xref: /linux/drivers/crypto/hisilicon/qm.c (revision 3ba84ac69b53e6ee07c31d54554e00793d7b144f)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 HiSilicon Limited. */
3 #include <asm/page.h>
4 #include <linux/acpi.h>
5 #include <linux/bitmap.h>
6 #include <linux/dma-mapping.h>
7 #include <linux/idr.h>
8 #include <linux/io.h>
9 #include <linux/irqreturn.h>
10 #include <linux/log2.h>
11 #include <linux/pm_runtime.h>
12 #include <linux/seq_file.h>
13 #include <linux/slab.h>
14 #include <linux/uacce.h>
15 #include <linux/uaccess.h>
16 #include <uapi/misc/uacce/hisi_qm.h>
17 #include <linux/hisi_acc_qm.h>
18 #include "qm_common.h"
19 
20 /* eq/aeq irq enable */
21 #define QM_VF_AEQ_INT_SOURCE		0x0
22 #define QM_VF_AEQ_INT_MASK		0x4
23 #define QM_VF_EQ_INT_SOURCE		0x8
24 #define QM_VF_EQ_INT_MASK		0xc
25 
26 #define QM_IRQ_VECTOR_MASK		GENMASK(15, 0)
27 #define QM_IRQ_TYPE_MASK		GENMASK(15, 0)
28 #define QM_IRQ_TYPE_SHIFT		16
29 #define QM_ABN_IRQ_TYPE_MASK		GENMASK(7, 0)
30 
31 /* mailbox */
32 #define QM_MB_PING_ALL_VFS		0xffff
33 #define QM_MB_CMD_DATA_SHIFT		32
34 #define QM_MB_CMD_DATA_MASK		GENMASK(31, 0)
35 #define QM_MB_STATUS_MASK		GENMASK(12, 9)
36 
37 /* sqc shift */
38 #define QM_SQ_HOP_NUM_SHIFT		0
39 #define QM_SQ_PAGE_SIZE_SHIFT		4
40 #define QM_SQ_BUF_SIZE_SHIFT		8
41 #define QM_SQ_SQE_SIZE_SHIFT		12
42 #define QM_SQ_PRIORITY_SHIFT		0
43 #define QM_SQ_ORDERS_SHIFT		4
44 #define QM_SQ_TYPE_SHIFT		8
45 #define QM_QC_PASID_ENABLE		0x1
46 #define QM_QC_PASID_ENABLE_SHIFT	7
47 
48 #define QM_SQ_TYPE_MASK			GENMASK(3, 0)
49 #define QM_SQ_TAIL_IDX(sqc)		((le16_to_cpu((sqc).w11) >> 6) & 0x1)
50 
51 /* cqc shift */
52 #define QM_CQ_HOP_NUM_SHIFT		0
53 #define QM_CQ_PAGE_SIZE_SHIFT		4
54 #define QM_CQ_BUF_SIZE_SHIFT		8
55 #define QM_CQ_CQE_SIZE_SHIFT		12
56 #define QM_CQ_PHASE_SHIFT		0
57 #define QM_CQ_FLAG_SHIFT		1
58 
59 #define QM_CQE_PHASE(cqe)		(le16_to_cpu((cqe)->w7) & 0x1)
60 #define QM_QC_CQE_SIZE			4
61 #define QM_CQ_TAIL_IDX(cqc)		((le16_to_cpu((cqc).w11) >> 6) & 0x1)
62 
63 /* eqc shift */
64 #define QM_EQE_AEQE_SIZE		(2UL << 12)
65 #define QM_EQC_PHASE_SHIFT		16
66 
67 #define QM_EQE_PHASE(eqe)		((le32_to_cpu((eqe)->dw0) >> 16) & 0x1)
68 #define QM_EQE_CQN_MASK			GENMASK(15, 0)
69 
70 #define QM_AEQE_PHASE(aeqe)		((le32_to_cpu((aeqe)->dw0) >> 16) & 0x1)
71 #define QM_AEQE_TYPE_SHIFT		17
72 #define QM_AEQE_TYPE_MASK		0xf
73 #define QM_AEQE_CQN_MASK		GENMASK(15, 0)
74 #define QM_CQ_OVERFLOW			0
75 #define QM_EQ_OVERFLOW			1
76 #define QM_CQE_ERROR			2
77 
78 #define QM_XQ_DEPTH_SHIFT		16
79 #define QM_XQ_DEPTH_MASK		GENMASK(15, 0)
80 
81 #define QM_DOORBELL_CMD_SQ		0
82 #define QM_DOORBELL_CMD_CQ		1
83 #define QM_DOORBELL_CMD_EQ		2
84 #define QM_DOORBELL_CMD_AEQ		3
85 
86 #define QM_DOORBELL_BASE_V1		0x340
87 #define QM_DB_CMD_SHIFT_V1		16
88 #define QM_DB_INDEX_SHIFT_V1		32
89 #define QM_DB_PRIORITY_SHIFT_V1		48
90 #define QM_PAGE_SIZE			0x0034
91 #define QM_QP_DB_INTERVAL		0x10000
92 #define QM_DB_TIMEOUT_CFG		0x100074
93 #define QM_DB_TIMEOUT_SET		0x1fffff
94 
95 #define QM_MEM_START_INIT		0x100040
96 #define QM_MEM_INIT_DONE		0x100044
97 #define QM_VFT_CFG_RDY			0x10006c
98 #define QM_VFT_CFG_OP_WR		0x100058
99 #define QM_VFT_CFG_TYPE			0x10005c
100 #define QM_VFT_CFG			0x100060
101 #define QM_VFT_CFG_OP_ENABLE		0x100054
102 #define QM_PM_CTRL			0x100148
103 #define QM_IDLE_DISABLE			BIT(9)
104 
105 #define QM_VFT_CFG_DATA_L		0x100064
106 #define QM_VFT_CFG_DATA_H		0x100068
107 #define QM_SQC_VFT_BUF_SIZE		(7ULL << 8)
108 #define QM_SQC_VFT_SQC_SIZE		(5ULL << 12)
109 #define QM_SQC_VFT_INDEX_NUMBER		(1ULL << 16)
110 #define QM_SQC_VFT_START_SQN_SHIFT	28
111 #define QM_SQC_VFT_VALID		(1ULL << 44)
112 #define QM_SQC_VFT_SQN_SHIFT		45
113 #define QM_CQC_VFT_BUF_SIZE		(7ULL << 8)
114 #define QM_CQC_VFT_SQC_SIZE		(5ULL << 12)
115 #define QM_CQC_VFT_INDEX_NUMBER		(1ULL << 16)
116 #define QM_CQC_VFT_VALID		(1ULL << 28)
117 
118 #define QM_SQC_VFT_BASE_SHIFT_V2	28
119 #define QM_SQC_VFT_BASE_MASK_V2		GENMASK(15, 0)
120 #define QM_SQC_VFT_NUM_SHIFT_V2		45
121 #define QM_SQC_VFT_NUM_MASK_V2		GENMASK(9, 0)
122 
123 #define QM_ABNORMAL_INT_SOURCE		0x100000
124 #define QM_ABNORMAL_INT_MASK		0x100004
125 #define QM_ABNORMAL_INT_MASK_VALUE	0x7fff
126 #define QM_ABNORMAL_INT_STATUS		0x100008
127 #define QM_ABNORMAL_INT_SET		0x10000c
128 #define QM_ABNORMAL_INF00		0x100010
129 #define QM_FIFO_OVERFLOW_TYPE		0xc0
130 #define QM_FIFO_OVERFLOW_TYPE_SHIFT	6
131 #define QM_FIFO_OVERFLOW_VF		0x3f
132 #define QM_FIFO_OVERFLOW_QP_SHIFT	16
133 #define QM_ABNORMAL_INF01		0x100014
134 #define QM_DB_TIMEOUT_TYPE		0xc0
135 #define QM_DB_TIMEOUT_TYPE_SHIFT	6
136 #define QM_DB_TIMEOUT_VF		0x3f
137 #define QM_DB_TIMEOUT_QP_SHIFT		16
138 #define QM_ABNORMAL_INF02		0x100018
139 #define QM_AXI_POISON_ERR		BIT(22)
140 #define QM_RAS_CE_ENABLE		0x1000ec
141 #define QM_RAS_FE_ENABLE		0x1000f0
142 #define QM_RAS_NFE_ENABLE		0x1000f4
143 #define QM_RAS_CE_THRESHOLD		0x1000f8
144 #define QM_RAS_CE_TIMES_PER_IRQ		1
145 #define QM_OOO_SHUTDOWN_SEL		0x1040f8
146 #define QM_AXI_RRESP_ERR		BIT(0)
147 #define QM_ECC_MBIT			BIT(2)
148 #define QM_DB_TIMEOUT			BIT(10)
149 #define QM_OF_FIFO_OF			BIT(11)
150 
151 #define QM_RESET_WAIT_TIMEOUT		400
152 #define QM_PEH_VENDOR_ID		0x1000d8
153 #define ACC_VENDOR_ID_VALUE		0x5a5a
154 #define QM_PEH_DFX_INFO0		0x1000fc
155 #define QM_PEH_DFX_INFO1		0x100100
156 #define QM_PEH_DFX_MASK			(BIT(0) | BIT(2))
157 #define QM_PEH_MSI_FINISH_MASK		GENMASK(19, 16)
158 #define ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT	3
159 #define ACC_PEH_MSI_DISABLE		GENMASK(31, 0)
160 #define ACC_MASTER_GLOBAL_CTRL_SHUTDOWN	0x1
161 #define ACC_MASTER_TRANS_RETURN_RW	3
162 #define ACC_MASTER_TRANS_RETURN		0x300150
163 #define ACC_MASTER_GLOBAL_CTRL		0x300000
164 #define ACC_AM_CFG_PORT_WR_EN		0x30001c
165 #define QM_RAS_NFE_MBIT_DISABLE		~QM_ECC_MBIT
166 #define ACC_AM_ROB_ECC_INT_STS		0x300104
167 #define ACC_ROB_ECC_ERR_MULTPL		BIT(1)
168 #define QM_MSI_CAP_ENABLE		BIT(16)
169 
170 /* interfunction communication */
171 #define QM_IFC_READY_STATUS		0x100128
172 #define QM_IFC_INT_SET_P		0x100130
173 #define QM_IFC_INT_CFG			0x100134
174 #define QM_IFC_INT_SOURCE_P		0x100138
175 #define QM_IFC_INT_SOURCE_V		0x0020
176 #define QM_IFC_INT_MASK			0x0024
177 #define QM_IFC_INT_STATUS		0x0028
178 #define QM_IFC_INT_SET_V		0x002C
179 #define QM_IFC_SEND_ALL_VFS		GENMASK(6, 0)
180 #define QM_IFC_INT_SOURCE_CLR		GENMASK(63, 0)
181 #define QM_IFC_INT_SOURCE_MASK		BIT(0)
182 #define QM_IFC_INT_DISABLE		BIT(0)
183 #define QM_IFC_INT_STATUS_MASK		BIT(0)
184 #define QM_IFC_INT_SET_MASK		BIT(0)
185 #define QM_WAIT_DST_ACK			10
186 #define QM_MAX_PF_WAIT_COUNT		10
