 if (qm->fun_type == QM_HW_PF) 1473 writeq(vf_mask, qm->io_base + QM_IFC_INT_SOURCE_P); 1474 1475 val = readl(qm->io_base + QM_IFC_INT_SOURCE_V); 1476 val |= QM_IFC_INT_SOURCE_MASK; 1477 writel(val, qm->io_base + QM_IFC_INT_SOURCE_V); 1478 } 1479 1480 static void qm_handle_vf_msg(struct hisi_qm *qm, u32 vf_id) 1481 { 1482 struct device *dev = &qm->pdev->dev; 1483 u32 cmd; 1484 u64 msg; 1485 int ret; 1486 1487 ret = qm_get_mb_cmd(qm, &msg, vf_id); 1488 if (ret) { 1489 dev_err(dev, "failed to get msg from VF(%u)!\n", vf_id); 1490 return; 1491 } 1492 1493 cmd = msg & QM_MB_CMD_DATA_MASK; 1494 switch (cmd) { 1495 case QM_VF_PREPARE_FAIL: 1496 dev_err(dev, "failed to stop VF(%u)!\n", vf_id); 1497 break; 1498 case QM_VF_START_FAIL: 1499 dev_err(dev, "failed to start VF(%u)!\n", vf_id); 1500 break; 1501 case QM_VF_PREPARE_DONE: 1502 case QM_VF_START_DONE: 1503 break; 1504 default: 1505 dev_err(dev, "unsupported cmd %u sent by VF(%u)!\n", cmd, vf_id); 1506 break; 1507 } 1508 } 1509 1510 static int qm_wait_vf_prepare_finish(struct hisi_qm *qm) 1511 { 1512 struct device *dev = &qm->pdev->dev; 1513 u32 vfs_num = qm->vfs_num; 1514 int cnt = 0; 1515 int ret = 0; 1516 u64 val; 1517 u32 i; 1518 1519 if (!qm->vfs_num || !test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 1520 return 0; 1521 1522 while (true) { 1523 val = readq(qm->io_base + QM_IFC_INT_SOURCE_P); 1524 /* All VFs send command to PF, break */ 1525 if ((val & GENMASK(vfs_num, 1)) == GENMASK(vfs_num, 1)) 1526 break; 1527 1528 if (++cnt > QM_MAX_PF_WAIT_COUNT) { 1529 ret = -EBUSY; 1530 break; 1531 } 1532 1533 msleep(QM_WAIT_DST_ACK); 1534 } 1535 1536 /* PF check VFs msg */ 1537 for (i = 1; i <= vfs_num; i++) { 1538 if (val & BIT(i)) 1539 qm_handle_vf_msg(qm, i); 1540 else 1541 dev_err(dev, "VF(%u) not ping PF!\n", i); 1542 } 1543 1544 /* PF clear interrupt to ack VFs */ 1545 qm_clear_cmd_interrupt(qm, val); 1546 1547 return ret; 1548 } 1549 1550 static void qm_trigger_vf_interrupt(struct hisi_qm *qm, u32 fun_num) 1551 { 1552 u32 val; 1553 1554 val = readl(qm->io_base + QM_IFC_INT_CFG); 1555 val &= ~QM_IFC_SEND_ALL_VFS; 1556 val |= fun_num; 1557 writel(val, qm->io_base + QM_IFC_INT_CFG); 1558 1559 val = readl(qm->io_base + QM_IFC_INT_SET_P); 1560 val |= QM_IFC_INT_SET_MASK; 1561 writel(val, qm->io_base + QM_IFC_INT_SET_P); 1562 } 1563 1564 static void qm_trigger_pf_interrupt(struct hisi_qm *qm) 1565 { 1566 u32 val; 1567 1568 val = readl(qm->io_base + QM_IFC_INT_SET_V); 1569 val |= QM_IFC_INT_SET_MASK; 1570 writel(val, qm->io_base + QM_IFC_INT_SET_V); 1571 } 1572 1573 static int qm_ping_single_vf(struct hisi_qm *qm, u64 cmd, u32 fun_num) 1574 { 1575 struct device *dev = &qm->pdev->dev; 1576 struct qm_mailbox mailbox; 1577 int cnt = 0; 1578 u64 val; 1579 int ret; 1580 1581 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, fun_num, 0); 1582 mutex_lock(&qm->mailbox_lock); 1583 ret = qm_mb_nolock(qm, &mailbox); 1584 if (ret) { 1585 dev_err(dev, "failed to send command to vf(%u)!\n", fun_num); 1586 goto err_unlock; 1587 } 1588 1589 qm_trigger_vf_interrupt(qm, fun_num); 1590 while (true) { 1591 msleep(QM_WAIT_DST_ACK); 1592 val = readq(qm->io_base + QM_IFC_READY_STATUS); 1593 /* if VF respond, PF notifies VF successfully. */ 1594 if (!(val & BIT(fun_num))) 1595 goto err_unlock; 1596 1597 if (++cnt > QM_MAX_PF_WAIT_COUNT) { 1598 dev_err(dev, "failed to get response from VF(%u)!\n", fun_num); 1599 ret = -ETIMEDOUT; 1600 break; 1601 } 1602 } 1603 1604 err_unlock: 1605 mutex_unlock(&qm->mailbox_lock); 1606 return ret; 1607 } 1608 1609 static int qm_ping_all_vfs(struct hisi_qm *qm, u64 cmd) 1610 { 1611 struct device *dev = &qm->pdev->dev; 1612 u32 vfs_num = qm->vfs_num; 1613 struct qm_mailbox mailbox; 1614 u64 val = 0; 1615 int cnt = 0; 1616 int ret; 1617 u32 i; 1618 1619 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, QM_MB_PING_ALL_VFS, 0); 1620 mutex_lock(&qm->mailbox_lock); 1621 /* PF sends command to all VFs by mailbox */ 1622 ret = qm_mb_nolock(qm, &mailbox); 1623 if (ret) { 1624 dev_err(dev, "failed to send command to VFs!\n"); 1625 mutex_unlock(&qm->mailbox_lock); 1626 return ret; 1627 } 1628 1629 qm_trigger_vf_interrupt(qm, QM_IFC_SEND_ALL_VFS); 1630 while (true) { 1631 msleep(QM_WAIT_DST_ACK); 1632 val = readq(qm->io_base + QM_IFC_READY_STATUS); 1633 /* If all VFs acked, PF notifies VFs successfully. */ 1634 if (!(val & GENMASK(vfs_num, 1))) { 1635 mutex_unlock(&qm->mailbox_lock); 1636 return 0; 1637 } 1638 1639 if (++cnt > QM_MAX_PF_WAIT_COUNT) 1640 break; 1641 } 1642 1643 mutex_unlock(&qm->mailbox_lock); 1644 1645 /* Check which vf respond timeout. */ 1646 for (i = 1; i <= vfs_num; i++) { 1647 if (val & BIT(i)) 1648 dev_err(dev, "failed to get response from VF(%u)!\n", i); 1649 } 1650 1651 return -ETIMEDOUT; 1652 } 1653 1654 static int qm_ping_pf(struct hisi_qm *qm, u64 cmd) 1655 { 1656 struct qm_mailbox mailbox; 1657 int cnt = 0; 1658 u32 val; 1659 int ret; 1660 1661 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, 0, 0); 1662 mutex_lock(&qm->mailbox_lock); 1663 ret = qm_mb_nolock(qm, &mailbox); 1664 if (ret) { 1665 dev_err(&qm->pdev->dev, "failed to send command to PF!\n"); 1666 goto unlock; 1667 } 1668 1669 qm_trigger_pf_interrupt(qm); 1670 /* Waiting for PF response */ 1671 while (true) { 1672 msleep(QM_WAIT_DST_ACK); 1673 val = readl(qm->io_base + QM_IFC_INT_SET_V); 1674 if (!(val & QM_IFC_INT_STATUS_MASK)) 1675 break; 1676 1677 if (++cnt > QM_MAX_VF_WAIT_COUNT) { 1678 ret = -ETIMEDOUT; 1679 break; 1680 } 1681 } 1682 1683 unlock: 1684 mutex_unlock(&qm->mailbox_lock); 1685 return ret; 1686 } 1687 1688 static int qm_drain_qm(struct hisi_qm *qm) 1689 { 1690 return hisi_qm_mb(qm, QM_MB_CMD_FLUSH_QM, 0, 0, 0); 1691 } 1692 1693 static int qm_stop_qp(struct hisi_qp *qp) 1694 { 1695 return hisi_qm_mb(qp->qm, QM_MB_CMD_STOP_QP, 0, qp->qp_id, 0); 1696 } 1697 1698 static int qm_set_msi(struct hisi_qm *qm, bool set) 1699 { 1700 struct pci_dev *pdev = qm->pdev; 1701 1702 if (set) { 1703 pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64, 1704 0); 1705 } else { 1706 pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64, 1707 ACC_PEH_MSI_DISABLE); 1708 if (qm->err_status.is_qm_ecc_mbit || 1709 qm->err_status.is_dev_ecc_mbit) 1710 return 0; 1711 1712 mdelay(1); 1713 if (readl(qm->io_base + QM_PEH_DFX_INFO0)) 1714 return -EFAULT; 1715 } 1716 1717 return 0; 1718 } 1719 1720 static void qm_wait_msi_finish(struct hisi_qm *qm) 1721 { 1722 struct pci_dev *pdev = qm->pdev; 1723 u32 cmd = ~0; 1724 int cnt = 0; 1725 u32 val; 1726 int ret; 1727 1728 while (true) { 1729 pci_read_config_dword(pdev, pdev->msi_cap + 1730 PCI_MSI_PENDING_64, &cmd); 1731 if (!cmd) 1732 break; 1733 1734 if (++cnt > MAX_WAIT_COUNTS) { 1735 pci_warn(pdev, "failed to empty MSI PENDING!\n"); 1736 break; 1737 } 1738 1739 udelay(1); 1740 } 1741 1742 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO0, 1743 val, !(val & QM_PEH_DFX_MASK), 1744 POLL_PERIOD, POLL_TIMEOUT); 1745 if (ret) 1746 pci_warn(pdev, "failed to empty PEH MSI!\n"); 1747 1748 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO1, 1749 val, !(val & QM_PEH_MSI_FINISH_MASK), 1750 POLL_PERIOD, POLL_TIMEOUT); 1751 if (ret) 1752 pci_warn(pdev, "failed to finish MSI operation!\n"); 1753 } 1754 1755 static int qm_set_msi_v3(struct hisi_qm *qm, bool set) 1756 { 1757 struct pci_dev *pdev = qm->pdev; 1758 int ret = -ETIMEDOUT; 1759 u32 cmd, i; 1760 1761 pci_read_config_dword(pdev, pdev->msi_cap, &cmd); 1762 if (set) 1763 cmd |= QM_MSI_CAP_ENABLE; 1764 else 1765 cmd &= ~QM_MSI_CAP_ENABLE; 1766 1767 pci_write_config_dword(pdev, pdev->msi_cap, cmd); 1768 if (set) { 1769 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 1770 pci_read_config_dword(pdev, pdev->msi_cap, &cmd); 1771 if (cmd & QM_MSI_CAP_ENABLE) 1772 return 0; 1773 1774 udelay(1); 1775 } 1776 } else { 1777 udelay(WAIT_PERIOD_US_MIN); 1778 qm_wait_msi_finish(qm); 1779 ret = 0; 1780 } 1781 1782 return ret; 1783 } 1784 1785 static const struct hisi_qm_hw_ops qm_hw_ops_v1 = { 1786 .qm_db = qm_db_v1, 1787 .hw_error_init = qm_hw_error_init_v1, 1788 .set_msi = qm_set_msi, 1789 }; 1790 1791 static const struct hisi_qm_hw_ops qm_hw_ops_v2 = { 1792 .get_vft = qm_get_vft_v2, 1793 .qm_db = qm_db_v2, 1794 .hw_error_init = qm_hw_error_init_v2, 1795 .hw_error_uninit = qm_hw_error_uninit_v2, 1796 .hw_error_handle = qm_hw_error_handle_v2, 1797 .set_msi = qm_set_msi, 1798 }; 1799 1800 static const struct hisi_qm_hw_ops qm_hw_ops_v3 = { 1801 .get_vft = qm_get_vft_v2, 1802 .qm_db = qm_db_v2, 1803 .hw_error_init = qm_hw_error_init_v3, 1804 .hw_error_uninit = qm_hw_error_uninit_v3, 1805 .hw_error_handle = qm_hw_error_handle_v2, 1806 .set_msi = qm_set_msi_v3, 1807 }; 1808 1809 static void *qm_get_avail_sqe(struct hisi_qp *qp) 1810 { 1811 struct hisi_qp_status *qp_status = &qp->qp_status; 1812 u16 sq_tail = qp_status->sq_tail; 1813 1814 if (unlikely(atomic_read(&qp->qp_status.used) == qp->sq_depth - 1)) 1815 return NULL; 1816 1817 return qp->sqe + sq_tail * qp->qm->sqe_size; 1818 } 1819 1820 static void hisi_qm_unset_hw_reset(struct hisi_qp *qp) 1821 { 1822 u64 *addr; 1823 1824 /* Use last 64 bits of DUS to reset status. */ 1825 addr = (u64 *)(qp->qdma.va + qp->qdma.size) - QM_RESET_STOP_TX_OFFSET; 1826 *addr = 0; 1827 } 1828 1829 static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type) 1830 { 1831 struct device *dev = &qm->pdev->dev; 1832 struct hisi_qp *qp; 1833 int qp_id; 1834 1835 if (atomic_read(&qm->status.flags) == QM_STOP) { 1836 dev_info_ratelimited(dev, "failed to create qp as qm is stop!\n"); 1837 return ERR_PTR(-EPERM); 1838 } 1839 1840 if (qm->qp_in_used == qm->qp_num) { 1841 dev_info_ratelimited(dev, "All %u queues of QM are busy!\n", 1842 qm->qp_num); 1843 atomic64_inc(&qm->debug.dfx.create_qp_err_cnt); 1844 return ERR_PTR(-EBUSY); 1845 } 1846 1847 qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC); 1848 if (qp_id < 0) { 1849 dev_info_ratelimited(dev, "All %u queues of QM are busy!\n", 1850 qm->qp_num); 1851 atomic64_inc(&qm->debug.dfx.create_qp_err_cnt); 1852 return ERR_PTR(-EBUSY); 1853 } 1854 1855 qp = &qm->qp_array[qp_id]; 1856 hisi_qm_unset_hw_reset(qp); 1857 memset(qp->cqe, 0, sizeof(struct qm_cqe) * qp->cq_depth); 1858 1859 qp->event_cb = NULL; 1860 qp->req_cb = NULL; 1861 qp->qp_id = qp_id; 1862 qp->alg_type = alg_type; 1863 qp->is_in_kernel = true; 1864 qm->qp_in_used++; 1865 1866 return qp; 1867 } 1868 1869 /** 1870 * hisi_qm_create_qp() - Create a queue pair from qm. 1871 * @qm: The qm we create a qp from. 1872 * @alg_type: Accelerator specific algorithm type in sqc. 1873 * 1874 * Return created qp, negative error code if failed. 1875 */ 1876 static struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type) 1877 { 1878 struct hisi_qp *qp; 1879 int ret; 1880 1881 ret = qm_pm_get_sync(qm); 1882 if (ret) 1883 return ERR_PTR(ret); 1884 1885 down_write(&qm->qps_lock); 1886 qp = qm_create_qp_nolock(qm, alg_type); 1887 up_write(&qm->qps_lock); 1888 1889 if (IS_ERR(qp)) 1890 qm_pm_put_sync(qm); 1891 1892 return qp; 1893 } 1894 1895 /** 1896 * hisi_qm_release_qp() - Release a qp back to its qm. 1897 * @qp: The qp we want to release. 1898 * 1899 * This function releases the resource of a qp. 1900 */ 1901 static void hisi_qm_release_qp(struct hisi_qp *qp) 1902 { 1903 struct hisi_qm *qm = qp->qm; 1904 1905 down_write(&qm->qps_lock); 1906 1907 qm->qp_in_used--; 1908 idr_remove(&qm->qp_idr, qp->qp_id); 1909 1910 up_write(&qm->qps_lock); 1911 1912 qm_pm_put_sync(qm); 1913 } 1914 1915 static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 1916 { 1917 struct hisi_qm *qm = qp->qm; 1918 enum qm_hw_ver ver = qm->ver; 1919 struct qm_sqc sqc = {0}; 1920 1921 if (ver == QM_HW_V1) { 1922 sqc.dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size)); 1923 sqc.w8 = cpu_to_le16(qp->sq_depth - 1); 1924 } else { 1925 sqc.dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size, qp->sq_depth)); 1926 sqc.w8 = 0; /* rand_qc */ 1927 } 1928 sqc.w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type)); 1929 sqc.base_l = cpu_to_le32(lower_32_bits(qp->sqe_dma)); 1930 sqc.base_h = cpu_to_le32(upper_32_bits(qp->sqe_dma)); 1931 sqc.cq_num = cpu_to_le16(qp_id); 1932 sqc.pasid = cpu_to_le16(pasid); 1933 1934 if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel) 1935 sqc.w11 = cpu_to_le16(QM_QC_PASID_ENABLE << 1936 QM_QC_PASID_ENABLE_SHIFT); 1937 1938 return qm_set_and_get_xqc(qm, QM_MB_CMD_SQC, &sqc, qp_id, 0); 1939 } 1940 1941 static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 1942 { 1943 struct hisi_qm *qm = qp->qm; 1944 enum qm_hw_ver ver = qm->ver; 1945 struct qm_cqc cqc = {0}; 1946 1947 if (ver == QM_HW_V1) { 1948 cqc.dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0, QM_QC_CQE_SIZE)); 1949 cqc.w8 = cpu_to_le16(qp->cq_depth - 1); 1950 } else { 1951 cqc.dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE, qp->cq_depth)); 1952 cqc.w8 = 0; /* rand_qc */ 1953 } 1954 /* 1955 * Enable request finishing interrupts defaultly. 1956 * So, there will be some interrupts until disabling 1957 * this. 1958 */ 1959 cqc.dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT); 1960 cqc.base_l = cpu_to_le32(lower_32_bits(qp->cqe_dma)); 1961 cqc.base_h = cpu_to_le32(upper_32_bits(qp->cqe_dma)); 1962 cqc.pasid = cpu_to_le16(pasid); 1963 1964 if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel) 1965 cqc.w11 = cpu_to_le16(QM_QC_PASID_ENABLE); 1966 1967 return qm_set_and_get_xqc(qm, QM_MB_CMD_CQC, &cqc, qp_id, 0); 1968 } 1969 1970 static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 1971 { 1972 int ret; 1973 1974 qm_init_qp_status(qp); 1975 1976 ret = qm_sq_ctx_cfg(qp, qp_id, pasid); 1977 if (ret) 1978 return ret; 1979 1980 return qm_cq_ctx_cfg(qp, qp_id, pasid); 1981 } 1982 1983 static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg) 1984 { 1985 struct hisi_qm *qm = qp->qm; 1986 struct device *dev = &qm->pdev->dev; 1987 int qp_id = qp->qp_id; 1988 u32 pasid = arg; 1989 int ret; 1990 1991 if (atomic_read(&qm->status.flags) == QM_STOP) { 1992 dev_info_ratelimited(dev, "failed to start qp as qm is stop!\n"); 1993 return -EPERM; 1994 } 1995 1996 ret = qm_qp_ctx_cfg(qp, qp_id, pasid); 1997 if (ret) 1998 return ret; 1999 2000 atomic_set(&qp->qp_status.flags, QP_START); 2001 dev_dbg(dev, "queue %d started\n", qp_id); 2002 2003 return 0; 2004 } 2005 2006 /** 2007 * hisi_qm_start_qp() - Start a qp into running. 