xref: /linux/drivers/crypto/hisilicon/qm.c (revision 4359a011e259a4608afc7fb3635370c9d4ba5943)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 HiSilicon Limited. */
3 #include <asm/page.h>
4 #include <linux/acpi.h>
5 #include <linux/aer.h>
6 #include <linux/bitmap.h>
7 #include <linux/dma-mapping.h>
8 #include <linux/idr.h>
9 #include <linux/io.h>
10 #include <linux/irqreturn.h>
11 #include <linux/log2.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/seq_file.h>
14 #include <linux/slab.h>
15 #include <linux/uacce.h>
16 #include <linux/uaccess.h>
17 #include <uapi/misc/uacce/hisi_qm.h>
18 #include <linux/hisi_acc_qm.h>
19 
20 /* eq/aeq irq enable */
21 #define QM_VF_AEQ_INT_SOURCE		0x0
22 #define QM_VF_AEQ_INT_MASK		0x4
23 #define QM_VF_EQ_INT_SOURCE		0x8
24 #define QM_VF_EQ_INT_MASK		0xc
25 #define QM_IRQ_NUM_V1			1
26 #define QM_IRQ_NUM_PF_V2		4
27 #define QM_IRQ_NUM_VF_V2		2
28 #define QM_IRQ_NUM_VF_V3		3
29 
30 #define QM_EQ_EVENT_IRQ_VECTOR		0
31 #define QM_AEQ_EVENT_IRQ_VECTOR		1
32 #define QM_CMD_EVENT_IRQ_VECTOR		2
33 #define QM_ABNORMAL_EVENT_IRQ_VECTOR	3
34 
35 /* mailbox */
36 #define QM_MB_PING_ALL_VFS		0xffff
37 #define QM_MB_CMD_DATA_SHIFT		32
38 #define QM_MB_CMD_DATA_MASK		GENMASK(31, 0)
39 
40 /* sqc shift */
41 #define QM_SQ_HOP_NUM_SHIFT		0
42 #define QM_SQ_PAGE_SIZE_SHIFT		4
43 #define QM_SQ_BUF_SIZE_SHIFT		8
44 #define QM_SQ_SQE_SIZE_SHIFT		12
45 #define QM_SQ_PRIORITY_SHIFT		0
46 #define QM_SQ_ORDERS_SHIFT		4
47 #define QM_SQ_TYPE_SHIFT		8
48 #define QM_QC_PASID_ENABLE		0x1
49 #define QM_QC_PASID_ENABLE_SHIFT	7
50 
51 #define QM_SQ_TYPE_MASK			GENMASK(3, 0)
52 #define QM_SQ_TAIL_IDX(sqc)		((le16_to_cpu((sqc)->w11) >> 6) & 0x1)
53 
54 /* cqc shift */
55 #define QM_CQ_HOP_NUM_SHIFT		0
56 #define QM_CQ_PAGE_SIZE_SHIFT		4
57 #define QM_CQ_BUF_SIZE_SHIFT		8
58 #define QM_CQ_CQE_SIZE_SHIFT		12
59 #define QM_CQ_PHASE_SHIFT		0
60 #define QM_CQ_FLAG_SHIFT		1
61 
62 #define QM_CQE_PHASE(cqe)		(le16_to_cpu((cqe)->w7) & 0x1)
63 #define QM_QC_CQE_SIZE			4
64 #define QM_CQ_TAIL_IDX(cqc)		((le16_to_cpu((cqc)->w11) >> 6) & 0x1)
65 
66 /* eqc shift */
67 #define QM_EQE_AEQE_SIZE		(2UL << 12)
68 #define QM_EQC_PHASE_SHIFT		16
69 
70 #define QM_EQE_PHASE(eqe)		((le32_to_cpu((eqe)->dw0) >> 16) & 0x1)
71 #define QM_EQE_CQN_MASK			GENMASK(15, 0)
72 
73 #define QM_AEQE_PHASE(aeqe)		((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1)
74 #define QM_AEQE_TYPE_SHIFT		17
75 #define QM_AEQE_CQN_MASK		GENMASK(15, 0)
76 #define QM_CQ_OVERFLOW			0
77 #define QM_EQ_OVERFLOW			1
78 #define QM_CQE_ERROR			2
79 
80 #define QM_DOORBELL_CMD_SQ		0
81 #define QM_DOORBELL_CMD_CQ		1
82 #define QM_DOORBELL_CMD_EQ		2
83 #define QM_DOORBELL_CMD_AEQ		3
84 
85 #define QM_DOORBELL_BASE_V1		0x340
86 #define QM_DB_CMD_SHIFT_V1		16
87 #define QM_DB_INDEX_SHIFT_V1		32
88 #define QM_DB_PRIORITY_SHIFT_V1		48
89 #define QM_QUE_ISO_CFG_V		0x0030
90 #define QM_PAGE_SIZE			0x0034
91 #define QM_QUE_ISO_EN			0x100154
92 #define QM_CAPBILITY			0x100158
93 #define QM_QP_NUN_MASK			GENMASK(10, 0)
94 #define QM_QP_DB_INTERVAL		0x10000
95 
96 #define QM_MEM_START_INIT		0x100040
97 #define QM_MEM_INIT_DONE		0x100044
98 #define QM_VFT_CFG_RDY			0x10006c
99 #define QM_VFT_CFG_OP_WR		0x100058
100 #define QM_VFT_CFG_TYPE			0x10005c
101 #define QM_SQC_VFT			0x0
102 #define QM_CQC_VFT			0x1
103 #define QM_VFT_CFG			0x100060
104 #define QM_VFT_CFG_OP_ENABLE		0x100054
105 #define QM_PM_CTRL			0x100148
106 #define QM_IDLE_DISABLE			BIT(9)
107 
108 #define QM_VFT_CFG_DATA_L		0x100064
109 #define QM_VFT_CFG_DATA_H		0x100068
110 #define QM_SQC_VFT_BUF_SIZE		(7ULL << 8)
111 #define QM_SQC_VFT_SQC_SIZE		(5ULL << 12)
112 #define QM_SQC_VFT_INDEX_NUMBER		(1ULL << 16)
113 #define QM_SQC_VFT_START_SQN_SHIFT	28
114 #define QM_SQC_VFT_VALID		(1ULL << 44)
115 #define QM_SQC_VFT_SQN_SHIFT		45
116 #define QM_CQC_VFT_BUF_SIZE		(7ULL << 8)
117 #define QM_CQC_VFT_SQC_SIZE		(5ULL << 12)
118 #define QM_CQC_VFT_INDEX_NUMBER		(1ULL << 16)
119 #define QM_CQC_VFT_VALID		(1ULL << 28)
120 
121 #define QM_SQC_VFT_BASE_SHIFT_V2	28
122 #define QM_SQC_VFT_BASE_MASK_V2		GENMASK(15, 0)
123 #define QM_SQC_VFT_NUM_SHIFT_V2		45
124 #define QM_SQC_VFT_NUM_MASK_v2		GENMASK(9, 0)
125 
126 #define QM_DFX_CNT_CLR_CE		0x100118
127 
128 #define QM_ABNORMAL_INT_SOURCE		0x100000
129 #define QM_ABNORMAL_INT_SOURCE_CLR	GENMASK(14, 0)
130 #define QM_ABNORMAL_INT_MASK		0x100004
131 #define QM_ABNORMAL_INT_MASK_VALUE	0x7fff
132 #define QM_ABNORMAL_INT_STATUS		0x100008
133 #define QM_ABNORMAL_INT_SET		0x10000c
134 #define QM_ABNORMAL_INF00		0x100010
135 #define QM_FIFO_OVERFLOW_TYPE		0xc0
136 #define QM_FIFO_OVERFLOW_TYPE_SHIFT	6
137 #define QM_FIFO_OVERFLOW_VF		0x3f
138 #define QM_ABNORMAL_INF01		0x100014
139 #define QM_DB_TIMEOUT_TYPE		0xc0
140 #define QM_DB_TIMEOUT_TYPE_SHIFT	6
141 #define QM_DB_TIMEOUT_VF		0x3f
142 #define QM_RAS_CE_ENABLE		0x1000ec
143 #define QM_RAS_FE_ENABLE		0x1000f0
144 #define QM_RAS_NFE_ENABLE		0x1000f4
145 #define QM_RAS_CE_THRESHOLD		0x1000f8
146 #define QM_RAS_CE_TIMES_PER_IRQ		1
147 #define QM_RAS_MSI_INT_SEL		0x1040f4
148 #define QM_OOO_SHUTDOWN_SEL		0x1040f8
149 
150 #define QM_RESET_WAIT_TIMEOUT		400
151 #define QM_PEH_VENDOR_ID		0x1000d8
152 #define ACC_VENDOR_ID_VALUE		0x5a5a
153 #define QM_PEH_DFX_INFO0		0x1000fc
154 #define QM_PEH_DFX_INFO1		0x100100
155 #define QM_PEH_DFX_MASK			(BIT(0) | BIT(2))
156 #define QM_PEH_MSI_FINISH_MASK		GENMASK(19, 16)
157 #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT	3
158 #define ACC_PEH_MSI_DISABLE		GENMASK(31, 0)
159 #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN	0x1
160 #define ACC_MASTER_TRANS_RETURN_RW	3
161 #define ACC_MASTER_TRANS_RETURN		0x300150
162 #define ACC_MASTER_GLOBAL_CTRL		0x300000
163 #define ACC_AM_CFG_PORT_WR_EN		0x30001c
164 #define QM_RAS_NFE_MBIT_DISABLE		~QM_ECC_MBIT
165 #define ACC_AM_ROB_ECC_INT_STS		0x300104
166 #define ACC_ROB_ECC_ERR_MULTPL		BIT(1)
167 #define QM_MSI_CAP_ENABLE		BIT(16)
168 
169 /* interfunction communication */
170 #define QM_IFC_READY_STATUS		0x100128
171 #define QM_IFC_C_STS_M			0x10012C
172 #define QM_IFC_INT_SET_P		0x100130
173 #define QM_IFC_INT_CFG			0x100134
174 #define QM_IFC_INT_SOURCE_P		0x100138
175 #define QM_IFC_INT_SOURCE_V		0x0020
176 #define QM_IFC_INT_MASK			0x0024
177 #define QM_IFC_INT_STATUS		0x0028
178 #define QM_IFC_INT_SET_V		0x002C
179 #define QM_IFC_SEND_ALL_VFS		GENMASK(6, 0)
180 #define QM_IFC_INT_SOURCE_CLR		GENMASK(63, 0)
181 #define QM_IFC_INT_SOURCE_MASK		BIT(0)
182 #define QM_IFC_INT_DISABLE		BIT(0)
183 #define QM_IFC_INT_STATUS_MASK		BIT(0)
184 #define QM_IFC_INT_SET_MASK		BIT(0)
185 #define QM_WAIT_DST_ACK			10
186 #define QM_MAX_PF_WAIT_COUNT		10
187 #define QM_MAX_VF_WAIT_COUNT		40
188 #define QM_VF_RESET_WAIT_US            20000
189 #define QM_VF_RESET_WAIT_CNT           3000
190 #define QM_VF_RESET_WAIT_TIMEOUT_US    \
191 	(QM_VF_RESET_WAIT_US * QM_VF_RESET_WAIT_CNT)
192 
193 #define QM_DFX_MB_CNT_VF		0x104010
194 #define QM_DFX_DB_CNT_VF		0x104020
195 #define QM_DFX_SQE_CNT_VF_SQN		0x104030
196 #define QM_DFX_CQE_CNT_VF_CQN		0x104040
197 #define QM_DFX_QN_SHIFT			16
198 #define CURRENT_FUN_MASK		GENMASK(5, 0)
199 #define CURRENT_Q_MASK			GENMASK(31, 16)
200 
201 #define POLL_PERIOD			10
202 #define POLL_TIMEOUT			1000
203 #define WAIT_PERIOD_US_MAX		200
204 #define WAIT_PERIOD_US_MIN		100
205 #define MAX_WAIT_COUNTS			1000
206 #define QM_CACHE_WB_START		0x204
207 #define QM_CACHE_WB_DONE		0x208
208 
209 #define PCI_BAR_2			2
210 #define PCI_BAR_4			4
211 #define QM_SQE_DATA_ALIGN_MASK		GENMASK(6, 0)
212 #define QMC_ALIGN(sz)			ALIGN(sz, 32)
213 
214 #define QM_DBG_READ_LEN		256
215 #define QM_DBG_WRITE_LEN		1024
216 #define QM_DBG_TMP_BUF_LEN		22
217 #define QM_PCI_COMMAND_INVALID		~0
218 #define QM_RESET_STOP_TX_OFFSET		1
219 #define QM_RESET_STOP_RX_OFFSET		2
220 
221 #define WAIT_PERIOD			20
222 #define REMOVE_WAIT_DELAY		10
223 #define QM_SQE_ADDR_MASK		GENMASK(7, 0)
224 #define QM_EQ_DEPTH			(1024 * 2)
225 
226 #define QM_DRIVER_REMOVING		0
227 #define QM_RST_SCHED			1
228 #define QM_RESETTING			2
229 #define QM_QOS_PARAM_NUM		2
230 #define QM_QOS_VAL_NUM			1
231 #define QM_QOS_BDF_PARAM_NUM		4
232 #define QM_QOS_MAX_VAL			1000
233 #define QM_QOS_RATE			100
234 #define QM_QOS_EXPAND_RATE		1000
235 #define QM_SHAPER_CIR_B_MASK		GENMASK(7, 0)
236 #define QM_SHAPER_CIR_U_MASK		GENMASK(10, 8)
237 #define QM_SHAPER_CIR_S_MASK		GENMASK(14, 11)
238 #define QM_SHAPER_FACTOR_CIR_U_SHIFT	8
239 #define QM_SHAPER_FACTOR_CIR_S_SHIFT	11
240 #define QM_SHAPER_FACTOR_CBS_B_SHIFT	15
241 #define QM_SHAPER_FACTOR_CBS_S_SHIFT	19
242 #define QM_SHAPER_CBS_B			1
243 #define QM_SHAPER_CBS_S			16
244 #define QM_SHAPER_VFT_OFFSET		6
245 #define WAIT_FOR_QOS_VF			100
246 #define QM_QOS_MIN_ERROR_RATE		5
247 #define QM_QOS_TYPICAL_NUM		8
248 #define QM_SHAPER_MIN_CBS_S		8
249 #define QM_QOS_TICK			0x300U
250 #define QM_QOS_DIVISOR_CLK		0x1f40U
251 #define QM_QOS_MAX_CIR_B		200
252 #define QM_QOS_MIN_CIR_B		100
253 #define QM_QOS_MAX_CIR_U		6
254 #define QM_QOS_MAX_CIR_S		11
255 #define QM_QOS_VAL_MAX_LEN		32
256 #define QM_DFX_BASE		0x0100000
257 #define QM_DFX_STATE1		0x0104000
258 #define QM_DFX_STATE2		0x01040C8
259 #define QM_DFX_COMMON		0x0000
260 #define QM_DFX_BASE_LEN		0x5A
261 #define QM_DFX_STATE1_LEN		0x2E
262 #define QM_DFX_STATE2_LEN		0x11
263 #define QM_DFX_COMMON_LEN		0xC3
264 #define QM_DFX_REGS_LEN		4UL
265 #define QM_AUTOSUSPEND_DELAY		3000
266 
267 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \
268 	(((hop_num) << QM_CQ_HOP_NUM_SHIFT)	| \
269 	((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT)	| \
270 	((buf_sz) << QM_CQ_BUF_SIZE_SHIFT)	| \
271 	((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
272 
273 #define QM_MK_CQC_DW3_V2(cqe_sz) \
274 	((QM_Q_DEPTH - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
275 
276 #define QM_MK_SQC_W13(priority, orders, alg_type) \
277 	(((priority) << QM_SQ_PRIORITY_SHIFT)	| \
278 	((orders) << QM_SQ_ORDERS_SHIFT)	| \
279 	(((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT))
280 
281 #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \
282 	(((hop_num) << QM_SQ_HOP_NUM_SHIFT)	| \
283 	((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT)	| \
284 	((buf_sz) << QM_SQ_BUF_SIZE_SHIFT)	| \
285 	((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
286 
287 #define QM_MK_SQC_DW3_V2(sqe_sz) \
288 	((QM_Q_DEPTH - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
289 
290 #define INIT_QC_COMMON(qc, base, pasid) do {			\
291 	(qc)->head = 0;						\
292 	(qc)->tail = 0;						\
293 	(qc)->base_l = cpu_to_le32(lower_32_bits(base));	\
294 	(qc)->base_h = cpu_to_le32(upper_32_bits(base));	\
295 	(qc)->dw3 = 0;						\
296 	(qc)->w8 = 0;						\
297 	(qc)->rsvd0 = 0;					\
298 	(qc)->pasid = cpu_to_le16(pasid);			\
299 	(qc)->w11 = 0;						\
300 	(qc)->rsvd1 = 0;					\
301 } while (0)
302 
303 enum vft_type {
304 	SQC_VFT = 0,
305 	CQC_VFT,
306 	SHAPER_VFT,
307 };
308 
309 enum acc_err_result {
310 	ACC_ERR_NONE,
311 	ACC_ERR_NEED_RESET,
312 	ACC_ERR_RECOVERED,
313 };
314 
315 enum qm_alg_type {
316 	ALG_TYPE_0,
317 	ALG_TYPE_1,
318 };
319 
320 enum qm_mb_cmd {
321 	QM_PF_FLR_PREPARE = 0x01,
322 	QM_PF_SRST_PREPARE,
323 	QM_PF_RESET_DONE,
324 	QM_VF_PREPARE_DONE,
325 	QM_VF_PREPARE_FAIL,
326 	QM_VF_START_DONE,
327 	QM_VF_START_FAIL,
328 	QM_PF_SET_QOS,
329 	QM_VF_GET_QOS,
330 };
331 
332 struct qm_cqe {
333 	__le32 rsvd0;
334 	__le16 cmd_id;
335 	__le16 rsvd1;
336 	__le16 sq_head;
337 	__le16 sq_num;
338 	__le16 rsvd2;
339 	__le16 w7;
340 };
341 
342 struct qm_eqe {
343 	__le32 dw0;
344 };
345 
346 struct qm_aeqe {
347 	__le32 dw0;
348 };
349 
350 struct qm_sqc {
351 	__le16 head;
352 	__le16 tail;
353 	__le32 base_l;
354 	__le32 base_h;
355 	__le32 dw3;
356 	__le16 w8;
357 	__le16 rsvd0;
358 	__le16 pasid;
359 	__le16 w11;
360 	__le16 cq_num;
361 	__le16 w13;
362 	__le32 rsvd1;
363 };
364 
365 struct qm_cqc {
366 	__le16 head;
367 	__le16 tail;
368 	__le32 base_l;
369 	__le32 base_h;
370 	__le32 dw3;
371 	__le16 w8;
372 	__le16 rsvd0;
373 	__le16 pasid;
374 	__le16 w11;
375 	__le32 dw6;
376 	__le32 rsvd1;
377 };
378 
379 struct qm_eqc {
380 	__le16 head;
381 	__le16 tail;
382 	__le32 base_l;
383 	__le32 base_h;
384 	__le32 dw3;
385 	__le32 rsvd[2];
386 	__le32 dw6;
387 };
388 
389 struct qm_aeqc {
390 	__le16 head;
391 	__le16 tail;
392 	__le32 base_l;
393 	__le32 base_h;
394 	__le32 dw3;
395 	__le32 rsvd[2];
396 	__le32 dw6;
397 };
398 
399 struct qm_mailbox {
400 	__le16 w0;
401 	__le16 queue_num;
402 	__le32 base_l;
403 	__le32 base_h;
404 	__le32 rsvd;
405 };
406 
407 struct qm_doorbell {
408 	__le16 queue_num;
409 	__le16 cmd;
410 	__le16 index;
411 	__le16 priority;
412 };
413 
414 struct hisi_qm_resource {
415 	struct hisi_qm *qm;
416 	int distance;
417 	struct list_head list;
418 };
419 
420 struct hisi_qm_hw_ops {
421 	int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number);
422 	void (*qm_db)(struct hisi_qm *qm, u16 qn,
423 		      u8 cmd, u16 index, u8 priority);
424 	u32 (*get_irq_num)(struct hisi_qm *qm);
425 	int (*debug_init)(struct hisi_qm *qm);
426 	void (*hw_error_init)(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe);
427 	void (*hw_error_uninit)(struct hisi_qm *qm);
428 	enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm);
429 	int (*stop_qp)(struct hisi_qp *qp);
430 	int (*set_msi)(struct hisi_qm *qm, bool set);
431 	int (*ping_all_vfs)(struct hisi_qm *qm, u64 cmd);
432 	int (*ping_pf)(struct hisi_qm *qm, u64 cmd);
433 };
434 
435 struct qm_dfx_item {
436 	const char *name;
437 	u32 offset;
438 };
439 
440 static struct qm_dfx_item qm_dfx_files[] = {
441 	{"err_irq", offsetof(struct qm_dfx, err_irq_cnt)},
442 	{"aeq_irq", offsetof(struct qm_dfx, aeq_irq_cnt)},
443 	{"abnormal_irq", offsetof(struct qm_dfx, abnormal_irq_cnt)},
444 	{"create_qp_err", offsetof(struct qm_dfx, create_qp_err_cnt)},
445 	{"mb_err", offsetof(struct qm_dfx, mb_err_cnt)},
446 };
447 
448 static const char * const qm_debug_file_name[] = {
449 	[CURRENT_QM]   = "current_qm",
450 	[CURRENT_Q]    = "current_q",
451 	[CLEAR_ENABLE] = "clear_enable",
452 };
453 
454 struct hisi_qm_hw_error {
455 	u32 int_msk;
456 	const char *msg;
457 };
458 
459 static const struct hisi_qm_hw_error qm_hw_error[] = {
460 	{ .int_msk = BIT(0), .msg = "qm_axi_rresp" },
461 	{ .int_msk = BIT(1), .msg = "qm_axi_bresp" },
462 	{ .int_msk = BIT(2), .msg = "qm_ecc_mbit" },
463 	{ .int_msk = BIT(3), .msg = "qm_ecc_1bit" },
464 	{ .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" },
465 	{ .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" },
466 	{ .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" },
467 	{ .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" },
468 	{ .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" },
469 	{ .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" },
470 	{ .int_msk = BIT(10), .msg = "qm_db_timeout" },
471 	{ .int_msk = BIT(11), .msg = "qm_of_fifo_of" },
472 	{ .int_msk = BIT(12), .msg = "qm_db_random_invalid" },
473 	{ .int_msk = BIT(13), .msg = "qm_mailbox_timeout" },
474 	{ .int_msk = BIT(14), .msg = "qm_flr_timeout" },
475 	{ /* sentinel */ }
476 };
477 
478 /* define the QM's dfx regs region and region length */
479 static struct dfx_diff_registers qm_diff_regs[] = {
480 	{
481 		.reg_offset = QM_DFX_BASE,
482 		.reg_len = QM_DFX_BASE_LEN,
483 	}, {
484 		.reg_offset = QM_DFX_STATE1,
485 		.reg_len = QM_DFX_STATE1_LEN,
486 	}, {
487 		.reg_offset = QM_DFX_STATE2,
488 		.reg_len = QM_DFX_STATE2_LEN,
489 	}, {
490 		.reg_offset = QM_DFX_COMMON,
491 		.reg_len = QM_DFX_COMMON_LEN,
492 	},
493 };
494 
495 static const char * const qm_db_timeout[] = {
496 	"sq", "cq", "eq", "aeq",
497 };
498 
499 static const char * const qm_fifo_overflow[] = {
500 	"cq", "eq", "aeq",
501 };
502 
503 static const char * const qm_s[] = {
504 	"init", "start", "close", "stop",
505 };
506 
507 static const char * const qp_s[] = {
508 	"none", "init", "start", "stop", "close",
509 };
510 
511 struct qm_typical_qos_table {
512 	u32 start;
513 	u32 end;
514 	u32 val;
515 };
516 
517 /* the qos step is 100 */
518 static struct qm_typical_qos_table shaper_cir_s[] = {
519 	{100, 100, 4},
520 	{200, 200, 3},
521 	{300, 500, 2},
522 	{600, 1000, 1},
523 	{1100, 100000, 0},
524 };
525 
526 static struct qm_typical_qos_table shaper_cbs_s[] = {
527 	{100, 200, 9},
528 	{300, 500, 11},
529 	{600, 1000, 12},
530 	{1100, 10000, 16},
531 	{10100, 25000, 17},
532 	{25100, 50000, 18},
533 	{50100, 100000, 19}
534 };
535 
536 static bool qm_avail_state(struct hisi_qm *qm, enum qm_state new)
537 {
538 	enum qm_state curr = atomic_read(&qm->status.flags);
539 	bool avail = false;
540 
541 	switch (curr) {
542 	case QM_INIT:
543 		if (new == QM_START || new == QM_CLOSE)
544 			avail = true;
545 		break;
546 	case QM_START:
547 		if (new == QM_STOP)
548 			avail = true;
549 		break;
550 	case QM_STOP:
551 		if (new == QM_CLOSE || new == QM_START)
552 			avail = true;
553 		break;
554 	default:
555 		break;
556 	}
557 
558 	dev_dbg(&qm->pdev->dev, "change qm state from %s to %s\n",
559 		qm_s[curr], qm_s[new]);
560 
561 	if (!avail)
562 		dev_warn(&qm->pdev->dev, "Can not change qm state from %s to %s\n",
563 			 qm_s[curr], qm_s[new]);
564 
565 	return avail;
566 }
567 
568 static bool qm_qp_avail_state(struct hisi_qm *qm, struct hisi_qp *qp,
569 			      enum qp_state new)
570 {
571 	enum qm_state qm_curr = atomic_read(&qm->status.flags);
572 	enum qp_state qp_curr = 0;
573 	bool avail = false;
574 
575 	if (qp)
576 		qp_curr = atomic_read(&qp->qp_status.flags);
577 
578 	switch (new) {
579 	case QP_INIT:
580 		if (qm_curr == QM_START || qm_curr == QM_INIT)
581 			avail = true;
582 		break;
583 	case QP_START:
584 		if ((qm_curr == QM_START && qp_curr == QP_INIT) ||
585 		    (qm_curr == QM_START && qp_curr == QP_STOP))
586 			avail = true;
587 		break;
588 	case QP_STOP:
589 		if ((qm_curr == QM_START && qp_curr == QP_START) ||
590 		    (qp_curr == QP_INIT))
591 			avail = true;
592 		break;
593 	case QP_CLOSE:
594 		if ((qm_curr == QM_START && qp_curr == QP_INIT) ||
595 		    (qm_curr == QM_START && qp_curr == QP_STOP) ||
596 		    (qm_curr == QM_STOP && qp_curr == QP_STOP)  ||
597 		    (qm_curr == QM_STOP && qp_curr == QP_INIT))
598 			avail = true;
599 		break;
600 	default:
601 		break;
602 	}
603 
604 	dev_dbg(&qm->pdev->dev, "change qp state from %s to %s in QM %s\n",
605 		qp_s[qp_curr], qp_s[new], qm_s[qm_curr]);
606 
607 	if (!avail)
608 		dev_warn(&qm->pdev->dev,
609 			 "Can not change qp state from %s to %s in QM %s\n",
610 			 qp_s[qp_curr], qp_s[new], qm_s[qm_curr]);
611 
612 	return avail;
613 }
614 
615 static u32 qm_get_hw_error_status(struct hisi_qm *qm)
616 {
617 	return readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
618 }
619 
620 static u32 qm_get_dev_err_status(struct hisi_qm *qm)
621 {
622 	return qm->err_ini->get_dev_hw_err_status(qm);
623 }
624 
625 /* Check if the error causes the master ooo block */
626 static int qm_check_dev_error(struct hisi_qm *qm)
627 {
628 	u32 val, dev_val;
629 
630 	if (qm->fun_type == QM_HW_VF)
631 		return 0;
632 
633 	val = qm_get_hw_error_status(qm);
634 	dev_val = qm_get_dev_err_status(qm);
635 
636 	if (qm->ver < QM_HW_V3)
637 		return (val & QM_ECC_MBIT) ||
638 		       (dev_val & qm->err_info.ecc_2bits_mask);
639 
640 	return (val & readl(qm->io_base + QM_OOO_SHUTDOWN_SEL)) ||
641 	       (dev_val & (~qm->err_info.dev_ce_mask));
642 }
643 
644 static int qm_wait_reset_finish(struct hisi_qm *qm)
645 {
646 	int delay = 0;
647 
648 	/* All reset requests need to be queued for processing */
649 	while (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
650 		msleep(++delay);
651 		if (delay > QM_RESET_WAIT_TIMEOUT)
652 			return -EBUSY;
653 	}
654 
655 	return 0;
656 }
657 
658 static int qm_reset_prepare_ready(struct hisi_qm *qm)
659 {
660 	struct pci_dev *pdev = qm->pdev;
661 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
662 
663 	/*
664 	 * PF and VF on host doesnot support resetting at the
665 	 * same time on Kunpeng920.