187 #define QM_MAX_VF_WAIT_COUNT		40
188 #define QM_VF_RESET_WAIT_US            20000
189 #define QM_VF_RESET_WAIT_CNT           3000
190 #define QM_VF_RESET_WAIT_TIMEOUT_US    \
191 	(QM_VF_RESET_WAIT_US * QM_VF_RESET_WAIT_CNT)
192 
193 #define POLL_PERIOD			10
194 #define POLL_TIMEOUT			1000
195 #define WAIT_PERIOD_US_MAX		200
196 #define WAIT_PERIOD_US_MIN		100
197 #define MAX_WAIT_COUNTS			1000
198 #define QM_CACHE_WB_START		0x204
199 #define QM_CACHE_WB_DONE		0x208
200 #define QM_FUNC_CAPS_REG		0x3100
201 #define QM_CAPBILITY_VERSION		GENMASK(7, 0)
202 
203 #define PCI_BAR_2			2
204 #define PCI_BAR_4			4
205 #define QMC_ALIGN(sz)			ALIGN(sz, 32)
206 
207 #define QM_DBG_READ_LEN		256
208 #define QM_PCI_COMMAND_INVALID		~0
209 #define QM_RESET_STOP_TX_OFFSET		1
210 #define QM_RESET_STOP_RX_OFFSET		2
211 
212 #define WAIT_PERIOD			20
213 #define REMOVE_WAIT_DELAY		10
214 
215 #define QM_QOS_PARAM_NUM		2
216 #define QM_QOS_MAX_VAL			1000
217 #define QM_QOS_RATE			100
218 #define QM_QOS_EXPAND_RATE		1000
219 #define QM_SHAPER_CIR_B_MASK		GENMASK(7, 0)
220 #define QM_SHAPER_CIR_U_MASK		GENMASK(10, 8)
221 #define QM_SHAPER_CIR_S_MASK		GENMASK(14, 11)
222 #define QM_SHAPER_FACTOR_CIR_U_SHIFT	8
223 #define QM_SHAPER_FACTOR_CIR_S_SHIFT	11
224 #define QM_SHAPER_FACTOR_CBS_B_SHIFT	15
225 #define QM_SHAPER_FACTOR_CBS_S_SHIFT	19
226 #define QM_SHAPER_CBS_B			1
227 #define QM_SHAPER_VFT_OFFSET		6
228 #define QM_QOS_MIN_ERROR_RATE		5
229 #define QM_SHAPER_MIN_CBS_S		8
230 #define QM_QOS_TICK			0x300U
231 #define QM_QOS_DIVISOR_CLK		0x1f40U
232 #define QM_QOS_MAX_CIR_B		200
233 #define QM_QOS_MIN_CIR_B		100
234 #define QM_QOS_MAX_CIR_U		6
235 #define QM_AUTOSUSPEND_DELAY		3000
236 
237 #define QM_DEV_ALG_MAX_LEN		256
238 
239  /* abnormal status value for stopping queue */
240 #define QM_STOP_QUEUE_FAIL		1
241 #define	QM_DUMP_SQC_FAIL		3
242 #define	QM_DUMP_CQC_FAIL		4
243 #define	QM_FINISH_WAIT			5
244 
245 #define QM_MK_CQC_DW3_V1(hop_num, pg_sz, buf_sz, cqe_sz) \
246 	(((hop_num) << QM_CQ_HOP_NUM_SHIFT) | \
247 	((pg_sz) << QM_CQ_PAGE_SIZE_SHIFT) | \
248 	((buf_sz) << QM_CQ_BUF_SIZE_SHIFT) | \
249 	((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
250 
251 #define QM_MK_CQC_DW3_V2(cqe_sz, cq_depth) \
252 	((((u32)cq_depth) - 1) | ((cqe_sz) << QM_CQ_CQE_SIZE_SHIFT))
253 
254 #define QM_MK_SQC_W13(priority, orders, alg_type) \
255 	(((priority) << QM_SQ_PRIORITY_SHIFT) | \
256 	((orders) << QM_SQ_ORDERS_SHIFT) | \
257 	(((alg_type) & QM_SQ_TYPE_MASK) << QM_SQ_TYPE_SHIFT))
258 
259 #define QM_MK_SQC_DW3_V1(hop_num, pg_sz, buf_sz, sqe_sz) \
260 	(((hop_num) << QM_SQ_HOP_NUM_SHIFT) | \
261 	((pg_sz) << QM_SQ_PAGE_SIZE_SHIFT) | \
262 	((buf_sz) << QM_SQ_BUF_SIZE_SHIFT) | \
263 	((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
264 
265 #define QM_MK_SQC_DW3_V2(sqe_sz, sq_depth) \
266 	((((u32)sq_depth) - 1) | ((u32)ilog2(sqe_sz) << QM_SQ_SQE_SIZE_SHIFT))
267 
268 enum vft_type {
269 	SQC_VFT = 0,
270 	CQC_VFT,
271 	SHAPER_VFT,
272 };
273 
274 enum acc_err_result {
275 	ACC_ERR_NONE,
276 	ACC_ERR_NEED_RESET,
277 	ACC_ERR_RECOVERED,
278 };
279 
280 enum qm_alg_type {
281 	ALG_TYPE_0,
282 	ALG_TYPE_1,
283 };
284 
285 enum qm_mb_cmd {
286 	QM_PF_FLR_PREPARE = 0x01,
287 	QM_PF_SRST_PREPARE,
288 	QM_PF_RESET_DONE,
289 	QM_VF_PREPARE_DONE,
290 	QM_VF_PREPARE_FAIL,
291 	QM_VF_START_DONE,
292 	QM_VF_START_FAIL,
293 	QM_PF_SET_QOS,
294 	QM_VF_GET_QOS,
295 };
296 
297 enum qm_basic_type {
298 	QM_TOTAL_QP_NUM_CAP = 0x0,
299 	QM_FUNC_MAX_QP_CAP,
300 	QM_XEQ_DEPTH_CAP,
301 	QM_QP_DEPTH_CAP,
302 	QM_EQ_IRQ_TYPE_CAP,
303 	QM_AEQ_IRQ_TYPE_CAP,
304 	QM_ABN_IRQ_TYPE_CAP,
305 	QM_PF2VF_IRQ_TYPE_CAP,
306 	QM_PF_IRQ_NUM_CAP,
307 	QM_VF_IRQ_NUM_CAP,
308 };
309 
310 enum qm_pre_store_cap_idx {
311 	QM_EQ_IRQ_TYPE_CAP_IDX = 0x0,
312 	QM_AEQ_IRQ_TYPE_CAP_IDX,
313 	QM_ABN_IRQ_TYPE_CAP_IDX,
314 	QM_PF2VF_IRQ_TYPE_CAP_IDX,
315 };
316 
317 static const struct hisi_qm_cap_info qm_cap_info_comm[] = {
318 	{QM_SUPPORT_DB_ISOLATION, 0x30,   0, BIT(0),  0x0, 0x0, 0x0},
319 	{QM_SUPPORT_FUNC_QOS,     0x3100, 0, BIT(8),  0x0, 0x0, 0x1},
320 	{QM_SUPPORT_STOP_QP,      0x3100, 0, BIT(9),  0x0, 0x0, 0x1},
321 	{QM_SUPPORT_STOP_FUNC,     0x3100, 0, BIT(10), 0x0, 0x0, 0x1},
322 	{QM_SUPPORT_MB_COMMAND,   0x3100, 0, BIT(11), 0x0, 0x0, 0x1},
323 	{QM_SUPPORT_SVA_PREFETCH, 0x3100, 0, BIT(14), 0x0, 0x0, 0x1},
324 };
325 
326 static const struct hisi_qm_cap_info qm_cap_info_pf[] = {
327 	{QM_SUPPORT_RPM, 0x3100, 0, BIT(13), 0x0, 0x0, 0x1},
328 };
329 
330 static const struct hisi_qm_cap_info qm_cap_info_vf[] = {
331 	{QM_SUPPORT_RPM, 0x3100, 0, BIT(12), 0x0, 0x0, 0x0},
332 };
333 
334 static const struct hisi_qm_cap_info qm_basic_info[] = {
335 	{QM_TOTAL_QP_NUM_CAP,   0x100158, 0,  GENMASK(10, 0), 0x1000,    0x400,     0x400},
336 	{QM_FUNC_MAX_QP_CAP,    0x100158, 11, GENMASK(10, 0), 0x1000,    0x400,     0x400},
337 	{QM_XEQ_DEPTH_CAP,      0x3104,   0,  GENMASK(31, 0), 0x800,     0x4000800, 0x4000800},
338 	{QM_QP_DEPTH_CAP,       0x3108,   0,  GENMASK(31, 0), 0x4000400, 0x4000400, 0x4000400},
339 	{QM_EQ_IRQ_TYPE_CAP,    0x310c,   0,  GENMASK(31, 0), 0x10000,   0x10000,   0x10000},
340 	{QM_AEQ_IRQ_TYPE_CAP,   0x3110,   0,  GENMASK(31, 0), 0x0,       0x10001,   0x10001},
341 	{QM_ABN_IRQ_TYPE_CAP,   0x3114,   0,  GENMASK(31, 0), 0x0,       0x10003,   0x10003},
342 	{QM_PF2VF_IRQ_TYPE_CAP, 0x3118,   0,  GENMASK(31, 0), 0x0,       0x0,       0x10002},
343 	{QM_PF_IRQ_NUM_CAP,     0x311c,   16, GENMASK(15, 0), 0x1,       0x4,       0x4},
344 	{QM_VF_IRQ_NUM_CAP,     0x311c,   0,  GENMASK(15, 0), 0x1,       0x2,       0x3},
345 };
346 
347 static const u32 qm_pre_store_caps[] = {
348 	QM_EQ_IRQ_TYPE_CAP,
349 	QM_AEQ_IRQ_TYPE_CAP,
350 	QM_ABN_IRQ_TYPE_CAP,
351 	QM_PF2VF_IRQ_TYPE_CAP,
352 };
353 
354 struct qm_mailbox {
355 	__le16 w0;
356 	__le16 queue_num;
357 	__le32 base_l;
358 	__le32 base_h;
359 	__le32 rsvd;
360 };
361 
362 struct qm_doorbell {
363 	__le16 queue_num;
364 	__le16 cmd;
365 	__le16 index;
366 	__le16 priority;
367 };
368 
369 struct hisi_qm_resource {
370 	struct hisi_qm *qm;
371 	int distance;
372 	struct list_head list;
373 };
374 
375 /**
376  * struct qm_hw_err - Structure describing the device errors
377  * @list: hardware error list
378  * @timestamp: timestamp when the error occurred
379  */
380 struct qm_hw_err {
381 	struct list_head list;
382 	unsigned long long timestamp;
383 };
384 
385 struct hisi_qm_hw_ops {
386 	int (*get_vft)(struct hisi_qm *qm, u32 *base, u32 *number);
387 	void (*qm_db)(struct hisi_qm *qm, u16 qn,
388 		      u8 cmd, u16 index, u8 priority);
389 	int (*debug_init)(struct hisi_qm *qm);
390 	void (*hw_error_init)(struct hisi_qm *qm);
391 	void (*hw_error_uninit)(struct hisi_qm *qm);
