1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019 HiSilicon Limited. */ 3 #include <asm/page.h> 4 #include <linux/acpi.h> 5 #include <linux/bitmap.h> 6 #include <linux/dma-mapping.h> 7 #include <linux/idr.h> 8 #include <linux/io.h> 9 #include <linux/irqreturn.h> 10 #include <linux/log2.h> 11 #include <linux/pm_runtime.h> 12 #include <linux/seq_file.h> 13 #include <linux/slab.h> 14 #include <linux/uacce.h> 15 #include <linux/uaccess.h> 16 #include <uapi/misc/uacce/hisi_qm.h> 17 #include <linux/hisi_acc_qm.h> 18 #include "qm_common.h" 19 20 /* eq/aeq irq enable */ 21 #define QM_VF_AEQ_INT_SOURCE 0x0 22 #define QM_VF_AEQ_INT_MASK 0x4 23 #define QM_VF_EQ_INT_SOURCE 0x8 24 #define QM_VF_EQ_INT_MASK 0xc 25 26 #define QM_IRQ_VECTOR_MASK GENMASK(15, 0) 27 #define QM_IRQ_TYPE_MASK GENMASK(15, 0) 28 #define QM_IRQ_TYPE_SHIFT 16 29 #define QM_ABN_IRQ_TYPE_MASK GENMASK(7, 0) 30 31 /* mailbox */ 32 #define QM_MB_PING_ALL_VFS 0xffff 33 #define QM_MB_CMD_DATA_SHIFT 32 34 #define QM_MB_CMD_DATA_MASK GENMASK(31, 0) 35 #define QM_MB_STATUS_MASK GENMASK(12, 9) 36 37 /* sqc shift */ 38 #define QM_SQ_HOP_NUM_SHIFT 0 39 #define QM_SQ_PAGE_SIZE_SHIFT 4 40 #define QM_SQ_BUF_SIZE_SHIFT 8 41 #define QM_SQ_SQE_SIZE_SHIFT 12 42 #define QM_SQ_PRIORITY_SHIFT 0 43 #define QM_SQ_ORDERS_SHIFT 4 44 #define QM_SQ_TYPE_SHIFT 8 45 #define QM_QC_PASID_ENABLE 0x1 46 #define QM_QC_PASID_ENABLE_SHIFT 7 47 48 #define QM_SQ_TYPE_MASK GENMASK(3, 0) 49 #define QM_SQ_TAIL_IDX(sqc) ((le16_to_cpu((sqc).w11) >> 6) & 0x1) 50 51 /* cqc shift */ 52 #define QM_CQ_HOP_NUM_SHIFT 0 53 #define QM_CQ_PAGE_SIZE_SHIFT 4 54 #define QM_CQ_BUF_SIZE_SHIFT 8 55 #define QM_CQ_CQE_SIZE_SHIFT 12 56 #define QM_CQ_PHASE_SHIFT 0 57 #define QM_CQ_FLAG_SHIFT 1 58 59 #define QM_CQE_PHASE(cqe) (le16_to_cpu((cqe)->w7) & 0x1) 60 #define QM_QC_CQE_SIZE 4 61 #define QM_CQ_TAIL_IDX(cqc) ((le16_to_cpu((cqc).w11) >> 6) & 0x1) 62 63 /* eqc shift */ 64 #define QM_EQE_AEQE_SIZE (2UL << 12) 65 #define QM_EQC_PHASE_SHIFT 16 66 67 #define QM_EQE_PHASE(eqe) ((le32_to_cpu((eqe)->dw0) >> 16) & 0x1) 68 #define QM_EQE_CQN_MASK GENMASK(15, 0) 69 70 #define QM_AEQE_PHASE(aeqe) ((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1) 71 #define QM_AEQE_TYPE_SHIFT 17 72 #define QM_AEQE_TYPE_MASK 0xf 73 #define QM_AEQE_CQN_MASK GENMASK(15, 0) 74 #define QM_CQ_OVERFLOW 0 75 #define QM_EQ_OVERFLOW 1 76 #define QM_CQE_ERROR 2 77 78 #define QM_XQ_DEPTH_SHIFT 16 79 #define QM_XQ_DEPTH_MASK GENMASK(15, 0) 80 81 #define QM_DOORBELL_CMD_SQ 0 82 #define QM_DOORBELL_CMD_CQ 1 83 #define QM_DOORBELL_CMD_EQ 2 84 #define QM_DOORBELL_CMD_AEQ 3 85 86 #define QM_DOORBELL_BASE_V1 0x340 87 #define QM_DB_CMD_SHIFT_V1 16 88 #define QM_DB_INDEX_SHIFT_V1 32 89 #define QM_DB_PRIORITY_SHIFT_V1 48 90 #define QM_PAGE_SIZE 0x0034 91 #define QM_QP_DB_INTERVAL 0x10000 92 #define QM_DB_TIMEOUT_CFG 0x100074 93 #define QM_DB_TIMEOUT_SET 0x1fffff 94 95 #define QM_MEM_START_INIT 0x100040 96 #define QM_MEM_INIT_DONE 0x100044 97 #define QM_VFT_CFG_RDY 0x10006c 98 #define QM_VFT_CFG_OP_WR 0x100058 99 #define QM_VFT_CFG_TYPE 0x10005c 100 #define QM_VFT_CFG 0x100060 101 #define QM_VFT_CFG_OP_ENABLE 0x100054 102 #define QM_PM_CTRL 0x100148 103 #define QM_IDLE_DISABLE BIT(9) 104 105 #define QM_VFT_CFG_DATA_L 0x100064 106 #define QM_VFT_CFG_DATA_H 0x100068 107 #define QM_SQC_VFT_BUF_SIZE (7ULL << 8) 108 #define QM_SQC_VFT_SQC_SIZE (5ULL << 12) 109 #define QM_SQC_VFT_INDEX_NUMBER (1ULL << 16) 110 #define QM_SQC_VFT_START_SQN_SHIFT 28 111 #define QM_SQC_VFT_VALID (1ULL << 44) 112 #define QM_SQC_VFT_SQN_SHIFT 45 113 #define QM_CQC_VFT_BUF_SIZE (7ULL << 8) 114 #define QM_CQC_VFT_SQC_SIZE (5ULL << 12) 115 #define QM_CQC_VFT_INDEX_NUMBER (1ULL << 16) 116 #define QM_CQC_VFT_VALID (1ULL << 28) 117 118 #define QM_SQC_VFT_BASE_SHIFT_V2 28 119 #define QM_SQC_VFT_BASE_MASK_V2 GENMASK(15, 0) 120 #define QM_SQC_VFT_NUM_SHIFT_V2 45 121 #define QM_SQC_VFT_NUM_MASK_V2 GENMASK(9, 0) 122 123 #define QM_ABNORMAL_INT_SOURCE 0x100000 124 #define QM_ABNORMAL_INT_MASK 0x100004 125 #define QM_ABNORMAL_INT_MASK_VALUE 0x7fff 126 #define QM_ABNORMAL_INT_STATUS 0x100008 127 #define QM_ABNORMAL_INT_SET 0x10000c 128 #define QM_ABNORMAL_INF00 0x100010 129 #define QM_FIFO_OVERFLOW_TYPE 0xc0 130 #define QM_FIFO_OVERFLOW_TYPE_SHIFT 6 131 #define QM_FIFO_OVERFLOW_VF 0x3f 132 #define QM_ABNORMAL_INF01 0x100014 133 #define QM_DB_TIMEOUT_TYPE 0xc0 134 #define QM_DB_TIMEOUT_TYPE_SHIFT 6 135 #define QM_DB_TIMEOUT_VF 0x3f 136 #define QM_RAS_CE_ENABLE 0x1000ec 137 #define QM_RAS_FE_ENABLE 0x1000f0 138 #define QM_RAS_NFE_ENABLE 0x1000f4 139 #define QM_RAS_CE_THRESHOLD 0x1000f8 140 #define QM_RAS_CE_TIMES_PER_IRQ 1 141 #define QM_OOO_SHUTDOWN_SEL 0x1040f8 142 #define QM_ECC_MBIT BIT(2) 143 #define QM_DB_TIMEOUT BIT(10) 144 #define QM_OF_FIFO_OF BIT(11) 145 146 #define QM_RESET_WAIT_TIMEOUT 400 147 #define QM_PEH_VENDOR_ID 0x1000d8 148 #define ACC_VENDOR_ID_VALUE 0x5a5a 149 #define QM_PEH_DFX_INFO0 0x1000fc 150 #define QM_PEH_DFX_INFO1 0x100100 151 #define QM_PEH_DFX_MASK (BIT(0) | BIT(2)) 152 #define QM_PEH_MSI_FINISH_MASK GENMASK(19, 16) 153 #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT 3 154 #define ACC_PEH_MSI_DISABLE GENMASK(31, 0) 155 #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN 0x1 156 #define ACC_MASTER_TRANS_RETURN_RW 3 157 #define ACC_MASTER_TRANS_RETURN 0x300150 158 #define ACC_MASTER_GLOBAL_CTRL 0x300000 159 #define ACC_AM_CFG_PORT_WR_EN 0x30001c 160 #define QM_RAS_NFE_MBIT_DISABLE ~QM_ECC_MBIT 161 #define ACC_AM_ROB_ECC_INT_STS 0x300104 162 #define ACC_ROB_ECC_ERR_MULTPL BIT(1) 163 #define QM_MSI_CAP_ENABLE BIT(16) 164 165 /* interfunction communication */ 166 #define QM_IFC_READY_STATUS 0x100128 167 #define QM_IFC_INT_SET_P 0x100130 168 #define QM_IFC_INT_CFG 0x100134 169 #define QM_IFC_INT_SOURCE_P 0x100138 170 #define QM_IFC_INT_SOURCE_V 0x0020 171 #define QM_IFC_INT_MASK 0x0024 172 #define QM_IFC_INT_STATUS 0x0028 173 #define QM_IFC_INT_SET_V 0x002C 174 #define QM_IFC_SEND_ALL_VFS GENMASK(6, 0) 175 #define QM_IFC_INT_SOURCE_CLR GENMASK(63, 0) 176 #define QM_IFC_INT_SOURCE_MASK BIT(0) 177 #define QM_IFC_INT_DISABLE BIT(0) 178 #define QM_IFC_INT_STATUS_MASK BIT(0) 179 #define QM_IFC_INT_SET_MASK BIT(0) 180 #define QM_WAIT_DST_ACK 10 181 #define QM_MAX_PF_WAIT_COUNT 10 182 #define QM_MAX_VF_WAIT_COUNT 40 183 #define QM_VF_RESET_WAIT_US 20000 184 #define QM_VF_RESET_WAIT_CNT 3000 185 #define QM_VF_RESET_WAIT_TIMEOUT_US \ 186 (QM_VF_RESET_WAIT_US * QM_VF_RESET_WAIT_CNT) 187 188 #define POLL_PERIOD 10 189 #define POLL_TIMEOUT 1000 190 #define WAIT_PERIOD_US_MAX 200 191 #define WAIT_PERIOD_US_MIN 100 192 #define MAX_WAIT_COUNTS 1000 193 #define QM_CACHE_WB_START 0x204 194 #define QM_CACHE_WB_DONE 0x208 195 #define QM_FUNC_CAPS_REG 0x3100 196 #define QM_CAPBILITY_VERSION GENMASK(7, 0) 197 198 #define PCI_BAR_2 2 199 #define PCI_BAR_4 4 200 #define QMC_ALIGN(sz) ALIGN(sz, 32) 201 202 #define QM_DBG_READ_LEN 256 203 #define QM_PCI_COMMAND_INVALID ~0 204 #define QM_RESET_STOP_TX_OFFSET 1 205 #define QM_RESET_STOP_RX_OFFSET 2 206 207 #define WAIT_PERIOD 20 208 #define REMOVE_WAIT_DELAY 10 209 210 #define QM_QOS_PARAM_NUM 2 211 #define QM_QOS_MAX_VAL 1000 212 #define QM_QOS_RATE 100 213 #define QM_QOS_EXPAND_RATE 1000 214 #define QM_SHAPER_CIR_B_MASK GENMASK(7, 0) 215 #define QM_SHAPER_CIR_U_MASK GENMASK(10, 8) 216 #define QM_SHAPER_CIR_S_MASK GENMASK(14, 11) 217 #define QM_SHAPER_FACTOR_CIR_U_SHIFT 8 218 #define QM_SHAPER_FACTOR_CIR_S_SHIFT 11 219 #define QM_SHAPER_FACTOR_CBS_B_SHIFT 15 220 #define QM_SHAPER_FACTOR_CBS_S_SHIFT 19 221 #define QM_SHAPER_CBS_B 1 222 #define QM_SHAPER_VFT_OFFSET 6 223 #define QM_QOS_MIN_ERROR_RATE 5 224 #define QM_SHAPER_MIN_CBS_S 8 225 #define QM_QOS_TICK 0x300U 226 #define QM_QOS_DIVISOR_CLK 0x1f40U 227 #define QM_QOS_MAX_CIR_B 200 228 #define QM_QOS_MIN_CIR_B 100 229 #define QM_QOS_MAX_CIR_U 6 230 #define QM_AUTOSUSPEND_DELAY 3000 231 232 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \ 233 (((hop_num) << QM_CQ_HOP_NUM_SHIFT) | \ 234 ((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT) | \ 235 ((buf_sz) << QM_CQ_BUF_SIZE_SHIFT) | \ 236 ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT)) 237 238 #define QM_MK_CQC_DW3_V2(cqe_sz, cq_depth) \ 239 ((((u32)cq_depth) - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT)) 240 241 #define QM_MK_SQC_W13(priority, orders, alg_type) \ 242 (((priority) << QM_SQ_PRIORITY_SHIFT) | \ 243 ((orders) << QM_SQ_ORDERS_SHIFT) | \ 244 (((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT)) 245 246 #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \ 247 (((hop_num) << QM_SQ_HOP_NUM_SHIFT) | \ 248 ((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT) | \ 249 ((buf_sz) << QM_SQ_BUF_SIZE_SHIFT) | \ 250 ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT)) 251 252 #define QM_MK_SQC_DW3_V2(sqe_sz, sq_depth) \ 253 ((((u32)sq_depth) - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT)) 254 255 enum vft_type { 256 SQC_VFT = 0, 257 CQC_VFT, 258 SHAPER_VFT, 259 }; 260 261 enum acc_err_result { 262 ACC_ERR_NONE, 263 ACC_ERR_NEED_RESET, 264 ACC_ERR_RECOVERED, 265 }; 266 267 enum qm_alg_type { 268 ALG_TYPE_0, 269 ALG_TYPE_1, 270 }; 271 272 enum qm_mb_cmd { 273 QM_PF_FLR_PREPARE = 0x01, 274 QM_PF_SRST_PREPARE, 275 QM_PF_RESET_DONE, 276 QM_VF_PREPARE_DONE, 277 QM_VF_PREPARE_FAIL, 278 QM_VF_START_DONE, 279 QM_VF_START_FAIL, 280 QM_PF_SET_QOS, 281 QM_VF_GET_QOS, 282 }; 283 284 enum qm_basic_type { 285 QM_TOTAL_QP_NUM_CAP = 0x0, 286 QM_FUNC_MAX_QP_CAP, 287 QM_XEQ_DEPTH_CAP, 288 QM_QP_DEPTH_CAP, 289 QM_EQ_IRQ_TYPE_CAP, 290 QM_AEQ_IRQ_TYPE_CAP, 291 QM_ABN_IRQ_TYPE_CAP, 292 QM_PF2VF_IRQ_TYPE_CAP, 293 QM_PF_IRQ_NUM_CAP, 294 QM_VF_IRQ_NUM_CAP, 295 }; 296 297 static const struct hisi_qm_cap_info qm_cap_info_comm[] = { 298 {QM_SUPPORT_DB_ISOLATION, 0x30, 0, BIT(0), 0x0, 0x0, 0x0}, 299 {QM_SUPPORT_FUNC_QOS, 0x3100, 0, BIT(8), 0x0, 0x0, 0x1}, 300 {QM_SUPPORT_STOP_QP, 0x3100, 0, BIT(9), 0x0, 0x0, 0x1}, 301 {QM_SUPPORT_MB_COMMAND, 0x3100, 0, BIT(11), 0x0, 0x0, 0x1}, 302 {QM_SUPPORT_SVA_PREFETCH, 0x3100, 0, BIT(14), 0x0, 0x0, 0x1}, 303 }; 304 305 static const struct hisi_qm_cap_info qm_cap_info_pf[] = { 306 {QM_SUPPORT_RPM, 0x3100, 0, BIT(13), 0x0, 0x0, 0x1}, 307 }; 308 309 static const struct hisi_qm_cap_info qm_cap_info_vf[] = { 310 {QM_SUPPORT_RPM, 0x3100, 0, BIT(12), 0x0, 0x0, 0x0}, 311 }; 312 313 static const struct hisi_qm_cap_info qm_basic_info[] = { 314 {QM_TOTAL_QP_NUM_CAP, 0x100158, 0, GENMASK(10, 0), 0x1000, 0x400, 0x400}, 315 {QM_FUNC_MAX_QP_CAP, 0x100158, 11, GENMASK(10, 0), 0x1000, 0x400, 0x400}, 316 {QM_XEQ_DEPTH_CAP, 0x3104, 0, GENMASK(31, 0), 0x800, 0x4000800, 0x4000800}, 317 {QM_QP_DEPTH_CAP, 0x3108, 0, GENMASK(31, 0), 0x4000400, 0x4000400, 0x4000400}, 318 {QM_EQ_IRQ_TYPE_CAP, 0x310c, 0, GENMASK(31, 0), 0x10000, 0x10000, 0x10000}, 319 {QM_AEQ_IRQ_TYPE_CAP, 0x3110, 0, GENMASK(31, 0), 0x0, 0x10001, 0x10001}, 320 {QM_ABN_IRQ_TYPE_CAP, 0x3114, 0, GENMASK(31, 0), 0x0, 0x10003, 0x10003}, 321 {QM_PF2VF_IRQ_TYPE_CAP, 0x3118, 0, GENMASK(31, 0), 0x0, 0x0, 0x10002}, 322 {QM_PF_IRQ_NUM_CAP, 0x311c, 16, GENMASK(15, 0), 0x1, 0x4, 0x4}, 323 {QM_VF_IRQ_NUM_CAP, 0x311c, 0, GENMASK(15, 0), 0x1, 0x2, 0x3}, 324 }; 325 326 struct qm_mailbox { 327 __le16 w0; 328 __le16 queue_num; 329 __le32 base_l; 330 __le32 base_h; 331 __le32 rsvd; 332 }; 333 334 struct qm_doorbell { 335 __le16 queue_num; 336 __le16 cmd; 337 __le16 index; 338 __le16 priority; 339 }; 340 341 struct hisi_qm_resource { 342 struct hisi_qm *qm; 343 int distance; 344 struct list_head list; 345 }; 346 347 /** 348 * struct qm_hw_err - Structure describing the device errors 349 * @list: hardware error list 350 * @timestamp: timestamp when the error occurred 351 */ 352 struct qm_hw_err { 353 struct list_head list; 354 unsigned long long timestamp; 355 }; 356 357 struct hisi_qm_hw_ops { 358 int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number); 359 void (*qm_db)(struct hisi_qm *qm, u16 qn, 360 u8 cmd, u16 index, u8 priority); 361 int (*debug_init)(struct hisi_qm *qm); 362 void (*hw_error_init)(struct hisi_qm *qm); 363 void (*hw_error_uninit)(struct hisi_qm *qm); 364 enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm); 365 int (*set_msi)(struct hisi_qm *qm, bool set); 366 }; 367 368 struct hisi_qm_hw_error { 369 u32 int_msk; 370 const char *msg; 371 }; 372 373 static const struct hisi_qm_hw_error qm_hw_error[] = { 374 { .int_msk = BIT(0), .msg = "qm_axi_rresp" }, 375 { .int_msk = BIT(1), .msg = "qm_axi_bresp" }, 376 { .int_msk = BIT(2), .msg = "qm_ecc_mbit" }, 377 { .int_msk = BIT(3), .msg = "qm_ecc_1bit" }, 378 { .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" }, 379 { .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" }, 380 { .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" }, 381 { .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" }, 382 { .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" }, 383 { .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" }, 384 { .int_msk = BIT(10), .msg = "qm_db_timeout" }, 385 { .int_msk = BIT(11), .msg = "qm_of_fifo_of" }, 386 { .int_msk = BIT(12), .msg = "qm_db_random_invalid" }, 387 { .int_msk = BIT(13), .msg = "qm_mailbox_timeout" }, 388 { .int_msk = BIT(14), .msg = "qm_flr_timeout" }, 389 { /* sentinel */ } 390 }; 391 392 static const char * const qm_db_timeout[] = { 393 "sq", "cq", "eq", "aeq", 394 }; 395 396 static const char * const qm_fifo_overflow[] = { 397 "cq", "eq", "aeq", 398 }; 399 400 static const char * const qp_s[] = { 401 "none", "init", "start", "stop", "close", 402 }; 403 404 struct qm_typical_qos_table { 405 u32 start; 406 u32 end; 407 u32 val; 408 }; 409 410 /* the qos step is 100 */ 411 static struct qm_typical_qos_table shaper_cir_s[] = { 412 {100, 100, 4}, 413 {200, 200, 3}, 414 {300, 500, 2}, 415 {600, 1000, 1}, 416 {1100, 100000, 0}, 417 }; 418 419 static struct qm_typical_qos_table shaper_cbs_s[] = { 420 {100, 200, 9}, 421 {300, 500, 11}, 422 {600, 1000, 12}, 423 {1100, 10000, 16}, 424 {10100, 25000, 17}, 425 {25100, 50000, 18}, 426 {50100, 100000, 19} 427 }; 428 429 static void qm_irqs_unregister(struct hisi_qm *qm); 430 431 static bool qm_avail_state(struct hisi_qm *qm, enum qm_state new) 432 { 433 enum qm_state curr = atomic_read(&qm->status.flags); 434 bool avail = false; 435 436 switch (curr) { 437 case QM_INIT: 438 if (new == QM_START || new == QM_CLOSE) 439 avail = true; 440 break; 441 case QM_START: 442 if (new == QM_STOP) 443 avail = true; 444 break; 445 case QM_STOP: 446 if (new == QM_CLOSE || new == QM_START) 447 avail = true; 448 break; 449 default: 450 break; 451 } 452 453 dev_dbg(&qm->pdev->dev, "change qm state from %s to %s\n", 454 qm_s[curr], qm_s[new]); 455 456 if (!avail) 457 dev_warn(&qm->pdev->dev, "Can not change qm state from %s to %s\n", 458 qm_s[curr], qm_s[new]); 459 460 return avail; 461 } 462 463 static bool qm_qp_avail_state(struct hisi_qm *qm, struct hisi_qp *qp, 464 enum qp_state new) 465 { 466 enum qm_state qm_curr = atomic_read(&qm->status.flags); 467 enum qp_state qp_curr = 0; 468 bool avail = false; 469 470 if (qp) 471 qp_curr = atomic_read(&qp->qp_status.flags); 472 473 switch (new) { 474 case QP_INIT: 475 if (qm_curr == QM_START || qm_curr == QM_INIT) 476 avail = true; 477 break; 478 case QP_START: 479 if ((qm_curr == QM_START && qp_curr == QP_INIT) || 480 (qm_curr == QM_START && qp_curr == QP_STOP)) 481 avail = true; 482 break; 483 case QP_STOP: 484 if ((qm_curr == QM_START && qp_curr == QP_START) || 485 (qp_curr == QP_INIT)) 486 avail = true; 487 break; 488 case QP_CLOSE: 489 if ((qm_curr == QM_START && qp_curr == QP_INIT) || 490 (qm_curr == QM_START && qp_curr == QP_STOP) || 491 (qm_curr == QM_STOP && qp_curr == QP_STOP) || 492 (qm_curr == QM_STOP && qp_curr == QP_INIT)) 493 avail = true; 494 break; 495 default: 496 break; 497 } 498 499 dev_dbg(&qm->pdev->dev, "change qp state from %s to %s in QM %s\n", 500 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]); 501 502 if (!avail) 503 dev_warn(&qm->pdev->dev, 504 "Can not change qp state from %s to %s in QM %s\n", 505 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]); 506 507 return avail; 508 } 509 510 static u32 qm_get_hw_error_status(struct hisi_qm *qm) 511 { 512 return readl(qm->io_base + QM_ABNORMAL_INT_STATUS); 513 } 514 515 static u32 qm_get_dev_err_status(struct hisi_qm *qm) 516 { 517 return qm->err_ini->get_dev_hw_err_status(qm); 518 } 519 520 /* Check if the error causes the master ooo block */ 521 static bool qm_check_dev_error(struct hisi_qm *qm) 522 { 523 u32 val, dev_val; 524 525 if (qm->fun_type == QM_HW_VF) 526 return false; 527 528 val = qm_get_hw_error_status(qm) & qm->err_info.qm_shutdown_mask; 529 dev_val = qm_get_dev_err_status(qm) & qm->err_info.dev_shutdown_mask; 530 531 return val || dev_val; 532 } 533 534 static int qm_wait_reset_finish(struct hisi_qm *qm) 535 { 536 int delay = 0; 537 538 /* All reset requests need to be queued for processing */ 539 while (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 540 msleep(++delay); 541 if (delay > QM_RESET_WAIT_TIMEOUT) 542 return -EBUSY; 543 } 544 545 return 0; 546 } 547 548 static int qm_reset_prepare_ready(struct hisi_qm *qm) 549 { 550 struct pci_dev *pdev = qm->pdev; 551 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 552 553 /* 554 * PF and VF on host doesnot support resetting at the 555 * same time on Kunpeng920. 556 */ 557 if (qm->ver < QM_HW_V3) 558 return qm_wait_reset_finish(pf_qm); 559 560 return qm_wait_reset_finish(qm); 561 } 562 563 static void qm_reset_bit_clear(struct hisi_qm *qm) 564 { 565 struct pci_dev *pdev = qm->pdev; 566 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 567 568 if (qm->ver < QM_HW_V3) 569 clear_bit(QM_RESETTING, &pf_qm->misc_ctl); 570 571 clear_bit(QM_RESETTING, &qm->misc_ctl); 572 } 573 574 static void qm_mb_pre_init(struct qm_mailbox *mailbox, u8 cmd, 575 u64 base, u16 queue, bool op) 576 { 577 mailbox->w0 = cpu_to_le16((cmd) | 578 ((op) ? 0x1 << QM_MB_OP_SHIFT : 0) | 579 (0x1 << QM_MB_BUSY_SHIFT)); 580 mailbox->queue_num = cpu_to_le16(queue); 581 mailbox->base_l = cpu_to_le32(lower_32_bits(base)); 582 mailbox->base_h = cpu_to_le32(upper_32_bits(base)); 583 mailbox->rsvd = 0; 584 } 585 586 /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */ 587 int hisi_qm_wait_mb_ready(struct hisi_qm *qm) 588 { 589 u32 val; 590 591 return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE, 592 val, !((val >> QM_MB_BUSY_SHIFT) & 593 0x1), POLL_PERIOD, POLL_TIMEOUT); 594 } 595 EXPORT_SYMBOL_GPL(hisi_qm_wait_mb_ready); 596 597 /* 128 bit should be written to hardware at one time to trigger a mailbox */ 598 static void qm_mb_write(struct hisi_qm *qm, const void *src) 599 { 600 void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE; 601 602 #if IS_ENABLED(CONFIG_ARM64) 603 unsigned long tmp0 = 0, tmp1 = 0; 604 #endif 605 606 if (!IS_ENABLED(CONFIG_ARM64)) { 607 memcpy_toio(fun_base, src, 16); 608 dma_wmb(); 609 return; 610 } 611 612 #if IS_ENABLED(CONFIG_ARM64) 613 asm volatile("ldp %0, %1, %3\n" 614 "stp %0, %1, %2\n" 615 "dmb oshst\n" 616 : "=&r" (tmp0), 617 "=&r" (tmp1), 618 "+Q" (*((char __iomem *)fun_base)) 619 : "Q" (*((char *)src)) 620 : "memory"); 621 #endif 622 } 623 624 static int qm_mb_nolock(struct hisi_qm *qm, struct qm_mailbox *mailbox) 625 { 626 int ret; 627 u32 val; 628 629 if (unlikely(hisi_qm_wait_mb_ready(qm))) { 630 dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n"); 631 ret = -EBUSY; 632 goto mb_busy; 633 } 634 635 qm_mb_write(qm, mailbox); 636 637 if (unlikely(hisi_qm_wait_mb_ready(qm))) { 638 dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n"); 639 ret = -ETIMEDOUT; 640 goto mb_busy; 641 } 642 643 val = readl(qm->io_base + QM_MB_CMD_SEND_BASE); 644 if (val & QM_MB_STATUS_MASK) { 645 dev_err(&qm->pdev->dev, "QM mailbox operation failed!