666 	 */
667 	if (qm->ver < QM_HW_V3)
668 		return qm_wait_reset_finish(pf_qm);
669 
670 	return qm_wait_reset_finish(qm);
671 }
672 
673 static void qm_reset_bit_clear(struct hisi_qm *qm)
674 {
675 	struct pci_dev *pdev = qm->pdev;
676 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
677 
678 	if (qm->ver < QM_HW_V3)
679 		clear_bit(QM_RESETTING, &pf_qm->misc_ctl);
680 
681 	clear_bit(QM_RESETTING, &qm->misc_ctl);
682 }
683 
684 static void qm_mb_pre_init(struct qm_mailbox *mailbox, u8 cmd,
685 			   u64 base, u16 queue, bool op)
686 {
687 	mailbox->w0 = cpu_to_le16((cmd) |
688 		((op) ? 0x1 << QM_MB_OP_SHIFT : 0) |
689 		(0x1 << QM_MB_BUSY_SHIFT));
690 	mailbox->queue_num = cpu_to_le16(queue);
691 	mailbox->base_l = cpu_to_le32(lower_32_bits(base));
692 	mailbox->base_h = cpu_to_le32(upper_32_bits(base));
693 	mailbox->rsvd = 0;
694 }
695 
696 /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */
697 int hisi_qm_wait_mb_ready(struct hisi_qm *qm)
698 {
699 	u32 val;
700 
701 	return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE,
702 					  val, !((val >> QM_MB_BUSY_SHIFT) &
703 					  0x1), POLL_PERIOD, POLL_TIMEOUT);
704 }
705 EXPORT_SYMBOL_GPL(hisi_qm_wait_mb_ready);
706 
707 /* 128 bit should be written to hardware at one time to trigger a mailbox */
708 static void qm_mb_write(struct hisi_qm *qm, const void *src)
709 {
710 	void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE;
711 	unsigned long tmp0 = 0, tmp1 = 0;
712 
713 	if (!IS_ENABLED(CONFIG_ARM64)) {
714 		memcpy_toio(fun_base, src, 16);
715 		dma_wmb();
716 		return;
717 	}
718 
719 	asm volatile("ldp %0, %1, %3\n"
720 		     "stp %0, %1, %2\n"
721 		     "dmb oshst\n"
722 		     : "=&r" (tmp0),
723 		       "=&r" (tmp1),
724 		       "+Q" (*((char __iomem *)fun_base))
725 		     : "Q" (*((char *)src))
726 		     : "memory");
727 }
728 
729 static int qm_mb_nolock(struct hisi_qm *qm, struct qm_mailbox *mailbox)
730 {
731 	if (unlikely(hisi_qm_wait_mb_ready(qm))) {
732 		dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n");
733 		goto mb_busy;
734 	}
735 
736 	qm_mb_write(qm, mailbox);
737 
738 	if (unlikely(hisi_qm_wait_mb_ready(qm))) {
739 		dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n");
740 		goto mb_busy;
741 	}
742 
743 	return 0;
744 
745 mb_busy:
746 	atomic64_inc(&qm->debug.dfx.mb_err_cnt);
747 	return -EBUSY;
748 }
749 
750 int hisi_qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue,
751 	       bool op)
752 {
753 	struct qm_mailbox mailbox;
754 	int ret;
755 
756 	dev_dbg(&qm->pdev->dev, "QM mailbox request to q%u: %u-%llx\n",
757 		queue, cmd, (unsigned long long)dma_addr);
758 
759 	qm_mb_pre_init(&mailbox, cmd, dma_addr, queue, op);
760 
761 	mutex_lock(&qm->mailbox_lock);
762 	ret = qm_mb_nolock(qm, &mailbox);
763 	mutex_unlock(&qm->mailbox_lock);
764 
765 	return ret;
766 }
767 EXPORT_SYMBOL_GPL(hisi_qm_mb);
768 
769 static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
770 {
771 	u64 doorbell;
772 
773 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) |
774 		   ((u64)index << QM_DB_INDEX_SHIFT_V1)  |
775 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V1);
776 
777 	writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1);
778 }
779 
780 static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
781 {
782 	void __iomem *io_base = qm->io_base;
783 	u16 randata = 0;
784 	u64 doorbell;
785 
786 	if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ)
787 		io_base = qm->db_io_base + (u64)qn * qm->db_interval +
788 			  QM_DOORBELL_SQ_CQ_BASE_V2;
789 	else
790 		io_base += QM_DOORBELL_EQ_AEQ_BASE_V2;
791 
792 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) |
793 		   ((u64)randata << QM_DB_RAND_SHIFT_V2) |
794 		   ((u64)index << QM_DB_INDEX_SHIFT_V2)	 |
795 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V2);
796 
797 	writeq(doorbell, io_base);
798 }
799 
800 static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
801 {
802 	dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n",
803 		qn, cmd, index);
804 
805 	qm->ops->qm_db(qm, qn, cmd, index, priority);
806 }
807 
808 static void qm_disable_clock_gate(struct hisi_qm *qm)
809 {
810 	u32 val;
811 
812 	/* if qm enables clock gating in Kunpeng930, qos will be inaccurate. */
813 	if (qm->ver < QM_HW_V3)
814 		return;
815 
816 	val = readl(qm->io_base + QM_PM_CTRL);
817 	val |= QM_IDLE_DISABLE;
818 	writel(val, qm->io_base +  QM_PM_CTRL);
819 }
820 
821 static int qm_dev_mem_reset(struct hisi_qm *qm)
822 {
823 	u32 val;
824 
825 	writel(0x1, qm->io_base + QM_MEM_START_INIT);
826 	return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val,
827 					  val & BIT(0), POLL_PERIOD,
828 					  POLL_TIMEOUT);
829 }
830 
831 static u32 qm_get_irq_num_v1(struct hisi_qm *qm)
832 {
833 	return QM_IRQ_NUM_V1;
834 }
835 
836 static u32 qm_get_irq_num_v2(struct hisi_qm *qm)
837 {
838 	if (qm->fun_type == QM_HW_PF)
839 		return QM_IRQ_NUM_PF_V2;
840 	else
841 		return QM_IRQ_NUM_VF_V2;
842 }
843 
844 static u32 qm_get_irq_num_v3(struct hisi_qm *qm)
845 {
846 	if (qm->fun_type == QM_HW_PF)
847 		return QM_IRQ_NUM_PF_V2;
848 
849 	return QM_IRQ_NUM_VF_V3;
850 }
851 
852 static int qm_pm_get_sync(struct hisi_qm *qm)
853 {
854 	struct device *dev = &qm->pdev->dev;
855 	int ret;
856 
857 	if (qm->fun_type == QM_HW_VF || qm->ver < QM_HW_V3)
858 		return 0;
859 
860 	ret = pm_runtime_resume_and_get(dev);
861 	if (ret < 0) {
862 		dev_err(dev, "failed to get_sync(%d).\n", ret);
863 		return ret;
864 	}
865 
866 	return 0;
867 }
868 
869 static void qm_pm_put_sync(struct hisi_qm *qm)
870 {
871 	struct device *dev = &qm->pdev->dev;
872 
873 	if (qm->fun_type == QM_HW_VF || qm->ver < QM_HW_V3)
874 		return;
875 
876 	pm_runtime_mark_last_busy(dev);
877 	pm_runtime_put_autosuspend(dev);
878 }
879 
880 static void qm_cq_head_update(struct hisi_qp *qp)
881 {
882 	if (qp->qp_status.cq_head == QM_Q_DEPTH - 1) {
883 		qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase;
884 		qp->qp_status.cq_head = 0;
885 	} else {
886 		qp->qp_status.cq_head++;
887 	}
888 }
889 
890 static void qm_poll_req_cb(struct hisi_qp *qp)
891 {
892 	struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
893 	struct hisi_qm *qm = qp->qm;
894 
895 	while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
896 		dma_rmb();
897 		qp->req_cb(qp, qp->sqe + qm->sqe_size *
898 			   le16_to_cpu(cqe->sq_head));
899 		qm_cq_head_update(qp);
900 		cqe = qp->cqe + qp->qp_status.cq_head;
901 		qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ,
902 		      qp->qp_status.cq_head, 0);
903 		atomic_dec(&qp->qp_status.used);
904 	}
905 
906 	/* set c_flag */
907 	qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, qp->qp_status.cq_head, 1);
908 }
909 
910 static int qm_get_complete_eqe_num(struct hisi_qm_poll_data *poll_data)
911 {
912 	struct hisi_qm *qm = poll_data->qm;
913 	struct qm_eqe *eqe = qm->eqe + qm->status.eq_head;
914 	int eqe_num = 0;
915 	u16 cqn;
916 
917 	while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) {
918 		cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK;
919 		poll_data->qp_finish_id[eqe_num] = cqn;
920 		eqe_num++;
921 
922 		if (qm->status.eq_head == QM_EQ_DEPTH - 1) {
923 			qm->status.eqc_phase = !qm->status.eqc_phase;
924 			eqe = qm->eqe;
925 			qm->status.eq_head = 0;
926 		} else {
927 			eqe++;
928 			qm->status.eq_head++;
929 		}
930 
931 		if (eqe_num == (QM_EQ_DEPTH >> 1) - 1)
932 			break;
933 	}
934 
935 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
936 
937 	return eqe_num;
938 }
939 
940 static void qm_work_process(struct work_struct *work)
941 {
942 	struct hisi_qm_poll_data *poll_data =
943 		container_of(work, struct hisi_qm_poll_data, work);
944 	struct hisi_qm *qm = poll_data->qm;
945 	struct hisi_qp *qp;
946 	int eqe_num, i;
947 
948 	/* Get qp id of completed tasks and re-enable the interrupt. */
949 	eqe_num = qm_get_complete_eqe_num(poll_data);
950 	for (i = eqe_num - 1; i >= 0; i--) {
951 		qp = &qm->qp_array[poll_data->qp_finish_id[i]];
952 		if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP))
953 			continue;
954 
955 		if (qp->event_cb) {
956 			qp->event_cb(qp);
957 			continue;
958 		}
959 
960 		if (likely(qp->req_cb))
961 			qm_poll_req_cb(qp);
962 	}
963 }
964 
965 static bool do_qm_irq(struct hisi_qm *qm)
966 {
967 	struct qm_eqe *eqe = qm->eqe + qm->status.eq_head;
968 	struct hisi_qm_poll_data *poll_data;
969 	u16 cqn;
970 
971 	if (!readl(qm->io_base + QM_VF_EQ_INT_SOURCE))
972 		return false;
973 
974 	if (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) {
975 		cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK;
976 		poll_data = &qm->poll_data[cqn];
977 		queue_work(qm->wq, &poll_data->work);
978 
979 		return true;
980 	}
981 
982 	return false;
983 }
984 
985 static irqreturn_t qm_irq(int irq, void *data)
986 {
987 	struct hisi_qm *qm = data;
988 	bool ret;
989 
990 	ret = do_qm_irq(qm);
991 	if (ret)
992 		return IRQ_HANDLED;
993 
994 	atomic64_inc(&qm->debug.dfx.err_irq_cnt);
995 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
996 
997 	return IRQ_NONE;
998 }
999 
1000 static irqreturn_t qm_mb_cmd_irq(int irq, void *data)
1001 {
1002 	struct hisi_qm *qm = data;
1003 	u32 val;
1004 
1005 	val = readl(qm->io_base + QM_IFC_INT_STATUS);
1006 	val &= QM_IFC_INT_STATUS_MASK;
1007 	if (!val)
1008 		return IRQ_NONE;
1009 
1010 	schedule_work(&qm->cmd_process);
1011 
1012 	return IRQ_HANDLED;
1013 }
1014 
1015 static void qm_set_qp_disable(struct hisi_qp *qp, int offset)
1016 {
1017 	u32 *addr;
1018 
1019 	if (qp->is_in_kernel)
1020 		return;
1021 
1022 	addr = (u32 *)(qp->qdma.va + qp->qdma.size) - offset;
1023 	*addr = 1;
1024 
1025 	/* make sure setup is completed */
1026 	smp_wmb();
1027 }
1028 
1029 static void qm_disable_qp(struct hisi_qm *qm, u32 qp_id)
1030 {
1031 	struct hisi_qp *qp = &qm->qp_array[qp_id];
1032 
1033 	qm_set_qp_disable(qp, QM_RESET_STOP_TX_OFFSET);
1034 	hisi_qm_stop_qp(qp);
1035 	qm_set_qp_disable(qp, QM_RESET_STOP_RX_OFFSET);
1036 }
1037 
1038 static void qm_reset_function(struct hisi_qm *qm)
1039 {
1040 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
1041 	struct device *dev = &qm->pdev->dev;
1042 	int ret;
1043 
1044 	if (qm_check_dev_error(pf_qm))
1045 		return;
1046 
1047 	ret = qm_reset_prepare_ready(qm);
1048 	if (ret) {
1049 		dev_err(dev, "reset function not ready\n");
1050 		return;
1051 	}
1052 
1053 	ret = hisi_qm_stop(qm, QM_FLR);
1054 	if (ret) {
1055 		dev_err(dev, "failed to stop qm when reset function\n");
1056 		goto clear_bit;
1057 	}
1058 
1059 	ret = hisi_qm_start(qm);
1060 	if (ret)
1061 		dev_err(dev, "failed to start qm when reset function\n");
1062 
1063 clear_bit:
1064 	qm_reset_bit_clear(qm);
1065 }
1066 
1067 static irqreturn_t qm_aeq_thread(int irq, void *data)
1068 {
1069 	struct hisi_qm *qm = data;
1070 	struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head;
1071 	u32 type, qp_id;
1072 
1073 	while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) {
1074 		type = le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT;
1075 		qp_id = le32_to_cpu(aeqe->dw0) & QM_AEQE_CQN_MASK;
1076 
1077 		switch (type) {
1078 		case QM_EQ_OVERFLOW:
1079 			dev_err(&qm->pdev->dev, "eq overflow, reset function\n");
1080 			qm_reset_function(qm);
1081 			return IRQ_HANDLED;
1082 		case QM_CQ_OVERFLOW:
1083 			dev_err(&qm->pdev->dev, "cq overflow, stop qp(%u)\n",
1084 				qp_id);
1085 			fallthrough;
1086 		case QM_CQE_ERROR:
1087 			qm_disable_qp(qm, qp_id);
1088 			break;
1089 		default:
1090 			dev_err(&qm->pdev->dev, "unknown error type %u\n",
1091 				type);
1092 			break;
1093 		}
1094 
1095 		if (qm->status.aeq_head == QM_Q_DEPTH - 1) {
1096 			qm->status.aeqc_phase = !qm->status.aeqc_phase;
1097 			aeqe = qm->aeqe;
1098 			qm->status.aeq_head = 0;
1099 		} else {
1100 			aeqe++;
1101 			qm->status.aeq_head++;
1102 		}
1103 	}
1104 
1105 	qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
1106 
1107 	return IRQ_HANDLED;
1108 }
1109 
1110 static irqreturn_t qm_aeq_irq(int irq, void *data)
1111 {
1112 	struct hisi_qm *qm = data;
1113 
1114 	atomic64_inc(&qm->debug.dfx.aeq_irq_cnt);
1115 	if (!readl(qm->io_base + QM_VF_AEQ_INT_SOURCE))
1116 		return IRQ_NONE;
1117 
1118 	return IRQ_WAKE_THREAD;
1119 }
1120 
1121 static void qm_irq_unregister(struct hisi_qm *qm)
1122 {
1123 	struct pci_dev *pdev = qm->pdev;
1124 
1125 	free_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR), qm);
1126 
1127 	if (qm->ver > QM_HW_V1) {
1128 		free_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR), qm);
1129 
1130 		if (qm->fun_type == QM_HW_PF)
1131 			free_irq(pci_irq_vector(pdev,
1132 				 QM_ABNORMAL_EVENT_IRQ_VECTOR), qm);
1133 	}
1134 
1135 	if (qm->ver > QM_HW_V2)
1136 		free_irq(pci_irq_vector(pdev, QM_CMD_EVENT_IRQ_VECTOR), qm);
1137 }
1138 
1139 static void qm_init_qp_status(struct hisi_qp *qp)
1140 {
1141 	struct hisi_qp_status *qp_status = &qp->qp_status;
1142 
1143 	qp_status->sq_tail = 0;
1144 	qp_status->cq_head = 0;
1145 	qp_status->cqc_phase = true;
1146 	atomic_set(&qp_status->used, 0);
1147 }
1148 
1149 static void qm_init_prefetch(struct hisi_qm *qm)
1150 {
1151 	struct device *dev = &qm->pdev->dev;
1152 	u32 page_type = 0x0;
1153 
1154 	if (qm->ver < QM_HW_V3)
1155 		return;
1156 
1157 	switch (PAGE_SIZE) {
1158 	case SZ_4K:
1159 		page_type = 0x0;
1160 		break;
1161 	case SZ_16K:
1162 		page_type = 0x1;
1163 		break;
1164 	case SZ_64K:
1165 		page_type = 0x2;
1166 		break;
1167 	default:
1168 		dev_err(dev, "system page size is not support: %lu, default set to 4KB",
1169 			PAGE_SIZE);
1170 	}
1171 
1172 	writel(page_type, qm->io_base + QM_PAGE_SIZE);
1173 }
1174 
1175 /*
1176  * acc_shaper_para_calc() Get the IR value by the qos formula, the return value
1177  * is the expected qos calculated.
1178  * the formula:
1179  * IR = X Mbps if ir = 1 means IR = 100 Mbps, if ir = 10000 means = 10Gbps
1180  *
1181  *		IR_b * (2 ^ IR_u) * 8000
1182  * IR(Mbps) = -------------------------
1183  *		  Tick * (2 ^ IR_s)
1184  */
1185 static u32 acc_shaper_para_calc(u64 cir_b, u64 cir_u, u64 cir_s)
1186 {
1187 	return ((cir_b * QM_QOS_DIVISOR_CLK) * (1 << cir_u)) /
1188 					(QM_QOS_TICK * (1 << cir_s));
1189 }
1190 
1191 static u32 acc_shaper_calc_cbs_s(u32 ir)
1192 {
1193 	int table_size = ARRAY_SIZE(shaper_cbs_s);
1194 	int i;
1195 
1196 	for (i = 0; i < table_size; i++) {
1197 		if (ir >= shaper_cbs_s[i].start && ir <= shaper_cbs_s[i].end)
1198 			return shaper_cbs_s[i].val;
1199 	}
1200 
1201 	return QM_SHAPER_MIN_CBS_S;
1202 }
1203 
1204 static u32 acc_shaper_calc_cir_s(u32 ir)
1205 {
1206 	int table_size = ARRAY_SIZE(shaper_cir_s);
1207 	int i;
1208 
1209 	for (i = 0; i < table_size; i++) {
1210 		if (ir >= shaper_cir_s[i].start && ir <= shaper_cir_s[i].end)
1211 			return shaper_cir_s[i].val;
1212 	}
1213 
1214 	return 0;
1215 }
1216 
1217 static int qm_get_shaper_para(u32 ir, struct qm_shaper_factor *factor)
1218 {
1219 	u32 cir_b, cir_u, cir_s, ir_calc;
1220 	u32 error_rate;
1221 
1222 	factor->cbs_s = acc_shaper_calc_cbs_s(ir);
1223 	cir_s = acc_shaper_calc_cir_s(ir);
1224 
1225 	for (cir_b = QM_QOS_MIN_CIR_B; cir_b <= QM_QOS_MAX_CIR_B; cir_b++) {
1226 		for (cir_u = 0; cir_u <= QM_QOS_MAX_CIR_U; cir_u++) {
1227 			ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s);
1228 
1229 			error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir;
1230 			if (error_rate <= QM_QOS_MIN_ERROR_RATE) {
1231 				factor->cir_b = cir_b;
1232 				factor->cir_u = cir_u;
1233 				factor->cir_s = cir_s;
1234 				return 0;
1235 			}
1236 		}
1237 	}
1238 
1239 	return -EINVAL;
1240 }
1241 
1242 static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base,
1243 			    u32 number, struct qm_shaper_factor *factor)
1244 {
1245 	u64 tmp = 0;
1246 
1247 	if (number > 0) {
1248 		switch (type) {
1249 		case SQC_VFT:
1250 			if (qm->ver == QM_HW_V1) {
1251 				tmp = QM_SQC_VFT_BUF_SIZE	|
1252 				      QM_SQC_VFT_SQC_SIZE	|
1253 				      QM_SQC_VFT_INDEX_NUMBER	|
1254 				      QM_SQC_VFT_VALID		|
1255 				      (u64)base << QM_SQC_VFT_START_SQN_SHIFT;
1256 			} else {
1257 				tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT |
1258 				      QM_SQC_VFT_VALID |
1259 				      (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT;
1260 			}
1261 			break;
1262 		case CQC_VFT:
1263 			if (qm->ver == QM_HW_V1) {
1264 				tmp = QM_CQC_VFT_BUF_SIZE	|
1265 				      QM_CQC_VFT_SQC_SIZE	|
1266 				      QM_CQC_VFT_INDEX_NUMBER	|
1267 				      QM_CQC_VFT_VALID;
1268 			} else {
1269 				tmp = QM_CQC_VFT_VALID;
1270 			}
1271 			break;
1272 		case SHAPER_VFT:
1273 			if (qm->ver >= QM_HW_V3) {
1274 				tmp = factor->cir_b |
1275 				(factor->cir_u << QM_SHAPER_FACTOR_CIR_U_SHIFT) |
1276 				(factor->cir_s << QM_SHAPER_FACTOR_CIR_S_SHIFT) |
1277 				(QM_SHAPER_CBS_B << QM_SHAPER_FACTOR_CBS_B_SHIFT) |
1278 				(factor->cbs_s << QM_SHAPER_FACTOR_CBS_S_SHIFT);
1279 			}
1280 			break;
1281 		}
1282 	}
1283 
1284 	writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L);
1285 	writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H);
1286 }
1287 
1288 static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type,
1289 			     u32 fun_num, u32 base, u32 number)
1290 {
1291 	struct qm_shaper_factor *factor = &qm->factor[fun_num];
1292 	unsigned int val;
1293 	int ret;
1294 
1295 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
1296 					 val & BIT(0), POLL_PERIOD,
1297 					 POLL_TIMEOUT);
1298 	if (ret)
1299 		return ret;
1300 
1301 	writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR);
1302 	writel(type, qm->io_base + QM_VFT_CFG_TYPE);
1303 	if (type == SHAPER_VFT)
1304 		fun_num |= base << QM_SHAPER_VFT_OFFSET;
1305 
1306 	writel(fun_num, qm->io_base + QM_VFT_CFG);
1307 
1308 	qm_vft_data_cfg(qm, type, base, number, factor);
1309 
1310 	writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
1311 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
1312 
1313 	return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
1314 					  val & BIT(0), POLL_PERIOD,
1315 					  POLL_TIMEOUT);
1316 }
1317 
1318 static int qm_shaper_init_vft(struct hisi_qm *qm, u32 fun_num)
1319 {
1320 	u32 qos = qm->factor[fun_num].func_qos;
1321 	int ret, i;
1322 
1323 	ret = qm_get_shaper_para(qos * QM_QOS_RATE, &qm->factor[fun_num]);
1324 	if (ret) {
1325 		dev_err(&qm->pdev->dev, "failed to calculate shaper parameter!\n");
1326 		return ret;
1327 	}
1328 	writel(qm->type_rate, qm->io_base + QM_SHAPER_CFG);
1329 	for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) {
1330 		/* The base number of queue reuse for different alg type */
1331 		ret = qm_set_vft_common(qm, SHAPER_VFT, fun_num, i, 1);
1332 		if (ret)
1333 			return ret;
1334 	}
1335 
1336 	return 0;
1337 }
1338 
1339 /* The config should be conducted after qm_dev_mem_reset() */
1340 static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
1341 			      u32 number)
1342 {
1343 	int ret, i;
1344 
1345 	for (i = SQC_VFT; i <= CQC_VFT; i++) {
1346 		ret = qm_set_vft_common(qm, i, fun_num, base, number);
1347 		if (ret)
1348 			return ret;
1349 	}
1350 
1351 	/* init default shaper qos val */
1352 	if (qm->ver >= QM_HW_V3) {
1353 		ret = qm_shaper_init_vft(qm, fun_num);
1354 		if (ret)
1355 			goto back_sqc_cqc;
1356 	}
1357 
1358 	return 0;
1359 back_sqc_cqc:
1360 	for (i = SQC_VFT; i <= CQC_VFT; i++) {
1361 		ret = qm_set_vft_common(qm, i, fun_num, 0, 0);
1362 		if (ret)
1363 			return ret;
1364 	}
1365 	return ret;
1366 }
1367 
1368 static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number)
1369 {
1370 	u64 sqc_vft;
1371 	int ret;
1372 
1373 	ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1);
1374 	if (ret)
1375 		return ret;
1376 
1377 	sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
1378 		  ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
1379 	*base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2);
1380 	*number = (QM_SQC_VFT_NUM_MASK_v2 &
1381 		   (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1;
1382 
1383 	return 0;
1384 }
1385 
1386 static int qm_get_vf_qp_num(struct hisi_qm *qm, u32 fun_num)
1387 {
1388 	u32 remain_q_num, vfq_num;
1389 	u32 num_vfs = qm->vfs_num;
1390 
1391 	vfq_num = (qm->ctrl_qp_num - qm->qp_num) / num_vfs;
1392 	if (vfq_num >= qm->max_qp_num)
1393 		return qm->max_qp_num;
1394 
1395 	remain_q_num = (qm->ctrl_qp_num - qm->qp_num) % num_vfs;
1396 	if (vfq_num + remain_q_num <= qm->max_qp_num)
1397 		return fun_num == num_vfs ? vfq_num + remain_q_num : vfq_num;
1398 
1399 	/*
1400 	 * if vfq_num + remain_q_num > max_qp_num, the last VFs,
1401 	 * each with one more queue.
1402 	 */
1403 	return fun_num + remain_q_num > num_vfs ? vfq_num + 1 : vfq_num;
1404 }
1405 
1406 static struct hisi_qm *file_to_qm(struct debugfs_file *file)
1407 {
1408 	struct qm_debug *debug = file->debug;
1409 
1410 	return container_of(debug, struct hisi_qm, debug);
1411 }
1412 
1413 static u32 current_q_read(struct hisi_qm *qm)
1414 {
1415 	return readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) >> QM_DFX_QN_SHIFT;
1416 }
1417 
1418 static int current_q_write(struct hisi_qm *qm, u32 val)
1419 {
1420 	u32 tmp;
1421 
1422 	if (val >= qm->debug.curr_qm_qp_num)
1423 		return -EINVAL;
1424 
1425 	tmp = val << QM_DFX_QN_SHIFT |
1426 	      (readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) & CURRENT_FUN_MASK);
1427 	writel(tmp, qm->io_base + QM_DFX_SQE_CNT_VF_SQN);
1428 
1429 	tmp = val << QM_DFX_QN_SHIFT |
1430 	      (readl(qm->io_base + QM_DFX_CQE_CNT_VF_CQN) & CURRENT_FUN_MASK);
1431 	writel(tmp, qm->io_base + QM_DFX_CQE_CNT_VF_CQN);
1432 
1433 	return 0;
1434 }
1435 
1436 static u32 clear_enable_read(struct hisi_qm *qm)
1437 {
1438 	return readl(qm->io_base + QM_DFX_CNT_CLR_CE);
1439 }
1440 
1441 /* rd_clr_ctrl 1 enable read clear, otherwise 0 disable it */
1442 static int clear_enable_write(struct hisi_qm *qm, u32 rd_clr_ctrl)
1443 {
1444 	if (rd_clr_ctrl > 1)
1445 		return -EINVAL;
1446 
1447 	writel(rd_clr_ctrl, qm->io_base + QM_DFX_CNT_CLR_CE);
1448 
1449 	return 0;
1450 }
1451 
1452 static u32 current_qm_read(struct hisi_qm *qm)
1453 {
1454 	return readl(qm->io_base + QM_DFX_MB_CNT_VF);
1455 }
1456 
1457 static int current_qm_write(struct hisi_qm *qm, u32 val)
1458 {
1459 	u32 tmp;
1460 
1461 	if (val > qm->vfs_num)
1462 		return -EINVAL;
1463 
1464 	/* According PF or VF Dev ID to calculation curr_qm_qp_num and store */
1465 	if (!val)
1466 		qm->debug.curr_qm_qp_num = qm->qp_num;
1467 	else
1468 		qm->debug.curr_qm_qp_num = qm_get_vf_qp_num(qm, val);
1469 
1470 	writel(val, qm->io_base + QM_DFX_MB_CNT_VF);
1471 	writel(val, qm->io_base + QM_DFX_DB_CNT_VF);
1472 
1473 	tmp = val |
1474 	      (readl(qm->io_base + QM_DFX_SQE_CNT_VF_SQN) & CURRENT_Q_MASK);
1475 	writel(tmp, qm->io_base + QM_DFX_SQE_CNT_VF_SQN);
1476 
1477 	tmp = val |
1478 	      (readl(qm->io_base + QM_DFX_CQE_CNT_VF_CQN) & CURRENT_Q_MASK);
1479 	writel(tmp, qm->io_base + QM_DFX_CQE_CNT_VF_CQN);
1480 
1481 	return 0;
1482 }
1483 
1484 static ssize_t qm_debug_read(struct file *filp, char __user *buf,
1485 			     size_t count, loff_t *pos)
1486 {
1487 	struct debugfs_file *file = filp->private_data;
1488 	enum qm_debug_file index = file->index;
1489 	struct hisi_qm *qm = file_to_qm(file);
1490 	char tbuf[QM_DBG_TMP_BUF_LEN];
1491 	u32 val;
1492 	int ret;
1493 
1494 	ret = hisi_qm_get_dfx_access(qm);
1495 	if (ret)
1496 		return ret;
1497 
1498 	mutex_lock(&file->lock);
1499 	switch (index) {
1500 	case CURRENT_QM:
1501 		val = current_qm_read(qm);
1502 		break;
1503 	case CURRENT_Q:
1504 		val = current_q_read(qm);
1505 		break;
1506 	case CLEAR_ENABLE:
1507 		val = clear_enable_read(qm);
1508 		break;
1509 	default:
1510 		goto err_input;
1511 	}
1512 	mutex_unlock(&file->lock);
1513 
1514 	hisi_qm_put_dfx_access(qm);
1515 	ret = scnprintf(tbuf, QM_DBG_TMP_BUF_LEN, "%u\n", val);
1516 	return simple_read_from_buffer(buf, count, pos, tbuf, ret);
1517 
1518 err_input:
1519 	mutex_unlock(&file->lock);
1520 	hisi_qm_put_dfx_access(qm);
1521 	return -EINVAL;
1522 }
1523 
1524 static ssize_t qm_debug_write(struct file *filp, const char __user *buf,
1525 			      size_t count, loff_t *pos)
1526 {
1527 	struct debugfs_file *file = filp->private_data;
1528 	enum qm_debug_file index = file->index;
1529 	struct hisi_qm *qm = file_to_qm(file);
1530 	unsigned long val;
1531 	char tbuf[QM_DBG_TMP_BUF_LEN];
1532 	int len, ret;
1533 
1534 	if (*pos != 0)
1535 		return 0;
1536 
1537 	if (count >= QM_DBG_TMP_BUF_LEN)
1538 		return -ENOSPC;
1539 
1540 	len = simple_write_to_buffer(tbuf, QM_DBG_TMP_BUF_LEN - 1, pos, buf,
1541 				     count);
1542 	if (len < 0)
1543 		return len;
1544 
1545 	tbuf[len] = '\0';
1546 	if (kstrtoul(tbuf, 0, &val))
1547 		return -EFAULT;
1548 
1549 	ret = hisi_qm_get_dfx_access(qm);
1550 	if (ret)
1551 		return ret;
1552 
1553 	mutex_lock(&file->lock);
1554 	switch (index) {
1555 	case CURRENT_QM:
1556 		ret = current_qm_write(qm, val);
1557 		break;
1558 	case CURRENT_Q:
1559 		ret = current_q_write(qm, val);
1560 		break;
1561 	case CLEAR_ENABLE:
1562 		ret = clear_enable_write(qm, val);
1563 		break;
1564 	default:
1565 		ret = -EINVAL;
1566 	}
1567 	mutex_unlock(&file->lock);
1568 
1569 	hisi_qm_put_dfx_access(qm);
1570 
1571 	if (ret)
1572 		return ret;
1573 
1574 	return count;
1575 }
1576 
1577 static const struct file_operations qm_debug_fops = {
1578 	.owner = THIS_MODULE,
1579 	.open = simple_open,
1580 	.read = qm_debug_read,
1581 	.write = qm_debug_write,
1582 };
1583 
1584 #define CNT_CYC_REGS_NUM		10
1585 static const struct debugfs_reg32 qm_dfx_regs[] = {
1586 	/* XXX_CNT are reading clear register */
1587 	{"QM_ECC_1BIT_CNT               ",  0x104000ull},
1588 	{"QM_ECC_MBIT_CNT               ",  0x104008ull},
1589 	{"QM_DFX_MB_CNT                 ",  0x104018ull},
1590 	{"QM_DFX_DB_CNT                 ",  0x104028ull},
1591 	{"QM_DFX_SQE_CNT                ",  0x104038ull},
1592 	{"QM_DFX_CQE_CNT                ",  0x104048ull},
1593 	{"QM_DFX_SEND_SQE_TO_ACC_CNT    ",  0x104050ull},
1594 	{"QM_DFX_WB_SQE_FROM_ACC_CNT    ",  0x104058ull},
1595 	{"QM_DFX_ACC_FINISH_CNT         ",  0x104060ull},
1596 	{"QM_DFX_CQE_ERR_CNT            ",  0x1040b4ull},
1597 	{"QM_DFX_FUNS_ACTIVE_ST         ",  0x200ull},
1598 	{"QM_ECC_1BIT_INF               ",  0x104004ull},
1599 	{"QM_ECC_MBIT_INF               ",  0x10400cull},
1600 	{"QM_DFX_ACC_RDY_VLD0           ",  0x1040a0ull},
1601 	{"QM_DFX_ACC_RDY_VLD1           ",  0x1040a4ull},
1602 	{"QM_DFX_AXI_RDY_VLD            ",  0x1040a8ull},
1603 	{"QM_DFX_FF_ST0                 ",  0x1040c8ull},
1604 	{"QM_DFX_FF_ST1                 ",  0x1040ccull},
1605 	{"QM_DFX_FF_ST2                 ",  0x1040d0ull},
1606 	{"QM_DFX_FF_ST3                 ",  0x1040d4ull},
1607 	{"QM_DFX_FF_ST4                 ",  0x1040d8ull},
1608 	{"QM_DFX_FF_ST5                 ",  0x1040dcull},
1609 	{"QM_DFX_FF_ST6                 ",  0x1040e0ull},
1610 	{"QM_IN_IDLE_ST                 ",  0x1040e4ull},
1611 };
1612 
1613 static const struct debugfs_reg32 qm_vf_dfx_regs[] = {
1614 	{"QM_DFX_FUNS_ACTIVE_ST         ",  0x200ull},
1615 };
1616 
1617 /**
1618  * hisi_qm_regs_dump() - Dump registers's value.
