xref: /linux/drivers/crypto/hisilicon/qm.c (revision 4999999ed7e099fcc2476c8b3a245c4c2c9026c0)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 HiSilicon Limited. */
3 #include <asm/page.h>
4 #include <linux/acpi.h>
5 #include <linux/bitmap.h>
6 #include <linux/dma-mapping.h>
7 #include <linux/idr.h>
8 #include <linux/io.h>
9 #include <linux/irqreturn.h>
10 #include <linux/log2.h>
11 #include <linux/pm_runtime.h>
12 #include <linux/seq_file.h>
13 #include <linux/slab.h>
14 #include <linux/uacce.h>
15 #include <linux/uaccess.h>
16 #include <uapi/misc/uacce/hisi_qm.h>
17 #include <linux/hisi_acc_qm.h>
18 #include "qm_common.h"
19 
20 /* eq/aeq irq enable */
21 #define QM_VF_AEQ_INT_SOURCE		0x0
22 #define QM_VF_AEQ_INT_MASK		0x4
23 #define QM_VF_EQ_INT_SOURCE		0x8
24 #define QM_VF_EQ_INT_MASK		0xc
25 
26 #define QM_IRQ_VECTOR_MASK		GENMASK(15, 0)
27 #define QM_IRQ_TYPE_MASK		GENMASK(15, 0)
28 #define QM_IRQ_TYPE_SHIFT		16
29 #define QM_ABN_IRQ_TYPE_MASK		GENMASK(7, 0)
30 
31 /* mailbox */
32 #define QM_MB_PING_ALL_VFS		0xffff
33 #define QM_MB_CMD_DATA_SHIFT		32
34 #define QM_MB_CMD_DATA_MASK		GENMASK(31, 0)
35 #define QM_MB_STATUS_MASK		GENMASK(12, 9)
36 
37 /* sqc shift */
38 #define QM_SQ_HOP_NUM_SHIFT		0
39 #define QM_SQ_PAGE_SIZE_SHIFT		4
40 #define QM_SQ_BUF_SIZE_SHIFT		8
41 #define QM_SQ_SQE_SIZE_SHIFT		12
42 #define QM_SQ_PRIORITY_SHIFT		0
43 #define QM_SQ_ORDERS_SHIFT		4
44 #define QM_SQ_TYPE_SHIFT		8
45 #define QM_QC_PASID_ENABLE		0x1
46 #define QM_QC_PASID_ENABLE_SHIFT	7
47 
48 #define QM_SQ_TYPE_MASK			GENMASK(3, 0)
49 #define QM_SQ_TAIL_IDX(sqc)		((le16_to_cpu((sqc)->w11) >> 6) & 0x1)
50 
51 /* cqc shift */
52 #define QM_CQ_HOP_NUM_SHIFT		0
53 #define QM_CQ_PAGE_SIZE_SHIFT		4
54 #define QM_CQ_BUF_SIZE_SHIFT		8
55 #define QM_CQ_CQE_SIZE_SHIFT		12
56 #define QM_CQ_PHASE_SHIFT		0
57 #define QM_CQ_FLAG_SHIFT		1
58 
59 #define QM_CQE_PHASE(cqe)		(le16_to_cpu((cqe)->w7) & 0x1)
60 #define QM_QC_CQE_SIZE			4
61 #define QM_CQ_TAIL_IDX(cqc)		((le16_to_cpu((cqc)->w11) >> 6) & 0x1)
62 
63 /* eqc shift */
64 #define QM_EQE_AEQE_SIZE		(2UL << 12)
65 #define QM_EQC_PHASE_SHIFT		16
66 
67 #define QM_EQE_PHASE(eqe)		((le32_to_cpu((eqe)->dw0) >> 16) & 0x1)
68 #define QM_EQE_CQN_MASK			GENMASK(15, 0)
69 
70 #define QM_AEQE_PHASE(aeqe)		((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1)
71 #define QM_AEQE_TYPE_SHIFT		17
72 #define QM_AEQE_TYPE_MASK		0xf
73 #define QM_AEQE_CQN_MASK		GENMASK(15, 0)
74 #define QM_CQ_OVERFLOW			0
75 #define QM_EQ_OVERFLOW			1
76 #define QM_CQE_ERROR			2
77 
78 #define QM_XQ_DEPTH_SHIFT		16
79 #define QM_XQ_DEPTH_MASK		GENMASK(15, 0)
80 
81 #define QM_DOORBELL_CMD_SQ		0
82 #define QM_DOORBELL_CMD_CQ		1
83 #define QM_DOORBELL_CMD_EQ		2
84 #define QM_DOORBELL_CMD_AEQ		3
85 
86 #define QM_DOORBELL_BASE_V1		0x340
87 #define QM_DB_CMD_SHIFT_V1		16
88 #define QM_DB_INDEX_SHIFT_V1		32
89 #define QM_DB_PRIORITY_SHIFT_V1		48
90 #define QM_PAGE_SIZE			0x0034
91 #define QM_QP_DB_INTERVAL		0x10000
92 #define QM_DB_TIMEOUT_CFG		0x100074
93 #define QM_DB_TIMEOUT_SET		0x1fffff
94 
95 #define QM_MEM_START_INIT		0x100040
96 #define QM_MEM_INIT_DONE		0x100044
97 #define QM_VFT_CFG_RDY			0x10006c
98 #define QM_VFT_CFG_OP_WR		0x100058
99 #define QM_VFT_CFG_TYPE			0x10005c
100 #define QM_VFT_CFG			0x100060
101 #define QM_VFT_CFG_OP_ENABLE		0x100054
102 #define QM_PM_CTRL			0x100148
103 #define QM_IDLE_DISABLE			BIT(9)
104 
105 #define QM_VFT_CFG_DATA_L		0x100064
106 #define QM_VFT_CFG_DATA_H		0x100068
107 #define QM_SQC_VFT_BUF_SIZE		(7ULL << 8)
108 #define QM_SQC_VFT_SQC_SIZE		(5ULL << 12)
109 #define QM_SQC_VFT_INDEX_NUMBER		(1ULL << 16)
110 #define QM_SQC_VFT_START_SQN_SHIFT	28
111 #define QM_SQC_VFT_VALID		(1ULL << 44)
112 #define QM_SQC_VFT_SQN_SHIFT		45
113 #define QM_CQC_VFT_BUF_SIZE		(7ULL << 8)
114 #define QM_CQC_VFT_SQC_SIZE		(5ULL << 12)
115 #define QM_CQC_VFT_INDEX_NUMBER		(1ULL << 16)
116 #define QM_CQC_VFT_VALID		(1ULL << 28)
117 
118 #define QM_SQC_VFT_BASE_SHIFT_V2	28
119 #define QM_SQC_VFT_BASE_MASK_V2		GENMASK(15, 0)
120 #define QM_SQC_VFT_NUM_SHIFT_V2		45
121 #define QM_SQC_VFT_NUM_MASK_V2		GENMASK(9, 0)
122 
123 #define QM_ABNORMAL_INT_SOURCE		0x100000
124 #define QM_ABNORMAL_INT_MASK		0x100004
125 #define QM_ABNORMAL_INT_MASK_VALUE	0x7fff
126 #define QM_ABNORMAL_INT_STATUS		0x100008
127 #define QM_ABNORMAL_INT_SET		0x10000c
128 #define QM_ABNORMAL_INF00		0x100010
129 #define QM_FIFO_OVERFLOW_TYPE		0xc0
130 #define QM_FIFO_OVERFLOW_TYPE_SHIFT	6
131 #define QM_FIFO_OVERFLOW_VF		0x3f
132 #define QM_ABNORMAL_INF01		0x100014
133 #define QM_DB_TIMEOUT_TYPE		0xc0
134 #define QM_DB_TIMEOUT_TYPE_SHIFT	6
135 #define QM_DB_TIMEOUT_VF		0x3f
136 #define QM_RAS_CE_ENABLE		0x1000ec
137 #define QM_RAS_FE_ENABLE		0x1000f0
138 #define QM_RAS_NFE_ENABLE		0x1000f4
139 #define QM_RAS_CE_THRESHOLD		0x1000f8
140 #define QM_RAS_CE_TIMES_PER_IRQ		1
141 #define QM_OOO_SHUTDOWN_SEL		0x1040f8
142 #define QM_ECC_MBIT			BIT(2)
143 #define QM_DB_TIMEOUT			BIT(10)
144 #define QM_OF_FIFO_OF			BIT(11)
145 
146 #define QM_RESET_WAIT_TIMEOUT		400
147 #define QM_PEH_VENDOR_ID		0x1000d8
148 #define ACC_VENDOR_ID_VALUE		0x5a5a
149 #define QM_PEH_DFX_INFO0		0x1000fc
150 #define QM_PEH_DFX_INFO1		0x100100
151 #define QM_PEH_DFX_MASK			(BIT(0) | BIT(2))
152 #define QM_PEH_MSI_FINISH_MASK		GENMASK(19, 16)
153 #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT	3
154 #define ACC_PEH_MSI_DISABLE		GENMASK(31, 0)
155 #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN	0x1
156 #define ACC_MASTER_TRANS_RETURN_RW	3
157 #define ACC_MASTER_TRANS_RETURN		0x300150
158 #define ACC_MASTER_GLOBAL_CTRL		0x300000
159 #define ACC_AM_CFG_PORT_WR_EN		0x30001c
160 #define QM_RAS_NFE_MBIT_DISABLE		~QM_ECC_MBIT
161 #define ACC_AM_ROB_ECC_INT_STS		0x300104
162 #define ACC_ROB_ECC_ERR_MULTPL		BIT(1)
163 #define QM_MSI_CAP_ENABLE		BIT(16)
164 
165 /* interfunction communication */
166 #define QM_IFC_READY_STATUS		0x100128
167 #define QM_IFC_INT_SET_P		0x100130
168 #define QM_IFC_INT_CFG			0x100134
169 #define QM_IFC_INT_SOURCE_P		0x100138
170 #define QM_IFC_INT_SOURCE_V		0x0020
171 #define QM_IFC_INT_MASK			0x0024
172 #define QM_IFC_INT_STATUS		0x0028
173 #define QM_IFC_INT_SET_V		0x002C
174 #define QM_IFC_SEND_ALL_VFS		GENMASK(6, 0)
175 #define QM_IFC_INT_SOURCE_CLR		GENMASK(63, 0)
176 #define QM_IFC_INT_SOURCE_MASK		BIT(0)
177 #define QM_IFC_INT_DISABLE		BIT(0)
178 #define QM_IFC_INT_STATUS_MASK		BIT(0)
179 #define QM_IFC_INT_SET_MASK		BIT(0)
180 #define QM_WAIT_DST_ACK			10
181 #define QM_MAX_PF_WAIT_COUNT		10
182 #define QM_MAX_VF_WAIT_COUNT		40
183 #define QM_VF_RESET_WAIT_US            20000
184 #define QM_VF_RESET_WAIT_CNT           3000
185 #define QM_VF_RESET_WAIT_TIMEOUT_US    \
186 	(QM_VF_RESET_WAIT_US * QM_VF_RESET_WAIT_CNT)
187 
188 #define POLL_PERIOD			10
189 #define POLL_TIMEOUT			1000
190 #define WAIT_PERIOD_US_MAX		200
191 #define WAIT_PERIOD_US_MIN		100
192 #define MAX_WAIT_COUNTS			1000
193 #define QM_CACHE_WB_START		0x204
194 #define QM_CACHE_WB_DONE		0x208
195 #define QM_FUNC_CAPS_REG		0x3100
196 #define QM_CAPBILITY_VERSION		GENMASK(7, 0)
197 
198 #define PCI_BAR_2			2
199 #define PCI_BAR_4			4
200 #define QMC_ALIGN(sz)			ALIGN(sz, 32)
201 
202 #define QM_DBG_READ_LEN		256
203 #define QM_PCI_COMMAND_INVALID		~0
204 #define QM_RESET_STOP_TX_OFFSET		1
205 #define QM_RESET_STOP_RX_OFFSET		2
206 
207 #define WAIT_PERIOD			20
208 #define REMOVE_WAIT_DELAY		10
209 
210 #define QM_QOS_PARAM_NUM		2
211 #define QM_QOS_MAX_VAL			1000
212 #define QM_QOS_RATE			100
213 #define QM_QOS_EXPAND_RATE		1000
214 #define QM_SHAPER_CIR_B_MASK		GENMASK(7, 0)
215 #define QM_SHAPER_CIR_U_MASK		GENMASK(10, 8)
216 #define QM_SHAPER_CIR_S_MASK		GENMASK(14, 11)
217 #define QM_SHAPER_FACTOR_CIR_U_SHIFT	8
218 #define QM_SHAPER_FACTOR_CIR_S_SHIFT	11
219 #define QM_SHAPER_FACTOR_CBS_B_SHIFT	15
220 #define QM_SHAPER_FACTOR_CBS_S_SHIFT	19
221 #define QM_SHAPER_CBS_B			1
222 #define QM_SHAPER_VFT_OFFSET		6
223 #define QM_QOS_MIN_ERROR_RATE		5
224 #define QM_SHAPER_MIN_CBS_S		8
225 #define QM_QOS_TICK			0x300U
226 #define QM_QOS_DIVISOR_CLK		0x1f40U
227 #define QM_QOS_MAX_CIR_B		200
228 #define QM_QOS_MIN_CIR_B		100
229 #define QM_QOS_MAX_CIR_U		6
230 #define QM_AUTOSUSPEND_DELAY		3000
231 
232 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \
233 	(((hop_num) << QM_CQ_HOP_NUM_SHIFT) | \
234 	((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT) | \
235 	((buf_sz) << QM_CQ_BUF_SIZE_SHIFT) | \
236 	((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
237 
238 #define QM_MK_CQC_DW3_V2(cqe_sz, cq_depth) \
239 	((((u32)cq_depth) - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
240 
241 #define QM_MK_SQC_W13(priority, orders, alg_type) \
242 	(((priority) << QM_SQ_PRIORITY_SHIFT) | \
243 	((orders) << QM_SQ_ORDERS_SHIFT) | \
244 	(((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT))
245 
246 #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \
247 	(((hop_num) << QM_SQ_HOP_NUM_SHIFT) | \
248 	((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT) | \
249 	((buf_sz) << QM_SQ_BUF_SIZE_SHIFT) | \
250 	((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
251 
252 #define QM_MK_SQC_DW3_V2(sqe_sz, sq_depth) \
253 	((((u32)sq_depth) - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
254 
255 #define INIT_QC_COMMON(qc, base, pasid) do {			\
256 	(qc)->head = 0;						\
257 	(qc)->tail = 0;						\
258 	(qc)->base_l = cpu_to_le32(lower_32_bits(base));	\
259 	(qc)->base_h = cpu_to_le32(upper_32_bits(base));	\
260 	(qc)->dw3 = 0;						\
261 	(qc)->w8 = 0;						\
262 	(qc)->rsvd0 = 0;					\
263 	(qc)->pasid = cpu_to_le16(pasid);			\
264 	(qc)->w11 = 0;						\
265 	(qc)->rsvd1 = 0;					\
266 } while (0)
267 
268 enum vft_type {
269 	SQC_VFT = 0,
270 	CQC_VFT,
271 	SHAPER_VFT,
272 };
273 
274 enum acc_err_result {
275 	ACC_ERR_NONE,
276 	ACC_ERR_NEED_RESET,
277 	ACC_ERR_RECOVERED,
278 };
279 
280 enum qm_alg_type {
281 	ALG_TYPE_0,
282 	ALG_TYPE_1,
283 };
284 
285 enum qm_mb_cmd {
286 	QM_PF_FLR_PREPARE = 0x01,
287 	QM_PF_SRST_PREPARE,
288 	QM_PF_RESET_DONE,
289 	QM_VF_PREPARE_DONE,
290 	QM_VF_PREPARE_FAIL,
291 	QM_VF_START_DONE,
292 	QM_VF_START_FAIL,
293 	QM_PF_SET_QOS,
294 	QM_VF_GET_QOS,
295 };
296 
297 enum qm_basic_type {
298 	QM_TOTAL_QP_NUM_CAP = 0x0,
299 	QM_FUNC_MAX_QP_CAP,
300 	QM_XEQ_DEPTH_CAP,
301 	QM_QP_DEPTH_CAP,
302 	QM_EQ_IRQ_TYPE_CAP,
303 	QM_AEQ_IRQ_TYPE_CAP,
304 	QM_ABN_IRQ_TYPE_CAP,
305 	QM_PF2VF_IRQ_TYPE_CAP,
306 	QM_PF_IRQ_NUM_CAP,
307 	QM_VF_IRQ_NUM_CAP,
308 };
309 
310 static const struct hisi_qm_cap_info qm_cap_info_comm[] = {
311 	{QM_SUPPORT_DB_ISOLATION, 0x30,   0, BIT(0),  0x0, 0x0, 0x0},
312 	{QM_SUPPORT_FUNC_QOS,     0x3100, 0, BIT(8),  0x0, 0x0, 0x1},
313 	{QM_SUPPORT_STOP_QP,      0x3100, 0, BIT(9),  0x0, 0x0, 0x1},
314 	{QM_SUPPORT_MB_COMMAND,   0x3100, 0, BIT(11), 0x0, 0x0, 0x1},
315 	{QM_SUPPORT_SVA_PREFETCH, 0x3100, 0, BIT(14), 0x0, 0x0, 0x1},
316 };
317 
318 static const struct hisi_qm_cap_info qm_cap_info_pf[] = {
319 	{QM_SUPPORT_RPM, 0x3100, 0, BIT(13), 0x0, 0x0, 0x1},
320 };
321 
322 static const struct hisi_qm_cap_info qm_cap_info_vf[] = {
323 	{QM_SUPPORT_RPM, 0x3100, 0, BIT(12), 0x0, 0x0, 0x0},
324 };
325 
326 static const struct hisi_qm_cap_info qm_basic_info[] = {
327 	{QM_TOTAL_QP_NUM_CAP,   0x100158, 0,  GENMASK(10, 0), 0x1000,    0x400,     0x400},
328 	{QM_FUNC_MAX_QP_CAP,    0x100158, 11, GENMASK(10, 0), 0x1000,    0x400,     0x400},
329 	{QM_XEQ_DEPTH_CAP,      0x3104,   0,  GENMASK(31, 0), 0x800,     0x4000800, 0x4000800},
330 	{QM_QP_DEPTH_CAP,       0x3108,   0,  GENMASK(31, 0), 0x4000400, 0x4000400, 0x4000400},
331 	{QM_EQ_IRQ_TYPE_CAP,    0x310c,   0,  GENMASK(31, 0), 0x10000,   0x10000,   0x10000},
332 	{QM_AEQ_IRQ_TYPE_CAP,   0x3110,   0,  GENMASK(31, 0), 0x0,       0x10001,   0x10001},
333 	{QM_ABN_IRQ_TYPE_CAP,   0x3114,   0,  GENMASK(31, 0), 0x0,       0x10003,   0x10003},
334 	{QM_PF2VF_IRQ_TYPE_CAP, 0x3118,   0,  GENMASK(31, 0), 0x0,       0x0,       0x10002},
335 	{QM_PF_IRQ_NUM_CAP,     0x311c,   16, GENMASK(15, 0), 0x1,       0x4,       0x4},
336 	{QM_VF_IRQ_NUM_CAP,     0x311c,   0,  GENMASK(15, 0), 0x1,       0x2,       0x3},
337 };
338 
339 struct qm_mailbox {
340 	__le16 w0;
341 	__le16 queue_num;
342 	__le32 base_l;
343 	__le32 base_h;
344 	__le32 rsvd;
345 };
346 
347 struct qm_doorbell {
348 	__le16 queue_num;
349 	__le16 cmd;
350 	__le16 index;
351 	__le16 priority;
352 };
353 
354 struct hisi_qm_resource {
355 	struct hisi_qm *qm;
356 	int distance;
357 	struct list_head list;
358 };
359 
360 /**
361  * struct qm_hw_err - Structure describing the device errors
362  * @list: hardware error list
363  * @timestamp: timestamp when the error occurred
364  */
365 struct qm_hw_err {
366 	struct list_head list;
367 	unsigned long long timestamp;
368 };
369 
370 struct hisi_qm_hw_ops {
371 	int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number);
372 	void (*qm_db)(struct hisi_qm *qm, u16 qn,
373 		      u8 cmd, u16 index, u8 priority);
374 	int (*debug_init)(struct hisi_qm *qm);
375 	void (*hw_error_init)(struct hisi_qm *qm);
376 	void (*hw_error_uninit)(struct hisi_qm *qm);
377 	enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm);
378 	int (*set_msi)(struct hisi_qm *qm, bool set);
379 };
380 
381 struct hisi_qm_hw_error {
382 	u32 int_msk;
383 	const char *msg;
384 };
385 
386 static const struct hisi_qm_hw_error qm_hw_error[] = {
387 	{ .int_msk = BIT(0), .msg = "qm_axi_rresp" },
388 	{ .int_msk = BIT(1), .msg = "qm_axi_bresp" },
389 	{ .int_msk = BIT(2), .msg = "qm_ecc_mbit" },
390 	{ .int_msk = BIT(3), .msg = "qm_ecc_1bit" },
391 	{ .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" },
392 	{ .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" },
393 	{ .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" },
394 	{ .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" },
395 	{ .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" },
396 	{ .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" },
397 	{ .int_msk = BIT(10), .msg = "qm_db_timeout" },
398 	{ .int_msk = BIT(11), .msg = "qm_of_fifo_of" },
399 	{ .int_msk = BIT(12), .msg = "qm_db_random_invalid" },
400 	{ .int_msk = BIT(13), .msg = "qm_mailbox_timeout" },
401 	{ .int_msk = BIT(14), .msg = "qm_flr_timeout" },
402 	{ /* sentinel */ }
403 };
404 
405 static const char * const qm_db_timeout[] = {
406 	"sq", "cq", "eq", "aeq",
407 };
408 
409 static const char * const qm_fifo_overflow[] = {
410 	"cq", "eq", "aeq",
411 };
412 
413 static const char * const qp_s[] = {
414 	"none", "init", "start", "stop", "close",
415 };
416 
417 struct qm_typical_qos_table {
418 	u32 start;
419 	u32 end;
420 	u32 val;
421 };
422 
423 /* the qos step is 100 */
424 static struct qm_typical_qos_table shaper_cir_s[] = {
425 	{100, 100, 4},
426 	{200, 200, 3},
427 	{300, 500, 2},
428 	{600, 1000, 1},
429 	{1100, 100000, 0},
430 };
431 
432 static struct qm_typical_qos_table shaper_cbs_s[] = {
433 	{100, 200, 9},
434 	{300, 500, 11},
435 	{600, 1000, 12},
436 	{1100, 10000, 16},
437 	{10100, 25000, 17},
438 	{25100, 50000, 18},
439 	{50100, 100000, 19}
440 };
441 
442 static void qm_irqs_unregister(struct hisi_qm *qm);
443 
444 static bool qm_avail_state(struct hisi_qm *qm, enum qm_state new)
445 {
446 	enum qm_state curr = atomic_read(&qm->status.flags);
447 	bool avail = false;
448 
449 	switch (curr) {
450 	case QM_INIT:
451 		if (new == QM_START || new == QM_CLOSE)
452 			avail = true;
453 		break;
454 	case QM_START:
455 		if (new == QM_STOP)
456 			avail = true;
457 		break;
458 	case QM_STOP:
459 		if (new == QM_CLOSE || new == QM_START)
460 			avail = true;
461 		break;
462 	default:
463 		break;
464 	}
465 
466 	dev_dbg(&qm->pdev->dev, "change qm state from %s to %s\n",
467 		qm_s[curr], qm_s[new]);
468 
469 	if (!avail)
470 		dev_warn(&qm->pdev->dev, "Can not change qm state from %s to %s\n",
471 			 qm_s[curr], qm_s[new]);
472 
473 	return avail;
474 }
475 
476 static bool qm_qp_avail_state(struct hisi_qm *qm, struct hisi_qp *qp,
477 			      enum qp_state new)
478 {
479 	enum qm_state qm_curr = atomic_read(&qm->status.flags);
480 	enum qp_state qp_curr = 0;
481 	bool avail = false;
482 
483 	if (qp)
484 		qp_curr = atomic_read(&qp->qp_status.flags);
485 
486 	switch (new) {
487 	case QP_INIT:
488 		if (qm_curr == QM_START || qm_curr == QM_INIT)
489 			avail = true;
490 		break;
491 	case QP_START:
492 		if ((qm_curr == QM_START && qp_curr == QP_INIT) ||
493 		    (qm_curr == QM_START && qp_curr == QP_STOP))
494 			avail = true;
495 		break;
496 	case QP_STOP:
497 		if ((qm_curr == QM_START && qp_curr == QP_START) ||
498 		    (qp_curr == QP_INIT))
499 			avail = true;
500 		break;
501 	case QP_CLOSE:
502 		if ((qm_curr == QM_START && qp_curr == QP_INIT) ||
503 		    (qm_curr == QM_START && qp_curr == QP_STOP) ||
504 		    (qm_curr == QM_STOP && qp_curr == QP_STOP)  ||
505 		    (qm_curr == QM_STOP && qp_curr == QP_INIT))
506 			avail = true;
507 		break;
508 	default:
509 		break;
510 	}
511 
512 	dev_dbg(&qm->pdev->dev, "change qp state from %s to %s in QM %s\n",
513 		qp_s[qp_curr], qp_s[new], qm_s[qm_curr]);
514 
515 	if (!avail)
516 		dev_warn(&qm->pdev->dev,
517 			 "Can not change qp state from %s to %s in QM %s\n",
518 			 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]);
519 
520 	return avail;
521 }
522 
523 static u32 qm_get_hw_error_status(struct hisi_qm *qm)
524 {
525 	return readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
526 }
527 
528 static u32 qm_get_dev_err_status(struct hisi_qm *qm)
529 {
530 	return qm->err_ini->get_dev_hw_err_status(qm);
531 }
532 
533 /* Check if the error causes the master ooo block */
534 static bool qm_check_dev_error(struct hisi_qm *qm)
535 {
536 	u32 val, dev_val;
537 
538 	if (qm->fun_type == QM_HW_VF)
539 		return false;
540 
541 	val = qm_get_hw_error_status(qm) & qm->err_info.qm_shutdown_mask;
542 	dev_val = qm_get_dev_err_status(qm) & qm->err_info.dev_shutdown_mask;
543 
544 	return val || dev_val;
545 }
546 
547 static int qm_wait_reset_finish(struct hisi_qm *qm)
548 {
549 	int delay = 0;
550 
551 	/* All reset requests need to be queued for processing */
552 	while (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
553 		msleep(++delay);
554 		if (delay > QM_RESET_WAIT_TIMEOUT)
555 			return -EBUSY;
556 	}
557 
558 	return 0;
559 }
560 
561 static int qm_reset_prepare_ready(struct hisi_qm *qm)
562 {
563 	struct pci_dev *pdev = qm->pdev;
564 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
565 
566 	/*
567 	 * PF and VF on host doesnot support resetting at the
568 	 * same time on Kunpeng920.