392 	enum acc_err_result (*hw_error_handle)(struct hisi_qm *qm);
393 	int (*set_msi)(struct hisi_qm *qm, bool set);
394 };
395 
396 struct hisi_qm_hw_error {
397 	u32 int_msk;
398 	const char *msg;
399 };
400 
401 static const struct hisi_qm_hw_error qm_hw_error[] = {
402 	{ .int_msk = BIT(0), .msg = "qm_axi_rresp" },
403 	{ .int_msk = BIT(1), .msg = "qm_axi_bresp" },
404 	{ .int_msk = BIT(2), .msg = "qm_ecc_mbit" },
405 	{ .int_msk = BIT(3), .msg = "qm_ecc_1bit" },
406 	{ .int_msk = BIT(4), .msg = "qm_acc_get_task_timeout" },
407 	{ .int_msk = BIT(5), .msg = "qm_acc_do_task_timeout" },
408 	{ .int_msk = BIT(6), .msg = "qm_acc_wb_not_ready_timeout" },
409 	{ .int_msk = BIT(7), .msg = "qm_sq_cq_vf_invalid" },
410 	{ .int_msk = BIT(8), .msg = "qm_cq_vf_invalid" },
411 	{ .int_msk = BIT(9), .msg = "qm_sq_vf_invalid" },
412 	{ .int_msk = BIT(10), .msg = "qm_db_timeout" },
413 	{ .int_msk = BIT(11), .msg = "qm_of_fifo_of" },
414 	{ .int_msk = BIT(12), .msg = "qm_db_random_invalid" },
415 	{ .int_msk = BIT(13), .msg = "qm_mailbox_timeout" },
416 	{ .int_msk = BIT(14), .msg = "qm_flr_timeout" },
417 };
418 
419 static const char * const qm_db_timeout[] = {
420 	"sq", "cq", "eq", "aeq",
421 };
422 
423 static const char * const qm_fifo_overflow[] = {
424 	"cq", "eq", "aeq",
425 };
426 
427 struct qm_typical_qos_table {
428 	u32 start;
429 	u32 end;
430 	u32 val;
431 };
432 
433 /* the qos step is 100 */
434 static struct qm_typical_qos_table shaper_cir_s[] = {
435 	{100, 100, 4},
436 	{200, 200, 3},
437 	{300, 500, 2},
438 	{600, 1000, 1},
439 	{1100, 100000, 0},
440 };
441 
442 static struct qm_typical_qos_table shaper_cbs_s[] = {
443 	{100, 200, 9},
444 	{300, 500, 11},
445 	{600, 1000, 12},
446 	{1100, 10000, 16},
447 	{10100, 25000, 17},
448 	{25100, 50000, 18},
449 	{50100, 100000, 19}
450 };
451 
452 static void qm_irqs_unregister(struct hisi_qm *qm);
453 static int qm_reset_device(struct hisi_qm *qm);
454 
455 static u32 qm_get_hw_error_status(struct hisi_qm *qm)
456 {
457 	return readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
458 }
459 
460 static u32 qm_get_dev_err_status(struct hisi_qm *qm)
461 {
462 	return qm->err_ini->get_dev_hw_err_status(qm);
463 }
464 
465 /* Check if the error causes the master ooo block */
466 static bool qm_check_dev_error(struct hisi_qm *qm)
467 {
468 	u32 val, dev_val;
469 
470 	if (qm->fun_type == QM_HW_VF)
471 		return false;
472 
473 	val = qm_get_hw_error_status(qm) & qm->err_info.qm_shutdown_mask;
474 	dev_val = qm_get_dev_err_status(qm) & qm->err_info.dev_shutdown_mask;
475 
476 	return val || dev_val;
477 }
478 
479 static int qm_wait_reset_finish(struct hisi_qm *qm)
480 {
481 	int delay = 0;
482 
483 	/* All reset requests need to be queued for processing */
484 	while (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
485 		msleep(++delay);
486 		if (delay > QM_RESET_WAIT_TIMEOUT)
487 			return -EBUSY;
488 	}
489 
490 	return 0;
491 }
492 
493 static int qm_reset_prepare_ready(struct hisi_qm *qm)
494 {
495 	struct pci_dev *pdev = qm->pdev;
496 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
497 
498 	/*
499 	 * PF and VF on host doesnot support resetting at the
500 	 * same time on Kunpeng920.
501 	 */
502 	if (qm->ver < QM_HW_V3)
503 		return qm_wait_reset_finish(pf_qm);
504 
505 	return qm_wait_reset_finish(qm);
506 }
507 
508 static void qm_reset_bit_clear(struct hisi_qm *qm)
509 {
510 	struct pci_dev *pdev = qm->pdev;
511 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
512 
513 	if (qm->ver < QM_HW_V3)
514 		clear_bit(QM_RESETTING, &pf_qm->misc_ctl);
515 
516 	clear_bit(QM_RESETTING, &qm->misc_ctl);
517 }
518 
519 static void qm_mb_pre_init(struct qm_mailbox *mailbox, u8 cmd,
520 			   u64 base, u16 queue, bool op)
521 {
522 	mailbox->w0 = cpu_to_le16((cmd) |
523 		((op) ? 0x1 << QM_MB_OP_SHIFT : 0) |
524 		(0x1 << QM_MB_BUSY_SHIFT));
525 	mailbox->queue_num = cpu_to_le16(queue);
526 	mailbox->base_l = cpu_to_le32(lower_32_bits(base));
527 	mailbox->base_h = cpu_to_le32(upper_32_bits(base));
528 	mailbox->rsvd = 0;
529 }
530 
531 /* return 0 mailbox ready, -ETIMEDOUT hardware timeout */
532 int hisi_qm_wait_mb_ready(struct hisi_qm *qm)
533 {
534 	u32 val;
535 
536 	return readl_relaxed_poll_timeout(qm->io_base + QM_MB_CMD_SEND_BASE,
537 					  val, !((val >> QM_MB_BUSY_SHIFT) &
538 					  0x1), POLL_PERIOD, POLL_TIMEOUT);
539 }
540 EXPORT_SYMBOL_GPL(hisi_qm_wait_mb_ready);
541 
542 /* 128 bit should be written to hardware at one time to trigger a mailbox */
543 static void qm_mb_write(struct hisi_qm *qm, const void *src)
544 {
545 	void __iomem *fun_base = qm->io_base + QM_MB_CMD_SEND_BASE;
546 
547 #if IS_ENABLED(CONFIG_ARM64)
548 	unsigned long tmp0 = 0, tmp1 = 0;
549 #endif
550 
551 	if (!IS_ENABLED(CONFIG_ARM64)) {
552 		memcpy_toio(fun_base, src, 16);
553 		dma_wmb();
554 		return;
555 	}
556 
557 #if IS_ENABLED(CONFIG_ARM64)
558 	asm volatile("ldp %0, %1, %3\n"
559 		     "stp %0, %1, %2\n"
560 		     "dmb oshst\n"
561 		     : "=&r" (tmp0),
562 		       "=&r" (tmp1),
563 		       "+Q" (*((char __iomem *)fun_base))
564 		     : "Q" (*((char *)src))
565 		     : "memory");
566 #endif
567 }
568 
569 static int qm_mb_nolock(struct hisi_qm *qm, struct qm_mailbox *mailbox)
570 {
571 	int ret;
572 	u32 val;
573 
574 	if (unlikely(hisi_qm_wait_mb_ready(qm))) {
575 		dev_err(&qm->pdev->dev, "QM mailbox is busy to start!\n");
576 		ret = -EBUSY;
577 		goto mb_busy;
578 	}
579 
580 	qm_mb_write(qm, mailbox);
581 
582 	if (unlikely(hisi_qm_wait_mb_ready(qm))) {
583 		dev_err(&qm->pdev->dev, "QM mailbox operation timeout!\n");
584 		ret = -ETIMEDOUT;
585 		goto mb_busy;
586 	}
587 
588 	val = readl(qm->io_base + QM_MB_CMD_SEND_BASE);
589 	if (val & QM_MB_STATUS_MASK) {
590 		dev_err(&qm->pdev->dev, "QM mailbox operation failed!\n");
591 		ret = -EIO;
592 		goto mb_busy;
593 	}
594 
595 	return 0;
596 
597 mb_busy:
598 	atomic64_inc(&qm->debug.dfx.mb_err_cnt);
599 	return ret;
600 }
601 
602 int hisi_qm_mb(struct hisi_qm *qm, u8 cmd, dma_addr_t dma_addr, u16 queue,
603 	       bool op)
604 {
605 	struct qm_mailbox mailbox;
606 	int ret;
607 
608 	qm_mb_pre_init(&mailbox, cmd, dma_addr, queue, op);
609 
610 	mutex_lock(&qm->mailbox_lock);
611 	ret = qm_mb_nolock(qm, &mailbox);
612 	mutex_unlock(&qm->mailbox_lock);
613 
614 	return ret;
615 }
616 EXPORT_SYMBOL_GPL(hisi_qm_mb);
617 
618 /* op 0: set xqc information to hardware, 1: get xqc information from hardware. */
619 int qm_set_and_get_xqc(struct hisi_qm *qm, u8 cmd, void *xqc, u32 qp_id, bool op)
620 {
621 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
622 	struct qm_mailbox mailbox;
623 	dma_addr_t xqc_dma;