2008 * @qp: The qp we want to start to run. 2009 * @arg: Accelerator specific argument. 2010 * 2011 * After this function, qp can receive request from user. Return 0 if 2012 * successful, negative error code if failed. 2013 */ 2014 int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg) 2015 { 2016 struct hisi_qm *qm = qp->qm; 2017 int ret; 2018 2019 down_write(&qm->qps_lock); 2020 ret = qm_start_qp_nolock(qp, arg); 2021 up_write(&qm->qps_lock); 2022 2023 return ret; 2024 } 2025 EXPORT_SYMBOL_GPL(hisi_qm_start_qp); 2026 2027 /** 2028 * qp_stop_fail_cb() - call request cb. 2029 * @qp: stopped failed qp. 2030 * 2031 * Callback function should be called whether task completed or not. 2032 */ 2033 static void qp_stop_fail_cb(struct hisi_qp *qp) 2034 { 2035 int qp_used = atomic_read(&qp->qp_status.used); 2036 u16 cur_tail = qp->qp_status.sq_tail; 2037 u16 sq_depth = qp->sq_depth; 2038 u16 cur_head = (cur_tail + sq_depth - qp_used) % sq_depth; 2039 struct hisi_qm *qm = qp->qm; 2040 u16 pos; 2041 int i; 2042 2043 for (i = 0; i < qp_used; i++) { 2044 pos = (i + cur_head) % sq_depth; 2045 qp->req_cb(qp, qp->sqe + (u32)(qm->sqe_size * pos)); 2046 atomic_dec(&qp->qp_status.used); 2047 } 2048 } 2049 2050 static int qm_wait_qp_empty(struct hisi_qm *qm, u32 *state, u32 qp_id) 2051 { 2052 struct device *dev = &qm->pdev->dev; 2053 struct qm_sqc sqc; 2054 struct qm_cqc cqc; 2055 int ret, i = 0; 2056 2057 while (++i) { 2058 ret = qm_set_and_get_xqc(qm, QM_MB_CMD_SQC, &sqc, qp_id, 1); 2059 if (ret) { 2060 dev_err_ratelimited(dev, "Failed to dump sqc!\n"); 2061 *state = QM_DUMP_SQC_FAIL; 2062 return ret; 2063 } 2064 2065 ret = qm_set_and_get_xqc(qm, QM_MB_CMD_CQC, &cqc, qp_id, 1); 2066 if (ret) { 2067 dev_err_ratelimited(dev, "Failed to dump cqc!\n"); 2068 *state = QM_DUMP_CQC_FAIL; 2069 return ret; 2070 } 2071 2072 if ((sqc.tail == cqc.tail) && 2073 (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc))) 2074 break; 2075 2076 if (i == MAX_WAIT_COUNTS) { 2077 dev_err(dev, "Fail to empty queue %u!\n", qp_id); 2078 *state = QM_STOP_QUEUE_FAIL; 2079 return -ETIMEDOUT; 2080 } 2081 2082 usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX); 2083 } 2084 2085 return 0; 2086 } 2087 2088 /** 2089 * qm_drain_qp() - Drain a qp. 2090 * @qp: The qp we want to drain. 2091 * 2092 * If the device does not support stopping queue by sending mailbox, 2093 * determine whether the queue is cleared by judging the tail pointers of 2094 * sq and cq. 2095 */ 2096 static int qm_drain_qp(struct hisi_qp *qp) 2097 { 2098 struct hisi_qm *qm = qp->qm; 2099 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 2100 u32 state = 0; 2101 int ret; 2102 2103 /* No need to judge if master OOO is blocked. */ 2104 if (qm_check_dev_error(pf_qm)) 2105 return 0; 2106 2107 /* HW V3 supports drain qp by device */ 2108 if (test_bit(QM_SUPPORT_STOP_QP, &qm->caps)) { 2109 ret = qm_stop_qp(qp); 2110 if (ret) { 2111 dev_err(&qm->pdev->dev, "Failed to stop qp!\n"); 2112 state = QM_STOP_QUEUE_FAIL; 2113 goto set_dev_state; 2114 } 2115 return ret; 2116 } 2117 2118 ret = qm_wait_qp_empty(qm, &state, qp->qp_id); 2119 if (ret) 2120 goto set_dev_state; 2121 2122 return 0; 2123 2124 set_dev_state: 2125 if (qm->debug.dev_dfx.dev_timeout) 2126 qm->debug.dev_dfx.dev_state = state; 2127 2128 return ret; 2129 } 2130 2131 static void qm_stop_qp_nolock(struct hisi_qp *qp) 2132 { 2133 struct hisi_qm *qm = qp->qm; 2134 struct device *dev = &qm->pdev->dev; 2135 int ret; 2136 2137 /* 2138 * It is allowed to stop and release qp when reset, If the qp is 2139 * stopped when reset but still want to be released then, the 2140 * is_resetting flag should be set negative so that this qp will not 2141 * be restarted after reset. 2142 */ 2143 if (atomic_read(&qp->qp_status.flags) != QP_START) { 2144 qp->is_resetting = false; 2145 return; 2146 } 2147 2148 atomic_set(&qp->qp_status.flags, QP_STOP); 2149 2150 /* V3 supports direct stop function when FLR prepare */ 2151 if (qm->ver < QM_HW_V3 || qm->status.stop_reason == QM_NORMAL) { 2152 ret = qm_drain_qp(qp); 2153 if (ret) 2154 dev_err(dev, "Failed to drain out data for stopping qp(%u)!\n", qp->qp_id); 2155 } 2156 2157 flush_workqueue(qm->wq); 2158 if (unlikely(qp->is_resetting && atomic_read(&qp->qp_status.used))) 2159 qp_stop_fail_cb(qp); 2160 2161 dev_dbg(dev, "stop queue %u!", qp->qp_id); 2162 } 2163 2164 /** 2165 * hisi_qm_stop_qp() - Stop a qp in qm. 2166 * @qp: The qp we want to stop. 2167 * 2168 * This function is reverse of hisi_qm_start_qp. 2169 */ 2170 void hisi_qm_stop_qp(struct hisi_qp *qp) 2171 { 2172 down_write(&qp->qm->qps_lock); 2173 qm_stop_qp_nolock(qp); 2174 up_write(&qp->qm->qps_lock); 2175 } 2176 EXPORT_SYMBOL_GPL(hisi_qm_stop_qp); 2177 2178 /** 2179 * hisi_qp_send() - Queue up a task in the hardware queue. 2180 * @qp: The qp in which to put the message. 2181 * @msg: The message. 2182 * 2183 * This function will return -EBUSY if qp is currently full, and -EAGAIN 2184 * if qp related qm is resetting. 2185 * 2186 * Note: This function may run with qm_irq_thread and ACC reset at same time. 2187 * It has no race with qm_irq_thread. However, during hisi_qp_send, ACC 2188 * reset may happen, we have no lock here considering performance. This 2189 * causes current qm_db sending fail or can not receive sended sqe. QM 2190 * sync/async receive function should handle the error sqe. ACC reset 2191 * done function should clear used sqe to 0. 2192 */ 2193 int hisi_qp_send(struct hisi_qp *qp, const void *msg) 2194 { 2195 struct hisi_qp_status *qp_status = &qp->qp_status; 2196 u16 sq_tail = qp_status->sq_tail; 2197 u16 sq_tail_next = (sq_tail + 1) % qp->sq_depth; 2198 void *sqe = qm_get_avail_sqe(qp); 2199 2200 if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP || 2201 atomic_read(&qp->qm->status.flags) == QM_STOP || 2202 qp->is_resetting)) { 2203 dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n"); 2204 return -EAGAIN; 2205 } 2206 2207 if (!sqe) 2208 return -EBUSY; 2209 2210 memcpy(sqe, msg, qp->qm->sqe_size); 2211 2212 qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0); 2213 atomic_inc(&qp->qp_status.used); 2214 qp_status->sq_tail = sq_tail_next; 2215 2216 return 0; 2217 } 2218 EXPORT_SYMBOL_GPL(hisi_qp_send); 2219 2220 static void hisi_qm_cache_wb(struct hisi_qm *qm) 2221 { 2222 unsigned int val; 2223 2224 if (qm->ver == QM_HW_V1) 2225 return; 2226 2227 writel(0x1, qm->io_base + QM_CACHE_WB_START); 2228 if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE, 2229 val, val & BIT(0), POLL_PERIOD, 2230 POLL_TIMEOUT)) 2231 dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n"); 2232 } 2233 2234 static void qm_qp_event_notifier(struct hisi_qp *qp) 2235 { 2236 wake_up_interruptible(&qp->uacce_q->wait); 2237 } 2238 2239 /* This function returns free number of qp in qm. */ 2240 static int hisi_qm_get_available_instances(struct uacce_device *uacce) 2241 { 2242 struct hisi_qm *qm = uacce->priv; 2243 int ret; 2244 2245 down_read(&qm->qps_lock); 2246 ret = qm->qp_num - qm->qp_in_used; 2247 up_read(&qm->qps_lock); 2248 2249 return ret; 2250 } 2251 2252 static void hisi_qm_set_hw_reset(struct hisi_qm *qm, int offset) 2253 { 2254 int i; 2255 2256 for (i = 0; i < qm->qp_num; i++) 2257 qm_set_qp_disable(&qm->qp_array[i], offset); 2258 } 2259 2260 static int hisi_qm_uacce_get_queue(struct uacce_device *uacce, 2261 unsigned long arg, 2262 struct uacce_queue *q) 2263 { 2264 struct hisi_qm *qm = uacce->priv; 2265 struct hisi_qp *qp; 2266 u8 alg_type = 0; 2267 2268 qp = hisi_qm_create_qp(qm, alg_type); 2269 if (IS_ERR(qp)) 2270 return PTR_ERR(qp); 2271 2272 q->priv = qp; 2273 q->uacce = uacce; 2274 qp->uacce_q = q; 2275 qp->event_cb = qm_qp_event_notifier; 2276 qp->pasid = arg; 2277 qp->is_in_kernel = false; 2278 2279 return 0; 2280 } 2281 2282 static void hisi_qm_uacce_put_queue(struct uacce_queue *q) 2283 { 2284 struct hisi_qp *qp = q->priv; 2285 2286 hisi_qm_release_qp(qp); 2287 } 2288 2289 /* map sq/cq/doorbell to user space */ 2290 static int hisi_qm_uacce_mmap(struct uacce_queue *q, 2291 struct vm_area_struct *vma, 2292 struct uacce_qfile_region *qfr) 2293 { 2294 struct hisi_qp *qp = q->priv; 2295 struct hisi_qm *qm = qp->qm; 2296 resource_size_t phys_base = qm->db_phys_base + 2297 qp->qp_id * qm->db_interval; 2298 size_t sz = vma->vm_end - vma->vm_start; 2299 struct pci_dev *pdev = qm->pdev; 2300 struct device *dev = &pdev->dev; 2301 unsigned long vm_pgoff; 2302 int ret; 2303 2304 switch (qfr->type) { 2305 case UACCE_QFRT_MMIO: 2306 if (qm->ver == QM_HW_V1) { 2307 if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR) 2308 return -EINVAL; 2309 } else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) { 2310 if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR + 2311 QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE)) 2312 return -EINVAL; 2313 } else { 2314 if (sz > qm->db_interval) 2315 return -EINVAL; 2316 } 2317 2318 vm_flags_set(vma, VM_IO); 2319 2320 return remap_pfn_range(vma, vma->vm_start, 2321 phys_base >> PAGE_SHIFT, 2322 sz, pgprot_noncached(vma->vm_page_prot)); 2323 case UACCE_QFRT_DUS: 2324 if (sz != qp->qdma.size) 2325 return -EINVAL; 2326 2327 /* 2328 * dma_mmap_coherent() requires vm_pgoff as 0 2329 * restore vm_pfoff to initial value for mmap() 2330 */ 2331 vm_pgoff = vma->vm_pgoff; 2332 vma->vm_pgoff = 0; 2333 ret = dma_mmap_coherent(dev, vma, qp->qdma.va, 2334 qp->qdma.dma, sz); 2335 vma->vm_pgoff = vm_pgoff; 2336 return ret; 2337 2338 default: 2339 return -EINVAL; 2340 } 2341 } 2342 2343 static int hisi_qm_uacce_start_queue(struct uacce_queue *q) 2344 { 2345 struct hisi_qp *qp = q->priv; 2346 2347 return hisi_qm_start_qp(qp, qp->pasid); 2348 } 2349 2350 static void hisi_qm_uacce_stop_queue(struct uacce_queue *q) 2351 { 2352 struct hisi_qp *qp = q->priv; 2353 struct hisi_qm *qm = qp->qm; 2354 struct qm_dev_dfx *dev_dfx = &qm->debug.dev_dfx; 2355 u32 i = 0; 2356 2357 hisi_qm_stop_qp(qp); 2358 2359 if (!dev_dfx->dev_timeout || !dev_dfx->dev_state) 2360 return; 2361 2362 /* 2363 * After the queue fails to be stopped, 2364 * wait for a period of time before releasing the queue. 2365 */ 2366 while (++i) { 2367 msleep(WAIT_PERIOD); 2368 2369 /* Since dev_timeout maybe modified, check i >= dev_timeout */ 2370 if (i >= dev_dfx->dev_timeout) { 2371 dev_err(&qm->pdev->dev, "Stop q %u timeout, state %u\n", 2372 qp->qp_id, dev_dfx->dev_state); 2373 dev_dfx->dev_state = QM_FINISH_WAIT; 2374 break; 2375 } 2376 } 2377 } 2378 2379 static int hisi_qm_is_q_updated(struct uacce_queue *q) 2380 { 2381 struct hisi_qp *qp = q->priv; 2382 struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head; 2383 int updated = 0; 2384 2385 while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) { 2386 /* make sure to read data from memory */ 2387 dma_rmb(); 2388 qm_cq_head_update(qp); 2389 cqe = qp->cqe + qp->qp_status.cq_head; 2390 updated = 1; 2391 } 2392 2393 return updated; 2394 } 2395 2396 static void qm_set_sqctype(struct uacce_queue *q, u16 type) 2397 { 2398 struct hisi_qm *qm = q->uacce->priv; 2399 struct hisi_qp *qp = q->priv; 2400 2401 down_write(&qm->qps_lock); 2402 qp->alg_type = type; 2403 up_write(&qm->qps_lock); 2404 } 2405 2406 static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd, 2407 unsigned long arg) 2408 { 2409 struct hisi_qp *qp = q->priv; 2410 struct hisi_qp_info qp_info; 2411 struct hisi_qp_ctx qp_ctx; 2412 2413 if (cmd == UACCE_CMD_QM_SET_QP_CTX) { 2414 if (copy_from_user(&qp_ctx, (void __user *)arg, 2415 sizeof(struct hisi_qp_ctx))) 2416 return -EFAULT; 2417 2418 if (qp_ctx.qc_type != 0 && qp_ctx.qc_type != 1) 2419 return -EINVAL; 2420 2421 qm_set_sqctype(q, qp_ctx.qc_type); 2422 qp_ctx.id = qp->qp_id; 2423 2424 if (copy_to_user((void __user *)arg, &qp_ctx, 2425 sizeof(struct hisi_qp_ctx))) 2426 return -EFAULT; 2427 2428 return 0; 2429 } else if (cmd == UACCE_CMD_QM_SET_QP_INFO) { 2430 if (copy_from_user(&qp_info, (void __user *)arg, 2431 sizeof(struct hisi_qp_info))) 2432 return -EFAULT; 2433 2434 qp_info.sqe_size = qp->qm->sqe_size; 2435 qp_info.sq_depth = qp->sq_depth; 2436 qp_info.cq_depth = qp->cq_depth; 2437 2438 if (copy_to_user((void __user *)arg, &qp_info, 2439 sizeof(struct hisi_qp_info))) 2440 return -EFAULT; 2441 2442 return 0; 2443 } 2444 2445 return -EINVAL; 2446 } 2447 2448 /** 2449 * qm_hw_err_isolate() - Try to set the isolation status of the uacce device 2450 * according to user's configuration of error threshold. 2451 * @qm: the uacce device 2452 */ 2453 static int qm_hw_err_isolate(struct hisi_qm *qm) 2454 { 2455 struct qm_hw_err *err, *tmp, *hw_err; 2456 struct qm_err_isolate *isolate; 2457 u32 count = 0; 2458 2459 isolate = &qm->isolate_data; 2460 2461 #define SECONDS_PER_HOUR 3600 2462 2463 /* All the hw errs are processed by PF driver */ 2464 if (qm->uacce->is_vf || isolate->is_isolate || !isolate->err_threshold) 2465 return 0; 2466 2467 hw_err = kzalloc(sizeof(*hw_err), GFP_KERNEL); 2468 if (!hw_err) 2469 return -ENOMEM; 2470 2471 /* 2472 * Time-stamp every slot AER error. Then check the AER error log when the 2473 * next device AER error occurred. if the device slot AER error count exceeds 2474 * the setting error threshold in one hour, the isolated state will be set 2475 * to true. And the AER error logs that exceed one hour will be cleared. 2476 */ 2477 mutex_lock(&isolate->isolate_lock); 2478 hw_err->timestamp = jiffies; 2479 list_for_each_entry_safe(err, tmp, &isolate->qm_hw_errs, list) { 2480 if ((hw_err->timestamp - err->timestamp) / HZ > 2481 SECONDS_PER_HOUR) { 2482 list_del(&err->list); 2483 kfree(err); 2484 } else { 2485 count++; 2486 } 2487 } 2488 list_add(&hw_err->list, &isolate->qm_hw_errs); 2489 mutex_unlock(&isolate->isolate_lock); 2490 2491 if (count >= isolate->err_threshold) 2492 isolate->is_isolate = true; 2493 2494 return 0; 2495 } 2496 2497 static void qm_hw_err_destroy(struct hisi_qm *qm) 2498 { 2499 struct qm_hw_err *err, *tmp; 2500 2501 mutex_lock(&qm->isolate_data.isolate_lock); 2502 list_for_each_entry_safe(err, tmp, &qm->isolate_data.qm_hw_errs, list) { 2503 list_del(&err->list); 2504 kfree(err); 2505 } 2506 mutex_unlock(&qm->isolate_data.isolate_lock); 2507 } 2508 2509 static enum uacce_dev_state hisi_qm_get_isolate_state(struct uacce_device *uacce) 2510 { 2511 struct hisi_qm *qm = uacce->priv; 2512 struct hisi_qm *pf_qm; 2513 2514 if (uacce->is_vf) 2515 pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 2516 else 2517 pf_qm = qm; 2518 2519 return pf_qm->isolate_data.is_isolate ? 