569 	 */
570 	if (qm->ver < QM_HW_V3)
571 		return qm_wait_reset_finish(pf_qm);
572 
573 	return qm_wait_reset_finish(qm);
574 }
575 
576 static void qm_reset_bit_clear(struct hisi_qm *qm)
577 {
578 	struct pci_dev *pdev = qm->pdev;
579 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
580 
581 	if (qm->ver < QM_HW_V3)
582 		clear_bit(QM_RESETTING, &pf_qm->misc_ctl);
583 
584 	clear_bit(QM_RESETTING, &qm->misc_ctl);
585 }
586 
587 static void qm_mb_pre_init(struct qm_mailbox *mailbox, u8 cmd,
588 			   u64 base, u16 queue, bool op)
589 {
590 	mailbox->w0 = cpu_to_le16((cmd) |
591 		((op) ? 0x1 << QM_MB_OP_SHIFT : 0) |
592 		(0x1 << QM_MB_BUSY_SHIFT));
593 	mailbox->queue_num = cpu_to_le16(queue);
594 	mailbox->base_l = cpu_to_le32(lower_32_bits(base));
595 	mailbox->base_h = cpu_to_le32(upper_32_bits(base));
596 	mailbox->rsvd = 0;
597 }
598 
599 /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */
600 int hisi_qm_wait_mb_ready(struct hisi_qm *qm)
601 {
602 	u32 val;
603 
604 	return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE,
605 					  val, !((val >> QM_MB_BUSY_SHIFT) &
606 					  0x1), POLL_PERIOD, POLL_TIMEOUT);
607 }
608 EXPORT_SYMBOL_GPL(hisi_qm_wait_mb_ready);
609 
610 /* 128 bit should be written to hardware at one time to trigger a mailbox */
611 static void qm_mb_write(struct hisi_qm *qm, const void *src)
612 {
613 	void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE;
614 
615 #if IS_ENABLED(CONFIG_ARM64)
616 	unsigned long tmp0 = 0, tmp1 = 0;
617 #endif
618 
619 	if (!IS_ENABLED(CONFIG_ARM64)) {
620 		memcpy_toio(fun_base, src, 16);
621 		dma_wmb();
622 		return;
623 	}
624 
625 #if IS_ENABLED(CONFIG_ARM64)
626 	asm volatile("ldp %0, %1, %3\n"
627 		     "stp %0, %1, %2\n"
628 		     "dmb oshst\n"
629 		     : "=&r" (tmp0),
630 		       "=&r" (tmp1),
631 		       "+Q" (*((char __iomem *)fun_base))
632 		     : "Q" (*((char *)src))
633 		     : "memory");
634 #endif
635 }
636 
637 static int qm_mb_nolock(struct hisi_qm *qm, struct qm_mailbox *mailbox)
638 {
639 	int ret;
640 	u32 val;
641 
642 	if (unlikely(hisi_qm_wait_mb_ready(qm))) {
643 		dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n");
644 		ret = -EBUSY;
645 		goto mb_busy;
646 	}
647 
648 	qm_mb_write(qm, mailbox);
649 
650 	if (unlikely(hisi_qm_wait_mb_ready(qm))) {
651 		dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n");
652 		ret = -ETIMEDOUT;
653 		goto mb_busy;
654 	}
655 
656 	val = readl(qm->io_base + QM_MB_CMD_SEND_BASE);
657 	if (val & QM_MB_STATUS_MASK) {
658 		dev_err(&qm->pdev->dev, "QM mailbox operation failed!\n");
659 		ret = -EIO;
660 		goto mb_busy;
661 	}
662 
663 	return 0;
664 
665 mb_busy:
666 	atomic64_inc(&qm->debug.dfx.mb_err_cnt);
667 	return ret;
668 }
669 
670 int hisi_qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue,
671 	       bool op)
672 {
673 	struct qm_mailbox mailbox;
674 	int ret;
675 
676 	dev_dbg(&qm->pdev->dev, "QM mailbox request to q%u: %u-%llx\n",
677 		queue, cmd, (unsigned long long)dma_addr);
678 
679 	qm_mb_pre_init(&mailbox, cmd, dma_addr, queue, op);
680 
681 	mutex_lock(&qm->mailbox_lock);
682 	ret = qm_mb_nolock(qm, &mailbox);
683 	mutex_unlock(&qm->mailbox_lock);
684 
685 	return ret;
686 }
687 EXPORT_SYMBOL_GPL(hisi_qm_mb);
688 
689 static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
690 {
691 	u64 doorbell;
692 
693 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) |
694 		   ((u64)index << QM_DB_INDEX_SHIFT_V1)  |
695 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V1);
696 
697 	writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1);
698 }
699 
700 static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
701 {
702 	void __iomem *io_base = qm->io_base;
703 	u16 randata = 0;
704 	u64 doorbell;
705 
706 	if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ)
707 		io_base = qm->db_io_base + (u64)qn * qm->db_interval +
708 			  QM_DOORBELL_SQ_CQ_BASE_V2;
709 	else
710 		io_base += QM_DOORBELL_EQ_AEQ_BASE_V2;
711 
712 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) |
713 		   ((u64)randata << QM_DB_RAND_SHIFT_V2) |
714 		   ((u64)index << QM_DB_INDEX_SHIFT_V2) |
715 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V2);
716 
717 	writeq(doorbell, io_base);
718 }
719 
720 static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
721 {
722 	dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n",
723 		qn, cmd, index);
724 
725 	qm->ops->qm_db(qm, qn, cmd, index, priority);
726 }
727 
728 static void qm_disable_clock_gate(struct hisi_qm *qm)
729 {
730 	u32 val;
731 
732 	/* if qm enables clock gating in Kunpeng930, qos will be inaccurate. */
733 	if (qm->ver < QM_HW_V3)
734 		return;
735 
736 	val = readl(qm->io_base + QM_PM_CTRL);
737 	val |= QM_IDLE_DISABLE;
738 	writel(val, qm->io_base +  QM_PM_CTRL);
739 }
740 
741 static int qm_dev_mem_reset(struct hisi_qm *qm)
742 {
743 	u32 val;
744 
745 	writel(0x1, qm->io_base + QM_MEM_START_INIT);
746 	return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val,
747 					  val & BIT(0), POLL_PERIOD,
748 					  POLL_TIMEOUT);
749 }
750 
751 /**
752  * hisi_qm_get_hw_info() - Get device information.
753  * @qm: The qm which want to get information.
754  * @info_table: Array for storing device information.
755  * @index: Index in info_table.
756  * @is_read: Whether read from reg, 0: not support read from reg.
757  *
758  * This function returns device information the caller needs.
759  */
760 u32 hisi_qm_get_hw_info(struct hisi_qm *qm,
761 			const struct hisi_qm_cap_info *info_table,
762 			u32 index, bool is_read)
763 {
764 	u32 val;
765 
766 	switch (qm->ver) {
767 	case QM_HW_V1:
768 		return info_table[index].v1_val;
769 	case QM_HW_V2:
770 		return info_table[index].v2_val;
771 	default:
772 		if (!is_read)
773 			return info_table[index].v3_val;
774 
775 		val = readl(qm->io_base + info_table[index].offset);
776 		return (val >> info_table[index].shift) & info_table[index].mask;
777 	}
778 }
779 EXPORT_SYMBOL_GPL(hisi_qm_get_hw_info);
780 
781 static void qm_get_xqc_depth(struct hisi_qm *qm, u16 *low_bits,
782 			     u16 *high_bits, enum qm_basic_type type)
783 {
784 	u32 depth;
785 
786 	depth = hisi_qm_get_hw_info(qm, qm_basic_info, type, qm->cap_ver);
787 	*low_bits = depth & QM_XQ_DEPTH_MASK;
788 	*high_bits = (depth >> QM_XQ_DEPTH_SHIFT) & QM_XQ_DEPTH_MASK;
789 }
790 
791 static u32 qm_get_irq_num(struct hisi_qm *qm)
792 {
793 	if (qm->fun_type == QM_HW_PF)
794 		return hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF_IRQ_NUM_CAP, qm->cap_ver);
795 
796 	return hisi_qm_get_hw_info(qm, qm_basic_info, QM_VF_IRQ_NUM_CAP, qm->cap_ver);
797 }
798 
799 static int qm_pm_get_sync(struct hisi_qm *qm)
800 {
801 	struct device *dev = &qm->pdev->dev;
802 	int ret;
803 
804 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
805 		return 0;
806 
807 	ret = pm_runtime_resume_and_get(dev);
808 	if (ret < 0) {
809 		dev_err(dev, "failed to get_sync(%d).\n", ret);
810 		return ret;
811 	}
812 
813 	return 0;
814 }
815 
816 static void qm_pm_put_sync(struct hisi_qm *qm)
817 {
818 	struct device *dev = &qm->pdev->dev;
819 
820 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
821 		return;
822 
823 	pm_runtime_mark_last_busy(dev);
824 	pm_runtime_put_autosuspend(dev);
825 }
826 
827 static void qm_cq_head_update(struct hisi_qp *qp)
828 {
829 	if (qp->qp_status.cq_head == qp->cq_depth - 1) {
830 		qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase;
831 		qp->qp_status.cq_head = 0;
832 	} else {
833 		qp->qp_status.cq_head++;
834 	}
835 }
836 
837 static void qm_poll_req_cb(struct hisi_qp *qp)
838 {
839 	struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
840 	struct hisi_qm *qm = qp->qm;
841 
842 	while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
843 		dma_rmb();
844 		qp->req_cb(qp, qp->sqe + qm->sqe_size *
845 			   le16_to_cpu(cqe->sq_head));
846 		qm_cq_head_update(qp);
847 		cqe = qp->cqe + qp->qp_status.cq_head;
848 		qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ,
849 		      qp->qp_status.cq_head, 0);
850 		atomic_dec(&qp->qp_status.used);
851 	}
852 
853 	/* set c_flag */
854 	qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, qp->qp_status.cq_head, 1);
855 }
856 
857 static int qm_get_complete_eqe_num(struct hisi_qm_poll_data *poll_data)
858 {
859 	struct hisi_qm *qm = poll_data->qm;
860 	struct qm_eqe *eqe = qm->eqe + qm->status.eq_head;
861 	u16 eq_depth = qm->eq_depth;
862 	int eqe_num = 0;
863 	u16 cqn;
864 
865 	while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) {
866 		cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK;
867 		poll_data->qp_finish_id[eqe_num] = cqn;
868 		eqe_num++;
869 
870 		if (qm->status.eq_head == eq_depth - 1) {
871 			qm->status.eqc_phase = !qm->status.eqc_phase;
872 			eqe = qm->eqe;
873 			qm->status.eq_head = 0;
874 		} else {
875 			eqe++;
876 			qm->status.eq_head++;
877 		}
878 
879 		if (eqe_num == (eq_depth >> 1) - 1)
880 			break;
881 	}
882 
883 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
884 
885 	return eqe_num;
886 }
887 
888 static void qm_work_process(struct work_struct *work)
889 {
890 	struct hisi_qm_poll_data *poll_data =
891 		container_of(work, struct hisi_qm_poll_data, work);
892 	struct hisi_qm *qm = poll_data->qm;
893 	struct hisi_qp *qp;
894 	int eqe_num, i;
895 
896 	/* Get qp id of completed tasks and re-enable the interrupt. */
897 	eqe_num = qm_get_complete_eqe_num(poll_data);
898 	for (i = eqe_num - 1; i >= 0; i--) {
899 		qp = &qm->qp_array[poll_data->qp_finish_id[i]];
900 		if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP))
901 			continue;
902 
903 		if (qp->event_cb) {
904 			qp->event_cb(qp);
905 			continue;
906 		}
907 
908 		if (likely(qp->req_cb))
909 			qm_poll_req_cb(qp);
910 	}
911 }
912 
913 static bool do_qm_eq_irq(struct hisi_qm *qm)
914 {
915 	struct qm_eqe *eqe = qm->eqe + qm->status.eq_head;
916 	struct hisi_qm_poll_data *poll_data;
917 	u16 cqn;
918 
919 	if (!readl(qm->io_base + QM_VF_EQ_INT_SOURCE))
920 		return false;
921 
922 	if (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) {
923 		cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK;
924 		poll_data = &qm->poll_data[cqn];
925 		queue_work(qm->wq, &poll_data->work);
926 
927 		return true;
928 	}
929 
930 	return false;
931 }
932 
933 static irqreturn_t qm_eq_irq(int irq, void *data)
934 {
935 	struct hisi_qm *qm = data;
936 	bool ret;
937 
938 	ret = do_qm_eq_irq(qm);
939 	if (ret)
940 		return IRQ_HANDLED;
941 
942 	atomic64_inc(&qm->debug.dfx.err_irq_cnt);
943 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
944 
945 	return IRQ_NONE;
946 }
947 
948 static irqreturn_t qm_mb_cmd_irq(int irq, void *data)
949 {
950 	struct hisi_qm *qm = data;
951 	u32 val;
952 
953 	val = readl(qm->io_base + QM_IFC_INT_STATUS);
954 	val &= QM_IFC_INT_STATUS_MASK;
955 	if (!val)
956 		return IRQ_NONE;
957 
958 	if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl)) {
959 		dev_warn(&qm->pdev->dev, "Driver is down, message cannot be processed!\n");
960 		return IRQ_HANDLED;
961 	}
962 
963 	schedule_work(&qm->cmd_process);
964 
965 	return IRQ_HANDLED;
966 }
967 
968 static void qm_set_qp_disable(struct hisi_qp *qp, int offset)
969 {
970 	u32 *addr;
971 
972 	if (qp->is_in_kernel)
973 		return;
974 
975 	addr = (u32 *)(qp->qdma.va + qp->qdma.size) - offset;
976 	*addr = 1;
977 
978 	/* make sure setup is completed */
979 	smp_wmb();
980 }
981 
982 static void qm_disable_qp(struct hisi_qm *qm, u32 qp_id)
983 {
984 	struct hisi_qp *qp = &qm->qp_array[qp_id];
985 
986 	qm_set_qp_disable(qp, QM_RESET_STOP_TX_OFFSET);
987 	hisi_qm_stop_qp(qp);
988 	qm_set_qp_disable(qp, QM_RESET_STOP_RX_OFFSET);
989 }
990 
991 static void qm_reset_function(struct hisi_qm *qm)
992 {
993 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
994 	struct device *dev = &qm->pdev->dev;
995 	int ret;
996 
997 	if (qm_check_dev_error(pf_qm))
998 		return;
999 
1000 	ret = qm_reset_prepare_ready(qm);
1001 	if (ret) {
1002 		dev_err(dev, "reset function not ready\n");
1003 		return;
1004 	}
1005 
1006 	ret = hisi_qm_stop(qm, QM_DOWN);
1007 	if (ret) {
1008 		dev_err(dev, "failed to stop qm when reset function\n");
1009 		goto clear_bit;
1010 	}
1011 
1012 	ret = hisi_qm_start(qm);
1013 	if (ret)
1014 		dev_err(dev, "failed to start qm when reset function\n");
1015 
1016 clear_bit:
1017 	qm_reset_bit_clear(qm);
1018 }
1019 
1020 static irqreturn_t qm_aeq_thread(int irq, void *data)
1021 {
1022 	struct hisi_qm *qm = data;
1023 	struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head;
1024 	u16 aeq_depth = qm->aeq_depth;
1025 	u32 type, qp_id;
1026 
1027 	while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) {
1028 		type = (le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT) &
1029 			QM_AEQE_TYPE_MASK;
1030 		qp_id = le32_to_cpu(aeqe->dw0) & QM_AEQE_CQN_MASK;
1031 
1032 		switch (type) {
1033 		case QM_EQ_OVERFLOW:
1034 			dev_err(&qm->pdev->dev, "eq overflow, reset function\n");
1035 			qm_reset_function(qm);
1036 			return IRQ_HANDLED;
1037 		case QM_CQ_OVERFLOW:
1038 			dev_err(&qm->pdev->dev, "cq overflow, stop qp(%u)\n",
1039 				qp_id);
1040 			fallthrough;
1041 		case QM_CQE_ERROR:
1042 			qm_disable_qp(qm, qp_id);
1043 			break;
1044 		default:
1045 			dev_err(&qm->pdev->dev, "unknown error type %u\n",
1046 				type);
1047 			break;
1048 		}
1049 
1050 		if (qm->status.aeq_head == aeq_depth - 1) {
1051 			qm->status.aeqc_phase = !qm->status.aeqc_phase;
1052 			aeqe = qm->aeqe;
1053 			qm->status.aeq_head = 0;
1054 		} else {
1055 			aeqe++;
1056 			qm->status.aeq_head++;
1057 		}
1058 	}
1059 
1060 	qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
1061 
1062 	return IRQ_HANDLED;
1063 }
1064 
1065 static irqreturn_t qm_aeq_irq(int irq, void *data)
1066 {
1067 	struct hisi_qm *qm = data;
1068 
1069 	atomic64_inc(&qm->debug.dfx.aeq_irq_cnt);
1070 	if (!readl(qm->io_base + QM_VF_AEQ_INT_SOURCE))
1071 		return IRQ_NONE;
1072 
1073 	return IRQ_WAKE_THREAD;
1074 }
1075 
1076 static void qm_init_qp_status(struct hisi_qp *qp)
1077 {
1078 	struct hisi_qp_status *qp_status = &qp->qp_status;
1079 
1080 	qp_status->sq_tail = 0;
1081 	qp_status->cq_head = 0;
1082 	qp_status->cqc_phase = true;
1083 	atomic_set(&qp_status->used, 0);
1084 }
1085 
1086 static void qm_init_prefetch(struct hisi_qm *qm)
1087 {
1088 	struct device *dev = &qm->pdev->dev;
1089 	u32 page_type = 0x0;
1090 
1091 	if (!test_bit(QM_SUPPORT_SVA_PREFETCH, &qm->caps))
1092 		return;
1093 
1094 	switch (PAGE_SIZE) {
1095 	case SZ_4K:
1096 		page_type = 0x0;
1097 		break;
1098 	case SZ_16K:
1099 		page_type = 0x1;
1100 		break;
1101 	case SZ_64K:
1102 		page_type = 0x2;
1103 		break;
1104 	default:
1105 		dev_err(dev, "system page size is not support: %lu, default set to 4KB",
1106 			PAGE_SIZE);
1107 	}
1108 
1109 	writel(page_type, qm->io_base + QM_PAGE_SIZE);
1110 }
1111 
1112 /*
1113  * acc_shaper_para_calc() Get the IR value by the qos formula, the return value
1114  * is the expected qos calculated.