624 	void *tmp_xqc;
625 	size_t size;
626 	int ret;
627 
628 	switch (cmd) {
629 	case QM_MB_CMD_SQC:
630 		size = sizeof(struct qm_sqc);
631 		tmp_xqc = qm->xqc_buf.sqc;
632 		xqc_dma = qm->xqc_buf.sqc_dma;
633 		break;
634 	case QM_MB_CMD_CQC:
635 		size = sizeof(struct qm_cqc);
636 		tmp_xqc = qm->xqc_buf.cqc;
637 		xqc_dma = qm->xqc_buf.cqc_dma;
638 		break;
639 	case QM_MB_CMD_EQC:
640 		size = sizeof(struct qm_eqc);
641 		tmp_xqc = qm->xqc_buf.eqc;
642 		xqc_dma = qm->xqc_buf.eqc_dma;
643 		break;
644 	case QM_MB_CMD_AEQC:
645 		size = sizeof(struct qm_aeqc);
646 		tmp_xqc = qm->xqc_buf.aeqc;
647 		xqc_dma = qm->xqc_buf.aeqc_dma;
648 		break;
649 	default:
650 		dev_err(&qm->pdev->dev, "unknown mailbox cmd %u\n", cmd);
651 		return -EINVAL;
652 	}
653 
654 	/* Setting xqc will fail if master OOO is blocked. */
655 	if (qm_check_dev_error(pf_qm)) {
656 		dev_err(&qm->pdev->dev, "failed to send mailbox since qm is stop!\n");
657 		return -EIO;
658 	}
659 
660 	mutex_lock(&qm->mailbox_lock);
661 	if (!op)
662 		memcpy(tmp_xqc, xqc, size);
663 
664 	qm_mb_pre_init(&mailbox, cmd, xqc_dma, qp_id, op);
665 	ret = qm_mb_nolock(qm, &mailbox);
666 	if (!ret && op)
667 		memcpy(xqc, tmp_xqc, size);
668 
669 	mutex_unlock(&qm->mailbox_lock);
670 
671 	return ret;
672 }
673 
674 static void qm_db_v1(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
675 {
676 	u64 doorbell;
677 
678 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V1) |
679 		   ((u64)index << QM_DB_INDEX_SHIFT_V1)  |
680 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V1);
681 
682 	writeq(doorbell, qm->io_base + QM_DOORBELL_BASE_V1);
683 }
684 
685 static void qm_db_v2(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
686 {
687 	void __iomem *io_base = qm->io_base;
688 	u16 randata = 0;
689 	u64 doorbell;
690 
691 	if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ)
692 		io_base = qm->db_io_base + (u64)qn * qm->db_interval +
693 			  QM_DOORBELL_SQ_CQ_BASE_V2;
694 	else
695 		io_base += QM_DOORBELL_EQ_AEQ_BASE_V2;
696 
697 	doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) |
698 		   ((u64)randata << QM_DB_RAND_SHIFT_V2) |
699 		   ((u64)index << QM_DB_INDEX_SHIFT_V2) |
700 		   ((u64)priority << QM_DB_PRIORITY_SHIFT_V2);
701 
702 	writeq(doorbell, io_base);
703 }
704 
705 static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd, u16 index, u8 priority)
706 {
707 	dev_dbg(&qm->pdev->dev, "QM doorbell request: qn=%u, cmd=%u, index=%u\n",
708 		qn, cmd, index);
709 
710 	qm->ops->qm_db(qm, qn, cmd, index, priority);
711 }
712 
713 static void qm_disable_clock_gate(struct hisi_qm *qm)
714 {
715 	u32 val;
716 
717 	/* if qm enables clock gating in Kunpeng930, qos will be inaccurate. */
718 	if (qm->ver < QM_HW_V3)
719 		return;
720 
721 	val = readl(qm->io_base + QM_PM_CTRL);
722 	val |= QM_IDLE_DISABLE;
723 	writel(val, qm->io_base +  QM_PM_CTRL);
724 }
725 
726 static int qm_dev_mem_reset(struct hisi_qm *qm)
727 {
728 	u32 val;
729 
730 	writel(0x1, qm->io_base + QM_MEM_START_INIT);
731 	return readl_relaxed_poll_timeout(qm->io_base + QM_MEM_INIT_DONE, val,
732 					  val & BIT(0), POLL_PERIOD,
733 					  POLL_TIMEOUT);
734 }
735 
736 /**
737  * hisi_qm_get_hw_info() - Get device information.
738  * @qm: The qm which want to get information.
739  * @info_table: Array for storing device information.
740  * @index: Index in info_table.
741  * @is_read: Whether read from reg, 0: not support read from reg.
742  *
743  * This function returns device information the caller needs.
744  */
745 u32 hisi_qm_get_hw_info(struct hisi_qm *qm,
746 			const struct hisi_qm_cap_info *info_table,
747 			u32 index, bool is_read)
748 {
749 	u32 val;
750 
751 	switch (qm->ver) {
752 	case QM_HW_V1:
753 		return info_table[index].v1_val;
754 	case QM_HW_V2:
755 		return info_table[index].v2_val;
756 	default:
757 		if (!is_read)
758 			return info_table[index].v3_val;
759 
760 		val = readl(qm->io_base + info_table[index].offset);
761 		return (val >> info_table[index].shift) & info_table[index].mask;
762 	}
763 }
764 EXPORT_SYMBOL_GPL(hisi_qm_get_hw_info);
765 
766 static void qm_get_xqc_depth(struct hisi_qm *qm, u16 *low_bits,
767 			     u16 *high_bits, enum qm_basic_type type)
768 {
769 	u32 depth;
770 
771 	depth = hisi_qm_get_hw_info(qm, qm_basic_info, type, qm->cap_ver);
772 	*low_bits = depth & QM_XQ_DEPTH_MASK;
773 	*high_bits = (depth >> QM_XQ_DEPTH_SHIFT) & QM_XQ_DEPTH_MASK;
774 }
775 
776 int hisi_qm_set_algs(struct hisi_qm *qm, u64 alg_msk, const struct qm_dev_alg *dev_algs,
777 		     u32 dev_algs_size)
778 {
779 	struct device *dev = &qm->pdev->dev;
780 	char *algs, *ptr;
781 	int i;
782 
783 	if (!qm->uacce)
784 		return 0;
785 
786 	if (dev_algs_size >= QM_DEV_ALG_MAX_LEN) {
787 		dev_err(dev, "algs size %u is equal or larger than %d.\n",
788 			dev_algs_size, QM_DEV_ALG_MAX_LEN);
789 		return -EINVAL;
790 	}
791 
792 	algs = devm_kzalloc(dev, QM_DEV_ALG_MAX_LEN * sizeof(char), GFP_KERNEL);
793 	if (!algs)
794 		return -ENOMEM;
795 
796 	for (i = 0; i < dev_algs_size; i++)
797 		if (alg_msk & dev_algs[i].alg_msk)
798 			strcat(algs, dev_algs[i].alg);
799 
800 	ptr = strrchr(algs, '\n');
801 	if (ptr) {
802 		*ptr = '\0';
803 		qm->uacce->algs = algs;
804 	}
805 
806 	return 0;
807 }
808 EXPORT_SYMBOL_GPL(hisi_qm_set_algs);
809 
810 static u32 qm_get_irq_num(struct hisi_qm *qm)
811 {
812 	if (qm->fun_type == QM_HW_PF)
813 		return hisi_qm_get_hw_info(qm, qm_basic_info, QM_PF_IRQ_NUM_CAP, qm->cap_ver);
814 
815 	return hisi_qm_get_hw_info(qm, qm_basic_info, QM_VF_IRQ_NUM_CAP, qm->cap_ver);
816 }
817 
818 static int qm_pm_get_sync(struct hisi_qm *qm)
819 {
820 	struct device *dev = &qm->pdev->dev;
821 	int ret;
822 
823 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
824 		return 0;
825 
826 	ret = pm_runtime_resume_and_get(dev);
827 	if (ret < 0) {
828 		dev_err(dev, "failed to get_sync(%d).\n", ret);
829 		return ret;
830 	}
831 
832 	return 0;
833 }
834 
835 static void qm_pm_put_sync(struct hisi_qm *qm)
836 {
837 	struct device *dev = &qm->pdev->dev;
838 
839 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
840 		return;
841 
842 	pm_runtime_mark_last_busy(dev);
843 	pm_runtime_put_autosuspend(dev);
844 }
845 
846 static void qm_cq_head_update(struct hisi_qp *qp)
847 {
848 	if (qp->qp_status.cq_head == qp->cq_depth - 1) {
849 		qp->qp_status.cqc_phase = !qp->qp_status.cqc_phase;
850 		qp->qp_status.cq_head = 0;
851 	} else {
852 		qp->qp_status.cq_head++;
853 	}
854 }
855 
856 static void qm_poll_req_cb(struct hisi_qp *qp)
857 {
858 	struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
859 	struct hisi_qm *qm = qp->qm;
860 
861 	while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