2520 UACCE_DEV_ISOLATE : UACCE_DEV_NORMAL; 2521 } 2522 2523 static int hisi_qm_isolate_threshold_write(struct uacce_device *uacce, u32 num) 2524 { 2525 struct hisi_qm *qm = uacce->priv; 2526 2527 /* Must be set by PF */ 2528 if (uacce->is_vf) 2529 return -EPERM; 2530 2531 if (qm->isolate_data.is_isolate) 2532 return -EPERM; 2533 2534 qm->isolate_data.err_threshold = num; 2535 2536 /* After the policy is updated, need to reset the hardware err list */ 2537 qm_hw_err_destroy(qm); 2538 2539 return 0; 2540 } 2541 2542 static u32 hisi_qm_isolate_threshold_read(struct uacce_device *uacce) 2543 { 2544 struct hisi_qm *qm = uacce->priv; 2545 struct hisi_qm *pf_qm; 2546 2547 if (uacce->is_vf) { 2548 pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 2549 return pf_qm->isolate_data.err_threshold; 2550 } 2551 2552 return qm->isolate_data.err_threshold; 2553 } 2554 2555 static const struct uacce_ops uacce_qm_ops = { 2556 .get_available_instances = hisi_qm_get_available_instances, 2557 .get_queue = hisi_qm_uacce_get_queue, 2558 .put_queue = hisi_qm_uacce_put_queue, 2559 .start_queue = hisi_qm_uacce_start_queue, 2560 .stop_queue = hisi_qm_uacce_stop_queue, 2561 .mmap = hisi_qm_uacce_mmap, 2562 .ioctl = hisi_qm_uacce_ioctl, 2563 .is_q_updated = hisi_qm_is_q_updated, 2564 .get_isolate_state = hisi_qm_get_isolate_state, 2565 .isolate_err_threshold_write = hisi_qm_isolate_threshold_write, 2566 .isolate_err_threshold_read = hisi_qm_isolate_threshold_read, 2567 }; 2568 2569 static void qm_remove_uacce(struct hisi_qm *qm) 2570 { 2571 struct uacce_device *uacce = qm->uacce; 2572 2573 if (qm->use_sva) { 2574 qm_hw_err_destroy(qm); 2575 uacce_remove(uacce); 2576 qm->uacce = NULL; 2577 } 2578 } 2579 2580 static int qm_alloc_uacce(struct hisi_qm *qm) 2581 { 2582 struct pci_dev *pdev = qm->pdev; 2583 struct uacce_device *uacce; 2584 unsigned long mmio_page_nr; 2585 unsigned long dus_page_nr; 2586 u16 sq_depth, cq_depth; 2587 struct uacce_interface interface = { 2588 .flags = UACCE_DEV_SVA, 2589 .ops = &uacce_qm_ops, 2590 }; 2591 int ret; 2592 2593 ret = strscpy(interface.name, dev_driver_string(&pdev->dev), 2594 sizeof(interface.name)); 2595 if (ret < 0) 2596 return -ENAMETOOLONG; 2597 2598 uacce = uacce_alloc(&pdev->dev, &interface); 2599 if (IS_ERR(uacce)) 2600 return PTR_ERR(uacce); 2601 2602 if (uacce->flags & UACCE_DEV_SVA) { 2603 qm->use_sva = true; 2604 } else { 2605 /* only consider sva case */ 2606 qm_remove_uacce(qm); 2607 return -EINVAL; 2608 } 2609 2610 uacce->is_vf = pdev->is_virtfn; 2611 uacce->priv = qm; 2612 2613 if (qm->ver == QM_HW_V1) 2614 uacce->api_ver = HISI_QM_API_VER_BASE; 2615 else if (qm->ver == QM_HW_V2) 2616 uacce->api_ver = HISI_QM_API_VER2_BASE; 2617 else 2618 uacce->api_ver = HISI_QM_API_VER3_BASE; 2619 2620 if (qm->ver == QM_HW_V1) 2621 mmio_page_nr = QM_DOORBELL_PAGE_NR; 2622 else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) 2623 mmio_page_nr = QM_DOORBELL_PAGE_NR + 2624 QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE; 2625 else 2626 mmio_page_nr = qm->db_interval / PAGE_SIZE; 2627 2628 qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP); 2629 2630 /* Add one more page for device or qp status */ 2631 dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * sq_depth + 2632 sizeof(struct qm_cqe) * cq_depth + PAGE_SIZE) >> 2633 PAGE_SHIFT; 2634 2635 uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr; 2636 uacce->qf_pg_num[UACCE_QFRT_DUS] = dus_page_nr; 2637 2638 qm->uacce = uacce; 2639 INIT_LIST_HEAD(&qm->isolate_data.qm_hw_errs); 2640 mutex_init(&qm->isolate_data.isolate_lock); 2641 2642 return 0; 2643 } 2644 2645 /** 2646 * qm_frozen() - Try to froze QM to cut continuous queue request. If 2647 * there is user on the QM, return failure without doing anything. 2648 * @qm: The qm needed to be fronzen. 2649 * 2650 * This function frozes QM, then we can do SRIOV disabling. 2651 */ 2652 static int qm_frozen(struct hisi_qm *qm) 2653 { 2654 if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl)) 2655 return 0; 2656 2657 down_write(&qm->qps_lock); 2658 2659 if (!qm->qp_in_used) { 2660 qm->qp_in_used = qm->qp_num; 2661 up_write(&qm->qps_lock); 2662 set_bit(QM_DRIVER_REMOVING, &qm->misc_ctl); 2663 return 0; 2664 } 2665 2666 up_write(&qm->qps_lock); 2667 2668 return -EBUSY; 2669 } 2670 2671 static int qm_try_frozen_vfs(struct pci_dev *pdev, 2672 struct hisi_qm_list *qm_list) 2673 { 2674 struct hisi_qm *qm, *vf_qm; 2675 struct pci_dev *dev; 2676 int ret = 0; 2677 2678 if (!qm_list || !pdev) 2679 return -EINVAL; 2680 2681 /* Try to frozen all the VFs as disable SRIOV */ 2682 mutex_lock(&qm_list->lock); 2683 list_for_each_entry(qm, &qm_list->list, list) { 2684 dev = qm->pdev; 2685 if (dev == pdev) 2686 continue; 2687 if (pci_physfn(dev) == pdev) { 2688 vf_qm = pci_get_drvdata(dev); 2689 ret = qm_frozen(vf_qm); 2690 if (ret) 2691 goto frozen_fail; 2692 } 2693 } 2694 2695 frozen_fail: 2696 mutex_unlock(&qm_list->lock); 2697 2698 return ret; 2699 } 2700 2701 /** 2702 * hisi_qm_wait_task_finish() - Wait until the task is finished 2703 * when removing the driver. 2704 * @qm: The qm needed to wait for the task to finish. 2705 * @qm_list: The list of all available devices. 2706 */ 2707 void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 2708 { 2709 while (qm_frozen(qm) || 2710 ((qm->fun_type == QM_HW_PF) && 2711 qm_try_frozen_vfs(qm->pdev, qm_list))) { 2712 msleep(WAIT_PERIOD); 2713 } 2714 2715 while (test_bit(QM_RST_SCHED, &qm->misc_ctl) || 2716 test_bit(QM_RESETTING, &qm->misc_ctl)) 2717 msleep(WAIT_PERIOD); 2718 2719 if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 2720 flush_work(&qm->cmd_process); 2721 2722 udelay(REMOVE_WAIT_DELAY); 2723 } 2724 EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish); 2725 2726 static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num) 2727 { 2728 struct device *dev = &qm->pdev->dev; 2729 struct qm_dma *qdma; 2730 int i; 2731 2732 for (i = num - 1; i >= 0; i--) { 2733 qdma = &qm->qp_array[i].qdma; 2734 dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma); 2735 kfree(qm->poll_data[i].qp_finish_id); 2736 } 2737 2738 kfree(qm->poll_data); 2739 kfree(qm->qp_array); 2740 } 2741 2742 static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id, 2743 u16 sq_depth, u16 cq_depth) 2744 { 2745 struct device *dev = &qm->pdev->dev; 2746 size_t off = qm->sqe_size * sq_depth; 2747 struct hisi_qp *qp; 2748 int ret = -ENOMEM; 2749 2750 qm->poll_data[id].qp_finish_id = kcalloc(qm->qp_num, sizeof(u16), 2751 GFP_KERNEL); 2752 if (!qm->poll_data[id].qp_finish_id) 2753 return -ENOMEM; 2754 2755 qp = &qm->qp_array[id]; 2756 qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma, 2757 GFP_KERNEL); 2758 if (!qp->qdma.va) 2759 goto err_free_qp_finish_id; 2760 2761 qp->sqe = qp->qdma.va; 2762 qp->sqe_dma = qp->qdma.dma; 2763 qp->cqe = qp->qdma.va + off; 2764 qp->cqe_dma = qp->qdma.dma + off; 2765 qp->qdma.size = dma_size; 2766 qp->sq_depth = sq_depth; 2767 qp->cq_depth = cq_depth; 2768 qp->qm = qm; 2769 qp->qp_id = id; 2770 2771 return 0; 2772 2773 err_free_qp_finish_id: 2774 kfree(qm->poll_data[id].qp_finish_id); 2775 return ret; 2776 } 2777 2778 static void hisi_qm_pre_init(struct hisi_qm *qm) 2779 { 2780 struct pci_dev *pdev = qm->pdev; 2781 2782 if (qm->ver == QM_HW_V1) 2783 qm->ops = &qm_hw_ops_v1; 2784 else if (qm->ver == QM_HW_V2) 2785 qm->ops = &qm_hw_ops_v2; 2786 else 2787 qm->ops = &qm_hw_ops_v3; 2788 2789 pci_set_drvdata(pdev, qm); 2790 mutex_init(&qm->mailbox_lock); 2791 init_rwsem(&qm->qps_lock); 2792 qm->qp_in_used = 0; 2793 if (test_bit(QM_SUPPORT_RPM, &qm->caps)) { 2794 if (!acpi_device_power_manageable(ACPI_COMPANION(&pdev->dev))) 2795 dev_info(&pdev->dev, "_PS0 and _PR0 are not defined"); 2796 } 2797 } 2798 2799 static void qm_cmd_uninit(struct hisi_qm *qm) 2800 { 2801 u32 val; 2802 2803 if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 2804 return; 2805 2806 val = readl(qm->io_base + QM_IFC_INT_MASK); 2807 val |= QM_IFC_INT_DISABLE; 2808 writel(val, qm->io_base + QM_IFC_INT_MASK); 2809 } 2810 2811 static void qm_cmd_init(struct hisi_qm *qm) 2812 { 2813 u32 val; 2814 2815 if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 2816 return; 2817 2818 /* Clear communication interrupt source */ 2819 qm_clear_cmd_interrupt(qm, QM_IFC_INT_SOURCE_CLR); 2820 2821 /* Enable pf to vf communication reg. */ 2822 val = readl(qm->io_base + QM_IFC_INT_MASK); 2823 val &= ~QM_IFC_INT_DISABLE; 2824 writel(val, qm->io_base + QM_IFC_INT_MASK); 2825 } 2826 2827 static void qm_put_pci_res(struct hisi_qm *qm) 2828 { 2829 struct pci_dev *pdev = qm->pdev; 2830 2831 if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) 2832 iounmap(qm->db_io_base); 2833 2834 iounmap(qm->io_base); 2835 pci_release_mem_regions(pdev); 2836 } 2837 2838 static void hisi_qm_pci_uninit(struct hisi_qm *qm) 2839 { 2840 struct pci_dev *pdev = qm->pdev; 2841 2842 pci_free_irq_vectors(pdev); 2843 qm_put_pci_res(qm); 2844 pci_disable_device(pdev); 2845 } 2846 2847 static void hisi_qm_set_state(struct hisi_qm *qm, u8 state) 2848 { 2849 if (qm->ver > QM_HW_V2 && qm->fun_type == QM_HW_VF) 2850 writel(state, qm->io_base + QM_VF_STATE); 2851 } 2852 2853 static void hisi_qm_unint_work(struct hisi_qm *qm) 2854 { 2855 destroy_workqueue(qm->wq); 2856 } 2857 2858 static void hisi_qm_free_rsv_buf(struct hisi_qm *qm) 2859 { 2860 struct qm_dma *xqc_dma = &qm->xqc_buf.qcdma; 2861 struct device *dev = &qm->pdev->dev; 2862 2863 dma_free_coherent(dev, xqc_dma->size, xqc_dma->va, xqc_dma->dma); 2864 } 2865 2866 static void hisi_qm_memory_uninit(struct hisi_qm *qm) 2867 { 2868 struct device *dev = &qm->pdev->dev; 2869 2870 hisi_qp_memory_uninit(qm, qm->qp_num); 2871 hisi_qm_free_rsv_buf(qm); 2872 if (qm->qdma.va) { 2873 hisi_qm_cache_wb(qm); 2874 dma_free_coherent(dev, qm->qdma.size, 2875 qm->qdma.va, qm->qdma.dma); 2876 } 2877 2878 idr_destroy(&qm->qp_idr); 2879 2880 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 2881 kfree(qm->factor); 2882 } 2883 2884 /** 2885 * hisi_qm_uninit() - Uninitialize qm. 2886 * @qm: The qm needed uninit. 2887 * 2888 * This function uninits qm related device resources. 2889 */ 2890 void hisi_qm_uninit(struct hisi_qm *qm) 2891 { 2892 qm_cmd_uninit(qm); 2893 hisi_qm_unint_work(qm); 2894 2895 down_write(&qm->qps_lock); 2896 hisi_qm_memory_uninit(qm); 2897 hisi_qm_set_state(qm, QM_NOT_READY); 2898 up_write(&qm->qps_lock); 2899 2900 qm_remove_uacce(qm); 2901 qm_irqs_unregister(qm); 2902 hisi_qm_pci_uninit(qm); 2903 } 2904 EXPORT_SYMBOL_GPL(hisi_qm_uninit); 2905 2906 /** 2907 * hisi_qm_get_vft() - Get vft from a qm. 2908 * @qm: The qm we want to get its vft. 2909 * @base: The base number of queue in vft. 2910 * @number: The number of queues in vft. 2911 * 2912 * We can allocate multiple queues to a qm by configuring virtual function 2913 * table. We get related configures by this function. Normally, we call this 2914 * function in VF driver to get the queue information. 2915 * 2916 * qm hw v1 does not support this interface. 2917 */ 2918 static int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number) 2919 { 2920 if (!base || !number) 2921 return -EINVAL; 2922 2923 if (!qm->ops->get_vft) { 2924 dev_err(&qm->pdev->dev, "Don't support vft read!\n"); 2925 return -EINVAL; 2926 } 2927 2928 return qm->ops->get_vft(qm, base, number); 2929 } 2930 2931 /** 2932 * hisi_qm_set_vft() - Set vft to a qm. 2933 * @qm: The qm we want to set its vft. 2934 * @fun_num: The function number. 2935 * @base: The base number of queue in vft. 2936 * @number: The number of queues in vft. 2937 * 2938 * This function is alway called in PF driver, it is used to assign queues 2939 * among PF and VFs. 2940 * 2941 * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1) 2942 * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1) 2943 * (VF function number 0x2) 2944 */ 2945 static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base, 2946 u32 number) 2947 { 2948 u32 max_q_num = qm->ctrl_qp_num; 2949 2950 if (base >= max_q_num || number > max_q_num || 2951 (base + number) > max_q_num) 2952 return -EINVAL; 2953 2954 return qm_set_sqc_cqc_vft(qm, fun_num, base, number); 2955 } 2956 2957 static void qm_init_eq_aeq_status(struct hisi_qm *qm) 2958 { 2959 struct hisi_qm_status *status = &qm->status; 2960 2961 status->eq_head = 0; 2962 status->aeq_head = 0; 2963 status->eqc_phase = true; 2964 status->aeqc_phase = true; 2965 } 2966 2967 static void qm_enable_eq_aeq_interrupts(struct hisi_qm *qm) 2968 { 2969 /* Clear eq/aeq interrupt source */ 2970 qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0); 2971 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 2972 2973 writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK); 2974 writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK); 2975 } 2976 2977 static void qm_disable_eq_aeq_interrupts(struct hisi_qm *qm) 2978 { 2979 writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK); 2980 writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK); 2981 } 2982 2983 static int qm_eq_ctx_cfg(struct hisi_qm *qm) 2984 { 2985 struct qm_eqc eqc = {0}; 2986 2987 eqc.base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma)); 2988 eqc.base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma)); 2989 if (qm->ver == QM_HW_V1) 2990 eqc.dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE); 2991 eqc.dw6 = cpu_to_le32(((u32)qm->eq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT)); 2992 2993 return qm_set_and_get_xqc(qm, QM_MB_CMD_EQC, &eqc, 0, 0); 2994 } 2995 2996 static int qm_aeq_ctx_cfg(struct hisi_qm *qm) 2997 { 2998 struct qm_aeqc aeqc = {0}; 2999 3000 aeqc.base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma)); 3001 aeqc.base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma)); 3002 aeqc.dw6 = cpu_to_le32(((u32)qm->aeq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT)); 3003 3004 return qm_set_and_get_xqc(qm, QM_MB_CMD_AEQC, &aeqc, 0, 0); 3005 } 3006 3007 static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm) 3008 { 3009 struct device *dev = &qm->pdev->dev; 3010 int ret; 3011 3012 qm_init_eq_aeq_status(qm); 3013 3014 ret = qm_eq_ctx_cfg(qm); 3015 if (ret) { 3016 dev_err(dev, "Set eqc failed!