1115  * the formula:
1116  * IR = X Mbps if ir = 1 means IR = 100 Mbps, if ir = 10000 means = 10Gbps
1117  *
1118  *		IR_b * (2 ^ IR_u) * 8000
1119  * IR(Mbps) = -------------------------
1120  *		  Tick * (2 ^ IR_s)
1121  */
1122 static u32 acc_shaper_para_calc(u64 cir_b, u64 cir_u, u64 cir_s)
1123 {
1124 	return ((cir_b * QM_QOS_DIVISOR_CLK) * (1 << cir_u)) /
1125 					(QM_QOS_TICK * (1 << cir_s));
1126 }
1127 
1128 static u32 acc_shaper_calc_cbs_s(u32 ir)
1129 {
1130 	int table_size = ARRAY_SIZE(shaper_cbs_s);
1131 	int i;
1132 
1133 	for (i = 0; i < table_size; i++) {
1134 		if (ir >= shaper_cbs_s[i].start && ir <= shaper_cbs_s[i].end)
1135 			return shaper_cbs_s[i].val;
1136 	}
1137 
1138 	return QM_SHAPER_MIN_CBS_S;
1139 }
1140 
1141 static u32 acc_shaper_calc_cir_s(u32 ir)
1142 {
1143 	int table_size = ARRAY_SIZE(shaper_cir_s);
1144 	int i;
1145 
1146 	for (i = 0; i < table_size; i++) {
1147 		if (ir >= shaper_cir_s[i].start && ir <= shaper_cir_s[i].end)
1148 			return shaper_cir_s[i].val;
1149 	}
1150 
1151 	return 0;
1152 }
1153 
1154 static int qm_get_shaper_para(u32 ir, struct qm_shaper_factor *factor)
1155 {
1156 	u32 cir_b, cir_u, cir_s, ir_calc;
1157 	u32 error_rate;
1158 
1159 	factor->cbs_s = acc_shaper_calc_cbs_s(ir);
1160 	cir_s = acc_shaper_calc_cir_s(ir);
1161 
1162 	for (cir_b = QM_QOS_MIN_CIR_B; cir_b <= QM_QOS_MAX_CIR_B; cir_b++) {
1163 		for (cir_u = 0; cir_u <= QM_QOS_MAX_CIR_U; cir_u++) {
1164 			ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s);
1165 
1166 			error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir;
1167 			if (error_rate <= QM_QOS_MIN_ERROR_RATE) {
1168 				factor->cir_b = cir_b;
1169 				factor->cir_u = cir_u;
1170 				factor->cir_s = cir_s;
1171 				return 0;
1172 			}
1173 		}
1174 	}
1175 
1176 	return -EINVAL;
1177 }
1178 
1179 static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base,
1180 			    u32 number, struct qm_shaper_factor *factor)
1181 {
1182 	u64 tmp = 0;
1183 
1184 	if (number > 0) {
1185 		switch (type) {
1186 		case SQC_VFT:
1187 			if (qm->ver == QM_HW_V1) {
1188 				tmp = QM_SQC_VFT_BUF_SIZE	|
1189 				      QM_SQC_VFT_SQC_SIZE	|
1190 				      QM_SQC_VFT_INDEX_NUMBER	|
1191 				      QM_SQC_VFT_VALID		|
1192 				      (u64)base << QM_SQC_VFT_START_SQN_SHIFT;
1193 			} else {
1194 				tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT |
1195 				      QM_SQC_VFT_VALID |
1196 				      (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT;
1197 			}
1198 			break;
1199 		case CQC_VFT:
1200 			if (qm->ver == QM_HW_V1) {
1201 				tmp = QM_CQC_VFT_BUF_SIZE	|
1202 				      QM_CQC_VFT_SQC_SIZE	|
1203 				      QM_CQC_VFT_INDEX_NUMBER	|
1204 				      QM_CQC_VFT_VALID;
1205 			} else {
1206 				tmp = QM_CQC_VFT_VALID;
1207 			}
1208 			break;
1209 		case SHAPER_VFT:
1210 			if (factor) {
1211 				tmp = factor->cir_b |
1212 				(factor->cir_u << QM_SHAPER_FACTOR_CIR_U_SHIFT) |
1213 				(factor->cir_s << QM_SHAPER_FACTOR_CIR_S_SHIFT) |
1214 				(QM_SHAPER_CBS_B << QM_SHAPER_FACTOR_CBS_B_SHIFT) |
1215 				(factor->cbs_s << QM_SHAPER_FACTOR_CBS_S_SHIFT);
1216 			}
1217 			break;
1218 		}
1219 	}
1220 
1221 	writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L);
1222 	writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H);
1223 }
1224 
1225 static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type,
1226 			     u32 fun_num, u32 base, u32 number)
1227 {
1228 	struct qm_shaper_factor *factor = NULL;
1229 	unsigned int val;
1230 	int ret;
1231 
1232 	if (type == SHAPER_VFT && test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
1233 		factor = &qm->factor[fun_num];
1234 
1235 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
1236 					 val & BIT(0), POLL_PERIOD,
1237 					 POLL_TIMEOUT);
1238 	if (ret)
1239 		return ret;
1240 
1241 	writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR);
1242 	writel(type, qm->io_base + QM_VFT_CFG_TYPE);
1243 	if (type == SHAPER_VFT)
1244 		fun_num |= base << QM_SHAPER_VFT_OFFSET;
1245 
1246 	writel(fun_num, qm->io_base + QM_VFT_CFG);
1247 
1248 	qm_vft_data_cfg(qm, type, base, number, factor);
1249 
1250 	writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
1251 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
1252 
1253 	return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
1254 					  val & BIT(0), POLL_PERIOD,
1255 					  POLL_TIMEOUT);
1256 }
1257 
1258 static int qm_shaper_init_vft(struct hisi_qm *qm, u32 fun_num)
1259 {
1260 	u32 qos = qm->factor[fun_num].func_qos;
1261 	int ret, i;
1262 
1263 	ret = qm_get_shaper_para(qos * QM_QOS_RATE, &qm->factor[fun_num]);
1264 	if (ret) {
1265 		dev_err(&qm->pdev->dev, "failed to calculate shaper parameter!\n");
1266 		return ret;
1267 	}
1268 	writel(qm->type_rate, qm->io_base + QM_SHAPER_CFG);
1269 	for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) {
1270 		/* The base number of queue reuse for different alg type */
1271 		ret = qm_set_vft_common(qm, SHAPER_VFT, fun_num, i, 1);
1272 		if (ret)
1273 			return ret;
1274 	}
1275 
1276 	return 0;
1277 }
1278 
1279 /* The config should be conducted after qm_dev_mem_reset() */
1280 static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
1281 			      u32 number)
1282 {
1283 	int ret, i;
1284 
1285 	for (i = SQC_VFT; i <= CQC_VFT; i++) {
1286 		ret = qm_set_vft_common(qm, i, fun_num, base, number);
1287 		if (ret)
1288 			return ret;
1289 	}
1290 
1291 	/* init default shaper qos val */
1292 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) {
1293 		ret = qm_shaper_init_vft(qm, fun_num);
1294 		if (ret)
1295 			goto back_sqc_cqc;
1296 	}
1297 
1298 	return 0;
1299 back_sqc_cqc:
1300 	for (i = SQC_VFT; i <= CQC_VFT; i++)
1301 		qm_set_vft_common(qm, i, fun_num, 0, 0);
1302 
1303 	return ret;
1304 }
1305 
1306 static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number)
1307 {
1308 	u64 sqc_vft;
1309 	int ret;
1310 
1311 	ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1);
1312 	if (ret)
1313 		return ret;
1314 
1315 	sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
1316 		  ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
1317 	*base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2);
1318 	*number = (QM_SQC_VFT_NUM_MASK_V2 &
1319 		   (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1;
1320 
1321 	return 0;
1322 }
1323 
1324 void *hisi_qm_ctx_alloc(struct hisi_qm *qm, size_t ctx_size,
1325 			  dma_addr_t *dma_addr)
1326 {
1327 	struct device *dev = &qm->pdev->dev;
1328 	void *ctx_addr;
1329 
1330 	ctx_addr = kzalloc(ctx_size, GFP_KERNEL);
1331 	if (!ctx_addr)
1332 		return ERR_PTR(-ENOMEM);
1333 
1334 	*dma_addr = dma_map_single(dev, ctx_addr, ctx_size, DMA_FROM_DEVICE);
1335 	if (dma_mapping_error(dev, *dma_addr)) {
1336 		dev_err(dev, "DMA mapping error!\n");
1337 		kfree(ctx_addr);
1338 		return ERR_PTR(-ENOMEM);
1339 	}
1340 
1341 	return ctx_addr;
1342 }
1343 
1344 void hisi_qm_ctx_free(struct hisi_qm *qm, size_t ctx_size,
1345 			const void *ctx_addr, dma_addr_t *dma_addr)
1346 {
1347 	struct device *dev = &qm->pdev->dev;
1348 
1349 	dma_unmap_single(dev, *dma_addr, ctx_size, DMA_FROM_DEVICE);
1350 	kfree(ctx_addr);
1351 }
1352 
1353 static int qm_dump_sqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id)
1354 {
1355 	return hisi_qm_mb(qm, QM_MB_CMD_SQC, dma_addr, qp_id, 1);
1356 }
1357 
1358 static int qm_dump_cqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id)
1359 {
1360 	return hisi_qm_mb(qm, QM_MB_CMD_CQC, dma_addr, qp_id, 1);
1361 }
1362 
1363 static void qm_hw_error_init_v1(struct hisi_qm *qm)
1364 {
1365 	writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK);
1366 }
1367 
1368 static void qm_hw_error_cfg(struct hisi_qm *qm)
1369 {
1370 	struct hisi_qm_err_info *err_info = &qm->err_info;
1371 
1372 	qm->error_mask = err_info->nfe | err_info->ce | err_info->fe;
1373 	/* clear QM hw residual error source */
1374 	writel(qm->error_mask, qm->io_base + QM_ABNORMAL_INT_SOURCE);
1375 
1376 	/* configure error type */
1377 	writel(err_info->ce, qm->io_base + QM_RAS_CE_ENABLE);
1378 	writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD);
1379 	writel(err_info->nfe, qm->io_base + QM_RAS_NFE_ENABLE);
1380 	writel(err_info->fe, qm->io_base + QM_RAS_FE_ENABLE);
1381 }
1382 
1383 static void qm_hw_error_init_v2(struct hisi_qm *qm)
1384 {
1385 	u32 irq_unmask;
1386 
1387 	qm_hw_error_cfg(qm);
1388 
1389 	irq_unmask = ~qm->error_mask;
1390 	irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1391 	writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
1392 }
1393 
1394 static void qm_hw_error_uninit_v2(struct hisi_qm *qm)
1395 {
1396 	u32 irq_mask = qm->error_mask;
1397 
1398 	irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1399 	writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK);
1400 }
1401 
1402 static void qm_hw_error_init_v3(struct hisi_qm *qm)
1403 {
1404 	u32 irq_unmask;
1405 
1406 	qm_hw_error_cfg(qm);
1407 
1408 	/* enable close master ooo when hardware error happened */
1409 	writel(qm->err_info.qm_shutdown_mask, qm->io_base + QM_OOO_SHUTDOWN_SEL);
1410 
1411 	irq_unmask = ~qm->error_mask;
1412 	irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1413 	writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
1414 }
1415 
1416 static void qm_hw_error_uninit_v3(struct hisi_qm *qm)
1417 {
1418 	u32 irq_mask = qm->error_mask;
1419 
1420 	irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1421 	writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK);
1422 
1423 	/* disable close master ooo when hardware error happened */
1424 	writel(0x0, qm->io_base + QM_OOO_SHUTDOWN_SEL);
1425 }
1426 
1427 static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status)
1428 {
1429 	const struct hisi_qm_hw_error *err;
1430 	struct device *dev = &qm->pdev->dev;
1431 	u32 reg_val, type, vf_num;
1432 	int i;
1433 
1434 	for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) {
1435 		err = &qm_hw_error[i];
1436 		if (!(err->int_msk & error_status))
1437 			continue;
1438 
1439 		dev_err(dev, "%s [error status=0x%x] found\n",
1440 			err->msg, err->int_msk);
1441 
1442 		if (err->int_msk & QM_DB_TIMEOUT) {
1443 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF01);
1444 			type = (reg_val & QM_DB_TIMEOUT_TYPE) >>
1445 			       QM_DB_TIMEOUT_TYPE_SHIFT;
1446 			vf_num = reg_val & QM_DB_TIMEOUT_VF;
1447 			dev_err(dev, "qm %s doorbell timeout in function %u\n",
1448 				qm_db_timeout[type], vf_num);
1449 		} else if (err->int_msk & QM_OF_FIFO_OF) {
1450 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF00);
1451 			type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >>
1452 			       QM_FIFO_OVERFLOW_TYPE_SHIFT;
1453 			vf_num = reg_val & QM_FIFO_OVERFLOW_VF;
1454 
1455 			if (type < ARRAY_SIZE(qm_fifo_overflow))
1456 				dev_err(dev, "qm %s fifo overflow in function %u\n",
1457 					qm_fifo_overflow[type], vf_num);
1458 			else
1459 				dev_err(dev, "unknown error type\n");
1460 		}
1461 	}
1462 }
1463 
1464 static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm)
1465 {
1466 	u32 error_status, tmp;
1467 
1468 	/* read err sts */
1469 	tmp = readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
1470 	error_status = qm->error_mask & tmp;
1471 
1472 	if (error_status) {
1473 		if (error_status & QM_ECC_MBIT)
1474 			qm->err_status.is_qm_ecc_mbit = true;
1475 
1476 		qm_log_hw_error(qm, error_status);
1477 		if (error_status & qm->err_info.qm_reset_mask)
1478 			return ACC_ERR_NEED_RESET;
1479 
1480 		writel(error_status, qm->io_base + QM_ABNORMAL_INT_SOURCE);
1481 		writel(qm->err_info.nfe, qm->io_base + QM_RAS_NFE_ENABLE);
1482 	}
1483 
1484 	return ACC_ERR_RECOVERED;
1485 }
1486 
1487 static int qm_get_mb_cmd(struct hisi_qm *qm, u64 *msg, u16 fun_num)
1488 {
1489 	struct qm_mailbox mailbox;
1490 	int ret;
1491 
1492 	qm_mb_pre_init(&mailbox, QM_MB_CMD_DST, 0, fun_num, 0);
1493 	mutex_lock(&qm->mailbox_lock);
1494 	ret = qm_mb_nolock(qm, &mailbox);
1495 	if (ret)
1496 		goto err_unlock;
1497 
1498 	*msg = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
1499 		  ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
1500 
1501 err_unlock:
1502 	mutex_unlock(&qm->mailbox_lock);
1503 	return ret;
1504 }
1505 
1506 static void qm_clear_cmd_interrupt(struct hisi_qm *qm, u64 vf_mask)
1507 {
1508 	u32 val;
1509 
1510 	if (qm->fun_type == QM_HW_PF)
1511 		writeq(vf_mask, qm->io_base + QM_IFC_INT_SOURCE_P);
1512 
1513 	val = readl(qm->io_base + QM_IFC_INT_SOURCE_V);
1514 	val |= QM_IFC_INT_SOURCE_MASK;
1515 	writel(val, qm->io_base + QM_IFC_INT_SOURCE_V);
1516 }
1517 
1518 static void qm_handle_vf_msg(struct hisi_qm *qm, u32 vf_id)
1519 {
1520 	struct device *dev = &qm->pdev->dev;
1521 	u32 cmd;
1522 	u64 msg;
1523 	int ret;
1524 
1525 	ret = qm_get_mb_cmd(qm, &msg, vf_id);
1526 	if (ret) {
1527 		dev_err(dev, "failed to get msg from VF(%u)!\n", vf_id);
1528 		return;
1529 	}
1530 
1531 	cmd = msg & QM_MB_CMD_DATA_MASK;
1532 	switch (cmd) {
1533 	case QM_VF_PREPARE_FAIL:
1534 		dev_err(dev, "failed to stop VF(%u)!\n", vf_id);
1535 		break;
1536 	case QM_VF_START_FAIL:
1537 		dev_err(dev, "failed to start VF(%u)!\n", vf_id);
1538 		break;
1539 	case QM_VF_PREPARE_DONE:
1540 	case QM_VF_START_DONE:
1541 		break;
1542 	default:
1543 		dev_err(dev, "unsupported cmd %u sent by VF(%u)!\n", cmd, vf_id);
1544 		break;
1545 	}
1546 }
1547 
1548 static int qm_wait_vf_prepare_finish(struct hisi_qm *qm)
1549 {
1550 	struct device *dev = &qm->pdev->dev;
1551 	u32 vfs_num = qm->vfs_num;
1552 	int cnt = 0;
1553 	int ret = 0;
1554 	u64 val;
1555 	u32 i;
1556 
1557 	if (!qm->vfs_num || !test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
1558 		return 0;
1559 
1560 	while (true) {
1561 		val = readq(qm->io_base + QM_IFC_INT_SOURCE_P);
1562 		/* All VFs send command to PF, break */
1563 		if ((val & GENMASK(vfs_num, 1)) == GENMASK(vfs_num, 1))
1564 			break;
1565 
1566 		if (++cnt > QM_MAX_PF_WAIT_COUNT) {
1567 			ret = -EBUSY;
1568 			break;
1569 		}
1570 
1571 		msleep(QM_WAIT_DST_ACK);
1572 	}
1573 
1574 	/* PF check VFs msg */
1575 	for (i = 1; i <= vfs_num; i++) {
1576 		if (val & BIT(i))
1577 			qm_handle_vf_msg(qm, i);
1578 		else
1579 			dev_err(dev, "VF(%u) not ping PF!\n", i);
1580 	}
1581 
1582 	/* PF clear interrupt to ack VFs */
1583 	qm_clear_cmd_interrupt(qm, val);
1584 
1585 	return ret;
1586 }
1587 
1588 static void qm_trigger_vf_interrupt(struct hisi_qm *qm, u32 fun_num)
1589 {
1590 	u32 val;
1591 
1592 	val = readl(qm->io_base + QM_IFC_INT_CFG);
1593 	val &= ~QM_IFC_SEND_ALL_VFS;
1594 	val |= fun_num;
1595 	writel(val, qm->io_base + QM_IFC_INT_CFG);
1596 
1597 	val = readl(qm->io_base + QM_IFC_INT_SET_P);
1598 	val |= QM_IFC_INT_SET_MASK;
1599 	writel(val, qm->io_base + QM_IFC_INT_SET_P);
1600 }
1601 
1602 static void qm_trigger_pf_interrupt(struct hisi_qm *qm)
1603 {
1604 	u32 val;
1605 
1606 	val = readl(qm->io_base + QM_IFC_INT_SET_V);
1607 	val |= QM_IFC_INT_SET_MASK;
1608 	writel(val, qm->io_base + QM_IFC_INT_SET_V);
1609 }
1610 
1611 static int qm_ping_single_vf(struct hisi_qm *qm, u64 cmd, u32 fun_num)
1612 {
1613 	struct device *dev = &qm->pdev->dev;
1614 	struct qm_mailbox mailbox;
1615 	int cnt = 0;
1616 	u64 val;
1617 	int ret;
1618 
1619 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, fun_num, 0);
1620 	mutex_lock(&qm->mailbox_lock);
1621 	ret = qm_mb_nolock(qm, &mailbox);
1622 	if (ret) {
1623 		dev_err(dev, "failed to send command to vf(%u)!\n", fun_num);
1624 		goto err_unlock;
1625 	}
1626 
1627 	qm_trigger_vf_interrupt(qm, fun_num);
1628 	while (true) {
1629 		msleep(QM_WAIT_DST_ACK);
1630 		val = readq(qm->io_base + QM_IFC_READY_STATUS);
1631 		/* if VF respond, PF notifies VF successfully. */
1632 		if (!(val & BIT(fun_num)))
1633 			goto err_unlock;
1634 
1635 		if (++cnt > QM_MAX_PF_WAIT_COUNT) {
1636 			dev_err(dev, "failed to get response from VF(%u)!\n", fun_num);
1637 			ret = -ETIMEDOUT;
1638 			break;
1639 		}
1640 	}
1641 
1642 err_unlock:
1643 	mutex_unlock(&qm->mailbox_lock);
1644 	return ret;
1645 }
1646 
1647 static int qm_ping_all_vfs(struct hisi_qm *qm, u64 cmd)
1648 {
1649 	struct device *dev = &qm->pdev->dev;
1650 	u32 vfs_num = qm->vfs_num;
1651 	struct qm_mailbox mailbox;
1652 	u64 val = 0;
1653 	int cnt = 0;
1654 	int ret;
1655 	u32 i;
1656 
1657 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, QM_MB_PING_ALL_VFS, 0);
1658 	mutex_lock(&qm->mailbox_lock);
1659 	/* PF sends command to all VFs by mailbox */
1660 	ret = qm_mb_nolock(qm, &mailbox);
1661 	if (ret) {
1662 		dev_err(dev, "failed to send command to VFs!\n");
1663 		mutex_unlock(&qm->mailbox_lock);
1664 		return ret;
1665 	}
1666 
1667 	qm_trigger_vf_interrupt(qm, QM_IFC_SEND_ALL_VFS);
1668 	while (true) {
1669 		msleep(QM_WAIT_DST_ACK);
1670 		val = readq(qm->io_base + QM_IFC_READY_STATUS);
1671 		/* If all VFs acked, PF notifies VFs successfully. */
1672 		if (!(val & GENMASK(vfs_num, 1))) {
1673 			mutex_unlock(&qm->mailbox_lock);
1674 			return 0;
1675 		}
1676 
1677 		if (++cnt > QM_MAX_PF_WAIT_COUNT)
1678 			break;
1679 	}
1680 
1681 	mutex_unlock(&qm->mailbox_lock);
1682 
1683 	/* Check which vf respond timeout. */
1684 	for (i = 1; i <= vfs_num; i++) {
1685 		if (val & BIT(i))
1686 			dev_err(dev, "failed to get response from VF(%u)!\n", i);
1687 	}
1688 
1689 	return -ETIMEDOUT;
1690 }
1691 
1692 static int qm_ping_pf(struct hisi_qm *qm, u64 cmd)
1693 {
1694 	struct qm_mailbox mailbox;
1695 	int cnt = 0;
1696 	u32 val;
1697 	int ret;
1698 
1699 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, 0, 0);
1700 	mutex_lock(&qm->mailbox_lock);
1701 	ret = qm_mb_nolock(qm, &mailbox);
1702 	if (ret) {
1703 		dev_err(&qm->pdev->dev, "failed to send command to PF!\n");
1704 		goto unlock;
1705 	}
1706 
1707 	qm_trigger_pf_interrupt(qm);
1708 	/* Waiting for PF response */
1709 	while (true) {
1710 		msleep(QM_WAIT_DST_ACK);
1711 		val = readl(qm->io_base + QM_IFC_INT_SET_V);
1712 		if (!(val & QM_IFC_INT_STATUS_MASK))
1713 			break;
1714 
1715 		if (++cnt > QM_MAX_VF_WAIT_COUNT) {
1716 			ret = -ETIMEDOUT;
1717 			break;
1718 		}
1719 	}
1720 
1721 unlock:
1722 	mutex_unlock(&qm->mailbox_lock);
1723 	return ret;
1724 }
1725 
1726 static int qm_stop_qp(struct hisi_qp *qp)
1727 {
1728 	return hisi_qm_mb(qp->qm, QM_MB_CMD_STOP_QP, 0, qp->qp_id, 0);
1729 }
1730 
1731 static int qm_set_msi(struct hisi_qm *qm, bool set)
1732 {
1733 	struct pci_dev *pdev = qm->pdev;
1734 
1735 	if (set) {
1736 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
1737 				       0);
1738 	} else {
1739 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
1740 				       ACC_PEH_MSI_DISABLE);
1741 		if (qm->err_status.is_qm_ecc_mbit ||
1742 		    qm->err_status.is_dev_ecc_mbit)
1743 			return 0;
1744 
1745 		mdelay(1);
1746 		if (readl(qm->io_base + QM_PEH_DFX_INFO0))
1747 			return -EFAULT;
1748 	}
1749 
1750 	return 0;
1751 }
1752 
1753 static void qm_wait_msi_finish(struct hisi_qm *qm)
1754 {
1755 	struct pci_dev *pdev = qm->pdev;
1756 	u32 cmd = ~0;
1757 	int cnt = 0;
1758 	u32 val;
1759 	int ret;
1760 
1761 	while (true) {
1762 		pci_read_config_dword(pdev, pdev->msi_cap +
1763 				      PCI_MSI_PENDING_64, &cmd);
1764 		if (!cmd)
1765 			break;
1766 
1767 		if (++cnt > MAX_WAIT_COUNTS) {
1768 			pci_warn(pdev, "failed to empty MSI PENDING!\n");
1769 			break;
1770 		}
1771 
1772 		udelay(1);
1773 	}
1774 
1775 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO0,
1776 					 val, !(val & QM_PEH_DFX_MASK),
1777 					 POLL_PERIOD, POLL_TIMEOUT);
1778 	if (ret)
1779 		pci_warn(pdev, "failed to empty PEH MSI!\n");
1780 
1781 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO1,
1782 					 val, !(val & QM_PEH_MSI_FINISH_MASK),
1783 					 POLL_PERIOD, POLL_TIMEOUT);
1784 	if (ret)
1785 		pci_warn(pdev, "failed to finish MSI operation!\n");
1786 }
1787 
1788 static int qm_set_msi_v3(struct hisi_qm *qm, bool set)
1789 {
1790 	struct pci_dev *pdev = qm->pdev;
1791 	int ret = -ETIMEDOUT;
1792 	u32 cmd, i;
1793 
1794 	pci_read_config_dword(pdev, pdev->msi_cap, &cmd);
1795 	if (set)
1796 		cmd |= QM_MSI_CAP_ENABLE;
1797 	else
1798 		cmd &= ~QM_MSI_CAP_ENABLE;
1799 
1800 	pci_write_config_dword(pdev, pdev->msi_cap, cmd);
1801 	if (set) {
1802 		for (i = 0; i < MAX_WAIT_COUNTS; i++) {
1803 			pci_read_config_dword(pdev, pdev->msi_cap, &cmd);
1804 			if (cmd & QM_MSI_CAP_ENABLE)
1805 				return 0;
1806 
1807 			udelay(1);
1808 		}
1809 	} else {
1810 		udelay(WAIT_PERIOD_US_MIN);
1811 		qm_wait_msi_finish(qm);
1812 		ret = 0;
1813 	}
1814 
1815 	return ret;
1816 }
1817 
1818 static const struct hisi_qm_hw_ops qm_hw_ops_v1 = {
1819 	.qm_db = qm_db_v1,
1820 	.hw_error_init = qm_hw_error_init_v1,
1821 	.set_msi = qm_set_msi,
1822 };
1823 
1824 static const struct hisi_qm_hw_ops qm_hw_ops_v2 = {
1825 	.get_vft = qm_get_vft_v2,
1826 	.qm_db = qm_db_v2,
1827 	.hw_error_init = qm_hw_error_init_v2,
1828 	.hw_error_uninit = qm_hw_error_uninit_v2,
1829 	.hw_error_handle = qm_hw_error_handle_v2,
1830 	.set_msi = qm_set_msi,
1831 };
1832 
1833 static const struct hisi_qm_hw_ops qm_hw_ops_v3 = {
1834 	.get_vft = qm_get_vft_v2,
1835 	.qm_db = qm_db_v2,
1836 	.hw_error_init = qm_hw_error_init_v3,
1837 	.hw_error_uninit = qm_hw_error_uninit_v3,
1838 	.hw_error_handle = qm_hw_error_handle_v2,
1839 	.set_msi = qm_set_msi_v3,
1840 };
1841 
1842 static void *qm_get_avail_sqe(struct hisi_qp *qp)
1843 {
1844 	struct hisi_qp_status *qp_status = &qp->qp_status;
1845 	u16 sq_tail = qp_status->sq_tail;
1846 
1847 	if (unlikely(atomic_read(&qp->qp_status.used) == qp->sq_depth - 1))
1848 		return NULL;
1849 
1850 	return qp->sqe + sq_tail * qp->qm->sqe_size;
1851 }
1852 
1853 static void hisi_qm_unset_hw_reset(struct hisi_qp *qp)
1854 {
1855 	u64 *addr;
1856 
1857 	/* Use last 64 bits of DUS to reset status. */
1858 	addr = (u64 *)(qp->qdma.va + qp->qdma.size) - QM_RESET_STOP_TX_OFFSET;
1859 	*addr = 0;
1860 }
1861 
1862 static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type)
1863 {
1864 	struct device *dev = &qm->pdev->dev;
1865 	struct hisi_qp *qp;
1866 	int qp_id;
1867 
1868 	if (!qm_qp_avail_state(qm, NULL, QP_INIT))
1869 		return ERR_PTR(-EPERM);
1870 
1871 	if (qm->qp_in_used == qm->qp_num) {
1872 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
1873 				     qm->qp_num);
1874 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
1875 		return ERR_PTR(-EBUSY);
1876 	}
1877 
1878 	qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC);
1879 	if (qp_id < 0) {
1880 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
1881 				    qm->qp_num);
1882 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
1883 		return ERR_PTR(-EBUSY);
1884 	}
1885 
1886 	qp = &qm->qp_array[qp_id];
1887 	hisi_qm_unset_hw_reset(qp);
1888 	memset(qp->cqe, 0, sizeof(struct qm_cqe) * qp->cq_depth);
1889 
1890 	qp->event_cb = NULL;
1891 	qp->req_cb = NULL;
1892 	qp->qp_id = qp_id;
1893 	qp->alg_type = alg_type;
1894 	qp->is_in_kernel = true;
1895 	qm->qp_in_used++;
1896 	atomic_set(&qp->qp_status.flags, QP_INIT);
1897 
1898 	return qp;
1899 }
1900 
1901 /**
1902  * hisi_qm_create_qp() - Create a queue pair from qm.
1903  * @qm: The qm we create a qp from.
1904  * @alg_type: Accelerator specific algorithm type in sqc.
1905  *
1906  * Return created qp, negative error code if failed.
1907  */
1908 static struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type)
1909 {
1910 	struct hisi_qp *qp;
1911 	int ret;
1912 
1913 	ret = qm_pm_get_sync(qm);
1914 	if (ret)
1915 		return ERR_PTR(ret);
1916 
1917 	down_write(&qm->qps_lock);
1918 	qp = qm_create_qp_nolock(qm, alg_type);
1919 	up_write(&qm->qps_lock);
1920 
1921 	if (IS_ERR(qp))
1922 		qm_pm_put_sync(qm);
1923 
1924 	return qp;
1925 }
1926 
1927 /**
1928  * hisi_qm_release_qp() - Release a qp back to its qm.
1929  * @qp: The qp we want to release.
1930  *
1931  * This function releases the resource of a qp.