862 		dma_rmb();
863 		qp->req_cb(qp, qp->sqe + qm->sqe_size *
864 			   le16_to_cpu(cqe->sq_head));
865 		qm_cq_head_update(qp);
866 		cqe = qp->cqe + qp->qp_status.cq_head;
867 		qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ,
868 		      qp->qp_status.cq_head, 0);
869 		atomic_dec(&qp->qp_status.used);
870 
871 		cond_resched();
872 	}
873 
874 	/* set c_flag */
875 	qm_db(qm, qp->qp_id, QM_DOORBELL_CMD_CQ, qp->qp_status.cq_head, 1);
876 }
877 
878 static void qm_work_process(struct work_struct *work)
879 {
880 	struct hisi_qm_poll_data *poll_data =
881 		container_of(work, struct hisi_qm_poll_data, work);
882 	struct hisi_qm *qm = poll_data->qm;
883 	u16 eqe_num = poll_data->eqe_num;
884 	struct hisi_qp *qp;
885 	int i;
886 
887 	for (i = eqe_num - 1; i >= 0; i--) {
888 		qp = &qm->qp_array[poll_data->qp_finish_id[i]];
889 		if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP))
890 			continue;
891 
892 		if (qp->event_cb) {
893 			qp->event_cb(qp);
894 			continue;
895 		}
896 
897 		if (likely(qp->req_cb))
898 			qm_poll_req_cb(qp);
899 	}
900 }
901 
902 static void qm_get_complete_eqe_num(struct hisi_qm *qm)
903 {
904 	struct qm_eqe *eqe = qm->eqe + qm->status.eq_head;
905 	struct hisi_qm_poll_data *poll_data = NULL;
906 	u16 eq_depth = qm->eq_depth;
907 	u16 cqn, eqe_num = 0;
908 
909 	if (QM_EQE_PHASE(eqe) != qm->status.eqc_phase) {
910 		atomic64_inc(&qm->debug.dfx.err_irq_cnt);
911 		qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
912 		return;
913 	}
914 
915 	cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK;
916 	if (unlikely(cqn >= qm->qp_num))
917 		return;
918 	poll_data = &qm->poll_data[cqn];
919 
920 	while (QM_EQE_PHASE(eqe) == qm->status.eqc_phase) {
921 		cqn = le32_to_cpu(eqe->dw0) & QM_EQE_CQN_MASK;
922 		poll_data->qp_finish_id[eqe_num] = cqn;
923 		eqe_num++;
924 
925 		if (qm->status.eq_head == eq_depth - 1) {
926 			qm->status.eqc_phase = !qm->status.eqc_phase;
927 			eqe = qm->eqe;
928 			qm->status.eq_head = 0;
929 		} else {
930 			eqe++;
931 			qm->status.eq_head++;
932 		}
933 
934 		if (eqe_num == (eq_depth >> 1) - 1)
935 			break;
936 	}
937 
938 	poll_data->eqe_num = eqe_num;
939 	queue_work(qm->wq, &poll_data->work);
940 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
941 }
942 
943 static irqreturn_t qm_eq_irq(int irq, void *data)
944 {
945 	struct hisi_qm *qm = data;
946 
947 	/* Get qp id of completed tasks and re-enable the interrupt */
948 	qm_get_complete_eqe_num(qm);
949 
950 	return IRQ_HANDLED;
951 }
952 
953 static irqreturn_t qm_mb_cmd_irq(int irq, void *data)
954 {
955 	struct hisi_qm *qm = data;
956 	u32 val;
957 
958 	val = readl(qm->io_base + QM_IFC_INT_STATUS);
959 	val &= QM_IFC_INT_STATUS_MASK;
960 	if (!val)
961 		return IRQ_NONE;
962 
963 	if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl)) {
964 		dev_warn(&qm->pdev->dev, "Driver is down, message cannot be processed!\n");
965 		return IRQ_HANDLED;
966 	}
967 
968 	schedule_work(&qm->cmd_process);
969 
970 	return IRQ_HANDLED;
971 }
972 
973 static void qm_set_qp_disable(struct hisi_qp *qp, int offset)
974 {
975 	u32 *addr;
976 
977 	if (qp->is_in_kernel)
978 		return;
979 
980 	addr = (u32 *)(qp->qdma.va + qp->qdma.size) - offset;
981 	*addr = 1;
982 
983 	/* make sure setup is completed */
984 	smp_wmb();
985 }
986 
987 static void qm_disable_qp(struct hisi_qm *qm, u32 qp_id)
988 {
989 	struct hisi_qp *qp = &qm->qp_array[qp_id];
990 
991 	qm_set_qp_disable(qp, QM_RESET_STOP_TX_OFFSET);
992 	hisi_qm_stop_qp(qp);
993 	qm_set_qp_disable(qp, QM_RESET_STOP_RX_OFFSET);
994 }
995 
996 static void qm_reset_function(struct hisi_qm *qm)
997 {
998 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
999 	struct device *dev = &qm->pdev->dev;
1000 	int ret;
1001 
1002 	if (qm_check_dev_error(pf_qm))
1003 		return;
1004 
1005 	ret = qm_reset_prepare_ready(qm);
1006 	if (ret) {
1007 		dev_err(dev, "reset function not ready\n");
1008 		return;
1009 	}
1010 
1011 	ret = hisi_qm_stop(qm, QM_DOWN);
1012 	if (ret) {
1013 		dev_err(dev, "failed to stop qm when reset function\n");
1014 		goto clear_bit;
1015 	}
1016 
1017 	ret = hisi_qm_start(qm);
1018 	if (ret)
1019 		dev_err(dev, "failed to start qm when reset function\n");
1020 
1021 clear_bit:
1022 	qm_reset_bit_clear(qm);
1023 }
1024 
1025 static irqreturn_t qm_aeq_thread(int irq, void *data)
1026 {
1027 	struct hisi_qm *qm = data;
1028 	struct qm_aeqe *aeqe = qm->aeqe + qm->status.aeq_head;
1029 	u16 aeq_depth = qm->aeq_depth;
1030 	u32 type, qp_id;
1031 
1032 	atomic64_inc(&qm->debug.dfx.aeq_irq_cnt);
1033 
1034 	while (QM_AEQE_PHASE(aeqe) == qm->status.aeqc_phase) {
1035 		type = (le32_to_cpu(aeqe->dw0) >> QM_AEQE_TYPE_SHIFT) &
1036 			QM_AEQE_TYPE_MASK;
1037 		qp_id = le32_to_cpu(aeqe->dw0) & QM_AEQE_CQN_MASK;
1038 
1039 		switch (type) {
1040 		case QM_EQ_OVERFLOW:
1041 			dev_err(&qm->pdev->dev, "eq overflow, reset function\n");
1042 			qm_reset_function(qm);
1043 			return IRQ_HANDLED;
1044 		case QM_CQ_OVERFLOW:
1045 			dev_err(&qm->pdev->dev, "cq overflow, stop qp(%u)\n",
1046 				qp_id);
1047 			fallthrough;
1048 		case QM_CQE_ERROR:
1049 			qm_disable_qp(qm, qp_id);
1050 			break;
1051 		default:
1052 			dev_err(&qm->pdev->dev, "unknown error type %u\n",
1053 				type);
1054 			break;
1055 		}
1056 
1057 		if (qm->status.aeq_head == aeq_depth - 1) {
1058 			qm->status.aeqc_phase = !qm->status.aeqc_phase;
1059 			aeqe = qm->aeqe;
1060 			qm->status.aeq_head = 0;
1061 		} else {
1062 			aeqe++;
1063 			qm->status.aeq_head++;
1064 		}
1065 	}
1066 
1067 	qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
1068 
1069 	return IRQ_HANDLED;
1070 }
1071 
1072 static void qm_init_qp_status(struct hisi_qp *qp)
1073 {
1074 	struct hisi_qp_status *qp_status = &qp->qp_status;
1075 
1076 	qp_status->sq_tail = 0;
1077 	qp_status->cq_head = 0;
1078 	qp_status->cqc_phase = true;
1079 	atomic_set(&qp_status->used, 0);
1080 }
1081 
1082 static void qm_init_prefetch(struct hisi_qm *qm)
1083 {
1084 	struct device *dev = &qm->pdev->dev;
1085 	u32 page_type = 0x0;
1086 
1087 	if (!test_bit(QM_SUPPORT_SVA_PREFETCH, &qm->caps))
1088 		return;
1089 
1090 	switch (PAGE_SIZE) {
1091 	case SZ_4K:
1092 		page_type = 0x0;
1093 		break;
1094 	case SZ_16K:
1095 		page_type = 0x1;
1096 		break;
1097 	case SZ_64K:
1098 		page_type = 0x2;
1099 		break;
1100 	default:
1101 		dev_err(dev, "system page size is not support: %lu, default set to 4KB",
1102 			PAGE_SIZE);
1103 	}
1104 
1105 	writel(page_type, qm->io_base + QM_PAGE_SIZE);
1106 }
1107 
1108 /*
1109  * acc_shaper_para_calc() Get the IR value by the qos formula, the return value
1110  * is the expected qos calculated.