1619  * @s: debugfs file handle.
1620  * @regset: accelerator registers information.
1621  *
1622  * Dump accelerator registers.
1623  */
1624 void hisi_qm_regs_dump(struct seq_file *s, struct debugfs_regset32 *regset)
1625 {
1626 	struct pci_dev *pdev = to_pci_dev(regset->dev);
1627 	struct hisi_qm *qm = pci_get_drvdata(pdev);
1628 	const struct debugfs_reg32 *regs = regset->regs;
1629 	int regs_len = regset->nregs;
1630 	int i, ret;
1631 	u32 val;
1632 
1633 	ret = hisi_qm_get_dfx_access(qm);
1634 	if (ret)
1635 		return;
1636 
1637 	for (i = 0; i < regs_len; i++) {
1638 		val = readl(regset->base + regs[i].offset);
1639 		seq_printf(s, "%s= 0x%08x\n", regs[i].name, val);
1640 	}
1641 
1642 	hisi_qm_put_dfx_access(qm);
1643 }
1644 EXPORT_SYMBOL_GPL(hisi_qm_regs_dump);
1645 
1646 static int qm_regs_show(struct seq_file *s, void *unused)
1647 {
1648 	struct hisi_qm *qm = s->private;
1649 	struct debugfs_regset32 regset;
1650 
1651 	if (qm->fun_type == QM_HW_PF) {
1652 		regset.regs = qm_dfx_regs;
1653 		regset.nregs = ARRAY_SIZE(qm_dfx_regs);
1654 	} else {
1655 		regset.regs = qm_vf_dfx_regs;
1656 		regset.nregs = ARRAY_SIZE(qm_vf_dfx_regs);
1657 	}
1658 
1659 	regset.base = qm->io_base;
1660 	regset.dev = &qm->pdev->dev;
1661 
1662 	hisi_qm_regs_dump(s, &regset);
1663 
1664 	return 0;
1665 }
1666 
1667 DEFINE_SHOW_ATTRIBUTE(qm_regs);
1668 
1669 static struct dfx_diff_registers *dfx_regs_init(struct hisi_qm *qm,
1670 	const struct dfx_diff_registers *cregs, int reg_len)
1671 {
1672 	struct dfx_diff_registers *diff_regs;
1673 	u32 j, base_offset;
1674 	int i;
1675 
1676 	diff_regs = kcalloc(reg_len, sizeof(*diff_regs), GFP_KERNEL);
1677 	if (!diff_regs)
1678 		return ERR_PTR(-ENOMEM);
1679 
1680 	for (i = 0; i < reg_len; i++) {
1681 		if (!cregs[i].reg_len)
1682 			continue;
1683 
1684 		diff_regs[i].reg_offset = cregs[i].reg_offset;
1685 		diff_regs[i].reg_len = cregs[i].reg_len;
1686 		diff_regs[i].regs = kcalloc(QM_DFX_REGS_LEN, cregs[i].reg_len,
1687 					 GFP_KERNEL);
1688 		if (!diff_regs[i].regs)
1689 			goto alloc_error;
1690 
1691 		for (j = 0; j < diff_regs[i].reg_len; j++) {
1692 			base_offset = diff_regs[i].reg_offset +
1693 					j * QM_DFX_REGS_LEN;
1694 			diff_regs[i].regs[j] = readl(qm->io_base + base_offset);
1695 		}
1696 	}
1697 
1698 	return diff_regs;
1699 
1700 alloc_error:
1701 	while (i > 0) {
1702 		i--;
1703 		kfree(diff_regs[i].regs);
1704 	}
1705 	kfree(diff_regs);
1706 	return ERR_PTR(-ENOMEM);
1707 }
1708 
1709 static void dfx_regs_uninit(struct hisi_qm *qm,
1710 		struct dfx_diff_registers *dregs, int reg_len)
1711 {
1712 	int i;
1713 
1714 	/* Setting the pointer is NULL to prevent double free */
1715 	for (i = 0; i < reg_len; i++) {
1716 		kfree(dregs[i].regs);
1717 		dregs[i].regs = NULL;
1718 	}
1719 	kfree(dregs);
1720 	dregs = NULL;
1721 }
1722 
1723 /**
1724  * hisi_qm_diff_regs_init() - Allocate memory for registers.
1725  * @qm: device qm handle.
1726  * @dregs: diff registers handle.
1727  * @reg_len: diff registers region length.
1728  */
1729 int hisi_qm_diff_regs_init(struct hisi_qm *qm,
1730 		struct dfx_diff_registers *dregs, int reg_len)
1731 {
1732 	if (!qm || !dregs || reg_len <= 0)
1733 		return -EINVAL;
1734 
1735 	if (qm->fun_type != QM_HW_PF)
1736 		return 0;
1737 
1738 	qm->debug.qm_diff_regs = dfx_regs_init(qm, qm_diff_regs,
1739 						ARRAY_SIZE(qm_diff_regs));
1740 	if (IS_ERR(qm->debug.qm_diff_regs))
1741 		return PTR_ERR(qm->debug.qm_diff_regs);
1742 
1743 	qm->debug.acc_diff_regs = dfx_regs_init(qm, dregs, reg_len);
1744 	if (IS_ERR(qm->debug.acc_diff_regs)) {
1745 		dfx_regs_uninit(qm, qm->debug.qm_diff_regs,
1746 				ARRAY_SIZE(qm_diff_regs));
1747 		return PTR_ERR(qm->debug.acc_diff_regs);
1748 	}
1749 
1750 	return 0;
1751 }
1752 EXPORT_SYMBOL_GPL(hisi_qm_diff_regs_init);
1753 
1754 /**
1755  * hisi_qm_diff_regs_uninit() - Free memory for registers.
1756  * @qm: device qm handle.
1757  * @reg_len: diff registers region length.
1758  */
1759 void hisi_qm_diff_regs_uninit(struct hisi_qm *qm, int reg_len)
1760 {
1761 	if (!qm  || reg_len <= 0 || qm->fun_type != QM_HW_PF)
1762 		return;
1763 
1764 	dfx_regs_uninit(qm, qm->debug.acc_diff_regs, reg_len);
1765 	dfx_regs_uninit(qm, qm->debug.qm_diff_regs, ARRAY_SIZE(qm_diff_regs));
1766 }
1767 EXPORT_SYMBOL_GPL(hisi_qm_diff_regs_uninit);
1768 
1769 /**
1770  * hisi_qm_acc_diff_regs_dump() - Dump registers's value.
1771  * @qm: device qm handle.
1772  * @s: Debugfs file handle.
1773  * @dregs: diff registers handle.
1774  * @regs_len: diff registers region length.
1775  */
1776 void hisi_qm_acc_diff_regs_dump(struct hisi_qm *qm, struct seq_file *s,
1777 	struct dfx_diff_registers *dregs, int regs_len)
1778 {
1779 	u32 j, val, base_offset;
1780 	int i, ret;
1781 
1782 	if (!qm || !s || !dregs || regs_len <= 0)
1783 		return;
1784 
1785 	ret = hisi_qm_get_dfx_access(qm);
1786 	if (ret)
1787 		return;
1788 
1789 	down_read(&qm->qps_lock);
1790 	for (i = 0; i < regs_len; i++) {
1791 		if (!dregs[i].reg_len)
1792 			continue;
1793 
1794 		for (j = 0; j < dregs[i].reg_len; j++) {
1795 			base_offset = dregs[i].reg_offset + j * QM_DFX_REGS_LEN;
1796 			val = readl(qm->io_base + base_offset);
1797 			if (val != dregs[i].regs[j])
1798 				seq_printf(s, "0x%08x = 0x%08x ---> 0x%08x\n",
1799 					   base_offset, dregs[i].regs[j], val);
1800 		}
1801 	}
1802 	up_read(&qm->qps_lock);
1803 
1804 	hisi_qm_put_dfx_access(qm);
1805 }
1806 EXPORT_SYMBOL_GPL(hisi_qm_acc_diff_regs_dump);
1807 
1808 static int qm_diff_regs_show(struct seq_file *s, void *unused)
1809 {
1810 	struct hisi_qm *qm = s->private;
1811 
1812 	hisi_qm_acc_diff_regs_dump(qm, s, qm->debug.qm_diff_regs,
1813 					ARRAY_SIZE(qm_diff_regs));
1814 
1815 	return 0;
1816 }
1817 DEFINE_SHOW_ATTRIBUTE(qm_diff_regs);
1818 
1819 static ssize_t qm_cmd_read(struct file *filp, char __user *buffer,
1820 			   size_t count, loff_t *pos)
1821 {
1822 	char buf[QM_DBG_READ_LEN];
1823 	int len;
1824 
1825 	len = scnprintf(buf, QM_DBG_READ_LEN, "%s\n",
1826 			"Please echo help to cmd to get help information");
1827 
1828 	return simple_read_from_buffer(buffer, count, pos, buf, len);
1829 }
1830 
1831 static void *qm_ctx_alloc(struct hisi_qm *qm, size_t ctx_size,
1832 			  dma_addr_t *dma_addr)
1833 {
1834 	struct device *dev = &qm->pdev->dev;
1835 	void *ctx_addr;
1836 
1837 	ctx_addr = kzalloc(ctx_size, GFP_KERNEL);
1838 	if (!ctx_addr)
1839 		return ERR_PTR(-ENOMEM);
1840 
1841 	*dma_addr = dma_map_single(dev, ctx_addr, ctx_size, DMA_FROM_DEVICE);
1842 	if (dma_mapping_error(dev, *dma_addr)) {
1843 		dev_err(dev, "DMA mapping error!\n");
1844 		kfree(ctx_addr);
1845 		return ERR_PTR(-ENOMEM);
1846 	}
1847 
1848 	return ctx_addr;
1849 }
1850 
1851 static void qm_ctx_free(struct hisi_qm *qm, size_t ctx_size,
1852 			const void *ctx_addr, dma_addr_t *dma_addr)
1853 {
1854 	struct device *dev = &qm->pdev->dev;
1855 
1856 	dma_unmap_single(dev, *dma_addr, ctx_size, DMA_FROM_DEVICE);
1857 	kfree(ctx_addr);
1858 }
1859 
1860 static int dump_show(struct hisi_qm *qm, void *info,
1861 		     unsigned int info_size, char *info_name)
1862 {
1863 	struct device *dev = &qm->pdev->dev;
1864 	u8 *info_buf, *info_curr = info;
1865 	u32 i;
1866 #define BYTE_PER_DW	4
1867 
1868 	info_buf = kzalloc(info_size, GFP_KERNEL);
1869 	if (!info_buf)
1870 		return -ENOMEM;
1871 
1872 	for (i = 0; i < info_size; i++, info_curr++) {
1873 		if (i % BYTE_PER_DW == 0)
1874 			info_buf[i + 3UL] = *info_curr;
1875 		else if (i % BYTE_PER_DW == 1)
1876 			info_buf[i + 1UL] = *info_curr;
1877 		else if (i % BYTE_PER_DW == 2)
1878 			info_buf[i - 1] = *info_curr;
1879 		else if (i % BYTE_PER_DW == 3)
1880 			info_buf[i - 3] = *info_curr;
1881 	}
1882 
1883 	dev_info(dev, "%s DUMP\n", info_name);
1884 	for (i = 0; i < info_size; i += BYTE_PER_DW) {
1885 		pr_info("DW%u: %02X%02X %02X%02X\n", i / BYTE_PER_DW,
1886 			info_buf[i], info_buf[i + 1UL],
1887 			info_buf[i + 2UL], info_buf[i + 3UL]);
1888 	}
1889 
1890 	kfree(info_buf);
1891 
1892 	return 0;
1893 }
1894 
1895 static int qm_dump_sqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id)
1896 {
1897 	return hisi_qm_mb(qm, QM_MB_CMD_SQC, dma_addr, qp_id, 1);
1898 }
1899 
1900 static int qm_dump_cqc_raw(struct hisi_qm *qm, dma_addr_t dma_addr, u16 qp_id)
1901 {
1902 	return hisi_qm_mb(qm, QM_MB_CMD_CQC, dma_addr, qp_id, 1);
1903 }
1904 
1905 static int qm_sqc_dump(struct hisi_qm *qm, const char *s)
1906 {
1907 	struct device *dev = &qm->pdev->dev;
1908 	struct qm_sqc *sqc, *sqc_curr;
1909 	dma_addr_t sqc_dma;
1910 	u32 qp_id;
1911 	int ret;
1912 
1913 	if (!s)
1914 		return -EINVAL;
1915 
1916 	ret = kstrtou32(s, 0, &qp_id);
1917 	if (ret || qp_id >= qm->qp_num) {
1918 		dev_err(dev, "Please input qp num (0-%u)", qm->qp_num - 1);
1919 		return -EINVAL;
1920 	}
1921 
1922 	sqc = qm_ctx_alloc(qm, sizeof(*sqc), &sqc_dma);
1923 	if (IS_ERR(sqc))
1924 		return PTR_ERR(sqc);
1925 
1926 	ret = qm_dump_sqc_raw(qm, sqc_dma, qp_id);
1927 	if (ret) {
1928 		down_read(&qm->qps_lock);
1929 		if (qm->sqc) {
1930 			sqc_curr = qm->sqc + qp_id;
1931 
1932 			ret = dump_show(qm, sqc_curr, sizeof(*sqc),
1933 					"SOFT SQC");
1934 			if (ret)
1935 				dev_info(dev, "Show soft sqc failed!\n");
1936 		}
1937 		up_read(&qm->qps_lock);
1938 
1939 		goto err_free_ctx;
1940 	}
1941 
1942 	ret = dump_show(qm, sqc, sizeof(*sqc), "SQC");
1943 	if (ret)
1944 		dev_info(dev, "Show hw sqc failed!\n");
1945 
1946 err_free_ctx:
1947 	qm_ctx_free(qm, sizeof(*sqc), sqc, &sqc_dma);
1948 	return ret;
1949 }
1950 
1951 static int qm_cqc_dump(struct hisi_qm *qm, const char *s)
1952 {
1953 	struct device *dev = &qm->pdev->dev;
1954 	struct qm_cqc *cqc, *cqc_curr;
1955 	dma_addr_t cqc_dma;
1956 	u32 qp_id;
1957 	int ret;
1958 
1959 	if (!s)
1960 		return -EINVAL;
1961 
1962 	ret = kstrtou32(s, 0, &qp_id);
1963 	if (ret || qp_id >= qm->qp_num) {
1964 		dev_err(dev, "Please input qp num (0-%u)", qm->qp_num - 1);
1965 		return -EINVAL;
1966 	}
1967 
1968 	cqc = qm_ctx_alloc(qm, sizeof(*cqc), &cqc_dma);
1969 	if (IS_ERR(cqc))
1970 		return PTR_ERR(cqc);
1971 
1972 	ret = qm_dump_cqc_raw(qm, cqc_dma, qp_id);
1973 	if (ret) {
1974 		down_read(&qm->qps_lock);
1975 		if (qm->cqc) {
1976 			cqc_curr = qm->cqc + qp_id;
1977 
1978 			ret = dump_show(qm, cqc_curr, sizeof(*cqc),
1979 					"SOFT CQC");
1980 			if (ret)
1981 				dev_info(dev, "Show soft cqc failed!\n");
1982 		}
1983 		up_read(&qm->qps_lock);
1984 
1985 		goto err_free_ctx;
1986 	}
1987 
1988 	ret = dump_show(qm, cqc, sizeof(*cqc), "CQC");
1989 	if (ret)
1990 		dev_info(dev, "Show hw cqc failed!\n");
1991 
1992 err_free_ctx:
1993 	qm_ctx_free(qm, sizeof(*cqc), cqc, &cqc_dma);
1994 	return ret;
1995 }
1996 
1997 static int qm_eqc_aeqc_dump(struct hisi_qm *qm, char *s, size_t size,
1998 			    int cmd, char *name)
1999 {
2000 	struct device *dev = &qm->pdev->dev;
2001 	dma_addr_t xeqc_dma;
2002 	void *xeqc;
2003 	int ret;
2004 
2005 	if (strsep(&s, " ")) {
2006 		dev_err(dev, "Please do not input extra characters!\n");
2007 		return -EINVAL;
2008 	}
2009 
2010 	xeqc = qm_ctx_alloc(qm, size, &xeqc_dma);
2011 	if (IS_ERR(xeqc))
2012 		return PTR_ERR(xeqc);
2013 
2014 	ret = hisi_qm_mb(qm, cmd, xeqc_dma, 0, 1);
2015 	if (ret)
2016 		goto err_free_ctx;
2017 
2018 	ret = dump_show(qm, xeqc, size, name);
2019 	if (ret)
2020 		dev_info(dev, "Show hw %s failed!\n", name);
2021 
2022 err_free_ctx:
2023 	qm_ctx_free(qm, size, xeqc, &xeqc_dma);
2024 	return ret;
2025 }
2026 
2027 static int q_dump_param_parse(struct hisi_qm *qm, char *s,
2028 			      u32 *e_id, u32 *q_id)
2029 {
2030 	struct device *dev = &qm->pdev->dev;
2031 	unsigned int qp_num = qm->qp_num;
2032 	char *presult;
2033 	int ret;
2034 
2035 	presult = strsep(&s, " ");
2036 	if (!presult) {
2037 		dev_err(dev, "Please input qp number!\n");
2038 		return -EINVAL;
2039 	}
2040 
2041 	ret = kstrtou32(presult, 0, q_id);
2042 	if (ret || *q_id >= qp_num) {
2043 		dev_err(dev, "Please input qp num (0-%u)", qp_num - 1);
2044 		return -EINVAL;
2045 	}
2046 
2047 	presult = strsep(&s, " ");
2048 	if (!presult) {
2049 		dev_err(dev, "Please input sqe number!\n");
2050 		return -EINVAL;
2051 	}
2052 
2053 	ret = kstrtou32(presult, 0, e_id);
2054 	if (ret || *e_id >= QM_Q_DEPTH) {
2055 		dev_err(dev, "Please input sqe num (0-%d)", QM_Q_DEPTH - 1);
2056 		return -EINVAL;
2057 	}
2058 
2059 	if (strsep(&s, " ")) {
2060 		dev_err(dev, "Please do not input extra characters!\n");
2061 		return -EINVAL;
2062 	}
2063 
2064 	return 0;
2065 }
2066 
2067 static int qm_sq_dump(struct hisi_qm *qm, char *s)
2068 {
2069 	struct device *dev = &qm->pdev->dev;
2070 	void *sqe, *sqe_curr;
2071 	struct hisi_qp *qp;
2072 	u32 qp_id, sqe_id;
2073 	int ret;
2074 
2075 	ret = q_dump_param_parse(qm, s, &sqe_id, &qp_id);
2076 	if (ret)
2077 		return ret;
2078 
2079 	sqe = kzalloc(qm->sqe_size * QM_Q_DEPTH, GFP_KERNEL);
2080 	if (!sqe)
2081 		return -ENOMEM;
2082 
2083 	qp = &qm->qp_array[qp_id];
2084 	memcpy(sqe, qp->sqe, qm->sqe_size * QM_Q_DEPTH);
2085 	sqe_curr = sqe + (u32)(sqe_id * qm->sqe_size);
2086 	memset(sqe_curr + qm->debug.sqe_mask_offset, QM_SQE_ADDR_MASK,
2087 	       qm->debug.sqe_mask_len);
2088 
2089 	ret = dump_show(qm, sqe_curr, qm->sqe_size, "SQE");
2090 	if (ret)
2091 		dev_info(dev, "Show sqe failed!\n");
2092 
2093 	kfree(sqe);
2094 
2095 	return ret;
2096 }
2097 
2098 static int qm_cq_dump(struct hisi_qm *qm, char *s)
2099 {
2100 	struct device *dev = &qm->pdev->dev;
2101 	struct qm_cqe *cqe_curr;
2102 	struct hisi_qp *qp;
2103 	u32 qp_id, cqe_id;
2104 	int ret;
2105 
2106 	ret = q_dump_param_parse(qm, s, &cqe_id, &qp_id);
2107 	if (ret)
2108 		return ret;
2109 
2110 	qp = &qm->qp_array[qp_id];
2111 	cqe_curr = qp->cqe + cqe_id;
2112 	ret = dump_show(qm, cqe_curr, sizeof(struct qm_cqe), "CQE");
2113 	if (ret)
2114 		dev_info(dev, "Show cqe failed!\n");
2115 
2116 	return ret;
2117 }
2118 
2119 static int qm_eq_aeq_dump(struct hisi_qm *qm, const char *s,
2120 			  size_t size, char *name)
2121 {
2122 	struct device *dev = &qm->pdev->dev;
2123 	void *xeqe;
2124 	u32 xeqe_id;
2125 	int ret;
2126 
2127 	if (!s)
2128 		return -EINVAL;
2129 
2130 	ret = kstrtou32(s, 0, &xeqe_id);
2131 	if (ret)
2132 		return -EINVAL;
2133 
2134 	if (!strcmp(name, "EQE") && xeqe_id >= QM_EQ_DEPTH) {
2135 		dev_err(dev, "Please input eqe num (0-%d)", QM_EQ_DEPTH - 1);
2136 		return -EINVAL;
2137 	} else if (!strcmp(name, "AEQE") && xeqe_id >= QM_Q_DEPTH) {
2138 		dev_err(dev, "Please input aeqe num (0-%d)", QM_Q_DEPTH - 1);
2139 		return -EINVAL;
2140 	}
2141 
2142 	down_read(&qm->qps_lock);
2143 
2144 	if (qm->eqe && !strcmp(name, "EQE")) {
2145 		xeqe = qm->eqe + xeqe_id;
2146 	} else if (qm->aeqe && !strcmp(name, "AEQE")) {
2147 		xeqe = qm->aeqe + xeqe_id;
2148 	} else {
2149 		ret = -EINVAL;
2150 		goto err_unlock;
2151 	}
2152 
2153 	ret = dump_show(qm, xeqe, size, name);
2154 	if (ret)
2155 		dev_info(dev, "Show %s failed!\n", name);
2156 
2157 err_unlock:
2158 	up_read(&qm->qps_lock);
2159 	return ret;
2160 }
2161 
2162 static int qm_dbg_help(struct hisi_qm *qm, char *s)
2163 {
2164 	struct device *dev = &qm->pdev->dev;
2165 
2166 	if (strsep(&s, " ")) {
2167 		dev_err(dev, "Please do not input extra characters!\n");
2168 		return -EINVAL;
2169 	}
2170 
2171 	dev_info(dev, "available commands:\n");
2172 	dev_info(dev, "sqc <num>\n");
2173 	dev_info(dev, "cqc <num>\n");
2174 	dev_info(dev, "eqc\n");
2175 	dev_info(dev, "aeqc\n");
2176 	dev_info(dev, "sq <num> <e>\n");
2177 	dev_info(dev, "cq <num> <e>\n");
2178 	dev_info(dev, "eq <e>\n");
2179 	dev_info(dev, "aeq <e>\n");
2180 
2181 	return 0;
2182 }
2183 
2184 static int qm_cmd_write_dump(struct hisi_qm *qm, const char *cmd_buf)
2185 {
2186 	struct device *dev = &qm->pdev->dev;
2187 	char *presult, *s, *s_tmp;
2188 	int ret;
2189 
2190 	s = kstrdup(cmd_buf, GFP_KERNEL);
2191 	if (!s)
2192 		return -ENOMEM;
2193 
2194 	s_tmp = s;
2195 	presult = strsep(&s, " ");
2196 	if (!presult) {
2197 		ret = -EINVAL;
2198 		goto err_buffer_free;
2199 	}
2200 
2201 	if (!strcmp(presult, "sqc"))
2202 		ret = qm_sqc_dump(qm, s);
2203 	else if (!strcmp(presult, "cqc"))
2204 		ret = qm_cqc_dump(qm, s);
2205 	else if (!strcmp(presult, "eqc"))
2206 		ret = qm_eqc_aeqc_dump(qm, s, sizeof(struct qm_eqc),
2207 				       QM_MB_CMD_EQC, "EQC");
2208 	else if (!strcmp(presult, "aeqc"))
2209 		ret = qm_eqc_aeqc_dump(qm, s, sizeof(struct qm_aeqc),
2210 				       QM_MB_CMD_AEQC, "AEQC");
2211 	else if (!strcmp(presult, "sq"))
2212 		ret = qm_sq_dump(qm, s);
2213 	else if (!strcmp(presult, "cq"))
2214 		ret = qm_cq_dump(qm, s);
2215 	else if (!strcmp(presult, "eq"))
2216 		ret = qm_eq_aeq_dump(qm, s, sizeof(struct qm_eqe), "EQE");
2217 	else if (!strcmp(presult, "aeq"))
2218 		ret = qm_eq_aeq_dump(qm, s, sizeof(struct qm_aeqe), "AEQE");
2219 	else if (!strcmp(presult, "help"))
2220 		ret = qm_dbg_help(qm, s);
2221 	else
2222 		ret = -EINVAL;
2223 
2224 	if (ret)
2225 		dev_info(dev, "Please echo help\n");
2226 
2227 err_buffer_free:
2228 	kfree(s_tmp);
2229 
2230 	return ret;
2231 }
2232 
2233 static ssize_t qm_cmd_write(struct file *filp, const char __user *buffer,
2234 			    size_t count, loff_t *pos)
2235 {
2236 	struct hisi_qm *qm = filp->private_data;
2237 	char *cmd_buf, *cmd_buf_tmp;
2238 	int ret;
2239 
2240 	if (*pos)
2241 		return 0;
2242 
2243 	ret = hisi_qm_get_dfx_access(qm);
2244 	if (ret)
2245 		return ret;
2246 
2247 	/* Judge if the instance is being reset. */
2248 	if (unlikely(atomic_read(&qm->status.flags) == QM_STOP))
2249 		return 0;
2250 
2251 	if (count > QM_DBG_WRITE_LEN) {
2252 		ret = -ENOSPC;
2253 		goto put_dfx_access;
2254 	}
2255 
2256 	cmd_buf = memdup_user_nul(buffer, count);
2257 	if (IS_ERR(cmd_buf)) {
2258 		ret = PTR_ERR(cmd_buf);
2259 		goto put_dfx_access;
2260 	}
2261 
2262 	cmd_buf_tmp = strchr(cmd_buf, '\n');
2263 	if (cmd_buf_tmp) {
2264 		*cmd_buf_tmp = '\0';
2265 		count = cmd_buf_tmp - cmd_buf + 1;
2266 	}
2267 
2268 	ret = qm_cmd_write_dump(qm, cmd_buf);
2269 	if (ret) {
2270 		kfree(cmd_buf);
2271 		goto put_dfx_access;
2272 	}
2273 
2274 	kfree(cmd_buf);
2275 
2276 	ret = count;
2277 
2278 put_dfx_access:
2279 	hisi_qm_put_dfx_access(qm);
2280 	return ret;
2281 }
2282 
2283 static const struct file_operations qm_cmd_fops = {
2284 	.owner = THIS_MODULE,
2285 	.open = simple_open,
2286 	.read = qm_cmd_read,
2287 	.write = qm_cmd_write,
2288 };
2289 
2290 static void qm_create_debugfs_file(struct hisi_qm *qm, struct dentry *dir,
2291 				   enum qm_debug_file index)
2292 {
2293 	struct debugfs_file *file = qm->debug.files + index;
2294 
2295 	debugfs_create_file(qm_debug_file_name[index], 0600, dir, file,
2296 			    &qm_debug_fops);
2297 
2298 	file->index = index;
2299 	mutex_init(&file->lock);
2300 	file->debug = &qm->debug;
2301 }
2302 
2303 static void qm_hw_error_init_v1(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe)
2304 {
2305 	writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK);
2306 }
2307 
2308 static void qm_hw_error_cfg(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe)
2309 {
2310 	qm->error_mask = ce | nfe | fe;
2311 	/* clear QM hw residual error source */
2312 	writel(QM_ABNORMAL_INT_SOURCE_CLR,
2313 	       qm->io_base + QM_ABNORMAL_INT_SOURCE);
2314 
2315 	/* configure error type */
2316 	writel(ce, qm->io_base + QM_RAS_CE_ENABLE);
2317 	writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD);
2318 	writel(nfe, qm->io_base + QM_RAS_NFE_ENABLE);
2319 	writel(fe, qm->io_base + QM_RAS_FE_ENABLE);
2320 }
2321 
2322 static void qm_hw_error_init_v2(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe)
2323 {
2324 	u32 irq_enable = ce | nfe | fe;
2325 	u32 irq_unmask = ~irq_enable;
2326 
2327 	qm_hw_error_cfg(qm, ce, nfe, fe);
2328 
2329 	irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
2330 	writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
2331 }
2332 
2333 static void qm_hw_error_uninit_v2(struct hisi_qm *qm)
2334 {
2335 	writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK);
2336 }
2337 
2338 static void qm_hw_error_init_v3(struct hisi_qm *qm, u32 ce, u32 nfe, u32 fe)
2339 {
2340 	u32 irq_enable = ce | nfe | fe;
2341 	u32 irq_unmask = ~irq_enable;
2342 
2343 	qm_hw_error_cfg(qm, ce, nfe, fe);
2344 
2345 	/* enable close master ooo when hardware error happened */
2346 	writel(nfe & (~QM_DB_RANDOM_INVALID), qm->io_base + QM_OOO_SHUTDOWN_SEL);
2347 
2348 	irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
2349 	writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
2350 }
2351 
2352 static void qm_hw_error_uninit_v3(struct hisi_qm *qm)
2353 {
2354 	writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK);
2355 
2356 	/* disable close master ooo when hardware error happened */
2357 	writel(0x0, qm->io_base + QM_OOO_SHUTDOWN_SEL);
2358 }
2359 
2360 static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status)
2361 {
2362 	const struct hisi_qm_hw_error *err;
2363 	struct device *dev = &qm->pdev->dev;
2364 	u32 reg_val, type, vf_num;
2365 	int i;
2366 
2367 	for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) {
2368 		err = &qm_hw_error[i];
2369 		if (!(err->int_msk & error_status))
2370 			continue;
2371 
2372 		dev_err(dev, "%s [error status=0x%x] found\n",
2373 			err->msg, err->int_msk);
2374 
2375 		if (err->int_msk & QM_DB_TIMEOUT) {
2376 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF01);
2377 			type = (reg_val & QM_DB_TIMEOUT_TYPE) >>