\n"); 646 ret = -EIO; 647 goto mb_busy; 648 } 649 650 return 0; 651 652 mb_busy: 653 atomic64_inc(&qm->debug.dfx.mb_err_cnt); 654 return ret; 655 } 656 657 int hisi_qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue, 658 bool op) 659 { 660 struct qm_mailbox mailbox; 661 int ret; 662 663 dev_dbg(&qm->pdev->dev, "QM mailbox request to q%u: %u-%llx\n", 664 queue, cmd, (unsigned long long)dma_addr); 665 666 qm_mb_pre_init(&mailbox, cmd, dma_addr, queue, op); 667 668 mutex_lock(&qm->mailbox_lock); 669 ret = qm_mb_nolock(qm, &mailbox); 670 mutex_unlock(&qm->mailbox_lock); 671 672 return ret; 673 } 674 EXPORT_SYMBOL_GPL(hisi_qm_mb); 675 676 /* op 0: set xqc information to hardware, 1: get xqc information from hardware. */ 677 int qm_set_and_get_xqc(struct hisi_qm *qm, u8 cmd, void *xqc, u32 qp_id, bool op) 678 { 679 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 680 struct qm_mailbox mailbox; 681 dma_addr_t xqc_dma; 682 void *tmp_xqc; 683 size_t size; 684 int ret; 685 686 switch (cmd) { 687 case QM_MB_CMD_SQC: 688 size = sizeof(struct qm_sqc); 689 tmp_xqc = qm->xqc_buf.sqc; 690 xqc_dma = qm->xqc_buf.sqc_dma; 691 break; 692 case QM_MB_CMD_CQC: 693 size = sizeof(struct qm_cqc); 694 tmp_xqc = qm->xqc_buf.cqc; 695 xqc_dma = qm->xqc_buf.cqc_dma; 696 break; 697 case QM_MB_CMD_EQC: 698 size = sizeof(struct qm_eqc); 699 tmp_xqc = qm->xqc_buf.eqc; 700 xqc_dma = qm->xqc_buf.eqc_dma; 701 break; 702 case QM_MB_CMD_AEQC: 703 size = sizeof(struct qm_aeqc); 704 tmp_xqc = qm->xqc_buf.aeqc; 705 xqc_dma = qm->xqc_buf.aeqc_dma; 706 break; 707 } 708 709 /* Setting xqc will fail if master OOO is blocked. */ 710 if (qm_check_dev_error(pf_qm)) { 711 dev_err(&qm->pdev->dev, "failed to send mailbox since qm is stop!\n"); 712 return -EIO; 713 } 714 715 mutex_lock(&qm->mailbox_lock); 716 if (!op) 717 memcpy(tmp_xqc, xqc, size); 718 719 qm_mb_pre_init(&mailbox, cmd, xqc_dma, qp_id, op); 720 ret = qm_mb_nolock(qm, &mailbox); 721 if (!ret && op) 722 memcpy(xqc, tmp_xqc, size); 723 724 mutex_unlock(&qm->mailbox_lock); 725 726 return ret; 727 } 728 729 static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 730 { 731 u64 doorbell; 732 733 doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) | 734 ((u64)index << QM_DB_INDEX_SHIFT_V1) | 735 ((u64)priority << QM_DB_PRIORITY_SHIFT_V1); 736 737 writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1); 738 } 739 740 static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 741 { 742 void __iomem *io_base = qm->io_base; 743 u16 randata = 0; 744 u64 doorbell; 745 746 if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ) 747 io_base = qm->db_io_base + (u64)qn * qm->db_interval + 748 QM_DOORBELL_SQ_CQ_BASE_V2; 749 else 750 io_base += QM_DOORBELL_EQ_AEQ_BASE_V2; 751 752 doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) | 753 ((u64)randata << QM_DB_RAND_SHIFT_V2) | 754 ((u64)index << QM_DB_INDEX_SHIFT_V2) | 755 ((u64)priority << QM_DB_PRIORITY_SHIFT_V2); 756 757 writeq(doorbell, io_base); 758 } 759 760 static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority) 761 { 762 dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n", 763 qn, cmd, index); 764 765 qm->ops->qm_db(qm, qn, cmd, index, priority); 766 } 767 768 static void qm_disable_clock_gate(struct hisi_qm *qm) 769 { 770 u32 val; 771 772 /* if qm enables clock gating in Kunpeng930, qos will be inaccurate. */ 773 if (qm->ver < QM_HW_V3) 774 return; 775 776 val = readl(qm->io_base + QM_PM_CTRL); 777 val |= QM_IDLE_DISABLE; 778 writel(val, qm->io_base + QM_PM_CTRL); 779 } 780 781 static int qm_dev_mem_reset(struct hisi_qm *qm) 782 { 783 u32 val; 784 785 writel(0x1, qm->io_base + QM_MEM_START_INIT); 786 return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val, 787 val & BIT(0), POLL_PERIOD, 788 POLL_TIMEOUT); 789 } 790 791 /** 792 * hisi_qm_get_hw_info() - Get device information. 793 * @qm: The qm which want to get information. 794 * @info_table: Array for storing device information. 795 * @index: Index in info_table. 796 * @is_read: Whether read from reg, 0: not support read from reg. 797 * 798 * This function returns device information the caller needs. 799 */ 800 u32 hisi_qm_get_hw_info(struct hisi_qm *qm, 801 const struct hisi_qm_cap_info *info_table, 802 u32 index, bool is_read) 803 { 804 u32 val; 805 806 switch (qm->ver) { 807 case QM_HW_V1: 808 return info_table[index].v1_val; 809 case QM_HW_V2: 810 return info_table[index].v2_val; 811 default: 812 if (!is_read) 813 return info_table[index].v3_val; 814 815 val = readl(qm->io_base + info_table[index].offset); 816 return (val >> info_table[index].shift) & info_table[index].mask; 817 } 818 } 819 EXPORT_SYMBOL_GPL(hisi_qm_get_hw_info); 820 821 static void qm_get_xqc_depth(struct hisi_qm *qm, u16 *low_bits, 822 u16 *high_bits, enum qm_basic_type type) 823 { 824 u32 depth; 825 826 depth = hisi_qm_get_hw_info(qm, qm_basic_info, type, qm->cap_ver); 827 *low_bits = depth & QM_XQ_DEPTH_MASK; 828 *high_bits = (depth >> QM_XQ_DEPTH_SHIFT) & QM_XQ_DEPTH_MASK; 829 } 830 831 static u32 qm_get_irq_num(struct hisi_qm *qm) 832 { 833 if (qm->fun_type == QM_HW_PF) 834 return hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF_IRQ_NUM_CAP, qm->cap_ver); 835 836 return hisi_qm_get_hw_info(qm, qm_basic_info, QM_VF_IRQ_NUM_CAP, qm->cap_ver); 837 } 838 839 static int qm_pm_get_sync(struct hisi_qm *qm) 840 { 841 struct device *dev = &qm->pdev->dev; 842 int ret; 843 844 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 845 return 0; 846 847 ret = pm_runtime_resume_and_get(dev); 848 if (ret < 0) { 849 dev_err(dev, "failed to get_sync(%d).\n", ret); 850 return ret; 851 } 852 853 return 0; 854 } 855 856 static void qm_pm_put_sync(struct hisi_qm *qm) 857 { 858 struct device *dev = &qm->pdev->dev; 859 860 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 861 return; 862 863 pm_runtime_mark_last_busy(dev); 864 pm_runtime_put_autosuspend(dev); 865 } 866 867 static void qm_cq_head_update(struct hisi_qp *qp) 868 { 869 if (qp->qp_status.cq_head == qp->cq_depth - 1) { 870 qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase; 871 qp->qp_status.cq_head = 0; 872 } else { 873 qp->qp_status.cq_head++; 874 } 875 } 876 877 static void qm_poll_req_cb(struct hisi_qp *qp) 878 { 879 struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head; 880 struct hisi_qm *qm = qp->qm; 881 882 while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) { 883 dma_rmb(); 884 qp->req_cb(qp, qp->sqe + qm->sqe_size * 885 le16_to_cpu(cqe->sq_head)); 886 qm_cq_head_update(qp); 887 cqe = qp->cqe + qp->qp_status.cq_head; 888 qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, 889 qp->qp_status.cq_head, 0); 890 atomic_dec(&qp->qp_status.used); 891 892 cond_resched(); 893 } 894 895 /* set c_flag */ 896 qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, qp->qp_status.cq_head, 1); 897 } 898 899 static void qm_work_process(struct work_struct *work) 900 { 901 struct hisi_qm_poll_data *poll_data = 902 container_of(work, struct hisi_qm_poll_data, work); 903 struct hisi_qm *qm = poll_data->qm; 904 u16 eqe_num = poll_data->eqe_num; 905 struct hisi_qp *qp; 906 int i; 907 908 for (i = eqe_num - 1; i >= 0; i--) { 909 qp = &qm->qp_array[poll_data->qp_finish_id[i]]; 910 if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP)) 911 continue; 912 913 if (qp->event_cb) { 914 qp->event_cb(qp); 915 continue; 916 } 917 918 if (likely(qp->req_cb)) 919 qm_poll_req_cb(qp); 920 } 921 } 922 923 static void qm_get_complete_eqe_num(struct hisi_qm *qm) 924 { 925 struct qm_eqe *eqe = qm->eqe + qm->status.eq_head; 926 struct hisi_qm_poll_data *poll_data = NULL; 927 u16 eq_depth = qm->eq_depth; 928 u16 cqn, eqe_num = 0; 929 930 if (QM_EQE_PHASE(eqe) != qm->status.eqc_phase) { 931 atomic64_inc(&qm->debug.dfx.err_irq_cnt); 932 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 933 return; 934 } 935 936 cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK; 937 if (unlikely(cqn >= qm->qp_num)) 938 return; 939 poll_data = &qm->poll_data[cqn]; 940 941 while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) { 942 cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK; 943 poll_data->qp_finish_id[eqe_num] = cqn; 944 eqe_num++; 945 946 if (qm->status.eq_head == eq_depth - 1) { 947 qm->status.eqc_phase = !qm->status.eqc_phase; 948 eqe = qm->eqe; 949 qm->status.eq_head = 0; 950 } else { 951 eqe++; 952 qm->status.eq_head++; 953 } 954 955 if (eqe_num == (eq_depth >> 1) - 1) 956 break; 957 } 958 959 poll_data->eqe_num = eqe_num; 960 queue_work(qm->wq, &poll_data->work); 961 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 962 } 963 964 static irqreturn_t qm_eq_irq(int irq, void *data) 965 { 966 struct hisi_qm *qm = data; 967 968 /* Get qp id of completed tasks and re-enable the interrupt */ 969 qm_get_complete_eqe_num(qm); 970 971 return IRQ_HANDLED; 972 } 973 974 static irqreturn_t qm_mb_cmd_irq(int irq, void *data) 975 { 976 struct hisi_qm *qm = data; 977 u32 val; 978 979 val = readl(qm->io_base + QM_IFC_INT_STATUS); 980 val &= QM_IFC_INT_STATUS_MASK; 981 if (!val) 982 return IRQ_NONE; 983 984 if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl)) { 985 dev_warn(&qm->pdev->dev, "Driver is down, message cannot be processed!\n"); 986 return IRQ_HANDLED; 987 } 988 989 schedule_work(&qm->cmd_process); 990 991 return IRQ_HANDLED; 992 } 993 994 static void qm_set_qp_disable(struct hisi_qp *qp, int offset) 995 { 996 u32 *addr; 997 998 if (qp->is_in_kernel) 999 return; 1000 1001 addr = (u32 *)(qp->qdma.va + qp->qdma.size) - offset; 1002 *addr = 1; 1003 1004 /* make sure setup is completed */ 1005 smp_wmb(); 1006 } 1007 1008 static void qm_disable_qp(struct hisi_qm *qm, u32 qp_id) 1009 { 1010 struct hisi_qp *qp = &qm->qp_array[qp_id]; 1011 1012 qm_set_qp_disable(qp, QM_RESET_STOP_TX_OFFSET); 1013 hisi_qm_stop_qp(qp); 1014 qm_set_qp_disable(qp, QM_RESET_STOP_RX_OFFSET); 1015 } 1016 1017 static void qm_reset_function(struct hisi_qm *qm) 1018 { 1019 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 1020 struct device *dev = &qm->pdev->dev; 1021 int ret; 1022 1023 if (qm_check_dev_error(pf_qm)) 1024 return; 1025 1026 ret = qm_reset_prepare_ready(qm); 1027 if (ret) { 1028 dev_err(dev, "reset function not ready\n"); 1029 return; 1030 } 1031 1032 ret = hisi_qm_stop(qm, QM_DOWN); 1033 if (ret) { 1034 dev_err(dev, "failed to stop qm when reset function\n"); 1035 goto clear_bit; 1036 } 1037 1038 ret = hisi_qm_start(qm); 1039 if (ret) 1040 dev_err(dev, "failed to start qm when reset function\n"); 1041 1042 clear_bit: 1043 qm_reset_bit_clear(qm); 1044 } 1045 1046 static irqreturn_t qm_aeq_thread(int irq, void *data) 1047 { 1048 struct hisi_qm *qm = data; 1049 struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head; 1050 u16 aeq_depth = qm->aeq_depth; 1051 u32 type, qp_id; 1052 1053 atomic64_inc(&qm->debug.dfx.aeq_irq_cnt); 1054 1055 while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) { 1056 type = (le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT) & 1057 QM_AEQE_TYPE_MASK; 1058 qp_id = le32_to_cpu(aeqe->dw0) & QM_AEQE_CQN_MASK; 1059 1060 switch (type) { 1061 case QM_EQ_OVERFLOW: 1062 dev_err(&qm->pdev->dev, "eq overflow, reset function\n"); 1063 qm_reset_function(qm); 1064 return IRQ_HANDLED; 1065 case QM_CQ_OVERFLOW: 1066 dev_err(&qm->pdev->dev, "cq overflow, stop qp(%u)\n", 1067 qp_id); 1068 fallthrough; 1069 case QM_CQE_ERROR: 1070 qm_disable_qp(qm, qp_id); 1071 break; 1072 default: 1073 dev_err(&qm->pdev->dev, "unknown error type %u\n", 1074 type); 1075 break; 1076 } 1077 1078 if (qm->status.aeq_head == aeq_depth - 1) { 1079 qm->status.aeqc_phase = !qm->status.aeqc_phase; 1080 aeqe = qm->aeqe; 1081 qm->status.aeq_head = 0; 1082 } else { 1083 aeqe++; 1084 qm->status.aeq_head++; 1085 } 1086 } 1087 1088 qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0); 1089 1090 return IRQ_HANDLED; 1091 } 1092 1093 static void qm_init_qp_status(struct hisi_qp *qp) 1094 { 1095 struct hisi_qp_status *qp_status = &qp->qp_status; 1096 1097 qp_status->sq_tail = 0; 1098 qp_status->cq_head = 0; 1099 qp_status->cqc_phase = true; 1100 atomic_set(&qp_status->used, 0); 1101 } 1102 1103 static void qm_init_prefetch(struct hisi_qm *qm) 1104 { 1105 struct device *dev = &qm->pdev->dev; 1106 u32 page_type = 0x0; 1107 1108 if (!test_bit(QM_SUPPORT_SVA_PREFETCH, &qm->caps)) 1109 return; 1110 1111 switch (PAGE_SIZE) { 1112 case SZ_4K: 1113 page_type = 0x0; 1114 break; 1115 case SZ_16K: 1116 page_type = 0x1; 1117 break; 1118 case SZ_64K: 1119 page_type = 0x2; 1120 break; 1121 default: 1122 dev_err(dev, "system page size is not support: %lu, default set to 4KB", 1123 PAGE_SIZE); 1124 } 1125 1126 writel(page_type, qm->io_base + QM_PAGE_SIZE); 1127 } 1128 1129 /* 1130 * acc_shaper_para_calc() Get the IR value by the qos formula, the return value 1131 * is the expected qos calculated. 1132 * the formula: 1133 * IR = X Mbps if ir = 1 means IR = 100 Mbps, if ir = 10000 means = 10Gbps 1134 * 1135 * IR_b * (2 ^ IR_u) * 8000 1136 * IR(Mbps) = ------------------------- 1137 * Tick * (2 ^ IR_s) 1138 */ 1139 static u32 acc_shaper_para_calc(u64 cir_b, u64 cir_u, u64 cir_s) 1140 { 1141 return ((cir_b * QM_QOS_DIVISOR_CLK) * (1 << cir_u)) / 1142 (QM_QOS_TICK * (1 << cir_s)); 1143 } 1144 1145 static u32 acc_shaper_calc_cbs_s(u32 ir) 1146 { 1147 int table_size = ARRAY_SIZE(shaper_cbs_s); 1148 int i; 1149 1150 for (i = 0; i < table_size; i++) { 1151 if (ir >= shaper_cbs_s[i].start && ir <= shaper_cbs_s[i].end) 1152 return shaper_cbs_s[i].val; 1153 } 1154 1155 return QM_SHAPER_MIN_CBS_S; 1156 } 1157 1158 static u32 acc_shaper_calc_cir_s(u32 ir) 1159 { 1160 int table_size = ARRAY_SIZE(shaper_cir_s); 1161 int i; 1162 1163 for (i = 0; i < table_size; i++) { 1164 if (ir >= shaper_cir_s[i].start && ir <= shaper_cir_s[i].end) 1165 return shaper_cir_s[i].val; 1166 } 1167 1168 return 0; 1169 } 1170 1171 static int qm_get_shaper_para(u32 ir, struct qm_shaper_factor *factor) 1172 { 1173 u32 cir_b, cir_u, cir_s, ir_calc; 1174 u32 error_rate; 1175 1176 factor->cbs_s = acc_shaper_calc_cbs_s(ir); 1177 cir_s = acc_shaper_calc_cir_s(ir); 1178 1179 for (cir_b = QM_QOS_MIN_CIR_B; cir_b <= QM_QOS_MAX_CIR_B; cir_b++) { 1180 for (cir_u = 0; cir_u <= QM_QOS_MAX_CIR_U; cir_u++) { 1181 ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s); 1182 1183 error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir; 1184 if (error_rate <= QM_QOS_MIN_ERROR_RATE) { 1185 factor->cir_b = cir_b; 1186 factor->cir_u = cir_u; 1187 factor->cir_s = cir_s; 1188 return 0; 1189 } 1190 } 1191 } 1192 1193 return -EINVAL; 1194 } 1195 1196 static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base, 1197 u32 number, struct qm_shaper_factor *factor) 1198 { 1199 u64 tmp = 0; 1200 1201 if (number > 0) { 1202 switch (type) { 1203 case SQC_VFT: 1204 if (qm->ver == QM_HW_V1) { 1205 tmp = QM_SQC_VFT_BUF_SIZE | 1206 QM_SQC_VFT_SQC_SIZE | 1207 QM_SQC_VFT_INDEX_NUMBER | 1208 QM_SQC_VFT_VALID | 1209 (u64)base << QM_SQC_VFT_START_SQN_SHIFT; 1210 } else { 1211 tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT | 1212 QM_SQC_VFT_VALID | 1213 (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT; 1214 } 1215 break; 1216 case CQC_VFT: 1217 if (qm->ver == QM_HW_V1) { 1218 tmp = QM_CQC_VFT_BUF_SIZE | 1219 QM_CQC_VFT_SQC_SIZE | 1220 QM_CQC_VFT_INDEX_NUMBER | 1221 QM_CQC_VFT_VALID; 1222 } else { 1223 tmp = QM_CQC_VFT_VALID; 1224 } 1225 break; 1226 case SHAPER_VFT: 1227 if (factor) { 1228 tmp = factor->cir_b | 1229 (factor->cir_u << QM_SHAPER_FACTOR_CIR_U_SHIFT) | 1230 (factor->cir_s << QM_SHAPER_FACTOR_CIR_S_SHIFT) | 1231 (QM_SHAPER_CBS_B << QM_SHAPER_FACTOR_CBS_B_SHIFT) | 1232 (factor->cbs_s << QM_SHAPER_FACTOR_CBS_S_SHIFT); 1233 } 1234 break; 1235 } 1236 } 1237 1238 writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L); 1239 writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H); 1240 } 1241 1242 static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type, 1243 u32 fun_num, u32 base, u32 number) 1244 { 1245 struct qm_shaper_factor *factor = NULL; 1246 unsigned int val; 1247 int ret; 1248 1249 if (type == SHAPER_VFT && test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 1250 factor = &qm->factor[fun_num]; 1251 1252 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 1253 val & BIT(0), POLL_PERIOD, 1254 POLL_TIMEOUT); 1255 if (ret) 1256 return ret; 1257 1258 writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR); 1259 writel(type, qm->io_base + QM_VFT_CFG_TYPE); 1260 if (type == SHAPER_VFT) 1261 fun_num |= base << QM_SHAPER_VFT_OFFSET; 1262 1263 writel(fun_num, qm->io_base + QM_VFT_CFG); 1264 1265 qm_vft_data_cfg(qm, type, base, number, factor); 1266 1267 writel(0x0, qm->io_base + QM_VFT_CFG_RDY); 1268 writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE); 1269 1270 return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 1271 val & BIT(0), POLL_PERIOD, 1272 POLL_TIMEOUT); 1273 } 1274 1275 static int qm_shaper_init_vft(struct hisi_qm *qm, u32 fun_num) 1276 { 1277 u32 qos = qm->factor[fun_num].func_qos; 1278 int ret, i; 1279 1280 ret = qm_get_shaper_para(qos * QM_QOS_RATE, &qm->factor[fun_num]); 1281 if (ret) { 1282 dev_err(&qm->pdev->dev, "failed to calculate shaper parameter!