1932  */
1933 static void hisi_qm_release_qp(struct hisi_qp *qp)
1934 {
1935 	struct hisi_qm *qm = qp->qm;
1936 
1937 	down_write(&qm->qps_lock);
1938 
1939 	if (!qm_qp_avail_state(qm, qp, QP_CLOSE)) {
1940 		up_write(&qm->qps_lock);
1941 		return;
1942 	}
1943 
1944 	qm->qp_in_used--;
1945 	idr_remove(&qm->qp_idr, qp->qp_id);
1946 
1947 	up_write(&qm->qps_lock);
1948 
1949 	qm_pm_put_sync(qm);
1950 }
1951 
1952 static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
1953 {
1954 	struct hisi_qm *qm = qp->qm;
1955 	struct device *dev = &qm->pdev->dev;
1956 	enum qm_hw_ver ver = qm->ver;
1957 	struct qm_sqc *sqc;
1958 	dma_addr_t sqc_dma;
1959 	int ret;
1960 
1961 	sqc = kzalloc(sizeof(struct qm_sqc), GFP_KERNEL);
1962 	if (!sqc)
1963 		return -ENOMEM;
1964 
1965 	INIT_QC_COMMON(sqc, qp->sqe_dma, pasid);
1966 	if (ver == QM_HW_V1) {
1967 		sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size));
1968 		sqc->w8 = cpu_to_le16(qp->sq_depth - 1);
1969 	} else {
1970 		sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size, qp->sq_depth));
1971 		sqc->w8 = 0; /* rand_qc */
1972 	}
1973 	sqc->cq_num = cpu_to_le16(qp_id);
1974 	sqc->w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type));
1975 
1976 	if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
1977 		sqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE <<
1978 				       QM_QC_PASID_ENABLE_SHIFT);
1979 
1980 	sqc_dma = dma_map_single(dev, sqc, sizeof(struct qm_sqc),
1981 				 DMA_TO_DEVICE);
1982 	if (dma_mapping_error(dev, sqc_dma)) {
1983 		kfree(sqc);
1984 		return -ENOMEM;
1985 	}
1986 
1987 	ret = hisi_qm_mb(qm, QM_MB_CMD_SQC, sqc_dma, qp_id, 0);
1988 	dma_unmap_single(dev, sqc_dma, sizeof(struct qm_sqc), DMA_TO_DEVICE);
1989 	kfree(sqc);
1990 
1991 	return ret;
1992 }
1993 
1994 static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
1995 {
1996 	struct hisi_qm *qm = qp->qm;
1997 	struct device *dev = &qm->pdev->dev;
1998 	enum qm_hw_ver ver = qm->ver;
1999 	struct qm_cqc *cqc;
2000 	dma_addr_t cqc_dma;
2001 	int ret;
2002 
2003 	cqc = kzalloc(sizeof(struct qm_cqc), GFP_KERNEL);
2004 	if (!cqc)
2005 		return -ENOMEM;
2006 
2007 	INIT_QC_COMMON(cqc, qp->cqe_dma, pasid);
2008 	if (ver == QM_HW_V1) {
2009 		cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0,
2010 							QM_QC_CQE_SIZE));
2011 		cqc->w8 = cpu_to_le16(qp->cq_depth - 1);
2012 	} else {
2013 		cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE, qp->cq_depth));
2014 		cqc->w8 = 0; /* rand_qc */
2015 	}
2016 	cqc->dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT);
2017 
2018 	if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
2019 		cqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE);
2020 
2021 	cqc_dma = dma_map_single(dev, cqc, sizeof(struct qm_cqc),
2022 				 DMA_TO_DEVICE);
2023 	if (dma_mapping_error(dev, cqc_dma)) {
2024 		kfree(cqc);
2025 		return -ENOMEM;
2026 	}
2027 
2028 	ret = hisi_qm_mb(qm, QM_MB_CMD_CQC, cqc_dma, qp_id, 0);
2029 	dma_unmap_single(dev, cqc_dma, sizeof(struct qm_cqc), DMA_TO_DEVICE);
2030 	kfree(cqc);
2031 
2032 	return ret;
2033 }
2034 
2035 static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
2036 {
2037 	int ret;
2038 
2039 	qm_init_qp_status(qp);
2040 
2041 	ret = qm_sq_ctx_cfg(qp, qp_id, pasid);
2042 	if (ret)
2043 		return ret;
2044 
2045 	return qm_cq_ctx_cfg(qp, qp_id, pasid);
2046 }
2047 
2048 static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg)
2049 {
2050 	struct hisi_qm *qm = qp->qm;
2051 	struct device *dev = &qm->pdev->dev;
2052 	int qp_id = qp->qp_id;
2053 	u32 pasid = arg;
2054 	int ret;
2055 
2056 	if (!qm_qp_avail_state(qm, qp, QP_START))
2057 		return -EPERM;
2058 
2059 	ret = qm_qp_ctx_cfg(qp, qp_id, pasid);
2060 	if (ret)
2061 		return ret;
2062 
2063 	atomic_set(&qp->qp_status.flags, QP_START);
2064 	dev_dbg(dev, "queue %d started\n", qp_id);
2065 
2066 	return 0;
2067 }
2068 
2069 /**
2070  * hisi_qm_start_qp() - Start a qp into running.
2071  * @qp: The qp we want to start to run.
2072  * @arg: Accelerator specific argument.
2073  *
2074  * After this function, qp can receive request from user. Return 0 if
2075  * successful, negative error code if failed.
2076  */
2077 int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg)
2078 {
2079 	struct hisi_qm *qm = qp->qm;
2080 	int ret;
2081 
2082 	down_write(&qm->qps_lock);
2083 	ret = qm_start_qp_nolock(qp, arg);
2084 	up_write(&qm->qps_lock);
2085 
2086 	return ret;
2087 }
2088 EXPORT_SYMBOL_GPL(hisi_qm_start_qp);
2089 
2090 /**
2091  * qp_stop_fail_cb() - call request cb.
2092  * @qp: stopped failed qp.
2093  *
2094  * Callback function should be called whether task completed or not.
2095  */
2096 static void qp_stop_fail_cb(struct hisi_qp *qp)
2097 {
2098 	int qp_used = atomic_read(&qp->qp_status.used);
2099 	u16 cur_tail = qp->qp_status.sq_tail;
2100 	u16 sq_depth = qp->sq_depth;
2101 	u16 cur_head = (cur_tail + sq_depth - qp_used) % sq_depth;
2102 	struct hisi_qm *qm = qp->qm;
2103 	u16 pos;
2104 	int i;
2105 
2106 	for (i = 0; i < qp_used; i++) {
2107 		pos = (i + cur_head) % sq_depth;
2108 		qp->req_cb(qp, qp->sqe + (u32)(qm->sqe_size * pos));
2109 		atomic_dec(&qp->qp_status.used);
2110 	}
2111 }
2112 
2113 /**
2114  * qm_drain_qp() - Drain a qp.
2115  * @qp: The qp we want to drain.
2116  *
2117  * Determine whether the queue is cleared by judging the tail pointers of
2118  * sq and cq.
2119  */
2120 static int qm_drain_qp(struct hisi_qp *qp)
2121 {
2122 	size_t size = sizeof(struct qm_sqc) + sizeof(struct qm_cqc);
2123 	struct hisi_qm *qm = qp->qm;
2124 	struct device *dev = &qm->pdev->dev;
2125 	struct qm_sqc *sqc;
2126 	struct qm_cqc *cqc;
2127 	dma_addr_t dma_addr;
2128 	int ret = 0, i = 0;
2129 	void *addr;
2130 
2131 	/* No need to judge if master OOO is blocked. */
2132 	if (qm_check_dev_error(qm))
2133 		return 0;
2134 
2135 	/* Kunpeng930 supports drain qp by device */
2136 	if (test_bit(QM_SUPPORT_STOP_QP, &qm->caps)) {
2137 		ret = qm_stop_qp(qp);
2138 		if (ret)
2139 			dev_err(dev, "Failed to stop qp(%u)!\n", qp->qp_id);
2140 		return ret;
2141 	}
2142 
2143 	addr = hisi_qm_ctx_alloc(qm, size, &dma_addr);
2144 	if (IS_ERR(addr)) {
2145 		dev_err(dev, "Failed to alloc ctx for sqc and cqc!\n");
2146 		return -ENOMEM;
2147 	}
2148 
2149 	while (++i) {
2150 		ret = qm_dump_sqc_raw(qm, dma_addr, qp->qp_id);
2151 		if (ret) {
2152 			dev_err_ratelimited(dev, "Failed to dump sqc!\n");
2153 			break;
2154 		}
2155 		sqc = addr;
2156 
2157 		ret = qm_dump_cqc_raw(qm, (dma_addr + sizeof(struct qm_sqc)),
2158 				      qp->qp_id);
2159 		if (ret) {
2160 			dev_err_ratelimited(dev, "Failed to dump cqc!\n");
2161 			break;
2162 		}
2163 		cqc = addr + sizeof(struct qm_sqc);
2164 
2165 		if ((sqc->tail == cqc->tail) &&
2166 		    (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc)))
2167 			break;
2168 
2169 		if (i == MAX_WAIT_COUNTS) {
2170 			dev_err(dev, "Fail to empty queue %u!\n", qp->qp_id);
2171 			ret = -EBUSY;
2172 			break;
2173 		}
2174 
2175 		usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX);
2176 	}
2177 
2178 	hisi_qm_ctx_free(qm, size, addr, &dma_addr);
2179 
2180 	return ret;
2181 }
2182 
2183 static int qm_stop_qp_nolock(struct hisi_qp *qp)
2184 {
2185 	struct device *dev = &qp->qm->pdev->dev;
2186 	int ret;
2187 
2188 	/*
2189 	 * It is allowed to stop and release qp when reset, If the qp is
2190 	 * stopped when reset but still want to be released then, the
2191 	 * is_resetting flag should be set negative so that this qp will not
2192 	 * be restarted after reset.
2193 	 */
2194 	if (atomic_read(&qp->qp_status.flags) == QP_STOP) {
2195 		qp->is_resetting = false;
2196 		return 0;
2197 	}
2198 
2199 	if (!qm_qp_avail_state(qp->qm, qp, QP_STOP))
2200 		return -EPERM;
2201 
2202 	atomic_set(&qp->qp_status.flags, QP_STOP);
2203 
2204 	ret = qm_drain_qp(qp);
2205 	if (ret)
2206 		dev_err(dev, "Failed to drain out data for stopping!\n");
2207 
2208 
2209 	flush_workqueue(qp->qm->wq);
2210 	if (unlikely(qp->is_resetting && atomic_read(&qp->qp_status.used)))
2211 		qp_stop_fail_cb(qp);
2212 
2213 	dev_dbg(dev, "stop queue %u!", qp->qp_id);
2214 
2215 	return 0;
2216 }
2217 
2218 /**
2219  * hisi_qm_stop_qp() - Stop a qp in qm.
2220  * @qp: The qp we want to stop.
2221  *
2222  * This function is reverse of hisi_qm_start_qp. Return 0 if successful.
2223  */
2224 int hisi_qm_stop_qp(struct hisi_qp *qp)
2225 {
2226 	int ret;
2227 
2228 	down_write(&qp->qm->qps_lock);
2229 	ret = qm_stop_qp_nolock(qp);
2230 	up_write(&qp->qm->qps_lock);
2231 
2232 	return ret;
2233 }
2234 EXPORT_SYMBOL_GPL(hisi_qm_stop_qp);
2235 
2236 /**
2237  * hisi_qp_send() - Queue up a task in the hardware queue.
2238  * @qp: The qp in which to put the message.
2239  * @msg: The message.
2240  *
2241  * This function will return -EBUSY if qp is currently full, and -EAGAIN
2242  * if qp related qm is resetting.
2243  *
2244  * Note: This function may run with qm_irq_thread and ACC reset at same time.
2245  *       It has no race with qm_irq_thread. However, during hisi_qp_send, ACC
2246  *       reset may happen, we have no lock here considering performance. This
2247  *       causes current qm_db sending fail or can not receive sended sqe. QM
2248  *       sync/async receive function should handle the error sqe. ACC reset
2249  *       done function should clear used sqe to 0.
2250  */
2251 int hisi_qp_send(struct hisi_qp *qp, const void *msg)
2252 {
2253 	struct hisi_qp_status *qp_status = &qp->qp_status;
2254 	u16 sq_tail = qp_status->sq_tail;
2255 	u16 sq_tail_next = (sq_tail + 1) % qp->sq_depth;
2256 	void *sqe = qm_get_avail_sqe(qp);
2257 
2258 	if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP ||
2259 		     atomic_read(&qp->qm->status.flags) == QM_STOP ||
2260 		     qp->is_resetting)) {
2261 		dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n");
2262 		return -EAGAIN;
2263 	}
2264 
2265 	if (!sqe)
2266 		return -EBUSY;
2267 
2268 	memcpy(sqe, msg, qp->qm->sqe_size);
2269 
2270 	qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0);
2271 	atomic_inc(&qp->qp_status.used);
2272 	qp_status->sq_tail = sq_tail_next;
2273 
2274 	return 0;
2275 }
2276 EXPORT_SYMBOL_GPL(hisi_qp_send);
2277 
2278 static void hisi_qm_cache_wb(struct hisi_qm *qm)
2279 {
2280 	unsigned int val;
2281 
2282 	if (qm->ver == QM_HW_V1)
2283 		return;
2284 
2285 	writel(0x1, qm->io_base + QM_CACHE_WB_START);
2286 	if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE,
2287 				       val, val & BIT(0), POLL_PERIOD,
2288 				       POLL_TIMEOUT))
2289 		dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n");
2290 }
2291 
2292 static void qm_qp_event_notifier(struct hisi_qp *qp)
2293 {
2294 	wake_up_interruptible(&qp->uacce_q->wait);
2295 }
2296 
2297  /* This function returns free number of qp in qm. */
2298 static int hisi_qm_get_available_instances(struct uacce_device *uacce)
2299 {
2300 	struct hisi_qm *qm = uacce->priv;
2301 	int ret;
2302 
2303 	down_read(&qm->qps_lock);
2304 	ret = qm->qp_num - qm->qp_in_used;
2305 	up_read(&qm->qps_lock);
2306 
2307 	return ret;
2308 }
2309 
2310 static void hisi_qm_set_hw_reset(struct hisi_qm *qm, int offset)
2311 {
2312 	int i;
2313 
2314 	for (i = 0; i < qm->qp_num; i++)
2315 		qm_set_qp_disable(&qm->qp_array[i], offset);
2316 }
2317 
2318 static int hisi_qm_uacce_get_queue(struct uacce_device *uacce,
2319 				   unsigned long arg,
2320 				   struct uacce_queue *q)
2321 {
2322 	struct hisi_qm *qm = uacce->priv;
2323 	struct hisi_qp *qp;
2324 	u8 alg_type = 0;
2325 
2326 	qp = hisi_qm_create_qp(qm, alg_type);
2327 	if (IS_ERR(qp))
2328 		return PTR_ERR(qp);
2329 
2330 	q->priv = qp;
2331 	q->uacce = uacce;
2332 	qp->uacce_q = q;
2333 	qp->event_cb = qm_qp_event_notifier;
2334 	qp->pasid = arg;
2335 	qp->is_in_kernel = false;
2336 
2337 	return 0;
2338 }
2339 
2340 static void hisi_qm_uacce_put_queue(struct uacce_queue *q)
2341 {
2342 	struct hisi_qp *qp = q->priv;
2343 
2344 	hisi_qm_release_qp(qp);
2345 }
2346 
2347 /* map sq/cq/doorbell to user space */
2348 static int hisi_qm_uacce_mmap(struct uacce_queue *q,
2349 			      struct vm_area_struct *vma,
2350 			      struct uacce_qfile_region *qfr)
2351 {
2352 	struct hisi_qp *qp = q->priv;
2353 	struct hisi_qm *qm = qp->qm;
2354 	resource_size_t phys_base = qm->db_phys_base +
2355 				    qp->qp_id * qm->db_interval;
2356 	size_t sz = vma->vm_end - vma->vm_start;
2357 	struct pci_dev *pdev = qm->pdev;
2358 	struct device *dev = &pdev->dev;
2359 	unsigned long vm_pgoff;
2360 	int ret;
2361 
2362 	switch (qfr->type) {
2363 	case UACCE_QFRT_MMIO:
2364 		if (qm->ver == QM_HW_V1) {
2365 			if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR)
2366 				return -EINVAL;
2367 		} else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) {
2368 			if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR +
2369 			    QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE))
2370 				return -EINVAL;
2371 		} else {
2372 			if (sz > qm->db_interval)
2373 				return -EINVAL;
2374 		}
2375 
2376 		vm_flags_set(vma, VM_IO);
2377 
2378 		return remap_pfn_range(vma, vma->vm_start,
2379 				       phys_base >> PAGE_SHIFT,
2380 				       sz, pgprot_noncached(vma->vm_page_prot));
2381 	case UACCE_QFRT_DUS:
2382 		if (sz != qp->qdma.size)
2383 			return -EINVAL;
2384 
2385 		/*
2386 		 * dma_mmap_coherent() requires vm_pgoff as 0
2387 		 * restore vm_pfoff to initial value for mmap()
2388 		 */
2389 		vm_pgoff = vma->vm_pgoff;
2390 		vma->vm_pgoff = 0;
2391 		ret = dma_mmap_coherent(dev, vma, qp->qdma.va,
2392 					qp->qdma.dma, sz);
2393 		vma->vm_pgoff = vm_pgoff;
2394 		return ret;
2395 
2396 	default:
2397 		return -EINVAL;
2398 	}
2399 }
2400 
2401 static int hisi_qm_uacce_start_queue(struct uacce_queue *q)
2402 {
2403 	struct hisi_qp *qp = q->priv;
2404 
2405 	return hisi_qm_start_qp(qp, qp->pasid);
2406 }
2407 
2408 static void hisi_qm_uacce_stop_queue(struct uacce_queue *q)
2409 {
2410 	hisi_qm_stop_qp(q->priv);
2411 }
2412 
2413 static int hisi_qm_is_q_updated(struct uacce_queue *q)
2414 {
2415 	struct hisi_qp *qp = q->priv;
2416 	struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
2417 	int updated = 0;
2418 
2419 	while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
2420 		/* make sure to read data from memory */
2421 		dma_rmb();
2422 		qm_cq_head_update(qp);
2423 		cqe = qp->cqe + qp->qp_status.cq_head;
2424 		updated = 1;
2425 	}
2426 
2427 	return updated;
2428 }
2429 
2430 static void qm_set_sqctype(struct uacce_queue *q, u16 type)
2431 {
2432 	struct hisi_qm *qm = q->uacce->priv;
2433 	struct hisi_qp *qp = q->priv;
2434 
2435 	down_write(&qm->qps_lock);
2436 	qp->alg_type = type;
2437 	up_write(&qm->qps_lock);
2438 }
2439 
2440 static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd,
2441 				unsigned long arg)
2442 {
2443 	struct hisi_qp *qp = q->priv;
2444 	struct hisi_qp_info qp_info;
2445 	struct hisi_qp_ctx qp_ctx;
2446 
2447 	if (cmd == UACCE_CMD_QM_SET_QP_CTX) {
2448 		if (copy_from_user(&qp_ctx, (void __user *)arg,
2449 				   sizeof(struct hisi_qp_ctx)))
2450 			return -EFAULT;
2451 
2452 		if (qp_ctx.qc_type != 0 && qp_ctx.qc_type != 1)
2453 			return -EINVAL;
2454 
2455 		qm_set_sqctype(q, qp_ctx.qc_type);
2456 		qp_ctx.id = qp->qp_id;
2457 
2458 		if (copy_to_user((void __user *)arg, &qp_ctx,
2459 				 sizeof(struct hisi_qp_ctx)))
2460 			return -EFAULT;
2461 
2462 		return 0;
2463 	} else if (cmd == UACCE_CMD_QM_SET_QP_INFO) {
2464 		if (copy_from_user(&qp_info, (void __user *)arg,
2465 				   sizeof(struct hisi_qp_info)))
2466 			return -EFAULT;
2467 
2468 		qp_info.sqe_size = qp->qm->sqe_size;
2469 		qp_info.sq_depth = qp->sq_depth;
2470 		qp_info.cq_depth = qp->cq_depth;
2471 
2472 		if (copy_to_user((void __user *)arg, &qp_info,
2473 				  sizeof(struct hisi_qp_info)))
2474 			return -EFAULT;
2475 
2476 		return 0;
2477 	}
2478 
2479 	return -EINVAL;
2480 }
2481 
2482 /**
2483  * qm_hw_err_isolate() - Try to set the isolation status of the uacce device
2484  * according to user's configuration of error threshold.
2485  * @qm: the uacce device
2486  */
2487 static int qm_hw_err_isolate(struct hisi_qm *qm)
2488 {
2489 	struct qm_hw_err *err, *tmp, *hw_err;
2490 	struct qm_err_isolate *isolate;
2491 	u32 count = 0;
2492 
2493 	isolate = &qm->isolate_data;
2494 
2495 #define SECONDS_PER_HOUR	3600
2496 
2497 	/* All the hw errs are processed by PF driver */
2498 	if (qm->uacce->is_vf || isolate->is_isolate || !isolate->err_threshold)
2499 		return 0;
2500 
2501 	hw_err = kzalloc(sizeof(*hw_err), GFP_KERNEL);
2502 	if (!hw_err)
2503 		return -ENOMEM;
2504 
2505 	/*
2506 	 * Time-stamp every slot AER error. Then check the AER error log when the
2507 	 * next device AER error occurred. if the device slot AER error count exceeds
2508 	 * the setting error threshold in one hour, the isolated state will be set
2509 	 * to true. And the AER error logs that exceed one hour will be cleared.
2510 	 */
2511 	mutex_lock(&isolate->isolate_lock);
2512 	hw_err->timestamp = jiffies;
2513 	list_for_each_entry_safe(err, tmp, &isolate->qm_hw_errs, list) {
2514 		if ((hw_err->timestamp - err->timestamp) / HZ >
2515 		    SECONDS_PER_HOUR) {
2516 			list_del(&err->list);
2517 			kfree(err);
2518 		} else {
2519 			count++;
2520 		}
2521 	}
2522 	list_add(&hw_err->list, &isolate->qm_hw_errs);
2523 	mutex_unlock(&isolate->isolate_lock);
2524 
2525 	if (count >= isolate->err_threshold)
2526 		isolate->is_isolate = true;
2527 
2528 	return 0;
2529 }
2530 
2531 static void qm_hw_err_destroy(struct hisi_qm *qm)
2532 {
2533 	struct qm_hw_err *err, *tmp;
2534 
2535 	mutex_lock(&qm->isolate_data.isolate_lock);
2536 	list_for_each_entry_safe(err, tmp, &qm->isolate_data.qm_hw_errs, list) {
2537 		list_del(&err->list);
2538 		kfree(err);
2539 	}
2540 	mutex_unlock(&qm->isolate_data.isolate_lock);
2541 }
2542 
2543 static enum uacce_dev_state hisi_qm_get_isolate_state(struct uacce_device *uacce)
2544 {
2545 	struct hisi_qm *qm = uacce->priv;
2546 	struct hisi_qm *pf_qm;
2547 
2548 	if (uacce->is_vf)
2549 		pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
2550 	else
2551 		pf_qm = qm;
2552 
2553 	return pf_qm->isolate_data.is_isolate ?
2554 			UACCE_DEV_ISOLATE : UACCE_DEV_NORMAL;
2555 }
2556 
2557 static int hisi_qm_isolate_threshold_write(struct uacce_device *uacce, u32 num)
2558 {
2559 	struct hisi_qm *qm = uacce->priv;
2560 
2561 	/* Must be set by PF */
2562 	if (uacce->is_vf)
2563 		return -EPERM;
2564 
2565 	if (qm->isolate_data.is_isolate)
2566 		return -EPERM;
2567 
2568 	qm->isolate_data.err_threshold = num;
2569 
2570 	/* After the policy is updated, need to reset the hardware err list */
2571 	qm_hw_err_destroy(qm);
2572 
2573 	return 0;
2574 }
2575 
2576 static u32 hisi_qm_isolate_threshold_read(struct uacce_device *uacce)
2577 {
2578 	struct hisi_qm *qm = uacce->priv;
2579 	struct hisi_qm *pf_qm;
2580 
2581 	if (uacce->is_vf) {
2582 		pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
2583 		return pf_qm->isolate_data.err_threshold;
2584 	}
2585 
2586 	return qm->isolate_data.err_threshold;
2587 }
2588 
2589 static const struct uacce_ops uacce_qm_ops = {
2590 	.get_available_instances = hisi_qm_get_available_instances,
2591 	.get_queue = hisi_qm_uacce_get_queue,
2592 	.put_queue = hisi_qm_uacce_put_queue,
2593 	.start_queue = hisi_qm_uacce_start_queue,
2594 	.stop_queue = hisi_qm_uacce_stop_queue,
2595 	.mmap = hisi_qm_uacce_mmap,
2596 	.ioctl = hisi_qm_uacce_ioctl,
2597 	.is_q_updated = hisi_qm_is_q_updated,
2598 	.get_isolate_state = hisi_qm_get_isolate_state,
2599 	.isolate_err_threshold_write = hisi_qm_isolate_threshold_write,
2600 	.isolate_err_threshold_read = hisi_qm_isolate_threshold_read,
2601 };
2602 
2603 static void qm_remove_uacce(struct hisi_qm *qm)
2604 {
2605 	struct uacce_device *uacce = qm->uacce;
2606 
2607 	if (qm->use_sva) {
2608 		qm_hw_err_destroy(qm);
2609 		uacce_remove(uacce);
2610 		qm->uacce = NULL;
2611 	}
2612 }
2613 
2614 static int qm_alloc_uacce(struct hisi_qm *qm)
2615 {
2616 	struct pci_dev *pdev = qm->pdev;
2617 	struct uacce_device *uacce;
2618 	unsigned long mmio_page_nr;
2619 	unsigned long dus_page_nr;
2620 	u16 sq_depth, cq_depth;
2621 	struct uacce_interface interface = {
2622 		.flags = UACCE_DEV_SVA,
2623 		.ops = &uacce_qm_ops,
2624 	};
2625 	int ret;
2626 
2627 	ret = strscpy(interface.name, dev_driver_string(&pdev->dev),
2628 		      sizeof(interface.name));
2629 	if (ret < 0)
2630 		return -ENAMETOOLONG;
2631 
2632 	uacce = uacce_alloc(&pdev->dev, &interface);
2633 	if (IS_ERR(uacce))
2634 		return PTR_ERR(uacce);
2635 
2636 	if (uacce->flags & UACCE_DEV_SVA) {
2637 		qm->use_sva = true;
2638 	} else {
2639 		/* only consider sva case */
2640 		qm_remove_uacce(qm);
2641 		return -EINVAL;
2642 	}
2643 
2644 	uacce->is_vf = pdev->is_virtfn;
2645 	uacce->priv = qm;
2646 
2647 	if (qm->ver == QM_HW_V1)
2648 		uacce->api_ver = HISI_QM_API_VER_BASE;
2649 	else if (qm->ver == QM_HW_V2)
2650 		uacce->api_ver = HISI_QM_API_VER2_BASE;
2651 	else
2652 		uacce->api_ver = HISI_QM_API_VER3_BASE;
2653 
2654 	if (qm->ver == QM_HW_V1)
2655 		mmio_page_nr = QM_DOORBELL_PAGE_NR;
2656 	else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
2657 		mmio_page_nr = QM_DOORBELL_PAGE_NR +
2658 			QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE;
2659 	else
2660 		mmio_page_nr = qm->db_interval / PAGE_SIZE;
2661 
2662 	qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP);
2663 
2664 	/* Add one more page for device or qp status */
2665 	dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * sq_depth +
2666 		       sizeof(struct qm_cqe) * cq_depth  + PAGE_SIZE) >>
2667 					 PAGE_SHIFT;
2668 
2669 	uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr;
2670 	uacce->qf_pg_num[UACCE_QFRT_DUS]  = dus_page_nr;
2671 
2672 	qm->uacce = uacce;
2673 	INIT_LIST_HEAD(&qm->isolate_data.qm_hw_errs);
2674 	mutex_init(&qm->isolate_data.isolate_lock);
2675 
2676 	return 0;
2677 }
2678 
2679 /**
2680  * qm_frozen() - Try to froze QM to cut continuous queue request. If
2681  * there is user on the QM, return failure without doing anything.