\n"); 3017 return ret; 3018 } 3019 3020 return qm_aeq_ctx_cfg(qm); 3021 } 3022 3023 static int __hisi_qm_start(struct hisi_qm *qm) 3024 { 3025 int ret; 3026 3027 WARN_ON(!qm->qdma.va); 3028 3029 if (qm->fun_type == QM_HW_PF) { 3030 ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num); 3031 if (ret) 3032 return ret; 3033 } 3034 3035 ret = qm_eq_aeq_ctx_cfg(qm); 3036 if (ret) 3037 return ret; 3038 3039 ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0); 3040 if (ret) 3041 return ret; 3042 3043 ret = hisi_qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0); 3044 if (ret) 3045 return ret; 3046 3047 qm_init_prefetch(qm); 3048 qm_enable_eq_aeq_interrupts(qm); 3049 3050 return 0; 3051 } 3052 3053 /** 3054 * hisi_qm_start() - start qm 3055 * @qm: The qm to be started. 3056 * 3057 * This function starts a qm, then we can allocate qp from this qm. 3058 */ 3059 int hisi_qm_start(struct hisi_qm *qm) 3060 { 3061 struct device *dev = &qm->pdev->dev; 3062 int ret = 0; 3063 3064 down_write(&qm->qps_lock); 3065 3066 dev_dbg(dev, "qm start with %u queue pairs\n", qm->qp_num); 3067 3068 if (!qm->qp_num) { 3069 dev_err(dev, "qp_num should not be 0\n"); 3070 ret = -EINVAL; 3071 goto err_unlock; 3072 } 3073 3074 ret = __hisi_qm_start(qm); 3075 if (ret) 3076 goto err_unlock; 3077 3078 atomic_set(&qm->status.flags, QM_WORK); 3079 hisi_qm_set_state(qm, QM_READY); 3080 3081 err_unlock: 3082 up_write(&qm->qps_lock); 3083 return ret; 3084 } 3085 EXPORT_SYMBOL_GPL(hisi_qm_start); 3086 3087 static int qm_restart(struct hisi_qm *qm) 3088 { 3089 struct device *dev = &qm->pdev->dev; 3090 struct hisi_qp *qp; 3091 int ret, i; 3092 3093 ret = hisi_qm_start(qm); 3094 if (ret < 0) 3095 return ret; 3096 3097 down_write(&qm->qps_lock); 3098 for (i = 0; i < qm->qp_num; i++) { 3099 qp = &qm->qp_array[i]; 3100 if (atomic_read(&qp->qp_status.flags) == QP_STOP && 3101 qp->is_resetting == true) { 3102 ret = qm_start_qp_nolock(qp, 0); 3103 if (ret < 0) { 3104 dev_err(dev, "Failed to start qp%d!\n", i); 3105 3106 up_write(&qm->qps_lock); 3107 return ret; 3108 } 3109 qp->is_resetting = false; 3110 } 3111 } 3112 up_write(&qm->qps_lock); 3113 3114 return 0; 3115 } 3116 3117 /* Stop started qps in reset flow */ 3118 static void qm_stop_started_qp(struct hisi_qm *qm) 3119 { 3120 struct hisi_qp *qp; 3121 int i; 3122 3123 for (i = 0; i < qm->qp_num; i++) { 3124 qp = &qm->qp_array[i]; 3125 if (atomic_read(&qp->qp_status.flags) == QP_START) { 3126 qp->is_resetting = true; 3127 qm_stop_qp_nolock(qp); 3128 } 3129 } 3130 } 3131 3132 /** 3133 * qm_clear_queues() - Clear all queues memory in a qm. 3134 * @qm: The qm in which the queues will be cleared. 3135 * 3136 * This function clears all queues memory in a qm. Reset of accelerator can 3137 * use this to clear queues. 3138 */ 3139 static void qm_clear_queues(struct hisi_qm *qm) 3140 { 3141 struct hisi_qp *qp; 3142 int i; 3143 3144 for (i = 0; i < qm->qp_num; i++) { 3145 qp = &qm->qp_array[i]; 3146 if (qp->is_in_kernel && qp->is_resetting) 3147 memset(qp->qdma.va, 0, qp->qdma.size); 3148 } 3149 3150 memset(qm->qdma.va, 0, qm->qdma.size); 3151 } 3152 3153 /** 3154 * hisi_qm_stop() - Stop a qm. 3155 * @qm: The qm which will be stopped. 3156 * @r: The reason to stop qm. 3157 * 3158 * This function stops qm and its qps, then qm can not accept request. 3159 * Related resources are not released at this state, we can use hisi_qm_start 3160 * to let qm start again. 3161 */ 3162 int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r) 3163 { 3164 struct device *dev = &qm->pdev->dev; 3165 int ret = 0; 3166 3167 down_write(&qm->qps_lock); 3168 3169 if (atomic_read(&qm->status.flags) == QM_STOP) 3170 goto err_unlock; 3171 3172 /* Stop all the request sending at first. */ 3173 atomic_set(&qm->status.flags, QM_STOP); 3174 qm->status.stop_reason = r; 3175 3176 if (qm->status.stop_reason != QM_NORMAL) { 3177 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 3178 /* 3179 * When performing soft reset, the hardware will no longer 3180 * do tasks, and the tasks in the device will be flushed 3181 * out directly since the master ooo is closed. 3182 */ 3183 if (test_bit(QM_SUPPORT_STOP_FUNC, &qm->caps) && 3184 r != QM_SOFT_RESET) { 3185 ret = qm_drain_qm(qm); 3186 if (ret) { 3187 dev_err(dev, "failed to drain qm!\n"); 3188 goto err_unlock; 3189 } 3190 } 3191 3192 qm_stop_started_qp(qm); 3193 3194 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 3195 } 3196 3197 qm_disable_eq_aeq_interrupts(qm); 3198 if (qm->fun_type == QM_HW_PF) { 3199 ret = hisi_qm_set_vft(qm, 0, 0, 0); 3200 if (ret < 0) { 3201 dev_err(dev, "Failed to set vft!\n"); 3202 ret = -EBUSY; 3203 goto err_unlock; 3204 } 3205 } 3206 3207 qm_clear_queues(qm); 3208 qm->status.stop_reason = QM_NORMAL; 3209 3210 err_unlock: 3211 up_write(&qm->qps_lock); 3212 return ret; 3213 } 3214 EXPORT_SYMBOL_GPL(hisi_qm_stop); 3215 3216 static void qm_hw_error_init(struct hisi_qm *qm) 3217 { 3218 if (!qm->ops->hw_error_init) { 3219 dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n"); 3220 return; 3221 } 3222 3223 qm->ops->hw_error_init(qm); 3224 } 3225 3226 static void qm_hw_error_uninit(struct hisi_qm *qm) 3227 { 3228 if (!qm->ops->hw_error_uninit) { 3229 dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n"); 3230 return; 3231 } 3232 3233 qm->ops->hw_error_uninit(qm); 3234 } 3235 3236 static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm) 3237 { 3238 if (!qm->ops->hw_error_handle) { 3239 dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n"); 3240 return ACC_ERR_NONE; 3241 } 3242 3243 return qm->ops->hw_error_handle(qm); 3244 } 3245 3246 /** 3247 * hisi_qm_dev_err_init() - Initialize device error configuration. 3248 * @qm: The qm for which we want to do error initialization. 3249 * 3250 * Initialize QM and device error related configuration. 3251 */ 3252 void hisi_qm_dev_err_init(struct hisi_qm *qm) 3253 { 3254 if (qm->fun_type == QM_HW_VF) 3255 return; 3256 3257 qm_hw_error_init(qm); 3258 3259 if (!qm->err_ini->hw_err_enable) { 3260 dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n"); 3261 return; 3262 } 3263 qm->err_ini->hw_err_enable(qm); 3264 } 3265 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init); 3266 3267 /** 3268 * hisi_qm_dev_err_uninit() - Uninitialize device error configuration. 3269 * @qm: The qm for which we want to do error uninitialization. 3270 * 3271 * Uninitialize QM and device error related configuration. 3272 */ 3273 void hisi_qm_dev_err_uninit(struct hisi_qm *qm) 3274 { 3275 if (qm->fun_type == QM_HW_VF) 3276 return; 3277 3278 qm_hw_error_uninit(qm); 3279 3280 if (!qm->err_ini->hw_err_disable) { 3281 dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n"); 3282 return; 3283 } 3284 qm->err_ini->hw_err_disable(qm); 3285 } 3286 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit); 3287 3288 /** 3289 * hisi_qm_free_qps() - free multiple queue pairs. 3290 * @qps: The queue pairs need to be freed. 3291 * @qp_num: The num of queue pairs. 3292 */ 3293 void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num) 3294 { 3295 int i; 3296 3297 if (!qps || qp_num <= 0) 3298 return; 3299 3300 for (i = qp_num - 1; i >= 0; i--) 3301 hisi_qm_release_qp(qps[i]); 3302 } 3303 EXPORT_SYMBOL_GPL(hisi_qm_free_qps); 3304 3305 static void free_list(struct list_head *head) 3306 { 3307 struct hisi_qm_resource *res, *tmp; 3308 3309 list_for_each_entry_safe(res, tmp, head, list) { 3310 list_del(&res->list); 3311 kfree(res); 3312 } 3313 } 3314 3315 static int hisi_qm_sort_devices(int node, struct list_head *head, 3316 struct hisi_qm_list *qm_list) 3317 { 3318 struct hisi_qm_resource *res, *tmp; 3319 struct hisi_qm *qm; 3320 struct list_head *n; 3321 struct device *dev; 3322 int dev_node; 3323 3324 list_for_each_entry(qm, &qm_list->list, list) { 3325 dev = &qm->pdev->dev; 3326 3327 dev_node = dev_to_node(dev); 3328 if (dev_node < 0) 3329 dev_node = 0; 3330 3331 res = kzalloc(sizeof(*res), GFP_KERNEL); 3332 if (!res) 3333 return -ENOMEM; 3334 3335 res->qm = qm; 3336 res->distance = node_distance(dev_node, node); 3337 n = head; 3338 list_for_each_entry(tmp, head, list) { 3339 if (res->distance < tmp->distance) { 3340 n = &tmp->list; 3341 break; 3342 } 3343 } 3344 list_add_tail(&res->list, n); 3345 } 3346 3347 return 0; 3348 } 3349 3350 /** 3351 * hisi_qm_alloc_qps_node() - Create multiple queue pairs. 3352 * @qm_list: The list of all available devices. 3353 * @qp_num: The number of queue pairs need created. 3354 * @alg_type: The algorithm type. 3355 * @node: The numa node. 3356 * @qps: The queue pairs need created. 3357 * 3358 * This function will sort all available device according to numa distance. 3359 * Then try to create all queue pairs from one device, if all devices do 3360 * not meet the requirements will return error. 3361 */ 3362 int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num, 3363 u8 alg_type, int node, struct hisi_qp **qps) 3364 { 3365 struct hisi_qm_resource *tmp; 3366 int ret = -ENODEV; 3367 LIST_HEAD(head); 3368 int i; 3369 3370 if (!qps || !qm_list || qp_num <= 0) 3371 return -EINVAL; 3372 3373 mutex_lock(&qm_list->lock); 3374 if (hisi_qm_sort_devices(node, &head, qm_list)) { 3375 mutex_unlock(&qm_list->lock); 3376 goto err; 3377 } 3378 3379 list_for_each_entry(tmp, &head, list) { 3380 for (i = 0; i < qp_num; i++) { 3381 qps[i] = hisi_qm_create_qp(tmp->qm, alg_type); 3382 if (IS_ERR(qps[i])) { 3383 hisi_qm_free_qps(qps, i); 3384 break; 3385 } 3386 } 3387 3388 if (i == qp_num) { 3389 ret = 0; 3390 break; 3391 } 3392 } 3393 3394 mutex_unlock(&qm_list->lock); 3395 if (ret) 3396 pr_info("Failed to create qps, node[%d], alg[%u], qp[%d]!\n", 3397 node, alg_type, qp_num); 3398 3399 err: 3400 free_list(&head); 3401 return ret; 3402 } 3403 EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node); 3404 3405 static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs) 3406 { 3407 u32 remain_q_num, vfs_q_num, act_q_num, q_num, i, j; 3408 u32 max_qp_num = qm->max_qp_num; 3409 u32 q_base = qm->qp_num; 3410 int ret; 3411 3412 if (!num_vfs) 3413 return -EINVAL; 3414 3415 vfs_q_num = qm->ctrl_qp_num - qm->qp_num; 3416 3417 /* If vfs_q_num is less than num_vfs, return error. */ 3418 if (vfs_q_num < num_vfs) 3419 return -EINVAL; 3420 3421 q_num = vfs_q_num / num_vfs; 3422 remain_q_num = vfs_q_num % num_vfs; 3423 3424 for (i = num_vfs; i > 0; i--) { 3425 /* 3426 * if q_num + remain_q_num > max_qp_num in last vf, divide the 3427 * remaining queues equally. 3428 */ 3429 if (i == num_vfs && q_num + remain_q_num <= max_qp_num) { 3430 act_q_num = q_num + remain_q_num; 3431 remain_q_num = 0; 3432 } else if (remain_q_num > 0) { 3433 act_q_num = q_num + 1; 3434 remain_q_num--; 3435 } else { 3436 act_q_num = q_num; 3437 } 3438 3439 act_q_num = min(act_q_num, max_qp_num); 3440 ret = hisi_qm_set_vft(qm, i, q_base, act_q_num); 3441 if (ret) { 3442 for (j = num_vfs; j > i; j--) 3443 hisi_qm_set_vft(qm, j, 0, 0); 3444 return ret; 3445 } 3446 q_base += act_q_num; 3447 } 3448 3449 return 0; 3450 } 3451 3452 static int qm_clear_vft_config(struct hisi_qm *qm) 3453 { 3454 int ret; 3455 u32 i; 3456 3457 for (i = 1; i <= qm->vfs_num; i++) { 3458 ret = hisi_qm_set_vft(qm, i, 0, 0); 3459 if (ret) 3460 return ret; 3461 } 3462 qm->vfs_num = 0; 3463 3464 return 0; 3465 } 3466 3467 static int qm_func_shaper_enable(struct hisi_qm *qm, u32 fun_index, u32 qos) 3468 { 3469 struct device *dev = &qm->pdev->dev; 3470 u32 ir = qos * QM_QOS_RATE; 3471 int ret, total_vfs, i; 3472 3473 total_vfs = pci_sriov_get_totalvfs(qm->pdev); 3474 if (fun_index > total_vfs) 3475 return -EINVAL; 3476 3477 qm->factor[fun_index].func_qos = qos; 3478 3479 ret = qm_get_shaper_para(ir, &qm->factor[fun_index]); 3480 if (ret) { 3481 dev_err(dev, "failed to calculate shaper parameter!\n"); 3482 return -EINVAL; 3483 } 3484 3485 for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) { 3486 /* The base number of queue reuse for different alg type */ 3487 ret = qm_set_vft_common(qm, SHAPER_VFT, fun_index, i, 1); 3488 if (ret) { 3489 dev_err(dev, "type: %d, failed to set shaper vft!\n", i); 3490 return -EINVAL; 3491 } 3492 } 3493 3494 return 0; 3495 } 3496 3497 static u32 qm_get_shaper_vft_qos(struct hisi_qm *qm, u32 fun_index) 3498 { 3499 u64 cir_u = 0, cir_b = 0, cir_s = 0; 3500 u64 shaper_vft, ir_calc, ir; 3501 unsigned int val; 3502 u32 error_rate; 3503 int ret; 3504 3505 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 3506 val & BIT(0), POLL_PERIOD, 3507 POLL_TIMEOUT); 3508 if (ret) 3509 return 0; 3510 3511 writel(0x1, qm->io_base + QM_VFT_CFG_OP_WR); 3512 writel(SHAPER_VFT, qm->io_base + QM_VFT_CFG_TYPE); 3513 writel(fun_index, qm->io_base + QM_VFT_CFG); 3514 3515 writel(0x0, qm->io_base + QM_VFT_CFG_RDY); 3516 writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE); 3517 3518 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 3519 val & BIT(0), POLL_PERIOD, 3520 POLL_TIMEOUT); 3521 if (ret) 3522 return 0; 3523 3524 shaper_vft = readl(qm->io_base + QM_VFT_CFG_DATA_L) | 3525 ((u64)readl(qm->io_base + QM_VFT_CFG_DATA_H) << 32); 3526 3527 cir_b = shaper_vft & QM_SHAPER_CIR_B_MASK; 3528 cir_u = shaper_vft & QM_SHAPER_CIR_U_MASK; 3529 cir_u = cir_u >> QM_SHAPER_FACTOR_CIR_U_SHIFT; 3530 3531 cir_s = shaper_vft & QM_SHAPER_CIR_S_MASK; 3532 cir_s = cir_s >> QM_SHAPER_FACTOR_CIR_S_SHIFT; 3533 3534 ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s); 3535 3536 ir = qm->factor[fun_index].func_qos * QM_QOS_RATE; 3537 3538 error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir; 3539 if (error_rate > QM_QOS_MIN_ERROR_RATE) { 3540 pci_err(qm->pdev, "error_rate: %u, get function qos is error!\n", error_rate); 3541 return 0; 3542 } 3543 3544 return ir; 3545 } 3546 3547 static void qm_vf_get_qos(struct hisi_qm *qm, u32 fun_num) 3548 { 3549 struct device *dev = &qm->pdev->dev; 3550 u64 mb_cmd; 3551 u32 qos; 3552 int ret; 3553 3554 qos = qm_get_shaper_vft_qos(qm, fun_num); 3555 if (!qos) { 3556 dev_err(dev, "function(%u) failed to get qos by PF!\n", fun_num); 3557 return; 3558 } 3559 3560 mb_cmd = QM_PF_SET_QOS | (u64)qos << QM_MB_CMD_DATA_SHIFT; 3561 ret = qm_ping_single_vf(qm, mb_cmd, fun_num); 3562 if (ret) 3563 dev_err(dev, "failed to send cmd to VF(%u)!\n", fun_num); 3564 } 3565 3566 static int qm_vf_read_qos(struct hisi_qm *qm) 3567 { 3568 int cnt = 0; 3569 int ret = -EINVAL; 3570 3571 /* reset mailbox qos val */ 3572 qm->mb_qos = 0; 3573 3574 /* vf ping pf to get function qos */ 3575 ret = qm_ping_pf(qm, QM_VF_GET_QOS); 3576 if (ret) { 3577 pci_err(qm->pdev, "failed to send cmd to PF to get qos!