\n"); 1283 return ret; 1284 } 1285 writel(qm->type_rate, qm->io_base + QM_SHAPER_CFG); 1286 for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) { 1287 /* The base number of queue reuse for different alg type */ 1288 ret = qm_set_vft_common(qm, SHAPER_VFT, fun_num, i, 1); 1289 if (ret) 1290 return ret; 1291 } 1292 1293 return 0; 1294 } 1295 1296 /* The config should be conducted after qm_dev_mem_reset() */ 1297 static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base, 1298 u32 number) 1299 { 1300 int ret, i; 1301 1302 for (i = SQC_VFT; i <= CQC_VFT; i++) { 1303 ret = qm_set_vft_common(qm, i, fun_num, base, number); 1304 if (ret) 1305 return ret; 1306 } 1307 1308 /* init default shaper qos val */ 1309 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) { 1310 ret = qm_shaper_init_vft(qm, fun_num); 1311 if (ret) 1312 goto back_sqc_cqc; 1313 } 1314 1315 return 0; 1316 back_sqc_cqc: 1317 for (i = SQC_VFT; i <= CQC_VFT; i++) 1318 qm_set_vft_common(qm, i, fun_num, 0, 0); 1319 1320 return ret; 1321 } 1322 1323 static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number) 1324 { 1325 u64 sqc_vft; 1326 int ret; 1327 1328 ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1); 1329 if (ret) 1330 return ret; 1331 1332 sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) | 1333 ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32); 1334 *base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2); 1335 *number = (QM_SQC_VFT_NUM_MASK_V2 & 1336 (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1; 1337 1338 return 0; 1339 } 1340 1341 static void qm_hw_error_init_v1(struct hisi_qm *qm) 1342 { 1343 writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK); 1344 } 1345 1346 static void qm_hw_error_cfg(struct hisi_qm *qm) 1347 { 1348 struct hisi_qm_err_info *err_info = &qm->err_info; 1349 1350 qm->error_mask = err_info->nfe | err_info->ce | err_info->fe; 1351 /* clear QM hw residual error source */ 1352 writel(qm->error_mask, qm->io_base + QM_ABNORMAL_INT_SOURCE); 1353 1354 /* configure error type */ 1355 writel(err_info->ce, qm->io_base + QM_RAS_CE_ENABLE); 1356 writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD); 1357 writel(err_info->nfe, qm->io_base + QM_RAS_NFE_ENABLE); 1358 writel(err_info->fe, qm->io_base + QM_RAS_FE_ENABLE); 1359 } 1360 1361 static void qm_hw_error_init_v2(struct hisi_qm *qm) 1362 { 1363 u32 irq_unmask; 1364 1365 qm_hw_error_cfg(qm); 1366 1367 irq_unmask = ~qm->error_mask; 1368 irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1369 writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK); 1370 } 1371 1372 static void qm_hw_error_uninit_v2(struct hisi_qm *qm) 1373 { 1374 u32 irq_mask = qm->error_mask; 1375 1376 irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1377 writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK); 1378 } 1379 1380 static void qm_hw_error_init_v3(struct hisi_qm *qm) 1381 { 1382 u32 irq_unmask; 1383 1384 qm_hw_error_cfg(qm); 1385 1386 /* enable close master ooo when hardware error happened */ 1387 writel(qm->err_info.qm_shutdown_mask, qm->io_base + QM_OOO_SHUTDOWN_SEL); 1388 1389 irq_unmask = ~qm->error_mask; 1390 irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1391 writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK); 1392 } 1393 1394 static void qm_hw_error_uninit_v3(struct hisi_qm *qm) 1395 { 1396 u32 irq_mask = qm->error_mask; 1397 1398 irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK); 1399 writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK); 1400 1401 /* disable close master ooo when hardware error happened */ 1402 writel(0x0, qm->io_base + QM_OOO_SHUTDOWN_SEL); 1403 } 1404 1405 static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status) 1406 { 1407 const struct hisi_qm_hw_error *err; 1408 struct device *dev = &qm->pdev->dev; 1409 u32 reg_val, type, vf_num; 1410 int i; 1411 1412 for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) { 1413 err = &qm_hw_error[i]; 1414 if (!(err->int_msk & error_status)) 1415 continue; 1416 1417 dev_err(dev, "%s [error status=0x%x] found\n", 1418 err->msg, err->int_msk); 1419 1420 if (err->int_msk & QM_DB_TIMEOUT) { 1421 reg_val = readl(qm->io_base + QM_ABNORMAL_INF01); 1422 type = (reg_val & QM_DB_TIMEOUT_TYPE) >> 1423 QM_DB_TIMEOUT_TYPE_SHIFT; 1424 vf_num = reg_val & QM_DB_TIMEOUT_VF; 1425 dev_err(dev, "qm %s doorbell timeout in function %u\n", 1426 qm_db_timeout[type], vf_num); 1427 } else if (err->int_msk & QM_OF_FIFO_OF) { 1428 reg_val = readl(qm->io_base + QM_ABNORMAL_INF00); 1429 type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >> 1430 QM_FIFO_OVERFLOW_TYPE_SHIFT; 1431 vf_num = reg_val & QM_FIFO_OVERFLOW_VF; 1432 1433 if (type < ARRAY_SIZE(qm_fifo_overflow)) 1434 dev_err(dev, "qm %s fifo overflow in function %u\n", 1435 qm_fifo_overflow[type], vf_num); 1436 else 1437 dev_err(dev, "unknown error type\n"); 1438 } 1439 } 1440 } 1441 1442 static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm) 1443 { 1444 u32 error_status, tmp; 1445 1446 /* read err sts */ 1447 tmp = readl(qm->io_base + QM_ABNORMAL_INT_STATUS); 1448 error_status = qm->error_mask & tmp; 1449 1450 if (error_status) { 1451 if (error_status & QM_ECC_MBIT) 1452 qm->err_status.is_qm_ecc_mbit = true; 1453 1454 qm_log_hw_error(qm, error_status); 1455 if (error_status & qm->err_info.qm_reset_mask) 1456 return ACC_ERR_NEED_RESET; 1457 1458 writel(error_status, qm->io_base + QM_ABNORMAL_INT_SOURCE); 1459 writel(qm->err_info.nfe, qm->io_base + QM_RAS_NFE_ENABLE); 1460 } 1461 1462 return ACC_ERR_RECOVERED; 1463 } 1464 1465 static int qm_get_mb_cmd(struct hisi_qm *qm, u64 *msg, u16 fun_num) 1466 { 1467 struct qm_mailbox mailbox; 1468 int ret; 1469 1470 qm_mb_pre_init(&mailbox, QM_MB_CMD_DST, 0, fun_num, 0); 1471 mutex_lock(&qm->mailbox_lock); 1472 ret = qm_mb_nolock(qm, &mailbox); 1473 if (ret) 1474 goto err_unlock; 1475 1476 *msg = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) | 1477 ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32); 1478 1479 err_unlock: 1480 mutex_unlock(&qm->mailbox_lock); 1481 return ret; 1482 } 1483 1484 static void qm_clear_cmd_interrupt(struct hisi_qm *qm, u64 vf_mask) 1485 { 1486 u32 val; 1487 1488 if (qm->fun_type == QM_HW_PF) 1489 writeq(vf_mask, qm->io_base + QM_IFC_INT_SOURCE_P); 1490 1491 val = readl(qm->io_base + QM_IFC_INT_SOURCE_V); 1492 val |= QM_IFC_INT_SOURCE_MASK; 1493 writel(val, qm->io_base + QM_IFC_INT_SOURCE_V); 1494 } 1495 1496 static void qm_handle_vf_msg(struct hisi_qm *qm, u32 vf_id) 1497 { 1498 struct device *dev = &qm->pdev->dev; 1499 u32 cmd; 1500 u64 msg; 1501 int ret; 1502 1503 ret = qm_get_mb_cmd(qm, &msg, vf_id); 1504 if (ret) { 1505 dev_err(dev, "failed to get msg from VF(%u)!\n", vf_id); 1506 return; 1507 } 1508 1509 cmd = msg & QM_MB_CMD_DATA_MASK; 1510 switch (cmd) { 1511 case QM_VF_PREPARE_FAIL: 1512 dev_err(dev, "failed to stop VF(%u)!\n", vf_id); 1513 break; 1514 case QM_VF_START_FAIL: 1515 dev_err(dev, "failed to start VF(%u)!\n", vf_id); 1516 break; 1517 case QM_VF_PREPARE_DONE: 1518 case QM_VF_START_DONE: 1519 break; 1520 default: 1521 dev_err(dev, "unsupported cmd %u sent by VF(%u)!\n", cmd, vf_id); 1522 break; 1523 } 1524 } 1525 1526 static int qm_wait_vf_prepare_finish(struct hisi_qm *qm) 1527 { 1528 struct device *dev = &qm->pdev->dev; 1529 u32 vfs_num = qm->vfs_num; 1530 int cnt = 0; 1531 int ret = 0; 1532 u64 val; 1533 u32 i; 1534 1535 if (!qm->vfs_num || !test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 1536 return 0; 1537 1538 while (true) { 1539 val = readq(qm->io_base + QM_IFC_INT_SOURCE_P); 1540 /* All VFs send command to PF, break */ 1541 if ((val & GENMASK(vfs_num, 1)) == GENMASK(vfs_num, 1)) 1542 break; 1543 1544 if (++cnt > QM_MAX_PF_WAIT_COUNT) { 1545 ret = -EBUSY; 1546 break; 1547 } 1548 1549 msleep(QM_WAIT_DST_ACK); 1550 } 1551 1552 /* PF check VFs msg */ 1553 for (i = 1; i <= vfs_num; i++) { 1554 if (val & BIT(i)) 1555 qm_handle_vf_msg(qm, i); 1556 else 1557 dev_err(dev, "VF(%u) not ping PF!\n", i); 1558 } 1559 1560 /* PF clear interrupt to ack VFs */ 1561 qm_clear_cmd_interrupt(qm, val); 1562 1563 return ret; 1564 } 1565 1566 static void qm_trigger_vf_interrupt(struct hisi_qm *qm, u32 fun_num) 1567 { 1568 u32 val; 1569 1570 val = readl(qm->io_base + QM_IFC_INT_CFG); 1571 val &= ~QM_IFC_SEND_ALL_VFS; 1572 val |= fun_num; 1573 writel(val, qm->io_base + QM_IFC_INT_CFG); 1574 1575 val = readl(qm->io_base + QM_IFC_INT_SET_P); 1576 val |= QM_IFC_INT_SET_MASK; 1577 writel(val, qm->io_base + QM_IFC_INT_SET_P); 1578 } 1579 1580 static void qm_trigger_pf_interrupt(struct hisi_qm *qm) 1581 { 1582 u32 val; 1583 1584 val = readl(qm->io_base + QM_IFC_INT_SET_V); 1585 val |= QM_IFC_INT_SET_MASK; 1586 writel(val, qm->io_base + QM_IFC_INT_SET_V); 1587 } 1588 1589 static int qm_ping_single_vf(struct hisi_qm *qm, u64 cmd, u32 fun_num) 1590 { 1591 struct device *dev = &qm->pdev->dev; 1592 struct qm_mailbox mailbox; 1593 int cnt = 0; 1594 u64 val; 1595 int ret; 1596 1597 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, fun_num, 0); 1598 mutex_lock(&qm->mailbox_lock); 1599 ret = qm_mb_nolock(qm, &mailbox); 1600 if (ret) { 1601 dev_err(dev, "failed to send command to vf(%u)!\n", fun_num); 1602 goto err_unlock; 1603 } 1604 1605 qm_trigger_vf_interrupt(qm, fun_num); 1606 while (true) { 1607 msleep(QM_WAIT_DST_ACK); 1608 val = readq(qm->io_base + QM_IFC_READY_STATUS); 1609 /* if VF respond, PF notifies VF successfully. */ 1610 if (!(val & BIT(fun_num))) 1611 goto err_unlock; 1612 1613 if (++cnt > QM_MAX_PF_WAIT_COUNT) { 1614 dev_err(dev, "failed to get response from VF(%u)!\n", fun_num); 1615 ret = -ETIMEDOUT; 1616 break; 1617 } 1618 } 1619 1620 err_unlock: 1621 mutex_unlock(&qm->mailbox_lock); 1622 return ret; 1623 } 1624 1625 static int qm_ping_all_vfs(struct hisi_qm *qm, u64 cmd) 1626 { 1627 struct device *dev = &qm->pdev->dev; 1628 u32 vfs_num = qm->vfs_num; 1629 struct qm_mailbox mailbox; 1630 u64 val = 0; 1631 int cnt = 0; 1632 int ret; 1633 u32 i; 1634 1635 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, QM_MB_PING_ALL_VFS, 0); 1636 mutex_lock(&qm->mailbox_lock); 1637 /* PF sends command to all VFs by mailbox */ 1638 ret = qm_mb_nolock(qm, &mailbox); 1639 if (ret) { 1640 dev_err(dev, "failed to send command to VFs!\n"); 1641 mutex_unlock(&qm->mailbox_lock); 1642 return ret; 1643 } 1644 1645 qm_trigger_vf_interrupt(qm, QM_IFC_SEND_ALL_VFS); 1646 while (true) { 1647 msleep(QM_WAIT_DST_ACK); 1648 val = readq(qm->io_base + QM_IFC_READY_STATUS); 1649 /* If all VFs acked, PF notifies VFs successfully. */ 1650 if (!(val & GENMASK(vfs_num, 1))) { 1651 mutex_unlock(&qm->mailbox_lock); 1652 return 0; 1653 } 1654 1655 if (++cnt > QM_MAX_PF_WAIT_COUNT) 1656 break; 1657 } 1658 1659 mutex_unlock(&qm->mailbox_lock); 1660 1661 /* Check which vf respond timeout. */ 1662 for (i = 1; i <= vfs_num; i++) { 1663 if (val & BIT(i)) 1664 dev_err(dev, "failed to get response from VF(%u)!\n", i); 1665 } 1666 1667 return -ETIMEDOUT; 1668 } 1669 1670 static int qm_ping_pf(struct hisi_qm *qm, u64 cmd) 1671 { 1672 struct qm_mailbox mailbox; 1673 int cnt = 0; 1674 u32 val; 1675 int ret; 1676 1677 qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, 0, 0); 1678 mutex_lock(&qm->mailbox_lock); 1679 ret = qm_mb_nolock(qm, &mailbox); 1680 if (ret) { 1681 dev_err(&qm->pdev->dev, "failed to send command to PF!\n"); 1682 goto unlock; 1683 } 1684 1685 qm_trigger_pf_interrupt(qm); 1686 /* Waiting for PF response */ 1687 while (true) { 1688 msleep(QM_WAIT_DST_ACK); 1689 val = readl(qm->io_base + QM_IFC_INT_SET_V); 1690 if (!(val & QM_IFC_INT_STATUS_MASK)) 1691 break; 1692 1693 if (++cnt > QM_MAX_VF_WAIT_COUNT) { 1694 ret = -ETIMEDOUT; 1695 break; 1696 } 1697 } 1698 1699 unlock: 1700 mutex_unlock(&qm->mailbox_lock); 1701 return ret; 1702 } 1703 1704 static int qm_stop_qp(struct hisi_qp *qp) 1705 { 1706 return hisi_qm_mb(qp->qm, QM_MB_CMD_STOP_QP, 0, qp->qp_id, 0); 1707 } 1708 1709 static int qm_set_msi(struct hisi_qm *qm, bool set) 1710 { 1711 struct pci_dev *pdev = qm->pdev; 1712 1713 if (set) { 1714 pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64, 1715 0); 1716 } else { 1717 pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64, 1718 ACC_PEH_MSI_DISABLE); 1719 if (qm->err_status.is_qm_ecc_mbit || 1720 qm->err_status.is_dev_ecc_mbit) 1721 return 0; 1722 1723 mdelay(1); 1724 if (readl(qm->io_base + QM_PEH_DFX_INFO0)) 1725 return -EFAULT; 1726 } 1727 1728 return 0; 1729 } 1730 1731 static void qm_wait_msi_finish(struct hisi_qm *qm) 1732 { 1733 struct pci_dev *pdev = qm->pdev; 1734 u32 cmd = ~0; 1735 int cnt = 0; 1736 u32 val; 1737 int ret; 1738 1739 while (true) { 1740 pci_read_config_dword(pdev, pdev->msi_cap + 1741 PCI_MSI_PENDING_64, &cmd); 1742 if (!cmd) 1743 break; 1744 1745 if (++cnt > MAX_WAIT_COUNTS) { 1746 pci_warn(pdev, "failed to empty MSI PENDING!\n"); 1747 break; 1748 } 1749 1750 udelay(1); 1751 } 1752 1753 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO0, 1754 val, !(val & QM_PEH_DFX_MASK), 1755 POLL_PERIOD, POLL_TIMEOUT); 1756 if (ret) 1757 pci_warn(pdev, "failed to empty PEH MSI!\n"); 1758 1759 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO1, 1760 val, !(val & QM_PEH_MSI_FINISH_MASK), 1761 POLL_PERIOD, POLL_TIMEOUT); 1762 if (ret) 1763 pci_warn(pdev, "failed to finish MSI operation!\n"); 1764 } 1765 1766 static int qm_set_msi_v3(struct hisi_qm *qm, bool set) 1767 { 1768 struct pci_dev *pdev = qm->pdev; 1769 int ret = -ETIMEDOUT; 1770 u32 cmd, i; 1771 1772 pci_read_config_dword(pdev, pdev->msi_cap, &cmd); 1773 if (set) 1774 cmd |= QM_MSI_CAP_ENABLE; 1775 else 1776 cmd &= ~QM_MSI_CAP_ENABLE; 1777 1778 pci_write_config_dword(pdev, pdev->msi_cap, cmd); 1779 if (set) { 1780 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 1781 pci_read_config_dword(pdev, pdev->msi_cap, &cmd); 1782 if (cmd & QM_MSI_CAP_ENABLE) 1783 return 0; 1784 1785 udelay(1); 1786 } 1787 } else { 1788 udelay(WAIT_PERIOD_US_MIN); 1789 qm_wait_msi_finish(qm); 1790 ret = 0; 1791 } 1792 1793 return ret; 1794 } 1795 1796 static const struct hisi_qm_hw_ops qm_hw_ops_v1 = { 1797 .qm_db = qm_db_v1, 1798 .hw_error_init = qm_hw_error_init_v1, 1799 .set_msi = qm_set_msi, 1800 }; 1801 1802 static const struct hisi_qm_hw_ops qm_hw_ops_v2 = { 1803 .get_vft = qm_get_vft_v2, 1804 .qm_db = qm_db_v2, 1805 .hw_error_init = qm_hw_error_init_v2, 1806 .hw_error_uninit = qm_hw_error_uninit_v2, 1807 .hw_error_handle = qm_hw_error_handle_v2, 1808 .set_msi = qm_set_msi, 1809 }; 1810 1811 static const struct hisi_qm_hw_ops qm_hw_ops_v3 = { 1812 .get_vft = qm_get_vft_v2, 1813 .qm_db = qm_db_v2, 1814 .hw_error_init = qm_hw_error_init_v3, 1815 .hw_error_uninit = qm_hw_error_uninit_v3, 1816 .hw_error_handle = qm_hw_error_handle_v2, 1817 .set_msi = qm_set_msi_v3, 1818 }; 1819 1820 static void *qm_get_avail_sqe(struct hisi_qp *qp) 1821 { 1822 struct hisi_qp_status *qp_status = &qp->qp_status; 1823 u16 sq_tail = qp_status->sq_tail; 1824 1825 if (unlikely(atomic_read(&qp->qp_status.used) == qp->sq_depth - 1)) 1826 return NULL; 1827 1828 return qp->sqe + sq_tail * qp->qm->sqe_size; 1829 } 1830 1831 static void hisi_qm_unset_hw_reset(struct hisi_qp *qp) 1832 { 1833 u64 *addr; 1834 1835 /* Use last 64 bits of DUS to reset status. */ 1836 addr = (u64 *)(qp->qdma.va + qp->qdma.size) - QM_RESET_STOP_TX_OFFSET; 1837 *addr = 0; 1838 } 1839 1840 static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type) 1841 { 1842 struct device *dev = &qm->pdev->dev; 1843 struct hisi_qp *qp; 1844 int qp_id; 1845 1846 if (!qm_qp_avail_state(qm, NULL, QP_INIT)) 1847 return ERR_PTR(-EPERM); 1848 1849 if (qm->qp_in_used == qm->qp_num) { 1850 dev_info_ratelimited(dev, "All %u queues of QM are busy!\n", 1851 qm->qp_num); 1852 atomic64_inc(&qm->debug.dfx.create_qp_err_cnt); 1853 return ERR_PTR(-EBUSY); 1854 } 1855 1856 qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC); 1857 if (qp_id < 0) { 1858 dev_info_ratelimited(dev, "All %u queues of QM are busy!\n", 1859 qm->qp_num); 1860 atomic64_inc(&qm->debug.dfx.create_qp_err_cnt); 1861 return ERR_PTR(-EBUSY); 1862 } 1863 1864 qp = &qm->qp_array[qp_id]; 1865 hisi_qm_unset_hw_reset(qp); 1866 memset(qp->cqe, 0, sizeof(struct qm_cqe) * qp->cq_depth); 1867 1868 qp->event_cb = NULL; 1869 qp->req_cb = NULL; 1870 qp->qp_id = qp_id; 1871 qp->alg_type = alg_type; 1872 qp->is_in_kernel = true; 1873 qm->qp_in_used++; 1874 atomic_set(&qp->qp_status.flags, QP_INIT); 1875 1876 return qp; 1877 } 1878 1879 /** 1880 * hisi_qm_create_qp() - Create a queue pair from qm. 1881 * @qm: The qm we create a qp from. 1882 * @alg_type: Accelerator specific algorithm type in sqc. 1883 * 1884 * Return created qp, negative error code if failed. 1885 */ 1886 static struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type) 1887 { 1888 struct hisi_qp *qp; 1889 int ret; 1890 1891 ret = qm_pm_get_sync(qm); 1892 if (ret) 1893 return ERR_PTR(ret); 1894 1895 down_write(&qm->qps_lock); 1896 qp = qm_create_qp_nolock(qm, alg_type); 1897 up_write(&qm->qps_lock); 1898 1899 if (IS_ERR(qp)) 1900 qm_pm_put_sync(qm); 1901 1902 return qp; 1903 } 1904 1905 /** 1906 * hisi_qm_release_qp() - Release a qp back to its qm. 1907 * @qp: The qp we want to release. 1908 * 1909 * This function releases the resource of a qp. 1910 */ 1911 static void hisi_qm_release_qp(struct hisi_qp *qp) 1912 { 1913 struct hisi_qm *qm = qp->qm; 1914 1915 down_write(&qm->qps_lock); 1916 1917 if (!qm_qp_avail_state(qm, qp, QP_CLOSE)) { 1918 up_write(&qm->qps_lock); 1919 return; 1920 } 1921 1922 qm->qp_in_used--; 1923 idr_remove(&qm->qp_idr, qp->qp_id); 1924 1925 up_write(&qm->qps_lock); 1926 1927 qm_pm_put_sync(qm); 1928 } 1929 1930 static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 1931 { 1932 struct hisi_qm *qm = qp->qm; 1933 enum qm_hw_ver ver = qm->ver; 1934 struct qm_sqc sqc = {0}; 1935 1936 if (ver == QM_HW_V1) { 1937 sqc.dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size)); 1938 sqc.w8 = cpu_to_le16(qp->sq_depth - 1); 1939 } else { 1940 sqc.dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size, qp->sq_depth)); 1941 sqc.w8 = 0; /* rand_qc */ 1942 } 1943 sqc.w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type)); 1944 sqc.base_l = cpu_to_le32(lower_32_bits(qp->sqe_dma)); 1945 sqc.base_h = cpu_to_le32(upper_32_bits(qp->sqe_dma)); 1946 sqc.cq_num = cpu_to_le16(qp_id); 1947 sqc.pasid = cpu_to_le16(pasid); 1948 1949 if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel) 1950 sqc.w11 = cpu_to_le16(QM_QC_PASID_ENABLE << 1951 QM_QC_PASID_ENABLE_SHIFT); 1952 1953 return qm_set_and_get_xqc(qm, QM_MB_CMD_SQC, &sqc, qp_id, 0); 1954 } 1955 1956 static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 1957 { 1958 struct hisi_qm *qm = qp->qm; 1959 enum qm_hw_ver ver = qm->ver; 1960 struct qm_cqc cqc = {0}; 1961 1962 if (ver == QM_HW_V1) { 1963 cqc.dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0, QM_QC_CQE_SIZE)); 1964 cqc.w8 = cpu_to_le16(qp->cq_depth - 1); 1965 } else { 1966 cqc.dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE, qp->cq_depth)); 1967 cqc.w8 = 0; /* rand_qc */ 1968 } 1969 cqc.dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT); 1970 cqc.base_l = cpu_to_le32(lower_32_bits(qp->cqe_dma)); 1971 cqc.base_h = cpu_to_le32(upper_32_bits(qp->cqe_dma)); 1972 cqc.pasid = cpu_to_le16(pasid); 1973 1974 if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel) 1975 cqc.w11 = cpu_to_le16(QM_QC_PASID_ENABLE); 1976 1977 return qm_set_and_get_xqc(qm, QM_MB_CMD_CQC, &cqc, qp_id, 0); 1978 } 1979 1980 static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid) 1981 { 1982 int ret; 1983 1984 qm_init_qp_status(qp); 1985 1986 ret = qm_sq_ctx_cfg(qp, qp_id, pasid); 1987 if (ret) 1988 return ret; 1989 1990 return qm_cq_ctx_cfg(qp, qp_id, pasid); 1991 } 1992 1993 static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg) 1994 { 1995 struct hisi_qm *qm = qp->qm; 1996 struct device *dev = &qm->pdev->dev; 1997 int qp_id = qp->qp_id; 1998 u32 pasid = arg; 1999 int ret; 2000 2001 if (!qm_qp_avail_state(qm, qp, QP_START)) 2002 return -EPERM; 2003 2004 ret = qm_qp_ctx_cfg(qp, qp_id, pasid); 2005 if (ret) 2006 return ret; 2007 2008 atomic_set(&qp->qp_status.flags, QP_START); 2009 dev_dbg(dev, "queue %d started\n", qp_id); 2010 2011 return 0; 2012 } 2013 2014 /** 2015 * hisi_qm_start_qp() - Start a qp into running. 2016 * @qp: The qp we want to start to run. 2017 * @arg: Accelerator specific argument. 2018 * 2019 * After this function, qp can receive request from user. Return 0 if 2020 * successful, negative error code if failed. 2021 */ 2022 int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg) 2023 { 2024 struct hisi_qm *qm = qp->qm; 2025 int ret; 2026 2027 down_write(&qm->qps_lock); 2028 ret = qm_start_qp_nolock(qp, arg); 2029 up_write(&qm->qps_lock); 2030 2031 return ret; 2032 } 2033 EXPORT_SYMBOL_GPL(hisi_qm_start_qp); 2034 2035 /** 2036 * qp_stop_fail_cb() - call request cb. 2037 * @qp: stopped failed qp. 2038 * 2039 * Callback function should be called whether task completed or not. 2040 */ 2041 static void qp_stop_fail_cb(struct hisi_qp *qp) 2042 { 2043 int qp_used = atomic_read(&qp->qp_status.used); 2044 u16 cur_tail = qp->qp_status.sq_tail; 2045 u16 sq_depth = qp->sq_depth; 2046 u16 cur_head = (cur_tail + sq_depth - qp_used) % sq_depth; 2047 struct hisi_qm *qm = qp->qm; 2048 u16 pos; 2049 int i; 2050 2051 for (i = 0; i < qp_used; i++) { 2052 pos = (i + cur_head) % sq_depth; 2053 qp->req_cb(qp, qp->sqe + (u32)(qm->sqe_size * pos)); 2054 atomic_dec(&qp->qp_status.used); 2055 } 2056 } 2057 2058 /** 2059 * qm_drain_qp() - Drain a qp. 2060 * @qp: The qp we want to drain. 