2682  * @qm: The qm needed to be fronzen.
2683  *
2684  * This function frozes QM, then we can do SRIOV disabling.
2685  */
2686 static int qm_frozen(struct hisi_qm *qm)
2687 {
2688 	if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl))
2689 		return 0;
2690 
2691 	down_write(&qm->qps_lock);
2692 
2693 	if (!qm->qp_in_used) {
2694 		qm->qp_in_used = qm->qp_num;
2695 		up_write(&qm->qps_lock);
2696 		set_bit(QM_DRIVER_REMOVING, &qm->misc_ctl);
2697 		return 0;
2698 	}
2699 
2700 	up_write(&qm->qps_lock);
2701 
2702 	return -EBUSY;
2703 }
2704 
2705 static int qm_try_frozen_vfs(struct pci_dev *pdev,
2706 			     struct hisi_qm_list *qm_list)
2707 {
2708 	struct hisi_qm *qm, *vf_qm;
2709 	struct pci_dev *dev;
2710 	int ret = 0;
2711 
2712 	if (!qm_list || !pdev)
2713 		return -EINVAL;
2714 
2715 	/* Try to frozen all the VFs as disable SRIOV */
2716 	mutex_lock(&qm_list->lock);
2717 	list_for_each_entry(qm, &qm_list->list, list) {
2718 		dev = qm->pdev;
2719 		if (dev == pdev)
2720 			continue;
2721 		if (pci_physfn(dev) == pdev) {
2722 			vf_qm = pci_get_drvdata(dev);
2723 			ret = qm_frozen(vf_qm);
2724 			if (ret)
2725 				goto frozen_fail;
2726 		}
2727 	}
2728 
2729 frozen_fail:
2730 	mutex_unlock(&qm_list->lock);
2731 
2732 	return ret;
2733 }
2734 
2735 /**
2736  * hisi_qm_wait_task_finish() - Wait until the task is finished
2737  * when removing the driver.
2738  * @qm: The qm needed to wait for the task to finish.
2739  * @qm_list: The list of all available devices.
2740  */
2741 void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
2742 {
2743 	while (qm_frozen(qm) ||
2744 	       ((qm->fun_type == QM_HW_PF) &&
2745 	       qm_try_frozen_vfs(qm->pdev, qm_list))) {
2746 		msleep(WAIT_PERIOD);
2747 	}
2748 
2749 	while (test_bit(QM_RST_SCHED, &qm->misc_ctl) ||
2750 	       test_bit(QM_RESETTING, &qm->misc_ctl))
2751 		msleep(WAIT_PERIOD);
2752 
2753 	if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
2754 		flush_work(&qm->cmd_process);
2755 
2756 	udelay(REMOVE_WAIT_DELAY);
2757 }
2758 EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish);
2759 
2760 static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num)
2761 {
2762 	struct device *dev = &qm->pdev->dev;
2763 	struct qm_dma *qdma;
2764 	int i;
2765 
2766 	for (i = num - 1; i >= 0; i--) {
2767 		qdma = &qm->qp_array[i].qdma;
2768 		dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma);
2769 		kfree(qm->poll_data[i].qp_finish_id);
2770 	}
2771 
2772 	kfree(qm->poll_data);
2773 	kfree(qm->qp_array);
2774 }
2775 
2776 static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id,
2777 			       u16 sq_depth, u16 cq_depth)
2778 {
2779 	struct device *dev = &qm->pdev->dev;
2780 	size_t off = qm->sqe_size * sq_depth;
2781 	struct hisi_qp *qp;
2782 	int ret = -ENOMEM;
2783 
2784 	qm->poll_data[id].qp_finish_id = kcalloc(qm->qp_num, sizeof(u16),
2785 						 GFP_KERNEL);
2786 	if (!qm->poll_data[id].qp_finish_id)
2787 		return -ENOMEM;
2788 
2789 	qp = &qm->qp_array[id];
2790 	qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma,
2791 					 GFP_KERNEL);
2792 	if (!qp->qdma.va)
2793 		goto err_free_qp_finish_id;
2794 
2795 	qp->sqe = qp->qdma.va;
2796 	qp->sqe_dma = qp->qdma.dma;
2797 	qp->cqe = qp->qdma.va + off;
2798 	qp->cqe_dma = qp->qdma.dma + off;
2799 	qp->qdma.size = dma_size;
2800 	qp->sq_depth = sq_depth;
2801 	qp->cq_depth = cq_depth;
2802 	qp->qm = qm;
2803 	qp->qp_id = id;
2804 
2805 	return 0;
2806 
2807 err_free_qp_finish_id:
2808 	kfree(qm->poll_data[id].qp_finish_id);
2809 	return ret;
2810 }
2811 
2812 static void hisi_qm_pre_init(struct hisi_qm *qm)
2813 {
2814 	struct pci_dev *pdev = qm->pdev;
2815 
2816 	if (qm->ver == QM_HW_V1)
2817 		qm->ops = &qm_hw_ops_v1;
2818 	else if (qm->ver == QM_HW_V2)
2819 		qm->ops = &qm_hw_ops_v2;
2820 	else
2821 		qm->ops = &qm_hw_ops_v3;
2822 
2823 	pci_set_drvdata(pdev, qm);
2824 	mutex_init(&qm->mailbox_lock);
2825 	init_rwsem(&qm->qps_lock);
2826 	qm->qp_in_used = 0;
2827 	if (test_bit(QM_SUPPORT_RPM, &qm->caps)) {
2828 		if (!acpi_device_power_manageable(ACPI_COMPANION(&pdev->dev)))
2829 			dev_info(&pdev->dev, "_PS0 and _PR0 are not defined");
2830 	}
2831 }
2832 
2833 static void qm_cmd_uninit(struct hisi_qm *qm)
2834 {
2835 	u32 val;
2836 
2837 	if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
2838 		return;
2839 
2840 	val = readl(qm->io_base + QM_IFC_INT_MASK);
2841 	val |= QM_IFC_INT_DISABLE;
2842 	writel(val, qm->io_base + QM_IFC_INT_MASK);
2843 }
2844 
2845 static void qm_cmd_init(struct hisi_qm *qm)
2846 {
2847 	u32 val;
2848 
2849 	if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
2850 		return;
2851 
2852 	/* Clear communication interrupt source */
2853 	qm_clear_cmd_interrupt(qm, QM_IFC_INT_SOURCE_CLR);
2854 
2855 	/* Enable pf to vf communication reg. */
2856 	val = readl(qm->io_base + QM_IFC_INT_MASK);
2857 	val &= ~QM_IFC_INT_DISABLE;
2858 	writel(val, qm->io_base + QM_IFC_INT_MASK);
2859 }
2860 
2861 static void qm_put_pci_res(struct hisi_qm *qm)
2862 {
2863 	struct pci_dev *pdev = qm->pdev;
2864 
2865 	if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
2866 		iounmap(qm->db_io_base);
2867 
2868 	iounmap(qm->io_base);
2869 	pci_release_mem_regions(pdev);
2870 }
2871 
2872 static void hisi_qm_pci_uninit(struct hisi_qm *qm)
2873 {
2874 	struct pci_dev *pdev = qm->pdev;
2875 
2876 	pci_free_irq_vectors(pdev);
2877 	qm_put_pci_res(qm);
2878 	pci_disable_device(pdev);
2879 }
2880 
2881 static void hisi_qm_set_state(struct hisi_qm *qm, u8 state)
2882 {
2883 	if (qm->ver > QM_HW_V2 && qm->fun_type == QM_HW_VF)
2884 		writel(state, qm->io_base + QM_VF_STATE);
2885 }
2886 
2887 static void hisi_qm_unint_work(struct hisi_qm *qm)
2888 {
2889 	destroy_workqueue(qm->wq);
2890 }
2891 
2892 static void hisi_qm_memory_uninit(struct hisi_qm *qm)
2893 {
2894 	struct device *dev = &qm->pdev->dev;
2895 
2896 	hisi_qp_memory_uninit(qm, qm->qp_num);
2897 	if (qm->qdma.va) {
2898 		hisi_qm_cache_wb(qm);
2899 		dma_free_coherent(dev, qm->qdma.size,
2900 				  qm->qdma.va, qm->qdma.dma);
2901 	}
2902 
2903 	idr_destroy(&qm->qp_idr);
2904 
2905 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
2906 		kfree(qm->factor);
2907 }
2908 
2909 /**
2910  * hisi_qm_uninit() - Uninitialize qm.
2911  * @qm: The qm needed uninit.
2912  *
2913  * This function uninits qm related device resources.
2914  */
2915 void hisi_qm_uninit(struct hisi_qm *qm)
2916 {
2917 	qm_cmd_uninit(qm);
2918 	hisi_qm_unint_work(qm);
2919 	down_write(&qm->qps_lock);
2920 
2921 	if (!qm_avail_state(qm, QM_CLOSE)) {
2922 		up_write(&qm->qps_lock);
2923 		return;
2924 	}
2925 
2926 	hisi_qm_memory_uninit(qm);
2927 	hisi_qm_set_state(qm, QM_NOT_READY);
2928 	up_write(&qm->qps_lock);
2929 
2930 	qm_irqs_unregister(qm);
2931 	hisi_qm_pci_uninit(qm);
2932 	if (qm->use_sva) {
2933 		uacce_remove(qm->uacce);
2934 		qm->uacce = NULL;
2935 	}
2936 }
2937 EXPORT_SYMBOL_GPL(hisi_qm_uninit);
2938 
2939 /**
2940  * hisi_qm_get_vft() - Get vft from a qm.
2941  * @qm: The qm we want to get its vft.
2942  * @base: The base number of queue in vft.
2943  * @number: The number of queues in vft.
2944  *
2945  * We can allocate multiple queues to a qm by configuring virtual function
2946  * table. We get related configures by this function. Normally, we call this
2947  * function in VF driver to get the queue information.
2948  *
2949  * qm hw v1 does not support this interface.
2950  */
2951 static int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number)
2952 {
2953 	if (!base || !number)
2954 		return -EINVAL;
2955 
2956 	if (!qm->ops->get_vft) {
2957 		dev_err(&qm->pdev->dev, "Don't support vft read!\n");
2958 		return -EINVAL;
2959 	}
2960 
2961 	return qm->ops->get_vft(qm, base, number);
2962 }
2963 
2964 /**
2965  * hisi_qm_set_vft() - Set vft to a qm.
2966  * @qm: The qm we want to set its vft.
2967  * @fun_num: The function number.
2968  * @base: The base number of queue in vft.
2969  * @number: The number of queues in vft.
2970  *
2971  * This function is alway called in PF driver, it is used to assign queues
2972  * among PF and VFs.
2973  *
2974  * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1)
2975  * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1)
2976  * (VF function number 0x2)
2977  */
2978 static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
2979 		    u32 number)
2980 {
2981 	u32 max_q_num = qm->ctrl_qp_num;
2982 
2983 	if (base >= max_q_num || number > max_q_num ||
2984 	    (base + number) > max_q_num)
2985 		return -EINVAL;
2986 
2987 	return qm_set_sqc_cqc_vft(qm, fun_num, base, number);
2988 }
2989 
2990 static void qm_init_eq_aeq_status(struct hisi_qm *qm)
2991 {
2992 	struct hisi_qm_status *status = &qm->status;
2993 
2994 	status->eq_head = 0;
2995 	status->aeq_head = 0;
2996 	status->eqc_phase = true;
2997 	status->aeqc_phase = true;
2998 }
2999 
3000 static void qm_enable_eq_aeq_interrupts(struct hisi_qm *qm)
3001 {
3002 	/* Clear eq/aeq interrupt source */
3003 	qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
3004 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
3005 
3006 	writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK);
3007 	writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK);
3008 }
3009 
3010 static void qm_disable_eq_aeq_interrupts(struct hisi_qm *qm)
3011 {
3012 	writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK);
3013 	writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK);
3014 }
3015 
3016 static int qm_eq_ctx_cfg(struct hisi_qm *qm)
3017 {
3018 	struct device *dev = &qm->pdev->dev;
3019 	struct qm_eqc *eqc;
3020 	dma_addr_t eqc_dma;
3021 	int ret;
3022 
3023 	eqc = kzalloc(sizeof(struct qm_eqc), GFP_KERNEL);
3024 	if (!eqc)
3025 		return -ENOMEM;
3026 
3027 	eqc->base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma));
3028 	eqc->base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma));
3029 	if (qm->ver == QM_HW_V1)
3030 		eqc->dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE);
3031 	eqc->dw6 = cpu_to_le32(((u32)qm->eq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT));
3032 
3033 	eqc_dma = dma_map_single(dev, eqc, sizeof(struct qm_eqc),
3034 				 DMA_TO_DEVICE);
3035 	if (dma_mapping_error(dev, eqc_dma)) {
3036 		kfree(eqc);
3037 		return -ENOMEM;
3038 	}
3039 
3040 	ret = hisi_qm_mb(qm, QM_MB_CMD_EQC, eqc_dma, 0, 0);
3041 	dma_unmap_single(dev, eqc_dma, sizeof(struct qm_eqc), DMA_TO_DEVICE);
3042 	kfree(eqc);
3043 
3044 	return ret;
3045 }
3046 
3047 static int qm_aeq_ctx_cfg(struct hisi_qm *qm)
3048 {
3049 	struct device *dev = &qm->pdev->dev;
3050 	struct qm_aeqc *aeqc;
3051 	dma_addr_t aeqc_dma;
3052 	int ret;
3053 
3054 	aeqc = kzalloc(sizeof(struct qm_aeqc), GFP_KERNEL);
3055 	if (!aeqc)
3056 		return -ENOMEM;
3057 
3058 	aeqc->base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma));
3059 	aeqc->base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma));
3060 	aeqc->dw6 = cpu_to_le32(((u32)qm->aeq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT));
3061 
3062 	aeqc_dma = dma_map_single(dev, aeqc, sizeof(struct qm_aeqc),
3063 				  DMA_TO_DEVICE);
3064 	if (dma_mapping_error(dev, aeqc_dma)) {
3065 		kfree(aeqc);
3066 		return -ENOMEM;
3067 	}
3068 
3069 	ret = hisi_qm_mb(qm, QM_MB_CMD_AEQC, aeqc_dma, 0, 0);
3070 	dma_unmap_single(dev, aeqc_dma, sizeof(struct qm_aeqc), DMA_TO_DEVICE);
3071 	kfree(aeqc);
3072 
3073 	return ret;
3074 }
3075 
3076 static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm)
3077 {
3078 	struct device *dev = &qm->pdev->dev;
3079 	int ret;
3080 
3081 	qm_init_eq_aeq_status(qm);
3082 
3083 	ret = qm_eq_ctx_cfg(qm);
3084 	if (ret) {
3085 		dev_err(dev, "Set eqc failed!\n");
3086 		return ret;
3087 	}
3088 
3089 	return qm_aeq_ctx_cfg(qm);
3090 }
3091 
3092 static int __hisi_qm_start(struct hisi_qm *qm)
3093 {
3094 	int ret;
3095 
3096 	WARN_ON(!qm->qdma.va);
3097 
3098 	if (qm->fun_type == QM_HW_PF) {
3099 		ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num);
3100 		if (ret)
3101 			return ret;
3102 	}
3103 
3104 	ret = qm_eq_aeq_ctx_cfg(qm);
3105 	if (ret)
3106 		return ret;
3107 
3108 	ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0);
3109 	if (ret)
3110 		return ret;
3111 
3112 	ret = hisi_qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0);
3113 	if (ret)
3114 		return ret;
3115 
3116 	qm_init_prefetch(qm);
3117 	qm_enable_eq_aeq_interrupts(qm);
3118 
3119 	return 0;
3120 }
3121 
3122 /**
3123  * hisi_qm_start() - start qm
3124  * @qm: The qm to be started.
3125  *
3126  * This function starts a qm, then we can allocate qp from this qm.
3127  */
3128 int hisi_qm_start(struct hisi_qm *qm)
3129 {
3130 	struct device *dev = &qm->pdev->dev;
3131 	int ret = 0;
3132 
3133 	down_write(&qm->qps_lock);
3134 
3135 	if (!qm_avail_state(qm, QM_START)) {
3136 		up_write(&qm->qps_lock);
3137 		return -EPERM;
3138 	}
3139 
3140 	dev_dbg(dev, "qm start with %u queue pairs\n", qm->qp_num);
3141 
3142 	if (!qm->qp_num) {
3143 		dev_err(dev, "qp_num should not be 0\n");
3144 		ret = -EINVAL;
3145 		goto err_unlock;
3146 	}
3147 
3148 	ret = __hisi_qm_start(qm);
3149 	if (!ret)
3150 		atomic_set(&qm->status.flags, QM_START);
3151 
3152 	hisi_qm_set_state(qm, QM_READY);
3153 err_unlock:
3154 	up_write(&qm->qps_lock);
3155 	return ret;
3156 }
3157 EXPORT_SYMBOL_GPL(hisi_qm_start);
3158 
3159 static int qm_restart(struct hisi_qm *qm)
3160 {
3161 	struct device *dev = &qm->pdev->dev;
3162 	struct hisi_qp *qp;
3163 	int ret, i;
3164 
3165 	ret = hisi_qm_start(qm);
3166 	if (ret < 0)
3167 		return ret;
3168 
3169 	down_write(&qm->qps_lock);
3170 	for (i = 0; i < qm->qp_num; i++) {
3171 		qp = &qm->qp_array[i];
3172 		if (atomic_read(&qp->qp_status.flags) == QP_STOP &&
3173 		    qp->is_resetting == true) {
3174 			ret = qm_start_qp_nolock(qp, 0);
3175 			if (ret < 0) {
3176 				dev_err(dev, "Failed to start qp%d!\n", i);
3177 
3178 				up_write(&qm->qps_lock);
3179 				return ret;
3180 			}
3181 			qp->is_resetting = false;
3182 		}
3183 	}
3184 	up_write(&qm->qps_lock);
3185 
3186 	return 0;
3187 }
3188 
3189 /* Stop started qps in reset flow */
3190 static int qm_stop_started_qp(struct hisi_qm *qm)
3191 {
3192 	struct device *dev = &qm->pdev->dev;
3193 	struct hisi_qp *qp;
3194 	int i, ret;
3195 
3196 	for (i = 0; i < qm->qp_num; i++) {
3197 		qp = &qm->qp_array[i];
3198 		if (qp && atomic_read(&qp->qp_status.flags) == QP_START) {
3199 			qp->is_resetting = true;
3200 			ret = qm_stop_qp_nolock(qp);
3201 			if (ret < 0) {
3202 				dev_err(dev, "Failed to stop qp%d!\n", i);
3203 				return ret;
3204 			}
3205 		}
3206 	}
3207 
3208 	return 0;
3209 }
3210 
3211 /**
3212  * qm_clear_queues() - Clear all queues memory in a qm.
3213  * @qm: The qm in which the queues will be cleared.
3214  *
3215  * This function clears all queues memory in a qm. Reset of accelerator can
3216  * use this to clear queues.
3217  */
3218 static void qm_clear_queues(struct hisi_qm *qm)
3219 {
3220 	struct hisi_qp *qp;
3221 	int i;
3222 
3223 	for (i = 0; i < qm->qp_num; i++) {
3224 		qp = &qm->qp_array[i];
3225 		if (qp->is_in_kernel && qp->is_resetting)
3226 			memset(qp->qdma.va, 0, qp->qdma.size);
3227 	}
3228 
3229 	memset(qm->qdma.va, 0, qm->qdma.size);
3230 }
3231 
3232 /**
3233  * hisi_qm_stop() - Stop a qm.
3234  * @qm: The qm which will be stopped.
3235  * @r: The reason to stop qm.
3236  *
3237  * This function stops qm and its qps, then qm can not accept request.
3238  * Related resources are not released at this state, we can use hisi_qm_start
3239  * to let qm start again.
3240  */
3241 int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r)
3242 {
3243 	struct device *dev = &qm->pdev->dev;
3244 	int ret = 0;
3245 
3246 	down_write(&qm->qps_lock);
3247 
3248 	qm->status.stop_reason = r;
3249 	if (!qm_avail_state(qm, QM_STOP)) {
3250 		ret = -EPERM;
3251 		goto err_unlock;
3252 	}
3253 
3254 	if (qm->status.stop_reason == QM_SOFT_RESET ||
3255 	    qm->status.stop_reason == QM_DOWN) {
3256 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
3257 		ret = qm_stop_started_qp(qm);
3258 		if (ret < 0) {
3259 			dev_err(dev, "Failed to stop started qp!\n");
3260 			goto err_unlock;
3261 		}
3262 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
3263 	}
3264 
3265 	qm_disable_eq_aeq_interrupts(qm);
3266 	if (qm->fun_type == QM_HW_PF) {
3267 		ret = hisi_qm_set_vft(qm, 0, 0, 0);
3268 		if (ret < 0) {
3269 			dev_err(dev, "Failed to set vft!\n");
3270 			ret = -EBUSY;
3271 			goto err_unlock;
3272 		}
3273 	}
3274 
3275 	qm_clear_queues(qm);
3276 	atomic_set(&qm->status.flags, QM_STOP);
3277 
3278 err_unlock:
3279 	up_write(&qm->qps_lock);
3280 	return ret;
3281 }
3282 EXPORT_SYMBOL_GPL(hisi_qm_stop);
3283 
3284 static void qm_hw_error_init(struct hisi_qm *qm)
3285 {
3286 	if (!qm->ops->hw_error_init) {
3287 		dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n");
3288 		return;
3289 	}
3290 
3291 	qm->ops->hw_error_init(qm);
3292 }
3293 
3294 static void qm_hw_error_uninit(struct hisi_qm *qm)
3295 {
3296 	if (!qm->ops->hw_error_uninit) {
3297 		dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n");
3298 		return;
3299 	}
3300 
3301 	qm->ops->hw_error_uninit(qm);
3302 }
3303 
3304 static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm)
3305 {
3306 	if (!qm->ops->hw_error_handle) {
3307 		dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n");
3308 		return ACC_ERR_NONE;
3309 	}
3310 
3311 	return qm->ops->hw_error_handle(qm);
3312 }
3313 
3314 /**
3315  * hisi_qm_dev_err_init() - Initialize device error configuration.
3316  * @qm: The qm for which we want to do error initialization.
3317  *
3318  * Initialize QM and device error related configuration.
3319  */
3320 void hisi_qm_dev_err_init(struct hisi_qm *qm)
3321 {
3322 	if (qm->fun_type == QM_HW_VF)
3323 		return;
3324 
3325 	qm_hw_error_init(qm);
3326 
3327 	if (!qm->err_ini->hw_err_enable) {
3328 		dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n");
3329 		return;
3330 	}
3331 	qm->err_ini->hw_err_enable(qm);
3332 }
3333 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init);
3334 
3335 /**
3336  * hisi_qm_dev_err_uninit() - Uninitialize device error configuration.
3337  * @qm: The qm for which we want to do error uninitialization.
3338  *
3339  * Uninitialize QM and device error related configuration.
3340  */
3341 void hisi_qm_dev_err_uninit(struct hisi_qm *qm)
3342 {
3343 	if (qm->fun_type == QM_HW_VF)
3344 		return;
3345 
3346 	qm_hw_error_uninit(qm);
3347 
3348 	if (!qm->err_ini->hw_err_disable) {
3349 		dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n");
3350 		return;
3351 	}
3352 	qm->err_ini->hw_err_disable(qm);
3353 }
3354 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit);
3355 
3356 /**
3357  * hisi_qm_free_qps() - free multiple queue pairs.
3358  * @qps: The queue pairs need to be freed.
3359  * @qp_num: The num of queue pairs.
3360  */
3361 void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num)
3362 {
3363 	int i;
3364 
3365 	if (!qps || qp_num <= 0)
3366 		return;
3367 
3368 	for (i = qp_num - 1; i >= 0; i--)
3369 		hisi_qm_release_qp(qps[i]);
3370 }
3371 EXPORT_SYMBOL_GPL(hisi_qm_free_qps);
3372 
3373 static void free_list(struct list_head *head)
3374 {
3375 	struct hisi_qm_resource *res, *tmp;
3376 
3377 	list_for_each_entry_safe(res, tmp, head, list) {
3378 		list_del(&res->list);
3379 		kfree(res);
3380 	}
3381 }
3382 
3383 static int hisi_qm_sort_devices(int node, struct list_head *head,
3384 				struct hisi_qm_list *qm_list)
3385 {
3386 	struct hisi_qm_resource *res, *tmp;
3387 	struct hisi_qm *qm;
3388 	struct list_head *n;
3389 	struct device *dev;
3390 	int dev_node;
3391 
3392 	list_for_each_entry(qm, &qm_list->list, list) {
3393 		dev = &qm->pdev->dev;
3394 
3395 		dev_node = dev_to_node(dev);
3396 		if (dev_node < 0)
3397 			dev_node = 0;
3398 
3399 		res = kzalloc(sizeof(*res), GFP_KERNEL);
3400 		if (!res)
3401 			return -ENOMEM;
3402 
3403 		res->qm = qm;
3404 		res->distance = node_distance(dev_node, node);
3405 		n = head;
3406 		list_for_each_entry(tmp, head, list) {
3407 			if (res->distance < tmp->distance) {
3408 				n = &tmp->list;
3409 				break;
3410 			}
3411 		}
3412 		list_add_tail(&res->list, n);
3413 	}
3414 
3415 	return 0;
3416 }
3417 
3418 /**
3419  * hisi_qm_alloc_qps_node() - Create multiple queue pairs.
3420  * @qm_list: The list of all available devices.
3421  * @qp_num: The number of queue pairs need created.
3422  * @alg_type: The algorithm type.
3423  * @node: The numa node.