2378 			       QM_DB_TIMEOUT_TYPE_SHIFT;
2379 			vf_num = reg_val & QM_DB_TIMEOUT_VF;
2380 			dev_err(dev, "qm %s doorbell timeout in function %u\n",
2381 				qm_db_timeout[type], vf_num);
2382 		} else if (err->int_msk & QM_OF_FIFO_OF) {
2383 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF00);
2384 			type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >>
2385 			       QM_FIFO_OVERFLOW_TYPE_SHIFT;
2386 			vf_num = reg_val & QM_FIFO_OVERFLOW_VF;
2387 
2388 			if (type < ARRAY_SIZE(qm_fifo_overflow))
2389 				dev_err(dev, "qm %s fifo overflow in function %u\n",
2390 					qm_fifo_overflow[type], vf_num);
2391 			else
2392 				dev_err(dev, "unknown error type\n");
2393 		}
2394 	}
2395 }
2396 
2397 static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm)
2398 {
2399 	u32 error_status, tmp, val;
2400 
2401 	/* read err sts */
2402 	tmp = readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
2403 	error_status = qm->error_mask & tmp;
2404 
2405 	if (error_status) {
2406 		if (error_status & QM_ECC_MBIT)
2407 			qm->err_status.is_qm_ecc_mbit = true;
2408 
2409 		qm_log_hw_error(qm, error_status);
2410 		val = error_status | QM_DB_RANDOM_INVALID | QM_BASE_CE;
2411 		/* ce error does not need to be reset */
2412 		if (val == (QM_DB_RANDOM_INVALID | QM_BASE_CE)) {
2413 			writel(error_status, qm->io_base +
2414 			       QM_ABNORMAL_INT_SOURCE);
2415 			writel(qm->err_info.nfe,
2416 			       qm->io_base + QM_RAS_NFE_ENABLE);
2417 			return ACC_ERR_RECOVERED;
2418 		}
2419 
2420 		return ACC_ERR_NEED_RESET;
2421 	}
2422 
2423 	return ACC_ERR_RECOVERED;
2424 }
2425 
2426 static int qm_get_mb_cmd(struct hisi_qm *qm, u64 *msg, u16 fun_num)
2427 {
2428 	struct qm_mailbox mailbox;
2429 	int ret;
2430 
2431 	qm_mb_pre_init(&mailbox, QM_MB_CMD_DST, 0, fun_num, 0);
2432 	mutex_lock(&qm->mailbox_lock);
2433 	ret = qm_mb_nolock(qm, &mailbox);
2434 	if (ret)
2435 		goto err_unlock;
2436 
2437 	*msg = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
2438 		  ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
2439 
2440 err_unlock:
2441 	mutex_unlock(&qm->mailbox_lock);
2442 	return ret;
2443 }
2444 
2445 static void qm_clear_cmd_interrupt(struct hisi_qm *qm, u64 vf_mask)
2446 {
2447 	u32 val;
2448 
2449 	if (qm->fun_type == QM_HW_PF)
2450 		writeq(vf_mask, qm->io_base + QM_IFC_INT_SOURCE_P);
2451 
2452 	val = readl(qm->io_base + QM_IFC_INT_SOURCE_V);
2453 	val |= QM_IFC_INT_SOURCE_MASK;
2454 	writel(val, qm->io_base + QM_IFC_INT_SOURCE_V);
2455 }
2456 
2457 static void qm_handle_vf_msg(struct hisi_qm *qm, u32 vf_id)
2458 {
2459 	struct device *dev = &qm->pdev->dev;
2460 	u32 cmd;
2461 	u64 msg;
2462 	int ret;
2463 
2464 	ret = qm_get_mb_cmd(qm, &msg, vf_id);
2465 	if (ret) {
2466 		dev_err(dev, "failed to get msg from VF(%u)!\n", vf_id);
2467 		return;
2468 	}
2469 
2470 	cmd = msg & QM_MB_CMD_DATA_MASK;
2471 	switch (cmd) {
2472 	case QM_VF_PREPARE_FAIL:
2473 		dev_err(dev, "failed to stop VF(%u)!\n", vf_id);
2474 		break;
2475 	case QM_VF_START_FAIL:
2476 		dev_err(dev, "failed to start VF(%u)!\n", vf_id);
2477 		break;
2478 	case QM_VF_PREPARE_DONE:
2479 	case QM_VF_START_DONE:
2480 		break;
2481 	default:
2482 		dev_err(dev, "unsupported cmd %u sent by VF(%u)!\n", cmd, vf_id);
2483 		break;
2484 	}
2485 }
2486 
2487 static int qm_wait_vf_prepare_finish(struct hisi_qm *qm)
2488 {
2489 	struct device *dev = &qm->pdev->dev;
2490 	u32 vfs_num = qm->vfs_num;
2491 	int cnt = 0;
2492 	int ret = 0;
2493 	u64 val;
2494 	u32 i;
2495 
2496 	if (!qm->vfs_num || qm->ver < QM_HW_V3)
2497 		return 0;
2498 
2499 	while (true) {
2500 		val = readq(qm->io_base + QM_IFC_INT_SOURCE_P);
2501 		/* All VFs send command to PF, break */
2502 		if ((val & GENMASK(vfs_num, 1)) == GENMASK(vfs_num, 1))
2503 			break;
2504 
2505 		if (++cnt > QM_MAX_PF_WAIT_COUNT) {
2506 			ret = -EBUSY;
2507 			break;
2508 		}
2509 
2510 		msleep(QM_WAIT_DST_ACK);
2511 	}
2512 
2513 	/* PF check VFs msg */
2514 	for (i = 1; i <= vfs_num; i++) {
2515 		if (val & BIT(i))
2516 			qm_handle_vf_msg(qm, i);
2517 		else
2518 			dev_err(dev, "VF(%u) not ping PF!\n", i);
2519 	}
2520 
2521 	/* PF clear interrupt to ack VFs */
2522 	qm_clear_cmd_interrupt(qm, val);
2523 
2524 	return ret;
2525 }
2526 
2527 static void qm_trigger_vf_interrupt(struct hisi_qm *qm, u32 fun_num)
2528 {
2529 	u32 val;
2530 
2531 	val = readl(qm->io_base + QM_IFC_INT_CFG);
2532 	val &= ~QM_IFC_SEND_ALL_VFS;
2533 	val |= fun_num;
2534 	writel(val, qm->io_base + QM_IFC_INT_CFG);
2535 
2536 	val = readl(qm->io_base + QM_IFC_INT_SET_P);
2537 	val |= QM_IFC_INT_SET_MASK;
2538 	writel(val, qm->io_base + QM_IFC_INT_SET_P);
2539 }
2540 
2541 static void qm_trigger_pf_interrupt(struct hisi_qm *qm)
2542 {
2543 	u32 val;
2544 
2545 	val = readl(qm->io_base + QM_IFC_INT_SET_V);
2546 	val |= QM_IFC_INT_SET_MASK;
2547 	writel(val, qm->io_base + QM_IFC_INT_SET_V);
2548 }
2549 
2550 static int qm_ping_single_vf(struct hisi_qm *qm, u64 cmd, u32 fun_num)
2551 {
2552 	struct device *dev = &qm->pdev->dev;
2553 	struct qm_mailbox mailbox;
2554 	int cnt = 0;
2555 	u64 val;
2556 	int ret;
2557 
2558 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, fun_num, 0);
2559 	mutex_lock(&qm->mailbox_lock);
2560 	ret = qm_mb_nolock(qm, &mailbox);
2561 	if (ret) {
2562 		dev_err(dev, "failed to send command to vf(%u)!\n", fun_num);
2563 		goto err_unlock;
2564 	}
2565 
2566 	qm_trigger_vf_interrupt(qm, fun_num);
2567 	while (true) {
2568 		msleep(QM_WAIT_DST_ACK);
2569 		val = readq(qm->io_base + QM_IFC_READY_STATUS);
2570 		/* if VF respond, PF notifies VF successfully. */
2571 		if (!(val & BIT(fun_num)))
2572 			goto err_unlock;
2573 
2574 		if (++cnt > QM_MAX_PF_WAIT_COUNT) {
2575 			dev_err(dev, "failed to get response from VF(%u)!\n", fun_num);
2576 			ret = -ETIMEDOUT;
2577 			break;
2578 		}
2579 	}
2580 
2581 err_unlock:
2582 	mutex_unlock(&qm->mailbox_lock);
2583 	return ret;
2584 }
2585 
2586 static int qm_ping_all_vfs(struct hisi_qm *qm, u64 cmd)
2587 {
2588 	struct device *dev = &qm->pdev->dev;
2589 	u32 vfs_num = qm->vfs_num;
2590 	struct qm_mailbox mailbox;
2591 	u64 val = 0;
2592 	int cnt = 0;
2593 	int ret;
2594 	u32 i;
2595 
2596 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, QM_MB_PING_ALL_VFS, 0);
2597 	mutex_lock(&qm->mailbox_lock);
2598 	/* PF sends command to all VFs by mailbox */
2599 	ret = qm_mb_nolock(qm, &mailbox);
2600 	if (ret) {
2601 		dev_err(dev, "failed to send command to VFs!\n");
2602 		mutex_unlock(&qm->mailbox_lock);
2603 		return ret;
2604 	}
2605 
2606 	qm_trigger_vf_interrupt(qm, QM_IFC_SEND_ALL_VFS);
2607 	while (true) {
2608 		msleep(QM_WAIT_DST_ACK);
2609 		val = readq(qm->io_base + QM_IFC_READY_STATUS);
2610 		/* If all VFs acked, PF notifies VFs successfully. */
2611 		if (!(val & GENMASK(vfs_num, 1))) {
2612 			mutex_unlock(&qm->mailbox_lock);
2613 			return 0;
2614 		}
2615 
2616 		if (++cnt > QM_MAX_PF_WAIT_COUNT)
2617 			break;
2618 	}
2619 
2620 	mutex_unlock(&qm->mailbox_lock);
2621 
2622 	/* Check which vf respond timeout. */
2623 	for (i = 1; i <= vfs_num; i++) {
2624 		if (val & BIT(i))
2625 			dev_err(dev, "failed to get response from VF(%u)!\n", i);
2626 	}
2627 
2628 	return -ETIMEDOUT;
2629 }
2630 
2631 static int qm_ping_pf(struct hisi_qm *qm, u64 cmd)
2632 {
2633 	struct qm_mailbox mailbox;
2634 	int cnt = 0;
2635 	u32 val;
2636 	int ret;
2637 
2638 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, 0, 0);
2639 	mutex_lock(&qm->mailbox_lock);
2640 	ret = qm_mb_nolock(qm, &mailbox);
2641 	if (ret) {
2642 		dev_err(&qm->pdev->dev, "failed to send command to PF!\n");
2643 		goto unlock;
2644 	}
2645 
2646 	qm_trigger_pf_interrupt(qm);
2647 	/* Waiting for PF response */
2648 	while (true) {
2649 		msleep(QM_WAIT_DST_ACK);
2650 		val = readl(qm->io_base + QM_IFC_INT_SET_V);
2651 		if (!(val & QM_IFC_INT_STATUS_MASK))
2652 			break;
2653 
2654 		if (++cnt > QM_MAX_VF_WAIT_COUNT) {
2655 			ret = -ETIMEDOUT;
2656 			break;
2657 		}
2658 	}
2659 
2660 unlock:
2661 	mutex_unlock(&qm->mailbox_lock);
2662 	return ret;
2663 }
2664 
2665 static int qm_stop_qp(struct hisi_qp *qp)
2666 {
2667 	return hisi_qm_mb(qp->qm, QM_MB_CMD_STOP_QP, 0, qp->qp_id, 0);
2668 }
2669 
2670 static int qm_set_msi(struct hisi_qm *qm, bool set)
2671 {
2672 	struct pci_dev *pdev = qm->pdev;
2673 
2674 	if (set) {
2675 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
2676 				       0);
2677 	} else {
2678 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
2679 				       ACC_PEH_MSI_DISABLE);
2680 		if (qm->err_status.is_qm_ecc_mbit ||
2681 		    qm->err_status.is_dev_ecc_mbit)
2682 			return 0;
2683 
2684 		mdelay(1);
2685 		if (readl(qm->io_base + QM_PEH_DFX_INFO0))
2686 			return -EFAULT;
2687 	}
2688 
2689 	return 0;
2690 }
2691 
2692 static void qm_wait_msi_finish(struct hisi_qm *qm)
2693 {
2694 	struct pci_dev *pdev = qm->pdev;
2695 	u32 cmd = ~0;
2696 	int cnt = 0;
2697 	u32 val;
2698 	int ret;
2699 
2700 	while (true) {
2701 		pci_read_config_dword(pdev, pdev->msi_cap +
2702 				      PCI_MSI_PENDING_64, &cmd);
2703 		if (!cmd)
2704 			break;
2705 
2706 		if (++cnt > MAX_WAIT_COUNTS) {
2707 			pci_warn(pdev, "failed to empty MSI PENDING!\n");
2708 			break;
2709 		}
2710 
2711 		udelay(1);
2712 	}
2713 
2714 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO0,
2715 					 val, !(val & QM_PEH_DFX_MASK),
2716 					 POLL_PERIOD, POLL_TIMEOUT);
2717 	if (ret)
2718 		pci_warn(pdev, "failed to empty PEH MSI!\n");
2719 
2720 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO1,
2721 					 val, !(val & QM_PEH_MSI_FINISH_MASK),
2722 					 POLL_PERIOD, POLL_TIMEOUT);
2723 	if (ret)
2724 		pci_warn(pdev, "failed to finish MSI operation!\n");
2725 }
2726 
2727 static int qm_set_msi_v3(struct hisi_qm *qm, bool set)
2728 {
2729 	struct pci_dev *pdev = qm->pdev;
2730 	int ret = -ETIMEDOUT;
2731 	u32 cmd, i;
2732 
2733 	pci_read_config_dword(pdev, pdev->msi_cap, &cmd);
2734 	if (set)
2735 		cmd |= QM_MSI_CAP_ENABLE;
2736 	else
2737 		cmd &= ~QM_MSI_CAP_ENABLE;
2738 
2739 	pci_write_config_dword(pdev, pdev->msi_cap, cmd);
2740 	if (set) {
2741 		for (i = 0; i < MAX_WAIT_COUNTS; i++) {
2742 			pci_read_config_dword(pdev, pdev->msi_cap, &cmd);
2743 			if (cmd & QM_MSI_CAP_ENABLE)
2744 				return 0;
2745 
2746 			udelay(1);
2747 		}
2748 	} else {
2749 		udelay(WAIT_PERIOD_US_MIN);
2750 		qm_wait_msi_finish(qm);
2751 		ret = 0;
2752 	}
2753 
2754 	return ret;
2755 }
2756 
2757 static const struct hisi_qm_hw_ops qm_hw_ops_v1 = {
2758 	.qm_db = qm_db_v1,
2759 	.get_irq_num = qm_get_irq_num_v1,
2760 	.hw_error_init = qm_hw_error_init_v1,
2761 	.set_msi = qm_set_msi,
2762 };
2763 
2764 static const struct hisi_qm_hw_ops qm_hw_ops_v2 = {
2765 	.get_vft = qm_get_vft_v2,
2766 	.qm_db = qm_db_v2,
2767 	.get_irq_num = qm_get_irq_num_v2,
2768 	.hw_error_init = qm_hw_error_init_v2,
2769 	.hw_error_uninit = qm_hw_error_uninit_v2,
2770 	.hw_error_handle = qm_hw_error_handle_v2,
2771 	.set_msi = qm_set_msi,
2772 };
2773 
2774 static const struct hisi_qm_hw_ops qm_hw_ops_v3 = {
2775 	.get_vft = qm_get_vft_v2,
2776 	.qm_db = qm_db_v2,
2777 	.get_irq_num = qm_get_irq_num_v3,
2778 	.hw_error_init = qm_hw_error_init_v3,
2779 	.hw_error_uninit = qm_hw_error_uninit_v3,
2780 	.hw_error_handle = qm_hw_error_handle_v2,
2781 	.stop_qp = qm_stop_qp,
2782 	.set_msi = qm_set_msi_v3,
2783 	.ping_all_vfs = qm_ping_all_vfs,
2784 	.ping_pf = qm_ping_pf,
2785 };
2786 
2787 static void *qm_get_avail_sqe(struct hisi_qp *qp)
2788 {
2789 	struct hisi_qp_status *qp_status = &qp->qp_status;
2790 	u16 sq_tail = qp_status->sq_tail;
2791 
2792 	if (unlikely(atomic_read(&qp->qp_status.used) == QM_Q_DEPTH - 1))
2793 		return NULL;
2794 
2795 	return qp->sqe + sq_tail * qp->qm->sqe_size;
2796 }
2797 
2798 static void hisi_qm_unset_hw_reset(struct hisi_qp *qp)
2799 {
2800 	u64 *addr;
2801 
2802 	/* Use last 64 bits of DUS to reset status. */
2803 	addr = (u64 *)(qp->qdma.va + qp->qdma.size) - QM_RESET_STOP_TX_OFFSET;
2804 	*addr = 0;
2805 }
2806 
2807 static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type)
2808 {
2809 	struct device *dev = &qm->pdev->dev;
2810 	struct hisi_qp *qp;
2811 	int qp_id;
2812 
2813 	if (!qm_qp_avail_state(qm, NULL, QP_INIT))
2814 		return ERR_PTR(-EPERM);
2815 
2816 	if (qm->qp_in_used == qm->qp_num) {
2817 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
2818 				     qm->qp_num);
2819 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
2820 		return ERR_PTR(-EBUSY);
2821 	}
2822 
2823 	qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC);
2824 	if (qp_id < 0) {
2825 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
2826 				    qm->qp_num);
2827 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
2828 		return ERR_PTR(-EBUSY);
2829 	}
2830 
2831 	qp = &qm->qp_array[qp_id];
2832 	hisi_qm_unset_hw_reset(qp);
2833 	memset(qp->cqe, 0, sizeof(struct qm_cqe) * QM_Q_DEPTH);
2834 
2835 	qp->event_cb = NULL;
2836 	qp->req_cb = NULL;
2837 	qp->qp_id = qp_id;
2838 	qp->alg_type = alg_type;
2839 	qp->is_in_kernel = true;
2840 	qm->qp_in_used++;
2841 	atomic_set(&qp->qp_status.flags, QP_INIT);
2842 
2843 	return qp;
2844 }
2845 
2846 /**
2847  * hisi_qm_create_qp() - Create a queue pair from qm.
2848  * @qm: The qm we create a qp from.
2849  * @alg_type: Accelerator specific algorithm type in sqc.
2850  *
2851  * return created qp, -EBUSY if all qps in qm allocated, -ENOMEM if allocating
2852  * qp memory fails.
2853  */
2854 static struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type)
2855 {
2856 	struct hisi_qp *qp;
2857 	int ret;
2858 
2859 	ret = qm_pm_get_sync(qm);
2860 	if (ret)
2861 		return ERR_PTR(ret);
2862 
2863 	down_write(&qm->qps_lock);
2864 	qp = qm_create_qp_nolock(qm, alg_type);
2865 	up_write(&qm->qps_lock);
2866 
2867 	if (IS_ERR(qp))
2868 		qm_pm_put_sync(qm);
2869 
2870 	return qp;
2871 }
2872 
2873 /**
2874  * hisi_qm_release_qp() - Release a qp back to its qm.
2875  * @qp: The qp we want to release.
2876  *
2877  * This function releases the resource of a qp.
2878  */
2879 static void hisi_qm_release_qp(struct hisi_qp *qp)
2880 {
2881 	struct hisi_qm *qm = qp->qm;
2882 
2883 	down_write(&qm->qps_lock);
2884 
2885 	if (!qm_qp_avail_state(qm, qp, QP_CLOSE)) {
2886 		up_write(&qm->qps_lock);
2887 		return;
2888 	}
2889 
2890 	qm->qp_in_used--;
2891 	idr_remove(&qm->qp_idr, qp->qp_id);
2892 
2893 	up_write(&qm->qps_lock);
2894 
2895 	qm_pm_put_sync(qm);
2896 }
2897 
2898 static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
2899 {
2900 	struct hisi_qm *qm = qp->qm;
2901 	struct device *dev = &qm->pdev->dev;
2902 	enum qm_hw_ver ver = qm->ver;
2903 	struct qm_sqc *sqc;
2904 	dma_addr_t sqc_dma;
2905 	int ret;
2906 
2907 	sqc = kzalloc(sizeof(struct qm_sqc), GFP_KERNEL);
2908 	if (!sqc)
2909 		return -ENOMEM;
2910 
2911 	INIT_QC_COMMON(sqc, qp->sqe_dma, pasid);
2912 	if (ver == QM_HW_V1) {
2913 		sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size));
2914 		sqc->w8 = cpu_to_le16(QM_Q_DEPTH - 1);
2915 	} else {
2916 		sqc->dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size));
2917 		sqc->w8 = 0; /* rand_qc */
2918 	}
2919 	sqc->cq_num = cpu_to_le16(qp_id);
2920 	sqc->w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type));
2921 
2922 	if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
2923 		sqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE <<
2924 				       QM_QC_PASID_ENABLE_SHIFT);
2925 
2926 	sqc_dma = dma_map_single(dev, sqc, sizeof(struct qm_sqc),
2927 				 DMA_TO_DEVICE);
2928 	if (dma_mapping_error(dev, sqc_dma)) {
2929 		kfree(sqc);
2930 		return -ENOMEM;
2931 	}
2932 
2933 	ret = hisi_qm_mb(qm, QM_MB_CMD_SQC, sqc_dma, qp_id, 0);
2934 	dma_unmap_single(dev, sqc_dma, sizeof(struct qm_sqc), DMA_TO_DEVICE);
2935 	kfree(sqc);
2936 
2937 	return ret;
2938 }
2939 
2940 static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
2941 {
2942 	struct hisi_qm *qm = qp->qm;
2943 	struct device *dev = &qm->pdev->dev;
2944 	enum qm_hw_ver ver = qm->ver;
2945 	struct qm_cqc *cqc;
2946 	dma_addr_t cqc_dma;
2947 	int ret;
2948 
2949 	cqc = kzalloc(sizeof(struct qm_cqc), GFP_KERNEL);
2950 	if (!cqc)
2951 		return -ENOMEM;
2952 
2953 	INIT_QC_COMMON(cqc, qp->cqe_dma, pasid);
2954 	if (ver == QM_HW_V1) {
2955 		cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0,
2956 							QM_QC_CQE_SIZE));
2957 		cqc->w8 = cpu_to_le16(QM_Q_DEPTH - 1);
2958 	} else {
2959 		cqc->dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE));
2960 		cqc->w8 = 0; /* rand_qc */
2961 	}
2962 	cqc->dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT);
2963 
2964 	if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
2965 		cqc->w11 = cpu_to_le16(QM_QC_PASID_ENABLE);
2966 
2967 	cqc_dma = dma_map_single(dev, cqc, sizeof(struct qm_cqc),
2968 				 DMA_TO_DEVICE);
2969 	if (dma_mapping_error(dev, cqc_dma)) {
2970 		kfree(cqc);
2971 		return -ENOMEM;
2972 	}
2973 
2974 	ret = hisi_qm_mb(qm, QM_MB_CMD_CQC, cqc_dma, qp_id, 0);
2975 	dma_unmap_single(dev, cqc_dma, sizeof(struct qm_cqc), DMA_TO_DEVICE);
2976 	kfree(cqc);
2977 
2978 	return ret;
2979 }
2980 
2981 static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
2982 {
2983 	int ret;
2984 
2985 	qm_init_qp_status(qp);
2986 
2987 	ret = qm_sq_ctx_cfg(qp, qp_id, pasid);
2988 	if (ret)
2989 		return ret;
2990 
2991 	return qm_cq_ctx_cfg(qp, qp_id, pasid);
2992 }
2993 
2994 static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg)
2995 {
2996 	struct hisi_qm *qm = qp->qm;
2997 	struct device *dev = &qm->pdev->dev;
2998 	int qp_id = qp->qp_id;
2999 	u32 pasid = arg;
3000 	int ret;
3001 
3002 	if (!qm_qp_avail_state(qm, qp, QP_START))
3003 		return -EPERM;
3004 
3005 	ret = qm_qp_ctx_cfg(qp, qp_id, pasid);
3006 	if (ret)
3007 		return ret;
3008 
3009 	atomic_set(&qp->qp_status.flags, QP_START);
3010 	dev_dbg(dev, "queue %d started\n", qp_id);
3011 
3012 	return 0;
3013 }
3014 
3015 /**
3016  * hisi_qm_start_qp() - Start a qp into running.
3017  * @qp: The qp we want to start to run.
3018  * @arg: Accelerator specific argument.
3019  *
3020  * After this function, qp can receive request from user. Return 0 if
3021  * successful, Return -EBUSY if failed.
3022  */
3023 int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg)
3024 {
3025 	struct hisi_qm *qm = qp->qm;
3026 	int ret;
3027 
3028 	down_write(&qm->qps_lock);
3029 	ret = qm_start_qp_nolock(qp, arg);
3030 	up_write(&qm->qps_lock);
3031 
3032 	return ret;
3033 }
3034 EXPORT_SYMBOL_GPL(hisi_qm_start_qp);
3035 
3036 /**
3037  * qp_stop_fail_cb() - call request cb.
3038  * @qp: stopped failed qp.
3039  *
3040  * Callback function should be called whether task completed or not.
3041  */
3042 static void qp_stop_fail_cb(struct hisi_qp *qp)
3043 {
3044 	int qp_used = atomic_read(&qp->qp_status.used);
3045 	u16 cur_tail = qp->qp_status.sq_tail;
3046 	u16 cur_head = (cur_tail + QM_Q_DEPTH - qp_used) % QM_Q_DEPTH;
3047 	struct hisi_qm *qm = qp->qm;
3048 	u16 pos;
3049 	int i;
3050 
3051 	for (i = 0; i < qp_used; i++) {
3052 		pos = (i + cur_head) % QM_Q_DEPTH;
3053 		qp->req_cb(qp, qp->sqe + (u32)(qm->sqe_size * pos));
3054 		atomic_dec(&qp->qp_status.used);
3055 	}
3056 }
3057 
3058 /**
3059  * qm_drain_qp() - Drain a qp.
3060  * @qp: The qp we want to drain.
3061  *
3062  * Determine whether the queue is cleared by judging the tail pointers of
3063  * sq and cq.
3064  */
3065 static int qm_drain_qp(struct hisi_qp *qp)
3066 {
3067 	size_t size = sizeof(struct qm_sqc) + sizeof(struct qm_cqc);
3068 	struct hisi_qm *qm = qp->qm;
3069 	struct device *dev = &qm->pdev->dev;
3070 	struct qm_sqc *sqc;
3071 	struct qm_cqc *cqc;
3072 	dma_addr_t dma_addr;
3073 	int ret = 0, i = 0;
3074 	void *addr;
3075 
3076 	/* No need to judge if master OOO is blocked. */
3077 	if (qm_check_dev_error(qm))
3078 		return 0;
3079 
3080 	/* Kunpeng930 supports drain qp by device */
3081 	if (qm->ops->stop_qp) {
3082 		ret = qm->ops->stop_qp(qp);
3083 		if (ret)
3084 			dev_err(dev, "Failed to stop qp(%u)!\n", qp->qp_id);
3085 		return ret;
3086 	}
3087 
3088 	addr = qm_ctx_alloc(qm, size, &dma_addr);
3089 	if (IS_ERR(addr)) {
3090 		dev_err(dev, "Failed to alloc ctx for sqc and cqc!\n");
3091 		return -ENOMEM;
3092 	}
3093 
3094 	while (++i) {
3095 		ret = qm_dump_sqc_raw(qm, dma_addr, qp->qp_id);
3096 		if (ret) {
3097 			dev_err_ratelimited(dev, "Failed to dump sqc!\n");
3098 			break;
3099 		}
3100 		sqc = addr;
3101 
3102 		ret = qm_dump_cqc_raw(qm, (dma_addr + sizeof(struct qm_sqc)),
3103 				      qp->qp_id);
3104 		if (ret) {
3105 			dev_err_ratelimited(dev, "Failed to dump cqc!\n");
3106 			break;
3107 		}
3108 		cqc = addr + sizeof(struct qm_sqc);
3109 
3110 		if ((sqc->tail == cqc->tail) &&
3111 		    (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc)))
3112 			break;
3113 
3114 		if (i == MAX_WAIT_COUNTS) {
3115 			dev_err(dev, "Fail to empty queue %u!\n", qp->qp_id);
3116 			ret = -EBUSY;
3117 			break;
3118 		}
3119 
3120 		usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX);
3121 	}
3122 
3123 	qm_ctx_free(qm, size, addr, &dma_addr);
3124 
3125 	return ret;
3126 }
3127 
3128 static int qm_stop_qp_nolock(struct hisi_qp *qp)
3129 {
3130 	struct device *dev = &qp->qm->pdev->dev;
3131 	int ret;
3132 
3133 	/*
3134 	 * It is allowed to stop and release qp when reset, If the qp is
3135 	 * stopped when reset but still want to be released then, the
3136 	 * is_resetting flag should be set negative so that this qp will not
3137 	 * be restarted after reset.