2061 * 2062 * Determine whether the queue is cleared by judging the tail pointers of 2063 * sq and cq. 2064 */ 2065 static int qm_drain_qp(struct hisi_qp *qp) 2066 { 2067 struct hisi_qm *qm = qp->qm; 2068 struct device *dev = &qm->pdev->dev; 2069 struct qm_sqc sqc; 2070 struct qm_cqc cqc; 2071 int ret, i = 0; 2072 2073 /* No need to judge if master OOO is blocked. */ 2074 if (qm_check_dev_error(qm)) 2075 return 0; 2076 2077 /* Kunpeng930 supports drain qp by device */ 2078 if (test_bit(QM_SUPPORT_STOP_QP, &qm->caps)) { 2079 ret = qm_stop_qp(qp); 2080 if (ret) 2081 dev_err(dev, "Failed to stop qp(%u)!\n", qp->qp_id); 2082 return ret; 2083 } 2084 2085 while (++i) { 2086 ret = qm_set_and_get_xqc(qm, QM_MB_CMD_SQC, &sqc, qp->qp_id, 1); 2087 if (ret) { 2088 dev_err_ratelimited(dev, "Failed to dump sqc!\n"); 2089 return ret; 2090 } 2091 2092 ret = qm_set_and_get_xqc(qm, QM_MB_CMD_CQC, &cqc, qp->qp_id, 1); 2093 if (ret) { 2094 dev_err_ratelimited(dev, "Failed to dump cqc!\n"); 2095 return ret; 2096 } 2097 2098 if ((sqc.tail == cqc.tail) && 2099 (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc))) 2100 break; 2101 2102 if (i == MAX_WAIT_COUNTS) { 2103 dev_err(dev, "Fail to empty queue %u!\n", qp->qp_id); 2104 return -EBUSY; 2105 } 2106 2107 usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX); 2108 } 2109 2110 return 0; 2111 } 2112 2113 static int qm_stop_qp_nolock(struct hisi_qp *qp) 2114 { 2115 struct device *dev = &qp->qm->pdev->dev; 2116 int ret; 2117 2118 /* 2119 * It is allowed to stop and release qp when reset, If the qp is 2120 * stopped when reset but still want to be released then, the 2121 * is_resetting flag should be set negative so that this qp will not 2122 * be restarted after reset. 2123 */ 2124 if (atomic_read(&qp->qp_status.flags) == QP_STOP) { 2125 qp->is_resetting = false; 2126 return 0; 2127 } 2128 2129 if (!qm_qp_avail_state(qp->qm, qp, QP_STOP)) 2130 return -EPERM; 2131 2132 atomic_set(&qp->qp_status.flags, QP_STOP); 2133 2134 ret = qm_drain_qp(qp); 2135 if (ret) 2136 dev_err(dev, "Failed to drain out data for stopping!\n"); 2137 2138 2139 flush_workqueue(qp->qm->wq); 2140 if (unlikely(qp->is_resetting && atomic_read(&qp->qp_status.used))) 2141 qp_stop_fail_cb(qp); 2142 2143 dev_dbg(dev, "stop queue %u!", qp->qp_id); 2144 2145 return 0; 2146 } 2147 2148 /** 2149 * hisi_qm_stop_qp() - Stop a qp in qm. 2150 * @qp: The qp we want to stop. 2151 * 2152 * This function is reverse of hisi_qm_start_qp. Return 0 if successful. 2153 */ 2154 int hisi_qm_stop_qp(struct hisi_qp *qp) 2155 { 2156 int ret; 2157 2158 down_write(&qp->qm->qps_lock); 2159 ret = qm_stop_qp_nolock(qp); 2160 up_write(&qp->qm->qps_lock); 2161 2162 return ret; 2163 } 2164 EXPORT_SYMBOL_GPL(hisi_qm_stop_qp); 2165 2166 /** 2167 * hisi_qp_send() - Queue up a task in the hardware queue. 2168 * @qp: The qp in which to put the message. 2169 * @msg: The message. 2170 * 2171 * This function will return -EBUSY if qp is currently full, and -EAGAIN 2172 * if qp related qm is resetting. 2173 * 2174 * Note: This function may run with qm_irq_thread and ACC reset at same time. 2175 * It has no race with qm_irq_thread. However, during hisi_qp_send, ACC 2176 * reset may happen, we have no lock here considering performance. This 2177 * causes current qm_db sending fail or can not receive sended sqe. QM 2178 * sync/async receive function should handle the error sqe. ACC reset 2179 * done function should clear used sqe to 0. 2180 */ 2181 int hisi_qp_send(struct hisi_qp *qp, const void *msg) 2182 { 2183 struct hisi_qp_status *qp_status = &qp->qp_status; 2184 u16 sq_tail = qp_status->sq_tail; 2185 u16 sq_tail_next = (sq_tail + 1) % qp->sq_depth; 2186 void *sqe = qm_get_avail_sqe(qp); 2187 2188 if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP || 2189 atomic_read(&qp->qm->status.flags) == QM_STOP || 2190 qp->is_resetting)) { 2191 dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n"); 2192 return -EAGAIN; 2193 } 2194 2195 if (!sqe) 2196 return -EBUSY; 2197 2198 memcpy(sqe, msg, qp->qm->sqe_size); 2199 2200 qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0); 2201 atomic_inc(&qp->qp_status.used); 2202 qp_status->sq_tail = sq_tail_next; 2203 2204 return 0; 2205 } 2206 EXPORT_SYMBOL_GPL(hisi_qp_send); 2207 2208 static void hisi_qm_cache_wb(struct hisi_qm *qm) 2209 { 2210 unsigned int val; 2211 2212 if (qm->ver == QM_HW_V1) 2213 return; 2214 2215 writel(0x1, qm->io_base + QM_CACHE_WB_START); 2216 if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE, 2217 val, val & BIT(0), POLL_PERIOD, 2218 POLL_TIMEOUT)) 2219 dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n"); 2220 } 2221 2222 static void qm_qp_event_notifier(struct hisi_qp *qp) 2223 { 2224 wake_up_interruptible(&qp->uacce_q->wait); 2225 } 2226 2227 /* This function returns free number of qp in qm. */ 2228 static int hisi_qm_get_available_instances(struct uacce_device *uacce) 2229 { 2230 struct hisi_qm *qm = uacce->priv; 2231 int ret; 2232 2233 down_read(&qm->qps_lock); 2234 ret = qm->qp_num - qm->qp_in_used; 2235 up_read(&qm->qps_lock); 2236 2237 return ret; 2238 } 2239 2240 static void hisi_qm_set_hw_reset(struct hisi_qm *qm, int offset) 2241 { 2242 int i; 2243 2244 for (i = 0; i < qm->qp_num; i++) 2245 qm_set_qp_disable(&qm->qp_array[i], offset); 2246 } 2247 2248 static int hisi_qm_uacce_get_queue(struct uacce_device *uacce, 2249 unsigned long arg, 2250 struct uacce_queue *q) 2251 { 2252 struct hisi_qm *qm = uacce->priv; 2253 struct hisi_qp *qp; 2254 u8 alg_type = 0; 2255 2256 qp = hisi_qm_create_qp(qm, alg_type); 2257 if (IS_ERR(qp)) 2258 return PTR_ERR(qp); 2259 2260 q->priv = qp; 2261 q->uacce = uacce; 2262 qp->uacce_q = q; 2263 qp->event_cb = qm_qp_event_notifier; 2264 qp->pasid = arg; 2265 qp->is_in_kernel = false; 2266 2267 return 0; 2268 } 2269 2270 static void hisi_qm_uacce_put_queue(struct uacce_queue *q) 2271 { 2272 struct hisi_qp *qp = q->priv; 2273 2274 hisi_qm_release_qp(qp); 2275 } 2276 2277 /* map sq/cq/doorbell to user space */ 2278 static int hisi_qm_uacce_mmap(struct uacce_queue *q, 2279 struct vm_area_struct *vma, 2280 struct uacce_qfile_region *qfr) 2281 { 2282 struct hisi_qp *qp = q->priv; 2283 struct hisi_qm *qm = qp->qm; 2284 resource_size_t phys_base = qm->db_phys_base + 2285 qp->qp_id * qm->db_interval; 2286 size_t sz = vma->vm_end - vma->vm_start; 2287 struct pci_dev *pdev = qm->pdev; 2288 struct device *dev = &pdev->dev; 2289 unsigned long vm_pgoff; 2290 int ret; 2291 2292 switch (qfr->type) { 2293 case UACCE_QFRT_MMIO: 2294 if (qm->ver == QM_HW_V1) { 2295 if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR) 2296 return -EINVAL; 2297 } else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) { 2298 if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR + 2299 QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE)) 2300 return -EINVAL; 2301 } else { 2302 if (sz > qm->db_interval) 2303 return -EINVAL; 2304 } 2305 2306 vm_flags_set(vma, VM_IO); 2307 2308 return remap_pfn_range(vma, vma->vm_start, 2309 phys_base >> PAGE_SHIFT, 2310 sz, pgprot_noncached(vma->vm_page_prot)); 2311 case UACCE_QFRT_DUS: 2312 if (sz != qp->qdma.size) 2313 return -EINVAL; 2314 2315 /* 2316 * dma_mmap_coherent() requires vm_pgoff as 0 2317 * restore vm_pfoff to initial value for mmap() 2318 */ 2319 vm_pgoff = vma->vm_pgoff; 2320 vma->vm_pgoff = 0; 2321 ret = dma_mmap_coherent(dev, vma, qp->qdma.va, 2322 qp->qdma.dma, sz); 2323 vma->vm_pgoff = vm_pgoff; 2324 return ret; 2325 2326 default: 2327 return -EINVAL; 2328 } 2329 } 2330 2331 static int hisi_qm_uacce_start_queue(struct uacce_queue *q) 2332 { 2333 struct hisi_qp *qp = q->priv; 2334 2335 return hisi_qm_start_qp(qp, qp->pasid); 2336 } 2337 2338 static void hisi_qm_uacce_stop_queue(struct uacce_queue *q) 2339 { 2340 hisi_qm_stop_qp(q->priv); 2341 } 2342 2343 static int hisi_qm_is_q_updated(struct uacce_queue *q) 2344 { 2345 struct hisi_qp *qp = q->priv; 2346 struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head; 2347 int updated = 0; 2348 2349 while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) { 2350 /* make sure to read data from memory */ 2351 dma_rmb(); 2352 qm_cq_head_update(qp); 2353 cqe = qp->cqe + qp->qp_status.cq_head; 2354 updated = 1; 2355 } 2356 2357 return updated; 2358 } 2359 2360 static void qm_set_sqctype(struct uacce_queue *q, u16 type) 2361 { 2362 struct hisi_qm *qm = q->uacce->priv; 2363 struct hisi_qp *qp = q->priv; 2364 2365 down_write(&qm->qps_lock); 2366 qp->alg_type = type; 2367 up_write(&qm->qps_lock); 2368 } 2369 2370 static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd, 2371 unsigned long arg) 2372 { 2373 struct hisi_qp *qp = q->priv; 2374 struct hisi_qp_info qp_info; 2375 struct hisi_qp_ctx qp_ctx; 2376 2377 if (cmd == UACCE_CMD_QM_SET_QP_CTX) { 2378 if (copy_from_user(&qp_ctx, (void __user *)arg, 2379 sizeof(struct hisi_qp_ctx))) 2380 return -EFAULT; 2381 2382 if (qp_ctx.qc_type != 0 && qp_ctx.qc_type != 1) 2383 return -EINVAL; 2384 2385 qm_set_sqctype(q, qp_ctx.qc_type); 2386 qp_ctx.id = qp->qp_id; 2387 2388 if (copy_to_user((void __user *)arg, &qp_ctx, 2389 sizeof(struct hisi_qp_ctx))) 2390 return -EFAULT; 2391 2392 return 0; 2393 } else if (cmd == UACCE_CMD_QM_SET_QP_INFO) { 2394 if (copy_from_user(&qp_info, (void __user *)arg, 2395 sizeof(struct hisi_qp_info))) 2396 return -EFAULT; 2397 2398 qp_info.sqe_size = qp->qm->sqe_size; 2399 qp_info.sq_depth = qp->sq_depth; 2400 qp_info.cq_depth = qp->cq_depth; 2401 2402 if (copy_to_user((void __user *)arg, &qp_info, 2403 sizeof(struct hisi_qp_info))) 2404 return -EFAULT; 2405 2406 return 0; 2407 } 2408 2409 return -EINVAL; 2410 } 2411 2412 /** 2413 * qm_hw_err_isolate() - Try to set the isolation status of the uacce device 2414 * according to user's configuration of error threshold. 2415 * @qm: the uacce device 2416 */ 2417 static int qm_hw_err_isolate(struct hisi_qm *qm) 2418 { 2419 struct qm_hw_err *err, *tmp, *hw_err; 2420 struct qm_err_isolate *isolate; 2421 u32 count = 0; 2422 2423 isolate = &qm->isolate_data; 2424 2425 #define SECONDS_PER_HOUR 3600 2426 2427 /* All the hw errs are processed by PF driver */ 2428 if (qm->uacce->is_vf || isolate->is_isolate || !isolate->err_threshold) 2429 return 0; 2430 2431 hw_err = kzalloc(sizeof(*hw_err), GFP_KERNEL); 2432 if (!hw_err) 2433 return -ENOMEM; 2434 2435 /* 2436 * Time-stamp every slot AER error. Then check the AER error log when the 2437 * next device AER error occurred. if the device slot AER error count exceeds 2438 * the setting error threshold in one hour, the isolated state will be set 2439 * to true. And the AER error logs that exceed one hour will be cleared. 2440 */ 2441 mutex_lock(&isolate->isolate_lock); 2442 hw_err->timestamp = jiffies; 2443 list_for_each_entry_safe(err, tmp, &isolate->qm_hw_errs, list) { 2444 if ((hw_err->timestamp - err->timestamp) / HZ > 2445 SECONDS_PER_HOUR) { 2446 list_del(&err->list); 2447 kfree(err); 2448 } else { 2449 count++; 2450 } 2451 } 2452 list_add(&hw_err->list, &isolate->qm_hw_errs); 2453 mutex_unlock(&isolate->isolate_lock); 2454 2455 if (count >= isolate->err_threshold) 2456 isolate->is_isolate = true; 2457 2458 return 0; 2459 } 2460 2461 static void qm_hw_err_destroy(struct hisi_qm *qm) 2462 { 2463 struct qm_hw_err *err, *tmp; 2464 2465 mutex_lock(&qm->isolate_data.isolate_lock); 2466 list_for_each_entry_safe(err, tmp, &qm->isolate_data.qm_hw_errs, list) { 2467 list_del(&err->list); 2468 kfree(err); 2469 } 2470 mutex_unlock(&qm->isolate_data.isolate_lock); 2471 } 2472 2473 static enum uacce_dev_state hisi_qm_get_isolate_state(struct uacce_device *uacce) 2474 { 2475 struct hisi_qm *qm = uacce->priv; 2476 struct hisi_qm *pf_qm; 2477 2478 if (uacce->is_vf) 2479 pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 2480 else 2481 pf_qm = qm; 2482 2483 return pf_qm->isolate_data.is_isolate ? 2484 UACCE_DEV_ISOLATE : UACCE_DEV_NORMAL; 2485 } 2486 2487 static int hisi_qm_isolate_threshold_write(struct uacce_device *uacce, u32 num) 2488 { 2489 struct hisi_qm *qm = uacce->priv; 2490 2491 /* Must be set by PF */ 2492 if (uacce->is_vf) 2493 return -EPERM; 2494 2495 if (qm->isolate_data.is_isolate) 2496 return -EPERM; 2497 2498 qm->isolate_data.err_threshold = num; 2499 2500 /* After the policy is updated, need to reset the hardware err list */ 2501 qm_hw_err_destroy(qm); 2502 2503 return 0; 2504 } 2505 2506 static u32 hisi_qm_isolate_threshold_read(struct uacce_device *uacce) 2507 { 2508 struct hisi_qm *qm = uacce->priv; 2509 struct hisi_qm *pf_qm; 2510 2511 if (uacce->is_vf) { 2512 pf_qm = pci_get_drvdata(pci_physfn(qm->pdev)); 2513 return pf_qm->isolate_data.err_threshold; 2514 } 2515 2516 return qm->isolate_data.err_threshold; 2517 } 2518 2519 static const struct uacce_ops uacce_qm_ops = { 2520 .get_available_instances = hisi_qm_get_available_instances, 2521 .get_queue = hisi_qm_uacce_get_queue, 2522 .put_queue = hisi_qm_uacce_put_queue, 2523 .start_queue = hisi_qm_uacce_start_queue, 2524 .stop_queue = hisi_qm_uacce_stop_queue, 2525 .mmap = hisi_qm_uacce_mmap, 2526 .ioctl = hisi_qm_uacce_ioctl, 2527 .is_q_updated = hisi_qm_is_q_updated, 2528 .get_isolate_state = hisi_qm_get_isolate_state, 2529 .isolate_err_threshold_write = hisi_qm_isolate_threshold_write, 2530 .isolate_err_threshold_read = hisi_qm_isolate_threshold_read, 2531 }; 2532 2533 static void qm_remove_uacce(struct hisi_qm *qm) 2534 { 2535 struct uacce_device *uacce = qm->uacce; 2536 2537 if (qm->use_sva) { 2538 qm_hw_err_destroy(qm); 2539 uacce_remove(uacce); 2540 qm->uacce = NULL; 2541 } 2542 } 2543 2544 static int qm_alloc_uacce(struct hisi_qm *qm) 2545 { 2546 struct pci_dev *pdev = qm->pdev; 2547 struct uacce_device *uacce; 2548 unsigned long mmio_page_nr; 2549 unsigned long dus_page_nr; 2550 u16 sq_depth, cq_depth; 2551 struct uacce_interface interface = { 2552 .flags = UACCE_DEV_SVA, 2553 .ops = &uacce_qm_ops, 2554 }; 2555 int ret; 2556 2557 ret = strscpy(interface.name, dev_driver_string(&pdev->dev), 2558 sizeof(interface.name)); 2559 if (ret < 0) 2560 return -ENAMETOOLONG; 2561 2562 uacce = uacce_alloc(&pdev->dev, &interface); 2563 if (IS_ERR(uacce)) 2564 return PTR_ERR(uacce); 2565 2566 if (uacce->flags & UACCE_DEV_SVA) { 2567 qm->use_sva = true; 2568 } else { 2569 /* only consider sva case */ 2570 qm_remove_uacce(qm); 2571 return -EINVAL; 2572 } 2573 2574 uacce->is_vf = pdev->is_virtfn; 2575 uacce->priv = qm; 2576 2577 if (qm->ver == QM_HW_V1) 2578 uacce->api_ver = HISI_QM_API_VER_BASE; 2579 else if (qm->ver == QM_HW_V2) 2580 uacce->api_ver = HISI_QM_API_VER2_BASE; 2581 else 2582 uacce->api_ver = HISI_QM_API_VER3_BASE; 2583 2584 if (qm->ver == QM_HW_V1) 2585 mmio_page_nr = QM_DOORBELL_PAGE_NR; 2586 else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) 2587 mmio_page_nr = QM_DOORBELL_PAGE_NR + 2588 QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE; 2589 else 2590 mmio_page_nr = qm->db_interval / PAGE_SIZE; 2591 2592 qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP); 2593 2594 /* Add one more page for device or qp status */ 2595 dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * sq_depth + 2596 sizeof(struct qm_cqe) * cq_depth + PAGE_SIZE) >> 2597 PAGE_SHIFT; 2598 2599 uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr; 2600 uacce->qf_pg_num[UACCE_QFRT_DUS] = dus_page_nr; 2601 2602 qm->uacce = uacce; 2603 INIT_LIST_HEAD(&qm->isolate_data.qm_hw_errs); 2604 mutex_init(&qm->isolate_data.isolate_lock); 2605 2606 return 0; 2607 } 2608 2609 /** 2610 * qm_frozen() - Try to froze QM to cut continuous queue request. If 2611 * there is user on the QM, return failure without doing anything. 2612 * @qm: The qm needed to be fronzen. 2613 * 2614 * This function frozes QM, then we can do SRIOV disabling. 2615 */ 2616 static int qm_frozen(struct hisi_qm *qm) 2617 { 2618 if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl)) 2619 return 0; 2620 2621 down_write(&qm->qps_lock); 2622 2623 if (!qm->qp_in_used) { 2624 qm->qp_in_used = qm->qp_num; 2625 up_write(&qm->qps_lock); 2626 set_bit(QM_DRIVER_REMOVING, &qm->misc_ctl); 2627 return 0; 2628 } 2629 2630 up_write(&qm->qps_lock); 2631 2632 return -EBUSY; 2633 } 2634 2635 static int qm_try_frozen_vfs(struct pci_dev *pdev, 2636 struct hisi_qm_list *qm_list) 2637 { 2638 struct hisi_qm *qm, *vf_qm; 2639 struct pci_dev *dev; 2640 int ret = 0; 2641 2642 if (!qm_list || !pdev) 2643 return -EINVAL; 2644 2645 /* Try to frozen all the VFs as disable SRIOV */ 2646 mutex_lock(&qm_list->lock); 2647 list_for_each_entry(qm, &qm_list->list, list) { 2648 dev = qm->pdev; 2649 if (dev == pdev) 2650 continue; 2651 if (pci_physfn(dev) == pdev) { 2652 vf_qm = pci_get_drvdata(dev); 2653 ret = qm_frozen(vf_qm); 2654 if (ret) 2655 goto frozen_fail; 2656 } 2657 } 2658 2659 frozen_fail: 2660 mutex_unlock(&qm_list->lock); 2661 2662 return ret; 2663 } 2664 2665 /** 2666 * hisi_qm_wait_task_finish() - Wait until the task is finished 2667 * when removing the driver. 2668 * @qm: The qm needed to wait for the task to finish. 2669 * @qm_list: The list of all available devices. 