1111  * the formula:
1112  * IR = X Mbps if ir = 1 means IR = 100 Mbps, if ir = 10000 means = 10Gbps
1113  *
1114  *		IR_b * (2 ^ IR_u) * 8000
1115  * IR(Mbps) = -------------------------
1116  *		  Tick * (2 ^ IR_s)
1117  */
1118 static u32 acc_shaper_para_calc(u64 cir_b, u64 cir_u, u64 cir_s)
1119 {
1120 	return ((cir_b * QM_QOS_DIVISOR_CLK) * (1 << cir_u)) /
1121 					(QM_QOS_TICK * (1 << cir_s));
1122 }
1123 
1124 static u32 acc_shaper_calc_cbs_s(u32 ir)
1125 {
1126 	int table_size = ARRAY_SIZE(shaper_cbs_s);
1127 	int i;
1128 
1129 	for (i = 0; i < table_size; i++) {
1130 		if (ir >= shaper_cbs_s[i].start && ir <= shaper_cbs_s[i].end)
1131 			return shaper_cbs_s[i].val;
1132 	}
1133 
1134 	return QM_SHAPER_MIN_CBS_S;
1135 }
1136 
1137 static u32 acc_shaper_calc_cir_s(u32 ir)
1138 {
1139 	int table_size = ARRAY_SIZE(shaper_cir_s);
1140 	int i;
1141 
1142 	for (i = 0; i < table_size; i++) {
1143 		if (ir >= shaper_cir_s[i].start && ir <= shaper_cir_s[i].end)
1144 			return shaper_cir_s[i].val;
1145 	}
1146 
1147 	return 0;
1148 }
1149 
1150 static int qm_get_shaper_para(u32 ir, struct qm_shaper_factor *factor)
1151 {
1152 	u32 cir_b, cir_u, cir_s, ir_calc;
1153 	u32 error_rate;
1154 
1155 	factor->cbs_s = acc_shaper_calc_cbs_s(ir);
1156 	cir_s = acc_shaper_calc_cir_s(ir);
1157 
1158 	for (cir_b = QM_QOS_MIN_CIR_B; cir_b <= QM_QOS_MAX_CIR_B; cir_b++) {
1159 		for (cir_u = 0; cir_u <= QM_QOS_MAX_CIR_U; cir_u++) {
1160 			ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s);
1161 
1162 			error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir;
1163 			if (error_rate <= QM_QOS_MIN_ERROR_RATE) {
1164 				factor->cir_b = cir_b;
1165 				factor->cir_u = cir_u;
1166 				factor->cir_s = cir_s;
1167 				return 0;
1168 			}
1169 		}
1170 	}
1171 
1172 	return -EINVAL;
1173 }
1174 
1175 static void qm_vft_data_cfg(struct hisi_qm *qm, enum vft_type type, u32 base,
1176 			    u32 number, struct qm_shaper_factor *factor)
1177 {
1178 	u64 tmp = 0;
1179 
1180 	if (number > 0) {
1181 		switch (type) {
1182 		case SQC_VFT:
1183 			if (qm->ver == QM_HW_V1) {
1184 				tmp = QM_SQC_VFT_BUF_SIZE	|
1185 				      QM_SQC_VFT_SQC_SIZE	|
1186 				      QM_SQC_VFT_INDEX_NUMBER	|
1187 				      QM_SQC_VFT_VALID		|
1188 				      (u64)base << QM_SQC_VFT_START_SQN_SHIFT;
1189 			} else {
1190 				tmp = (u64)base << QM_SQC_VFT_START_SQN_SHIFT |
1191 				      QM_SQC_VFT_VALID |
1192 				      (u64)(number - 1) << QM_SQC_VFT_SQN_SHIFT;
1193 			}
1194 			break;
1195 		case CQC_VFT:
1196 			if (qm->ver == QM_HW_V1) {
1197 				tmp = QM_CQC_VFT_BUF_SIZE	|
1198 				      QM_CQC_VFT_SQC_SIZE	|
1199 				      QM_CQC_VFT_INDEX_NUMBER	|
1200 				      QM_CQC_VFT_VALID;
1201 			} else {
1202 				tmp = QM_CQC_VFT_VALID;
1203 			}
1204 			break;
1205 		case SHAPER_VFT:
1206 			if (factor) {
1207 				tmp = factor->cir_b |
1208 				(factor->cir_u << QM_SHAPER_FACTOR_CIR_U_SHIFT) |
1209 				(factor->cir_s << QM_SHAPER_FACTOR_CIR_S_SHIFT) |
1210 				(QM_SHAPER_CBS_B << QM_SHAPER_FACTOR_CBS_B_SHIFT) |
1211 				(factor->cbs_s << QM_SHAPER_FACTOR_CBS_S_SHIFT);
1212 			}
1213 			break;
1214 		}
1215 	}
1216 
1217 	writel(lower_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_L);
1218 	writel(upper_32_bits(tmp), qm->io_base + QM_VFT_CFG_DATA_H);
1219 }
1220 
1221 static int qm_set_vft_common(struct hisi_qm *qm, enum vft_type type,
1222 			     u32 fun_num, u32 base, u32 number)
1223 {
1224 	struct qm_shaper_factor *factor = NULL;
1225 	unsigned int val;
1226 	int ret;
1227 
1228 	if (type == SHAPER_VFT && test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
1229 		factor = &qm->factor[fun_num];
1230 
1231 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
1232 					 val & BIT(0), POLL_PERIOD,
1233 					 POLL_TIMEOUT);
1234 	if (ret)
1235 		return ret;
1236 
1237 	writel(0x0, qm->io_base + QM_VFT_CFG_OP_WR);
1238 	writel(type, qm->io_base + QM_VFT_CFG_TYPE);
1239 	if (type == SHAPER_VFT)
1240 		fun_num |= base << QM_SHAPER_VFT_OFFSET;
1241 
1242 	writel(fun_num, qm->io_base + QM_VFT_CFG);
1243 
1244 	qm_vft_data_cfg(qm, type, base, number, factor);
1245 
1246 	writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
1247 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
1248 
1249 	return readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
1250 					  val & BIT(0), POLL_PERIOD,
1251 					  POLL_TIMEOUT);
1252 }
1253 
1254 static int qm_shaper_init_vft(struct hisi_qm *qm, u32 fun_num)
1255 {
1256 	u32 qos = qm->factor[fun_num].func_qos;
1257 	int ret, i;
1258 
1259 	ret = qm_get_shaper_para(qos * QM_QOS_RATE, &qm->factor[fun_num]);
1260 	if (ret) {
1261 		dev_err(&qm->pdev->dev, "failed to calculate shaper parameter!\n");
1262 		return ret;
1263 	}
1264 	writel(qm->type_rate, qm->io_base + QM_SHAPER_CFG);
1265 	for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) {
1266 		/* The base number of queue reuse for different alg type */
1267 		ret = qm_set_vft_common(qm, SHAPER_VFT, fun_num, i, 1);
1268 		if (ret)
1269 			return ret;
1270 	}
1271 
1272 	return 0;
1273 }
1274 
1275 /* The config should be conducted after qm_dev_mem_reset() */
1276 static int qm_set_sqc_cqc_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
1277 			      u32 number)
1278 {
1279 	int ret, i;
1280 
1281 	for (i = SQC_VFT; i <= CQC_VFT; i++) {
1282 		ret = qm_set_vft_common(qm, i, fun_num, base, number);
1283 		if (ret)
1284 			return ret;
1285 	}
1286 
1287 	/* init default shaper qos val */
1288 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) {
1289 		ret = qm_shaper_init_vft(qm, fun_num);
1290 		if (ret)
1291 			goto back_sqc_cqc;
1292 	}
1293 
1294 	return 0;
1295 back_sqc_cqc:
1296 	for (i = SQC_VFT; i <= CQC_VFT; i++)
1297 		qm_set_vft_common(qm, i, fun_num, 0, 0);
1298 
1299 	return ret;
1300 }
1301 
1302 static int qm_get_vft_v2(struct hisi_qm *qm, u32 *base, u32 *number)
1303 {
1304 	u64 sqc_vft;
1305 	int ret;
1306 
1307 	ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1);
1308 	if (ret)
1309 		return ret;
1310 
1311 	sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
1312 		  ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
1313 	*base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2);
1314 	*number = (QM_SQC_VFT_NUM_MASK_V2 &
1315 		   (sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1;
1316 
1317 	return 0;
1318 }
1319 
1320 static void qm_hw_error_init_v1(struct hisi_qm *qm)
1321 {
1322 	writel(QM_ABNORMAL_INT_MASK_VALUE, qm->io_base + QM_ABNORMAL_INT_MASK);
1323 }
1324 
1325 static void qm_hw_error_cfg(struct hisi_qm *qm)
1326 {
1327 	struct hisi_qm_err_info *err_info = &qm->err_info;
1328 
1329 	qm->error_mask = err_info->nfe | err_info->ce | err_info->fe;
1330 	/* clear QM hw residual error source */
1331 	writel(qm->error_mask, qm->io_base + QM_ABNORMAL_INT_SOURCE);
1332 
1333 	/* configure error type */
1334 	writel(err_info->ce, qm->io_base + QM_RAS_CE_ENABLE);
1335 	writel(QM_RAS_CE_TIMES_PER_IRQ, qm->io_base + QM_RAS_CE_THRESHOLD);
1336 	writel(err_info->nfe, qm->io_base + QM_RAS_NFE_ENABLE);