3138 	 */
3139 	if (atomic_read(&qp->qp_status.flags) == QP_STOP) {
3140 		qp->is_resetting = false;
3141 		return 0;
3142 	}
3143 
3144 	if (!qm_qp_avail_state(qp->qm, qp, QP_STOP))
3145 		return -EPERM;
3146 
3147 	atomic_set(&qp->qp_status.flags, QP_STOP);
3148 
3149 	ret = qm_drain_qp(qp);
3150 	if (ret)
3151 		dev_err(dev, "Failed to drain out data for stopping!\n");
3152 
3153 
3154 	flush_workqueue(qp->qm->wq);
3155 	if (unlikely(qp->is_resetting && atomic_read(&qp->qp_status.used)))
3156 		qp_stop_fail_cb(qp);
3157 
3158 	dev_dbg(dev, "stop queue %u!", qp->qp_id);
3159 
3160 	return 0;
3161 }
3162 
3163 /**
3164  * hisi_qm_stop_qp() - Stop a qp in qm.
3165  * @qp: The qp we want to stop.
3166  *
3167  * This function is reverse of hisi_qm_start_qp. Return 0 if successful.
3168  */
3169 int hisi_qm_stop_qp(struct hisi_qp *qp)
3170 {
3171 	int ret;
3172 
3173 	down_write(&qp->qm->qps_lock);
3174 	ret = qm_stop_qp_nolock(qp);
3175 	up_write(&qp->qm->qps_lock);
3176 
3177 	return ret;
3178 }
3179 EXPORT_SYMBOL_GPL(hisi_qm_stop_qp);
3180 
3181 /**
3182  * hisi_qp_send() - Queue up a task in the hardware queue.
3183  * @qp: The qp in which to put the message.
3184  * @msg: The message.
3185  *
3186  * This function will return -EBUSY if qp is currently full, and -EAGAIN
3187  * if qp related qm is resetting.
3188  *
3189  * Note: This function may run with qm_irq_thread and ACC reset at same time.
3190  *       It has no race with qm_irq_thread. However, during hisi_qp_send, ACC
3191  *       reset may happen, we have no lock here considering performance. This
3192  *       causes current qm_db sending fail or can not receive sended sqe. QM
3193  *       sync/async receive function should handle the error sqe. ACC reset
3194  *       done function should clear used sqe to 0.
3195  */
3196 int hisi_qp_send(struct hisi_qp *qp, const void *msg)
3197 {
3198 	struct hisi_qp_status *qp_status = &qp->qp_status;
3199 	u16 sq_tail = qp_status->sq_tail;
3200 	u16 sq_tail_next = (sq_tail + 1) % QM_Q_DEPTH;
3201 	void *sqe = qm_get_avail_sqe(qp);
3202 
3203 	if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP ||
3204 		     atomic_read(&qp->qm->status.flags) == QM_STOP ||
3205 		     qp->is_resetting)) {
3206 		dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n");
3207 		return -EAGAIN;
3208 	}
3209 
3210 	if (!sqe)
3211 		return -EBUSY;
3212 
3213 	memcpy(sqe, msg, qp->qm->sqe_size);
3214 
3215 	qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0);
3216 	atomic_inc(&qp->qp_status.used);
3217 	qp_status->sq_tail = sq_tail_next;
3218 
3219 	return 0;
3220 }
3221 EXPORT_SYMBOL_GPL(hisi_qp_send);
3222 
3223 static void hisi_qm_cache_wb(struct hisi_qm *qm)
3224 {
3225 	unsigned int val;
3226 
3227 	if (qm->ver == QM_HW_V1)
3228 		return;
3229 
3230 	writel(0x1, qm->io_base + QM_CACHE_WB_START);
3231 	if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE,
3232 				       val, val & BIT(0), POLL_PERIOD,
3233 				       POLL_TIMEOUT))
3234 		dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n");
3235 }
3236 
3237 static void qm_qp_event_notifier(struct hisi_qp *qp)
3238 {
3239 	wake_up_interruptible(&qp->uacce_q->wait);
3240 }
3241 
3242  /* This function returns free number of qp in qm. */
3243 static int hisi_qm_get_available_instances(struct uacce_device *uacce)
3244 {
3245 	struct hisi_qm *qm = uacce->priv;
3246 	int ret;
3247 
3248 	down_read(&qm->qps_lock);
3249 	ret = qm->qp_num - qm->qp_in_used;
3250 	up_read(&qm->qps_lock);
3251 
3252 	return ret;
3253 }
3254 
3255 static void hisi_qm_set_hw_reset(struct hisi_qm *qm, int offset)
3256 {
3257 	int i;
3258 
3259 	for (i = 0; i < qm->qp_num; i++)
3260 		qm_set_qp_disable(&qm->qp_array[i], offset);
3261 }
3262 
3263 static int hisi_qm_uacce_get_queue(struct uacce_device *uacce,
3264 				   unsigned long arg,
3265 				   struct uacce_queue *q)
3266 {
3267 	struct hisi_qm *qm = uacce->priv;
3268 	struct hisi_qp *qp;
3269 	u8 alg_type = 0;
3270 
3271 	qp = hisi_qm_create_qp(qm, alg_type);
3272 	if (IS_ERR(qp))
3273 		return PTR_ERR(qp);
3274 
3275 	q->priv = qp;
3276 	q->uacce = uacce;
3277 	qp->uacce_q = q;
3278 	qp->event_cb = qm_qp_event_notifier;
3279 	qp->pasid = arg;
3280 	qp->is_in_kernel = false;
3281 
3282 	return 0;
3283 }
3284 
3285 static void hisi_qm_uacce_put_queue(struct uacce_queue *q)
3286 {
3287 	struct hisi_qp *qp = q->priv;
3288 
3289 	hisi_qm_cache_wb(qp->qm);
3290 	hisi_qm_release_qp(qp);
3291 }
3292 
3293 /* map sq/cq/doorbell to user space */
3294 static int hisi_qm_uacce_mmap(struct uacce_queue *q,
3295 			      struct vm_area_struct *vma,
3296 			      struct uacce_qfile_region *qfr)
3297 {
3298 	struct hisi_qp *qp = q->priv;
3299 	struct hisi_qm *qm = qp->qm;
3300 	resource_size_t phys_base = qm->db_phys_base +
3301 				    qp->qp_id * qm->db_interval;
3302 	size_t sz = vma->vm_end - vma->vm_start;
3303 	struct pci_dev *pdev = qm->pdev;
3304 	struct device *dev = &pdev->dev;
3305 	unsigned long vm_pgoff;
3306 	int ret;
3307 
3308 	switch (qfr->type) {
3309 	case UACCE_QFRT_MMIO:
3310 		if (qm->ver == QM_HW_V1) {
3311 			if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR)
3312 				return -EINVAL;
3313 		} else if (qm->ver == QM_HW_V2 || !qm->use_db_isolation) {
3314 			if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR +
3315 			    QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE))
3316 				return -EINVAL;
3317 		} else {
3318 			if (sz > qm->db_interval)
3319 				return -EINVAL;
3320 		}
3321 
3322 		vma->vm_flags |= VM_IO;
3323 
3324 		return remap_pfn_range(vma, vma->vm_start,
3325 				       phys_base >> PAGE_SHIFT,
3326 				       sz, pgprot_noncached(vma->vm_page_prot));
3327 	case UACCE_QFRT_DUS:
3328 		if (sz != qp->qdma.size)
3329 			return -EINVAL;
3330 
3331 		/*
3332 		 * dma_mmap_coherent() requires vm_pgoff as 0
3333 		 * restore vm_pfoff to initial value for mmap()
3334 		 */
3335 		vm_pgoff = vma->vm_pgoff;
3336 		vma->vm_pgoff = 0;
3337 		ret = dma_mmap_coherent(dev, vma, qp->qdma.va,
3338 					qp->qdma.dma, sz);
3339 		vma->vm_pgoff = vm_pgoff;
3340 		return ret;
3341 
3342 	default:
3343 		return -EINVAL;
3344 	}
3345 }
3346 
3347 static int hisi_qm_uacce_start_queue(struct uacce_queue *q)
3348 {
3349 	struct hisi_qp *qp = q->priv;
3350 
3351 	return hisi_qm_start_qp(qp, qp->pasid);
3352 }
3353 
3354 static void hisi_qm_uacce_stop_queue(struct uacce_queue *q)
3355 {
3356 	hisi_qm_stop_qp(q->priv);
3357 }
3358 
3359 static int hisi_qm_is_q_updated(struct uacce_queue *q)
3360 {
3361 	struct hisi_qp *qp = q->priv;
3362 	struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
3363 	int updated = 0;
3364 
3365 	while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
3366 		/* make sure to read data from memory */
3367 		dma_rmb();
3368 		qm_cq_head_update(qp);
3369 		cqe = qp->cqe + qp->qp_status.cq_head;
3370 		updated = 1;
3371 	}
3372 
3373 	return updated;
3374 }
3375 
3376 static void qm_set_sqctype(struct uacce_queue *q, u16 type)
3377 {
3378 	struct hisi_qm *qm = q->uacce->priv;
3379 	struct hisi_qp *qp = q->priv;
3380 
3381 	down_write(&qm->qps_lock);
3382 	qp->alg_type = type;
3383 	up_write(&qm->qps_lock);
3384 }
3385 
3386 static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd,
3387 				unsigned long arg)
3388 {
3389 	struct hisi_qp *qp = q->priv;
3390 	struct hisi_qp_ctx qp_ctx;
3391 
3392 	if (cmd == UACCE_CMD_QM_SET_QP_CTX) {
3393 		if (copy_from_user(&qp_ctx, (void __user *)arg,
3394 				   sizeof(struct hisi_qp_ctx)))
3395 			return -EFAULT;
3396 
3397 		if (qp_ctx.qc_type != 0 && qp_ctx.qc_type != 1)
3398 			return -EINVAL;
3399 
3400 		qm_set_sqctype(q, qp_ctx.qc_type);
3401 		qp_ctx.id = qp->qp_id;
3402 
3403 		if (copy_to_user((void __user *)arg, &qp_ctx,
3404 				 sizeof(struct hisi_qp_ctx)))
3405 			return -EFAULT;
3406 	} else {
3407 		return -EINVAL;
3408 	}
3409 
3410 	return 0;
3411 }
3412 
3413 static const struct uacce_ops uacce_qm_ops = {
3414 	.get_available_instances = hisi_qm_get_available_instances,
3415 	.get_queue = hisi_qm_uacce_get_queue,
3416 	.put_queue = hisi_qm_uacce_put_queue,
3417 	.start_queue = hisi_qm_uacce_start_queue,
3418 	.stop_queue = hisi_qm_uacce_stop_queue,
3419 	.mmap = hisi_qm_uacce_mmap,
3420 	.ioctl = hisi_qm_uacce_ioctl,
3421 	.is_q_updated = hisi_qm_is_q_updated,
3422 };
3423 
3424 static int qm_alloc_uacce(struct hisi_qm *qm)
3425 {
3426 	struct pci_dev *pdev = qm->pdev;
3427 	struct uacce_device *uacce;
3428 	unsigned long mmio_page_nr;
3429 	unsigned long dus_page_nr;
3430 	struct uacce_interface interface = {
3431 		.flags = UACCE_DEV_SVA,
3432 		.ops = &uacce_qm_ops,
3433 	};
3434 	int ret;
3435 
3436 	ret = strscpy(interface.name, dev_driver_string(&pdev->dev),
3437 		      sizeof(interface.name));
3438 	if (ret < 0)
3439 		return -ENAMETOOLONG;
3440 
3441 	uacce = uacce_alloc(&pdev->dev, &interface);
3442 	if (IS_ERR(uacce))
3443 		return PTR_ERR(uacce);
3444 
3445 	if (uacce->flags & UACCE_DEV_SVA) {
3446 		qm->use_sva = true;
3447 	} else {
3448 		/* only consider sva case */
3449 		uacce_remove(uacce);
3450 		qm->uacce = NULL;
3451 		return -EINVAL;
3452 	}
3453 
3454 	uacce->is_vf = pdev->is_virtfn;
3455 	uacce->priv = qm;
3456 	uacce->algs = qm->algs;
3457 
3458 	if (qm->ver == QM_HW_V1)
3459 		uacce->api_ver = HISI_QM_API_VER_BASE;
3460 	else if (qm->ver == QM_HW_V2)
3461 		uacce->api_ver = HISI_QM_API_VER2_BASE;
3462 	else
3463 		uacce->api_ver = HISI_QM_API_VER3_BASE;
3464 
3465 	if (qm->ver == QM_HW_V1)
3466 		mmio_page_nr = QM_DOORBELL_PAGE_NR;
3467 	else if (qm->ver == QM_HW_V2 || !qm->use_db_isolation)
3468 		mmio_page_nr = QM_DOORBELL_PAGE_NR +
3469 			QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE;
3470 	else
3471 		mmio_page_nr = qm->db_interval / PAGE_SIZE;
3472 
3473 	/* Add one more page for device or qp status */
3474 	dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * QM_Q_DEPTH +
3475 		       sizeof(struct qm_cqe) * QM_Q_DEPTH  + PAGE_SIZE) >>
3476 					 PAGE_SHIFT;
3477 
3478 	uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr;
3479 	uacce->qf_pg_num[UACCE_QFRT_DUS]  = dus_page_nr;
3480 
3481 	qm->uacce = uacce;
3482 
3483 	return 0;
3484 }
3485 
3486 /**
3487  * qm_frozen() - Try to froze QM to cut continuous queue request. If
3488  * there is user on the QM, return failure without doing anything.
3489  * @qm: The qm needed to be fronzen.
3490  *
3491  * This function frozes QM, then we can do SRIOV disabling.
3492  */
3493 static int qm_frozen(struct hisi_qm *qm)
3494 {
3495 	if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl))
3496 		return 0;
3497 
3498 	down_write(&qm->qps_lock);
3499 
3500 	if (!qm->qp_in_used) {
3501 		qm->qp_in_used = qm->qp_num;
3502 		up_write(&qm->qps_lock);
3503 		set_bit(QM_DRIVER_REMOVING, &qm->misc_ctl);
3504 		return 0;
3505 	}
3506 
3507 	up_write(&qm->qps_lock);
3508 
3509 	return -EBUSY;
3510 }
3511 
3512 static int qm_try_frozen_vfs(struct pci_dev *pdev,
3513 			     struct hisi_qm_list *qm_list)
3514 {
3515 	struct hisi_qm *qm, *vf_qm;
3516 	struct pci_dev *dev;
3517 	int ret = 0;
3518 
3519 	if (!qm_list || !pdev)
3520 		return -EINVAL;
3521 
3522 	/* Try to frozen all the VFs as disable SRIOV */
3523 	mutex_lock(&qm_list->lock);
3524 	list_for_each_entry(qm, &qm_list->list, list) {
3525 		dev = qm->pdev;
3526 		if (dev == pdev)
3527 			continue;
3528 		if (pci_physfn(dev) == pdev) {
3529 			vf_qm = pci_get_drvdata(dev);
3530 			ret = qm_frozen(vf_qm);
3531 			if (ret)
3532 				goto frozen_fail;
3533 		}
3534 	}
3535 
3536 frozen_fail:
3537 	mutex_unlock(&qm_list->lock);
3538 
3539 	return ret;
3540 }
3541 
3542 /**
3543  * hisi_qm_wait_task_finish() - Wait until the task is finished
3544  * when removing the driver.
3545  * @qm: The qm needed to wait for the task to finish.
3546  * @qm_list: The list of all available devices.
3547  */
3548 void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
3549 {
3550 	while (qm_frozen(qm) ||
3551 	       ((qm->fun_type == QM_HW_PF) &&
3552 	       qm_try_frozen_vfs(qm->pdev, qm_list))) {
3553 		msleep(WAIT_PERIOD);
3554 	}
3555 
3556 	while (test_bit(QM_RST_SCHED, &qm->misc_ctl) ||
3557 	       test_bit(QM_RESETTING, &qm->misc_ctl))
3558 		msleep(WAIT_PERIOD);
3559 
3560 	udelay(REMOVE_WAIT_DELAY);
3561 }
3562 EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish);
3563 
3564 static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num)
3565 {
3566 	struct device *dev = &qm->pdev->dev;
3567 	struct qm_dma *qdma;
3568 	int i;
3569 
3570 	for (i = num - 1; i >= 0; i--) {
3571 		qdma = &qm->qp_array[i].qdma;
3572 		dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma);
3573 		kfree(qm->poll_data[i].qp_finish_id);
3574 	}
3575 
3576 	kfree(qm->poll_data);
3577 	kfree(qm->qp_array);
3578 }
3579 
3580 static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id)
3581 {
3582 	struct device *dev = &qm->pdev->dev;
3583 	size_t off = qm->sqe_size * QM_Q_DEPTH;
3584 	struct hisi_qp *qp;
3585 	int ret = -ENOMEM;
3586 
3587 	qm->poll_data[id].qp_finish_id = kcalloc(qm->qp_num, sizeof(u16),
3588 						 GFP_KERNEL);
3589 	if (!qm->poll_data[id].qp_finish_id)
3590 		return -ENOMEM;
3591 
3592 	qp = &qm->qp_array[id];
3593 	qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma,
3594 					 GFP_KERNEL);
3595 	if (!qp->qdma.va)
3596 		goto err_free_qp_finish_id;
3597 
3598 	qp->sqe = qp->qdma.va;
3599 	qp->sqe_dma = qp->qdma.dma;
3600 	qp->cqe = qp->qdma.va + off;
3601 	qp->cqe_dma = qp->qdma.dma + off;
3602 	qp->qdma.size = dma_size;
3603 	qp->qm = qm;
3604 	qp->qp_id = id;
3605 
3606 	return 0;
3607 
3608 err_free_qp_finish_id:
3609 	kfree(qm->poll_data[id].qp_finish_id);
3610 	return ret;
3611 }
3612 
3613 static void hisi_qm_pre_init(struct hisi_qm *qm)
3614 {
3615 	struct pci_dev *pdev = qm->pdev;
3616 
3617 	if (qm->ver == QM_HW_V1)
3618 		qm->ops = &qm_hw_ops_v1;
3619 	else if (qm->ver == QM_HW_V2)
3620 		qm->ops = &qm_hw_ops_v2;
3621 	else
3622 		qm->ops = &qm_hw_ops_v3;
3623 
3624 	pci_set_drvdata(pdev, qm);
3625 	mutex_init(&qm->mailbox_lock);
3626 	init_rwsem(&qm->qps_lock);
3627 	qm->qp_in_used = 0;
3628 	qm->misc_ctl = false;
3629 	if (qm->fun_type == QM_HW_PF && qm->ver > QM_HW_V2) {
3630 		if (!acpi_device_power_manageable(ACPI_COMPANION(&pdev->dev)))
3631 			dev_info(&pdev->dev, "_PS0 and _PR0 are not defined");
3632 	}
3633 }
3634 
3635 static void qm_cmd_uninit(struct hisi_qm *qm)
3636 {
3637 	u32 val;
3638 
3639 	if (qm->ver < QM_HW_V3)
3640 		return;
3641 
3642 	val = readl(qm->io_base + QM_IFC_INT_MASK);
3643 	val |= QM_IFC_INT_DISABLE;
3644 	writel(val, qm->io_base + QM_IFC_INT_MASK);
3645 }
3646 
3647 static void qm_cmd_init(struct hisi_qm *qm)
3648 {
3649 	u32 val;
3650 
3651 	if (qm->ver < QM_HW_V3)
3652 		return;
3653 
3654 	/* Clear communication interrupt source */
3655 	qm_clear_cmd_interrupt(qm, QM_IFC_INT_SOURCE_CLR);
3656 
3657 	/* Enable pf to vf communication reg. */
3658 	val = readl(qm->io_base + QM_IFC_INT_MASK);
3659 	val &= ~QM_IFC_INT_DISABLE;
3660 	writel(val, qm->io_base + QM_IFC_INT_MASK);
3661 }
3662 
3663 static void qm_put_pci_res(struct hisi_qm *qm)
3664 {
3665 	struct pci_dev *pdev = qm->pdev;
3666 
3667 	if (qm->use_db_isolation)
3668 		iounmap(qm->db_io_base);
3669 
3670 	iounmap(qm->io_base);
3671 	pci_release_mem_regions(pdev);
3672 }
3673 
3674 static void hisi_qm_pci_uninit(struct hisi_qm *qm)
3675 {
3676 	struct pci_dev *pdev = qm->pdev;
3677 
3678 	pci_free_irq_vectors(pdev);
3679 	qm_put_pci_res(qm);
3680 	pci_disable_device(pdev);
3681 }
3682 
3683 static void hisi_qm_set_state(struct hisi_qm *qm, u8 state)
3684 {
3685 	if (qm->ver > QM_HW_V2 && qm->fun_type == QM_HW_VF)
3686 		writel(state, qm->io_base + QM_VF_STATE);
3687 }
3688 
3689 static void qm_last_regs_uninit(struct hisi_qm *qm)
3690 {
3691 	struct qm_debug *debug = &qm->debug;
3692 
3693 	if (qm->fun_type == QM_HW_VF || !debug->qm_last_words)
3694 		return;
3695 
3696 	kfree(debug->qm_last_words);
3697 	debug->qm_last_words = NULL;
3698 }
3699 
3700 static void hisi_qm_unint_work(struct hisi_qm *qm)
3701 {
3702 	destroy_workqueue(qm->wq);
3703 }
3704 
3705 static void hisi_qm_memory_uninit(struct hisi_qm *qm)
3706 {
3707 	struct device *dev = &qm->pdev->dev;
3708 
3709 	hisi_qp_memory_uninit(qm, qm->qp_num);
3710 	if (qm->qdma.va) {
3711 		hisi_qm_cache_wb(qm);
3712 		dma_free_coherent(dev, qm->qdma.size,
3713 				  qm->qdma.va, qm->qdma.dma);
3714 	}
3715 
3716 	idr_destroy(&qm->qp_idr);
3717 	kfree(qm->factor);
3718 }
3719 
3720 /**
3721  * hisi_qm_uninit() - Uninitialize qm.
3722  * @qm: The qm needed uninit.
3723  *
3724  * This function uninits qm related device resources.
3725  */
3726 void hisi_qm_uninit(struct hisi_qm *qm)
3727 {
3728 	qm_last_regs_uninit(qm);
3729 
3730 	qm_cmd_uninit(qm);
3731 	hisi_qm_unint_work(qm);
3732 	down_write(&qm->qps_lock);
3733 
3734 	if (!qm_avail_state(qm, QM_CLOSE)) {
3735 		up_write(&qm->qps_lock);
3736 		return;
3737 	}
3738 
3739 	hisi_qm_memory_uninit(qm);
3740 	hisi_qm_set_state(qm, QM_NOT_READY);
3741 	up_write(&qm->qps_lock);
3742 
3743 	qm_irq_unregister(qm);
3744 	hisi_qm_pci_uninit(qm);
3745 	if (qm->use_sva) {
3746 		uacce_remove(qm->uacce);
3747 		qm->uacce = NULL;
3748 	}
3749 }
3750 EXPORT_SYMBOL_GPL(hisi_qm_uninit);
3751 
3752 /**
3753  * hisi_qm_get_vft() - Get vft from a qm.
3754  * @qm: The qm we want to get its vft.
3755  * @base: The base number of queue in vft.
3756  * @number: The number of queues in vft.
3757  *
3758  * We can allocate multiple queues to a qm by configuring virtual function
3759  * table. We get related configures by this function. Normally, we call this
3760  * function in VF driver to get the queue information.
3761  *
3762  * qm hw v1 does not support this interface.
3763  */
3764 static int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number)
3765 {
3766 	if (!base || !number)
3767 		return -EINVAL;
3768 
3769 	if (!qm->ops->get_vft) {
3770 		dev_err(&qm->pdev->dev, "Don't support vft read!\n");
3771 		return -EINVAL;
3772 	}
3773 
3774 	return qm->ops->get_vft(qm, base, number);
3775 }
3776 
3777 /**
3778  * hisi_qm_set_vft() - Set vft to a qm.
3779  * @qm: The qm we want to set its vft.
3780  * @fun_num: The function number.
3781  * @base: The base number of queue in vft.
3782  * @number: The number of queues in vft.
3783  *
3784  * This function is alway called in PF driver, it is used to assign queues
3785  * among PF and VFs.
3786  *
3787  * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1)
3788  * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1)
3789  * (VF function number 0x2)
3790  */
3791 static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
3792 		    u32 number)
3793 {
3794 	u32 max_q_num = qm->ctrl_qp_num;
3795 
3796 	if (base >= max_q_num || number > max_q_num ||
3797 	    (base + number) > max_q_num)
3798 		return -EINVAL;
3799 
3800 	return qm_set_sqc_cqc_vft(qm, fun_num, base, number);
3801 }
3802 
3803 static void qm_init_eq_aeq_status(struct hisi_qm *qm)
3804 {
3805 	struct hisi_qm_status *status = &qm->status;
3806 
3807 	status->eq_head = 0;
3808 	status->aeq_head = 0;
3809 	status->eqc_phase = true;
3810 	status->aeqc_phase = true;
3811 }
3812 
3813 static void qm_enable_eq_aeq_interrupts(struct hisi_qm *qm)
3814 {
3815 	/* Clear eq/aeq interrupt source */
3816 	qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
3817 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
3818 
3819 	writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK);
3820 	writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK);
3821 }
3822 
3823 static void qm_disable_eq_aeq_interrupts(struct hisi_qm *qm)
3824 {
3825 	writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK);
3826 	writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK);
3827 }
3828 
3829 static int qm_eq_ctx_cfg(struct hisi_qm *qm)
3830 {
3831 	struct device *dev = &qm->pdev->dev;
3832 	struct qm_eqc *eqc;
3833 	dma_addr_t eqc_dma;
3834 	int ret;
3835 
3836 	eqc = kzalloc(sizeof(struct qm_eqc), GFP_KERNEL);
3837 	if (!eqc)
3838 		return -ENOMEM;
3839 
3840 	eqc->base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma));
3841 	eqc->base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma));
3842 	if (qm->ver == QM_HW_V1)
3843 		eqc->dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE);
3844 	eqc->dw6 = cpu_to_le32((QM_EQ_DEPTH - 1) | (1 << QM_EQC_PHASE_SHIFT));
3845 
3846 	eqc_dma = dma_map_single(dev, eqc, sizeof(struct qm_eqc),
3847 				 DMA_TO_DEVICE);
3848 	if (dma_mapping_error(dev, eqc_dma)) {
3849 		kfree(eqc);
3850 		return -ENOMEM;
3851 	}
3852 
3853 	ret = hisi_qm_mb(qm, QM_MB_CMD_EQC, eqc_dma, 0, 0);
3854 	dma_unmap_single(dev, eqc_dma, sizeof(struct qm_eqc), DMA_TO_DEVICE);
3855 	kfree(eqc);
3856 
3857 	return ret;
3858 }
3859 
3860 static int qm_aeq_ctx_cfg(struct hisi_qm *qm)
3861 {
3862 	struct device *dev = &qm->pdev->dev;
3863 	struct qm_aeqc *aeqc;
3864 	dma_addr_t aeqc_dma;
3865 	int ret;
3866 
3867 	aeqc = kzalloc(sizeof(struct qm_aeqc), GFP_KERNEL);
3868 	if (!aeqc)
3869 		return -ENOMEM;
3870 
3871 	aeqc->base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma));
3872 	aeqc->base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma));
3873 	aeqc->dw6 = cpu_to_le32((QM_Q_DEPTH - 1) | (1 << QM_EQC_PHASE_SHIFT));
3874 
3875 	aeqc_dma = dma_map_single(dev, aeqc, sizeof(struct qm_aeqc),
3876 				  DMA_TO_DEVICE);
3877 	if (dma_mapping_error(dev, aeqc_dma)) {
3878 		kfree(aeqc);
3879 		return -ENOMEM;
3880 	}
3881 
3882 	ret = hisi_qm_mb(qm, QM_MB_CMD_AEQC, aeqc_dma, 0, 0);
3883 	dma_unmap_single(dev, aeqc_dma, sizeof(struct qm_aeqc), DMA_TO_DEVICE);
3884 	kfree(aeqc);
3885 
3886 	return ret;
3887 }
3888 
3889 static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm)
3890 {
3891 	struct device *dev = &qm->pdev->dev;
3892 	int ret;
3893 
3894 	qm_init_eq_aeq_status(qm);
3895 
3896 	ret = qm_eq_ctx_cfg(qm);
3897 	if (ret) {
3898 		dev_err(dev, "Set eqc failed!\n");
3899 		return ret;
3900 	}
3901 
3902 	return qm_aeq_ctx_cfg(qm);
3903 }
3904 
3905 static int __hisi_qm_start(struct hisi_qm *qm)
3906 {
3907 	int ret;
3908 
3909 	WARN_ON(!qm->qdma.va);
3910 
3911 	if (qm->fun_type == QM_HW_PF) {
3912 		ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num);
3913 		if (ret)
3914 			return ret;
3915 	}
3916 
3917 	ret = qm_eq_aeq_ctx_cfg(qm);
3918 	if (ret)
3919 		return ret;
3920 
3921 	ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0);
3922 	if (ret)
3923 		return ret;
3924 
3925 	ret = hisi_qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0);
3926 	if (ret)
3927 		return ret;
3928 
3929 	qm_init_prefetch(qm);
3930 	qm_enable_eq_aeq_interrupts(qm);
3931 
3932 	return 0;
3933 }
3934 
3935 /**
3936  * hisi_qm_start() - start qm
3937  * @qm: The qm to be started.