2670 */ 2671 void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list) 2672 { 2673 while (qm_frozen(qm) || 2674 ((qm->fun_type == QM_HW_PF) && 2675 qm_try_frozen_vfs(qm->pdev, qm_list))) { 2676 msleep(WAIT_PERIOD); 2677 } 2678 2679 while (test_bit(QM_RST_SCHED, &qm->misc_ctl) || 2680 test_bit(QM_RESETTING, &qm->misc_ctl)) 2681 msleep(WAIT_PERIOD); 2682 2683 if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 2684 flush_work(&qm->cmd_process); 2685 2686 udelay(REMOVE_WAIT_DELAY); 2687 } 2688 EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish); 2689 2690 static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num) 2691 { 2692 struct device *dev = &qm->pdev->dev; 2693 struct qm_dma *qdma; 2694 int i; 2695 2696 for (i = num - 1; i >= 0; i--) { 2697 qdma = &qm->qp_array[i].qdma; 2698 dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma); 2699 kfree(qm->poll_data[i].qp_finish_id); 2700 } 2701 2702 kfree(qm->poll_data); 2703 kfree(qm->qp_array); 2704 } 2705 2706 static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id, 2707 u16 sq_depth, u16 cq_depth) 2708 { 2709 struct device *dev = &qm->pdev->dev; 2710 size_t off = qm->sqe_size * sq_depth; 2711 struct hisi_qp *qp; 2712 int ret = -ENOMEM; 2713 2714 qm->poll_data[id].qp_finish_id = kcalloc(qm->qp_num, sizeof(u16), 2715 GFP_KERNEL); 2716 if (!qm->poll_data[id].qp_finish_id) 2717 return -ENOMEM; 2718 2719 qp = &qm->qp_array[id]; 2720 qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma, 2721 GFP_KERNEL); 2722 if (!qp->qdma.va) 2723 goto err_free_qp_finish_id; 2724 2725 qp->sqe = qp->qdma.va; 2726 qp->sqe_dma = qp->qdma.dma; 2727 qp->cqe = qp->qdma.va + off; 2728 qp->cqe_dma = qp->qdma.dma + off; 2729 qp->qdma.size = dma_size; 2730 qp->sq_depth = sq_depth; 2731 qp->cq_depth = cq_depth; 2732 qp->qm = qm; 2733 qp->qp_id = id; 2734 2735 return 0; 2736 2737 err_free_qp_finish_id: 2738 kfree(qm->poll_data[id].qp_finish_id); 2739 return ret; 2740 } 2741 2742 static void hisi_qm_pre_init(struct hisi_qm *qm) 2743 { 2744 struct pci_dev *pdev = qm->pdev; 2745 2746 if (qm->ver == QM_HW_V1) 2747 qm->ops = &qm_hw_ops_v1; 2748 else if (qm->ver == QM_HW_V2) 2749 qm->ops = &qm_hw_ops_v2; 2750 else 2751 qm->ops = &qm_hw_ops_v3; 2752 2753 pci_set_drvdata(pdev, qm); 2754 mutex_init(&qm->mailbox_lock); 2755 init_rwsem(&qm->qps_lock); 2756 qm->qp_in_used = 0; 2757 if (test_bit(QM_SUPPORT_RPM, &qm->caps)) { 2758 if (!acpi_device_power_manageable(ACPI_COMPANION(&pdev->dev))) 2759 dev_info(&pdev->dev, "_PS0 and _PR0 are not defined"); 2760 } 2761 } 2762 2763 static void qm_cmd_uninit(struct hisi_qm *qm) 2764 { 2765 u32 val; 2766 2767 if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 2768 return; 2769 2770 val = readl(qm->io_base + QM_IFC_INT_MASK); 2771 val |= QM_IFC_INT_DISABLE; 2772 writel(val, qm->io_base + QM_IFC_INT_MASK); 2773 } 2774 2775 static void qm_cmd_init(struct hisi_qm *qm) 2776 { 2777 u32 val; 2778 2779 if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 2780 return; 2781 2782 /* Clear communication interrupt source */ 2783 qm_clear_cmd_interrupt(qm, QM_IFC_INT_SOURCE_CLR); 2784 2785 /* Enable pf to vf communication reg. */ 2786 val = readl(qm->io_base + QM_IFC_INT_MASK); 2787 val &= ~QM_IFC_INT_DISABLE; 2788 writel(val, qm->io_base + QM_IFC_INT_MASK); 2789 } 2790 2791 static void qm_put_pci_res(struct hisi_qm *qm) 2792 { 2793 struct pci_dev *pdev = qm->pdev; 2794 2795 if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) 2796 iounmap(qm->db_io_base); 2797 2798 iounmap(qm->io_base); 2799 pci_release_mem_regions(pdev); 2800 } 2801 2802 static void hisi_qm_pci_uninit(struct hisi_qm *qm) 2803 { 2804 struct pci_dev *pdev = qm->pdev; 2805 2806 pci_free_irq_vectors(pdev); 2807 qm_put_pci_res(qm); 2808 pci_disable_device(pdev); 2809 } 2810 2811 static void hisi_qm_set_state(struct hisi_qm *qm, u8 state) 2812 { 2813 if (qm->ver > QM_HW_V2 && qm->fun_type == QM_HW_VF) 2814 writel(state, qm->io_base + QM_VF_STATE); 2815 } 2816 2817 static void hisi_qm_unint_work(struct hisi_qm *qm) 2818 { 2819 destroy_workqueue(qm->wq); 2820 } 2821 2822 static void hisi_qm_free_rsv_buf(struct hisi_qm *qm) 2823 { 2824 struct qm_dma *xqc_dma = &qm->xqc_buf.qcdma; 2825 struct device *dev = &qm->pdev->dev; 2826 2827 dma_free_coherent(dev, xqc_dma->size, xqc_dma->va, xqc_dma->dma); 2828 } 2829 2830 static void hisi_qm_memory_uninit(struct hisi_qm *qm) 2831 { 2832 struct device *dev = &qm->pdev->dev; 2833 2834 hisi_qp_memory_uninit(qm, qm->qp_num); 2835 hisi_qm_free_rsv_buf(qm); 2836 if (qm->qdma.va) { 2837 hisi_qm_cache_wb(qm); 2838 dma_free_coherent(dev, qm->qdma.size, 2839 qm->qdma.va, qm->qdma.dma); 2840 } 2841 2842 idr_destroy(&qm->qp_idr); 2843 2844 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 2845 kfree(qm->factor); 2846 } 2847 2848 /** 2849 * hisi_qm_uninit() - Uninitialize qm. 2850 * @qm: The qm needed uninit. 2851 * 2852 * This function uninits qm related device resources. 2853 */ 2854 void hisi_qm_uninit(struct hisi_qm *qm) 2855 { 2856 qm_cmd_uninit(qm); 2857 hisi_qm_unint_work(qm); 2858 down_write(&qm->qps_lock); 2859 2860 if (!qm_avail_state(qm, QM_CLOSE)) { 2861 up_write(&qm->qps_lock); 2862 return; 2863 } 2864 2865 hisi_qm_memory_uninit(qm); 2866 hisi_qm_set_state(qm, QM_NOT_READY); 2867 up_write(&qm->qps_lock); 2868 2869 qm_irqs_unregister(qm); 2870 hisi_qm_pci_uninit(qm); 2871 if (qm->use_sva) { 2872 uacce_remove(qm->uacce); 2873 qm->uacce = NULL; 2874 } 2875 } 2876 EXPORT_SYMBOL_GPL(hisi_qm_uninit); 2877 2878 /** 2879 * hisi_qm_get_vft() - Get vft from a qm. 2880 * @qm: The qm we want to get its vft. 2881 * @base: The base number of queue in vft. 2882 * @number: The number of queues in vft. 2883 * 2884 * We can allocate multiple queues to a qm by configuring virtual function 2885 * table. We get related configures by this function. Normally, we call this 2886 * function in VF driver to get the queue information. 2887 * 2888 * qm hw v1 does not support this interface. 2889 */ 2890 static int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number) 2891 { 2892 if (!base || !number) 2893 return -EINVAL; 2894 2895 if (!qm->ops->get_vft) { 2896 dev_err(&qm->pdev->dev, "Don't support vft read!\n"); 2897 return -EINVAL; 2898 } 2899 2900 return qm->ops->get_vft(qm, base, number); 2901 } 2902 2903 /** 2904 * hisi_qm_set_vft() - Set vft to a qm. 2905 * @qm: The qm we want to set its vft. 2906 * @fun_num: The function number. 2907 * @base: The base number of queue in vft. 2908 * @number: The number of queues in vft. 2909 * 2910 * This function is alway called in PF driver, it is used to assign queues 2911 * among PF and VFs. 2912 * 2913 * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1) 2914 * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1) 2915 * (VF function number 0x2) 2916 */ 2917 static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base, 2918 u32 number) 2919 { 2920 u32 max_q_num = qm->ctrl_qp_num; 2921 2922 if (base >= max_q_num || number > max_q_num || 2923 (base + number) > max_q_num) 2924 return -EINVAL; 2925 2926 return qm_set_sqc_cqc_vft(qm, fun_num, base, number); 2927 } 2928 2929 static void qm_init_eq_aeq_status(struct hisi_qm *qm) 2930 { 2931 struct hisi_qm_status *status = &qm->status; 2932 2933 status->eq_head = 0; 2934 status->aeq_head = 0; 2935 status->eqc_phase = true; 2936 status->aeqc_phase = true; 2937 } 2938 2939 static void qm_enable_eq_aeq_interrupts(struct hisi_qm *qm) 2940 { 2941 /* Clear eq/aeq interrupt source */ 2942 qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0); 2943 qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0); 2944 2945 writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK); 2946 writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK); 2947 } 2948 2949 static void qm_disable_eq_aeq_interrupts(struct hisi_qm *qm) 2950 { 2951 writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK); 2952 writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK); 2953 } 2954 2955 static int qm_eq_ctx_cfg(struct hisi_qm *qm) 2956 { 2957 struct qm_eqc eqc = {0}; 2958 2959 eqc.base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma)); 2960 eqc.base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma)); 2961 if (qm->ver == QM_HW_V1) 2962 eqc.dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE); 2963 eqc.dw6 = cpu_to_le32(((u32)qm->eq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT)); 2964 2965 return qm_set_and_get_xqc(qm, QM_MB_CMD_EQC, &eqc, 0, 0); 2966 } 2967 2968 static int qm_aeq_ctx_cfg(struct hisi_qm *qm) 2969 { 2970 struct qm_aeqc aeqc = {0}; 2971 2972 aeqc.base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma)); 2973 aeqc.base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma)); 2974 aeqc.dw6 = cpu_to_le32(((u32)qm->aeq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT)); 2975 2976 return qm_set_and_get_xqc(qm, QM_MB_CMD_AEQC, &aeqc, 0, 0); 2977 } 2978 2979 static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm) 2980 { 2981 struct device *dev = &qm->pdev->dev; 2982 int ret; 2983 2984 qm_init_eq_aeq_status(qm); 2985 2986 ret = qm_eq_ctx_cfg(qm); 2987 if (ret) { 2988 dev_err(dev, "Set eqc failed!\n"); 2989 return ret; 2990 } 2991 2992 return qm_aeq_ctx_cfg(qm); 2993 } 2994 2995 static int __hisi_qm_start(struct hisi_qm *qm) 2996 { 2997 int ret; 2998 2999 WARN_ON(!qm->qdma.va); 3000 3001 if (qm->fun_type == QM_HW_PF) { 3002 ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num); 3003 if (ret) 3004 return ret; 3005 } 3006 3007 ret = qm_eq_aeq_ctx_cfg(qm); 3008 if (ret) 3009 return ret; 3010 3011 ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0); 3012 if (ret) 3013 return ret; 3014 3015 ret = hisi_qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0); 3016 if (ret) 3017 return ret; 3018 3019 qm_init_prefetch(qm); 3020 qm_enable_eq_aeq_interrupts(qm); 3021 3022 return 0; 3023 } 3024 3025 /** 3026 * hisi_qm_start() - start qm 3027 * @qm: The qm to be started. 3028 * 3029 * This function starts a qm, then we can allocate qp from this qm. 3030 */ 3031 int hisi_qm_start(struct hisi_qm *qm) 3032 { 3033 struct device *dev = &qm->pdev->dev; 3034 int ret = 0; 3035 3036 down_write(&qm->qps_lock); 3037 3038 if (!qm_avail_state(qm, QM_START)) { 3039 up_write(&qm->qps_lock); 3040 return -EPERM; 3041 } 3042 3043 dev_dbg(dev, "qm start with %u queue pairs\n", qm->qp_num); 3044 3045 if (!qm->qp_num) { 3046 dev_err(dev, "qp_num should not be 0\n"); 3047 ret = -EINVAL; 3048 goto err_unlock; 3049 } 3050 3051 ret = __hisi_qm_start(qm); 3052 if (!ret) 3053 atomic_set(&qm->status.flags, QM_START); 3054 3055 hisi_qm_set_state(qm, QM_READY); 3056 err_unlock: 3057 up_write(&qm->qps_lock); 3058 return ret; 3059 } 3060 EXPORT_SYMBOL_GPL(hisi_qm_start); 3061 3062 static int qm_restart(struct hisi_qm *qm) 3063 { 3064 struct device *dev = &qm->pdev->dev; 3065 struct hisi_qp *qp; 3066 int ret, i; 3067 3068 ret = hisi_qm_start(qm); 3069 if (ret < 0) 3070 return ret; 3071 3072 down_write(&qm->qps_lock); 3073 for (i = 0; i < qm->qp_num; i++) { 3074 qp = &qm->qp_array[i]; 3075 if (atomic_read(&qp->qp_status.flags) == QP_STOP && 3076 qp->is_resetting == true) { 3077 ret = qm_start_qp_nolock(qp, 0); 3078 if (ret < 0) { 3079 dev_err(dev, "Failed to start qp%d!\n", i); 3080 3081 up_write(&qm->qps_lock); 3082 return ret; 3083 } 3084 qp->is_resetting = false; 3085 } 3086 } 3087 up_write(&qm->qps_lock); 3088 3089 return 0; 3090 } 3091 3092 /* Stop started qps in reset flow */ 3093 static int qm_stop_started_qp(struct hisi_qm *qm) 3094 { 3095 struct device *dev = &qm->pdev->dev; 3096 struct hisi_qp *qp; 3097 int i, ret; 3098 3099 for (i = 0; i < qm->qp_num; i++) { 3100 qp = &qm->qp_array[i]; 3101 if (qp && atomic_read(&qp->qp_status.flags) == QP_START) { 3102 qp->is_resetting = true; 3103 ret = qm_stop_qp_nolock(qp); 3104 if (ret < 0) { 3105 dev_err(dev, "Failed to stop qp%d!\n", i); 3106 return ret; 3107 } 3108 } 3109 } 3110 3111 return 0; 3112 } 3113 3114 /** 3115 * qm_clear_queues() - Clear all queues memory in a qm. 3116 * @qm: The qm in which the queues will be cleared. 3117 * 3118 * This function clears all queues memory in a qm. Reset of accelerator can 3119 * use this to clear queues. 3120 */ 3121 static void qm_clear_queues(struct hisi_qm *qm) 3122 { 3123 struct hisi_qp *qp; 3124 int i; 3125 3126 for (i = 0; i < qm->qp_num; i++) { 3127 qp = &qm->qp_array[i]; 3128 if (qp->is_in_kernel && qp->is_resetting) 3129 memset(qp->qdma.va, 0, qp->qdma.size); 3130 } 3131 3132 memset(qm->qdma.va, 0, qm->qdma.size); 3133 } 3134 3135 /** 3136 * hisi_qm_stop() - Stop a qm. 3137 * @qm: The qm which will be stopped. 3138 * @r: The reason to stop qm. 3139 * 3140 * This function stops qm and its qps, then qm can not accept request. 3141 * Related resources are not released at this state, we can use hisi_qm_start 3142 * to let qm start again. 3143 */ 3144 int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r) 3145 { 3146 struct device *dev = &qm->pdev->dev; 3147 int ret = 0; 3148 3149 down_write(&qm->qps_lock); 3150 3151 qm->status.stop_reason = r; 3152 if (!qm_avail_state(qm, QM_STOP)) { 3153 ret = -EPERM; 3154 goto err_unlock; 3155 } 3156 3157 if (qm->status.stop_reason == QM_SOFT_RESET || 3158 qm->status.stop_reason == QM_DOWN) { 3159 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 3160 ret = qm_stop_started_qp(qm); 3161 if (ret < 0) { 3162 dev_err(dev, "Failed to stop started qp!\n"); 3163 goto err_unlock; 3164 } 3165 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 3166 } 3167 3168 qm_disable_eq_aeq_interrupts(qm); 3169 if (qm->fun_type == QM_HW_PF) { 3170 ret = hisi_qm_set_vft(qm, 0, 0, 0); 3171 if (ret < 0) { 3172 dev_err(dev, "Failed to set vft!\n"); 3173 ret = -EBUSY; 3174 goto err_unlock; 3175 } 3176 } 3177 3178 qm_clear_queues(qm); 3179 atomic_set(&qm->status.flags, QM_STOP); 3180 3181 err_unlock: 3182 up_write(&qm->qps_lock); 3183 return ret; 3184 } 3185 EXPORT_SYMBOL_GPL(hisi_qm_stop); 3186 3187 static void qm_hw_error_init(struct hisi_qm *qm) 3188 { 3189 if (!qm->ops->hw_error_init) { 3190 dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n"); 3191 return; 3192 } 3193 3194 qm->ops->hw_error_init(qm); 3195 } 3196 3197 static void qm_hw_error_uninit(struct hisi_qm *qm) 3198 { 3199 if (!qm->ops->hw_error_uninit) { 3200 dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n"); 3201 return; 3202 } 3203 3204 qm->ops->hw_error_uninit(qm); 3205 } 3206 3207 static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm) 3208 { 3209 if (!qm->ops->hw_error_handle) { 3210 dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n"); 3211 return ACC_ERR_NONE; 3212 } 3213 3214 return qm->ops->hw_error_handle(qm); 3215 } 3216 3217 /** 3218 * hisi_qm_dev_err_init() - Initialize device error configuration. 3219 * @qm: The qm for which we want to do error initialization. 3220 * 3221 * Initialize QM and device error related configuration. 3222 */ 3223 void hisi_qm_dev_err_init(struct hisi_qm *qm) 3224 { 3225 if (qm->fun_type == QM_HW_VF) 3226 return; 3227 3228 qm_hw_error_init(qm); 3229 3230 if (!qm->err_ini->hw_err_enable) { 3231 dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n"); 3232 return; 3233 } 3234 qm->err_ini->hw_err_enable(qm); 3235 } 3236 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init); 3237 3238 /** 3239 * hisi_qm_dev_err_uninit() - Uninitialize device error configuration. 3240 * @qm: The qm for which we want to do error uninitialization. 3241 * 3242 * Uninitialize QM and device error related configuration. 3243 */ 3244 void hisi_qm_dev_err_uninit(struct hisi_qm *qm) 3245 { 3246 if (qm->fun_type == QM_HW_VF) 3247 return; 3248 3249 qm_hw_error_uninit(qm); 3250 3251 if (!qm->err_ini->hw_err_disable) { 3252 dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n"); 3253 return; 3254 } 3255 qm->err_ini->hw_err_disable(qm); 3256 } 3257 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit); 3258 3259 /** 3260 * hisi_qm_free_qps() - free multiple queue pairs. 3261 * @qps: The queue pairs need to be freed. 3262 * @qp_num: The num of queue pairs. 3263 */ 3264 void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num) 3265 { 3266 int i; 3267 3268 if (!qps || qp_num <= 0) 3269 return; 3270 3271 for (i = qp_num - 1; i >= 0; i--) 3272 hisi_qm_release_qp(qps[i]); 3273 } 3274 EXPORT_SYMBOL_GPL(hisi_qm_free_qps); 3275 3276 static void free_list(struct list_head *head) 3277 { 3278 struct hisi_qm_resource *res, *tmp; 3279 3280 list_for_each_entry_safe(res, tmp, head, list) { 3281 list_del(&res->list); 3282 kfree(res); 3283 } 3284 } 3285 3286 static int hisi_qm_sort_devices(int node, struct list_head *head, 3287 struct hisi_qm_list *qm_list) 3288 { 3289 struct hisi_qm_resource *res, *tmp; 3290 struct hisi_qm *qm; 3291 struct list_head *n; 3292 struct device *dev; 3293 int dev_node; 3294 3295 list_for_each_entry(qm, &qm_list->list, list) { 3296 dev = &qm->pdev->dev; 3297 3298 dev_node = dev_to_node(dev); 3299 if (dev_node < 0) 3300 dev_node = 0; 3301 3302 res = kzalloc(sizeof(*res), GFP_KERNEL); 3303 if (!res) 3304 return -ENOMEM; 3305 3306 res->qm = qm; 3307 res->distance = node_distance(dev_node, node); 3308 n = head; 3309 list_for_each_entry(tmp, head, list) { 3310 if (res->distance < tmp->distance) { 3311 n = &tmp->list; 3312 break; 3313 } 3314 } 3315 list_add_tail(&res->list, n); 3316 } 3317 3318 return 0; 3319 } 3320 3321 /** 3322 * hisi_qm_alloc_qps_node() - Create multiple queue pairs. 3323 * @qm_list: The list of all available devices. 3324 * @qp_num: The number of queue pairs need created. 3325 * @alg_type: The algorithm type. 3326 * @node: The numa node. 3327 * @qps: The queue pairs need created. 3328 * 3329 * This function will sort all available device according to numa distance. 3330 * Then try to create all queue pairs from one device, if all devices do 3331 * not meet the requirements will return error. 3332 */ 3333 int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num, 3334 u8 alg_type, int node, struct hisi_qp **qps) 3335 { 3336 struct hisi_qm_resource *tmp; 3337 int ret = -ENODEV; 3338 LIST_HEAD(head); 3339 int i; 3340 3341 if (!qps || !qm_list || qp_num <= 0) 3342 return -EINVAL; 3343 3344 mutex_lock(&qm_list->lock); 3345 if (hisi_qm_sort_devices(node, &head, qm_list)) { 3346 mutex_unlock(&qm_list->lock); 3347 goto err; 3348 } 3349 3350 list_for_each_entry(tmp, &head, list) { 3351 for (i = 0; i < qp_num; i++) { 3352 qps[i] = hisi_qm_create_qp(tmp->qm, alg_type); 3353 if (IS_ERR(qps[i])) { 3354 hisi_qm_free_qps(qps, i); 3355 break; 3356 } 3357 } 3358 3359 if (i == qp_num) { 3360 ret = 0; 3361 break; 3362 } 3363 } 3364 3365 mutex_unlock(&qm_list->lock); 3366 if (ret) 3367 pr_info("Failed to create qps, node[%d], alg[%u], qp[%d]!\n", 3368 node, alg_type, qp_num); 3369 3370 err: 3371 free_list(&head); 3372 return ret; 3373 } 3374 EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node); 3375 3376 static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs) 3377 { 3378 u32 remain_q_num, vfs_q_num, act_q_num, q_num, i, j; 3379 u32 max_qp_num = qm->max_qp_num; 3380 u32 q_base = qm->qp_num; 3381 int ret; 3382 3383 if (!num_vfs) 3384 return -EINVAL; 3385 3386 vfs_q_num = qm->ctrl_qp_num - qm->qp_num; 3387 3388 /* If vfs_q_num is less than num_vfs, return error. */ 3389 if (vfs_q_num < num_vfs) 3390 return -EINVAL; 3391 3392 q_num = vfs_q_num / num_vfs; 3393 remain_q_num = vfs_q_num % num_vfs; 3394 3395 for (i = num_vfs; i > 0; i--) { 3396 /* 3397 * if q_num + remain_q_num > max_qp_num in last vf, divide the 3398 * remaining queues equally. 3399 */ 3400 if (i == num_vfs && q_num + remain_q_num <= max_qp_num) { 3401 act_q_num = q_num + remain_q_num; 3402 remain_q_num = 0; 3403 } else if (remain_q_num > 0) { 3404 act_q_num = q_num + 1; 3405 remain_q_num--; 3406 } else { 3407 act_q_num = q_num; 3408 } 3409 3410 act_q_num = min(act_q_num, max_qp_num); 3411 ret = hisi_qm_set_vft(qm, i, q_base, act_q_num); 3412 if (ret) { 3413 for (j = num_vfs; j > i; j--) 3414 hisi_qm_set_vft(qm, j, 0, 0); 3415 return ret; 3416 } 3417 q_base += act_q_num; 3418 } 3419 3420 return 0; 3421 } 3422 3423 static int qm_clear_vft_config(struct hisi_qm *qm) 3424 { 3425 int ret; 3426 u32 i; 3427 3428 for (i = 1; i <= qm->vfs_num; i++) { 3429 ret = hisi_qm_set_vft(qm, i, 0, 0); 3430 if (ret) 3431 return ret; 3432 } 3433 qm->vfs_num = 0; 3434 3435 return 0; 3436 } 3437 3438 static int qm_func_shaper_enable(struct hisi_qm *qm, u32 fun_index, u32 qos) 3439 { 3440 struct device *dev = &qm->pdev->dev; 3441 u32 ir = qos * QM_QOS_RATE; 3442 int ret, total_vfs, i; 3443 3444 total_vfs = pci_sriov_get_totalvfs(qm->pdev); 3445 if (fun_index > total_vfs) 3446 return -EINVAL; 3447 3448 qm->factor[fun_index].func_qos = qos; 3449 3450 ret = qm_get_shaper_para(ir, &qm->factor[fun_index]); 3451 if (ret) { 3452 dev_err(dev, "failed to calculate shaper parameter!\n"); 3453 return -EINVAL; 3454 } 3455 3456 for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) { 3457 /* The base number of queue reuse for different alg type */ 3458 ret = qm_set_vft_common(qm, SHAPER_VFT, fun_index, i, 1); 3459 if (ret) { 3460 dev_err(dev, "type: %d, failed to set shaper vft!