\n"); 3578 return ret; 3579 } 3580 3581 while (true) { 3582 msleep(QM_WAIT_DST_ACK); 3583 if (qm->mb_qos) 3584 break; 3585 3586 if (++cnt > QM_MAX_VF_WAIT_COUNT) { 3587 pci_err(qm->pdev, "PF ping VF timeout!\n"); 3588 return -ETIMEDOUT; 3589 } 3590 } 3591 3592 return ret; 3593 } 3594 3595 static ssize_t qm_algqos_read(struct file *filp, char __user *buf, 3596 size_t count, loff_t *pos) 3597 { 3598 struct hisi_qm *qm = filp->private_data; 3599 char tbuf[QM_DBG_READ_LEN]; 3600 u32 qos_val, ir; 3601 int ret; 3602 3603 ret = hisi_qm_get_dfx_access(qm); 3604 if (ret) 3605 return ret; 3606 3607 /* Mailbox and reset cannot be operated at the same time */ 3608 if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 3609 pci_err(qm->pdev, "dev resetting, read alg qos failed!\n"); 3610 ret = -EAGAIN; 3611 goto err_put_dfx_access; 3612 } 3613 3614 if (qm->fun_type == QM_HW_PF) { 3615 ir = qm_get_shaper_vft_qos(qm, 0); 3616 } else { 3617 ret = qm_vf_read_qos(qm); 3618 if (ret) 3619 goto err_get_status; 3620 ir = qm->mb_qos; 3621 } 3622 3623 qos_val = ir / QM_QOS_RATE; 3624 ret = scnprintf(tbuf, QM_DBG_READ_LEN, "%u\n", qos_val); 3625 3626 ret = simple_read_from_buffer(buf, count, pos, tbuf, ret); 3627 3628 err_get_status: 3629 clear_bit(QM_RESETTING, &qm->misc_ctl); 3630 err_put_dfx_access: 3631 hisi_qm_put_dfx_access(qm); 3632 return ret; 3633 } 3634 3635 static ssize_t qm_get_qos_value(struct hisi_qm *qm, const char *buf, 3636 unsigned long *val, 3637 unsigned int *fun_index) 3638 { 3639 const struct bus_type *bus_type = qm->pdev->dev.bus; 3640 char tbuf_bdf[QM_DBG_READ_LEN] = {0}; 3641 char val_buf[QM_DBG_READ_LEN] = {0}; 3642 struct pci_dev *pdev; 3643 struct device *dev; 3644 int ret; 3645 3646 ret = sscanf(buf, "%s %s", tbuf_bdf, val_buf); 3647 if (ret != QM_QOS_PARAM_NUM) 3648 return -EINVAL; 3649 3650 ret = kstrtoul(val_buf, 10, val); 3651 if (ret || *val == 0 || *val > QM_QOS_MAX_VAL) { 3652 pci_err(qm->pdev, "input qos value is error, please set 1~1000!\n"); 3653 return -EINVAL; 3654 } 3655 3656 dev = bus_find_device_by_name(bus_type, NULL, tbuf_bdf); 3657 if (!dev) { 3658 pci_err(qm->pdev, "input pci bdf number is error!\n"); 3659 return -ENODEV; 3660 } 3661 3662 pdev = container_of(dev, struct pci_dev, dev); 3663 3664 *fun_index = pdev->devfn; 3665 3666 return 0; 3667 } 3668 3669 static ssize_t qm_algqos_write(struct file *filp, const char __user *buf, 3670 size_t count, loff_t *pos) 3671 { 3672 struct hisi_qm *qm = filp->private_data; 3673 char tbuf[QM_DBG_READ_LEN]; 3674 unsigned int fun_index; 3675 unsigned long val; 3676 int len, ret; 3677 3678 if (*pos != 0) 3679 return 0; 3680 3681 if (count >= QM_DBG_READ_LEN) 3682 return -ENOSPC; 3683 3684 len = simple_write_to_buffer(tbuf, QM_DBG_READ_LEN - 1, pos, buf, count); 3685 if (len < 0) 3686 return len; 3687 3688 tbuf[len] = '\0'; 3689 ret = qm_get_qos_value(qm, tbuf, &val, &fun_index); 3690 if (ret) 3691 return ret; 3692 3693 /* Mailbox and reset cannot be operated at the same time */ 3694 if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 3695 pci_err(qm->pdev, "dev resetting, write alg qos failed!\n"); 3696 return -EAGAIN; 3697 } 3698 3699 ret = qm_pm_get_sync(qm); 3700 if (ret) { 3701 ret = -EINVAL; 3702 goto err_get_status; 3703 } 3704 3705 ret = qm_func_shaper_enable(qm, fun_index, val); 3706 if (ret) { 3707 pci_err(qm->pdev, "failed to enable function shaper!\n"); 3708 ret = -EINVAL; 3709 goto err_put_sync; 3710 } 3711 3712 pci_info(qm->pdev, "the qos value of function%u is set to %lu.\n", 3713 fun_index, val); 3714 ret = count; 3715 3716 err_put_sync: 3717 qm_pm_put_sync(qm); 3718 err_get_status: 3719 clear_bit(QM_RESETTING, &qm->misc_ctl); 3720 return ret; 3721 } 3722 3723 static const struct file_operations qm_algqos_fops = { 3724 .owner = THIS_MODULE, 3725 .open = simple_open, 3726 .read = qm_algqos_read, 3727 .write = qm_algqos_write, 3728 }; 3729 3730 /** 3731 * hisi_qm_set_algqos_init() - Initialize function qos debugfs files. 3732 * @qm: The qm for which we want to add debugfs files. 3733 * 3734 * Create function qos debugfs files, VF ping PF to get function qos. 3735 */ 3736 void hisi_qm_set_algqos_init(struct hisi_qm *qm) 3737 { 3738 if (qm->fun_type == QM_HW_PF) 3739 debugfs_create_file("alg_qos", 0644, qm->debug.debug_root, 3740 qm, &qm_algqos_fops); 3741 else if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 3742 debugfs_create_file("alg_qos", 0444, qm->debug.debug_root, 3743 qm, &qm_algqos_fops); 3744 } 3745 3746 static void hisi_qm_init_vf_qos(struct hisi_qm *qm, int total_func) 3747 { 3748 int i; 3749 3750 for (i = 1; i <= total_func; i++) 3751 qm->factor[i].func_qos = QM_QOS_MAX_VAL; 3752 } 3753 3754 /** 3755 * hisi_qm_sriov_enable() - enable virtual functions 3756 * @pdev: the PCIe device 3757 * @max_vfs: the number of virtual functions to enable 3758 * 3759 * Returns the number of enabled VFs. If there are VFs enabled already or 3760 * max_vfs is more than the total number of device can be enabled, returns 3761 * failure. 3762 */ 3763 int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs) 3764 { 3765 struct hisi_qm *qm = pci_get_drvdata(pdev); 3766 int pre_existing_vfs, num_vfs, total_vfs, ret; 3767 3768 ret = qm_pm_get_sync(qm); 3769 if (ret) 3770 return ret; 3771 3772 total_vfs = pci_sriov_get_totalvfs(pdev); 3773 pre_existing_vfs = pci_num_vf(pdev); 3774 if (pre_existing_vfs) { 3775 pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n", 3776 pre_existing_vfs); 3777 goto err_put_sync; 3778 } 3779 3780 if (max_vfs > total_vfs) { 3781 pci_err(pdev, "%d VFs is more than total VFs %d!\n", max_vfs, total_vfs); 3782 ret = -ERANGE; 3783 goto err_put_sync; 3784 } 3785 3786 num_vfs = max_vfs; 3787 3788 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 3789 hisi_qm_init_vf_qos(qm, num_vfs); 3790 3791 ret = qm_vf_q_assign(qm, num_vfs); 3792 if (ret) { 3793 pci_err(pdev, "Can't assign queues for VF!\n"); 3794 goto err_put_sync; 3795 } 3796 3797 ret = pci_enable_sriov(pdev, num_vfs); 3798 if (ret) { 3799 pci_err(pdev, "Can't enable VF!\n"); 3800 qm_clear_vft_config(qm); 3801 goto err_put_sync; 3802 } 3803 qm->vfs_num = num_vfs; 3804 3805 pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs); 3806 3807 return num_vfs; 3808 3809 err_put_sync: 3810 qm_pm_put_sync(qm); 3811 return ret; 3812 } 3813 EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable); 3814 3815 /** 3816 * hisi_qm_sriov_disable - disable virtual functions 3817 * @pdev: the PCI device. 3818 * @is_frozen: true when all the VFs are frozen. 3819 * 3820 * Return failure if there are VFs assigned already or VF is in used. 3821 */ 3822 int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen) 3823 { 3824 struct hisi_qm *qm = pci_get_drvdata(pdev); 3825 3826 if (pci_vfs_assigned(pdev)) { 3827 pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n"); 3828 return -EPERM; 3829 } 3830 3831 /* While VF is in used, SRIOV cannot be disabled. */ 3832 if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) { 3833 pci_err(pdev, "Task is using its VF!\n"); 3834 return -EBUSY; 3835 } 3836 3837 pci_disable_sriov(pdev); 3838 3839 qm->vfs_num = 0; 3840 qm_pm_put_sync(qm); 3841 3842 return qm_clear_vft_config(qm); 3843 } 3844 EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable); 3845 3846 /** 3847 * hisi_qm_sriov_configure - configure the number of VFs 3848 * @pdev: The PCI device 3849 * @num_vfs: The number of VFs need enabled 3850 * 3851 * Enable SR-IOV according to num_vfs, 0 means disable. 3852 */ 3853 int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs) 3854 { 3855 if (num_vfs == 0) 3856 return hisi_qm_sriov_disable(pdev, false); 3857 else 3858 return hisi_qm_sriov_enable(pdev, num_vfs); 3859 } 3860 EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure); 3861 3862 static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm) 3863 { 3864 u32 err_sts; 3865 3866 if (!qm->err_ini->get_dev_hw_err_status) { 3867 dev_err(&qm->pdev->dev, "Device doesn't support get hw error status!\n"); 3868 return ACC_ERR_NONE; 3869 } 3870 3871 /* get device hardware error status */ 3872 err_sts = qm->err_ini->get_dev_hw_err_status(qm); 3873 if (err_sts) { 3874 if (err_sts & qm->err_info.ecc_2bits_mask) 3875 qm->err_status.is_dev_ecc_mbit = true; 3876 3877 if (qm->err_ini->log_dev_hw_err) 3878 qm->err_ini->log_dev_hw_err(qm, err_sts); 3879 3880 if (err_sts & qm->err_info.dev_reset_mask) 3881 return ACC_ERR_NEED_RESET; 3882 3883 if (qm->err_ini->clear_dev_hw_err_status) 3884 qm->err_ini->clear_dev_hw_err_status(qm, err_sts); 3885 } 3886 3887 return ACC_ERR_RECOVERED; 3888 } 3889 3890 static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm) 3891 { 3892 enum acc_err_result qm_ret, dev_ret; 3893 3894 /* log qm error */ 3895 qm_ret = qm_hw_error_handle(qm); 3896 3897 /* log device error */ 3898 dev_ret = qm_dev_err_handle(qm); 3899 3900 return (qm_ret == ACC_ERR_NEED_RESET || 3901 dev_ret == ACC_ERR_NEED_RESET) ? 3902 ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED; 3903 } 3904 3905 /** 3906 * hisi_qm_dev_err_detected() - Get device and qm error status then log it. 3907 * @pdev: The PCI device which need report error. 3908 * @state: The connectivity between CPU and device. 3909 * 3910 * We register this function into PCIe AER handlers, It will report device or 3911 * qm hardware error status when error occur. 3912 */ 3913 pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev, 3914 pci_channel_state_t state) 3915 { 3916 struct hisi_qm *qm = pci_get_drvdata(pdev); 3917 enum acc_err_result ret; 3918 3919 if (pdev->is_virtfn) 3920 return PCI_ERS_RESULT_NONE; 3921 3922 pci_info(pdev, "PCI error detected, state(=%u)!!\n", state); 3923 if (state == pci_channel_io_perm_failure) 3924 return PCI_ERS_RESULT_DISCONNECT; 3925 3926 ret = qm_process_dev_error(qm); 3927 if (ret == ACC_ERR_NEED_RESET) 3928 return PCI_ERS_RESULT_NEED_RESET; 3929 3930 return PCI_ERS_RESULT_RECOVERED; 3931 } 3932 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected); 3933 3934 static int qm_check_req_recv(struct hisi_qm *qm) 3935 { 3936 struct pci_dev *pdev = qm->pdev; 3937 int ret; 3938 u32 val; 3939 3940 if (qm->ver >= QM_HW_V3) 3941 return 0; 3942 3943 writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID); 3944 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val, 3945 (val == ACC_VENDOR_ID_VALUE), 3946 POLL_PERIOD, POLL_TIMEOUT); 3947 if (ret) { 3948 dev_err(&pdev->dev, "Fails to read QM reg!\n"); 3949 return ret; 3950 } 3951 3952 writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID); 3953 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val, 3954 (val == PCI_VENDOR_ID_HUAWEI), 3955 POLL_PERIOD, POLL_TIMEOUT); 3956 if (ret) 3957 dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n"); 3958 3959 return ret; 3960 } 3961 3962 static int qm_set_pf_mse(struct hisi_qm *qm, bool set) 3963 { 3964 struct pci_dev *pdev = qm->pdev; 3965 u16 cmd; 3966 int i; 3967 3968 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 3969 if (set) 3970 cmd |= PCI_COMMAND_MEMORY; 3971 else 3972 cmd &= ~PCI_COMMAND_MEMORY; 3973 3974 pci_write_config_word(pdev, PCI_COMMAND, cmd); 3975 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 3976 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 3977 if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1)) 3978 return 0; 3979 3980 udelay(1); 3981 } 3982 3983 return -ETIMEDOUT; 3984 } 3985 3986 static int qm_set_vf_mse(struct hisi_qm *qm, bool set) 3987 { 3988 struct pci_dev *pdev = qm->pdev; 3989 u16 sriov_ctrl; 3990 int pos; 3991 int i; 3992 3993 /* 3994 * Since function qm_set_vf_mse is called only after SRIOV is enabled, 3995 * pci_find_ext_capability cannot return 0, pos does not need to be 3996 * checked. 3997 */ 3998 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); 3999 pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl); 4000 if (set) 4001 sriov_ctrl |= PCI_SRIOV_CTRL_MSE; 4002 else 4003 sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE; 4004 pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl); 4005 4006 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 4007 pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl); 4008 if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >> 4009 ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT) 4010 return 0; 4011 4012 udelay(1); 4013 } 4014 4015 return -ETIMEDOUT; 4016 } 4017 4018 static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm) 4019 { 4020 u32 nfe_enb = 0; 4021 4022 /* Kunpeng930 hardware automatically close master ooo when NFE occurs */ 4023 if (qm->ver >= QM_HW_V3) 4024 return; 4025 4026 if (!qm->err_status.is_dev_ecc_mbit && 4027 qm->err_status.is_qm_ecc_mbit && 4028 qm->err_ini->close_axi_master_ooo) { 4029 qm->err_ini->close_axi_master_ooo(qm); 4030 } else if (qm->err_status.is_dev_ecc_mbit && 4031 !qm->err_status.is_qm_ecc_mbit && 4032 !qm->err_ini->close_axi_master_ooo) { 4033 nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE); 4034 writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE, 4035 qm->io_base + QM_RAS_NFE_ENABLE); 4036 writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET); 4037 } 4038 } 4039 4040 static int qm_vf_reset_prepare(struct hisi_qm *qm, 4041 enum qm_stop_reason stop_reason) 4042 { 4043 struct hisi_qm_list *qm_list = qm->qm_list; 4044 struct pci_dev *pdev = qm->pdev; 4045 struct pci_dev *virtfn; 4046 struct hisi_qm *vf_qm; 4047 int ret = 0; 4048 4049 mutex_lock(&qm_list->lock); 4050 list_for_each_entry(vf_qm, &qm_list->list, list) { 4051 virtfn = vf_qm->pdev; 4052 if (virtfn == pdev) 4053 continue; 4054 4055 if (pci_physfn(virtfn) == pdev) { 4056 /* save VFs PCIE BAR configuration */ 4057 pci_save_state(virtfn); 4058 4059 ret = hisi_qm_stop(vf_qm, stop_reason); 4060 if (ret) 4061 goto stop_fail; 4062 } 4063 } 4064 4065 stop_fail: 4066 mutex_unlock(&qm_list->lock); 4067 return ret; 4068 } 4069 4070 static int qm_try_stop_vfs(struct hisi_qm *qm, u64 cmd, 4071 enum qm_stop_reason stop_reason) 4072 { 4073 struct pci_dev *pdev = qm->pdev; 4074 int ret; 4075 4076 if (!qm->vfs_num) 4077 return 0; 4078 4079 /* Kunpeng930 supports to notify VFs to stop before PF reset */ 4080 if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) { 4081 ret = qm_ping_all_vfs(qm, cmd); 4082 if (ret) 4083 pci_err(pdev, "failed to send cmd to all VFs before PF reset!