3938  *
3939  * This function starts a qm, then we can allocate qp from this qm.
3940  */
3941 int hisi_qm_start(struct hisi_qm *qm)
3942 {
3943 	struct device *dev = &qm->pdev->dev;
3944 	int ret = 0;
3945 
3946 	down_write(&qm->qps_lock);
3947 
3948 	if (!qm_avail_state(qm, QM_START)) {
3949 		up_write(&qm->qps_lock);
3950 		return -EPERM;
3951 	}
3952 
3953 	dev_dbg(dev, "qm start with %u queue pairs\n", qm->qp_num);
3954 
3955 	if (!qm->qp_num) {
3956 		dev_err(dev, "qp_num should not be 0\n");
3957 		ret = -EINVAL;
3958 		goto err_unlock;
3959 	}
3960 
3961 	ret = __hisi_qm_start(qm);
3962 	if (!ret)
3963 		atomic_set(&qm->status.flags, QM_START);
3964 
3965 	hisi_qm_set_state(qm, QM_READY);
3966 err_unlock:
3967 	up_write(&qm->qps_lock);
3968 	return ret;
3969 }
3970 EXPORT_SYMBOL_GPL(hisi_qm_start);
3971 
3972 static int qm_restart(struct hisi_qm *qm)
3973 {
3974 	struct device *dev = &qm->pdev->dev;
3975 	struct hisi_qp *qp;
3976 	int ret, i;
3977 
3978 	ret = hisi_qm_start(qm);
3979 	if (ret < 0)
3980 		return ret;
3981 
3982 	down_write(&qm->qps_lock);
3983 	for (i = 0; i < qm->qp_num; i++) {
3984 		qp = &qm->qp_array[i];
3985 		if (atomic_read(&qp->qp_status.flags) == QP_STOP &&
3986 		    qp->is_resetting == true) {
3987 			ret = qm_start_qp_nolock(qp, 0);
3988 			if (ret < 0) {
3989 				dev_err(dev, "Failed to start qp%d!\n", i);
3990 
3991 				up_write(&qm->qps_lock);
3992 				return ret;
3993 			}
3994 			qp->is_resetting = false;
3995 		}
3996 	}
3997 	up_write(&qm->qps_lock);
3998 
3999 	return 0;
4000 }
4001 
4002 /* Stop started qps in reset flow */
4003 static int qm_stop_started_qp(struct hisi_qm *qm)
4004 {
4005 	struct device *dev = &qm->pdev->dev;
4006 	struct hisi_qp *qp;
4007 	int i, ret;
4008 
4009 	for (i = 0; i < qm->qp_num; i++) {
4010 		qp = &qm->qp_array[i];
4011 		if (qp && atomic_read(&qp->qp_status.flags) == QP_START) {
4012 			qp->is_resetting = true;
4013 			ret = qm_stop_qp_nolock(qp);
4014 			if (ret < 0) {
4015 				dev_err(dev, "Failed to stop qp%d!\n", i);
4016 				return ret;
4017 			}
4018 		}
4019 	}
4020 
4021 	return 0;
4022 }
4023 
4024 
4025 /**
4026  * qm_clear_queues() - Clear all queues memory in a qm.
4027  * @qm: The qm in which the queues will be cleared.
4028  *
4029  * This function clears all queues memory in a qm. Reset of accelerator can
4030  * use this to clear queues.
4031  */
4032 static void qm_clear_queues(struct hisi_qm *qm)
4033 {
4034 	struct hisi_qp *qp;
4035 	int i;
4036 
4037 	for (i = 0; i < qm->qp_num; i++) {
4038 		qp = &qm->qp_array[i];
4039 		if (qp->is_in_kernel && qp->is_resetting)
4040 			memset(qp->qdma.va, 0, qp->qdma.size);
4041 	}
4042 
4043 	memset(qm->qdma.va, 0, qm->qdma.size);
4044 }
4045 
4046 /**
4047  * hisi_qm_stop() - Stop a qm.
4048  * @qm: The qm which will be stopped.
4049  * @r: The reason to stop qm.
4050  *
4051  * This function stops qm and its qps, then qm can not accept request.
4052  * Related resources are not released at this state, we can use hisi_qm_start
4053  * to let qm start again.
4054  */
4055 int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r)
4056 {
4057 	struct device *dev = &qm->pdev->dev;
4058 	int ret = 0;
4059 
4060 	down_write(&qm->qps_lock);
4061 
4062 	qm->status.stop_reason = r;
4063 	if (!qm_avail_state(qm, QM_STOP)) {
4064 		ret = -EPERM;
4065 		goto err_unlock;
4066 	}
4067 
4068 	if (qm->status.stop_reason == QM_SOFT_RESET ||
4069 	    qm->status.stop_reason == QM_FLR) {
4070 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4071 		ret = qm_stop_started_qp(qm);
4072 		if (ret < 0) {
4073 			dev_err(dev, "Failed to stop started qp!\n");
4074 			goto err_unlock;
4075 		}
4076 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4077 	}
4078 
4079 	qm_disable_eq_aeq_interrupts(qm);
4080 	if (qm->fun_type == QM_HW_PF) {
4081 		ret = hisi_qm_set_vft(qm, 0, 0, 0);
4082 		if (ret < 0) {
4083 			dev_err(dev, "Failed to set vft!\n");
4084 			ret = -EBUSY;
4085 			goto err_unlock;
4086 		}
4087 	}
4088 
4089 	qm_clear_queues(qm);
4090 	atomic_set(&qm->status.flags, QM_STOP);
4091 
4092 err_unlock:
4093 	up_write(&qm->qps_lock);
4094 	return ret;
4095 }
4096 EXPORT_SYMBOL_GPL(hisi_qm_stop);
4097 
4098 static ssize_t qm_status_read(struct file *filp, char __user *buffer,
4099 			      size_t count, loff_t *pos)
4100 {
4101 	struct hisi_qm *qm = filp->private_data;
4102 	char buf[QM_DBG_READ_LEN];
4103 	int val, len;
4104 
4105 	val = atomic_read(&qm->status.flags);
4106 	len = scnprintf(buf, QM_DBG_READ_LEN, "%s\n", qm_s[val]);
4107 
4108 	return simple_read_from_buffer(buffer, count, pos, buf, len);
4109 }
4110 
4111 static const struct file_operations qm_status_fops = {
4112 	.owner = THIS_MODULE,
4113 	.open = simple_open,
4114 	.read = qm_status_read,
4115 };
4116 
4117 static int qm_debugfs_atomic64_set(void *data, u64 val)
4118 {
4119 	if (val)
4120 		return -EINVAL;
4121 
4122 	atomic64_set((atomic64_t *)data, 0);
4123 
4124 	return 0;
4125 }
4126 
4127 static int qm_debugfs_atomic64_get(void *data, u64 *val)
4128 {
4129 	*val = atomic64_read((atomic64_t *)data);
4130 
4131 	return 0;
4132 }
4133 
4134 DEFINE_DEBUGFS_ATTRIBUTE(qm_atomic64_ops, qm_debugfs_atomic64_get,
4135 			 qm_debugfs_atomic64_set, "%llu\n");
4136 
4137 static void qm_hw_error_init(struct hisi_qm *qm)
4138 {
4139 	struct hisi_qm_err_info *err_info = &qm->err_info;
4140 
4141 	if (!qm->ops->hw_error_init) {
4142 		dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n");
4143 		return;
4144 	}
4145 
4146 	qm->ops->hw_error_init(qm, err_info->ce, err_info->nfe, err_info->fe);
4147 }
4148 
4149 static void qm_hw_error_uninit(struct hisi_qm *qm)
4150 {
4151 	if (!qm->ops->hw_error_uninit) {
4152 		dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n");
4153 		return;
4154 	}
4155 
4156 	qm->ops->hw_error_uninit(qm);
4157 }
4158 
4159 static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm)
4160 {
4161 	if (!qm->ops->hw_error_handle) {
4162 		dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n");
4163 		return ACC_ERR_NONE;
4164 	}
4165 
4166 	return qm->ops->hw_error_handle(qm);
4167 }
4168 
4169 /**
4170  * hisi_qm_dev_err_init() - Initialize device error configuration.
4171  * @qm: The qm for which we want to do error initialization.
4172  *
4173  * Initialize QM and device error related configuration.
4174  */
4175 void hisi_qm_dev_err_init(struct hisi_qm *qm)
4176 {
4177 	if (qm->fun_type == QM_HW_VF)
4178 		return;
4179 
4180 	qm_hw_error_init(qm);
4181 
4182 	if (!qm->err_ini->hw_err_enable) {
4183 		dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n");
4184 		return;
4185 	}
4186 	qm->err_ini->hw_err_enable(qm);
4187 }
4188 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init);
4189 
4190 /**
4191  * hisi_qm_dev_err_uninit() - Uninitialize device error configuration.
4192  * @qm: The qm for which we want to do error uninitialization.
4193  *
4194  * Uninitialize QM and device error related configuration.
4195  */
4196 void hisi_qm_dev_err_uninit(struct hisi_qm *qm)
4197 {
4198 	if (qm->fun_type == QM_HW_VF)
4199 		return;
4200 
4201 	qm_hw_error_uninit(qm);
4202 
4203 	if (!qm->err_ini->hw_err_disable) {
4204 		dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n");
4205 		return;
4206 	}
4207 	qm->err_ini->hw_err_disable(qm);
4208 }
4209 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit);
4210 
4211 /**
4212  * hisi_qm_free_qps() - free multiple queue pairs.
4213  * @qps: The queue pairs need to be freed.
4214  * @qp_num: The num of queue pairs.
4215  */
4216 void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num)
4217 {
4218 	int i;
4219 
4220 	if (!qps || qp_num <= 0)
4221 		return;
4222 
4223 	for (i = qp_num - 1; i >= 0; i--)
4224 		hisi_qm_release_qp(qps[i]);
4225 }
4226 EXPORT_SYMBOL_GPL(hisi_qm_free_qps);
4227 
4228 static void free_list(struct list_head *head)
4229 {
4230 	struct hisi_qm_resource *res, *tmp;
4231 
4232 	list_for_each_entry_safe(res, tmp, head, list) {
4233 		list_del(&res->list);
4234 		kfree(res);
4235 	}
4236 }
4237 
4238 static int hisi_qm_sort_devices(int node, struct list_head *head,
4239 				struct hisi_qm_list *qm_list)
4240 {
4241 	struct hisi_qm_resource *res, *tmp;
4242 	struct hisi_qm *qm;
4243 	struct list_head *n;
4244 	struct device *dev;
4245 	int dev_node = 0;
4246 
4247 	list_for_each_entry(qm, &qm_list->list, list) {
4248 		dev = &qm->pdev->dev;
4249 
4250 		if (IS_ENABLED(CONFIG_NUMA)) {
4251 			dev_node = dev_to_node(dev);
4252 			if (dev_node < 0)
4253 				dev_node = 0;
4254 		}
4255 
4256 		res = kzalloc(sizeof(*res), GFP_KERNEL);
4257 		if (!res)
4258 			return -ENOMEM;
4259 
4260 		res->qm = qm;
4261 		res->distance = node_distance(dev_node, node);
4262 		n = head;
4263 		list_for_each_entry(tmp, head, list) {
4264 			if (res->distance < tmp->distance) {
4265 				n = &tmp->list;
4266 				break;
4267 			}
4268 		}
4269 		list_add_tail(&res->list, n);
4270 	}
4271 
4272 	return 0;
4273 }
4274 
4275 /**
4276  * hisi_qm_alloc_qps_node() - Create multiple queue pairs.
4277  * @qm_list: The list of all available devices.
4278  * @qp_num: The number of queue pairs need created.
4279  * @alg_type: The algorithm type.
4280  * @node: The numa node.
4281  * @qps: The queue pairs need created.
4282  *
4283  * This function will sort all available device according to numa distance.
4284  * Then try to create all queue pairs from one device, if all devices do
4285  * not meet the requirements will return error.
4286  */
4287 int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num,
4288 			   u8 alg_type, int node, struct hisi_qp **qps)
4289 {
4290 	struct hisi_qm_resource *tmp;
4291 	int ret = -ENODEV;
4292 	LIST_HEAD(head);
4293 	int i;
4294 
4295 	if (!qps || !qm_list || qp_num <= 0)
4296 		return -EINVAL;
4297 
4298 	mutex_lock(&qm_list->lock);
4299 	if (hisi_qm_sort_devices(node, &head, qm_list)) {
4300 		mutex_unlock(&qm_list->lock);
4301 		goto err;
4302 	}
4303 
4304 	list_for_each_entry(tmp, &head, list) {
4305 		for (i = 0; i < qp_num; i++) {
4306 			qps[i] = hisi_qm_create_qp(tmp->qm, alg_type);
4307 			if (IS_ERR(qps[i])) {
4308 				hisi_qm_free_qps(qps, i);
4309 				break;
4310 			}
4311 		}
4312 
4313 		if (i == qp_num) {
4314 			ret = 0;
4315 			break;
4316 		}
4317 	}
4318 
4319 	mutex_unlock(&qm_list->lock);
4320 	if (ret)
4321 		pr_info("Failed to create qps, node[%d], alg[%u], qp[%d]!\n",
4322 			node, alg_type, qp_num);
4323 
4324 err:
4325 	free_list(&head);
4326 	return ret;
4327 }
4328 EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node);
4329 
4330 static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs)
4331 {
4332 	u32 remain_q_num, vfs_q_num, act_q_num, q_num, i, j;
4333 	u32 max_qp_num = qm->max_qp_num;
4334 	u32 q_base = qm->qp_num;
4335 	int ret;
4336 
4337 	if (!num_vfs)
4338 		return -EINVAL;
4339 
4340 	vfs_q_num = qm->ctrl_qp_num - qm->qp_num;
4341 
4342 	/* If vfs_q_num is less than num_vfs, return error. */
4343 	if (vfs_q_num < num_vfs)
4344 		return -EINVAL;
4345 
4346 	q_num = vfs_q_num / num_vfs;
4347 	remain_q_num = vfs_q_num % num_vfs;
4348 
4349 	for (i = num_vfs; i > 0; i--) {
4350 		/*
4351 		 * if q_num + remain_q_num > max_qp_num in last vf, divide the
4352 		 * remaining queues equally.
4353 		 */
4354 		if (i == num_vfs && q_num + remain_q_num <= max_qp_num) {
4355 			act_q_num = q_num + remain_q_num;
4356 			remain_q_num = 0;
4357 		} else if (remain_q_num > 0) {
4358 			act_q_num = q_num + 1;
4359 			remain_q_num--;
4360 		} else {
4361 			act_q_num = q_num;
4362 		}
4363 
4364 		act_q_num = min_t(int, act_q_num, max_qp_num);
4365 		ret = hisi_qm_set_vft(qm, i, q_base, act_q_num);
4366 		if (ret) {
4367 			for (j = num_vfs; j > i; j--)
4368 				hisi_qm_set_vft(qm, j, 0, 0);
4369 			return ret;
4370 		}
4371 		q_base += act_q_num;
4372 	}
4373 
4374 	return 0;
4375 }
4376 
4377 static int qm_clear_vft_config(struct hisi_qm *qm)
4378 {
4379 	int ret;
4380 	u32 i;
4381 
4382 	for (i = 1; i <= qm->vfs_num; i++) {
4383 		ret = hisi_qm_set_vft(qm, i, 0, 0);
4384 		if (ret)
4385 			return ret;
4386 	}
4387 	qm->vfs_num = 0;
4388 
4389 	return 0;
4390 }
4391 
4392 static int qm_func_shaper_enable(struct hisi_qm *qm, u32 fun_index, u32 qos)
4393 {
4394 	struct device *dev = &qm->pdev->dev;
4395 	u32 ir = qos * QM_QOS_RATE;
4396 	int ret, total_vfs, i;
4397 
4398 	total_vfs = pci_sriov_get_totalvfs(qm->pdev);
4399 	if (fun_index > total_vfs)
4400 		return -EINVAL;
4401 
4402 	qm->factor[fun_index].func_qos = qos;
4403 
4404 	ret = qm_get_shaper_para(ir, &qm->factor[fun_index]);
4405 	if (ret) {
4406 		dev_err(dev, "failed to calculate shaper parameter!\n");
4407 		return -EINVAL;
4408 	}
4409 
4410 	for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) {
4411 		/* The base number of queue reuse for different alg type */
4412 		ret = qm_set_vft_common(qm, SHAPER_VFT, fun_index, i, 1);
4413 		if (ret) {
4414 			dev_err(dev, "type: %d, failed to set shaper vft!\n", i);
4415 			return -EINVAL;
4416 		}
4417 	}
4418 
4419 	return 0;
4420 }
4421 
4422 static u32 qm_get_shaper_vft_qos(struct hisi_qm *qm, u32 fun_index)
4423 {
4424 	u64 cir_u = 0, cir_b = 0, cir_s = 0;
4425 	u64 shaper_vft, ir_calc, ir;
4426 	unsigned int val;
4427 	u32 error_rate;
4428 	int ret;
4429 
4430 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
4431 					 val & BIT(0), POLL_PERIOD,
4432 					 POLL_TIMEOUT);
4433 	if (ret)
4434 		return 0;
4435 
4436 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_WR);
4437 	writel(SHAPER_VFT, qm->io_base + QM_VFT_CFG_TYPE);
4438 	writel(fun_index, qm->io_base + QM_VFT_CFG);
4439 
4440 	writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
4441 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
4442 
4443 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
4444 					 val & BIT(0), POLL_PERIOD,
4445 					 POLL_TIMEOUT);
4446 	if (ret)
4447 		return 0;
4448 
4449 	shaper_vft = readl(qm->io_base + QM_VFT_CFG_DATA_L) |
4450 		  ((u64)readl(qm->io_base + QM_VFT_CFG_DATA_H) << 32);
4451 
4452 	cir_b = shaper_vft & QM_SHAPER_CIR_B_MASK;
4453 	cir_u = shaper_vft & QM_SHAPER_CIR_U_MASK;
4454 	cir_u = cir_u >> QM_SHAPER_FACTOR_CIR_U_SHIFT;
4455 
4456 	cir_s = shaper_vft & QM_SHAPER_CIR_S_MASK;
4457 	cir_s = cir_s >> QM_SHAPER_FACTOR_CIR_S_SHIFT;
4458 
4459 	ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s);
4460 
4461 	ir = qm->factor[fun_index].func_qos * QM_QOS_RATE;
4462 
4463 	error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir;
4464 	if (error_rate > QM_QOS_MIN_ERROR_RATE) {
4465 		pci_err(qm->pdev, "error_rate: %u, get function qos is error!\n", error_rate);
4466 		return 0;
4467 	}
4468 
4469 	return ir;
4470 }
4471 
4472 static void qm_vf_get_qos(struct hisi_qm *qm, u32 fun_num)
4473 {
4474 	struct device *dev = &qm->pdev->dev;
4475 	u64 mb_cmd;
4476 	u32 qos;
4477 	int ret;
4478 
4479 	qos = qm_get_shaper_vft_qos(qm, fun_num);
4480 	if (!qos) {
4481 		dev_err(dev, "function(%u) failed to get qos by PF!\n", fun_num);
4482 		return;
4483 	}
4484 
4485 	mb_cmd = QM_PF_SET_QOS | (u64)qos << QM_MB_CMD_DATA_SHIFT;
4486 	ret = qm_ping_single_vf(qm, mb_cmd, fun_num);
4487 	if (ret)
4488 		dev_err(dev, "failed to send cmd to VF(%u)!\n", fun_num);
4489 }
4490 
4491 static int qm_vf_read_qos(struct hisi_qm *qm)
4492 {
4493 	int cnt = 0;
4494 	int ret = -EINVAL;
4495 
4496 	/* reset mailbox qos val */
4497 	qm->mb_qos = 0;
4498 
4499 	/* vf ping pf to get function qos */
4500 	if (qm->ops->ping_pf) {
4501 		ret = qm->ops->ping_pf(qm, QM_VF_GET_QOS);
4502 		if (ret) {
4503 			pci_err(qm->pdev, "failed to send cmd to PF to get qos!\n");
4504 			return ret;
4505 		}
4506 	}
4507 
4508 	while (true) {
4509 		msleep(QM_WAIT_DST_ACK);
4510 		if (qm->mb_qos)
4511 			break;
4512 
4513 		if (++cnt > QM_MAX_VF_WAIT_COUNT) {
4514 			pci_err(qm->pdev, "PF ping VF timeout!\n");
4515 			return  -ETIMEDOUT;
4516 		}
4517 	}
4518 
4519 	return ret;
4520 }
4521 
4522 static ssize_t qm_algqos_read(struct file *filp, char __user *buf,
4523 			       size_t count, loff_t *pos)
4524 {
4525 	struct hisi_qm *qm = filp->private_data;
4526 	char tbuf[QM_DBG_READ_LEN];
4527 	u32 qos_val, ir;
4528 	int ret;
4529 
4530 	ret = hisi_qm_get_dfx_access(qm);
4531 	if (ret)
4532 		return ret;
4533 
4534 	/* Mailbox and reset cannot be operated at the same time */
4535 	if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
4536 		pci_err(qm->pdev, "dev resetting, read alg qos failed!\n");
4537 		ret = -EAGAIN;
4538 		goto err_put_dfx_access;
4539 	}
4540 
4541 	if (qm->fun_type == QM_HW_PF) {
4542 		ir = qm_get_shaper_vft_qos(qm, 0);
4543 	} else {
4544 		ret = qm_vf_read_qos(qm);
4545 		if (ret)
4546 			goto err_get_status;
4547 		ir = qm->mb_qos;
4548 	}
4549 
4550 	qos_val = ir / QM_QOS_RATE;
4551 	ret = scnprintf(tbuf, QM_DBG_READ_LEN, "%u\n", qos_val);
4552 
4553 	ret =  simple_read_from_buffer(buf, count, pos, tbuf, ret);
4554 
4555 err_get_status:
4556 	clear_bit(QM_RESETTING, &qm->misc_ctl);
4557 err_put_dfx_access:
4558 	hisi_qm_put_dfx_access(qm);
4559 	return ret;
4560 }
4561 
4562 static ssize_t qm_qos_value_init(const char *buf, unsigned long *val)
4563 {
4564 	int buflen = strlen(buf);
4565 	int ret, i;
4566 
4567 	for (i = 0; i < buflen; i++) {
4568 		if (!isdigit(buf[i]))
4569 			return -EINVAL;
4570 	}
4571 
4572 	ret = sscanf(buf, "%lu", val);
4573 	if (ret != QM_QOS_VAL_NUM)
4574 		return -EINVAL;
4575 
4576 	return 0;
4577 }
4578 
4579 static ssize_t qm_get_qos_value(struct hisi_qm *qm, const char *buf,
4580 			       unsigned long *val,
4581 			       unsigned int *fun_index)
4582 {
4583 	char tbuf_bdf[QM_DBG_READ_LEN] = {0};
4584 	char val_buf[QM_QOS_VAL_MAX_LEN] = {0};
4585 	u32 tmp1, device, function;
4586 	int ret, bus;
4587 
4588 	ret = sscanf(buf, "%s %s", tbuf_bdf, val_buf);
4589 	if (ret != QM_QOS_PARAM_NUM)
4590 		return -EINVAL;
4591 
4592 	ret = qm_qos_value_init(val_buf, val);
4593 	if (ret || *val == 0 || *val > QM_QOS_MAX_VAL) {
4594 		pci_err(qm->pdev, "input qos value is error, please set 1~1000!\n");
4595 		return -EINVAL;
4596 	}
4597 
4598 	ret = sscanf(tbuf_bdf, "%u:%x:%u.%u", &tmp1, &bus, &device, &function);
4599 	if (ret != QM_QOS_BDF_PARAM_NUM) {
4600 		pci_err(qm->pdev, "input pci bdf value is error!\n");
4601 		return -EINVAL;
4602 	}
4603 
4604 	*fun_index = PCI_DEVFN(device, function);
4605 
4606 	return 0;
4607 }
4608 
4609 static ssize_t qm_algqos_write(struct file *filp, const char __user *buf,
4610 			       size_t count, loff_t *pos)
4611 {
4612 	struct hisi_qm *qm = filp->private_data;
4613 	char tbuf[QM_DBG_READ_LEN];
4614 	unsigned int fun_index;
4615 	unsigned long val;
4616 	int len, ret;
4617 
4618 	if (qm->fun_type == QM_HW_VF)
4619 		return -EINVAL;
4620 
4621 	if (*pos != 0)
4622 		return 0;
4623 
4624 	if (count >= QM_DBG_READ_LEN)
4625 		return -ENOSPC;
4626 
4627 	len = simple_write_to_buffer(tbuf, QM_DBG_READ_LEN - 1, pos, buf, count);
4628 	if (len < 0)
4629 		return len;
4630 
4631 	tbuf[len] = '\0';
4632 	ret = qm_get_qos_value(qm, tbuf, &val, &fun_index);
4633 	if (ret)
4634 		return ret;
4635 
4636 	/* Mailbox and reset cannot be operated at the same time */
4637 	if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
4638 		pci_err(qm->pdev, "dev resetting, write alg qos failed!\n");
4639 		return -EAGAIN;
4640 	}
4641 
4642 	ret = qm_pm_get_sync(qm);
4643 	if (ret) {
4644 		ret = -EINVAL;
4645 		goto err_get_status;
4646 	}
4647 
4648 	ret = qm_func_shaper_enable(qm, fun_index, val);
4649 	if (ret) {
4650 		pci_err(qm->pdev, "failed to enable function shaper!\n");
4651 		ret = -EINVAL;
4652 		goto err_put_sync;
4653 	}
4654 
4655 	pci_info(qm->pdev, "the qos value of function%u is set to %lu.\n",
4656 		 fun_index, val);
4657 	ret = count;
4658 
4659 err_put_sync:
4660 	qm_pm_put_sync(qm);
4661 err_get_status:
4662 	clear_bit(QM_RESETTING, &qm->misc_ctl);
4663 	return ret;
4664 }
4665 
4666 static const struct file_operations qm_algqos_fops = {
4667 	.owner = THIS_MODULE,
4668 	.open = simple_open,
4669 	.read = qm_algqos_read,
4670 	.write = qm_algqos_write,
4671 };
4672 
4673 /**
4674  * hisi_qm_set_algqos_init() - Initialize function qos debugfs files.
4675  * @qm: The qm for which we want to add debugfs files.
4676  *
4677  * Create function qos debugfs files.
4678  */
4679 static void hisi_qm_set_algqos_init(struct hisi_qm *qm)
4680 {
4681 	if (qm->fun_type == QM_HW_PF)
4682 		debugfs_create_file("alg_qos", 0644, qm->debug.debug_root,
4683 				    qm, &qm_algqos_fops);
4684 	else
4685 		debugfs_create_file("alg_qos", 0444, qm->debug.debug_root,
4686 				    qm, &qm_algqos_fops);
4687 }
4688 
4689 /**
4690  * hisi_qm_debug_init() - Initialize qm related debugfs files.
4691  * @qm: The qm for which we want to add debugfs files.
4692  *
4693  * Create qm related debugfs files.
4694  */
4695 void hisi_qm_debug_init(struct hisi_qm *qm)
4696 {
4697 	struct dfx_diff_registers *qm_regs = qm->debug.qm_diff_regs;
4698 	struct qm_dfx *dfx = &qm->debug.dfx;
4699 	struct dentry *qm_d;
4700 	void *data;
4701 	int i;
4702 
4703 	qm_d = debugfs_create_dir("qm", qm->debug.debug_root);
4704 	qm->debug.qm_d = qm_d;
4705 
4706 	/* only show this in PF */
4707 	if (qm->fun_type == QM_HW_PF) {
4708 		qm_create_debugfs_file(qm, qm->debug.debug_root, CURRENT_QM);
4709 		for (i = CURRENT_Q; i < DEBUG_FILE_NUM; i++)
4710 			qm_create_debugfs_file(qm, qm->debug.qm_d, i);
4711 	}
4712 
4713 	if (qm_regs)
4714 		debugfs_create_file("diff_regs", 0444, qm->debug.qm_d,
4715 					qm, &qm_diff_regs_fops);
4716 
4717 	debugfs_create_file("regs", 0444, qm->debug.qm_d, qm, &qm_regs_fops);
4718 
4719 	debugfs_create_file("cmd", 0600, qm->debug.qm_d, qm, &qm_cmd_fops);
4720 
4721 	debugfs_create_file("status", 0444, qm->debug.qm_d, qm,
4722 			&qm_status_fops);
4723 	for (i = 0; i < ARRAY_SIZE(qm_dfx_files); i++) {
4724 		data = (atomic64_t *)((uintptr_t)dfx + qm_dfx_files[i].offset);
4725 		debugfs_create_file(qm_dfx_files[i].name,
4726 			0644,
4727 			qm_d,
4728 			data,
4729 			&qm_atomic64_ops);
4730 	}
4731 
4732 	if (qm->ver >= QM_HW_V3)
4733 		hisi_qm_set_algqos_init(qm);
4734 }
4735 EXPORT_SYMBOL_GPL(hisi_qm_debug_init);
4736 
4737 /**
4738  * hisi_qm_debug_regs_clear() - clear qm debug related registers.
4739  * @qm: The qm for which we want to clear its debug registers.
4740  */
4741 void hisi_qm_debug_regs_clear(struct hisi_qm *qm)
4742 {
4743 	const struct debugfs_reg32 *regs;
4744 	int i;
4745 
4746 	/* clear current_qm */
4747 	writel(0x0, qm->io_base + QM_DFX_MB_CNT_VF);
4748 	writel(0x0, qm->io_base + QM_DFX_DB_CNT_VF);
4749 
4750 	/* clear current_q */
4751 	writel(0x0, qm->io_base + QM_DFX_SQE_CNT_VF_SQN);
4752 	writel(0x0, qm->io_base + QM_DFX_CQE_CNT_VF_CQN);
4753 
4754 	/*
4755 	 * these registers are reading and clearing, so clear them after
4756 	 * reading them.