\n", i); 3461 return -EINVAL; 3462 } 3463 } 3464 3465 return 0; 3466 } 3467 3468 static u32 qm_get_shaper_vft_qos(struct hisi_qm *qm, u32 fun_index) 3469 { 3470 u64 cir_u = 0, cir_b = 0, cir_s = 0; 3471 u64 shaper_vft, ir_calc, ir; 3472 unsigned int val; 3473 u32 error_rate; 3474 int ret; 3475 3476 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 3477 val & BIT(0), POLL_PERIOD, 3478 POLL_TIMEOUT); 3479 if (ret) 3480 return 0; 3481 3482 writel(0x1, qm->io_base + QM_VFT_CFG_OP_WR); 3483 writel(SHAPER_VFT, qm->io_base + QM_VFT_CFG_TYPE); 3484 writel(fun_index, qm->io_base + QM_VFT_CFG); 3485 3486 writel(0x0, qm->io_base + QM_VFT_CFG_RDY); 3487 writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE); 3488 3489 ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val, 3490 val & BIT(0), POLL_PERIOD, 3491 POLL_TIMEOUT); 3492 if (ret) 3493 return 0; 3494 3495 shaper_vft = readl(qm->io_base + QM_VFT_CFG_DATA_L) | 3496 ((u64)readl(qm->io_base + QM_VFT_CFG_DATA_H) << 32); 3497 3498 cir_b = shaper_vft & QM_SHAPER_CIR_B_MASK; 3499 cir_u = shaper_vft & QM_SHAPER_CIR_U_MASK; 3500 cir_u = cir_u >> QM_SHAPER_FACTOR_CIR_U_SHIFT; 3501 3502 cir_s = shaper_vft & QM_SHAPER_CIR_S_MASK; 3503 cir_s = cir_s >> QM_SHAPER_FACTOR_CIR_S_SHIFT; 3504 3505 ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s); 3506 3507 ir = qm->factor[fun_index].func_qos * QM_QOS_RATE; 3508 3509 error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir; 3510 if (error_rate > QM_QOS_MIN_ERROR_RATE) { 3511 pci_err(qm->pdev, "error_rate: %u, get function qos is error!\n", error_rate); 3512 return 0; 3513 } 3514 3515 return ir; 3516 } 3517 3518 static void qm_vf_get_qos(struct hisi_qm *qm, u32 fun_num) 3519 { 3520 struct device *dev = &qm->pdev->dev; 3521 u64 mb_cmd; 3522 u32 qos; 3523 int ret; 3524 3525 qos = qm_get_shaper_vft_qos(qm, fun_num); 3526 if (!qos) { 3527 dev_err(dev, "function(%u) failed to get qos by PF!\n", fun_num); 3528 return; 3529 } 3530 3531 mb_cmd = QM_PF_SET_QOS | (u64)qos << QM_MB_CMD_DATA_SHIFT; 3532 ret = qm_ping_single_vf(qm, mb_cmd, fun_num); 3533 if (ret) 3534 dev_err(dev, "failed to send cmd to VF(%u)!\n", fun_num); 3535 } 3536 3537 static int qm_vf_read_qos(struct hisi_qm *qm) 3538 { 3539 int cnt = 0; 3540 int ret = -EINVAL; 3541 3542 /* reset mailbox qos val */ 3543 qm->mb_qos = 0; 3544 3545 /* vf ping pf to get function qos */ 3546 ret = qm_ping_pf(qm, QM_VF_GET_QOS); 3547 if (ret) { 3548 pci_err(qm->pdev, "failed to send cmd to PF to get qos!\n"); 3549 return ret; 3550 } 3551 3552 while (true) { 3553 msleep(QM_WAIT_DST_ACK); 3554 if (qm->mb_qos) 3555 break; 3556 3557 if (++cnt > QM_MAX_VF_WAIT_COUNT) { 3558 pci_err(qm->pdev, "PF ping VF timeout!\n"); 3559 return -ETIMEDOUT; 3560 } 3561 } 3562 3563 return ret; 3564 } 3565 3566 static ssize_t qm_algqos_read(struct file *filp, char __user *buf, 3567 size_t count, loff_t *pos) 3568 { 3569 struct hisi_qm *qm = filp->private_data; 3570 char tbuf[QM_DBG_READ_LEN]; 3571 u32 qos_val, ir; 3572 int ret; 3573 3574 ret = hisi_qm_get_dfx_access(qm); 3575 if (ret) 3576 return ret; 3577 3578 /* Mailbox and reset cannot be operated at the same time */ 3579 if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 3580 pci_err(qm->pdev, "dev resetting, read alg qos failed!\n"); 3581 ret = -EAGAIN; 3582 goto err_put_dfx_access; 3583 } 3584 3585 if (qm->fun_type == QM_HW_PF) { 3586 ir = qm_get_shaper_vft_qos(qm, 0); 3587 } else { 3588 ret = qm_vf_read_qos(qm); 3589 if (ret) 3590 goto err_get_status; 3591 ir = qm->mb_qos; 3592 } 3593 3594 qos_val = ir / QM_QOS_RATE; 3595 ret = scnprintf(tbuf, QM_DBG_READ_LEN, "%u\n", qos_val); 3596 3597 ret = simple_read_from_buffer(buf, count, pos, tbuf, ret); 3598 3599 err_get_status: 3600 clear_bit(QM_RESETTING, &qm->misc_ctl); 3601 err_put_dfx_access: 3602 hisi_qm_put_dfx_access(qm); 3603 return ret; 3604 } 3605 3606 static ssize_t qm_get_qos_value(struct hisi_qm *qm, const char *buf, 3607 unsigned long *val, 3608 unsigned int *fun_index) 3609 { 3610 const struct bus_type *bus_type = qm->pdev->dev.bus; 3611 char tbuf_bdf[QM_DBG_READ_LEN] = {0}; 3612 char val_buf[QM_DBG_READ_LEN] = {0}; 3613 struct pci_dev *pdev; 3614 struct device *dev; 3615 int ret; 3616 3617 ret = sscanf(buf, "%s %s", tbuf_bdf, val_buf); 3618 if (ret != QM_QOS_PARAM_NUM) 3619 return -EINVAL; 3620 3621 ret = kstrtoul(val_buf, 10, val); 3622 if (ret || *val == 0 || *val > QM_QOS_MAX_VAL) { 3623 pci_err(qm->pdev, "input qos value is error, please set 1~1000!\n"); 3624 return -EINVAL; 3625 } 3626 3627 dev = bus_find_device_by_name(bus_type, NULL, tbuf_bdf); 3628 if (!dev) { 3629 pci_err(qm->pdev, "input pci bdf number is error!\n"); 3630 return -ENODEV; 3631 } 3632 3633 pdev = container_of(dev, struct pci_dev, dev); 3634 3635 *fun_index = pdev->devfn; 3636 3637 return 0; 3638 } 3639 3640 static ssize_t qm_algqos_write(struct file *filp, const char __user *buf, 3641 size_t count, loff_t *pos) 3642 { 3643 struct hisi_qm *qm = filp->private_data; 3644 char tbuf[QM_DBG_READ_LEN]; 3645 unsigned int fun_index; 3646 unsigned long val; 3647 int len, ret; 3648 3649 if (*pos != 0) 3650 return 0; 3651 3652 if (count >= QM_DBG_READ_LEN) 3653 return -ENOSPC; 3654 3655 len = simple_write_to_buffer(tbuf, QM_DBG_READ_LEN - 1, pos, buf, count); 3656 if (len < 0) 3657 return len; 3658 3659 tbuf[len] = '\0'; 3660 ret = qm_get_qos_value(qm, tbuf, &val, &fun_index); 3661 if (ret) 3662 return ret; 3663 3664 /* Mailbox and reset cannot be operated at the same time */ 3665 if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) { 3666 pci_err(qm->pdev, "dev resetting, write alg qos failed!\n"); 3667 return -EAGAIN; 3668 } 3669 3670 ret = qm_pm_get_sync(qm); 3671 if (ret) { 3672 ret = -EINVAL; 3673 goto err_get_status; 3674 } 3675 3676 ret = qm_func_shaper_enable(qm, fun_index, val); 3677 if (ret) { 3678 pci_err(qm->pdev, "failed to enable function shaper!\n"); 3679 ret = -EINVAL; 3680 goto err_put_sync; 3681 } 3682 3683 pci_info(qm->pdev, "the qos value of function%u is set to %lu.\n", 3684 fun_index, val); 3685 ret = count; 3686 3687 err_put_sync: 3688 qm_pm_put_sync(qm); 3689 err_get_status: 3690 clear_bit(QM_RESETTING, &qm->misc_ctl); 3691 return ret; 3692 } 3693 3694 static const struct file_operations qm_algqos_fops = { 3695 .owner = THIS_MODULE, 3696 .open = simple_open, 3697 .read = qm_algqos_read, 3698 .write = qm_algqos_write, 3699 }; 3700 3701 /** 3702 * hisi_qm_set_algqos_init() - Initialize function qos debugfs files. 3703 * @qm: The qm for which we want to add debugfs files. 3704 * 3705 * Create function qos debugfs files, VF ping PF to get function qos. 3706 */ 3707 void hisi_qm_set_algqos_init(struct hisi_qm *qm) 3708 { 3709 if (qm->fun_type == QM_HW_PF) 3710 debugfs_create_file("alg_qos", 0644, qm->debug.debug_root, 3711 qm, &qm_algqos_fops); 3712 else if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) 3713 debugfs_create_file("alg_qos", 0444, qm->debug.debug_root, 3714 qm, &qm_algqos_fops); 3715 } 3716 3717 static void hisi_qm_init_vf_qos(struct hisi_qm *qm, int total_func) 3718 { 3719 int i; 3720 3721 for (i = 1; i <= total_func; i++) 3722 qm->factor[i].func_qos = QM_QOS_MAX_VAL; 3723 } 3724 3725 /** 3726 * hisi_qm_sriov_enable() - enable virtual functions 3727 * @pdev: the PCIe device 3728 * @max_vfs: the number of virtual functions to enable 3729 * 3730 * Returns the number of enabled VFs. If there are VFs enabled already or 3731 * max_vfs is more than the total number of device can be enabled, returns 3732 * failure. 3733 */ 3734 int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs) 3735 { 3736 struct hisi_qm *qm = pci_get_drvdata(pdev); 3737 int pre_existing_vfs, num_vfs, total_vfs, ret; 3738 3739 ret = qm_pm_get_sync(qm); 3740 if (ret) 3741 return ret; 3742 3743 total_vfs = pci_sriov_get_totalvfs(pdev); 3744 pre_existing_vfs = pci_num_vf(pdev); 3745 if (pre_existing_vfs) { 3746 pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n", 3747 pre_existing_vfs); 3748 goto err_put_sync; 3749 } 3750 3751 if (max_vfs > total_vfs) { 3752 pci_err(pdev, "%d VFs is more than total VFs %d!\n", max_vfs, total_vfs); 3753 ret = -ERANGE; 3754 goto err_put_sync; 3755 } 3756 3757 num_vfs = max_vfs; 3758 3759 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 3760 hisi_qm_init_vf_qos(qm, num_vfs); 3761 3762 ret = qm_vf_q_assign(qm, num_vfs); 3763 if (ret) { 3764 pci_err(pdev, "Can't assign queues for VF!\n"); 3765 goto err_put_sync; 3766 } 3767 3768 qm->vfs_num = num_vfs; 3769 3770 ret = pci_enable_sriov(pdev, num_vfs); 3771 if (ret) { 3772 pci_err(pdev, "Can't enable VF!\n"); 3773 qm_clear_vft_config(qm); 3774 goto err_put_sync; 3775 } 3776 3777 pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs); 3778 3779 return num_vfs; 3780 3781 err_put_sync: 3782 qm_pm_put_sync(qm); 3783 return ret; 3784 } 3785 EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable); 3786 3787 /** 3788 * hisi_qm_sriov_disable - disable virtual functions 3789 * @pdev: the PCI device. 3790 * @is_frozen: true when all the VFs are frozen. 3791 * 3792 * Return failure if there are VFs assigned already or VF is in used. 3793 */ 3794 int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen) 3795 { 3796 struct hisi_qm *qm = pci_get_drvdata(pdev); 3797 int ret; 3798 3799 if (pci_vfs_assigned(pdev)) { 3800 pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n"); 3801 return -EPERM; 3802 } 3803 3804 /* While VF is in used, SRIOV cannot be disabled. */ 3805 if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) { 3806 pci_err(pdev, "Task is using its VF!\n"); 3807 return -EBUSY; 3808 } 3809 3810 pci_disable_sriov(pdev); 3811 3812 ret = qm_clear_vft_config(qm); 3813 if (ret) 3814 return ret; 3815 3816 qm_pm_put_sync(qm); 3817 3818 return 0; 3819 } 3820 EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable); 3821 3822 /** 3823 * hisi_qm_sriov_configure - configure the number of VFs 3824 * @pdev: The PCI device 3825 * @num_vfs: The number of VFs need enabled 3826 * 3827 * Enable SR-IOV according to num_vfs, 0 means disable. 3828 */ 3829 int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs) 3830 { 3831 if (num_vfs == 0) 3832 return hisi_qm_sriov_disable(pdev, false); 3833 else 3834 return hisi_qm_sriov_enable(pdev, num_vfs); 3835 } 3836 EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure); 3837 3838 static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm) 3839 { 3840 u32 err_sts; 3841 3842 if (!qm->err_ini->get_dev_hw_err_status) { 3843 dev_err(&qm->pdev->dev, "Device doesn't support get hw error status!\n"); 3844 return ACC_ERR_NONE; 3845 } 3846 3847 /* get device hardware error status */ 3848 err_sts = qm->err_ini->get_dev_hw_err_status(qm); 3849 if (err_sts) { 3850 if (err_sts & qm->err_info.ecc_2bits_mask) 3851 qm->err_status.is_dev_ecc_mbit = true; 3852 3853 if (qm->err_ini->log_dev_hw_err) 3854 qm->err_ini->log_dev_hw_err(qm, err_sts); 3855 3856 if (err_sts & qm->err_info.dev_reset_mask) 3857 return ACC_ERR_NEED_RESET; 3858 3859 if (qm->err_ini->clear_dev_hw_err_status) 3860 qm->err_ini->clear_dev_hw_err_status(qm, err_sts); 3861 } 3862 3863 return ACC_ERR_RECOVERED; 3864 } 3865 3866 static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm) 3867 { 3868 enum acc_err_result qm_ret, dev_ret; 3869 3870 /* log qm error */ 3871 qm_ret = qm_hw_error_handle(qm); 3872 3873 /* log device error */ 3874 dev_ret = qm_dev_err_handle(qm); 3875 3876 return (qm_ret == ACC_ERR_NEED_RESET || 3877 dev_ret == ACC_ERR_NEED_RESET) ? 3878 ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED; 3879 } 3880 3881 /** 3882 * hisi_qm_dev_err_detected() - Get device and qm error status then log it. 3883 * @pdev: The PCI device which need report error. 3884 * @state: The connectivity between CPU and device. 3885 * 3886 * We register this function into PCIe AER handlers, It will report device or 3887 * qm hardware error status when error occur. 3888 */ 3889 pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev, 3890 pci_channel_state_t state) 3891 { 3892 struct hisi_qm *qm = pci_get_drvdata(pdev); 3893 enum acc_err_result ret; 3894 3895 if (pdev->is_virtfn) 3896 return PCI_ERS_RESULT_NONE; 3897 3898 pci_info(pdev, "PCI error detected, state(=%u)!!\n", state); 3899 if (state == pci_channel_io_perm_failure) 3900 return PCI_ERS_RESULT_DISCONNECT; 3901 3902 ret = qm_process_dev_error(qm); 3903 if (ret == ACC_ERR_NEED_RESET) 3904 return PCI_ERS_RESULT_NEED_RESET; 3905 3906 return PCI_ERS_RESULT_RECOVERED; 3907 } 3908 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected); 3909 3910 static int qm_check_req_recv(struct hisi_qm *qm) 3911 { 3912 struct pci_dev *pdev = qm->pdev; 3913 int ret; 3914 u32 val; 3915 3916 if (qm->ver >= QM_HW_V3) 3917 return 0; 3918 3919 writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID); 3920 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val, 3921 (val == ACC_VENDOR_ID_VALUE), 3922 POLL_PERIOD, POLL_TIMEOUT); 3923 if (ret) { 3924 dev_err(&pdev->dev, "Fails to read QM reg!\n"); 3925 return ret; 3926 } 3927 3928 writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID); 3929 ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val, 3930 (val == PCI_VENDOR_ID_HUAWEI), 3931 POLL_PERIOD, POLL_TIMEOUT); 3932 if (ret) 3933 dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n"); 3934 3935 return ret; 3936 } 3937 3938 static int qm_set_pf_mse(struct hisi_qm *qm, bool set) 3939 { 3940 struct pci_dev *pdev = qm->pdev; 3941 u16 cmd; 3942 int i; 3943 3944 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 3945 if (set) 3946 cmd |= PCI_COMMAND_MEMORY; 3947 else 3948 cmd &= ~PCI_COMMAND_MEMORY; 3949 3950 pci_write_config_word(pdev, PCI_COMMAND, cmd); 3951 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 3952 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 3953 if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1)) 3954 return 0; 3955 3956 udelay(1); 3957 } 3958 3959 return -ETIMEDOUT; 3960 } 3961 3962 static int qm_set_vf_mse(struct hisi_qm *qm, bool set) 3963 { 3964 struct pci_dev *pdev = qm->pdev; 3965 u16 sriov_ctrl; 3966 int pos; 3967 int i; 3968 3969 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); 3970 pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl); 3971 if (set) 3972 sriov_ctrl |= PCI_SRIOV_CTRL_MSE; 3973 else 3974 sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE; 3975 pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl); 3976 3977 for (i = 0; i < MAX_WAIT_COUNTS; i++) { 3978 pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl); 3979 if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >> 3980 ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT) 3981 return 0; 3982 3983 udelay(1); 3984 } 3985 3986 return -ETIMEDOUT; 3987 } 3988 3989 static int qm_vf_reset_prepare(struct hisi_qm *qm, 3990 enum qm_stop_reason stop_reason) 3991 { 3992 struct hisi_qm_list *qm_list = qm->qm_list; 3993 struct pci_dev *pdev = qm->pdev; 3994 struct pci_dev *virtfn; 3995 struct hisi_qm *vf_qm; 3996 int ret = 0; 3997 3998 mutex_lock(&qm_list->lock); 3999 list_for_each_entry(vf_qm, &qm_list->list, list) { 4000 virtfn = vf_qm->pdev; 4001 if (virtfn == pdev) 4002 continue; 4003 4004 if (pci_physfn(virtfn) == pdev) { 4005 /* save VFs PCIE BAR configuration */ 4006 pci_save_state(virtfn); 4007 4008 ret = hisi_qm_stop(vf_qm, stop_reason); 4009 if (ret) 4010 goto stop_fail; 4011 } 4012 } 4013 4014 stop_fail: 4015 mutex_unlock(&qm_list->lock); 4016 return ret; 4017 } 4018 4019 static int qm_try_stop_vfs(struct hisi_qm *qm, u64 cmd, 4020 enum qm_stop_reason stop_reason) 4021 { 4022 struct pci_dev *pdev = qm->pdev; 4023 int ret; 4024 4025 if (!qm->vfs_num) 4026 return 0; 4027 4028 /* Kunpeng930 supports to notify VFs to stop before PF reset */ 4029 if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) { 4030 ret = qm_ping_all_vfs(qm, cmd); 4031 if (ret) 4032 pci_err(pdev, "failed to send cmd to all VFs before PF reset!\n"); 4033 } else { 4034 ret = qm_vf_reset_prepare(qm, stop_reason); 4035 if (ret) 4036 pci_err(pdev, "failed to prepare reset, ret = %d.\n", ret); 4037 } 4038 4039 return ret; 4040 } 4041 4042 static int qm_controller_reset_prepare(struct hisi_qm *qm) 4043 { 4044 struct pci_dev *pdev = qm->pdev; 4045 int ret; 4046 4047 ret = qm_reset_prepare_ready(qm); 4048 if (ret) { 4049 pci_err(pdev, "Controller reset not ready!\n"); 4050 return ret; 4051 } 4052 4053 /* PF obtains the information of VF by querying the register. */ 4054 qm_cmd_uninit(qm); 4055 4056 /* Whether VFs stop successfully, soft reset will continue. */ 4057 ret = qm_try_stop_vfs(qm, QM_PF_SRST_PREPARE, QM_SOFT_RESET); 4058 if (ret) 4059 pci_err(pdev, "failed to stop vfs by pf in soft reset.\n"); 4060 4061 ret = hisi_qm_stop(qm, QM_SOFT_RESET); 4062 if (ret) { 4063 pci_err(pdev, "Fails to stop QM!\n"); 4064 qm_reset_bit_clear(qm); 4065 return ret; 4066 } 4067 4068 if (qm->use_sva) { 4069 ret = qm_hw_err_isolate(qm); 4070 if (ret) 4071 pci_err(pdev, "failed to isolate hw err!\n"); 4072 } 4073 4074 ret = qm_wait_vf_prepare_finish(qm); 4075 if (ret) 4076 pci_err(pdev, "failed to stop by vfs in soft reset!\n"); 4077 4078 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 4079 4080 return 0; 4081 } 4082 4083 static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm) 4084 { 4085 u32 nfe_enb = 0; 4086 4087 /* Kunpeng930 hardware automatically close master ooo when NFE occurs */ 4088 if (qm->ver >= QM_HW_V3) 4089 return; 4090 4091 if (!qm->err_status.is_dev_ecc_mbit && 4092 qm->err_status.is_qm_ecc_mbit && 4093 qm->err_ini->close_axi_master_ooo) { 4094 qm->err_ini->close_axi_master_ooo(qm); 4095 } else if (qm->err_status.is_dev_ecc_mbit && 4096 !qm->err_status.is_qm_ecc_mbit && 4097 !qm->err_ini->close_axi_master_ooo) { 4098 nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE); 4099 writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE, 4100 qm->io_base + QM_RAS_NFE_ENABLE); 4101 writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET); 4102 } 4103 } 4104 4105 static int qm_soft_reset(struct hisi_qm *qm) 4106 { 4107 struct pci_dev *pdev = qm->pdev; 4108 int ret; 4109 u32 val; 4110 4111 /* Ensure all doorbells and mailboxes received by QM */ 4112 ret = qm_check_req_recv(qm); 4113 if (ret) 4114 return ret; 4115 4116 if (qm->vfs_num) { 4117 ret = qm_set_vf_mse(qm, false); 4118 if (ret) { 4119 pci_err(pdev, "Fails to disable vf MSE bit.\n"); 4120 return ret; 4121 } 4122 } 4123 4124 ret = qm->ops->set_msi(qm, false); 4125 if (ret) { 4126 pci_err(pdev, "Fails to disable PEH MSI bit.\n"); 4127 return ret; 4128 } 4129 4130 qm_dev_ecc_mbit_handle(qm); 4131 4132 /* OOO register set and check */ 4133 writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN, 4134 qm->io_base + ACC_MASTER_GLOBAL_CTRL); 4135 4136 /* If bus lock, reset chip */ 4137 ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN, 4138 val, 4139 (val == ACC_MASTER_TRANS_RETURN_RW), 4140 POLL_PERIOD, POLL_TIMEOUT); 4141 if (ret) { 4142 pci_emerg(pdev, "Bus lock! Please reset system.\n"); 4143 return ret; 4144 } 4145 4146 if (qm->err_ini->close_sva_prefetch) 4147 qm->err_ini->close_sva_prefetch(qm); 4148 4149 ret = qm_set_pf_mse(qm, false); 4150 if (ret) { 4151 pci_err(pdev, "Fails to disable pf MSE bit.