3424  * @qps: The queue pairs need created.
3425  *
3426  * This function will sort all available device according to numa distance.
3427  * Then try to create all queue pairs from one device, if all devices do
3428  * not meet the requirements will return error.
3429  */
3430 int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num,
3431 			   u8 alg_type, int node, struct hisi_qp **qps)
3432 {
3433 	struct hisi_qm_resource *tmp;
3434 	int ret = -ENODEV;
3435 	LIST_HEAD(head);
3436 	int i;
3437 
3438 	if (!qps || !qm_list || qp_num <= 0)
3439 		return -EINVAL;
3440 
3441 	mutex_lock(&qm_list->lock);
3442 	if (hisi_qm_sort_devices(node, &head, qm_list)) {
3443 		mutex_unlock(&qm_list->lock);
3444 		goto err;
3445 	}
3446 
3447 	list_for_each_entry(tmp, &head, list) {
3448 		for (i = 0; i < qp_num; i++) {
3449 			qps[i] = hisi_qm_create_qp(tmp->qm, alg_type);
3450 			if (IS_ERR(qps[i])) {
3451 				hisi_qm_free_qps(qps, i);
3452 				break;
3453 			}
3454 		}
3455 
3456 		if (i == qp_num) {
3457 			ret = 0;
3458 			break;
3459 		}
3460 	}
3461 
3462 	mutex_unlock(&qm_list->lock);
3463 	if (ret)
3464 		pr_info("Failed to create qps, node[%d], alg[%u], qp[%d]!\n",
3465 			node, alg_type, qp_num);
3466 
3467 err:
3468 	free_list(&head);
3469 	return ret;
3470 }
3471 EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node);
3472 
3473 static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs)
3474 {
3475 	u32 remain_q_num, vfs_q_num, act_q_num, q_num, i, j;
3476 	u32 max_qp_num = qm->max_qp_num;
3477 	u32 q_base = qm->qp_num;
3478 	int ret;
3479 
3480 	if (!num_vfs)
3481 		return -EINVAL;
3482 
3483 	vfs_q_num = qm->ctrl_qp_num - qm->qp_num;
3484 
3485 	/* If vfs_q_num is less than num_vfs, return error. */
3486 	if (vfs_q_num < num_vfs)
3487 		return -EINVAL;
3488 
3489 	q_num = vfs_q_num / num_vfs;
3490 	remain_q_num = vfs_q_num % num_vfs;
3491 
3492 	for (i = num_vfs; i > 0; i--) {
3493 		/*
3494 		 * if q_num + remain_q_num > max_qp_num in last vf, divide the
3495 		 * remaining queues equally.
3496 		 */
3497 		if (i == num_vfs && q_num + remain_q_num <= max_qp_num) {
3498 			act_q_num = q_num + remain_q_num;
3499 			remain_q_num = 0;
3500 		} else if (remain_q_num > 0) {
3501 			act_q_num = q_num + 1;
3502 			remain_q_num--;
3503 		} else {
3504 			act_q_num = q_num;
3505 		}
3506 
3507 		act_q_num = min(act_q_num, max_qp_num);
3508 		ret = hisi_qm_set_vft(qm, i, q_base, act_q_num);
3509 		if (ret) {
3510 			for (j = num_vfs; j > i; j--)
3511 				hisi_qm_set_vft(qm, j, 0, 0);
3512 			return ret;
3513 		}
3514 		q_base += act_q_num;
3515 	}
3516 
3517 	return 0;
3518 }
3519 
3520 static int qm_clear_vft_config(struct hisi_qm *qm)
3521 {
3522 	int ret;
3523 	u32 i;
3524 
3525 	for (i = 1; i <= qm->vfs_num; i++) {
3526 		ret = hisi_qm_set_vft(qm, i, 0, 0);
3527 		if (ret)
3528 			return ret;
3529 	}
3530 	qm->vfs_num = 0;
3531 
3532 	return 0;
3533 }
3534 
3535 static int qm_func_shaper_enable(struct hisi_qm *qm, u32 fun_index, u32 qos)
3536 {
3537 	struct device *dev = &qm->pdev->dev;
3538 	u32 ir = qos * QM_QOS_RATE;
3539 	int ret, total_vfs, i;
3540 
3541 	total_vfs = pci_sriov_get_totalvfs(qm->pdev);
3542 	if (fun_index > total_vfs)
3543 		return -EINVAL;
3544 
3545 	qm->factor[fun_index].func_qos = qos;
3546 
3547 	ret = qm_get_shaper_para(ir, &qm->factor[fun_index]);
3548 	if (ret) {
3549 		dev_err(dev, "failed to calculate shaper parameter!\n");
3550 		return -EINVAL;
3551 	}
3552 
3553 	for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) {
3554 		/* The base number of queue reuse for different alg type */
3555 		ret = qm_set_vft_common(qm, SHAPER_VFT, fun_index, i, 1);
3556 		if (ret) {
3557 			dev_err(dev, "type: %d, failed to set shaper vft!\n", i);
3558 			return -EINVAL;
3559 		}
3560 	}
3561 
3562 	return 0;
3563 }
3564 
3565 static u32 qm_get_shaper_vft_qos(struct hisi_qm *qm, u32 fun_index)
3566 {
3567 	u64 cir_u = 0, cir_b = 0, cir_s = 0;
3568 	u64 shaper_vft, ir_calc, ir;
3569 	unsigned int val;
3570 	u32 error_rate;
3571 	int ret;
3572 
3573 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
3574 					 val & BIT(0), POLL_PERIOD,
3575 					 POLL_TIMEOUT);
3576 	if (ret)
3577 		return 0;
3578 
3579 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_WR);
3580 	writel(SHAPER_VFT, qm->io_base + QM_VFT_CFG_TYPE);
3581 	writel(fun_index, qm->io_base + QM_VFT_CFG);
3582 
3583 	writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
3584 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
3585 
3586 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
3587 					 val & BIT(0), POLL_PERIOD,
3588 					 POLL_TIMEOUT);
3589 	if (ret)
3590 		return 0;
3591 
3592 	shaper_vft = readl(qm->io_base + QM_VFT_CFG_DATA_L) |
3593 		  ((u64)readl(qm->io_base + QM_VFT_CFG_DATA_H) << 32);
3594 
3595 	cir_b = shaper_vft & QM_SHAPER_CIR_B_MASK;
3596 	cir_u = shaper_vft & QM_SHAPER_CIR_U_MASK;
3597 	cir_u = cir_u >> QM_SHAPER_FACTOR_CIR_U_SHIFT;
3598 
3599 	cir_s = shaper_vft & QM_SHAPER_CIR_S_MASK;
3600 	cir_s = cir_s >> QM_SHAPER_FACTOR_CIR_S_SHIFT;
3601 
3602 	ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s);
3603 
3604 	ir = qm->factor[fun_index].func_qos * QM_QOS_RATE;
3605 
3606 	error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir;
3607 	if (error_rate > QM_QOS_MIN_ERROR_RATE) {
3608 		pci_err(qm->pdev, "error_rate: %u, get function qos is error!\n", error_rate);
3609 		return 0;
3610 	}
3611 
3612 	return ir;
3613 }
3614 
3615 static void qm_vf_get_qos(struct hisi_qm *qm, u32 fun_num)
3616 {
3617 	struct device *dev = &qm->pdev->dev;
3618 	u64 mb_cmd;
3619 	u32 qos;
3620 	int ret;
3621 
3622 	qos = qm_get_shaper_vft_qos(qm, fun_num);
3623 	if (!qos) {
3624 		dev_err(dev, "function(%u) failed to get qos by PF!\n", fun_num);
3625 		return;
3626 	}
3627 
3628 	mb_cmd = QM_PF_SET_QOS | (u64)qos << QM_MB_CMD_DATA_SHIFT;
3629 	ret = qm_ping_single_vf(qm, mb_cmd, fun_num);
3630 	if (ret)
3631 		dev_err(dev, "failed to send cmd to VF(%u)!\n", fun_num);
3632 }
3633 
3634 static int qm_vf_read_qos(struct hisi_qm *qm)
3635 {
3636 	int cnt = 0;
3637 	int ret = -EINVAL;
3638 
3639 	/* reset mailbox qos val */
3640 	qm->mb_qos = 0;
3641 
3642 	/* vf ping pf to get function qos */
3643 	ret = qm_ping_pf(qm, QM_VF_GET_QOS);
3644 	if (ret) {
3645 		pci_err(qm->pdev, "failed to send cmd to PF to get qos!\n");
3646 		return ret;
3647 	}
3648 
3649 	while (true) {
3650 		msleep(QM_WAIT_DST_ACK);
3651 		if (qm->mb_qos)
3652 			break;
3653 
3654 		if (++cnt > QM_MAX_VF_WAIT_COUNT) {
3655 			pci_err(qm->pdev, "PF ping VF timeout!\n");
3656 			return  -ETIMEDOUT;
3657 		}
3658 	}
3659 
3660 	return ret;
3661 }
3662 
3663 static ssize_t qm_algqos_read(struct file *filp, char __user *buf,
3664 			       size_t count, loff_t *pos)
3665 {
3666 	struct hisi_qm *qm = filp->private_data;
3667 	char tbuf[QM_DBG_READ_LEN];
3668 	u32 qos_val, ir;
3669 	int ret;
3670 
3671 	ret = hisi_qm_get_dfx_access(qm);
3672 	if (ret)
3673 		return ret;
3674 
3675 	/* Mailbox and reset cannot be operated at the same time */
3676 	if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
3677 		pci_err(qm->pdev, "dev resetting, read alg qos failed!\n");
3678 		ret = -EAGAIN;
3679 		goto err_put_dfx_access;
3680 	}
3681 
3682 	if (qm->fun_type == QM_HW_PF) {
3683 		ir = qm_get_shaper_vft_qos(qm, 0);
3684 	} else {
3685 		ret = qm_vf_read_qos(qm);
3686 		if (ret)
3687 			goto err_get_status;
3688 		ir = qm->mb_qos;
3689 	}
3690 
3691 	qos_val = ir / QM_QOS_RATE;
3692 	ret = scnprintf(tbuf, QM_DBG_READ_LEN, "%u\n", qos_val);
3693 
3694 	ret = simple_read_from_buffer(buf, count, pos, tbuf, ret);
3695 
3696 err_get_status:
3697 	clear_bit(QM_RESETTING, &qm->misc_ctl);
3698 err_put_dfx_access:
3699 	hisi_qm_put_dfx_access(qm);
3700 	return ret;
3701 }
3702 
3703 static ssize_t qm_get_qos_value(struct hisi_qm *qm, const char *buf,
3704 			       unsigned long *val,
3705 			       unsigned int *fun_index)
3706 {
3707 	const struct bus_type *bus_type = qm->pdev->dev.bus;
3708 	char tbuf_bdf[QM_DBG_READ_LEN] = {0};
3709 	char val_buf[QM_DBG_READ_LEN] = {0};
3710 	struct pci_dev *pdev;
3711 	struct device *dev;
3712 	int ret;
3713 
3714 	ret = sscanf(buf, "%s %s", tbuf_bdf, val_buf);
3715 	if (ret != QM_QOS_PARAM_NUM)
3716 		return -EINVAL;
3717 
3718 	ret = kstrtoul(val_buf, 10, val);
3719 	if (ret || *val == 0 || *val > QM_QOS_MAX_VAL) {
3720 		pci_err(qm->pdev, "input qos value is error, please set 1~1000!\n");
3721 		return -EINVAL;
3722 	}
3723 
3724 	dev = bus_find_device_by_name(bus_type, NULL, tbuf_bdf);
3725 	if (!dev) {
3726 		pci_err(qm->pdev, "input pci bdf number is error!\n");
3727 		return -ENODEV;
3728 	}
3729 
3730 	pdev = container_of(dev, struct pci_dev, dev);
3731 
3732 	*fun_index = pdev->devfn;
3733 
3734 	return 0;
3735 }
3736 
3737 static ssize_t qm_algqos_write(struct file *filp, const char __user *buf,
3738 			       size_t count, loff_t *pos)
3739 {
3740 	struct hisi_qm *qm = filp->private_data;
3741 	char tbuf[QM_DBG_READ_LEN];
3742 	unsigned int fun_index;
3743 	unsigned long val;
3744 	int len, ret;
3745 
3746 	if (*pos != 0)
3747 		return 0;
3748 
3749 	if (count >= QM_DBG_READ_LEN)
3750 		return -ENOSPC;
3751 
3752 	len = simple_write_to_buffer(tbuf, QM_DBG_READ_LEN - 1, pos, buf, count);
3753 	if (len < 0)
3754 		return len;
3755 
3756 	tbuf[len] = '\0';
3757 	ret = qm_get_qos_value(qm, tbuf, &val, &fun_index);
3758 	if (ret)
3759 		return ret;
3760 
3761 	/* Mailbox and reset cannot be operated at the same time */
3762 	if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
3763 		pci_err(qm->pdev, "dev resetting, write alg qos failed!\n");
3764 		return -EAGAIN;
3765 	}
3766 
3767 	ret = qm_pm_get_sync(qm);
3768 	if (ret) {
3769 		ret = -EINVAL;
3770 		goto err_get_status;
3771 	}
3772 
3773 	ret = qm_func_shaper_enable(qm, fun_index, val);
3774 	if (ret) {
3775 		pci_err(qm->pdev, "failed to enable function shaper!\n");
3776 		ret = -EINVAL;
3777 		goto err_put_sync;
3778 	}
3779 
3780 	pci_info(qm->pdev, "the qos value of function%u is set to %lu.\n",
3781 		 fun_index, val);
3782 	ret = count;
3783 
3784 err_put_sync:
3785 	qm_pm_put_sync(qm);
3786 err_get_status:
3787 	clear_bit(QM_RESETTING, &qm->misc_ctl);
3788 	return ret;
3789 }
3790 
3791 static const struct file_operations qm_algqos_fops = {
3792 	.owner = THIS_MODULE,
3793 	.open = simple_open,
3794 	.read = qm_algqos_read,
3795 	.write = qm_algqos_write,
3796 };
3797 
3798 /**
3799  * hisi_qm_set_algqos_init() - Initialize function qos debugfs files.
3800  * @qm: The qm for which we want to add debugfs files.
3801  *
3802  * Create function qos debugfs files, VF ping PF to get function qos.
3803  */
3804 void hisi_qm_set_algqos_init(struct hisi_qm *qm)
3805 {
3806 	if (qm->fun_type == QM_HW_PF)
3807 		debugfs_create_file("alg_qos", 0644, qm->debug.debug_root,
3808 				    qm, &qm_algqos_fops);
3809 	else if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
3810 		debugfs_create_file("alg_qos", 0444, qm->debug.debug_root,
3811 				    qm, &qm_algqos_fops);
3812 }
3813 
3814 static void hisi_qm_init_vf_qos(struct hisi_qm *qm, int total_func)
3815 {
3816 	int i;
3817 
3818 	for (i = 1; i <= total_func; i++)
3819 		qm->factor[i].func_qos = QM_QOS_MAX_VAL;
3820 }
3821 
3822 /**
3823  * hisi_qm_sriov_enable() - enable virtual functions
3824  * @pdev: the PCIe device
3825  * @max_vfs: the number of virtual functions to enable
3826  *
3827  * Returns the number of enabled VFs. If there are VFs enabled already or
3828  * max_vfs is more than the total number of device can be enabled, returns
3829  * failure.
3830  */
3831 int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs)
3832 {
3833 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3834 	int pre_existing_vfs, num_vfs, total_vfs, ret;
3835 
3836 	ret = qm_pm_get_sync(qm);
3837 	if (ret)
3838 		return ret;
3839 
3840 	total_vfs = pci_sriov_get_totalvfs(pdev);
3841 	pre_existing_vfs = pci_num_vf(pdev);
3842 	if (pre_existing_vfs) {
3843 		pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n",
3844 			pre_existing_vfs);
3845 		goto err_put_sync;
3846 	}
3847 
3848 	if (max_vfs > total_vfs) {
3849 		pci_err(pdev, "%d VFs is more than total VFs %d!\n", max_vfs, total_vfs);
3850 		ret = -ERANGE;
3851 		goto err_put_sync;
3852 	}
3853 
3854 	num_vfs = max_vfs;
3855 
3856 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
3857 		hisi_qm_init_vf_qos(qm, num_vfs);
3858 
3859 	ret = qm_vf_q_assign(qm, num_vfs);
3860 	if (ret) {
3861 		pci_err(pdev, "Can't assign queues for VF!\n");
3862 		goto err_put_sync;
3863 	}
3864 
3865 	qm->vfs_num = num_vfs;
3866 
3867 	ret = pci_enable_sriov(pdev, num_vfs);
3868 	if (ret) {
3869 		pci_err(pdev, "Can't enable VF!\n");
3870 		qm_clear_vft_config(qm);
3871 		goto err_put_sync;
3872 	}
3873 
3874 	pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs);
3875 
3876 	return num_vfs;
3877 
3878 err_put_sync:
3879 	qm_pm_put_sync(qm);
3880 	return ret;
3881 }
3882 EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable);
3883 
3884 /**
3885  * hisi_qm_sriov_disable - disable virtual functions
3886  * @pdev: the PCI device.
3887  * @is_frozen: true when all the VFs are frozen.
3888  *
3889  * Return failure if there are VFs assigned already or VF is in used.
3890  */
3891 int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen)
3892 {
3893 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3894 	int ret;
3895 
3896 	if (pci_vfs_assigned(pdev)) {
3897 		pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n");
3898 		return -EPERM;
3899 	}
3900 
3901 	/* While VF is in used, SRIOV cannot be disabled. */
3902 	if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) {
3903 		pci_err(pdev, "Task is using its VF!\n");
3904 		return -EBUSY;
3905 	}
3906 
3907 	pci_disable_sriov(pdev);
3908 
3909 	ret = qm_clear_vft_config(qm);
3910 	if (ret)
3911 		return ret;
3912 
3913 	qm_pm_put_sync(qm);
3914 
3915 	return 0;
3916 }
3917 EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable);
3918 
3919 /**
3920  * hisi_qm_sriov_configure - configure the number of VFs
3921  * @pdev: The PCI device
3922  * @num_vfs: The number of VFs need enabled
3923  *
3924  * Enable SR-IOV according to num_vfs, 0 means disable.
3925  */
3926 int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs)
3927 {
3928 	if (num_vfs == 0)
3929 		return hisi_qm_sriov_disable(pdev, false);
3930 	else
3931 		return hisi_qm_sriov_enable(pdev, num_vfs);
3932 }
3933 EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure);
3934 
3935 static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm)
3936 {
3937 	u32 err_sts;
3938 
3939 	if (!qm->err_ini->get_dev_hw_err_status) {
3940 		dev_err(&qm->pdev->dev, "Device doesn't support get hw error status!\n");
3941 		return ACC_ERR_NONE;
3942 	}
3943 
3944 	/* get device hardware error status */
3945 	err_sts = qm->err_ini->get_dev_hw_err_status(qm);
3946 	if (err_sts) {
3947 		if (err_sts & qm->err_info.ecc_2bits_mask)
3948 			qm->err_status.is_dev_ecc_mbit = true;
3949 
3950 		if (qm->err_ini->log_dev_hw_err)
3951 			qm->err_ini->log_dev_hw_err(qm, err_sts);
3952 
3953 		if (err_sts & qm->err_info.dev_reset_mask)
3954 			return ACC_ERR_NEED_RESET;
3955 
3956 		if (qm->err_ini->clear_dev_hw_err_status)
3957 			qm->err_ini->clear_dev_hw_err_status(qm, err_sts);
3958 	}
3959 
3960 	return ACC_ERR_RECOVERED;
3961 }
3962 
3963 static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm)
3964 {
3965 	enum acc_err_result qm_ret, dev_ret;
3966 
3967 	/* log qm error */
3968 	qm_ret = qm_hw_error_handle(qm);
3969 
3970 	/* log device error */
3971 	dev_ret = qm_dev_err_handle(qm);
3972 
3973 	return (qm_ret == ACC_ERR_NEED_RESET ||
3974 		dev_ret == ACC_ERR_NEED_RESET) ?
3975 		ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED;
3976 }
3977 
3978 /**
3979  * hisi_qm_dev_err_detected() - Get device and qm error status then log it.
3980  * @pdev: The PCI device which need report error.
3981  * @state: The connectivity between CPU and device.
3982  *
3983  * We register this function into PCIe AER handlers, It will report device or
3984  * qm hardware error status when error occur.