\n"); 4084 } else { 4085 ret = qm_vf_reset_prepare(qm, stop_reason); 4086 if (ret) 4087 pci_err(pdev, "failed to prepare reset, ret = %d.\n", ret); 4088 } 4089 4090 return ret; 4091 } 4092 4093 static int qm_controller_reset_prepare(struct hisi_qm *qm) 4094 { 4095 struct pci_dev *pdev = qm->pdev; 4096 int ret; 4097 4098 ret = qm_reset_prepare_ready(qm); 4099 if (ret) { 4100 pci_err(pdev, "Controller reset not ready!\n"); 4101 return ret; 4102 } 4103 4104 qm_dev_ecc_mbit_handle(qm); 4105 4106 /* PF obtains the information of VF by querying the register. */ 4107 qm_cmd_uninit(qm); 4108 4109 /* Whether VFs stop successfully, soft reset will continue. */ 4110 ret = qm_try_stop_vfs(qm, QM_PF_SRST_PREPARE, QM_SOFT_RESET); 4111 if (ret) 4112 pci_err(pdev, "failed to stop vfs by pf in soft reset.\n"); 4113 4114 ret = hisi_qm_stop(qm, QM_SOFT_RESET); 4115 if (ret) { 4116 pci_err(pdev, "Fails to stop QM!\n"); 4117 qm_reset_bit_clear(qm); 4118 return ret; 4119 } 4120 4121 if (qm->use_sva) { 4122 ret = qm_hw_err_isolate(qm); 4123 if (ret) 4124 pci_err(pdev, "failed to isolate hw err!\n"); 4125 } 4126 4127 ret = qm_wait_vf_prepare_finish(qm); 4128 if (ret) 4129 pci_err(pdev, "failed to stop by vfs in soft reset!\n"); 4130 4131 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 4132 4133 return 0; 4134 } 4135 4136 static int qm_master_ooo_check(struct hisi_qm *qm) 4137 { 4138 u32 val; 4139 int ret; 4140 4141 /* Check the ooo register of the device before resetting the device. */ 4142 writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN, qm->io_base + ACC_MASTER_GLOBAL_CTRL); 4143 ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN, 4144 val, (val == ACC_MASTER_TRANS_RETURN_RW), 4145 POLL_PERIOD, POLL_TIMEOUT); 4146 if (ret) 4147 pci_warn(qm->pdev, "Bus lock! Please reset system.\n"); 4148 4149 return ret; 4150 } 4151 4152 static int qm_soft_reset_prepare(struct hisi_qm *qm) 4153 { 4154 struct pci_dev *pdev = qm->pdev; 4155 int ret; 4156 4157 /* Ensure all doorbells and mailboxes received by QM */ 4158 ret = qm_check_req_recv(qm); 4159 if (ret) 4160 return ret; 4161 4162 if (qm->vfs_num) { 4163 ret = qm_set_vf_mse(qm, false); 4164 if (ret) { 4165 pci_err(pdev, "Fails to disable vf MSE bit.\n"); 4166 return ret; 4167 } 4168 } 4169 4170 ret = qm->ops->set_msi(qm, false); 4171 if (ret) { 4172 pci_err(pdev, "Fails to disable PEH MSI bit.\n"); 4173 return ret; 4174 } 4175 4176 ret = qm_master_ooo_check(qm); 4177 if (ret) 4178 return ret; 4179 4180 if (qm->err_ini->close_sva_prefetch) 4181 qm->err_ini->close_sva_prefetch(qm); 4182 4183 ret = qm_set_pf_mse(qm, false); 4184 if (ret) 4185 pci_err(pdev, "Fails to disable pf MSE bit.\n"); 4186 4187 return ret; 4188 } 4189 4190 static int qm_reset_device(struct hisi_qm *qm) 4191 { 4192 struct pci_dev *pdev = qm->pdev; 4193 4194 /* The reset related sub-control registers are not in PCI BAR */ 4195 if (ACPI_HANDLE(&pdev->dev)) { 4196 unsigned long long value = 0; 4197 acpi_status s; 4198 4199 s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev), 4200 qm->err_info.acpi_rst, 4201 NULL, &value); 4202 if (ACPI_FAILURE(s)) { 4203 pci_err(pdev, "NO controller reset method!\n"); 4204 return -EIO; 4205 } 4206 4207 if (value) { 4208 pci_err(pdev, "Reset step %llu failed!\n", value); 4209 return -EIO; 4210 } 4211 4212 return 0; 4213 } 4214 4215 pci_err(pdev, "No reset method!\n"); 4216 return -EINVAL; 4217 } 4218 4219 static int qm_soft_reset(struct hisi_qm *qm) 4220 { 4221 int ret; 4222 4223 ret = qm_soft_reset_prepare(qm); 4224 if (ret) 4225 return ret; 4226 4227 return qm_reset_device(qm); 4228 } 4229 4230 static int qm_vf_reset_done(struct hisi_qm *qm) 4231 { 4232 struct hisi_qm_list *qm_list = qm->qm_list; 4233 struct pci_dev *pdev = qm->pdev; 4234 struct pci_dev *virtfn; 4235 struct hisi_qm *vf_qm; 4236 int ret = 0; 4237 4238 mutex_lock(&qm_list->lock); 4239 list_for_each_entry(vf_qm, &qm_list->list, list) { 4240 virtfn = vf_qm->pdev; 4241 if (virtfn == pdev) 4242 continue; 4243 4244 if (pci_physfn(virtfn) == pdev) { 4245 /* enable VFs PCIE BAR configuration */ 4246 pci_restore_state(virtfn); 4247 4248 ret = qm_restart(vf_qm); 4249 if (ret) 4250 goto restart_fail; 4251 } 4252 } 4253 4254 restart_fail: 4255 mutex_unlock(&qm_list->lock); 4256 return ret; 4257 } 4258 4259 static int qm_try_start_vfs(struct hisi_qm *qm, enum qm_mb_cmd cmd) 4260 { 4261 struct pci_dev *pdev = qm->pdev; 4262 int ret; 4263 4264 if (!qm->vfs_num) 4265 return 0; 4266 4267 ret = qm_vf_q_assign(qm, qm->vfs_num); 4268 if (ret) { 4269 pci_err(pdev, "failed to assign VFs, ret = %d.\n", ret); 4270 return ret; 4271 } 4272 4273 /* Kunpeng930 supports to notify VFs to start after PF reset. */ 4274 if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) { 4275 ret = qm_ping_all_vfs(qm, cmd); 4276 if (ret) 4277 pci_warn(pdev, "failed to send cmd to all VFs after PF reset!\n"); 4278 } else { 4279 ret = qm_vf_reset_done(qm); 4280 if (ret) 4281 pci_warn(pdev, "failed to start vfs, ret = %d.\n", ret); 4282 } 4283 4284 return ret; 4285 } 4286 4287 static int qm_dev_hw_init(struct hisi_qm *qm) 4288 { 4289 return qm->err_ini->hw_init(qm); 4290 } 4291 4292 static void qm_restart_prepare(struct hisi_qm *qm) 4293 { 4294 u32 value; 4295 4296 if (qm->err_ini->open_sva_prefetch) 4297 qm->err_ini->open_sva_prefetch(qm); 4298 4299 if (qm->ver >= QM_HW_V3) 4300 return; 4301 4302 if (!qm->err_status.is_qm_ecc_mbit && 4303 !qm->err_status.is_dev_ecc_mbit) 4304 return; 4305 4306 /* temporarily close the OOO port used for PEH to write out MSI */ 4307 value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4308 writel(value & ~qm->err_info.msi_wr_port, 4309 qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4310 4311 /* clear dev ecc 2bit error source if having */ 4312 value = qm_get_dev_err_status(qm) & qm->err_info.ecc_2bits_mask; 4313 if (value && qm->err_ini->clear_dev_hw_err_status) 4314 qm->err_ini->clear_dev_hw_err_status(qm, value); 4315 4316 /* clear QM ecc mbit error source */ 4317 writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE); 4318 4319 /* clear AM Reorder Buffer ecc mbit source */ 4320 writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS); 4321 } 4322 4323 static void qm_restart_done(struct hisi_qm *qm) 4324 { 4325 u32 value; 4326 4327 if (qm->ver >= QM_HW_V3) 4328 goto clear_flags; 4329 4330 if (!qm->err_status.is_qm_ecc_mbit && 4331 !qm->err_status.is_dev_ecc_mbit) 4332 return; 4333 4334 /* open the OOO port for PEH to write out MSI */ 4335 value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4336 value |= qm->err_info.msi_wr_port; 4337 writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4338 4339 clear_flags: 4340 qm->err_status.is_qm_ecc_mbit = false; 4341 qm->err_status.is_dev_ecc_mbit = false; 4342 } 4343 4344 static int qm_controller_reset_done(struct hisi_qm *qm) 4345 { 4346 struct pci_dev *pdev = qm->pdev; 4347 int ret; 4348 4349 ret = qm->ops->set_msi(qm, true); 4350 if (ret) { 4351 pci_err(pdev, "Fails to enable PEH MSI bit!\n"); 4352 return ret; 4353 } 4354 4355 ret = qm_set_pf_mse(qm, true); 4356 if (ret) { 4357 pci_err(pdev, "Fails to enable pf MSE bit!\n"); 4358 return ret; 4359 } 4360 4361 if (qm->vfs_num) { 4362 ret = qm_set_vf_mse(qm, true); 4363 if (ret) { 4364 pci_err(pdev, "Fails to enable vf MSE bit!\n"); 4365 return ret; 4366 } 4367 } 4368 4369 ret = qm_dev_hw_init(qm); 4370 if (ret) { 4371 pci_err(pdev, "Failed to init device\n"); 4372 return ret; 4373 } 4374 4375 qm_restart_prepare(qm); 4376 hisi_qm_dev_err_init(qm); 4377 if (qm->err_ini->open_axi_master_ooo) 4378 qm->err_ini->open_axi_master_ooo(qm); 4379 4380 ret = qm_dev_mem_reset(qm); 4381 if (ret) { 4382 pci_err(pdev, "failed to reset device memory\n"); 4383 return ret; 4384 } 4385 4386 ret = qm_restart(qm); 4387 if (ret) { 4388 pci_err(pdev, "Failed to start QM!\n"); 4389 return ret; 4390 } 4391 4392 ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE); 4393 if (ret) 4394 pci_err(pdev, "failed to start vfs by pf in soft reset.\n"); 4395 4396 ret = qm_wait_vf_prepare_finish(qm); 4397 if (ret) 4398 pci_err(pdev, "failed to start by vfs in soft reset!\n"); 4399 4400 qm_cmd_init(qm); 4401 qm_restart_done(qm); 4402 4403 qm_reset_bit_clear(qm); 4404 4405 return 0; 4406 } 4407 4408 static int qm_controller_reset(struct hisi_qm *qm) 4409 { 4410 struct pci_dev *pdev = qm->pdev; 4411 int ret; 4412 4413 pci_info(pdev, "Controller resetting...\n"); 4414 4415 ret = qm_controller_reset_prepare(qm); 4416 if (ret) { 4417 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 4418 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 4419 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 4420 return ret; 4421 } 4422 4423 hisi_qm_show_last_dfx_regs(qm); 4424 if (qm->err_ini->show_last_dfx_regs) 4425 qm->err_ini->show_last_dfx_regs(qm); 4426 4427 ret = qm_soft_reset(qm); 4428 if (ret) 4429 goto err_reset; 4430 4431 ret = qm_controller_reset_done(qm); 4432 if (ret) 4433 goto err_reset; 4434 4435 pci_info(pdev, "Controller reset complete\n"); 4436 4437 return 0; 4438 4439 err_reset: 4440 pci_err(pdev, "Controller reset failed (%d)\n", ret); 4441 qm_reset_bit_clear(qm); 4442 4443 /* if resetting fails, isolate the device */ 4444 if (qm->use_sva) 4445 qm->isolate_data.is_isolate = true; 4446 return ret; 4447 } 4448 4449 /** 4450 * hisi_qm_dev_slot_reset() - slot reset 4451 * @pdev: the PCIe device 4452 * 4453 * This function offers QM relate PCIe device reset interface. Drivers which 4454 * use QM can use this function as slot_reset in its struct pci_error_handlers. 4455 */ 4456 pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev) 4457 { 4458 struct hisi_qm *qm = pci_get_drvdata(pdev); 4459 int ret; 4460 4461 if (pdev->is_virtfn) 4462 return PCI_ERS_RESULT_RECOVERED; 4463 4464 /* reset pcie device controller */ 4465 ret = qm_controller_reset(qm); 4466 if (ret) { 4467 pci_err(pdev, "Controller reset failed (%d)\n", ret); 4468 return PCI_ERS_RESULT_DISCONNECT; 4469 } 4470 4471 return PCI_ERS_RESULT_RECOVERED; 4472 } 4473 EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset); 4474 4475 void hisi_qm_reset_prepare(struct pci_dev *pdev) 4476 { 4477 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 4478 struct hisi_qm *qm = pci_get_drvdata(pdev); 4479 u32 delay = 0; 4480 int ret; 4481 4482 hisi_qm_dev_err_uninit(pf_qm); 4483 4484 /* 4485 * Check whether there is an ECC mbit error, If it occurs, need to 4486 * wait for soft reset to fix it. 4487 */ 4488 while (qm_check_dev_error(pf_qm)) { 4489 msleep(++delay); 4490 if (delay > QM_RESET_WAIT_TIMEOUT) 4491 return; 4492 } 4493 4494 ret = qm_reset_prepare_ready(qm); 4495 if (ret) { 4496 pci_err(pdev, "FLR not ready!\n"); 4497 return; 4498 } 4499 4500 /* PF obtains the information of VF by querying the register. */ 4501 if (qm->fun_type == QM_HW_PF) 4502 qm_cmd_uninit(qm); 4503 4504 ret = qm_try_stop_vfs(qm, QM_PF_FLR_PREPARE, QM_DOWN); 4505 if (ret) 4506 pci_err(pdev, "failed to stop vfs by pf in FLR.\n"); 4507 4508 ret = hisi_qm_stop(qm, QM_DOWN); 4509 if (ret) { 4510 pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret); 4511 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 4512 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 4513 return; 4514 } 4515 4516 ret = qm_wait_vf_prepare_finish(qm); 4517 if (ret) 4518 pci_err(pdev, "failed to stop by vfs in FLR!\n"); 4519 4520 pci_info(pdev, "FLR resetting...\n"); 4521 } 4522 EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare); 4523 4524 static bool qm_flr_reset_complete(struct pci_dev *pdev) 4525 { 4526 struct pci_dev *pf_pdev = pci_physfn(pdev); 4527 struct hisi_qm *qm = pci_get_drvdata(pf_pdev); 4528 u32 id; 4529 4530 pci_read_config_dword(qm->pdev, PCI_COMMAND, &id); 4531 if (id == QM_PCI_COMMAND_INVALID) { 4532 pci_err(pdev, "Device can not be used!\n"); 4533 return false; 4534 } 4535 4536 return true; 4537 } 4538 4539 void hisi_qm_reset_done(struct pci_dev *pdev) 4540 { 4541 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 4542 struct hisi_qm *qm = pci_get_drvdata(pdev); 4543 int ret; 4544 4545 if (qm->fun_type == QM_HW_PF) { 4546 ret = qm_dev_hw_init(qm); 4547 if (ret) { 4548 pci_err(pdev, "Failed to init PF, ret = %d.\n", ret); 4549 goto flr_done; 4550 } 4551 } 4552 4553 hisi_qm_dev_err_init(pf_qm); 4554 4555 ret = qm_restart(qm); 4556 if (ret) { 4557 pci_err(pdev, "Failed to start QM, ret = %d.\n", ret); 4558 goto flr_done; 4559 } 4560 4561 ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE); 4562 if (ret) 4563 pci_err(pdev, "failed to start vfs by pf in FLR.\n"); 4564 4565 ret = qm_wait_vf_prepare_finish(qm); 4566 if (ret) 4567 pci_err(pdev, "failed to start by vfs in FLR!\n"); 4568 4569 flr_done: 4570 if (qm->fun_type == QM_HW_PF) 4571 qm_cmd_init(qm); 4572 4573 if (qm_flr_reset_complete(pdev)) 4574 pci_info(pdev, "FLR reset complete\n"); 4575 4576 qm_reset_bit_clear(qm); 4577 } 4578 EXPORT_SYMBOL_GPL(hisi_qm_reset_done); 4579 4580 static irqreturn_t qm_abnormal_irq(int irq, void *data) 4581 { 4582 struct hisi_qm *qm = data; 4583 enum acc_err_result ret; 4584 4585 atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt); 4586 ret = qm_process_dev_error(qm); 4587 if (ret == ACC_ERR_NEED_RESET && 4588 !test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl) && 4589 !test_and_set_bit(QM_RST_SCHED, &qm->misc_ctl)) 4590 schedule_work(&qm->rst_work); 4591 4592 return IRQ_HANDLED; 4593 } 4594 4595 /** 4596 * hisi_qm_dev_shutdown() - Shutdown device. 4597 * @pdev: The device will be shutdown. 4598 * 4599 * This function will stop qm when OS shutdown or rebooting. 4600 */ 4601 void hisi_qm_dev_shutdown(struct pci_dev *pdev) 4602 { 4603 struct hisi_qm *qm = pci_get_drvdata(pdev); 4604 int ret; 4605 4606 ret = hisi_qm_stop(qm, QM_DOWN); 4607 if (ret) 4608 dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n"); 4609 4610 hisi_qm_cache_wb(qm); 4611 } 4612 EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown); 4613 4614 static void hisi_qm_controller_reset(struct work_struct *rst_work) 4615 { 4616 struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work); 4617 int ret; 4618 4619 ret = qm_pm_get_sync(qm); 4620 if (ret) { 4621 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 4622 return; 4623 } 4624 4625 /* reset pcie device controller */ 4626 ret = qm_controller_reset(qm); 4627 if (ret) 4628 dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret); 4629 4630 qm_pm_put_sync(qm); 4631 } 4632 4633 static void qm_pf_reset_vf_prepare(struct hisi_qm *qm, 4634 enum qm_stop_reason stop_reason) 4635 { 4636 enum qm_mb_cmd cmd = QM_VF_PREPARE_DONE; 4637 struct pci_dev *pdev = qm->pdev; 4638 int ret; 4639 4640 ret = qm_reset_prepare_ready(qm); 4641 if (ret) { 4642 dev_err(&pdev->dev, "reset prepare not ready!