1337 	writel(err_info->fe, qm->io_base + QM_RAS_FE_ENABLE);
1338 }
1339 
1340 static void qm_hw_error_init_v2(struct hisi_qm *qm)
1341 {
1342 	u32 irq_unmask;
1343 
1344 	qm_hw_error_cfg(qm);
1345 
1346 	irq_unmask = ~qm->error_mask;
1347 	irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1348 	writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
1349 }
1350 
1351 static void qm_hw_error_uninit_v2(struct hisi_qm *qm)
1352 {
1353 	u32 irq_mask = qm->error_mask;
1354 
1355 	irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1356 	writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK);
1357 }
1358 
1359 static void qm_hw_error_init_v3(struct hisi_qm *qm)
1360 {
1361 	u32 irq_unmask;
1362 
1363 	qm_hw_error_cfg(qm);
1364 
1365 	/* enable close master ooo when hardware error happened */
1366 	writel(qm->err_info.qm_shutdown_mask, qm->io_base + QM_OOO_SHUTDOWN_SEL);
1367 
1368 	irq_unmask = ~qm->error_mask;
1369 	irq_unmask &= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1370 	writel(irq_unmask, qm->io_base + QM_ABNORMAL_INT_MASK);
1371 }
1372 
1373 static void qm_hw_error_uninit_v3(struct hisi_qm *qm)
1374 {
1375 	u32 irq_mask = qm->error_mask;
1376 
1377 	irq_mask |= readl(qm->io_base + QM_ABNORMAL_INT_MASK);
1378 	writel(irq_mask, qm->io_base + QM_ABNORMAL_INT_MASK);
1379 
1380 	/* disable close master ooo when hardware error happened */
1381 	writel(0x0, qm->io_base + QM_OOO_SHUTDOWN_SEL);
1382 }
1383 
1384 static void qm_log_hw_error(struct hisi_qm *qm, u32 error_status)
1385 {
1386 	const struct hisi_qm_hw_error *err;
1387 	struct device *dev = &qm->pdev->dev;
1388 	u32 reg_val, type, vf_num, qp_id;
1389 	int i;
1390 
1391 	for (i = 0; i < ARRAY_SIZE(qm_hw_error); i++) {
1392 		err = &qm_hw_error[i];
1393 		if (!(err->int_msk & error_status))
1394 			continue;
1395 
1396 		dev_err(dev, "%s [error status=0x%x] found\n",
1397 			err->msg, err->int_msk);
1398 
1399 		if (err->int_msk & QM_DB_TIMEOUT) {
1400 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF01);
1401 			type = (reg_val & QM_DB_TIMEOUT_TYPE) >>
1402 			       QM_DB_TIMEOUT_TYPE_SHIFT;
1403 			vf_num = reg_val & QM_DB_TIMEOUT_VF;
1404 			qp_id = reg_val >> QM_DB_TIMEOUT_QP_SHIFT;
1405 			dev_err(dev, "qm %s doorbell timeout in function %u qp %u\n",
1406 				qm_db_timeout[type], vf_num, qp_id);
1407 		} else if (err->int_msk & QM_OF_FIFO_OF) {
1408 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF00);
1409 			type = (reg_val & QM_FIFO_OVERFLOW_TYPE) >>
1410 			       QM_FIFO_OVERFLOW_TYPE_SHIFT;
1411 			vf_num = reg_val & QM_FIFO_OVERFLOW_VF;
1412 			qp_id = reg_val >> QM_FIFO_OVERFLOW_QP_SHIFT;
1413 			if (type < ARRAY_SIZE(qm_fifo_overflow))
1414 				dev_err(dev, "qm %s fifo overflow in function %u qp %u\n",
1415 					qm_fifo_overflow[type], vf_num, qp_id);
1416 			else
1417 				dev_err(dev, "unknown error type\n");
1418 		} else if (err->int_msk & QM_AXI_RRESP_ERR) {
1419 			reg_val = readl(qm->io_base + QM_ABNORMAL_INF02);
1420 			if (reg_val & QM_AXI_POISON_ERR)
1421 				dev_err(dev, "qm axi poison error happened\n");
1422 		}
1423 	}
1424 }
1425 
1426 static enum acc_err_result qm_hw_error_handle_v2(struct hisi_qm *qm)
1427 {
1428 	u32 error_status, tmp;
1429 
1430 	/* read err sts */
1431 	tmp = readl(qm->io_base + QM_ABNORMAL_INT_STATUS);
1432 	error_status = qm->error_mask & tmp;
1433 
1434 	if (error_status) {
1435 		if (error_status & QM_ECC_MBIT)
1436 			qm->err_status.is_qm_ecc_mbit = true;
1437 
1438 		qm_log_hw_error(qm, error_status);
1439 		if (error_status & qm->err_info.qm_reset_mask)
1440 			return ACC_ERR_NEED_RESET;
1441 
1442 		writel(error_status, qm->io_base + QM_ABNORMAL_INT_SOURCE);
1443 		writel(qm->err_info.nfe, qm->io_base + QM_RAS_NFE_ENABLE);
1444 	}
1445 
1446 	return ACC_ERR_RECOVERED;
1447 }
1448 
1449 static int qm_get_mb_cmd(struct hisi_qm *qm, u64 *msg, u16 fun_num)
1450 {
1451 	struct qm_mailbox mailbox;
1452 	int ret;
1453 
1454 	qm_mb_pre_init(&mailbox, QM_MB_CMD_DST, 0, fun_num, 0);
1455 	mutex_lock(&qm->mailbox_lock);
1456 	ret = qm_mb_nolock(qm, &mailbox);
1457 	if (ret)
1458 		goto err_unlock;
1459 
1460 	*msg = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
1461 		  ((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) << 32);
1462 
1463 err_unlock:
1464 	mutex_unlock(&qm->mailbox_lock);
1465 	return ret;
1466 }
1467 
1468 static void qm_clear_cmd_interrupt(struct hisi_qm *qm, u64 vf_mask)
1469 {
1470 	u32 val;
1471 
1472 	if (qm->fun_type == QM_HW_PF)
1473 		writeq(vf_mask, qm->io_base + QM_IFC_INT_SOURCE_P);
1474 
1475 	val = readl(qm->io_base + QM_IFC_INT_SOURCE_V);
1476 	val |= QM_IFC_INT_SOURCE_MASK;
1477 	writel(val, qm->io_base + QM_IFC_INT_SOURCE_V);
1478 }
1479 
1480 static void qm_handle_vf_msg(struct hisi_qm *qm, u32 vf_id)
1481 {
1482 	struct device *dev = &qm->pdev->dev;
1483 	u32 cmd;
1484 	u64 msg;
1485 	int ret;
1486 
1487 	ret = qm_get_mb_cmd(qm, &msg, vf_id);
1488 	if (ret) {
1489 		dev_err(dev, "failed to get msg from VF(%u)!\n", vf_id);
1490 		return;
1491 	}
1492 
1493 	cmd = msg & QM_MB_CMD_DATA_MASK;
1494 	switch (cmd) {
1495 	case QM_VF_PREPARE_FAIL:
1496 		dev_err(dev, "failed to stop VF(%u)!\n", vf_id);
1497 		break;
1498 	case QM_VF_START_FAIL:
1499 		dev_err(dev, "failed to start VF(%u)!\n", vf_id);
1500 		break;
1501 	case QM_VF_PREPARE_DONE:
1502 	case QM_VF_START_DONE:
1503 		break;
1504 	default:
1505 		dev_err(dev, "unsupported cmd %u sent by VF(%u)!\n", cmd, vf_id);
1506 		break;
1507 	}
1508 }
1509 
1510 static int qm_wait_vf_prepare_finish(struct hisi_qm *qm)
1511 {
1512 	struct device *dev = &qm->pdev->dev;
1513 	u32 vfs_num = qm->vfs_num;
1514 	int cnt = 0;
1515 	int ret = 0;
1516 	u64 val;
1517 	u32 i;
1518 
1519 	if (!qm->vfs_num || !test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
1520 		return 0;
1521 
1522 	while (true) {
1523 		val = readq(qm->io_base + QM_IFC_INT_SOURCE_P);
1524 		/* All VFs send command to PF, break */
1525 		if ((val & GENMASK(vfs_num, 1)) == GENMASK(vfs_num, 1))
1526 			break;
1527 
1528 		if (++cnt > QM_MAX_PF_WAIT_COUNT) {
1529 			ret = -EBUSY;
1530 			break;
1531 		}
1532 
1533 		msleep(QM_WAIT_DST_ACK);
1534 	}
1535 
1536 	/* PF check VFs msg */
1537 	for (i = 1; i <= vfs_num; i++) {
1538 		if (val & BIT(i))
1539 			qm_handle_vf_msg(qm, i);
1540 		else
1541 			dev_err(dev, "VF(%u) not ping PF!\n", i);
1542 	}
1543 
1544 	/* PF clear interrupt to ack VFs */
1545 	qm_clear_cmd_interrupt(qm, val);
1546 
1547 	return ret;
1548 }
1549 
1550 static void qm_trigger_vf_interrupt(struct hisi_qm *qm, u32 fun_num)
1551 {
1552 	u32 val;
1553 
1554 	val = readl(qm->io_base + QM_IFC_INT_CFG);
1555 	val &= ~QM_IFC_SEND_ALL_VFS;
1556 	val |= fun_num;
1557 	writel(val, qm->io_base + QM_IFC_INT_CFG);
1558 
1559 	val = readl(qm->io_base + QM_IFC_INT_SET_P);
1560 	val |= QM_IFC_INT_SET_MASK;
1561 	writel(val, qm->io_base + QM_IFC_INT_SET_P);
1562 }
1563 
1564 static void qm_trigger_pf_interrupt(struct hisi_qm *qm)
1565 {
1566 	u32 val;
1567 
1568 	val = readl(qm->io_base + QM_IFC_INT_SET_V);
1569 	val |= QM_IFC_INT_SET_MASK;