4757 	 */
4758 	writel(0x1, qm->io_base + QM_DFX_CNT_CLR_CE);
4759 
4760 	regs = qm_dfx_regs;
4761 	for (i = 0; i < CNT_CYC_REGS_NUM; i++) {
4762 		readl(qm->io_base + regs->offset);
4763 		regs++;
4764 	}
4765 
4766 	/* clear clear_enable */
4767 	writel(0x0, qm->io_base + QM_DFX_CNT_CLR_CE);
4768 }
4769 EXPORT_SYMBOL_GPL(hisi_qm_debug_regs_clear);
4770 
4771 /**
4772  * hisi_qm_sriov_enable() - enable virtual functions
4773  * @pdev: the PCIe device
4774  * @max_vfs: the number of virtual functions to enable
4775  *
4776  * Returns the number of enabled VFs. If there are VFs enabled already or
4777  * max_vfs is more than the total number of device can be enabled, returns
4778  * failure.
4779  */
4780 int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs)
4781 {
4782 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4783 	int pre_existing_vfs, num_vfs, total_vfs, ret;
4784 
4785 	ret = qm_pm_get_sync(qm);
4786 	if (ret)
4787 		return ret;
4788 
4789 	total_vfs = pci_sriov_get_totalvfs(pdev);
4790 	pre_existing_vfs = pci_num_vf(pdev);
4791 	if (pre_existing_vfs) {
4792 		pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n",
4793 			pre_existing_vfs);
4794 		goto err_put_sync;
4795 	}
4796 
4797 	num_vfs = min_t(int, max_vfs, total_vfs);
4798 	ret = qm_vf_q_assign(qm, num_vfs);
4799 	if (ret) {
4800 		pci_err(pdev, "Can't assign queues for VF!\n");
4801 		goto err_put_sync;
4802 	}
4803 
4804 	qm->vfs_num = num_vfs;
4805 
4806 	ret = pci_enable_sriov(pdev, num_vfs);
4807 	if (ret) {
4808 		pci_err(pdev, "Can't enable VF!\n");
4809 		qm_clear_vft_config(qm);
4810 		goto err_put_sync;
4811 	}
4812 
4813 	pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs);
4814 
4815 	return num_vfs;
4816 
4817 err_put_sync:
4818 	qm_pm_put_sync(qm);
4819 	return ret;
4820 }
4821 EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable);
4822 
4823 /**
4824  * hisi_qm_sriov_disable - disable virtual functions
4825  * @pdev: the PCI device.
4826  * @is_frozen: true when all the VFs are frozen.
4827  *
4828  * Return failure if there are VFs assigned already or VF is in used.
4829  */
4830 int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen)
4831 {
4832 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4833 	int total_vfs = pci_sriov_get_totalvfs(qm->pdev);
4834 	int ret;
4835 
4836 	if (pci_vfs_assigned(pdev)) {
4837 		pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n");
4838 		return -EPERM;
4839 	}
4840 
4841 	/* While VF is in used, SRIOV cannot be disabled. */
4842 	if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) {
4843 		pci_err(pdev, "Task is using its VF!\n");
4844 		return -EBUSY;
4845 	}
4846 
4847 	pci_disable_sriov(pdev);
4848 	/* clear vf function shaper configure array */
4849 	memset(qm->factor + 1, 0, sizeof(struct qm_shaper_factor) * total_vfs);
4850 	ret = qm_clear_vft_config(qm);
4851 	if (ret)
4852 		return ret;
4853 
4854 	qm_pm_put_sync(qm);
4855 
4856 	return 0;
4857 }
4858 EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable);
4859 
4860 /**
4861  * hisi_qm_sriov_configure - configure the number of VFs
4862  * @pdev: The PCI device
4863  * @num_vfs: The number of VFs need enabled
4864  *
4865  * Enable SR-IOV according to num_vfs, 0 means disable.
4866  */
4867 int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs)
4868 {
4869 	if (num_vfs == 0)
4870 		return hisi_qm_sriov_disable(pdev, false);
4871 	else
4872 		return hisi_qm_sriov_enable(pdev, num_vfs);
4873 }
4874 EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure);
4875 
4876 static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm)
4877 {
4878 	u32 err_sts;
4879 
4880 	if (!qm->err_ini->get_dev_hw_err_status) {
4881 		dev_err(&qm->pdev->dev, "Device doesn't support get hw error status!\n");
4882 		return ACC_ERR_NONE;
4883 	}
4884 
4885 	/* get device hardware error status */
4886 	err_sts = qm->err_ini->get_dev_hw_err_status(qm);
4887 	if (err_sts) {
4888 		if (err_sts & qm->err_info.ecc_2bits_mask)
4889 			qm->err_status.is_dev_ecc_mbit = true;
4890 
4891 		if (qm->err_ini->log_dev_hw_err)
4892 			qm->err_ini->log_dev_hw_err(qm, err_sts);
4893 
4894 		/* ce error does not need to be reset */
4895 		if ((err_sts | qm->err_info.dev_ce_mask) ==
4896 		     qm->err_info.dev_ce_mask) {
4897 			if (qm->err_ini->clear_dev_hw_err_status)
4898 				qm->err_ini->clear_dev_hw_err_status(qm,
4899 								err_sts);
4900 
4901 			return ACC_ERR_RECOVERED;
4902 		}
4903 
4904 		return ACC_ERR_NEED_RESET;
4905 	}
4906 
4907 	return ACC_ERR_RECOVERED;
4908 }
4909 
4910 static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm)
4911 {
4912 	enum acc_err_result qm_ret, dev_ret;
4913 
4914 	/* log qm error */
4915 	qm_ret = qm_hw_error_handle(qm);
4916 
4917 	/* log device error */
4918 	dev_ret = qm_dev_err_handle(qm);
4919 
4920 	return (qm_ret == ACC_ERR_NEED_RESET ||
4921 		dev_ret == ACC_ERR_NEED_RESET) ?
4922 		ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED;
4923 }
4924 
4925 /**
4926  * hisi_qm_dev_err_detected() - Get device and qm error status then log it.
4927  * @pdev: The PCI device which need report error.
4928  * @state: The connectivity between CPU and device.
4929  *
4930  * We register this function into PCIe AER handlers, It will report device or
4931  * qm hardware error status when error occur.
4932  */
4933 pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev,
4934 					  pci_channel_state_t state)
4935 {
4936 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4937 	enum acc_err_result ret;
4938 
4939 	if (pdev->is_virtfn)
4940 		return PCI_ERS_RESULT_NONE;
4941 
4942 	pci_info(pdev, "PCI error detected, state(=%u)!!\n", state);
4943 	if (state == pci_channel_io_perm_failure)
4944 		return PCI_ERS_RESULT_DISCONNECT;
4945 
4946 	ret = qm_process_dev_error(qm);
4947 	if (ret == ACC_ERR_NEED_RESET)
4948 		return PCI_ERS_RESULT_NEED_RESET;
4949 
4950 	return PCI_ERS_RESULT_RECOVERED;
4951 }
4952 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected);
4953 
4954 static int qm_check_req_recv(struct hisi_qm *qm)
4955 {
4956 	struct pci_dev *pdev = qm->pdev;
4957 	int ret;
4958 	u32 val;
4959 
4960 	if (qm->ver >= QM_HW_V3)
4961 		return 0;
4962 
4963 	writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID);
4964 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
4965 					 (val == ACC_VENDOR_ID_VALUE),
4966 					 POLL_PERIOD, POLL_TIMEOUT);
4967 	if (ret) {
4968 		dev_err(&pdev->dev, "Fails to read QM reg!\n");
4969 		return ret;
4970 	}
4971 
4972 	writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID);
4973 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
4974 					 (val == PCI_VENDOR_ID_HUAWEI),
4975 					 POLL_PERIOD, POLL_TIMEOUT);
4976 	if (ret)
4977 		dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n");
4978 
4979 	return ret;
4980 }
4981 
4982 static int qm_set_pf_mse(struct hisi_qm *qm, bool set)
4983 {
4984 	struct pci_dev *pdev = qm->pdev;
4985 	u16 cmd;
4986 	int i;
4987 
4988 	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
4989 	if (set)
4990 		cmd |= PCI_COMMAND_MEMORY;
4991 	else
4992 		cmd &= ~PCI_COMMAND_MEMORY;
4993 
4994 	pci_write_config_word(pdev, PCI_COMMAND, cmd);
4995 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
4996 		pci_read_config_word(pdev, PCI_COMMAND, &cmd);
4997 		if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1))
4998 			return 0;
4999 
5000 		udelay(1);
5001 	}
5002 
5003 	return -ETIMEDOUT;
5004 }
5005 
5006 static int qm_set_vf_mse(struct hisi_qm *qm, bool set)
5007 {
5008 	struct pci_dev *pdev = qm->pdev;
5009 	u16 sriov_ctrl;
5010 	int pos;
5011 	int i;
5012 
5013 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
5014 	pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
5015 	if (set)
5016 		sriov_ctrl |= PCI_SRIOV_CTRL_MSE;
5017 	else
5018 		sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE;
5019 	pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl);
5020 
5021 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
5022 		pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
5023 		if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >>
5024 		    ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT)
5025 			return 0;
5026 
5027 		udelay(1);
5028 	}
5029 
5030 	return -ETIMEDOUT;
5031 }
5032 
5033 static int qm_vf_reset_prepare(struct hisi_qm *qm,
5034 			       enum qm_stop_reason stop_reason)
5035 {
5036 	struct hisi_qm_list *qm_list = qm->qm_list;
5037 	struct pci_dev *pdev = qm->pdev;
5038 	struct pci_dev *virtfn;
5039 	struct hisi_qm *vf_qm;
5040 	int ret = 0;
5041 
5042 	mutex_lock(&qm_list->lock);
5043 	list_for_each_entry(vf_qm, &qm_list->list, list) {
5044 		virtfn = vf_qm->pdev;
5045 		if (virtfn == pdev)
5046 			continue;
5047 
5048 		if (pci_physfn(virtfn) == pdev) {
5049 			/* save VFs PCIE BAR configuration */
5050 			pci_save_state(virtfn);
5051 
5052 			ret = hisi_qm_stop(vf_qm, stop_reason);
5053 			if (ret)
5054 				goto stop_fail;
5055 		}
5056 	}
5057 
5058 stop_fail:
5059 	mutex_unlock(&qm_list->lock);
5060 	return ret;
5061 }
5062 
5063 static int qm_try_stop_vfs(struct hisi_qm *qm, u64 cmd,
5064 			   enum qm_stop_reason stop_reason)
5065 {
5066 	struct pci_dev *pdev = qm->pdev;
5067 	int ret;
5068 
5069 	if (!qm->vfs_num)
5070 		return 0;
5071 
5072 	/* Kunpeng930 supports to notify VFs to stop before PF reset */
5073 	if (qm->ops->ping_all_vfs) {
5074 		ret = qm->ops->ping_all_vfs(qm, cmd);
5075 		if (ret)
5076 			pci_err(pdev, "failed to send cmd to all VFs before PF reset!\n");
5077 	} else {
5078 		ret = qm_vf_reset_prepare(qm, stop_reason);
5079 		if (ret)
5080 			pci_err(pdev, "failed to prepare reset, ret = %d.\n", ret);
5081 	}
5082 
5083 	return ret;
5084 }
5085 
5086 static int qm_controller_reset_prepare(struct hisi_qm *qm)
5087 {
5088 	struct pci_dev *pdev = qm->pdev;
5089 	int ret;
5090 
5091 	ret = qm_reset_prepare_ready(qm);
5092 	if (ret) {
5093 		pci_err(pdev, "Controller reset not ready!\n");
5094 		return ret;
5095 	}
5096 
5097 	/* PF obtains the information of VF by querying the register. */
5098 	qm_cmd_uninit(qm);
5099 
5100 	/* Whether VFs stop successfully, soft reset will continue. */
5101 	ret = qm_try_stop_vfs(qm, QM_PF_SRST_PREPARE, QM_SOFT_RESET);
5102 	if (ret)
5103 		pci_err(pdev, "failed to stop vfs by pf in soft reset.\n");
5104 
5105 	ret = hisi_qm_stop(qm, QM_SOFT_RESET);
5106 	if (ret) {
5107 		pci_err(pdev, "Fails to stop QM!\n");
5108 		qm_reset_bit_clear(qm);
5109 		return ret;
5110 	}
5111 
5112 	ret = qm_wait_vf_prepare_finish(qm);
5113 	if (ret)
5114 		pci_err(pdev, "failed to stop by vfs in soft reset!\n");
5115 
5116 	clear_bit(QM_RST_SCHED, &qm->misc_ctl);
5117 
5118 	return 0;
5119 }
5120 
5121 static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm)
5122 {
5123 	u32 nfe_enb = 0;
5124 
5125 	/* Kunpeng930 hardware automatically close master ooo when NFE occurs */
5126 	if (qm->ver >= QM_HW_V3)
5127 		return;
5128 
5129 	if (!qm->err_status.is_dev_ecc_mbit &&
5130 	    qm->err_status.is_qm_ecc_mbit &&
5131 	    qm->err_ini->close_axi_master_ooo) {
5132 
5133 		qm->err_ini->close_axi_master_ooo(qm);
5134 
5135 	} else if (qm->err_status.is_dev_ecc_mbit &&
5136 		   !qm->err_status.is_qm_ecc_mbit &&
5137 		   !qm->err_ini->close_axi_master_ooo) {
5138 
5139 		nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE);
5140 		writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE,
5141 		       qm->io_base + QM_RAS_NFE_ENABLE);
5142 		writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET);
5143 	}
5144 }
5145 
5146 static int qm_soft_reset(struct hisi_qm *qm)
5147 {
5148 	struct pci_dev *pdev = qm->pdev;
5149 	int ret;
5150 	u32 val;
5151 
5152 	/* Ensure all doorbells and mailboxes received by QM */
5153 	ret = qm_check_req_recv(qm);
5154 	if (ret)
5155 		return ret;
5156 
5157 	if (qm->vfs_num) {
5158 		ret = qm_set_vf_mse(qm, false);
5159 		if (ret) {
5160 			pci_err(pdev, "Fails to disable vf MSE bit.\n");
5161 			return ret;
5162 		}
5163 	}
5164 
5165 	ret = qm->ops->set_msi(qm, false);
5166 	if (ret) {
5167 		pci_err(pdev, "Fails to disable PEH MSI bit.\n");
5168 		return ret;
5169 	}
5170 
5171 	qm_dev_ecc_mbit_handle(qm);
5172 
5173 	/* OOO register set and check */
5174 	writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN,
5175 	       qm->io_base + ACC_MASTER_GLOBAL_CTRL);
5176 
5177 	/* If bus lock, reset chip */
5178 	ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN,
5179 					 val,
5180 					 (val == ACC_MASTER_TRANS_RETURN_RW),
5181 					 POLL_PERIOD, POLL_TIMEOUT);
5182 	if (ret) {
5183 		pci_emerg(pdev, "Bus lock! Please reset system.\n");
5184 		return ret;
5185 	}
5186 
5187 	if (qm->err_ini->close_sva_prefetch)
5188 		qm->err_ini->close_sva_prefetch(qm);
5189 
5190 	ret = qm_set_pf_mse(qm, false);
5191 	if (ret) {
5192 		pci_err(pdev, "Fails to disable pf MSE bit.\n");
5193 		return ret;
5194 	}
5195 
5196 	/* The reset related sub-control registers are not in PCI BAR */
5197 	if (ACPI_HANDLE(&pdev->dev)) {
5198 		unsigned long long value = 0;
5199 		acpi_status s;
5200 
5201 		s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev),
5202 					  qm->err_info.acpi_rst,
5203 					  NULL, &value);
5204 		if (ACPI_FAILURE(s)) {
5205 			pci_err(pdev, "NO controller reset method!\n");
5206 			return -EIO;
5207 		}
5208 
5209 		if (value) {
5210 			pci_err(pdev, "Reset step %llu failed!\n", value);
5211 			return -EIO;
5212 		}
5213 	} else {
5214 		pci_err(pdev, "No reset method!\n");
5215 		return -EINVAL;
5216 	}
5217 
5218 	return 0;
5219 }
5220 
5221 static int qm_vf_reset_done(struct hisi_qm *qm)
5222 {
5223 	struct hisi_qm_list *qm_list = qm->qm_list;
5224 	struct pci_dev *pdev = qm->pdev;
5225 	struct pci_dev *virtfn;
5226 	struct hisi_qm *vf_qm;
5227 	int ret = 0;
5228 
5229 	mutex_lock(&qm_list->lock);
5230 	list_for_each_entry(vf_qm, &qm_list->list, list) {
5231 		virtfn = vf_qm->pdev;
5232 		if (virtfn == pdev)
5233 			continue;
5234 
5235 		if (pci_physfn(virtfn) == pdev) {
5236 			/* enable VFs PCIE BAR configuration */
5237 			pci_restore_state(virtfn);
5238 
5239 			ret = qm_restart(vf_qm);
5240 			if (ret)
5241 				goto restart_fail;
5242 		}
5243 	}
5244 
5245 restart_fail:
5246 	mutex_unlock(&qm_list->lock);
5247 	return ret;
5248 }
5249 
5250 static int qm_try_start_vfs(struct hisi_qm *qm, enum qm_mb_cmd cmd)
5251 {
5252 	struct pci_dev *pdev = qm->pdev;
5253 	int ret;
5254 
5255 	if (!qm->vfs_num)
5256 		return 0;
5257 
5258 	ret = qm_vf_q_assign(qm, qm->vfs_num);
5259 	if (ret) {
5260 		pci_err(pdev, "failed to assign VFs, ret = %d.\n", ret);
5261 		return ret;
5262 	}
5263 
5264 	/* Kunpeng930 supports to notify VFs to start after PF reset. */
5265 	if (qm->ops->ping_all_vfs) {
5266 		ret = qm->ops->ping_all_vfs(qm, cmd);
5267 		if (ret)
5268 			pci_warn(pdev, "failed to send cmd to all VFs after PF reset!\n");
5269 	} else {
5270 		ret = qm_vf_reset_done(qm);
5271 		if (ret)
5272 			pci_warn(pdev, "failed to start vfs, ret = %d.\n", ret);
5273 	}
5274 
5275 	return ret;
5276 }
5277 
5278 static int qm_dev_hw_init(struct hisi_qm *qm)
5279 {
5280 	return qm->err_ini->hw_init(qm);
5281 }
5282 
5283 static void qm_restart_prepare(struct hisi_qm *qm)
5284 {
5285 	u32 value;
5286 
5287 	if (qm->err_ini->open_sva_prefetch)
5288 		qm->err_ini->open_sva_prefetch(qm);
5289 
5290 	if (qm->ver >= QM_HW_V3)
5291 		return;
5292 
5293 	if (!qm->err_status.is_qm_ecc_mbit &&
5294 	    !qm->err_status.is_dev_ecc_mbit)
5295 		return;
5296 
5297 	/* temporarily close the OOO port used for PEH to write out MSI */
5298 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
5299 	writel(value & ~qm->err_info.msi_wr_port,
5300 	       qm->io_base + ACC_AM_CFG_PORT_WR_EN);
5301 
5302 	/* clear dev ecc 2bit error source if having */
5303 	value = qm_get_dev_err_status(qm) & qm->err_info.ecc_2bits_mask;
5304 	if (value && qm->err_ini->clear_dev_hw_err_status)
5305 		qm->err_ini->clear_dev_hw_err_status(qm, value);
5306 
5307 	/* clear QM ecc mbit error source */
5308 	writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE);
5309 
5310 	/* clear AM Reorder Buffer ecc mbit source */
5311 	writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS);
5312 }
5313 
5314 static void qm_restart_done(struct hisi_qm *qm)
5315 {
5316 	u32 value;
5317 
5318 	if (qm->ver >= QM_HW_V3)
5319 		goto clear_flags;
5320 
5321 	if (!qm->err_status.is_qm_ecc_mbit &&
5322 	    !qm->err_status.is_dev_ecc_mbit)
5323 		return;
5324 
5325 	/* open the OOO port for PEH to write out MSI */
5326 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
5327 	value |= qm->err_info.msi_wr_port;
5328 	writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN);
5329 
5330 clear_flags:
5331 	qm->err_status.is_qm_ecc_mbit = false;
5332 	qm->err_status.is_dev_ecc_mbit = false;
5333 }
5334 
5335 static int qm_controller_reset_done(struct hisi_qm *qm)
5336 {
5337 	struct pci_dev *pdev = qm->pdev;
5338 	int ret;
5339 
5340 	ret = qm->ops->set_msi(qm, true);
5341 	if (ret) {
5342 		pci_err(pdev, "Fails to enable PEH MSI bit!\n");
5343 		return ret;
5344 	}
5345 
5346 	ret = qm_set_pf_mse(qm, true);
5347 	if (ret) {
5348 		pci_err(pdev, "Fails to enable pf MSE bit!\n");
5349 		return ret;
5350 	}
5351 
5352 	if (qm->vfs_num) {
5353 		ret = qm_set_vf_mse(qm, true);
5354 		if (ret) {
5355 			pci_err(pdev, "Fails to enable vf MSE bit!\n");
5356 			return ret;
5357 		}
5358 	}
5359 
5360 	ret = qm_dev_hw_init(qm);
5361 	if (ret) {
5362 		pci_err(pdev, "Failed to init device\n");
5363 		return ret;
5364 	}
5365 
5366 	qm_restart_prepare(qm);
5367 	hisi_qm_dev_err_init(qm);
5368 	if (qm->err_ini->open_axi_master_ooo)
5369 		qm->err_ini->open_axi_master_ooo(qm);
5370 
5371 	ret = qm_dev_mem_reset(qm);
5372 	if (ret) {
5373 		pci_err(pdev, "failed to reset device memory\n");
5374 		return ret;
5375 	}
5376 
5377 	ret = qm_restart(qm);
5378 	if (ret) {
5379 		pci_err(pdev, "Failed to start QM!\n");
5380 		return ret;
5381 	}
5382 
5383 	ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE);
5384 	if (ret)
5385 		pci_err(pdev, "failed to start vfs by pf in soft reset.\n");
5386 
5387 	ret = qm_wait_vf_prepare_finish(qm);
5388 	if (ret)
5389 		pci_err(pdev, "failed to start by vfs in soft reset!\n");
5390 
5391 	qm_cmd_init(qm);
5392 	qm_restart_done(qm);
5393 
5394 	qm_reset_bit_clear(qm);
5395 
5396 	return 0;
5397 }
5398 
5399 static void qm_show_last_dfx_regs(struct hisi_qm *qm)
5400 {
5401 	struct qm_debug *debug = &qm->debug;
5402 	struct pci_dev *pdev = qm->pdev;
5403 	u32 val;
5404 	int i;
5405 
5406 	if (qm->fun_type == QM_HW_VF || !debug->qm_last_words)
5407 		return;
5408 
5409 	for (i = 0; i < ARRAY_SIZE(qm_dfx_regs); i++) {
5410 		val = readl_relaxed(qm->io_base + qm_dfx_regs[i].offset);
5411 		if (debug->qm_last_words[i] != val)
5412 			pci_info(pdev, "%s \t= 0x%08x => 0x%08x\n",
5413 			qm_dfx_regs[i].name, debug->qm_last_words[i], val);
5414 	}
5415 }
5416 
5417 static int qm_controller_reset(struct hisi_qm *qm)
5418 {
5419 	struct pci_dev *pdev = qm->pdev;
5420 	int ret;
5421 
5422 	pci_info(pdev, "Controller resetting...\n");
5423 
5424 	ret = qm_controller_reset_prepare(qm);
5425 	if (ret) {
5426 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
5427 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
5428 		clear_bit(QM_RST_SCHED, &qm->misc_ctl);
5429 		return ret;
5430 	}
5431 
5432 	qm_show_last_dfx_regs(qm);
5433 	if (qm->err_ini->show_last_dfx_regs)
5434 		qm->err_ini->show_last_dfx_regs(qm);
5435 
5436 	ret = qm_soft_reset(qm);
5437 	if (ret) {
5438 		pci_err(pdev, "Controller reset failed (%d)\n", ret);
5439 		qm_reset_bit_clear(qm);
5440 		return ret;
5441 	}
5442 
5443 	ret = qm_controller_reset_done(qm);
5444 	if (ret) {
5445 		qm_reset_bit_clear(qm);
5446 		return ret;
5447 	}
5448 
5449 	pci_info(pdev, "Controller reset complete\n");
5450 
5451 	return 0;
5452 }
5453 
5454 /**
5455  * hisi_qm_dev_slot_reset() - slot reset
5456  * @pdev: the PCIe device
5457  *
5458  * This function offers QM relate PCIe device reset interface. Drivers which
5459  * use QM can use this function as slot_reset in its struct pci_error_handlers.
5460  */
5461 pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev)
5462 {
5463 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5464 	int ret;
5465 
5466 	if (pdev->is_virtfn)
5467 		return PCI_ERS_RESULT_RECOVERED;
5468 
5469 	pci_aer_clear_nonfatal_status(pdev);
5470 
5471 	/* reset pcie device controller */
5472 	ret = qm_controller_reset(qm);
5473 	if (ret) {
5474 		pci_err(pdev, "Controller reset failed (%d)\n", ret);
5475 		return PCI_ERS_RESULT_DISCONNECT;
5476 	}
5477 
5478 	return PCI_ERS_RESULT_RECOVERED;
5479 }
5480 EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset);
5481 
5482 void hisi_qm_reset_prepare(struct pci_dev *pdev)
5483 {
5484 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
5485 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5486 	u32 delay = 0;
5487 	int ret;
5488 
5489 	hisi_qm_dev_err_uninit(pf_qm);
5490 
5491 	/*
5492 	 * Check whether there is an ECC mbit error, If it occurs, need to
5493 	 * wait for soft reset to fix it.
5494 	 */
5495 	while (qm_check_dev_error(pf_qm)) {
5496 		msleep(++delay);
5497 		if (delay > QM_RESET_WAIT_TIMEOUT)
5498 			return;
5499 	}
5500 
5501 	ret = qm_reset_prepare_ready(qm);
5502 	if (ret) {
5503 		pci_err(pdev, "FLR not ready!\n");
5504 		return;
5505 	}
5506 
5507 	/* PF obtains the information of VF by querying the register. */
5508 	if (qm->fun_type == QM_HW_PF)
5509 		qm_cmd_uninit(qm);
5510 
5511 	ret = qm_try_stop_vfs(qm, QM_PF_FLR_PREPARE, QM_FLR);
5512 	if (ret)
5513 		pci_err(pdev, "failed to stop vfs by pf in FLR.\n");
5514 
5515 	ret = hisi_qm_stop(qm, QM_FLR);
5516 	if (ret) {
5517 		pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret);
5518 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
5519 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
5520 		return;
5521 	}
5522 
5523 	ret = qm_wait_vf_prepare_finish(qm);
5524 	if (ret)
5525 		pci_err(pdev, "failed to stop by vfs in FLR!\n");
5526 
5527 	pci_info(pdev, "FLR resetting...\n");
5528 }
5529 EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare);
5530 
5531 static bool qm_flr_reset_complete(struct pci_dev *pdev)
5532 {
5533 	struct pci_dev *pf_pdev = pci_physfn(pdev);
5534 	struct hisi_qm *qm = pci_get_drvdata(pf_pdev);
5535 	u32 id;
5536 
5537 	pci_read_config_dword(qm->pdev, PCI_COMMAND, &id);
5538 	if (id == QM_PCI_COMMAND_INVALID) {
5539 		pci_err(pdev, "Device can not be used!\n");
5540 		return false;
5541 	}
5542 
5543 	return true;
5544 }
5545 
5546 void hisi_qm_reset_done(struct pci_dev *pdev)
5547 {
5548 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
5549 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5550 	int ret;
5551 
5552 	if (qm->fun_type == QM_HW_PF) {
5553 		ret = qm_dev_hw_init(qm);
5554 		if (ret) {
5555 			pci_err(pdev, "Failed to init PF, ret = %d.\n", ret);
5556 			goto flr_done;
5557 		}
5558 	}
5559 
5560 	hisi_qm_dev_err_init(pf_qm);
5561 
5562 	ret = qm_restart(qm);
5563 	if (ret) {
5564 		pci_err(pdev, "Failed to start QM, ret = %d.\n", ret);
5565 		goto flr_done;
5566 	}
5567 
5568 	ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE);
5569 	if (ret)
5570 		pci_err(pdev, "failed to start vfs by pf in FLR.\n");
5571 
5572 	ret = qm_wait_vf_prepare_finish(qm);
5573 	if (ret)
5574 		pci_err(pdev, "failed to start by vfs in FLR!\n");
5575 
5576 flr_done:
5577 	if (qm->fun_type == QM_HW_PF)
5578 		qm_cmd_init(qm);
5579 
5580 	if (qm_flr_reset_complete(pdev))
5581 		pci_info(pdev, "FLR reset complete\n");
5582 
5583 	qm_reset_bit_clear(qm);
5584 }
5585 EXPORT_SYMBOL_GPL(hisi_qm_reset_done);
5586 
5587 static irqreturn_t qm_abnormal_irq(int irq, void *data)
5588 {
5589 	struct hisi_qm *qm = data;
5590 	enum acc_err_result ret;
5591 
5592 	atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt);
5593 	ret = qm_process_dev_error(qm);
5594 	if (ret == ACC_ERR_NEED_RESET &&
5595 	    !test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl) &&
5596 	    !test_and_set_bit(QM_RST_SCHED, &qm->misc_ctl))
5597 		schedule_work(&qm->rst_work);
5598 
5599 	return IRQ_HANDLED;
5600 }
5601 
5602 static int qm_irq_register(struct hisi_qm *qm)
5603 {
5604 	struct pci_dev *pdev = qm->pdev;
5605 	int ret;
5606 
5607 	ret = request_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR),
5608 			  qm_irq, 0, qm->dev_name, qm);
5609 	if (ret)
5610 		return ret;
5611 
5612 	if (qm->ver > QM_HW_V1) {
5613 		ret = request_threaded_irq(pci_irq_vector(pdev,
5614 					   QM_AEQ_EVENT_IRQ_VECTOR),
5615 					   qm_aeq_irq, qm_aeq_thread,
5616 					   0, qm->dev_name, qm);
5617 		if (ret)
5618 			goto err_aeq_irq;
5619 
5620 		if (qm->fun_type == QM_HW_PF) {
5621 			ret = request_irq(pci_irq_vector(pdev,
5622 					  QM_ABNORMAL_EVENT_IRQ_VECTOR),
5623 					  qm_abnormal_irq, 0, qm->dev_name, qm);
5624 			if (ret)
5625 				goto err_abonormal_irq;
5626 		}
5627 	}
5628 
5629 	if (qm->ver > QM_HW_V2) {
5630 		ret = request_irq(pci_irq_vector(pdev, QM_CMD_EVENT_IRQ_VECTOR),
5631 				qm_mb_cmd_irq, 0, qm->dev_name, qm);
5632 		if (ret)
5633 			goto err_mb_cmd_irq;
5634 	}
5635 
5636 	return 0;
5637 
5638 err_mb_cmd_irq:
5639 	if (qm->fun_type == QM_HW_PF)
5640 		free_irq(pci_irq_vector(pdev, QM_ABNORMAL_EVENT_IRQ_VECTOR), qm);
5641 err_abonormal_irq:
5642 	free_irq(pci_irq_vector(pdev, QM_AEQ_EVENT_IRQ_VECTOR), qm);
5643 err_aeq_irq:
5644 	free_irq(pci_irq_vector(pdev, QM_EQ_EVENT_IRQ_VECTOR), qm);
5645 	return ret;
5646 }
5647 
5648 /**
5649  * hisi_qm_dev_shutdown() - Shutdown device.