\n"); 4643 atomic_set(&qm->status.flags, QM_STOP); 4644 cmd = QM_VF_PREPARE_FAIL; 4645 goto err_prepare; 4646 } 4647 4648 ret = hisi_qm_stop(qm, stop_reason); 4649 if (ret) { 4650 dev_err(&pdev->dev, "failed to stop QM, ret = %d.\n", ret); 4651 atomic_set(&qm->status.flags, QM_STOP); 4652 cmd = QM_VF_PREPARE_FAIL; 4653 goto err_prepare; 4654 } else { 4655 goto out; 4656 } 4657 4658 err_prepare: 4659 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 4660 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 4661 out: 4662 pci_save_state(pdev); 4663 ret = qm_ping_pf(qm, cmd); 4664 if (ret) 4665 dev_warn(&pdev->dev, "PF responds timeout in reset prepare!\n"); 4666 } 4667 4668 static void qm_pf_reset_vf_done(struct hisi_qm *qm) 4669 { 4670 enum qm_mb_cmd cmd = QM_VF_START_DONE; 4671 struct pci_dev *pdev = qm->pdev; 4672 int ret; 4673 4674 pci_restore_state(pdev); 4675 ret = hisi_qm_start(qm); 4676 if (ret) { 4677 dev_err(&pdev->dev, "failed to start QM, ret = %d.\n", ret); 4678 cmd = QM_VF_START_FAIL; 4679 } 4680 4681 qm_cmd_init(qm); 4682 ret = qm_ping_pf(qm, cmd); 4683 if (ret) 4684 dev_warn(&pdev->dev, "PF responds timeout in reset done!\n"); 4685 4686 qm_reset_bit_clear(qm); 4687 } 4688 4689 static int qm_wait_pf_reset_finish(struct hisi_qm *qm) 4690 { 4691 struct device *dev = &qm->pdev->dev; 4692 u32 val, cmd; 4693 u64 msg; 4694 int ret; 4695 4696 /* Wait for reset to finish */ 4697 ret = readl_relaxed_poll_timeout(qm->io_base + QM_IFC_INT_SOURCE_V, val, 4698 val == BIT(0), QM_VF_RESET_WAIT_US, 4699 QM_VF_RESET_WAIT_TIMEOUT_US); 4700 /* hardware completion status should be available by this time */ 4701 if (ret) { 4702 dev_err(dev, "couldn't get reset done status from PF, timeout!\n"); 4703 return -ETIMEDOUT; 4704 } 4705 4706 /* 4707 * Whether message is got successfully, 4708 * VF needs to ack PF by clearing the interrupt. 4709 */ 4710 ret = qm_get_mb_cmd(qm, &msg, 0); 4711 qm_clear_cmd_interrupt(qm, 0); 4712 if (ret) { 4713 dev_err(dev, "failed to get msg from PF in reset done!\n"); 4714 return ret; 4715 } 4716 4717 cmd = msg & QM_MB_CMD_DATA_MASK; 4718 if (cmd != QM_PF_RESET_DONE) { 4719 dev_err(dev, "the cmd(%u) is not reset done!\n", cmd); 4720 ret = -EINVAL; 4721 } 4722 4723 return ret; 4724 } 4725 4726 static void qm_pf_reset_vf_process(struct hisi_qm *qm, 4727 enum qm_stop_reason stop_reason) 4728 { 4729 struct device *dev = &qm->pdev->dev; 4730 int ret; 4731 4732 dev_info(dev, "device reset start...\n"); 4733 4734 /* The message is obtained by querying the register during resetting */ 4735 qm_cmd_uninit(qm); 4736 qm_pf_reset_vf_prepare(qm, stop_reason); 4737 4738 ret = qm_wait_pf_reset_finish(qm); 4739 if (ret) 4740 goto err_get_status; 4741 4742 qm_pf_reset_vf_done(qm); 4743 4744 dev_info(dev, "device reset done.\n"); 4745 4746 return; 4747 4748 err_get_status: 4749 qm_cmd_init(qm); 4750 qm_reset_bit_clear(qm); 4751 } 4752 4753 static void qm_handle_cmd_msg(struct hisi_qm *qm, u32 fun_num) 4754 { 4755 struct device *dev = &qm->pdev->dev; 4756 u64 msg; 4757 u32 cmd; 4758 int ret; 4759 4760 /* 4761 * Get the msg from source by sending mailbox. Whether message is got 4762 * successfully, destination needs to ack source by clearing the interrupt. 4763 */ 4764 ret = qm_get_mb_cmd(qm, &msg, fun_num); 4765 qm_clear_cmd_interrupt(qm, BIT(fun_num)); 4766 if (ret) { 4767 dev_err(dev, "failed to get msg from source!\n"); 4768 return; 4769 } 4770 4771 cmd = msg & QM_MB_CMD_DATA_MASK; 4772 switch (cmd) { 4773 case QM_PF_FLR_PREPARE: 4774 qm_pf_reset_vf_process(qm, QM_DOWN); 4775 break; 4776 case QM_PF_SRST_PREPARE: 4777 qm_pf_reset_vf_process(qm, QM_SOFT_RESET); 4778 break; 4779 case QM_VF_GET_QOS: 4780 qm_vf_get_qos(qm, fun_num); 4781 break; 4782 case QM_PF_SET_QOS: 4783 qm->mb_qos = msg >> QM_MB_CMD_DATA_SHIFT; 4784 break; 4785 default: 4786 dev_err(dev, "unsupported cmd %u sent by function(%u)!\n", cmd, fun_num); 4787 break; 4788 } 4789 } 4790 4791 static void qm_cmd_process(struct work_struct *cmd_process) 4792 { 4793 struct hisi_qm *qm = container_of(cmd_process, 4794 struct hisi_qm, cmd_process); 4795 u32 vfs_num = qm->vfs_num; 4796 u64 val; 4797 u32 i; 4798 4799 if (qm->fun_type == QM_HW_PF) { 4800 val = readq(qm->io_base + QM_IFC_INT_SOURCE_P); 4801 if (!val) 4802 return; 4803 4804 for (i = 1; i <= vfs_num; i++) { 4805 if (val & BIT(i)) 4806 qm_handle_cmd_msg(qm, i); 4807 } 4808 4809 return; 4810 } 4811 4812 qm_handle_cmd_msg(qm, 0); 4813 } 4814 4815 /** 4816 * hisi_qm_alg_register() - Register alg to crypto. 4817 * @qm: The qm needs add. 4818 * @qm_list: The qm list. 4819 * @guard: Guard of qp_num. 4820 * 4821 * Register algorithm to crypto when the function is satisfy guard. 4822 */ 4823 int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list, int guard) 4824 { 4825 struct device *dev = &qm->pdev->dev; 4826 4827 if (qm->ver <= QM_HW_V2 && qm->use_sva) { 4828 dev_info(dev, "HW V2 not both use uacce sva mode and hardware crypto algs.\n"); 4829 return 0; 4830 } 4831 4832 if (qm->qp_num < guard) { 4833 dev_info(dev, "qp_num is less than task need.\n"); 4834 return 0; 4835 } 4836 4837 return qm_list->register_to_crypto(qm); 4838 } 4839 EXPORT_SYMBOL_GPL(hisi_qm_alg_register); 4840 4841 /** 4842 * hisi_qm_alg_unregister() - Unregister alg from crypto. 4843 * @qm: The qm needs delete. 4844 * @qm_list: The qm list. 4845 * @guard: Guard of qp_num. 4846 * 4847 * Unregister algorithm from crypto when the last function is satisfy guard. 4848 */ 4849 void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list, int guard) 4850 { 4851 if (qm->ver <= QM_HW_V2 && qm->use_sva) 4852 return; 4853 4854 if (qm->qp_num < guard) 4855 return; 4856 4857 qm_list->unregister_from_crypto(qm); 4858 } 4859 EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister); 4860 4861 static void qm_unregister_abnormal_irq(struct hisi_qm *qm) 4862 { 4863 struct pci_dev *pdev = qm->pdev; 4864 u32 irq_vector, val; 4865 4866 if (qm->fun_type == QM_HW_VF) 4867 return; 4868 4869 val = qm->cap_tables.qm_cap_table[QM_ABN_IRQ_TYPE_CAP_IDX].cap_val; 4870 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK)) 4871 return; 4872 4873 irq_vector = val & QM_IRQ_VECTOR_MASK; 4874 free_irq(pci_irq_vector(pdev, irq_vector), qm); 4875 } 4876 4877 static int qm_register_abnormal_irq(struct hisi_qm *qm) 4878 { 4879 struct pci_dev *pdev = qm->pdev; 4880 u32 irq_vector, val; 4881 int ret; 4882 4883 if (qm->fun_type == QM_HW_VF) 4884 return 0; 4885 4886 val = qm->cap_tables.qm_cap_table[QM_ABN_IRQ_TYPE_CAP_IDX].cap_val; 4887 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK)) 4888 return 0; 4889 4890 irq_vector = val & QM_IRQ_VECTOR_MASK; 4891 ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_abnormal_irq, 0, qm->dev_name, qm); 4892 if (ret) 4893 dev_err(&qm->pdev->dev, "failed to request abnormal irq, ret = %d", ret); 4894 4895 return ret; 4896 } 4897 4898 static void qm_unregister_mb_cmd_irq(struct hisi_qm *qm) 4899 { 4900 struct pci_dev *pdev = qm->pdev; 4901 u32 irq_vector, val; 4902 4903 val = qm->cap_tables.qm_cap_table[QM_PF2VF_IRQ_TYPE_CAP_IDX].cap_val; 4904 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 4905 return; 4906 4907 irq_vector = val & QM_IRQ_VECTOR_MASK; 4908 free_irq(pci_irq_vector(pdev, irq_vector), qm); 4909 } 4910 4911 static int qm_register_mb_cmd_irq(struct hisi_qm *qm) 4912 { 4913 struct pci_dev *pdev = qm->pdev; 4914 u32 irq_vector, val; 4915 int ret; 4916 4917 val = qm->cap_tables.qm_cap_table[QM_PF2VF_IRQ_TYPE_CAP_IDX].cap_val; 4918 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 4919 return 0; 4920 4921 irq_vector = val & QM_IRQ_VECTOR_MASK; 4922 ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_mb_cmd_irq, 0, qm->dev_name, qm); 4923 if (ret) 4924 dev_err(&pdev->dev, "failed to request function communication irq, ret = %d", ret); 4925 4926 return ret; 4927 } 4928 4929 static void qm_unregister_aeq_irq(struct hisi_qm *qm) 4930 { 4931 struct pci_dev *pdev = qm->pdev; 4932 u32 irq_vector, val; 4933 4934 val = qm->cap_tables.qm_cap_table[QM_AEQ_IRQ_TYPE_CAP_IDX].cap_val; 4935 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 4936 return; 4937 4938 irq_vector = val & QM_IRQ_VECTOR_MASK; 4939 free_irq(pci_irq_vector(pdev, irq_vector), qm); 4940 } 4941 4942 static int qm_register_aeq_irq(struct hisi_qm *qm) 4943 { 4944 struct pci_dev *pdev = qm->pdev; 4945 u32 irq_vector, val; 4946 int ret; 4947 4948 val = qm->cap_tables.qm_cap_table[QM_AEQ_IRQ_TYPE_CAP_IDX].cap_val; 4949 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 4950 return 0; 4951 4952 irq_vector = val & QM_IRQ_VECTOR_MASK; 4953 ret = request_threaded_irq(pci_irq_vector(pdev, irq_vector), NULL, 4954 qm_aeq_thread, IRQF_ONESHOT, qm->dev_name, qm); 4955 if (ret) 4956 dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret); 4957 4958 return ret; 4959 } 4960 4961 static void qm_unregister_eq_irq(struct hisi_qm *qm) 4962 { 4963 struct pci_dev *pdev = qm->pdev; 4964 u32 irq_vector, val; 4965 4966 val = qm->cap_tables.qm_cap_table[QM_EQ_IRQ_TYPE_CAP_IDX].cap_val; 4967 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 4968 return; 4969 4970 irq_vector = val & QM_IRQ_VECTOR_MASK; 4971 free_irq(pci_irq_vector(pdev, irq_vector), qm); 4972 } 4973 4974 static int qm_register_eq_irq(struct hisi_qm *qm) 4975 { 4976 struct pci_dev *pdev = qm->pdev; 4977 u32 irq_vector, val; 4978 int ret; 4979 4980 val = qm->cap_tables.qm_cap_table[QM_EQ_IRQ_TYPE_CAP_IDX].cap_val; 4981 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 4982 return 0; 4983 4984 irq_vector = val & QM_IRQ_VECTOR_MASK; 4985 ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_eq_irq, 0, qm->dev_name, qm); 4986 if (ret) 4987 dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret); 4988 4989 return ret; 4990 } 4991 4992 static void qm_irqs_unregister(struct hisi_qm *qm) 4993 { 4994 qm_unregister_mb_cmd_irq(qm); 4995 qm_unregister_abnormal_irq(qm); 4996 qm_unregister_aeq_irq(qm); 4997 qm_unregister_eq_irq(qm); 4998 } 4999 5000 static int qm_irqs_register(struct hisi_qm *qm) 5001 { 5002 int ret; 5003 5004 ret = qm_register_eq_irq(qm); 5005 if (ret) 5006 return ret; 5007 5008 ret = qm_register_aeq_irq(qm); 5009 if (ret) 5010 goto free_eq_irq; 5011 5012 ret = qm_register_abnormal_irq(qm); 5013 if (ret) 5014 goto free_aeq_irq; 5015 5016 ret = qm_register_mb_cmd_irq(qm); 5017 if (ret) 5018 goto free_abnormal_irq; 5019 5020 return 0; 5021 5022 free_abnormal_irq: 5023 qm_unregister_abnormal_irq(qm); 5024 free_aeq_irq: 5025 qm_unregister_aeq_irq(qm); 5026 free_eq_irq: 5027 qm_unregister_eq_irq(qm); 5028 return ret; 5029 } 5030 5031 static int qm_get_qp_num(struct hisi_qm *qm) 5032 { 5033 struct device *dev = &qm->pdev->dev; 5034 bool is_db_isolation; 5035 5036 /* VF's qp_num assigned by PF in v2, and VF can get qp_num by vft. */ 5037 if (qm->fun_type == QM_HW_VF) { 5038 if (qm->ver != QM_HW_V1) 5039 /* v2 starts to support get vft by mailbox */ 5040 return hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num); 5041 5042 return 0; 5043 } 5044 5045 is_db_isolation = test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps); 5046 qm->ctrl_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, QM_TOTAL_QP_NUM_CAP, true); 5047 qm->max_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, 5048 QM_FUNC_MAX_QP_CAP, is_db_isolation); 5049 5050 if (qm->qp_num <= qm->max_qp_num) 5051 return 0; 5052 5053 if (test_bit(QM_MODULE_PARAM, &qm->misc_ctl)) { 5054 /* Check whether the set qp number is valid */ 5055 dev_err(dev, "qp num(%u) is more than max qp num(%u)!\n", 5056 qm->qp_num, qm->max_qp_num); 5057 return -EINVAL; 5058 } 5059 5060 dev_info(dev, "Default qp num(%u) is too big, reset it to Function's max qp num(%u)!\n", 5061 qm->qp_num, qm->max_qp_num); 5062 qm->qp_num = qm->max_qp_num; 5063 qm->debug.curr_qm_qp_num = qm->qp_num; 5064 5065 return 0; 5066 } 5067 5068 static int qm_pre_store_irq_type_caps(struct hisi_qm *qm) 5069 { 5070 struct hisi_qm_cap_record *qm_cap; 5071 struct pci_dev *pdev = qm->pdev; 5072 size_t i, size; 5073 5074 size = ARRAY_SIZE(qm_pre_store_caps); 5075 qm_cap = devm_kzalloc(&pdev->dev, sizeof(*qm_cap) * size, GFP_KERNEL); 5076 if (!qm_cap) 5077 return -ENOMEM; 5078 5079 for (i = 0; i < size; i++) { 5080 qm_cap[i].type = qm_pre_store_caps[i]; 5081 qm_cap[i].cap_val = hisi_qm_get_hw_info(qm, qm_basic_info, 5082 qm_pre_store_caps[i], qm->cap_ver); 5083 } 5084 5085 qm->cap_tables.qm_cap_table = qm_cap; 5086 5087 return 0; 5088 } 5089 5090 static int qm_get_hw_caps(struct hisi_qm *qm) 5091 { 5092 const struct hisi_qm_cap_info *cap_info = qm->fun_type == QM_HW_PF ? 5093 qm_cap_info_pf : qm_cap_info_vf; 5094 u32 size = qm->fun_type == QM_HW_PF ? ARRAY_SIZE(qm_cap_info_pf) : 5095 ARRAY_SIZE(qm_cap_info_vf); 5096 u32 val, i; 5097 5098 /* Doorbell isolate register is a independent register. */ 5099 val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, QM_SUPPORT_DB_ISOLATION, true); 5100 if (val) 5101 set_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps); 5102 5103 if (qm->ver >= QM_HW_V3) { 5104 val = readl(qm->io_base + QM_FUNC_CAPS_REG); 5105 qm->cap_ver = val & QM_CAPBILITY_VERSION; 5106 } 5107 5108 /* Get PF/VF common capbility */ 5109 for (i = 1; i < ARRAY_SIZE(qm_cap_info_comm); i++) { 5110 val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, i, qm->cap_ver); 5111 if (val) 5112 set_bit(qm_cap_info_comm[i].type, &qm->caps); 5113 } 5114 5115 /* Get PF/VF different capbility */ 5116 for (i = 0; i < size; i++) { 5117 val = hisi_qm_get_hw_info(qm, cap_info, i, qm->cap_ver); 5118 if (val) 5119 set_bit(cap_info[i].type, &qm->caps); 5120 } 5121 5122 /* Fetch and save the value of irq type related capability registers */ 5123 return qm_pre_store_irq_type_caps(qm); 5124 } 5125 5126 static int qm_get_pci_res(struct hisi_qm *qm) 5127 { 5128 struct pci_dev *pdev = qm->pdev; 5129 struct device *dev = &pdev->dev; 5130 int ret; 5131 5132 ret = pci_request_mem_regions(pdev, qm->dev_name); 5133 if (ret < 0) { 5134 dev_err(dev, "Failed to request mem regions!