\n"); 4152 return ret; 4153 } 4154 4155 /* The reset related sub-control registers are not in PCI BAR */ 4156 if (ACPI_HANDLE(&pdev->dev)) { 4157 unsigned long long value = 0; 4158 acpi_status s; 4159 4160 s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev), 4161 qm->err_info.acpi_rst, 4162 NULL, &value); 4163 if (ACPI_FAILURE(s)) { 4164 pci_err(pdev, "NO controller reset method!\n"); 4165 return -EIO; 4166 } 4167 4168 if (value) { 4169 pci_err(pdev, "Reset step %llu failed!\n", value); 4170 return -EIO; 4171 } 4172 } else { 4173 pci_err(pdev, "No reset method!\n"); 4174 return -EINVAL; 4175 } 4176 4177 return 0; 4178 } 4179 4180 static int qm_vf_reset_done(struct hisi_qm *qm) 4181 { 4182 struct hisi_qm_list *qm_list = qm->qm_list; 4183 struct pci_dev *pdev = qm->pdev; 4184 struct pci_dev *virtfn; 4185 struct hisi_qm *vf_qm; 4186 int ret = 0; 4187 4188 mutex_lock(&qm_list->lock); 4189 list_for_each_entry(vf_qm, &qm_list->list, list) { 4190 virtfn = vf_qm->pdev; 4191 if (virtfn == pdev) 4192 continue; 4193 4194 if (pci_physfn(virtfn) == pdev) { 4195 /* enable VFs PCIE BAR configuration */ 4196 pci_restore_state(virtfn); 4197 4198 ret = qm_restart(vf_qm); 4199 if (ret) 4200 goto restart_fail; 4201 } 4202 } 4203 4204 restart_fail: 4205 mutex_unlock(&qm_list->lock); 4206 return ret; 4207 } 4208 4209 static int qm_try_start_vfs(struct hisi_qm *qm, enum qm_mb_cmd cmd) 4210 { 4211 struct pci_dev *pdev = qm->pdev; 4212 int ret; 4213 4214 if (!qm->vfs_num) 4215 return 0; 4216 4217 ret = qm_vf_q_assign(qm, qm->vfs_num); 4218 if (ret) { 4219 pci_err(pdev, "failed to assign VFs, ret = %d.\n", ret); 4220 return ret; 4221 } 4222 4223 /* Kunpeng930 supports to notify VFs to start after PF reset. */ 4224 if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) { 4225 ret = qm_ping_all_vfs(qm, cmd); 4226 if (ret) 4227 pci_warn(pdev, "failed to send cmd to all VFs after PF reset!\n"); 4228 } else { 4229 ret = qm_vf_reset_done(qm); 4230 if (ret) 4231 pci_warn(pdev, "failed to start vfs, ret = %d.\n", ret); 4232 } 4233 4234 return ret; 4235 } 4236 4237 static int qm_dev_hw_init(struct hisi_qm *qm) 4238 { 4239 return qm->err_ini->hw_init(qm); 4240 } 4241 4242 static void qm_restart_prepare(struct hisi_qm *qm) 4243 { 4244 u32 value; 4245 4246 if (qm->err_ini->open_sva_prefetch) 4247 qm->err_ini->open_sva_prefetch(qm); 4248 4249 if (qm->ver >= QM_HW_V3) 4250 return; 4251 4252 if (!qm->err_status.is_qm_ecc_mbit && 4253 !qm->err_status.is_dev_ecc_mbit) 4254 return; 4255 4256 /* temporarily close the OOO port used for PEH to write out MSI */ 4257 value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4258 writel(value & ~qm->err_info.msi_wr_port, 4259 qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4260 4261 /* clear dev ecc 2bit error source if having */ 4262 value = qm_get_dev_err_status(qm) & qm->err_info.ecc_2bits_mask; 4263 if (value && qm->err_ini->clear_dev_hw_err_status) 4264 qm->err_ini->clear_dev_hw_err_status(qm, value); 4265 4266 /* clear QM ecc mbit error source */ 4267 writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE); 4268 4269 /* clear AM Reorder Buffer ecc mbit source */ 4270 writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS); 4271 } 4272 4273 static void qm_restart_done(struct hisi_qm *qm) 4274 { 4275 u32 value; 4276 4277 if (qm->ver >= QM_HW_V3) 4278 goto clear_flags; 4279 4280 if (!qm->err_status.is_qm_ecc_mbit && 4281 !qm->err_status.is_dev_ecc_mbit) 4282 return; 4283 4284 /* open the OOO port for PEH to write out MSI */ 4285 value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4286 value |= qm->err_info.msi_wr_port; 4287 writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN); 4288 4289 clear_flags: 4290 qm->err_status.is_qm_ecc_mbit = false; 4291 qm->err_status.is_dev_ecc_mbit = false; 4292 } 4293 4294 static int qm_controller_reset_done(struct hisi_qm *qm) 4295 { 4296 struct pci_dev *pdev = qm->pdev; 4297 int ret; 4298 4299 ret = qm->ops->set_msi(qm, true); 4300 if (ret) { 4301 pci_err(pdev, "Fails to enable PEH MSI bit!\n"); 4302 return ret; 4303 } 4304 4305 ret = qm_set_pf_mse(qm, true); 4306 if (ret) { 4307 pci_err(pdev, "Fails to enable pf MSE bit!\n"); 4308 return ret; 4309 } 4310 4311 if (qm->vfs_num) { 4312 ret = qm_set_vf_mse(qm, true); 4313 if (ret) { 4314 pci_err(pdev, "Fails to enable vf MSE bit!\n"); 4315 return ret; 4316 } 4317 } 4318 4319 ret = qm_dev_hw_init(qm); 4320 if (ret) { 4321 pci_err(pdev, "Failed to init device\n"); 4322 return ret; 4323 } 4324 4325 qm_restart_prepare(qm); 4326 hisi_qm_dev_err_init(qm); 4327 if (qm->err_ini->open_axi_master_ooo) 4328 qm->err_ini->open_axi_master_ooo(qm); 4329 4330 ret = qm_dev_mem_reset(qm); 4331 if (ret) { 4332 pci_err(pdev, "failed to reset device memory\n"); 4333 return ret; 4334 } 4335 4336 ret = qm_restart(qm); 4337 if (ret) { 4338 pci_err(pdev, "Failed to start QM!\n"); 4339 return ret; 4340 } 4341 4342 ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE); 4343 if (ret) 4344 pci_err(pdev, "failed to start vfs by pf in soft reset.\n"); 4345 4346 ret = qm_wait_vf_prepare_finish(qm); 4347 if (ret) 4348 pci_err(pdev, "failed to start by vfs in soft reset!\n"); 4349 4350 qm_cmd_init(qm); 4351 qm_restart_done(qm); 4352 4353 qm_reset_bit_clear(qm); 4354 4355 return 0; 4356 } 4357 4358 static int qm_controller_reset(struct hisi_qm *qm) 4359 { 4360 struct pci_dev *pdev = qm->pdev; 4361 int ret; 4362 4363 pci_info(pdev, "Controller resetting...\n"); 4364 4365 ret = qm_controller_reset_prepare(qm); 4366 if (ret) { 4367 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 4368 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 4369 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 4370 return ret; 4371 } 4372 4373 hisi_qm_show_last_dfx_regs(qm); 4374 if (qm->err_ini->show_last_dfx_regs) 4375 qm->err_ini->show_last_dfx_regs(qm); 4376 4377 ret = qm_soft_reset(qm); 4378 if (ret) 4379 goto err_reset; 4380 4381 ret = qm_controller_reset_done(qm); 4382 if (ret) 4383 goto err_reset; 4384 4385 pci_info(pdev, "Controller reset complete\n"); 4386 4387 return 0; 4388 4389 err_reset: 4390 pci_err(pdev, "Controller reset failed (%d)\n", ret); 4391 qm_reset_bit_clear(qm); 4392 4393 /* if resetting fails, isolate the device */ 4394 if (qm->use_sva) 4395 qm->isolate_data.is_isolate = true; 4396 return ret; 4397 } 4398 4399 /** 4400 * hisi_qm_dev_slot_reset() - slot reset 4401 * @pdev: the PCIe device 4402 * 4403 * This function offers QM relate PCIe device reset interface. Drivers which 4404 * use QM can use this function as slot_reset in its struct pci_error_handlers. 4405 */ 4406 pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev) 4407 { 4408 struct hisi_qm *qm = pci_get_drvdata(pdev); 4409 int ret; 4410 4411 if (pdev->is_virtfn) 4412 return PCI_ERS_RESULT_RECOVERED; 4413 4414 /* reset pcie device controller */ 4415 ret = qm_controller_reset(qm); 4416 if (ret) { 4417 pci_err(pdev, "Controller reset failed (%d)\n", ret); 4418 return PCI_ERS_RESULT_DISCONNECT; 4419 } 4420 4421 return PCI_ERS_RESULT_RECOVERED; 4422 } 4423 EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset); 4424 4425 void hisi_qm_reset_prepare(struct pci_dev *pdev) 4426 { 4427 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 4428 struct hisi_qm *qm = pci_get_drvdata(pdev); 4429 u32 delay = 0; 4430 int ret; 4431 4432 hisi_qm_dev_err_uninit(pf_qm); 4433 4434 /* 4435 * Check whether there is an ECC mbit error, If it occurs, need to 4436 * wait for soft reset to fix it. 4437 */ 4438 while (qm_check_dev_error(pf_qm)) { 4439 msleep(++delay); 4440 if (delay > QM_RESET_WAIT_TIMEOUT) 4441 return; 4442 } 4443 4444 ret = qm_reset_prepare_ready(qm); 4445 if (ret) { 4446 pci_err(pdev, "FLR not ready!\n"); 4447 return; 4448 } 4449 4450 /* PF obtains the information of VF by querying the register. */ 4451 if (qm->fun_type == QM_HW_PF) 4452 qm_cmd_uninit(qm); 4453 4454 ret = qm_try_stop_vfs(qm, QM_PF_FLR_PREPARE, QM_DOWN); 4455 if (ret) 4456 pci_err(pdev, "failed to stop vfs by pf in FLR.\n"); 4457 4458 ret = hisi_qm_stop(qm, QM_DOWN); 4459 if (ret) { 4460 pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret); 4461 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 4462 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 4463 return; 4464 } 4465 4466 ret = qm_wait_vf_prepare_finish(qm); 4467 if (ret) 4468 pci_err(pdev, "failed to stop by vfs in FLR!\n"); 4469 4470 pci_info(pdev, "FLR resetting...\n"); 4471 } 4472 EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare); 4473 4474 static bool qm_flr_reset_complete(struct pci_dev *pdev) 4475 { 4476 struct pci_dev *pf_pdev = pci_physfn(pdev); 4477 struct hisi_qm *qm = pci_get_drvdata(pf_pdev); 4478 u32 id; 4479 4480 pci_read_config_dword(qm->pdev, PCI_COMMAND, &id); 4481 if (id == QM_PCI_COMMAND_INVALID) { 4482 pci_err(pdev, "Device can not be used!\n"); 4483 return false; 4484 } 4485 4486 return true; 4487 } 4488 4489 void hisi_qm_reset_done(struct pci_dev *pdev) 4490 { 4491 struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev)); 4492 struct hisi_qm *qm = pci_get_drvdata(pdev); 4493 int ret; 4494 4495 if (qm->fun_type == QM_HW_PF) { 4496 ret = qm_dev_hw_init(qm); 4497 if (ret) { 4498 pci_err(pdev, "Failed to init PF, ret = %d.\n", ret); 4499 goto flr_done; 4500 } 4501 } 4502 4503 hisi_qm_dev_err_init(pf_qm); 4504 4505 ret = qm_restart(qm); 4506 if (ret) { 4507 pci_err(pdev, "Failed to start QM, ret = %d.\n", ret); 4508 goto flr_done; 4509 } 4510 4511 ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE); 4512 if (ret) 4513 pci_err(pdev, "failed to start vfs by pf in FLR.\n"); 4514 4515 ret = qm_wait_vf_prepare_finish(qm); 4516 if (ret) 4517 pci_err(pdev, "failed to start by vfs in FLR!\n"); 4518 4519 flr_done: 4520 if (qm->fun_type == QM_HW_PF) 4521 qm_cmd_init(qm); 4522 4523 if (qm_flr_reset_complete(pdev)) 4524 pci_info(pdev, "FLR reset complete\n"); 4525 4526 qm_reset_bit_clear(qm); 4527 } 4528 EXPORT_SYMBOL_GPL(hisi_qm_reset_done); 4529 4530 static irqreturn_t qm_abnormal_irq(int irq, void *data) 4531 { 4532 struct hisi_qm *qm = data; 4533 enum acc_err_result ret; 4534 4535 atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt); 4536 ret = qm_process_dev_error(qm); 4537 if (ret == ACC_ERR_NEED_RESET && 4538 !test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl) && 4539 !test_and_set_bit(QM_RST_SCHED, &qm->misc_ctl)) 4540 schedule_work(&qm->rst_work); 4541 4542 return IRQ_HANDLED; 4543 } 4544 4545 /** 4546 * hisi_qm_dev_shutdown() - Shutdown device. 4547 * @pdev: The device will be shutdown. 4548 * 4549 * This function will stop qm when OS shutdown or rebooting. 4550 */ 4551 void hisi_qm_dev_shutdown(struct pci_dev *pdev) 4552 { 4553 struct hisi_qm *qm = pci_get_drvdata(pdev); 4554 int ret; 4555 4556 ret = hisi_qm_stop(qm, QM_DOWN); 4557 if (ret) 4558 dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n"); 4559 4560 hisi_qm_cache_wb(qm); 4561 } 4562 EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown); 4563 4564 static void hisi_qm_controller_reset(struct work_struct *rst_work) 4565 { 4566 struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work); 4567 int ret; 4568 4569 ret = qm_pm_get_sync(qm); 4570 if (ret) { 4571 clear_bit(QM_RST_SCHED, &qm->misc_ctl); 4572 return; 4573 } 4574 4575 /* reset pcie device controller */ 4576 ret = qm_controller_reset(qm); 4577 if (ret) 4578 dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret); 4579 4580 qm_pm_put_sync(qm); 4581 } 4582 4583 static void qm_pf_reset_vf_prepare(struct hisi_qm *qm, 4584 enum qm_stop_reason stop_reason) 4585 { 4586 enum qm_mb_cmd cmd = QM_VF_PREPARE_DONE; 4587 struct pci_dev *pdev = qm->pdev; 4588 int ret; 4589 4590 ret = qm_reset_prepare_ready(qm); 4591 if (ret) { 4592 dev_err(&pdev->dev, "reset prepare not ready!\n"); 4593 atomic_set(&qm->status.flags, QM_STOP); 4594 cmd = QM_VF_PREPARE_FAIL; 4595 goto err_prepare; 4596 } 4597 4598 ret = hisi_qm_stop(qm, stop_reason); 4599 if (ret) { 4600 dev_err(&pdev->dev, "failed to stop QM, ret = %d.\n", ret); 4601 atomic_set(&qm->status.flags, QM_STOP); 4602 cmd = QM_VF_PREPARE_FAIL; 4603 goto err_prepare; 4604 } else { 4605 goto out; 4606 } 4607 4608 err_prepare: 4609 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET); 4610 hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET); 4611 out: 4612 pci_save_state(pdev); 4613 ret = qm_ping_pf(qm, cmd); 4614 if (ret) 4615 dev_warn(&pdev->dev, "PF responds timeout in reset prepare!\n"); 4616 } 4617 4618 static void qm_pf_reset_vf_done(struct hisi_qm *qm) 4619 { 4620 enum qm_mb_cmd cmd = QM_VF_START_DONE; 4621 struct pci_dev *pdev = qm->pdev; 4622 int ret; 4623 4624 pci_restore_state(pdev); 4625 ret = hisi_qm_start(qm); 4626 if (ret) { 4627 dev_err(&pdev->dev, "failed to start QM, ret = %d.\n", ret); 4628 cmd = QM_VF_START_FAIL; 4629 } 4630 4631 qm_cmd_init(qm); 4632 ret = qm_ping_pf(qm, cmd); 4633 if (ret) 4634 dev_warn(&pdev->dev, "PF responds timeout in reset done!\n"); 4635 4636 qm_reset_bit_clear(qm); 4637 } 4638 4639 static int qm_wait_pf_reset_finish(struct hisi_qm *qm) 4640 { 4641 struct device *dev = &qm->pdev->dev; 4642 u32 val, cmd; 4643 u64 msg; 4644 int ret; 4645 4646 /* Wait for reset to finish */ 4647 ret = readl_relaxed_poll_timeout(qm->io_base + QM_IFC_INT_SOURCE_V, val, 4648 val == BIT(0), QM_VF_RESET_WAIT_US, 4649 QM_VF_RESET_WAIT_TIMEOUT_US); 4650 /* hardware completion status should be available by this time */ 4651 if (ret) { 4652 dev_err(dev, "couldn't get reset done status from PF, timeout!\n"); 4653 return -ETIMEDOUT; 4654 } 4655 4656 /* 4657 * Whether message is got successfully, 4658 * VF needs to ack PF by clearing the interrupt. 4659 */ 4660 ret = qm_get_mb_cmd(qm, &msg, 0); 4661 qm_clear_cmd_interrupt(qm, 0); 4662 if (ret) { 4663 dev_err(dev, "failed to get msg from PF in reset done!\n"); 4664 return ret; 4665 } 4666 4667 cmd = msg & QM_MB_CMD_DATA_MASK; 4668 if (cmd != QM_PF_RESET_DONE) { 4669 dev_err(dev, "the cmd(%u) is not reset done!\n", cmd); 4670 ret = -EINVAL; 4671 } 4672 4673 return ret; 4674 } 4675 4676 static void qm_pf_reset_vf_process(struct hisi_qm *qm, 4677 enum qm_stop_reason stop_reason) 4678 { 4679 struct device *dev = &qm->pdev->dev; 4680 int ret; 4681 4682 dev_info(dev, "device reset start...\n"); 4683 4684 /* The message is obtained by querying the register during resetting */ 4685 qm_cmd_uninit(qm); 4686 qm_pf_reset_vf_prepare(qm, stop_reason); 4687 4688 ret = qm_wait_pf_reset_finish(qm); 4689 if (ret) 4690 goto err_get_status; 4691 4692 qm_pf_reset_vf_done(qm); 4693 4694 dev_info(dev, "device reset done.\n"); 4695 4696 return; 4697 4698 err_get_status: 4699 qm_cmd_init(qm); 4700 qm_reset_bit_clear(qm); 4701 } 4702 4703 static void qm_handle_cmd_msg(struct hisi_qm *qm, u32 fun_num) 4704 { 4705 struct device *dev = &qm->pdev->dev; 4706 u64 msg; 4707 u32 cmd; 4708 int ret; 4709 4710 /* 4711 * Get the msg from source by sending mailbox. Whether message is got 4712 * successfully, destination needs to ack source by clearing the interrupt. 4713 */ 4714 ret = qm_get_mb_cmd(qm, &msg, fun_num); 4715 qm_clear_cmd_interrupt(qm, BIT(fun_num)); 4716 if (ret) { 4717 dev_err(dev, "failed to get msg from source!\n"); 4718 return; 4719 } 4720 4721 cmd = msg & QM_MB_CMD_DATA_MASK; 4722 switch (cmd) { 4723 case QM_PF_FLR_PREPARE: 4724 qm_pf_reset_vf_process(qm, QM_DOWN); 4725 break; 4726 case QM_PF_SRST_PREPARE: 4727 qm_pf_reset_vf_process(qm, QM_SOFT_RESET); 4728 break; 4729 case QM_VF_GET_QOS: 4730 qm_vf_get_qos(qm, fun_num); 4731 break; 4732 case QM_PF_SET_QOS: 4733 qm->mb_qos = msg >> QM_MB_CMD_DATA_SHIFT; 4734 break; 4735 default: 4736 dev_err(dev, "unsupported cmd %u sent by function(%u)!\n", cmd, fun_num); 4737 break; 4738 } 4739 } 4740 4741 static void qm_cmd_process(struct work_struct *cmd_process) 4742 { 4743 struct hisi_qm *qm = container_of(cmd_process, 4744 struct hisi_qm, cmd_process); 4745 u32 vfs_num = qm->vfs_num; 4746 u64 val; 4747 u32 i; 4748 4749 if (qm->fun_type == QM_HW_PF) { 4750 val = readq(qm->io_base + QM_IFC_INT_SOURCE_P); 4751 if (!val) 4752 return; 4753 4754 for (i = 1; i <= vfs_num; i++) { 4755 if (val & BIT(i)) 4756 qm_handle_cmd_msg(qm, i); 4757 } 4758 4759 return; 4760 } 4761 4762 qm_handle_cmd_msg(qm, 0); 4763 } 4764 4765 /** 4766 * hisi_qm_alg_register() - Register alg to crypto. 4767 * @qm: The qm needs add. 4768 * @qm_list: The qm list. 4769 * @guard: Guard of qp_num. 4770 * 4771 * Register algorithm to crypto when the function is satisfy guard. 4772 */ 4773 int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list, int guard) 4774 { 4775 struct device *dev = &qm->pdev->dev; 4776 4777 if (qm->ver <= QM_HW_V2 && qm->use_sva) { 4778 dev_info(dev, "HW V2 not both use uacce sva mode and hardware crypto algs.\n"); 4779 return 0; 4780 } 4781 4782 if (qm->qp_num < guard) { 4783 dev_info(dev, "qp_num is less than task need.\n"); 4784 return 0; 4785 } 4786 4787 return qm_list->register_to_crypto(qm); 4788 } 4789 EXPORT_SYMBOL_GPL(hisi_qm_alg_register); 4790 4791 /** 4792 * hisi_qm_alg_unregister() - Unregister alg from crypto. 4793 * @qm: The qm needs delete. 4794 * @qm_list: The qm list. 4795 * @guard: Guard of qp_num. 4796 * 4797 * Unregister algorithm from crypto when the last function is satisfy guard. 