5650  * @pdev: The device will be shutdown.
5651  *
5652  * This function will stop qm when OS shutdown or rebooting.
5653  */
5654 void hisi_qm_dev_shutdown(struct pci_dev *pdev)
5655 {
5656 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5657 	int ret;
5658 
5659 	ret = hisi_qm_stop(qm, QM_NORMAL);
5660 	if (ret)
5661 		dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n");
5662 }
5663 EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown);
5664 
5665 static void hisi_qm_controller_reset(struct work_struct *rst_work)
5666 {
5667 	struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work);
5668 	int ret;
5669 
5670 	ret = qm_pm_get_sync(qm);
5671 	if (ret) {
5672 		clear_bit(QM_RST_SCHED, &qm->misc_ctl);
5673 		return;
5674 	}
5675 
5676 	/* reset pcie device controller */
5677 	ret = qm_controller_reset(qm);
5678 	if (ret)
5679 		dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret);
5680 
5681 	qm_pm_put_sync(qm);
5682 }
5683 
5684 static void qm_pf_reset_vf_prepare(struct hisi_qm *qm,
5685 				   enum qm_stop_reason stop_reason)
5686 {
5687 	enum qm_mb_cmd cmd = QM_VF_PREPARE_DONE;
5688 	struct pci_dev *pdev = qm->pdev;
5689 	int ret;
5690 
5691 	ret = qm_reset_prepare_ready(qm);
5692 	if (ret) {
5693 		dev_err(&pdev->dev, "reset prepare not ready!\n");
5694 		atomic_set(&qm->status.flags, QM_STOP);
5695 		cmd = QM_VF_PREPARE_FAIL;
5696 		goto err_prepare;
5697 	}
5698 
5699 	ret = hisi_qm_stop(qm, stop_reason);
5700 	if (ret) {
5701 		dev_err(&pdev->dev, "failed to stop QM, ret = %d.\n", ret);
5702 		atomic_set(&qm->status.flags, QM_STOP);
5703 		cmd = QM_VF_PREPARE_FAIL;
5704 		goto err_prepare;
5705 	} else {
5706 		goto out;
5707 	}
5708 
5709 err_prepare:
5710 	hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
5711 	hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
5712 out:
5713 	pci_save_state(pdev);
5714 	ret = qm->ops->ping_pf(qm, cmd);
5715 	if (ret)
5716 		dev_warn(&pdev->dev, "PF responds timeout in reset prepare!\n");
5717 }
5718 
5719 static void qm_pf_reset_vf_done(struct hisi_qm *qm)
5720 {
5721 	enum qm_mb_cmd cmd = QM_VF_START_DONE;
5722 	struct pci_dev *pdev = qm->pdev;
5723 	int ret;
5724 
5725 	pci_restore_state(pdev);
5726 	ret = hisi_qm_start(qm);
5727 	if (ret) {
5728 		dev_err(&pdev->dev, "failed to start QM, ret = %d.\n", ret);
5729 		cmd = QM_VF_START_FAIL;
5730 	}
5731 
5732 	ret = qm->ops->ping_pf(qm, cmd);
5733 	if (ret)
5734 		dev_warn(&pdev->dev, "PF responds timeout in reset done!\n");
5735 
5736 	qm_reset_bit_clear(qm);
5737 }
5738 
5739 static int qm_wait_pf_reset_finish(struct hisi_qm *qm)
5740 {
5741 	struct device *dev = &qm->pdev->dev;
5742 	u32 val, cmd;
5743 	u64 msg;
5744 	int ret;
5745 
5746 	/* Wait for reset to finish */
5747 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_IFC_INT_SOURCE_V, val,
5748 					 val == BIT(0), QM_VF_RESET_WAIT_US,
5749 					 QM_VF_RESET_WAIT_TIMEOUT_US);
5750 	/* hardware completion status should be available by this time */
5751 	if (ret) {
5752 		dev_err(dev, "couldn't get reset done status from PF, timeout!\n");
5753 		return -ETIMEDOUT;
5754 	}
5755 
5756 	/*
5757 	 * Whether message is got successfully,
5758 	 * VF needs to ack PF by clearing the interrupt.
5759 	 */
5760 	ret = qm_get_mb_cmd(qm, &msg, 0);
5761 	qm_clear_cmd_interrupt(qm, 0);
5762 	if (ret) {
5763 		dev_err(dev, "failed to get msg from PF in reset done!\n");
5764 		return ret;
5765 	}
5766 
5767 	cmd = msg & QM_MB_CMD_DATA_MASK;
5768 	if (cmd != QM_PF_RESET_DONE) {
5769 		dev_err(dev, "the cmd(%u) is not reset done!\n", cmd);
5770 		ret = -EINVAL;
5771 	}
5772 
5773 	return ret;
5774 }
5775 
5776 static void qm_pf_reset_vf_process(struct hisi_qm *qm,
5777 				   enum qm_stop_reason stop_reason)
5778 {
5779 	struct device *dev = &qm->pdev->dev;
5780 	int ret;
5781 
5782 	dev_info(dev, "device reset start...\n");
5783 
5784 	/* The message is obtained by querying the register during resetting */
5785 	qm_cmd_uninit(qm);
5786 	qm_pf_reset_vf_prepare(qm, stop_reason);
5787 
5788 	ret = qm_wait_pf_reset_finish(qm);
5789 	if (ret)
5790 		goto err_get_status;
5791 
5792 	qm_pf_reset_vf_done(qm);
5793 	qm_cmd_init(qm);
5794 
5795 	dev_info(dev, "device reset done.\n");
5796 
5797 	return;
5798 
5799 err_get_status:
5800 	qm_cmd_init(qm);
5801 	qm_reset_bit_clear(qm);
5802 }
5803 
5804 static void qm_handle_cmd_msg(struct hisi_qm *qm, u32 fun_num)
5805 {
5806 	struct device *dev = &qm->pdev->dev;
5807 	u64 msg;
5808 	u32 cmd;
5809 	int ret;
5810 
5811 	/*
5812 	 * Get the msg from source by sending mailbox. Whether message is got
5813 	 * successfully, destination needs to ack source by clearing the interrupt.
5814 	 */
5815 	ret = qm_get_mb_cmd(qm, &msg, fun_num);
5816 	qm_clear_cmd_interrupt(qm, BIT(fun_num));
5817 	if (ret) {
5818 		dev_err(dev, "failed to get msg from source!\n");
5819 		return;
5820 	}
5821 
5822 	cmd = msg & QM_MB_CMD_DATA_MASK;
5823 	switch (cmd) {
5824 	case QM_PF_FLR_PREPARE:
5825 		qm_pf_reset_vf_process(qm, QM_FLR);
5826 		break;
5827 	case QM_PF_SRST_PREPARE:
5828 		qm_pf_reset_vf_process(qm, QM_SOFT_RESET);
5829 		break;
5830 	case QM_VF_GET_QOS:
5831 		qm_vf_get_qos(qm, fun_num);
5832 		break;
5833 	case QM_PF_SET_QOS:
5834 		qm->mb_qos = msg >> QM_MB_CMD_DATA_SHIFT;
5835 		break;
5836 	default:
5837 		dev_err(dev, "unsupported cmd %u sent by function(%u)!\n", cmd, fun_num);
5838 		break;
5839 	}
5840 }
5841 
5842 static void qm_cmd_process(struct work_struct *cmd_process)
5843 {
5844 	struct hisi_qm *qm = container_of(cmd_process,
5845 					struct hisi_qm, cmd_process);
5846 	u32 vfs_num = qm->vfs_num;
5847 	u64 val;
5848 	u32 i;
5849 
5850 	if (qm->fun_type == QM_HW_PF) {
5851 		val = readq(qm->io_base + QM_IFC_INT_SOURCE_P);
5852 		if (!val)
5853 			return;
5854 
5855 		for (i = 1; i <= vfs_num; i++) {
5856 			if (val & BIT(i))
5857 				qm_handle_cmd_msg(qm, i);
5858 		}
5859 
5860 		return;
5861 	}
5862 
5863 	qm_handle_cmd_msg(qm, 0);
5864 }
5865 
5866 /**
5867  * hisi_qm_alg_register() - Register alg to crypto and add qm to qm_list.
5868  * @qm: The qm needs add.
5869  * @qm_list: The qm list.
5870  *
5871  * This function adds qm to qm list, and will register algorithm to
5872  * crypto when the qm list is empty.
5873  */
5874 int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
5875 {
5876 	struct device *dev = &qm->pdev->dev;
5877 	int flag = 0;
5878 	int ret = 0;
5879 
5880 	mutex_lock(&qm_list->lock);
5881 	if (list_empty(&qm_list->list))
5882 		flag = 1;
5883 	list_add_tail(&qm->list, &qm_list->list);
5884 	mutex_unlock(&qm_list->lock);
5885 
5886 	if (qm->ver <= QM_HW_V2 && qm->use_sva) {
5887 		dev_info(dev, "HW V2 not both use uacce sva mode and hardware crypto algs.\n");
5888 		return 0;
5889 	}
5890 
5891 	if (flag) {
5892 		ret = qm_list->register_to_crypto(qm);
5893 		if (ret) {
5894 			mutex_lock(&qm_list->lock);
5895 			list_del(&qm->list);
5896 			mutex_unlock(&qm_list->lock);
5897 		}
5898 	}
5899 
5900 	return ret;
5901 }
5902 EXPORT_SYMBOL_GPL(hisi_qm_alg_register);
5903 
5904 /**
5905  * hisi_qm_alg_unregister() - Unregister alg from crypto and delete qm from
5906  * qm list.
5907  * @qm: The qm needs delete.
5908  * @qm_list: The qm list.
5909  *
5910  * This function deletes qm from qm list, and will unregister algorithm
5911  * from crypto when the qm list is empty.
5912  */
5913 void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
5914 {
5915 	mutex_lock(&qm_list->lock);
5916 	list_del(&qm->list);
5917 	mutex_unlock(&qm_list->lock);
5918 
5919 	if (qm->ver <= QM_HW_V2 && qm->use_sva)
5920 		return;
5921 
5922 	if (list_empty(&qm_list->list))
5923 		qm_list->unregister_from_crypto(qm);
5924 }
5925 EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister);
5926 
5927 static int qm_get_qp_num(struct hisi_qm *qm)
5928 {
5929 	if (qm->ver == QM_HW_V1)
5930 		qm->ctrl_qp_num = QM_QNUM_V1;
5931 	else if (qm->ver == QM_HW_V2)
5932 		qm->ctrl_qp_num = QM_QNUM_V2;
5933 	else
5934 		qm->ctrl_qp_num = readl(qm->io_base + QM_CAPBILITY) &
5935 					QM_QP_NUN_MASK;
5936 
5937 	if (qm->use_db_isolation)
5938 		qm->max_qp_num = (readl(qm->io_base + QM_CAPBILITY) >>
5939 				  QM_QP_MAX_NUM_SHIFT) & QM_QP_NUN_MASK;
5940 	else
5941 		qm->max_qp_num = qm->ctrl_qp_num;
5942 
5943 	/* check if qp number is valid */
5944 	if (qm->qp_num > qm->max_qp_num) {
5945 		dev_err(&qm->pdev->dev, "qp num(%u) is more than max qp num(%u)!\n",
5946 			qm->qp_num, qm->max_qp_num);
5947 		return -EINVAL;
5948 	}
5949 
5950 	return 0;
5951 }
5952 
5953 static int qm_get_pci_res(struct hisi_qm *qm)
5954 {
5955 	struct pci_dev *pdev = qm->pdev;
5956 	struct device *dev = &pdev->dev;
5957 	int ret;
5958 
5959 	ret = pci_request_mem_regions(pdev, qm->dev_name);
5960 	if (ret < 0) {
5961 		dev_err(dev, "Failed to request mem regions!\n");
5962 		return ret;
5963 	}
5964 
5965 	qm->phys_base = pci_resource_start(pdev, PCI_BAR_2);
5966 	qm->io_base = ioremap(qm->phys_base, pci_resource_len(pdev, PCI_BAR_2));
5967 	if (!qm->io_base) {
5968 		ret = -EIO;
5969 		goto err_request_mem_regions;
5970 	}
5971 
5972 	if (qm->ver > QM_HW_V2) {
5973 		if (qm->fun_type == QM_HW_PF)
5974 			qm->use_db_isolation = readl(qm->io_base +
5975 						     QM_QUE_ISO_EN) & BIT(0);
5976 		else
5977 			qm->use_db_isolation = readl(qm->io_base +
5978 						     QM_QUE_ISO_CFG_V) & BIT(0);
5979 	}
5980 
5981 	if (qm->use_db_isolation) {
5982 		qm->db_interval = QM_QP_DB_INTERVAL;
5983 		qm->db_phys_base = pci_resource_start(pdev, PCI_BAR_4);
5984 		qm->db_io_base = ioremap(qm->db_phys_base,
5985 					 pci_resource_len(pdev, PCI_BAR_4));
5986 		if (!qm->db_io_base) {
5987 			ret = -EIO;
5988 			goto err_ioremap;
5989 		}
5990 	} else {
5991 		qm->db_phys_base = qm->phys_base;
5992 		qm->db_io_base = qm->io_base;
5993 		qm->db_interval = 0;
5994 	}
5995 
5996 	if (qm->fun_type == QM_HW_PF) {
5997 		ret = qm_get_qp_num(qm);
5998 		if (ret)
5999 			goto err_db_ioremap;
6000 	}
6001 
6002 	return 0;
6003 
6004 err_db_ioremap:
6005 	if (qm->use_db_isolation)
6006 		iounmap(qm->db_io_base);
6007 err_ioremap:
6008 	iounmap(qm->io_base);
6009 err_request_mem_regions:
6010 	pci_release_mem_regions(pdev);
6011 	return ret;
6012 }
6013 
6014 static int hisi_qm_pci_init(struct hisi_qm *qm)
6015 {
6016 	struct pci_dev *pdev = qm->pdev;
6017 	struct device *dev = &pdev->dev;
6018 	unsigned int num_vec;
6019 	int ret;
6020 
6021 	ret = pci_enable_device_mem(pdev);
6022 	if (ret < 0) {
6023 		dev_err(dev, "Failed to enable device mem!\n");
6024 		return ret;
6025 	}
6026 
6027 	ret = qm_get_pci_res(qm);
6028 	if (ret)
6029 		goto err_disable_pcidev;
6030 
6031 	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
6032 	if (ret < 0)
6033 		goto err_get_pci_res;
6034 	pci_set_master(pdev);
6035 
6036 	if (!qm->ops->get_irq_num) {
6037 		ret = -EOPNOTSUPP;
6038 		goto err_get_pci_res;
6039 	}
6040 	num_vec = qm->ops->get_irq_num(qm);
6041 	ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI);
6042 	if (ret < 0) {
6043 		dev_err(dev, "Failed to enable MSI vectors!\n");
6044 		goto err_get_pci_res;
6045 	}
6046 
6047 	return 0;
6048 
6049 err_get_pci_res:
6050 	qm_put_pci_res(qm);
6051 err_disable_pcidev:
6052 	pci_disable_device(pdev);
6053 	return ret;
6054 }
6055 
6056 static int hisi_qm_init_work(struct hisi_qm *qm)
6057 {
6058 	int i;
6059 
6060 	for (i = 0; i < qm->qp_num; i++)
6061 		INIT_WORK(&qm->poll_data[i].work, qm_work_process);
6062 
6063 	if (qm->fun_type == QM_HW_PF)
6064 		INIT_WORK(&qm->rst_work, hisi_qm_controller_reset);
6065 
6066 	if (qm->ver > QM_HW_V2)
6067 		INIT_WORK(&qm->cmd_process, qm_cmd_process);
6068 
6069 	qm->wq = alloc_workqueue("%s", WQ_HIGHPRI | WQ_MEM_RECLAIM |
6070 				 WQ_UNBOUND, num_online_cpus(),
6071 				 pci_name(qm->pdev));
6072 	if (!qm->wq) {
6073 		pci_err(qm->pdev, "failed to alloc workqueue!\n");
6074 		return -ENOMEM;
6075 	}
6076 
6077 	return 0;
6078 }
6079 
6080 static int hisi_qp_alloc_memory(struct hisi_qm *qm)
6081 {
6082 	struct device *dev = &qm->pdev->dev;
6083 	size_t qp_dma_size;
6084 	int i, ret;
6085 
6086 	qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL);
6087 	if (!qm->qp_array)
6088 		return -ENOMEM;
6089 
6090 	qm->poll_data = kcalloc(qm->qp_num, sizeof(struct hisi_qm_poll_data), GFP_KERNEL);
6091 	if (!qm->poll_data) {
6092 		kfree(qm->qp_array);
6093 		return -ENOMEM;
6094 	}
6095 
6096 	/* one more page for device or qp statuses */
6097 	qp_dma_size = qm->sqe_size * QM_Q_DEPTH +
6098 		      sizeof(struct qm_cqe) * QM_Q_DEPTH;
6099 	qp_dma_size = PAGE_ALIGN(qp_dma_size) + PAGE_SIZE;
6100 	for (i = 0; i < qm->qp_num; i++) {
6101 		qm->poll_data[i].qm = qm;
6102 		ret = hisi_qp_memory_init(qm, qp_dma_size, i);
6103 		if (ret)
6104 			goto err_init_qp_mem;
6105 
6106 		dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size);
6107 	}
6108 
6109 	return 0;
6110 err_init_qp_mem:
6111 	hisi_qp_memory_uninit(qm, i);
6112 
6113 	return ret;
6114 }
6115 
6116 static int hisi_qm_memory_init(struct hisi_qm *qm)
6117 {
6118 	struct device *dev = &qm->pdev->dev;
6119 	int ret, total_func, i;
6120 	size_t off = 0;
6121 
6122 	total_func = pci_sriov_get_totalvfs(qm->pdev) + 1;
6123 	qm->factor = kcalloc(total_func, sizeof(struct qm_shaper_factor), GFP_KERNEL);
6124 	if (!qm->factor)
6125 		return -ENOMEM;
6126 	for (i = 0; i < total_func; i++)
6127 		qm->factor[i].func_qos = QM_QOS_MAX_VAL;
6128 
6129 #define QM_INIT_BUF(qm, type, num) do { \
6130 	(qm)->type = ((qm)->qdma.va + (off)); \
6131 	(qm)->type##_dma = (qm)->qdma.dma + (off); \
6132 	off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \
6133 } while (0)
6134 
6135 	idr_init(&qm->qp_idr);
6136 	qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * QM_EQ_DEPTH) +
6137 			QMC_ALIGN(sizeof(struct qm_aeqe) * QM_Q_DEPTH) +
6138 			QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) +
6139 			QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num);
6140 	qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma,
6141 					 GFP_ATOMIC);
6142 	dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size);
6143 	if (!qm->qdma.va) {
6144 		ret =  -ENOMEM;
6145 		goto err_alloc_qdma;
6146 	}
6147 
6148 	QM_INIT_BUF(qm, eqe, QM_EQ_DEPTH);
6149 	QM_INIT_BUF(qm, aeqe, QM_Q_DEPTH);
6150 	QM_INIT_BUF(qm, sqc, qm->qp_num);
6151 	QM_INIT_BUF(qm, cqc, qm->qp_num);
6152 
6153 	ret = hisi_qp_alloc_memory(qm);
6154 	if (ret)
6155 		goto err_alloc_qp_array;
6156 
6157 	return 0;
6158 
6159 err_alloc_qp_array:
6160 	dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma);
6161 err_alloc_qdma:
6162 	kfree(qm->factor);
6163 
6164 	return ret;
6165 }
6166 
6167 static void qm_last_regs_init(struct hisi_qm *qm)
6168 {
6169 	int dfx_regs_num = ARRAY_SIZE(qm_dfx_regs);
6170 	struct qm_debug *debug = &qm->debug;
6171 	int i;
6172 
6173 	if (qm->fun_type == QM_HW_VF)
6174 		return;
6175 
6176 	debug->qm_last_words = kcalloc(dfx_regs_num, sizeof(unsigned int),
6177 								GFP_KERNEL);
6178 	if (!debug->qm_last_words)
6179 		return;
6180 
6181 	for (i = 0; i < dfx_regs_num; i++) {
6182 		debug->qm_last_words[i] = readl_relaxed(qm->io_base +
6183 			qm_dfx_regs[i].offset);
6184 	}
6185 }
6186 
6187 /**
6188  * hisi_qm_init() - Initialize configures about qm.
6189  * @qm: The qm needing init.
6190  *
6191  * This function init qm, then we can call hisi_qm_start to put qm into work.
6192  */
6193 int hisi_qm_init(struct hisi_qm *qm)
6194 {
6195 	struct pci_dev *pdev = qm->pdev;
6196 	struct device *dev = &pdev->dev;
6197 	int ret;
6198 
6199 	hisi_qm_pre_init(qm);
6200 
6201 	ret = hisi_qm_pci_init(qm);
6202 	if (ret)
6203 		return ret;
6204 
6205 	ret = qm_irq_register(qm);
6206 	if (ret)
6207 		goto err_pci_init;
6208 
6209 	if (qm->fun_type == QM_HW_VF && qm->ver != QM_HW_V1) {
6210 		/* v2 starts to support get vft by mailbox */
6211 		ret = hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num);
6212 		if (ret)
6213 			goto err_irq_register;
6214 	}
6215 
6216 	if (qm->fun_type == QM_HW_PF) {
6217 		qm_disable_clock_gate(qm);
6218 		ret = qm_dev_mem_reset(qm);
6219 		if (ret) {
6220 			dev_err(dev, "failed to reset device memory\n");
6221 			goto err_irq_register;
6222 		}
6223 	}
6224 
6225 	if (qm->mode == UACCE_MODE_SVA) {
6226 		ret = qm_alloc_uacce(qm);
6227 		if (ret < 0)
6228 			dev_warn(dev, "fail to alloc uacce (%d)\n", ret);
6229 	}
6230 
6231 	ret = hisi_qm_memory_init(qm);
6232 	if (ret)
6233 		goto err_alloc_uacce;
6234 
6235 	ret = hisi_qm_init_work(qm);
6236 	if (ret)
6237 		goto err_free_qm_memory;
6238 
6239 	qm_cmd_init(qm);
6240 	atomic_set(&qm->status.flags, QM_INIT);
6241 
6242 	qm_last_regs_init(qm);
6243 
6244 	return 0;
6245 
6246 err_free_qm_memory:
6247 	hisi_qm_memory_uninit(qm);
6248 err_alloc_uacce:
6249 	if (qm->use_sva) {
6250 		uacce_remove(qm->uacce);
6251 		qm->uacce = NULL;
6252 	}
6253 err_irq_register:
6254 	qm_irq_unregister(qm);
6255 err_pci_init:
6256 	hisi_qm_pci_uninit(qm);
6257 	return ret;
6258 }
6259 EXPORT_SYMBOL_GPL(hisi_qm_init);
6260 
6261 /**
6262  * hisi_qm_get_dfx_access() - Try to get dfx access.
6263  * @qm: pointer to accelerator device.
6264  *
6265  * Try to get dfx access, then user can get message.
6266  *
6267  * If device is in suspended, return failure, otherwise
6268  * bump up the runtime PM usage counter.
6269  */
6270 int hisi_qm_get_dfx_access(struct hisi_qm *qm)
6271 {
6272 	struct device *dev = &qm->pdev->dev;
6273 
6274 	if (pm_runtime_suspended(dev)) {
6275 		dev_info(dev, "can not read/write - device in suspended.\n");
6276 		return -EAGAIN;
6277 	}
6278 
6279 	return qm_pm_get_sync(qm);
6280 }
6281 EXPORT_SYMBOL_GPL(hisi_qm_get_dfx_access);
6282 
6283 /**
6284  * hisi_qm_put_dfx_access() - Put dfx access.
6285  * @qm: pointer to accelerator device.
6286  *
6287  * Put dfx access, drop runtime PM usage counter.
6288  */
6289 void hisi_qm_put_dfx_access(struct hisi_qm *qm)
6290 {
6291 	qm_pm_put_sync(qm);
6292 }
6293 EXPORT_SYMBOL_GPL(hisi_qm_put_dfx_access);
6294 
6295 /**
6296  * hisi_qm_pm_init() - Initialize qm runtime PM.
6297  * @qm: pointer to accelerator device.
6298  *
6299  * Function that initialize qm runtime PM.
6300  */
6301 void hisi_qm_pm_init(struct hisi_qm *qm)
6302 {
6303 	struct device *dev = &qm->pdev->dev;
6304 
6305 	if (qm->fun_type == QM_HW_VF || qm->ver < QM_HW_V3)
6306 		return;
6307 
6308 	pm_runtime_set_autosuspend_delay(dev, QM_AUTOSUSPEND_DELAY);
6309 	pm_runtime_use_autosuspend(dev);
6310 	pm_runtime_put_noidle(dev);
6311 }
6312 EXPORT_SYMBOL_GPL(hisi_qm_pm_init);
6313 
6314 /**
6315  * hisi_qm_pm_uninit() - Uninitialize qm runtime PM.
6316  * @qm: pointer to accelerator device.
6317  *
6318  * Function that uninitialize qm runtime PM.
6319  */
6320 void hisi_qm_pm_uninit(struct hisi_qm *qm)
6321 {
6322 	struct device *dev = &qm->pdev->dev;
6323 
6324 	if (qm->fun_type == QM_HW_VF || qm->ver < QM_HW_V3)
6325 		return;
6326 
6327 	pm_runtime_get_noresume(dev);
6328 	pm_runtime_dont_use_autosuspend(dev);
6329 }
6330 EXPORT_SYMBOL_GPL(hisi_qm_pm_uninit);
6331 
6332 static int qm_prepare_for_suspend(struct hisi_qm *qm)
6333 {
6334 	struct pci_dev *pdev = qm->pdev;
6335 	int ret;
6336 	u32 val;
6337 
6338 	ret = qm->ops->set_msi(qm, false);
6339 	if (ret) {
6340 		pci_err(pdev, "failed to disable MSI before suspending!\n");
6341 		return ret;
6342 	}
6343 
6344 	/* shutdown OOO register */
6345 	writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN,
6346 	       qm->io_base + ACC_MASTER_GLOBAL_CTRL);
6347 
6348 	ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN,
6349 					 val,
6350 					 (val == ACC_MASTER_TRANS_RETURN_RW),
6351 					 POLL_PERIOD, POLL_TIMEOUT);
6352 	if (ret) {
6353 		pci_emerg(pdev, "Bus lock! Please reset system.\n");
6354 		return ret;
6355 	}
6356 
6357 	ret = qm_set_pf_mse(qm, false);
6358 	if (ret)
6359 		pci_err(pdev, "failed to disable MSE before suspending!\n");
6360 
6361 	return ret;
6362 }
6363 
6364 static int qm_rebuild_for_resume(struct hisi_qm *qm)
6365 {
6366 	struct pci_dev *pdev = qm->pdev;
6367 	int ret;
6368 
6369 	ret = qm_set_pf_mse(qm, true);
6370 	if (ret) {
6371 		pci_err(pdev, "failed to enable MSE after resuming!\n");
6372 		return ret;
6373 	}
6374 
6375 	ret = qm->ops->set_msi(qm, true);
6376 	if (ret) {
6377 		pci_err(pdev, "failed to enable MSI after resuming!\n");
6378 		return ret;
6379 	}
6380 
6381 	ret = qm_dev_hw_init(qm);
6382 	if (ret) {
6383 		pci_err(pdev, "failed to init device after resuming\n");
6384 		return ret;
6385 	}
6386 
6387 	qm_cmd_init(qm);
6388 	hisi_qm_dev_err_init(qm);
6389 	qm_disable_clock_gate(qm);
6390 	ret = qm_dev_mem_reset(qm);
6391 	if (ret)
6392 		pci_err(pdev, "failed to reset device memory\n");
6393 
6394 	return ret;
6395 }
6396 
6397 /**
6398  * hisi_qm_suspend() - Runtime suspend of given device.
6399  * @dev: device to suspend.
6400  *
6401  * Function that suspend the device.
6402  */
6403 int hisi_qm_suspend(struct device *dev)
6404 {
6405 	struct pci_dev *pdev = to_pci_dev(dev);
6406 	struct hisi_qm *qm = pci_get_drvdata(pdev);
6407 	int ret;
6408 
6409 	pci_info(pdev, "entering suspended state\n");
6410 
6411 	ret = hisi_qm_stop(qm, QM_NORMAL);
6412 	if (ret) {
6413 		pci_err(pdev, "failed to stop qm(%d)\n", ret);
6414 		return ret;
6415 	}
6416 
6417 	ret = qm_prepare_for_suspend(qm);
6418 	if (ret)
6419 		pci_err(pdev, "failed to prepare suspended(%d)\n", ret);
6420 
6421 	return ret;
6422 }
6423 EXPORT_SYMBOL_GPL(hisi_qm_suspend);
6424 
6425 /**
6426  * hisi_qm_resume() - Runtime resume of given device.
6427  * @dev: device to resume.
6428  *
6429  * Function that resume the device.
6430  */
6431 int hisi_qm_resume(struct device *dev)
6432 {
6433 	struct pci_dev *pdev = to_pci_dev(dev);
6434 	struct hisi_qm *qm = pci_get_drvdata(pdev);
6435 	int ret;
6436 
6437 	pci_info(pdev, "resuming from suspend state\n");
6438 
6439 	ret = qm_rebuild_for_resume(qm);
6440 	if (ret) {
6441 		pci_err(pdev, "failed to rebuild resume(%d)\n", ret);
6442 		return ret;
6443 	}
6444 
6445 	ret = hisi_qm_start(qm);
6446 	if (ret)
6447 		pci_err(pdev, "failed to start qm(%d)\n", ret);
6448 
6449 	return ret;
6450 }
6451 EXPORT_SYMBOL_GPL(hisi_qm_resume);
6452 
6453 MODULE_LICENSE("GPL v2");
6454 MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>");
6455 MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver");
6456