\n"); 5135 return ret; 5136 } 5137 5138 qm->phys_base = pci_resource_start(pdev, PCI_BAR_2); 5139 qm->io_base = ioremap(qm->phys_base, pci_resource_len(pdev, PCI_BAR_2)); 5140 if (!qm->io_base) { 5141 ret = -EIO; 5142 goto err_request_mem_regions; 5143 } 5144 5145 ret = qm_get_hw_caps(qm); 5146 if (ret) 5147 goto err_ioremap; 5148 5149 if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) { 5150 qm->db_interval = QM_QP_DB_INTERVAL; 5151 qm->db_phys_base = pci_resource_start(pdev, PCI_BAR_4); 5152 qm->db_io_base = ioremap(qm->db_phys_base, 5153 pci_resource_len(pdev, PCI_BAR_4)); 5154 if (!qm->db_io_base) { 5155 ret = -EIO; 5156 goto err_ioremap; 5157 } 5158 } else { 5159 qm->db_phys_base = qm->phys_base; 5160 qm->db_io_base = qm->io_base; 5161 qm->db_interval = 0; 5162 } 5163 5164 ret = qm_get_qp_num(qm); 5165 if (ret) 5166 goto err_db_ioremap; 5167 5168 return 0; 5169 5170 err_db_ioremap: 5171 if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) 5172 iounmap(qm->db_io_base); 5173 err_ioremap: 5174 iounmap(qm->io_base); 5175 err_request_mem_regions: 5176 pci_release_mem_regions(pdev); 5177 return ret; 5178 } 5179 5180 static int qm_clear_device(struct hisi_qm *qm) 5181 { 5182 acpi_handle handle = ACPI_HANDLE(&qm->pdev->dev); 5183 int ret; 5184 5185 if (qm->fun_type == QM_HW_VF) 5186 return 0; 5187 5188 /* Device does not support reset, return */ 5189 if (!qm->err_ini->err_info_init) 5190 return 0; 5191 qm->err_ini->err_info_init(qm); 5192 5193 if (!handle) 5194 return 0; 5195 5196 /* No reset method, return */ 5197 if (!acpi_has_method(handle, qm->err_info.acpi_rst)) 5198 return 0; 5199 5200 ret = qm_master_ooo_check(qm); 5201 if (ret) { 5202 writel(0x0, qm->io_base + ACC_MASTER_GLOBAL_CTRL); 5203 return ret; 5204 } 5205 5206 return qm_reset_device(qm); 5207 } 5208 5209 static int hisi_qm_pci_init(struct hisi_qm *qm) 5210 { 5211 struct pci_dev *pdev = qm->pdev; 5212 struct device *dev = &pdev->dev; 5213 unsigned int num_vec; 5214 int ret; 5215 5216 ret = pci_enable_device_mem(pdev); 5217 if (ret < 0) { 5218 dev_err(dev, "Failed to enable device mem!\n"); 5219 return ret; 5220 } 5221 5222 ret = qm_get_pci_res(qm); 5223 if (ret) 5224 goto err_disable_pcidev; 5225 5226 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5227 if (ret < 0) 5228 goto err_get_pci_res; 5229 pci_set_master(pdev); 5230 5231 num_vec = qm_get_irq_num(qm); 5232 ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI); 5233 if (ret < 0) { 5234 dev_err(dev, "Failed to enable MSI vectors!\n"); 5235 goto err_get_pci_res; 5236 } 5237 5238 ret = qm_clear_device(qm); 5239 if (ret) 5240 goto err_free_vectors; 5241 5242 return 0; 5243 5244 err_free_vectors: 5245 pci_free_irq_vectors(pdev); 5246 err_get_pci_res: 5247 qm_put_pci_res(qm); 5248 err_disable_pcidev: 5249 pci_disable_device(pdev); 5250 return ret; 5251 } 5252 5253 static int hisi_qm_init_work(struct hisi_qm *qm) 5254 { 5255 int i; 5256 5257 for (i = 0; i < qm->qp_num; i++) 5258 INIT_WORK(&qm->poll_data[i].work, qm_work_process); 5259 5260 if (qm->fun_type == QM_HW_PF) 5261 INIT_WORK(&qm->rst_work, hisi_qm_controller_reset); 5262 5263 if (qm->ver > QM_HW_V2) 5264 INIT_WORK(&qm->cmd_process, qm_cmd_process); 5265 5266 qm->wq = alloc_workqueue("%s", WQ_HIGHPRI | WQ_MEM_RECLAIM | 5267 WQ_UNBOUND, num_online_cpus(), 5268 pci_name(qm->pdev)); 5269 if (!qm->wq) { 5270 pci_err(qm->pdev, "failed to alloc workqueue!\n"); 5271 return -ENOMEM; 5272 } 5273 5274 return 0; 5275 } 5276 5277 static int hisi_qp_alloc_memory(struct hisi_qm *qm) 5278 { 5279 struct device *dev = &qm->pdev->dev; 5280 u16 sq_depth, cq_depth; 5281 size_t qp_dma_size; 5282 int i, ret; 5283 5284 qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL); 5285 if (!qm->qp_array) 5286 return -ENOMEM; 5287 5288 qm->poll_data = kcalloc(qm->qp_num, sizeof(struct hisi_qm_poll_data), GFP_KERNEL); 5289 if (!qm->poll_data) { 5290 kfree(qm->qp_array); 5291 return -ENOMEM; 5292 } 5293 5294 qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP); 5295 5296 /* one more page for device or qp statuses */ 5297 qp_dma_size = qm->sqe_size * sq_depth + sizeof(struct qm_cqe) * cq_depth; 5298 qp_dma_size = PAGE_ALIGN(qp_dma_size) + PAGE_SIZE; 5299 for (i = 0; i < qm->qp_num; i++) { 5300 qm->poll_data[i].qm = qm; 5301 ret = hisi_qp_memory_init(qm, qp_dma_size, i, sq_depth, cq_depth); 5302 if (ret) 5303 goto err_init_qp_mem; 5304 5305 dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size); 5306 } 5307 5308 return 0; 5309 err_init_qp_mem: 5310 hisi_qp_memory_uninit(qm, i); 5311 5312 return ret; 5313 } 5314 5315 static int hisi_qm_alloc_rsv_buf(struct hisi_qm *qm) 5316 { 5317 struct qm_rsv_buf *xqc_buf = &qm->xqc_buf; 5318 struct qm_dma *xqc_dma = &xqc_buf->qcdma; 5319 struct device *dev = &qm->pdev->dev; 5320 size_t off = 0; 5321 5322 #define QM_XQC_BUF_INIT(xqc_buf, type) do { \ 5323 (xqc_buf)->type = ((xqc_buf)->qcdma.va + (off)); \ 5324 (xqc_buf)->type##_dma = (xqc_buf)->qcdma.dma + (off); \ 5325 off += QMC_ALIGN(sizeof(struct qm_##type)); \ 5326 } while (0) 5327 5328 xqc_dma->size = QMC_ALIGN(sizeof(struct qm_eqc)) + 5329 QMC_ALIGN(sizeof(struct qm_aeqc)) + 5330 QMC_ALIGN(sizeof(struct qm_sqc)) + 5331 QMC_ALIGN(sizeof(struct qm_cqc)); 5332 xqc_dma->va = dma_alloc_coherent(dev, xqc_dma->size, 5333 &xqc_dma->dma, GFP_KERNEL); 5334 if (!xqc_dma->va) 5335 return -ENOMEM; 5336 5337 QM_XQC_BUF_INIT(xqc_buf, eqc); 5338 QM_XQC_BUF_INIT(xqc_buf, aeqc); 5339 QM_XQC_BUF_INIT(xqc_buf, sqc); 5340 QM_XQC_BUF_INIT(xqc_buf, cqc); 5341 5342 return 0; 5343 } 5344 5345 static int hisi_qm_memory_init(struct hisi_qm *qm) 5346 { 5347 struct device *dev = &qm->pdev->dev; 5348 int ret, total_func; 5349 size_t off = 0; 5350 5351 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) { 5352 total_func = pci_sriov_get_totalvfs(qm->pdev) + 1; 5353 qm->factor = kcalloc(total_func, sizeof(struct qm_shaper_factor), GFP_KERNEL); 5354 if (!qm->factor) 5355 return -ENOMEM; 5356 5357 /* Only the PF value needs to be initialized */ 5358 qm->factor[0].func_qos = QM_QOS_MAX_VAL; 5359 } 5360 5361 #define QM_INIT_BUF(qm, type, num) do { \ 5362 (qm)->type = ((qm)->qdma.va + (off)); \ 5363 (qm)->type##_dma = (qm)->qdma.dma + (off); \ 5364 off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \ 5365 } while (0) 5366 5367 idr_init(&qm->qp_idr); 5368 qm_get_xqc_depth(qm, &qm->eq_depth, &qm->aeq_depth, QM_XEQ_DEPTH_CAP); 5369 qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * qm->eq_depth) + 5370 QMC_ALIGN(sizeof(struct qm_aeqe) * qm->aeq_depth) + 5371 QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) + 5372 QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num); 5373 qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma, 5374 GFP_ATOMIC); 5375 dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size); 5376 if (!qm->qdma.va) { 5377 ret = -ENOMEM; 5378 goto err_destroy_idr; 5379 } 5380 5381 QM_INIT_BUF(qm, eqe, qm->eq_depth); 5382 QM_INIT_BUF(qm, aeqe, qm->aeq_depth); 5383 QM_INIT_BUF(qm, sqc, qm->qp_num); 5384 QM_INIT_BUF(qm, cqc, qm->qp_num); 5385 5386 ret = hisi_qm_alloc_rsv_buf(qm); 5387 if (ret) 5388 goto err_free_qdma; 5389 5390 ret = hisi_qp_alloc_memory(qm); 5391 if (ret) 5392 goto err_free_reserve_buf; 5393 5394 return 0; 5395 5396 err_free_reserve_buf: 5397 hisi_qm_free_rsv_buf(qm); 5398 err_free_qdma: 5399 dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma); 5400 err_destroy_idr: 5401 idr_destroy(&qm->qp_idr); 5402 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 5403 kfree(qm->factor); 5404 5405 return ret; 5406 } 5407 5408 /** 5409 * hisi_qm_init() - Initialize configures about qm. 5410 * @qm: The qm needing init. 5411 * 5412 * This function init qm, then we can call hisi_qm_start to put qm into work. 5413 */ 5414 int hisi_qm_init(struct hisi_qm *qm) 5415 { 5416 struct pci_dev *pdev = qm->pdev; 5417 struct device *dev = &pdev->dev; 5418 int ret; 5419 5420 hisi_qm_pre_init(qm); 5421 5422 ret = hisi_qm_pci_init(qm); 5423 if (ret) 5424 return ret; 5425 5426 ret = qm_irqs_register(qm); 5427 if (ret) 5428 goto err_pci_init; 5429 5430 if (qm->fun_type == QM_HW_PF) { 5431 /* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */ 5432 writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG); 5433 qm_disable_clock_gate(qm); 5434 ret = qm_dev_mem_reset(qm); 5435 if (ret) { 5436 dev_err(dev, "failed to reset device memory\n"); 5437 goto err_irq_register; 5438 } 5439 } 5440 5441 if (qm->mode == UACCE_MODE_SVA) { 5442 ret = qm_alloc_uacce(qm); 5443 if (ret < 0) 5444 dev_warn(dev, "fail to alloc uacce (%d)\n", ret); 5445 } 5446 5447 ret = hisi_qm_memory_init(qm); 5448 if (ret) 5449 goto err_alloc_uacce; 5450 5451 ret = hisi_qm_init_work(qm); 5452 if (ret) 5453 goto err_free_qm_memory; 5454 5455 qm_cmd_init(qm); 5456 5457 return 0; 5458 5459 err_free_qm_memory: 5460 hisi_qm_memory_uninit(qm); 5461 err_alloc_uacce: 5462 qm_remove_uacce(qm); 5463 err_irq_register: 5464 qm_irqs_unregister(qm); 5465 err_pci_init: 5466 hisi_qm_pci_uninit(qm); 5467 return ret; 5468 } 5469 EXPORT_SYMBOL_GPL(hisi_qm_init); 5470 5471 /** 5472 * hisi_qm_get_dfx_access() - Try to get dfx access. 5473 * @qm: pointer to accelerator device. 5474 * 5475 * Try to get dfx access, then user can get message. 5476 * 5477 * If device is in suspended, return failure, otherwise 5478 * bump up the runtime PM usage counter. 5479 */ 5480 int hisi_qm_get_dfx_access(struct hisi_qm *qm) 5481 { 5482 struct device *dev = &qm->pdev->dev; 5483 5484 if (pm_runtime_suspended(dev)) { 5485 dev_info(dev, "can not read/write - device in suspended.\n"); 5486 return -EAGAIN; 5487 } 5488 5489 return qm_pm_get_sync(qm); 5490 } 5491 EXPORT_SYMBOL_GPL(hisi_qm_get_dfx_access); 5492 5493 /** 5494 * hisi_qm_put_dfx_access() - Put dfx access. 5495 * @qm: pointer to accelerator device. 5496 * 5497 * Put dfx access, drop runtime PM usage counter. 5498 */ 5499 void hisi_qm_put_dfx_access(struct hisi_qm *qm) 5500 { 5501 qm_pm_put_sync(qm); 5502 } 5503 EXPORT_SYMBOL_GPL(hisi_qm_put_dfx_access); 5504 5505 /** 5506 * hisi_qm_pm_init() - Initialize qm runtime PM. 5507 * @qm: pointer to accelerator device. 5508 * 5509 * Function that initialize qm runtime PM. 5510 */ 5511 void hisi_qm_pm_init(struct hisi_qm *qm) 5512 { 5513 struct device *dev = &qm->pdev->dev; 5514 5515 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 5516 return; 5517 5518 pm_runtime_set_autosuspend_delay(dev, QM_AUTOSUSPEND_DELAY); 5519 pm_runtime_use_autosuspend(dev); 5520 pm_runtime_put_noidle(dev); 5521 } 5522 EXPORT_SYMBOL_GPL(hisi_qm_pm_init); 5523 5524 /** 5525 * hisi_qm_pm_uninit() - Uninitialize qm runtime PM. 5526 * @qm: pointer to accelerator device. 5527 * 5528 * Function that uninitialize qm runtime PM. 5529 */ 5530 void hisi_qm_pm_uninit(struct hisi_qm *qm) 5531 { 5532 struct device *dev = &qm->pdev->dev; 5533 5534 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 5535 return; 5536 5537 pm_runtime_get_noresume(dev); 5538 pm_runtime_dont_use_autosuspend(dev); 5539 } 5540 EXPORT_SYMBOL_GPL(hisi_qm_pm_uninit); 5541 5542 static int qm_prepare_for_suspend(struct hisi_qm *qm) 5543 { 5544 struct pci_dev *pdev = qm->pdev; 5545 int ret; 5546 5547 ret = qm->ops->set_msi(qm, false); 5548 if (ret) { 5549 pci_err(pdev, "failed to disable MSI before suspending!\n"); 5550 return ret; 5551 } 5552 5553 ret = qm_master_ooo_check(qm); 5554 if (ret) 5555 return ret; 5556 5557 ret = qm_set_pf_mse(qm, false); 5558 if (ret) 5559 pci_err(pdev, "failed to disable MSE before suspending!\n"); 5560 5561 return ret; 5562 } 5563 5564 static int qm_rebuild_for_resume(struct hisi_qm *qm) 5565 { 5566 struct pci_dev *pdev = qm->pdev; 5567 int ret; 5568 5569 ret = qm_set_pf_mse(qm, true); 5570 if (ret) { 5571 pci_err(pdev, "failed to enable MSE after resuming!\n"); 5572 return ret; 5573 } 5574 5575 ret = qm->ops->set_msi(qm, true); 5576 if (ret) { 5577 pci_err(pdev, "failed to enable MSI after resuming!\n"); 5578 return ret; 5579 } 5580 5581 ret = qm_dev_hw_init(qm); 5582 if (ret) { 5583 pci_err(pdev, "failed to init device after resuming\n"); 5584 return ret; 5585 } 5586 5587 qm_cmd_init(qm); 5588 hisi_qm_dev_err_init(qm); 5589 /* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */ 5590 writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG); 5591 qm_disable_clock_gate(qm); 5592 ret = qm_dev_mem_reset(qm); 5593 if (ret) 5594 pci_err(pdev, "failed to reset device memory\n"); 5595 5596 return ret; 5597 } 5598 5599 /** 5600 * hisi_qm_suspend() - Runtime suspend of given device. 5601 * @dev: device to suspend. 5602 * 5603 * Function that suspend the device. 5604 */ 5605 int hisi_qm_suspend(struct device *dev) 5606 { 5607 struct pci_dev *pdev = to_pci_dev(dev); 5608 struct hisi_qm *qm = pci_get_drvdata(pdev); 5609 int ret; 5610 5611 pci_info(pdev, "entering suspended state\n"); 5612 5613 ret = hisi_qm_stop(qm, QM_NORMAL); 5614 if (ret) { 5615 pci_err(pdev, "failed to stop qm(%d)\n", ret); 5616 return ret; 5617 } 5618 5619 ret = qm_prepare_for_suspend(qm); 5620 if (ret) 5621 pci_err(pdev, "failed to prepare suspended(%d)\n", ret); 5622 5623 return ret; 5624 } 5625 EXPORT_SYMBOL_GPL(hisi_qm_suspend); 5626 5627 /** 5628 * hisi_qm_resume() - Runtime resume of given device. 5629 * @dev: device to resume. 5630 * 5631 * Function that resume the device. 5632 */ 5633 int hisi_qm_resume(struct device *dev) 5634 { 5635 struct pci_dev *pdev = to_pci_dev(dev); 5636 struct hisi_qm *qm = pci_get_drvdata(pdev); 5637 int ret; 5638 5639 pci_info(pdev, "resuming from suspend state\n"); 5640 5641 ret = qm_rebuild_for_resume(qm); 5642 if (ret) { 5643 pci_err(pdev, "failed to rebuild resume(%d)\n", ret); 5644 return ret; 5645 } 5646 5647 ret = hisi_qm_start(qm); 5648 if (ret) { 5649 if (qm_check_dev_error(qm)) { 5650 pci_info(pdev, "failed to start qm due to device error, device will be reset!\n"); 5651 return 0; 5652 } 5653 5654 pci_err(pdev, "failed to start qm(%d)!\n", ret); 5655 } 5656 5657 return ret; 5658 } 5659 EXPORT_SYMBOL_GPL(hisi_qm_resume); 5660 5661 MODULE_LICENSE("GPL v2"); 5662 MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>"); 5663 MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver"); 5664