3985  */
3986 pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev,
3987 					  pci_channel_state_t state)
3988 {
3989 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3990 	enum acc_err_result ret;
3991 
3992 	if (pdev->is_virtfn)
3993 		return PCI_ERS_RESULT_NONE;
3994 
3995 	pci_info(pdev, "PCI error detected, state(=%u)!!\n", state);
3996 	if (state == pci_channel_io_perm_failure)
3997 		return PCI_ERS_RESULT_DISCONNECT;
3998 
3999 	ret = qm_process_dev_error(qm);
4000 	if (ret == ACC_ERR_NEED_RESET)
4001 		return PCI_ERS_RESULT_NEED_RESET;
4002 
4003 	return PCI_ERS_RESULT_RECOVERED;
4004 }
4005 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected);
4006 
4007 static int qm_check_req_recv(struct hisi_qm *qm)
4008 {
4009 	struct pci_dev *pdev = qm->pdev;
4010 	int ret;
4011 	u32 val;
4012 
4013 	if (qm->ver >= QM_HW_V3)
4014 		return 0;
4015 
4016 	writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID);
4017 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
4018 					 (val == ACC_VENDOR_ID_VALUE),
4019 					 POLL_PERIOD, POLL_TIMEOUT);
4020 	if (ret) {
4021 		dev_err(&pdev->dev, "Fails to read QM reg!\n");
4022 		return ret;
4023 	}
4024 
4025 	writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID);
4026 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
4027 					 (val == PCI_VENDOR_ID_HUAWEI),
4028 					 POLL_PERIOD, POLL_TIMEOUT);
4029 	if (ret)
4030 		dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n");
4031 
4032 	return ret;
4033 }
4034 
4035 static int qm_set_pf_mse(struct hisi_qm *qm, bool set)
4036 {
4037 	struct pci_dev *pdev = qm->pdev;
4038 	u16 cmd;
4039 	int i;
4040 
4041 	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
4042 	if (set)
4043 		cmd |= PCI_COMMAND_MEMORY;
4044 	else
4045 		cmd &= ~PCI_COMMAND_MEMORY;
4046 
4047 	pci_write_config_word(pdev, PCI_COMMAND, cmd);
4048 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
4049 		pci_read_config_word(pdev, PCI_COMMAND, &cmd);
4050 		if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1))
4051 			return 0;
4052 
4053 		udelay(1);
4054 	}
4055 
4056 	return -ETIMEDOUT;
4057 }
4058 
4059 static int qm_set_vf_mse(struct hisi_qm *qm, bool set)
4060 {
4061 	struct pci_dev *pdev = qm->pdev;
4062 	u16 sriov_ctrl;
4063 	int pos;
4064 	int i;
4065 
4066 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
4067 	pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
4068 	if (set)
4069 		sriov_ctrl |= PCI_SRIOV_CTRL_MSE;
4070 	else
4071 		sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE;
4072 	pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl);
4073 
4074 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
4075 		pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
4076 		if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >>
4077 		    ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT)
4078 			return 0;
4079 
4080 		udelay(1);
4081 	}
4082 
4083 	return -ETIMEDOUT;
4084 }
4085 
4086 static int qm_vf_reset_prepare(struct hisi_qm *qm,
4087 			       enum qm_stop_reason stop_reason)
4088 {
4089 	struct hisi_qm_list *qm_list = qm->qm_list;
4090 	struct pci_dev *pdev = qm->pdev;
4091 	struct pci_dev *virtfn;
4092 	struct hisi_qm *vf_qm;
4093 	int ret = 0;
4094 
4095 	mutex_lock(&qm_list->lock);
4096 	list_for_each_entry(vf_qm, &qm_list->list, list) {
4097 		virtfn = vf_qm->pdev;
4098 		if (virtfn == pdev)
4099 			continue;
4100 
4101 		if (pci_physfn(virtfn) == pdev) {
4102 			/* save VFs PCIE BAR configuration */
4103 			pci_save_state(virtfn);
4104 
4105 			ret = hisi_qm_stop(vf_qm, stop_reason);
4106 			if (ret)
4107 				goto stop_fail;
4108 		}
4109 	}
4110 
4111 stop_fail:
4112 	mutex_unlock(&qm_list->lock);
4113 	return ret;
4114 }
4115 
4116 static int qm_try_stop_vfs(struct hisi_qm *qm, u64 cmd,
4117 			   enum qm_stop_reason stop_reason)
4118 {
4119 	struct pci_dev *pdev = qm->pdev;
4120 	int ret;
4121 
4122 	if (!qm->vfs_num)
4123 		return 0;
4124 
4125 	/* Kunpeng930 supports to notify VFs to stop before PF reset */
4126 	if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) {
4127 		ret = qm_ping_all_vfs(qm, cmd);
4128 		if (ret)
4129 			pci_err(pdev, "failed to send cmd to all VFs before PF reset!\n");
4130 	} else {
4131 		ret = qm_vf_reset_prepare(qm, stop_reason);
4132 		if (ret)
4133 			pci_err(pdev, "failed to prepare reset, ret = %d.\n", ret);
4134 	}
4135 
4136 	return ret;
4137 }
4138 
4139 static int qm_controller_reset_prepare(struct hisi_qm *qm)
4140 {
4141 	struct pci_dev *pdev = qm->pdev;
4142 	int ret;
4143 
4144 	ret = qm_reset_prepare_ready(qm);
4145 	if (ret) {
4146 		pci_err(pdev, "Controller reset not ready!\n");
4147 		return ret;
4148 	}
4149 
4150 	/* PF obtains the information of VF by querying the register. */
4151 	qm_cmd_uninit(qm);
4152 
4153 	/* Whether VFs stop successfully, soft reset will continue. */
4154 	ret = qm_try_stop_vfs(qm, QM_PF_SRST_PREPARE, QM_SOFT_RESET);
4155 	if (ret)
4156 		pci_err(pdev, "failed to stop vfs by pf in soft reset.\n");
4157 
4158 	ret = hisi_qm_stop(qm, QM_SOFT_RESET);
4159 	if (ret) {
4160 		pci_err(pdev, "Fails to stop QM!\n");
4161 		qm_reset_bit_clear(qm);
4162 		return ret;
4163 	}
4164 
4165 	if (qm->use_sva) {
4166 		ret = qm_hw_err_isolate(qm);
4167 		if (ret)
4168 			pci_err(pdev, "failed to isolate hw err!\n");
4169 	}
4170 
4171 	ret = qm_wait_vf_prepare_finish(qm);
4172 	if (ret)
4173 		pci_err(pdev, "failed to stop by vfs in soft reset!\n");
4174 
4175 	clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4176 
4177 	return 0;
4178 }
4179 
4180 static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm)
4181 {
4182 	u32 nfe_enb = 0;
4183 
4184 	/* Kunpeng930 hardware automatically close master ooo when NFE occurs */
4185 	if (qm->ver >= QM_HW_V3)
4186 		return;
4187 
4188 	if (!qm->err_status.is_dev_ecc_mbit &&
4189 	    qm->err_status.is_qm_ecc_mbit &&
4190 	    qm->err_ini->close_axi_master_ooo) {
4191 		qm->err_ini->close_axi_master_ooo(qm);
4192 	} else if (qm->err_status.is_dev_ecc_mbit &&
4193 		   !qm->err_status.is_qm_ecc_mbit &&
4194 		   !qm->err_ini->close_axi_master_ooo) {
4195 		nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE);
4196 		writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE,
4197 		       qm->io_base + QM_RAS_NFE_ENABLE);
4198 		writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET);
4199 	}
4200 }
4201 
4202 static int qm_soft_reset(struct hisi_qm *qm)
4203 {
4204 	struct pci_dev *pdev = qm->pdev;
4205 	int ret;
4206 	u32 val;
4207 
4208 	/* Ensure all doorbells and mailboxes received by QM */
4209 	ret = qm_check_req_recv(qm);
4210 	if (ret)
4211 		return ret;
4212 
4213 	if (qm->vfs_num) {
4214 		ret = qm_set_vf_mse(qm, false);
4215 		if (ret) {
4216 			pci_err(pdev, "Fails to disable vf MSE bit.\n");
4217 			return ret;
4218 		}
4219 	}
4220 
4221 	ret = qm->ops->set_msi(qm, false);
4222 	if (ret) {
4223 		pci_err(pdev, "Fails to disable PEH MSI bit.\n");
4224 		return ret;
4225 	}
4226 
4227 	qm_dev_ecc_mbit_handle(qm);
4228 
4229 	/* OOO register set and check */
4230 	writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN,
4231 	       qm->io_base + ACC_MASTER_GLOBAL_CTRL);
4232 
4233 	/* If bus lock, reset chip */
4234 	ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN,
4235 					 val,
4236 					 (val == ACC_MASTER_TRANS_RETURN_RW),
4237 					 POLL_PERIOD, POLL_TIMEOUT);
4238 	if (ret) {
4239 		pci_emerg(pdev, "Bus lock! Please reset system.\n");
4240 		return ret;
4241 	}
4242 
4243 	if (qm->err_ini->close_sva_prefetch)
4244 		qm->err_ini->close_sva_prefetch(qm);
4245 
4246 	ret = qm_set_pf_mse(qm, false);
4247 	if (ret) {
4248 		pci_err(pdev, "Fails to disable pf MSE bit.\n");
4249 		return ret;
4250 	}
4251 
4252 	/* The reset related sub-control registers are not in PCI BAR */
4253 	if (ACPI_HANDLE(&pdev->dev)) {
4254 		unsigned long long value = 0;
4255 		acpi_status s;
4256 
4257 		s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev),
4258 					  qm->err_info.acpi_rst,
4259 					  NULL, &value);
4260 		if (ACPI_FAILURE(s)) {
4261 			pci_err(pdev, "NO controller reset method!\n");
4262 			return -EIO;
4263 		}
4264 
4265 		if (value) {
4266 			pci_err(pdev, "Reset step %llu failed!\n", value);
4267 			return -EIO;
4268 		}
4269 	} else {
4270 		pci_err(pdev, "No reset method!\n");
4271 		return -EINVAL;
4272 	}
4273 
4274 	return 0;
4275 }
4276 
4277 static int qm_vf_reset_done(struct hisi_qm *qm)
4278 {
4279 	struct hisi_qm_list *qm_list = qm->qm_list;
4280 	struct pci_dev *pdev = qm->pdev;
4281 	struct pci_dev *virtfn;
4282 	struct hisi_qm *vf_qm;
4283 	int ret = 0;
4284 
4285 	mutex_lock(&qm_list->lock);
4286 	list_for_each_entry(vf_qm, &qm_list->list, list) {
4287 		virtfn = vf_qm->pdev;
4288 		if (virtfn == pdev)
4289 			continue;
4290 
4291 		if (pci_physfn(virtfn) == pdev) {
4292 			/* enable VFs PCIE BAR configuration */
4293 			pci_restore_state(virtfn);
4294 
4295 			ret = qm_restart(vf_qm);
4296 			if (ret)
4297 				goto restart_fail;
4298 		}
4299 	}
4300 
4301 restart_fail:
4302 	mutex_unlock(&qm_list->lock);
4303 	return ret;
4304 }
4305 
4306 static int qm_try_start_vfs(struct hisi_qm *qm, enum qm_mb_cmd cmd)
4307 {
4308 	struct pci_dev *pdev = qm->pdev;
4309 	int ret;
4310 
4311 	if (!qm->vfs_num)
4312 		return 0;
4313 
4314 	ret = qm_vf_q_assign(qm, qm->vfs_num);
4315 	if (ret) {
4316 		pci_err(pdev, "failed to assign VFs, ret = %d.\n", ret);
4317 		return ret;
4318 	}
4319 
4320 	/* Kunpeng930 supports to notify VFs to start after PF reset. */
4321 	if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) {
4322 		ret = qm_ping_all_vfs(qm, cmd);
4323 		if (ret)
4324 			pci_warn(pdev, "failed to send cmd to all VFs after PF reset!\n");
4325 	} else {
4326 		ret = qm_vf_reset_done(qm);
4327 		if (ret)
4328 			pci_warn(pdev, "failed to start vfs, ret = %d.\n", ret);
4329 	}
4330 
4331 	return ret;
4332 }
4333 
4334 static int qm_dev_hw_init(struct hisi_qm *qm)
4335 {
4336 	return qm->err_ini->hw_init(qm);
4337 }
4338 
4339 static void qm_restart_prepare(struct hisi_qm *qm)
4340 {
4341 	u32 value;
4342 
4343 	if (qm->err_ini->open_sva_prefetch)
4344 		qm->err_ini->open_sva_prefetch(qm);
4345 
4346 	if (qm->ver >= QM_HW_V3)
4347 		return;
4348 
4349 	if (!qm->err_status.is_qm_ecc_mbit &&
4350 	    !qm->err_status.is_dev_ecc_mbit)
4351 		return;
4352 
4353 	/* temporarily close the OOO port used for PEH to write out MSI */
4354 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4355 	writel(value & ~qm->err_info.msi_wr_port,
4356 	       qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4357 
4358 	/* clear dev ecc 2bit error source if having */
4359 	value = qm_get_dev_err_status(qm) & qm->err_info.ecc_2bits_mask;
4360 	if (value && qm->err_ini->clear_dev_hw_err_status)
4361 		qm->err_ini->clear_dev_hw_err_status(qm, value);
4362 
4363 	/* clear QM ecc mbit error source */
4364 	writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE);
4365 
4366 	/* clear AM Reorder Buffer ecc mbit source */
4367 	writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS);
4368 }
4369 
4370 static void qm_restart_done(struct hisi_qm *qm)
4371 {
4372 	u32 value;
4373 
4374 	if (qm->ver >= QM_HW_V3)
4375 		goto clear_flags;
4376 
4377 	if (!qm->err_status.is_qm_ecc_mbit &&
4378 	    !qm->err_status.is_dev_ecc_mbit)
4379 		return;
4380 
4381 	/* open the OOO port for PEH to write out MSI */
4382 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4383 	value |= qm->err_info.msi_wr_port;
4384 	writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4385 
4386 clear_flags:
4387 	qm->err_status.is_qm_ecc_mbit = false;
4388 	qm->err_status.is_dev_ecc_mbit = false;
4389 }
4390 
4391 static int qm_controller_reset_done(struct hisi_qm *qm)
4392 {
4393 	struct pci_dev *pdev = qm->pdev;
4394 	int ret;
4395 
4396 	ret = qm->ops->set_msi(qm, true);
4397 	if (ret) {
4398 		pci_err(pdev, "Fails to enable PEH MSI bit!\n");
4399 		return ret;
4400 	}
4401 
4402 	ret = qm_set_pf_mse(qm, true);
4403 	if (ret) {
4404 		pci_err(pdev, "Fails to enable pf MSE bit!\n");
4405 		return ret;
4406 	}
4407 
4408 	if (qm->vfs_num) {
4409 		ret = qm_set_vf_mse(qm, true);
4410 		if (ret) {
4411 			pci_err(pdev, "Fails to enable vf MSE bit!\n");
4412 			return ret;
4413 		}
4414 	}
4415 
4416 	ret = qm_dev_hw_init(qm);
4417 	if (ret) {
4418 		pci_err(pdev, "Failed to init device\n");
4419 		return ret;
4420 	}
4421 
4422 	qm_restart_prepare(qm);
4423 	hisi_qm_dev_err_init(qm);
4424 	if (qm->err_ini->open_axi_master_ooo)
4425 		qm->err_ini->open_axi_master_ooo(qm);
4426 
4427 	ret = qm_dev_mem_reset(qm);
4428 	if (ret) {
4429 		pci_err(pdev, "failed to reset device memory\n");
4430 		return ret;
4431 	}
4432 
4433 	ret = qm_restart(qm);
4434 	if (ret) {
4435 		pci_err(pdev, "Failed to start QM!\n");
4436 		return ret;
4437 	}
4438 
4439 	ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE);
4440 	if (ret)
4441 		pci_err(pdev, "failed to start vfs by pf in soft reset.\n");
4442 
4443 	ret = qm_wait_vf_prepare_finish(qm);
4444 	if (ret)
4445 		pci_err(pdev, "failed to start by vfs in soft reset!\n");
4446 
4447 	qm_cmd_init(qm);
4448 	qm_restart_done(qm);
4449 
4450 	qm_reset_bit_clear(qm);
4451 
4452 	return 0;
4453 }
4454 
4455 static int qm_controller_reset(struct hisi_qm *qm)
4456 {
4457 	struct pci_dev *pdev = qm->pdev;
4458 	int ret;
4459 
4460 	pci_info(pdev, "Controller resetting...\n");
4461 
4462 	ret = qm_controller_reset_prepare(qm);
4463 	if (ret) {
4464 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4465 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4466 		clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4467 		return ret;
4468 	}
4469 
4470 	hisi_qm_show_last_dfx_regs(qm);
4471 	if (qm->err_ini->show_last_dfx_regs)
4472 		qm->err_ini->show_last_dfx_regs(qm);
4473 
4474 	ret = qm_soft_reset(qm);
4475 	if (ret)
4476 		goto err_reset;
4477 
4478 	ret = qm_controller_reset_done(qm);
4479 	if (ret)
4480 		goto err_reset;
4481 
4482 	pci_info(pdev, "Controller reset complete\n");
4483 
4484 	return 0;
4485 
4486 err_reset:
4487 	pci_err(pdev, "Controller reset failed (%d)\n", ret);
4488 	qm_reset_bit_clear(qm);
4489 
4490 	/* if resetting fails, isolate the device */
4491 	if (qm->use_sva)
4492 		qm->isolate_data.is_isolate = true;
4493 	return ret;
4494 }
4495 
4496 /**
4497  * hisi_qm_dev_slot_reset() - slot reset
4498  * @pdev: the PCIe device
4499  *
4500  * This function offers QM relate PCIe device reset interface. Drivers which
4501  * use QM can use this function as slot_reset in its struct pci_error_handlers.
4502  */
4503 pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev)
4504 {
4505 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4506 	int ret;
4507 
4508 	if (pdev->is_virtfn)
4509 		return PCI_ERS_RESULT_RECOVERED;
4510 
4511 	/* reset pcie device controller */
4512 	ret = qm_controller_reset(qm);
4513 	if (ret) {
4514 		pci_err(pdev, "Controller reset failed (%d)\n", ret);
4515 		return PCI_ERS_RESULT_DISCONNECT;
4516 	}
4517 
4518 	return PCI_ERS_RESULT_RECOVERED;
4519 }
4520 EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset);
4521 
4522 void hisi_qm_reset_prepare(struct pci_dev *pdev)
4523 {
4524 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
4525 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4526 	u32 delay = 0;
4527 	int ret;
4528 
4529 	hisi_qm_dev_err_uninit(pf_qm);
4530 
4531 	/*
4532 	 * Check whether there is an ECC mbit error, If it occurs, need to
4533 	 * wait for soft reset to fix it.
4534 	 */
4535 	while (qm_check_dev_error(pf_qm)) {
4536 		msleep(++delay);
4537 		if (delay > QM_RESET_WAIT_TIMEOUT)
4538 			return;
4539 	}
4540 
4541 	ret = qm_reset_prepare_ready(qm);
4542 	if (ret) {
4543 		pci_err(pdev, "FLR not ready!\n");
4544 		return;
4545 	}
4546 
4547 	/* PF obtains the information of VF by querying the register. */
4548 	if (qm->fun_type == QM_HW_PF)
4549 		qm_cmd_uninit(qm);
4550 
4551 	ret = qm_try_stop_vfs(qm, QM_PF_FLR_PREPARE, QM_DOWN);
4552 	if (ret)
4553 		pci_err(pdev, "failed to stop vfs by pf in FLR.\n");
4554 
4555 	ret = hisi_qm_stop(qm, QM_DOWN);
4556 	if (ret) {
4557 		pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret);
4558 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4559 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4560 		return;
4561 	}
4562 
4563 	ret = qm_wait_vf_prepare_finish(qm);
4564 	if (ret)
4565 		pci_err(pdev, "failed to stop by vfs in FLR!\n");
4566 
4567 	pci_info(pdev, "FLR resetting...\n");
4568 }
4569 EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare);
4570 
4571 static bool qm_flr_reset_complete(struct pci_dev *pdev)
4572 {
4573 	struct pci_dev *pf_pdev = pci_physfn(pdev);
4574 	struct hisi_qm *qm = pci_get_drvdata(pf_pdev);
4575 	u32 id;
4576 
4577 	pci_read_config_dword(qm->pdev, PCI_COMMAND, &id);
4578 	if (id == QM_PCI_COMMAND_INVALID) {
4579 		pci_err(pdev, "Device can not be used!\n");
4580 		return false;
4581 	}
4582 
4583 	return true;
4584 }
4585 
4586 void hisi_qm_reset_done(struct pci_dev *pdev)
4587 {
4588 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
4589 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4590 	int ret;
4591 
4592 	if (qm->fun_type == QM_HW_PF) {
4593 		ret = qm_dev_hw_init(qm);
4594 		if (ret) {
4595 			pci_err(pdev, "Failed to init PF, ret = %d.\n", ret);
4596 			goto flr_done;
4597 		}
4598 	}
4599 
4600 	hisi_qm_dev_err_init(pf_qm);
4601 
4602 	ret = qm_restart(qm);
4603 	if (ret) {
4604 		pci_err(pdev, "Failed to start QM, ret = %d.\n", ret);
4605 		goto flr_done;
4606 	}
4607 
4608 	ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE);
4609 	if (ret)
4610 		pci_err(pdev, "failed to start vfs by pf in FLR.\n");
4611 
4612 	ret = qm_wait_vf_prepare_finish(qm);
4613 	if (ret)
4614 		pci_err(pdev, "failed to start by vfs in FLR!\n");
4615 
4616 flr_done:
4617 	if (qm->fun_type == QM_HW_PF)
4618 		qm_cmd_init(qm);
4619 
4620 	if (qm_flr_reset_complete(pdev))
4621 		pci_info(pdev, "FLR reset complete\n");
4622 
4623 	qm_reset_bit_clear(qm);
4624 }
4625 EXPORT_SYMBOL_GPL(hisi_qm_reset_done);
4626 
4627 static irqreturn_t qm_abnormal_irq(int irq, void *data)
4628 {
4629 	struct hisi_qm *qm = data;
4630 	enum acc_err_result ret;
4631 
4632 	atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt);
4633 	ret = qm_process_dev_error(qm);
4634 	if (ret == ACC_ERR_NEED_RESET &&
4635 	    !test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl) &&
4636 	    !test_and_set_bit(QM_RST_SCHED, &qm->misc_ctl))
4637 		schedule_work(&qm->rst_work);
4638 
4639 	return IRQ_HANDLED;
4640 }
4641 
4642 /**
4643  * hisi_qm_dev_shutdown() - Shutdown device.
4644  * @pdev: The device will be shutdown.
4645  *
4646  * This function will stop qm when OS shutdown or rebooting.
4647  */
4648 void hisi_qm_dev_shutdown(struct pci_dev *pdev)
4649 {
4650 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4651 	int ret;
4652 
4653 	ret = hisi_qm_stop(qm, QM_DOWN);
4654 	if (ret)
4655 		dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n");
4656 
4657 	hisi_qm_cache_wb(qm);
4658 }
4659 EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown);
4660 
4661 static void hisi_qm_controller_reset(struct work_struct *rst_work)
4662 {
4663 	struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work);
4664 	int ret;
4665 
4666 	ret = qm_pm_get_sync(qm);
4667 	if (ret) {
4668 		clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4669 		return;
4670 	}
4671 
4672 	/* reset pcie device controller */
4673 	ret = qm_controller_reset(qm);
4674 	if (ret)
4675 		dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret);
4676 
4677 	qm_pm_put_sync(qm);
4678 }
4679 
4680 static void qm_pf_reset_vf_prepare(struct hisi_qm *qm,
4681 				   enum qm_stop_reason stop_reason)
4682 {
4683 	enum qm_mb_cmd cmd = QM_VF_PREPARE_DONE;
4684 	struct pci_dev *pdev = qm->pdev;
4685 	int ret;
4686 
4687 	ret = qm_reset_prepare_ready(qm);
4688 	if (ret) {
4689 		dev_err(&pdev->dev, "reset prepare not ready!\n");
4690 		atomic_set(&qm->status.flags, QM_STOP);
4691 		cmd = QM_VF_PREPARE_FAIL;
4692 		goto err_prepare;
4693 	}
4694 
4695 	ret = hisi_qm_stop(qm, stop_reason);
4696 	if (ret) {
4697 		dev_err(&pdev->dev, "failed to stop QM, ret = %d.\n", ret);
4698 		atomic_set(&qm->status.flags, QM_STOP);
4699 		cmd = QM_VF_PREPARE_FAIL;
4700 		goto err_prepare;
4701 	} else {
4702 		goto out;
4703 	}
4704 
4705 err_prepare:
4706 	hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4707 	hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4708 out:
4709 	pci_save_state(pdev);
4710 	ret = qm_ping_pf(qm, cmd);
4711 	if (ret)
4712 		dev_warn(&pdev->dev, "PF responds timeout in reset prepare!\n");
4713 }
4714 
4715 static void qm_pf_reset_vf_done(struct hisi_qm *qm)
4716 {
4717 	enum qm_mb_cmd cmd = QM_VF_START_DONE;
4718 	struct pci_dev *pdev = qm->pdev;
4719 	int ret;
4720 
4721 	pci_restore_state(pdev);
4722 	ret = hisi_qm_start(qm);
4723 	if (ret) {
4724 		dev_err(&pdev->dev, "failed to start QM, ret = %d.\n", ret);
4725 		cmd = QM_VF_START_FAIL;
4726 	}
4727 
4728 	qm_cmd_init(qm);
4729 	ret = qm_ping_pf(qm, cmd);
4730 	if (ret)
4731 		dev_warn(&pdev->dev, "PF responds timeout in reset done!\n");
4732 
4733 	qm_reset_bit_clear(qm);
4734 }
4735 
4736 static int qm_wait_pf_reset_finish(struct hisi_qm *qm)
4737 {
4738 	struct device *dev = &qm->pdev->dev;
4739 	u32 val, cmd;
4740 	u64 msg;
4741 	int ret;
4742 
4743 	/* Wait for reset to finish */
4744 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_IFC_INT_SOURCE_V, val,
4745 					 val == BIT(0), QM_VF_RESET_WAIT_US,
4746 					 QM_VF_RESET_WAIT_TIMEOUT_US);
4747 	/* hardware completion status should be available by this time */
4748 	if (ret) {
4749 		dev_err(dev, "couldn't get reset done status from PF, timeout!\n");
4750 		return -ETIMEDOUT;
4751 	}
4752 
4753 	/*
4754 	 * Whether message is got successfully,
4755 	 * VF needs to ack PF by clearing the interrupt.
4756 	 */
4757 	ret = qm_get_mb_cmd(qm, &msg, 0);
4758 	qm_clear_cmd_interrupt(qm, 0);
4759 	if (ret) {
4760 		dev_err(dev, "failed to get msg from PF in reset done!\n");
4761 		return ret;
4762 	}
4763 
4764 	cmd = msg & QM_MB_CMD_DATA_MASK;
4765 	if (cmd != QM_PF_RESET_DONE) {
4766 		dev_err(dev, "the cmd(%u) is not reset done!\n", cmd);
4767 		ret = -EINVAL;
4768 	}
4769 
4770 	return ret;
4771 }
4772 
4773 static void qm_pf_reset_vf_process(struct hisi_qm *qm,
4774 				   enum qm_stop_reason stop_reason)
4775 {
4776 	struct device *dev = &qm->pdev->dev;
4777 	int ret;
4778 
4779 	dev_info(dev, "device reset start...\n");
4780 
4781 	/* The message is obtained by querying the register during resetting */
4782 	qm_cmd_uninit(qm);
4783 	qm_pf_reset_vf_prepare(qm, stop_reason);
4784 
4785 	ret = qm_wait_pf_reset_finish(qm);
4786 	if (ret)
4787 		goto err_get_status;
4788 
4789 	qm_pf_reset_vf_done(qm);
4790 
4791 	dev_info(dev, "device reset done.\n");
4792 
4793 	return;
4794 
4795 err_get_status:
4796 	qm_cmd_init(qm);
4797 	qm_reset_bit_clear(qm);
4798 }
4799 
4800 static void qm_handle_cmd_msg(struct hisi_qm *qm, u32 fun_num)
4801 {
4802 	struct device *dev = &qm->pdev->dev;
4803 	u64 msg;
4804 	u32 cmd;
4805 	int ret;
4806 
4807 	/*
4808 	 * Get the msg from source by sending mailbox. Whether message is got
4809 	 * successfully, destination needs to ack source by clearing the interrupt.
4810 	 */
4811 	ret = qm_get_mb_cmd(qm, &msg, fun_num);
4812 	qm_clear_cmd_interrupt(qm, BIT(fun_num));
4813 	if (ret) {
4814 		dev_err(dev, "failed to get msg from source!\n");
4815 		return;
4816 	}
4817 
4818 	cmd = msg & QM_MB_CMD_DATA_MASK;
4819 	switch (cmd) {
4820 	case QM_PF_FLR_PREPARE:
4821 		qm_pf_reset_vf_process(qm, QM_DOWN);
4822 		break;
4823 	case QM_PF_SRST_PREPARE:
4824 		qm_pf_reset_vf_process(qm, QM_SOFT_RESET);
4825 		break;
4826 	case QM_VF_GET_QOS:
4827 		qm_vf_get_qos(qm, fun_num);
4828 		break;
4829 	case QM_PF_SET_QOS:
4830 		qm->mb_qos = msg >> QM_MB_CMD_DATA_SHIFT;
4831 		break;
4832 	default:
4833 		dev_err(dev, "unsupported cmd %u sent by function(%u)!\n", cmd, fun_num);
4834 		break;
4835 	}
4836 }
4837 
4838 static void qm_cmd_process(struct work_struct *cmd_process)
4839 {
4840 	struct hisi_qm *qm = container_of(cmd_process,
4841 					struct hisi_qm, cmd_process);
4842 	u32 vfs_num = qm->vfs_num;
4843 	u64 val;
4844 	u32 i;
4845 
4846 	if (qm->fun_type == QM_HW_PF) {
4847 		val = readq(qm->io_base + QM_IFC_INT_SOURCE_P);
4848 		if (!val)
4849 			return;
4850 
4851 		for (i = 1; i <= vfs_num; i++) {
4852 			if (val & BIT(i))
4853 				qm_handle_cmd_msg(qm, i);
4854 		}
4855 
4856 		return;
4857 	}
4858 
4859 	qm_handle_cmd_msg(qm, 0);
4860 }
4861 
4862 /**
4863  * hisi_qm_alg_register() - Register alg to crypto.
4864  * @qm: The qm needs add.
4865  * @qm_list: The qm list.
4866  * @guard: Guard of qp_num.
4867  *
4868  * Register algorithm to crypto when the function is satisfy guard.
4869  */
4870 int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list, int guard)
4871 {
4872 	struct device *dev = &qm->pdev->dev;
4873 
4874 	if (qm->ver <= QM_HW_V2 && qm->use_sva) {
4875 		dev_info(dev, "HW V2 not both use uacce sva mode and hardware crypto algs.\n");
4876 		return 0;
4877 	}
4878 
4879 	if (qm->qp_num < guard) {
4880 		dev_info(dev, "qp_num is less than task need.\n");
4881 		return 0;
4882 	}
4883 
4884 	return qm_list->register_to_crypto(qm);
4885 }
4886 EXPORT_SYMBOL_GPL(hisi_qm_alg_register);
4887 
4888 /**
4889  * hisi_qm_alg_unregister() - Unregister alg from crypto.
4890  * @qm: The qm needs delete.
4891  * @qm_list: The qm list.
4892  * @guard: Guard of qp_num.