4798 */ 4799 void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list, int guard) 4800 { 4801 if (qm->ver <= QM_HW_V2 && qm->use_sva) 4802 return; 4803 4804 if (qm->qp_num < guard) 4805 return; 4806 4807 qm_list->unregister_from_crypto(qm); 4808 } 4809 EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister); 4810 4811 static void qm_unregister_abnormal_irq(struct hisi_qm *qm) 4812 { 4813 struct pci_dev *pdev = qm->pdev; 4814 u32 irq_vector, val; 4815 4816 if (qm->fun_type == QM_HW_VF) 4817 return; 4818 4819 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_ABN_IRQ_TYPE_CAP, qm->cap_ver); 4820 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK)) 4821 return; 4822 4823 irq_vector = val & QM_IRQ_VECTOR_MASK; 4824 free_irq(pci_irq_vector(pdev, irq_vector), qm); 4825 } 4826 4827 static int qm_register_abnormal_irq(struct hisi_qm *qm) 4828 { 4829 struct pci_dev *pdev = qm->pdev; 4830 u32 irq_vector, val; 4831 int ret; 4832 4833 if (qm->fun_type == QM_HW_VF) 4834 return 0; 4835 4836 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_ABN_IRQ_TYPE_CAP, qm->cap_ver); 4837 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK)) 4838 return 0; 4839 4840 irq_vector = val & QM_IRQ_VECTOR_MASK; 4841 ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_abnormal_irq, 0, qm->dev_name, qm); 4842 if (ret) 4843 dev_err(&qm->pdev->dev, "failed to request abnormal irq, ret = %d", ret); 4844 4845 return ret; 4846 } 4847 4848 static void qm_unregister_mb_cmd_irq(struct hisi_qm *qm) 4849 { 4850 struct pci_dev *pdev = qm->pdev; 4851 u32 irq_vector, val; 4852 4853 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF2VF_IRQ_TYPE_CAP, qm->cap_ver); 4854 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 4855 return; 4856 4857 irq_vector = val & QM_IRQ_VECTOR_MASK; 4858 free_irq(pci_irq_vector(pdev, irq_vector), qm); 4859 } 4860 4861 static int qm_register_mb_cmd_irq(struct hisi_qm *qm) 4862 { 4863 struct pci_dev *pdev = qm->pdev; 4864 u32 irq_vector, val; 4865 int ret; 4866 4867 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF2VF_IRQ_TYPE_CAP, qm->cap_ver); 4868 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 4869 return 0; 4870 4871 irq_vector = val & QM_IRQ_VECTOR_MASK; 4872 ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_mb_cmd_irq, 0, qm->dev_name, qm); 4873 if (ret) 4874 dev_err(&pdev->dev, "failed to request function communication irq, ret = %d", ret); 4875 4876 return ret; 4877 } 4878 4879 static void qm_unregister_aeq_irq(struct hisi_qm *qm) 4880 { 4881 struct pci_dev *pdev = qm->pdev; 4882 u32 irq_vector, val; 4883 4884 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_AEQ_IRQ_TYPE_CAP, qm->cap_ver); 4885 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 4886 return; 4887 4888 irq_vector = val & QM_IRQ_VECTOR_MASK; 4889 free_irq(pci_irq_vector(pdev, irq_vector), qm); 4890 } 4891 4892 static int qm_register_aeq_irq(struct hisi_qm *qm) 4893 { 4894 struct pci_dev *pdev = qm->pdev; 4895 u32 irq_vector, val; 4896 int ret; 4897 4898 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_AEQ_IRQ_TYPE_CAP, qm->cap_ver); 4899 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 4900 return 0; 4901 4902 irq_vector = val & QM_IRQ_VECTOR_MASK; 4903 ret = request_threaded_irq(pci_irq_vector(pdev, irq_vector), NULL, 4904 qm_aeq_thread, IRQF_ONESHOT, qm->dev_name, qm); 4905 if (ret) 4906 dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret); 4907 4908 return ret; 4909 } 4910 4911 static void qm_unregister_eq_irq(struct hisi_qm *qm) 4912 { 4913 struct pci_dev *pdev = qm->pdev; 4914 u32 irq_vector, val; 4915 4916 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_EQ_IRQ_TYPE_CAP, qm->cap_ver); 4917 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 4918 return; 4919 4920 irq_vector = val & QM_IRQ_VECTOR_MASK; 4921 free_irq(pci_irq_vector(pdev, irq_vector), qm); 4922 } 4923 4924 static int qm_register_eq_irq(struct hisi_qm *qm) 4925 { 4926 struct pci_dev *pdev = qm->pdev; 4927 u32 irq_vector, val; 4928 int ret; 4929 4930 val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_EQ_IRQ_TYPE_CAP, qm->cap_ver); 4931 if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK)) 4932 return 0; 4933 4934 irq_vector = val & QM_IRQ_VECTOR_MASK; 4935 ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_eq_irq, 0, qm->dev_name, qm); 4936 if (ret) 4937 dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret); 4938 4939 return ret; 4940 } 4941 4942 static void qm_irqs_unregister(struct hisi_qm *qm) 4943 { 4944 qm_unregister_mb_cmd_irq(qm); 4945 qm_unregister_abnormal_irq(qm); 4946 qm_unregister_aeq_irq(qm); 4947 qm_unregister_eq_irq(qm); 4948 } 4949 4950 static int qm_irqs_register(struct hisi_qm *qm) 4951 { 4952 int ret; 4953 4954 ret = qm_register_eq_irq(qm); 4955 if (ret) 4956 return ret; 4957 4958 ret = qm_register_aeq_irq(qm); 4959 if (ret) 4960 goto free_eq_irq; 4961 4962 ret = qm_register_abnormal_irq(qm); 4963 if (ret) 4964 goto free_aeq_irq; 4965 4966 ret = qm_register_mb_cmd_irq(qm); 4967 if (ret) 4968 goto free_abnormal_irq; 4969 4970 return 0; 4971 4972 free_abnormal_irq: 4973 qm_unregister_abnormal_irq(qm); 4974 free_aeq_irq: 4975 qm_unregister_aeq_irq(qm); 4976 free_eq_irq: 4977 qm_unregister_eq_irq(qm); 4978 return ret; 4979 } 4980 4981 static int qm_get_qp_num(struct hisi_qm *qm) 4982 { 4983 struct device *dev = &qm->pdev->dev; 4984 bool is_db_isolation; 4985 4986 /* VF's qp_num assigned by PF in v2, and VF can get qp_num by vft. */ 4987 if (qm->fun_type == QM_HW_VF) { 4988 if (qm->ver != QM_HW_V1) 4989 /* v2 starts to support get vft by mailbox */ 4990 return hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num); 4991 4992 return 0; 4993 } 4994 4995 is_db_isolation = test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps); 4996 qm->ctrl_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, QM_TOTAL_QP_NUM_CAP, true); 4997 qm->max_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, 4998 QM_FUNC_MAX_QP_CAP, is_db_isolation); 4999 5000 if (qm->qp_num <= qm->max_qp_num) 5001 return 0; 5002 5003 if (test_bit(QM_MODULE_PARAM, &qm->misc_ctl)) { 5004 /* Check whether the set qp number is valid */ 5005 dev_err(dev, "qp num(%u) is more than max qp num(%u)!\n", 5006 qm->qp_num, qm->max_qp_num); 5007 return -EINVAL; 5008 } 5009 5010 dev_info(dev, "Default qp num(%u) is too big, reset it to Function's max qp num(%u)!\n", 5011 qm->qp_num, qm->max_qp_num); 5012 qm->qp_num = qm->max_qp_num; 5013 qm->debug.curr_qm_qp_num = qm->qp_num; 5014 5015 return 0; 5016 } 5017 5018 static void qm_get_hw_caps(struct hisi_qm *qm) 5019 { 5020 const struct hisi_qm_cap_info *cap_info = qm->fun_type == QM_HW_PF ? 5021 qm_cap_info_pf : qm_cap_info_vf; 5022 u32 size = qm->fun_type == QM_HW_PF ? ARRAY_SIZE(qm_cap_info_pf) : 5023 ARRAY_SIZE(qm_cap_info_vf); 5024 u32 val, i; 5025 5026 /* Doorbell isolate register is a independent register. */ 5027 val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, QM_SUPPORT_DB_ISOLATION, true); 5028 if (val) 5029 set_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps); 5030 5031 if (qm->ver >= QM_HW_V3) { 5032 val = readl(qm->io_base + QM_FUNC_CAPS_REG); 5033 qm->cap_ver = val & QM_CAPBILITY_VERSION; 5034 } 5035 5036 /* Get PF/VF common capbility */ 5037 for (i = 1; i < ARRAY_SIZE(qm_cap_info_comm); i++) { 5038 val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, i, qm->cap_ver); 5039 if (val) 5040 set_bit(qm_cap_info_comm[i].type, &qm->caps); 5041 } 5042 5043 /* Get PF/VF different capbility */ 5044 for (i = 0; i < size; i++) { 5045 val = hisi_qm_get_hw_info(qm, cap_info, i, qm->cap_ver); 5046 if (val) 5047 set_bit(cap_info[i].type, &qm->caps); 5048 } 5049 } 5050 5051 static int qm_get_pci_res(struct hisi_qm *qm) 5052 { 5053 struct pci_dev *pdev = qm->pdev; 5054 struct device *dev = &pdev->dev; 5055 int ret; 5056 5057 ret = pci_request_mem_regions(pdev, qm->dev_name); 5058 if (ret < 0) { 5059 dev_err(dev, "Failed to request mem regions!\n"); 5060 return ret; 5061 } 5062 5063 qm->phys_base = pci_resource_start(pdev, PCI_BAR_2); 5064 qm->io_base = ioremap(qm->phys_base, pci_resource_len(pdev, PCI_BAR_2)); 5065 if (!qm->io_base) { 5066 ret = -EIO; 5067 goto err_request_mem_regions; 5068 } 5069 5070 qm_get_hw_caps(qm); 5071 if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) { 5072 qm->db_interval = QM_QP_DB_INTERVAL; 5073 qm->db_phys_base = pci_resource_start(pdev, PCI_BAR_4); 5074 qm->db_io_base = ioremap(qm->db_phys_base, 5075 pci_resource_len(pdev, PCI_BAR_4)); 5076 if (!qm->db_io_base) { 5077 ret = -EIO; 5078 goto err_ioremap; 5079 } 5080 } else { 5081 qm->db_phys_base = qm->phys_base; 5082 qm->db_io_base = qm->io_base; 5083 qm->db_interval = 0; 5084 } 5085 5086 ret = qm_get_qp_num(qm); 5087 if (ret) 5088 goto err_db_ioremap; 5089 5090 return 0; 5091 5092 err_db_ioremap: 5093 if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) 5094 iounmap(qm->db_io_base); 5095 err_ioremap: 5096 iounmap(qm->io_base); 5097 err_request_mem_regions: 5098 pci_release_mem_regions(pdev); 5099 return ret; 5100 } 5101 5102 static int hisi_qm_pci_init(struct hisi_qm *qm) 5103 { 5104 struct pci_dev *pdev = qm->pdev; 5105 struct device *dev = &pdev->dev; 5106 unsigned int num_vec; 5107 int ret; 5108 5109 ret = pci_enable_device_mem(pdev); 5110 if (ret < 0) { 5111 dev_err(dev, "Failed to enable device mem!\n"); 5112 return ret; 5113 } 5114 5115 ret = qm_get_pci_res(qm); 5116 if (ret) 5117 goto err_disable_pcidev; 5118 5119 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5120 if (ret < 0) 5121 goto err_get_pci_res; 5122 pci_set_master(pdev); 5123 5124 num_vec = qm_get_irq_num(qm); 5125 ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI); 5126 if (ret < 0) { 5127 dev_err(dev, "Failed to enable MSI vectors!\n"); 5128 goto err_get_pci_res; 5129 } 5130 5131 return 0; 5132 5133 err_get_pci_res: 5134 qm_put_pci_res(qm); 5135 err_disable_pcidev: 5136 pci_disable_device(pdev); 5137 return ret; 5138 } 5139 5140 static int hisi_qm_init_work(struct hisi_qm *qm) 5141 { 5142 int i; 5143 5144 for (i = 0; i < qm->qp_num; i++) 5145 INIT_WORK(&qm->poll_data[i].work, qm_work_process); 5146 5147 if (qm->fun_type == QM_HW_PF) 5148 INIT_WORK(&qm->rst_work, hisi_qm_controller_reset); 5149 5150 if (qm->ver > QM_HW_V2) 5151 INIT_WORK(&qm->cmd_process, qm_cmd_process); 5152 5153 qm->wq = alloc_workqueue("%s", WQ_HIGHPRI | WQ_MEM_RECLAIM | 5154 WQ_UNBOUND, num_online_cpus(), 5155 pci_name(qm->pdev)); 5156 if (!qm->wq) { 5157 pci_err(qm->pdev, "failed to alloc workqueue!\n"); 5158 return -ENOMEM; 5159 } 5160 5161 return 0; 5162 } 5163 5164 static int hisi_qp_alloc_memory(struct hisi_qm *qm) 5165 { 5166 struct device *dev = &qm->pdev->dev; 5167 u16 sq_depth, cq_depth; 5168 size_t qp_dma_size; 5169 int i, ret; 5170 5171 qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL); 5172 if (!qm->qp_array) 5173 return -ENOMEM; 5174 5175 qm->poll_data = kcalloc(qm->qp_num, sizeof(struct hisi_qm_poll_data), GFP_KERNEL); 5176 if (!qm->poll_data) { 5177 kfree(qm->qp_array); 5178 return -ENOMEM; 5179 } 5180 5181 qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP); 5182 5183 /* one more page for device or qp statuses */ 5184 qp_dma_size = qm->sqe_size * sq_depth + sizeof(struct qm_cqe) * cq_depth; 5185 qp_dma_size = PAGE_ALIGN(qp_dma_size) + PAGE_SIZE; 5186 for (i = 0; i < qm->qp_num; i++) { 5187 qm->poll_data[i].qm = qm; 5188 ret = hisi_qp_memory_init(qm, qp_dma_size, i, sq_depth, cq_depth); 5189 if (ret) 5190 goto err_init_qp_mem; 5191 5192 dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size); 5193 } 5194 5195 return 0; 5196 err_init_qp_mem: 5197 hisi_qp_memory_uninit(qm, i); 5198 5199 return ret; 5200 } 5201 5202 static int hisi_qm_alloc_rsv_buf(struct hisi_qm *qm) 5203 { 5204 struct qm_rsv_buf *xqc_buf = &qm->xqc_buf; 5205 struct qm_dma *xqc_dma = &xqc_buf->qcdma; 5206 struct device *dev = &qm->pdev->dev; 5207 size_t off = 0; 5208 5209 #define QM_XQC_BUF_INIT(xqc_buf, type) do { \ 5210 (xqc_buf)->type = ((xqc_buf)->qcdma.va + (off)); \ 5211 (xqc_buf)->type##_dma = (xqc_buf)->qcdma.dma + (off); \ 5212 off += QMC_ALIGN(sizeof(struct qm_##type)); \ 5213 } while (0) 5214 5215 xqc_dma->size = QMC_ALIGN(sizeof(struct qm_eqc)) + 5216 QMC_ALIGN(sizeof(struct qm_aeqc)) + 5217 QMC_ALIGN(sizeof(struct qm_sqc)) + 5218 QMC_ALIGN(sizeof(struct qm_cqc)); 5219 xqc_dma->va = dma_alloc_coherent(dev, xqc_dma->size, 5220 &xqc_dma->dma, GFP_KERNEL); 5221 if (!xqc_dma->va) 5222 return -ENOMEM; 5223 5224 QM_XQC_BUF_INIT(xqc_buf, eqc); 5225 QM_XQC_BUF_INIT(xqc_buf, aeqc); 5226 QM_XQC_BUF_INIT(xqc_buf, sqc); 5227 QM_XQC_BUF_INIT(xqc_buf, cqc); 5228 5229 return 0; 5230 } 5231 5232 static int hisi_qm_memory_init(struct hisi_qm *qm) 5233 { 5234 struct device *dev = &qm->pdev->dev; 5235 int ret, total_func; 5236 size_t off = 0; 5237 5238 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) { 5239 total_func = pci_sriov_get_totalvfs(qm->pdev) + 1; 5240 qm->factor = kcalloc(total_func, sizeof(struct qm_shaper_factor), GFP_KERNEL); 5241 if (!qm->factor) 5242 return -ENOMEM; 5243 5244 /* Only the PF value needs to be initialized */ 5245 qm->factor[0].func_qos = QM_QOS_MAX_VAL; 5246 } 5247 5248 #define QM_INIT_BUF(qm, type, num) do { \ 5249 (qm)->type = ((qm)->qdma.va + (off)); \ 5250 (qm)->type##_dma = (qm)->qdma.dma + (off); \ 5251 off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \ 5252 } while (0) 5253 5254 idr_init(&qm->qp_idr); 5255 qm_get_xqc_depth(qm, &qm->eq_depth, &qm->aeq_depth, QM_XEQ_DEPTH_CAP); 5256 qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * qm->eq_depth) + 5257 QMC_ALIGN(sizeof(struct qm_aeqe) * qm->aeq_depth) + 5258 QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) + 5259 QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num); 5260 qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma, 5261 GFP_ATOMIC); 5262 dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size); 5263 if (!qm->qdma.va) { 5264 ret = -ENOMEM; 5265 goto err_destroy_idr; 5266 } 5267 5268 QM_INIT_BUF(qm, eqe, qm->eq_depth); 5269 QM_INIT_BUF(qm, aeqe, qm->aeq_depth); 5270 QM_INIT_BUF(qm, sqc, qm->qp_num); 5271 QM_INIT_BUF(qm, cqc, qm->qp_num); 5272 5273 ret = hisi_qm_alloc_rsv_buf(qm); 5274 if (ret) 5275 goto err_free_qdma; 5276 5277 ret = hisi_qp_alloc_memory(qm); 5278 if (ret) 5279 goto err_free_reserve_buf; 5280 5281 return 0; 5282 5283 err_free_reserve_buf: 5284 hisi_qm_free_rsv_buf(qm); 5285 err_free_qdma: 5286 dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma); 5287 err_destroy_idr: 5288 idr_destroy(&qm->qp_idr); 5289 if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) 5290 kfree(qm->factor); 5291 5292 return ret; 5293 } 5294 5295 /** 5296 * hisi_qm_init() - Initialize configures about qm. 5297 * @qm: The qm needing init. 5298 * 5299 * This function init qm, then we can call hisi_qm_start to put qm into work. 5300 */ 5301 int hisi_qm_init(struct hisi_qm *qm) 5302 { 5303 struct pci_dev *pdev = qm->pdev; 5304 struct device *dev = &pdev->dev; 5305 int ret; 5306 5307 hisi_qm_pre_init(qm); 5308 5309 ret = hisi_qm_pci_init(qm); 5310 if (ret) 5311 return ret; 5312 5313 ret = qm_irqs_register(qm); 5314 if (ret) 5315 goto err_pci_init; 5316 5317 if (qm->fun_type == QM_HW_PF) { 5318 /* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */ 5319 writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG); 5320 qm_disable_clock_gate(qm); 5321 ret = qm_dev_mem_reset(qm); 5322 if (ret) { 5323 dev_err(dev, "failed to reset device memory\n"); 5324 goto err_irq_register; 5325 } 5326 } 5327 5328 if (qm->mode == UACCE_MODE_SVA) { 5329 ret = qm_alloc_uacce(qm); 5330 if (ret < 0) 5331 dev_warn(dev, "fail to alloc uacce (%d)\n", ret); 5332 } 5333 5334 ret = hisi_qm_memory_init(qm); 5335 if (ret) 5336 goto err_alloc_uacce; 5337 5338 ret = hisi_qm_init_work(qm); 5339 if (ret) 5340 goto err_free_qm_memory; 5341 5342 qm_cmd_init(qm); 5343 atomic_set(&qm->status.flags, QM_INIT); 5344 5345 return 0; 5346 5347 err_free_qm_memory: 5348 hisi_qm_memory_uninit(qm); 5349 err_alloc_uacce: 5350 qm_remove_uacce(qm); 5351 err_irq_register: 5352 qm_irqs_unregister(qm); 5353 err_pci_init: 5354 hisi_qm_pci_uninit(qm); 5355 return ret; 5356 } 5357 EXPORT_SYMBOL_GPL(hisi_qm_init); 5358 5359 /** 5360 * hisi_qm_get_dfx_access() - Try to get dfx access. 5361 * @qm: pointer to accelerator device. 5362 * 5363 * Try to get dfx access, then user can get message. 5364 * 5365 * If device is in suspended, return failure, otherwise 5366 * bump up the runtime PM usage counter. 5367 */ 5368 int hisi_qm_get_dfx_access(struct hisi_qm *qm) 5369 { 5370 struct device *dev = &qm->pdev->dev; 5371 5372 if (pm_runtime_suspended(dev)) { 5373 dev_info(dev, "can not read/write - device in suspended.\n"); 5374 return -EAGAIN; 5375 } 5376 5377 return qm_pm_get_sync(qm); 5378 } 5379 EXPORT_SYMBOL_GPL(hisi_qm_get_dfx_access); 5380 5381 /** 5382 * hisi_qm_put_dfx_access() - Put dfx access. 5383 * @qm: pointer to accelerator device. 5384 * 5385 * Put dfx access, drop runtime PM usage counter. 5386 */ 5387 void hisi_qm_put_dfx_access(struct hisi_qm *qm) 5388 { 5389 qm_pm_put_sync(qm); 5390 } 5391 EXPORT_SYMBOL_GPL(hisi_qm_put_dfx_access); 5392 5393 /** 5394 * hisi_qm_pm_init() - Initialize qm runtime PM. 5395 * @qm: pointer to accelerator device. 5396 * 5397 * Function that initialize qm runtime PM. 5398 */ 5399 void hisi_qm_pm_init(struct hisi_qm *qm) 5400 { 5401 struct device *dev = &qm->pdev->dev; 5402 5403 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 5404 return; 5405 5406 pm_runtime_set_autosuspend_delay(dev, QM_AUTOSUSPEND_DELAY); 5407 pm_runtime_use_autosuspend(dev); 5408 pm_runtime_put_noidle(dev); 5409 } 5410 EXPORT_SYMBOL_GPL(hisi_qm_pm_init); 5411 5412 /** 5413 * hisi_qm_pm_uninit() - Uninitialize qm runtime PM. 5414 * @qm: pointer to accelerator device. 5415 * 5416 * Function that uninitialize qm runtime PM. 5417 */ 5418 void hisi_qm_pm_uninit(struct hisi_qm *qm) 5419 { 5420 struct device *dev = &qm->pdev->dev; 5421 5422 if (!test_bit(QM_SUPPORT_RPM, &qm->caps)) 5423 return; 5424 5425 pm_runtime_get_noresume(dev); 5426 pm_runtime_dont_use_autosuspend(dev); 5427 } 5428 EXPORT_SYMBOL_GPL(hisi_qm_pm_uninit); 5429 5430 static int qm_prepare_for_suspend(struct hisi_qm *qm) 5431 { 5432 struct pci_dev *pdev = qm->pdev; 5433 int ret; 5434 u32 val; 5435 5436 ret = qm->ops->set_msi(qm, false); 5437 if (ret) { 5438 pci_err(pdev, "failed to disable MSI before suspending!\n"); 5439 return ret; 5440 } 5441 5442 /* shutdown OOO register */ 5443 writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN, 5444 qm->io_base + ACC_MASTER_GLOBAL_CTRL); 5445 5446 ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN, 5447 val, 5448 (val == ACC_MASTER_TRANS_RETURN_RW), 5449 POLL_PERIOD, POLL_TIMEOUT); 5450 if (ret) { 5451 pci_emerg(pdev, "Bus lock! Please reset system.\n"); 5452 return ret; 5453 } 5454 5455 ret = qm_set_pf_mse(qm, false); 5456 if (ret) 5457 pci_err(pdev, "failed to disable MSE before suspending!\n"); 5458 5459 return ret; 5460 } 5461 5462 static int qm_rebuild_for_resume(struct hisi_qm *qm) 5463 { 5464 struct pci_dev *pdev = qm->pdev; 5465 int ret; 5466 5467 ret = qm_set_pf_mse(qm, true); 5468 if (ret) { 5469 pci_err(pdev, "failed to enable MSE after resuming!\n"); 5470 return ret; 5471 } 5472 5473 ret = qm->ops->set_msi(qm, true); 5474 if (ret) { 5475 pci_err(pdev, "failed to enable MSI after resuming!\n"); 5476 return ret; 5477 } 5478 5479 ret = qm_dev_hw_init(qm); 5480 if (ret) { 5481 pci_err(pdev, "failed to init device after resuming\n"); 5482 return ret; 5483 } 5484 5485 qm_cmd_init(qm); 5486 hisi_qm_dev_err_init(qm); 5487 /* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */ 5488 writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG); 5489 qm_disable_clock_gate(qm); 5490 ret = qm_dev_mem_reset(qm); 5491 if (ret) 5492 pci_err(pdev, "failed to reset device memory\n"); 5493 5494 return ret; 5495 } 5496 5497 /** 5498 * hisi_qm_suspend() - Runtime suspend of given device. 5499 * @dev: device to suspend. 5500 * 5501 * Function that suspend the device. 5502 */ 5503 int hisi_qm_suspend(struct device *dev) 5504 { 5505 struct pci_dev *pdev = to_pci_dev(dev); 5506 struct hisi_qm *qm = pci_get_drvdata(pdev); 5507 int ret; 5508 5509 pci_info(pdev, "entering suspended state\n"); 5510 5511 ret = hisi_qm_stop(qm, QM_NORMAL); 5512 if (ret) { 5513 pci_err(pdev, "failed to stop qm(%d)\n", ret); 5514 return ret; 5515 } 5516 5517 ret = qm_prepare_for_suspend(qm); 5518 if (ret) 5519 pci_err(pdev, "failed to prepare suspended(%d)\n", ret); 5520 5521 return ret; 5522 } 5523 EXPORT_SYMBOL_GPL(hisi_qm_suspend); 5524 5525 /** 5526 * hisi_qm_resume() - Runtime resume of given device. 5527 * @dev: device to resume. 5528 * 5529 * Function that resume the device. 5530 */ 5531 int hisi_qm_resume(struct device *dev) 5532 { 5533 struct pci_dev *pdev = to_pci_dev(dev); 5534 struct hisi_qm *qm = pci_get_drvdata(pdev); 5535 int ret; 5536 5537 pci_info(pdev, "resuming from suspend state\n"); 5538 5539 ret = qm_rebuild_for_resume(qm); 5540 if (ret) { 5541 pci_err(pdev, "failed to rebuild resume(%d)\n", ret); 5542 return ret; 5543 } 5544 5545 ret = hisi_qm_start(qm); 5546 if (ret) { 5547 if (qm_check_dev_error(qm)) { 5548 pci_info(pdev, "failed to start qm due to device error, device will be reset!\n"); 5549 return 0; 5550 } 5551 5552 pci_err(pdev, "failed to start qm(%d)!\n", ret); 5553 } 5554 5555 return ret; 5556 } 5557 EXPORT_SYMBOL_GPL(hisi_qm_resume); 5558 5559 MODULE_LICENSE("GPL v2"); 5560 MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>"); 5561 MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver"); 5562