4893  *
4894  * Unregister algorithm from crypto when the last function is satisfy guard.
4895  */
4896 void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list, int guard)
4897 {
4898 	if (qm->ver <= QM_HW_V2 && qm->use_sva)
4899 		return;
4900 
4901 	if (qm->qp_num < guard)
4902 		return;
4903 
4904 	qm_list->unregister_from_crypto(qm);
4905 }
4906 EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister);
4907 
4908 static void qm_unregister_abnormal_irq(struct hisi_qm *qm)
4909 {
4910 	struct pci_dev *pdev = qm->pdev;
4911 	u32 irq_vector, val;
4912 
4913 	if (qm->fun_type == QM_HW_VF)
4914 		return;
4915 
4916 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_ABN_IRQ_TYPE_CAP, qm->cap_ver);
4917 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK))
4918 		return;
4919 
4920 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4921 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
4922 }
4923 
4924 static int qm_register_abnormal_irq(struct hisi_qm *qm)
4925 {
4926 	struct pci_dev *pdev = qm->pdev;
4927 	u32 irq_vector, val;
4928 	int ret;
4929 
4930 	if (qm->fun_type == QM_HW_VF)
4931 		return 0;
4932 
4933 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_ABN_IRQ_TYPE_CAP, qm->cap_ver);
4934 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK))
4935 		return 0;
4936 
4937 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4938 	ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_abnormal_irq, 0, qm->dev_name, qm);
4939 	if (ret)
4940 		dev_err(&qm->pdev->dev, "failed to request abnormal irq, ret = %d", ret);
4941 
4942 	return ret;
4943 }
4944 
4945 static void qm_unregister_mb_cmd_irq(struct hisi_qm *qm)
4946 {
4947 	struct pci_dev *pdev = qm->pdev;
4948 	u32 irq_vector, val;
4949 
4950 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF2VF_IRQ_TYPE_CAP, qm->cap_ver);
4951 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4952 		return;
4953 
4954 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4955 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
4956 }
4957 
4958 static int qm_register_mb_cmd_irq(struct hisi_qm *qm)
4959 {
4960 	struct pci_dev *pdev = qm->pdev;
4961 	u32 irq_vector, val;
4962 	int ret;
4963 
4964 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF2VF_IRQ_TYPE_CAP, qm->cap_ver);
4965 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4966 		return 0;
4967 
4968 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4969 	ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_mb_cmd_irq, 0, qm->dev_name, qm);
4970 	if (ret)
4971 		dev_err(&pdev->dev, "failed to request function communication irq, ret = %d", ret);
4972 
4973 	return ret;
4974 }
4975 
4976 static void qm_unregister_aeq_irq(struct hisi_qm *qm)
4977 {
4978 	struct pci_dev *pdev = qm->pdev;
4979 	u32 irq_vector, val;
4980 
4981 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_AEQ_IRQ_TYPE_CAP, qm->cap_ver);
4982 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4983 		return;
4984 
4985 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4986 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
4987 }
4988 
4989 static int qm_register_aeq_irq(struct hisi_qm *qm)
4990 {
4991 	struct pci_dev *pdev = qm->pdev;
4992 	u32 irq_vector, val;
4993 	int ret;
4994 
4995 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_AEQ_IRQ_TYPE_CAP, qm->cap_ver);
4996 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4997 		return 0;
4998 
4999 	irq_vector = val & QM_IRQ_VECTOR_MASK;
5000 	ret = request_threaded_irq(pci_irq_vector(pdev, irq_vector), qm_aeq_irq,
5001 						   qm_aeq_thread, 0, qm->dev_name, qm);
5002 	if (ret)
5003 		dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret);
5004 
5005 	return ret;
5006 }
5007 
5008 static void qm_unregister_eq_irq(struct hisi_qm *qm)
5009 {
5010 	struct pci_dev *pdev = qm->pdev;
5011 	u32 irq_vector, val;
5012 
5013 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_EQ_IRQ_TYPE_CAP, qm->cap_ver);
5014 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
5015 		return;
5016 
5017 	irq_vector = val & QM_IRQ_VECTOR_MASK;
5018 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
5019 }
5020 
5021 static int qm_register_eq_irq(struct hisi_qm *qm)
5022 {
5023 	struct pci_dev *pdev = qm->pdev;
5024 	u32 irq_vector, val;
5025 	int ret;
5026 
5027 	val = hisi_qm_get_hw_info(qm, qm_basic_info, QM_EQ_IRQ_TYPE_CAP, qm->cap_ver);
5028 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
5029 		return 0;
5030 
5031 	irq_vector = val & QM_IRQ_VECTOR_MASK;
5032 	ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_eq_irq, 0, qm->dev_name, qm);
5033 	if (ret)
5034 		dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret);
5035 
5036 	return ret;
5037 }
5038 
5039 static void qm_irqs_unregister(struct hisi_qm *qm)
5040 {
5041 	qm_unregister_mb_cmd_irq(qm);
5042 	qm_unregister_abnormal_irq(qm);
5043 	qm_unregister_aeq_irq(qm);
5044 	qm_unregister_eq_irq(qm);
5045 }
5046 
5047 static int qm_irqs_register(struct hisi_qm *qm)
5048 {
5049 	int ret;
5050 
5051 	ret = qm_register_eq_irq(qm);
5052 	if (ret)
5053 		return ret;
5054 
5055 	ret = qm_register_aeq_irq(qm);
5056 	if (ret)
5057 		goto free_eq_irq;
5058 
5059 	ret = qm_register_abnormal_irq(qm);
5060 	if (ret)
5061 		goto free_aeq_irq;
5062 
5063 	ret = qm_register_mb_cmd_irq(qm);
5064 	if (ret)
5065 		goto free_abnormal_irq;
5066 
5067 	return 0;
5068 
5069 free_abnormal_irq:
5070 	qm_unregister_abnormal_irq(qm);
5071 free_aeq_irq:
5072 	qm_unregister_aeq_irq(qm);
5073 free_eq_irq:
5074 	qm_unregister_eq_irq(qm);
5075 	return ret;
5076 }
5077 
5078 static int qm_get_qp_num(struct hisi_qm *qm)
5079 {
5080 	struct device *dev = &qm->pdev->dev;
5081 	bool is_db_isolation;
5082 
5083 	/* VF's qp_num assigned by PF in v2, and VF can get qp_num by vft. */
5084 	if (qm->fun_type == QM_HW_VF) {
5085 		if (qm->ver != QM_HW_V1)
5086 			/* v2 starts to support get vft by mailbox */
5087 			return hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num);
5088 
5089 		return 0;
5090 	}
5091 
5092 	is_db_isolation = test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps);
5093 	qm->ctrl_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, QM_TOTAL_QP_NUM_CAP, true);
5094 	qm->max_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info,
5095 					     QM_FUNC_MAX_QP_CAP, is_db_isolation);
5096 
5097 	if (qm->qp_num <= qm->max_qp_num)
5098 		return 0;
5099 
5100 	if (test_bit(QM_MODULE_PARAM, &qm->misc_ctl)) {
5101 		/* Check whether the set qp number is valid */
5102 		dev_err(dev, "qp num(%u) is more than max qp num(%u)!\n",
5103 			qm->qp_num, qm->max_qp_num);
5104 		return -EINVAL;
5105 	}
5106 
5107 	dev_info(dev, "Default qp num(%u) is too big, reset it to Function's max qp num(%u)!\n",
5108 		 qm->qp_num, qm->max_qp_num);
5109 	qm->qp_num = qm->max_qp_num;
5110 	qm->debug.curr_qm_qp_num = qm->qp_num;
5111 
5112 	return 0;
5113 }
5114 
5115 static void qm_get_hw_caps(struct hisi_qm *qm)
5116 {
5117 	const struct hisi_qm_cap_info *cap_info = qm->fun_type == QM_HW_PF ?
5118 						  qm_cap_info_pf : qm_cap_info_vf;
5119 	u32 size = qm->fun_type == QM_HW_PF ? ARRAY_SIZE(qm_cap_info_pf) :
5120 				   ARRAY_SIZE(qm_cap_info_vf);
5121 	u32 val, i;
5122 
5123 	/* Doorbell isolate register is a independent register. */
5124 	val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, QM_SUPPORT_DB_ISOLATION, true);
5125 	if (val)
5126 		set_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps);
5127 
5128 	if (qm->ver >= QM_HW_V3) {
5129 		val = readl(qm->io_base + QM_FUNC_CAPS_REG);
5130 		qm->cap_ver = val & QM_CAPBILITY_VERSION;
5131 	}
5132 
5133 	/* Get PF/VF common capbility */
5134 	for (i = 1; i < ARRAY_SIZE(qm_cap_info_comm); i++) {
5135 		val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, i, qm->cap_ver);
5136 		if (val)
5137 			set_bit(qm_cap_info_comm[i].type, &qm->caps);
5138 	}
5139 
5140 	/* Get PF/VF different capbility */
5141 	for (i = 0; i < size; i++) {
5142 		val = hisi_qm_get_hw_info(qm, cap_info, i, qm->cap_ver);
5143 		if (val)
5144 			set_bit(cap_info[i].type, &qm->caps);
5145 	}
5146 }
5147 
5148 static int qm_get_pci_res(struct hisi_qm *qm)
5149 {
5150 	struct pci_dev *pdev = qm->pdev;
5151 	struct device *dev = &pdev->dev;
5152 	int ret;
5153 
5154 	ret = pci_request_mem_regions(pdev, qm->dev_name);
5155 	if (ret < 0) {
5156 		dev_err(dev, "Failed to request mem regions!\n");
5157 		return ret;
5158 	}
5159 
5160 	qm->phys_base = pci_resource_start(pdev, PCI_BAR_2);
5161 	qm->io_base = ioremap(qm->phys_base, pci_resource_len(pdev, PCI_BAR_2));
5162 	if (!qm->io_base) {
5163 		ret = -EIO;
5164 		goto err_request_mem_regions;
5165 	}
5166 
5167 	qm_get_hw_caps(qm);
5168 	if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) {
5169 		qm->db_interval = QM_QP_DB_INTERVAL;
5170 		qm->db_phys_base = pci_resource_start(pdev, PCI_BAR_4);
5171 		qm->db_io_base = ioremap(qm->db_phys_base,
5172 					 pci_resource_len(pdev, PCI_BAR_4));
5173 		if (!qm->db_io_base) {
5174 			ret = -EIO;
5175 			goto err_ioremap;
5176 		}
5177 	} else {
5178 		qm->db_phys_base = qm->phys_base;
5179 		qm->db_io_base = qm->io_base;
5180 		qm->db_interval = 0;
5181 	}
5182 
5183 	ret = qm_get_qp_num(qm);
5184 	if (ret)
5185 		goto err_db_ioremap;
5186 
5187 	return 0;
5188 
5189 err_db_ioremap:
5190 	if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
5191 		iounmap(qm->db_io_base);
5192 err_ioremap:
5193 	iounmap(qm->io_base);
5194 err_request_mem_regions:
5195 	pci_release_mem_regions(pdev);
5196 	return ret;
5197 }
5198 
5199 static int hisi_qm_pci_init(struct hisi_qm *qm)
5200 {
5201 	struct pci_dev *pdev = qm->pdev;
5202 	struct device *dev = &pdev->dev;
5203 	unsigned int num_vec;
5204 	int ret;
5205 
5206 	ret = pci_enable_device_mem(pdev);
5207 	if (ret < 0) {
5208 		dev_err(dev, "Failed to enable device mem!\n");
5209 		return ret;
5210 	}
5211 
5212 	ret = qm_get_pci_res(qm);
5213 	if (ret)
5214 		goto err_disable_pcidev;
5215 
5216 	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
5217 	if (ret < 0)
5218 		goto err_get_pci_res;
5219 	pci_set_master(pdev);
5220 
5221 	num_vec = qm_get_irq_num(qm);
5222 	ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI);
5223 	if (ret < 0) {
5224 		dev_err(dev, "Failed to enable MSI vectors!\n");
5225 		goto err_get_pci_res;
5226 	}
5227 
5228 	return 0;
5229 
5230 err_get_pci_res:
5231 	qm_put_pci_res(qm);
5232 err_disable_pcidev:
5233 	pci_disable_device(pdev);
5234 	return ret;
5235 }
5236 
5237 static int hisi_qm_init_work(struct hisi_qm *qm)
5238 {
5239 	int i;
5240 
5241 	for (i = 0; i < qm->qp_num; i++)
5242 		INIT_WORK(&qm->poll_data[i].work, qm_work_process);
5243 
5244 	if (qm->fun_type == QM_HW_PF)
5245 		INIT_WORK(&qm->rst_work, hisi_qm_controller_reset);
5246 
5247 	if (qm->ver > QM_HW_V2)
5248 		INIT_WORK(&qm->cmd_process, qm_cmd_process);
5249 
5250 	qm->wq = alloc_workqueue("%s", WQ_HIGHPRI | WQ_MEM_RECLAIM |
5251 				 WQ_UNBOUND, num_online_cpus(),
5252 				 pci_name(qm->pdev));
5253 	if (!qm->wq) {
5254 		pci_err(qm->pdev, "failed to alloc workqueue!\n");
5255 		return -ENOMEM;
5256 	}
5257 
5258 	return 0;
5259 }
5260 
5261 static int hisi_qp_alloc_memory(struct hisi_qm *qm)
5262 {
5263 	struct device *dev = &qm->pdev->dev;
5264 	u16 sq_depth, cq_depth;
5265 	size_t qp_dma_size;
5266 	int i, ret;
5267 
5268 	qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL);
5269 	if (!qm->qp_array)
5270 		return -ENOMEM;
5271 
5272 	qm->poll_data = kcalloc(qm->qp_num, sizeof(struct hisi_qm_poll_data), GFP_KERNEL);
5273 	if (!qm->poll_data) {
5274 		kfree(qm->qp_array);
5275 		return -ENOMEM;
5276 	}
5277 
5278 	qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP);
5279 
5280 	/* one more page for device or qp statuses */
5281 	qp_dma_size = qm->sqe_size * sq_depth + sizeof(struct qm_cqe) * cq_depth;
5282 	qp_dma_size = PAGE_ALIGN(qp_dma_size) + PAGE_SIZE;
5283 	for (i = 0; i < qm->qp_num; i++) {
5284 		qm->poll_data[i].qm = qm;
5285 		ret = hisi_qp_memory_init(qm, qp_dma_size, i, sq_depth, cq_depth);
5286 		if (ret)
5287 			goto err_init_qp_mem;
5288 
5289 		dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size);
5290 	}
5291 
5292 	return 0;
5293 err_init_qp_mem:
5294 	hisi_qp_memory_uninit(qm, i);
5295 
5296 	return ret;
5297 }
5298 
5299 static int hisi_qm_memory_init(struct hisi_qm *qm)
5300 {
5301 	struct device *dev = &qm->pdev->dev;
5302 	int ret, total_func;
5303 	size_t off = 0;
5304 
5305 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) {
5306 		total_func = pci_sriov_get_totalvfs(qm->pdev) + 1;
5307 		qm->factor = kcalloc(total_func, sizeof(struct qm_shaper_factor), GFP_KERNEL);
5308 		if (!qm->factor)
5309 			return -ENOMEM;
5310 
5311 		/* Only the PF value needs to be initialized */
5312 		qm->factor[0].func_qos = QM_QOS_MAX_VAL;
5313 	}
5314 
5315 #define QM_INIT_BUF(qm, type, num) do { \
5316 	(qm)->type = ((qm)->qdma.va + (off)); \
5317 	(qm)->type##_dma = (qm)->qdma.dma + (off); \
5318 	off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \
5319 } while (0)
5320 
5321 	idr_init(&qm->qp_idr);
5322 	qm_get_xqc_depth(qm, &qm->eq_depth, &qm->aeq_depth, QM_XEQ_DEPTH_CAP);
5323 	qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * qm->eq_depth) +
5324 			QMC_ALIGN(sizeof(struct qm_aeqe) * qm->aeq_depth) +
5325 			QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) +
5326 			QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num);
5327 	qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma,
5328 					 GFP_ATOMIC);
5329 	dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size);
5330 	if (!qm->qdma.va) {
5331 		ret = -ENOMEM;
5332 		goto err_destroy_idr;
5333 	}
5334 
5335 	QM_INIT_BUF(qm, eqe, qm->eq_depth);
5336 	QM_INIT_BUF(qm, aeqe, qm->aeq_depth);
5337 	QM_INIT_BUF(qm, sqc, qm->qp_num);
5338 	QM_INIT_BUF(qm, cqc, qm->qp_num);
5339 
5340 	ret = hisi_qp_alloc_memory(qm);
5341 	if (ret)
5342 		goto err_alloc_qp_array;
5343 
5344 	return 0;
5345 
5346 err_alloc_qp_array:
5347 	dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma);
5348 err_destroy_idr:
5349 	idr_destroy(&qm->qp_idr);
5350 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
5351 		kfree(qm->factor);
5352 
5353 	return ret;
5354 }
5355 
5356 /**
5357  * hisi_qm_init() - Initialize configures about qm.
5358  * @qm: The qm needing init.
5359  *
5360  * This function init qm, then we can call hisi_qm_start to put qm into work.
5361  */
5362 int hisi_qm_init(struct hisi_qm *qm)
5363 {
5364 	struct pci_dev *pdev = qm->pdev;
5365 	struct device *dev = &pdev->dev;
5366 	int ret;
5367 
5368 	hisi_qm_pre_init(qm);
5369 
5370 	ret = hisi_qm_pci_init(qm);
5371 	if (ret)
5372 		return ret;
5373 
5374 	ret = qm_irqs_register(qm);
5375 	if (ret)
5376 		goto err_pci_init;
5377 
5378 	if (qm->fun_type == QM_HW_PF) {
5379 		/* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */
5380 		writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG);
5381 		qm_disable_clock_gate(qm);
5382 		ret = qm_dev_mem_reset(qm);
5383 		if (ret) {
5384 			dev_err(dev, "failed to reset device memory\n");
5385 			goto err_irq_register;
5386 		}
5387 	}
5388 
5389 	if (qm->mode == UACCE_MODE_SVA) {
5390 		ret = qm_alloc_uacce(qm);
5391 		if (ret < 0)
5392 			dev_warn(dev, "fail to alloc uacce (%d)\n", ret);
5393 	}
5394 
5395 	ret = hisi_qm_memory_init(qm);
5396 	if (ret)
5397 		goto err_alloc_uacce;
5398 
5399 	ret = hisi_qm_init_work(qm);
5400 	if (ret)
5401 		goto err_free_qm_memory;
5402 
5403 	qm_cmd_init(qm);
5404 	atomic_set(&qm->status.flags, QM_INIT);
5405 
5406 	return 0;
5407 
5408 err_free_qm_memory:
5409 	hisi_qm_memory_uninit(qm);
5410 err_alloc_uacce:
5411 	qm_remove_uacce(qm);
5412 err_irq_register:
5413 	qm_irqs_unregister(qm);
5414 err_pci_init:
5415 	hisi_qm_pci_uninit(qm);
5416 	return ret;
5417 }
5418 EXPORT_SYMBOL_GPL(hisi_qm_init);
5419 
5420 /**
5421  * hisi_qm_get_dfx_access() - Try to get dfx access.
5422  * @qm: pointer to accelerator device.
5423  *
5424  * Try to get dfx access, then user can get message.
5425  *
5426  * If device is in suspended, return failure, otherwise
5427  * bump up the runtime PM usage counter.
5428  */
5429 int hisi_qm_get_dfx_access(struct hisi_qm *qm)
5430 {
5431 	struct device *dev = &qm->pdev->dev;
5432 
5433 	if (pm_runtime_suspended(dev)) {
5434 		dev_info(dev, "can not read/write - device in suspended.\n");
5435 		return -EAGAIN;
5436 	}
5437 
5438 	return qm_pm_get_sync(qm);
5439 }
5440 EXPORT_SYMBOL_GPL(hisi_qm_get_dfx_access);
5441 
5442 /**
5443  * hisi_qm_put_dfx_access() - Put dfx access.
5444  * @qm: pointer to accelerator device.
5445  *
5446  * Put dfx access, drop runtime PM usage counter.
5447  */
5448 void hisi_qm_put_dfx_access(struct hisi_qm *qm)
5449 {
5450 	qm_pm_put_sync(qm);
5451 }
5452 EXPORT_SYMBOL_GPL(hisi_qm_put_dfx_access);
5453 
5454 /**
5455  * hisi_qm_pm_init() - Initialize qm runtime PM.
5456  * @qm: pointer to accelerator device.
5457  *
5458  * Function that initialize qm runtime PM.
5459  */
5460 void hisi_qm_pm_init(struct hisi_qm *qm)
5461 {
5462 	struct device *dev = &qm->pdev->dev;
5463 
5464 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
5465 		return;
5466 
5467 	pm_runtime_set_autosuspend_delay(dev, QM_AUTOSUSPEND_DELAY);
5468 	pm_runtime_use_autosuspend(dev);
5469 	pm_runtime_put_noidle(dev);
5470 }
5471 EXPORT_SYMBOL_GPL(hisi_qm_pm_init);
5472 
5473 /**
5474  * hisi_qm_pm_uninit() - Uninitialize qm runtime PM.
5475  * @qm: pointer to accelerator device.
5476  *
5477  * Function that uninitialize qm runtime PM.
5478  */
5479 void hisi_qm_pm_uninit(struct hisi_qm *qm)
5480 {
5481 	struct device *dev = &qm->pdev->dev;
5482 
5483 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
5484 		return;
5485 
5486 	pm_runtime_get_noresume(dev);
5487 	pm_runtime_dont_use_autosuspend(dev);
5488 }
5489 EXPORT_SYMBOL_GPL(hisi_qm_pm_uninit);
5490 
5491 static int qm_prepare_for_suspend(struct hisi_qm *qm)
5492 {
5493 	struct pci_dev *pdev = qm->pdev;
5494 	int ret;
5495 	u32 val;
5496 
5497 	ret = qm->ops->set_msi(qm, false);
5498 	if (ret) {
5499 		pci_err(pdev, "failed to disable MSI before suspending!\n");
5500 		return ret;
5501 	}
5502 
5503 	/* shutdown OOO register */
5504 	writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN,
5505 	       qm->io_base + ACC_MASTER_GLOBAL_CTRL);
5506 
5507 	ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN,
5508 					 val,
5509 					 (val == ACC_MASTER_TRANS_RETURN_RW),
5510 					 POLL_PERIOD, POLL_TIMEOUT);
5511 	if (ret) {
5512 		pci_emerg(pdev, "Bus lock! Please reset system.\n");
5513 		return ret;
5514 	}
5515 
5516 	ret = qm_set_pf_mse(qm, false);
5517 	if (ret)
5518 		pci_err(pdev, "failed to disable MSE before suspending!\n");
5519 
5520 	return ret;
5521 }
5522 
5523 static int qm_rebuild_for_resume(struct hisi_qm *qm)
5524 {
5525 	struct pci_dev *pdev = qm->pdev;
5526 	int ret;
5527 
5528 	ret = qm_set_pf_mse(qm, true);
5529 	if (ret) {
5530 		pci_err(pdev, "failed to enable MSE after resuming!\n");
5531 		return ret;
5532 	}
5533 
5534 	ret = qm->ops->set_msi(qm, true);
5535 	if (ret) {
5536 		pci_err(pdev, "failed to enable MSI after resuming!\n");
5537 		return ret;
5538 	}
5539 
5540 	ret = qm_dev_hw_init(qm);
5541 	if (ret) {
5542 		pci_err(pdev, "failed to init device after resuming\n");
5543 		return ret;
5544 	}
5545 
5546 	qm_cmd_init(qm);
5547 	hisi_qm_dev_err_init(qm);
5548 	/* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */
5549 	writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG);
5550 	qm_disable_clock_gate(qm);
5551 	ret = qm_dev_mem_reset(qm);
5552 	if (ret)
5553 		pci_err(pdev, "failed to reset device memory\n");
5554 
5555 	return ret;
5556 }
5557 
5558 /**
5559  * hisi_qm_suspend() - Runtime suspend of given device.
5560  * @dev: device to suspend.
5561  *
5562  * Function that suspend the device.
5563  */
5564 int hisi_qm_suspend(struct device *dev)
5565 {
5566 	struct pci_dev *pdev = to_pci_dev(dev);
5567 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5568 	int ret;
5569 
5570 	pci_info(pdev, "entering suspended state\n");
5571 
5572 	ret = hisi_qm_stop(qm, QM_NORMAL);
5573 	if (ret) {
5574 		pci_err(pdev, "failed to stop qm(%d)\n", ret);
5575 		return ret;
5576 	}
5577 
5578 	ret = qm_prepare_for_suspend(qm);
5579 	if (ret)
5580 		pci_err(pdev, "failed to prepare suspended(%d)\n", ret);
5581 
5582 	return ret;
5583 }
5584 EXPORT_SYMBOL_GPL(hisi_qm_suspend);
5585 
5586 /**
5587  * hisi_qm_resume() - Runtime resume of given device.
5588  * @dev: device to resume.
5589  *
5590  * Function that resume the device.
5591  */
5592 int hisi_qm_resume(struct device *dev)
5593 {
5594 	struct pci_dev *pdev = to_pci_dev(dev);
5595 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5596 	int ret;
5597 
5598 	pci_info(pdev, "resuming from suspend state\n");
5599 
5600 	ret = qm_rebuild_for_resume(qm);
5601 	if (ret) {
5602 		pci_err(pdev, "failed to rebuild resume(%d)\n", ret);
5603 		return ret;
5604 	}
5605 
5606 	ret = hisi_qm_start(qm);
5607 	if (ret) {
5608 		if (qm_check_dev_error(qm)) {
5609 			pci_info(pdev, "failed to start qm due to device error, device will be reset!\n");
5610 			return 0;
5611 		}
5612 
5613 		pci_err(pdev, "failed to start qm(%d)!\n", ret);
5614 	}
5615 
5616 	return ret;
5617 }
5618 EXPORT_SYMBOL_GPL(hisi_qm_resume);
5619 
5620 MODULE_LICENSE("GPL v2");
5621 MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>");
5622 MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver");
5623