1570 	writel(val, qm->io_base + QM_IFC_INT_SET_V);
1571 }
1572 
1573 static int qm_ping_single_vf(struct hisi_qm *qm, u64 cmd, u32 fun_num)
1574 {
1575 	struct device *dev = &qm->pdev->dev;
1576 	struct qm_mailbox mailbox;
1577 	int cnt = 0;
1578 	u64 val;
1579 	int ret;
1580 
1581 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, fun_num, 0);
1582 	mutex_lock(&qm->mailbox_lock);
1583 	ret = qm_mb_nolock(qm, &mailbox);
1584 	if (ret) {
1585 		dev_err(dev, "failed to send command to vf(%u)!\n", fun_num);
1586 		goto err_unlock;
1587 	}
1588 
1589 	qm_trigger_vf_interrupt(qm, fun_num);
1590 	while (true) {
1591 		msleep(QM_WAIT_DST_ACK);
1592 		val = readq(qm->io_base + QM_IFC_READY_STATUS);
1593 		/* if VF respond, PF notifies VF successfully. */
1594 		if (!(val & BIT(fun_num)))
1595 			goto err_unlock;
1596 
1597 		if (++cnt > QM_MAX_PF_WAIT_COUNT) {
1598 			dev_err(dev, "failed to get response from VF(%u)!\n", fun_num);
1599 			ret = -ETIMEDOUT;
1600 			break;
1601 		}
1602 	}
1603 
1604 err_unlock:
1605 	mutex_unlock(&qm->mailbox_lock);
1606 	return ret;
1607 }
1608 
1609 static int qm_ping_all_vfs(struct hisi_qm *qm, u64 cmd)
1610 {
1611 	struct device *dev = &qm->pdev->dev;
1612 	u32 vfs_num = qm->vfs_num;
1613 	struct qm_mailbox mailbox;
1614 	u64 val = 0;
1615 	int cnt = 0;
1616 	int ret;
1617 	u32 i;
1618 
1619 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, QM_MB_PING_ALL_VFS, 0);
1620 	mutex_lock(&qm->mailbox_lock);
1621 	/* PF sends command to all VFs by mailbox */
1622 	ret = qm_mb_nolock(qm, &mailbox);
1623 	if (ret) {
1624 		dev_err(dev, "failed to send command to VFs!\n");
1625 		mutex_unlock(&qm->mailbox_lock);
1626 		return ret;
1627 	}
1628 
1629 	qm_trigger_vf_interrupt(qm, QM_IFC_SEND_ALL_VFS);
1630 	while (true) {
1631 		msleep(QM_WAIT_DST_ACK);
1632 		val = readq(qm->io_base + QM_IFC_READY_STATUS);
1633 		/* If all VFs acked, PF notifies VFs successfully. */
1634 		if (!(val & GENMASK(vfs_num, 1))) {
1635 			mutex_unlock(&qm->mailbox_lock);
1636 			return 0;
1637 		}
1638 
1639 		if (++cnt > QM_MAX_PF_WAIT_COUNT)
1640 			break;
1641 	}
1642 
1643 	mutex_unlock(&qm->mailbox_lock);
1644 
1645 	/* Check which vf respond timeout. */
1646 	for (i = 1; i <= vfs_num; i++) {
1647 		if (val & BIT(i))
1648 			dev_err(dev, "failed to get response from VF(%u)!\n", i);
1649 	}
1650 
1651 	return -ETIMEDOUT;
1652 }
1653 
1654 static int qm_ping_pf(struct hisi_qm *qm, u64 cmd)
1655 {
1656 	struct qm_mailbox mailbox;
1657 	int cnt = 0;
1658 	u32 val;
1659 	int ret;
1660 
1661 	qm_mb_pre_init(&mailbox, QM_MB_CMD_SRC, cmd, 0, 0);
1662 	mutex_lock(&qm->mailbox_lock);
1663 	ret = qm_mb_nolock(qm, &mailbox);
1664 	if (ret) {
1665 		dev_err(&qm->pdev->dev, "failed to send command to PF!\n");
1666 		goto unlock;
1667 	}
1668 
1669 	qm_trigger_pf_interrupt(qm);
1670 	/* Waiting for PF response */
1671 	while (true) {
1672 		msleep(QM_WAIT_DST_ACK);
1673 		val = readl(qm->io_base + QM_IFC_INT_SET_V);
1674 		if (!(val & QM_IFC_INT_STATUS_MASK))
1675 			break;
1676 
1677 		if (++cnt > QM_MAX_VF_WAIT_COUNT) {
1678 			ret = -ETIMEDOUT;
1679 			break;
1680 		}
1681 	}
1682 
1683 unlock:
1684 	mutex_unlock(&qm->mailbox_lock);
1685 	return ret;
1686 }
1687 
1688 static int qm_drain_qm(struct hisi_qm *qm)
1689 {
1690 	return hisi_qm_mb(qm, QM_MB_CMD_FLUSH_QM, 0, 0, 0);
1691 }
1692 
1693 static int qm_stop_qp(struct hisi_qp *qp)
1694 {
1695 	return hisi_qm_mb(qp->qm, QM_MB_CMD_STOP_QP, 0, qp->qp_id, 0);
1696 }
1697 
1698 static int qm_set_msi(struct hisi_qm *qm, bool set)
1699 {
1700 	struct pci_dev *pdev = qm->pdev;
1701 
1702 	if (set) {
1703 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
1704 				       0);
1705 	} else {
1706 		pci_write_config_dword(pdev, pdev->msi_cap + PCI_MSI_MASK_64,
1707 				       ACC_PEH_MSI_DISABLE);
1708 		if (qm->err_status.is_qm_ecc_mbit ||
1709 		    qm->err_status.is_dev_ecc_mbit)
1710 			return 0;
1711 
1712 		mdelay(1);
1713 		if (readl(qm->io_base + QM_PEH_DFX_INFO0))
1714 			return -EFAULT;
1715 	}
1716 
1717 	return 0;
1718 }
1719 
1720 static void qm_wait_msi_finish(struct hisi_qm *qm)
1721 {
1722 	struct pci_dev *pdev = qm->pdev;
1723 	u32 cmd = ~0;
1724 	int cnt = 0;
1725 	u32 val;
1726 	int ret;
1727 
1728 	while (true) {
1729 		pci_read_config_dword(pdev, pdev->msi_cap +
1730 				      PCI_MSI_PENDING_64, &cmd);
1731 		if (!cmd)
1732 			break;
1733 
1734 		if (++cnt > MAX_WAIT_COUNTS) {
1735 			pci_warn(pdev, "failed to empty MSI PENDING!\n");
1736 			break;
1737 		}
1738 
1739 		udelay(1);
1740 	}
1741 
1742 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO0,
1743 					 val, !(val & QM_PEH_DFX_MASK),
1744 					 POLL_PERIOD, POLL_TIMEOUT);
1745 	if (ret)
1746 		pci_warn(pdev, "failed to empty PEH MSI!\n");
1747 
1748 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_DFX_INFO1,
1749 					 val, !(val & QM_PEH_MSI_FINISH_MASK),
1750 					 POLL_PERIOD, POLL_TIMEOUT);
1751 	if (ret)
1752 		pci_warn(pdev, "failed to finish MSI operation!\n");
1753 }
1754 
1755 static int qm_set_msi_v3(struct hisi_qm *qm, bool set)
1756 {
1757 	struct pci_dev *pdev = qm->pdev;
1758 	int ret = -ETIMEDOUT;
1759 	u32 cmd, i;
1760 
1761 	pci_read_config_dword(pdev, pdev->msi_cap, &cmd);
1762 	if (set)
1763 		cmd |= QM_MSI_CAP_ENABLE;
1764 	else
1765 		cmd &= ~QM_MSI_CAP_ENABLE;
1766 
1767 	pci_write_config_dword(pdev, pdev->msi_cap, cmd);
1768 	if (set) {
1769 		for (i = 0; i < MAX_WAIT_COUNTS; i++) {
1770 			pci_read_config_dword(pdev, pdev->msi_cap, &cmd);
1771 			if (cmd & QM_MSI_CAP_ENABLE)
1772 				return 0;
1773 
1774 			udelay(1);
1775 		}
1776 	} else {
1777 		udelay(WAIT_PERIOD_US_MIN);
1778 		qm_wait_msi_finish(qm);
1779 		ret = 0;
1780 	}
1781 
1782 	return ret;
1783 }
1784 
1785 static const struct hisi_qm_hw_ops qm_hw_ops_v1 = {
1786 	.qm_db = qm_db_v1,
1787 	.hw_error_init = qm_hw_error_init_v1,
1788 	.set_msi = qm_set_msi,
1789 };
1790 
1791 static const struct hisi_qm_hw_ops qm_hw_ops_v2 = {
1792 	.get_vft = qm_get_vft_v2,
1793 	.qm_db = qm_db_v2,
1794 	.hw_error_init = qm_hw_error_init_v2,
1795 	.hw_error_uninit = qm_hw_error_uninit_v2,
1796 	.hw_error_handle = qm_hw_error_handle_v2,
1797 	.set_msi = qm_set_msi,
1798 };
1799 
1800 static const struct hisi_qm_hw_ops qm_hw_ops_v3 = {
1801 	.get_vft = qm_get_vft_v2,
1802 	.qm_db = qm_db_v2,
1803 	.hw_error_init = qm_hw_error_init_v3,
1804 	.hw_error_uninit = qm_hw_error_uninit_v3,
1805 	.hw_error_handle = qm_hw_error_handle_v2,
1806 	.set_msi = qm_set_msi_v3,
1807 };
1808 
1809 static void *qm_get_avail_sqe(struct hisi_qp *qp)
1810 {
1811 	struct hisi_qp_status *qp_status = &qp->qp_status;
1812 	u16 sq_tail = qp_status->sq_tail;
1813 
1814 	if (unlikely(atomic_read(&qp->qp_status.used) == qp->sq_depth - 1))
1815 		return NULL;
1816 
1817 	return qp->sqe + sq_tail * qp->qm->sqe_size;
1818 }
1819 
1820 static void hisi_qm_unset_hw_reset(struct hisi_qp *qp)
1821 {
1822 	u64 *addr;
1823 
1824 	/* Use last 64 bits of DUS to reset status. */
1825 	addr = (u64 *)(qp->qdma.va + qp->qdma.size) - QM_RESET_STOP_TX_OFFSET;
1826 	*addr = 0;
1827 }
1828 
1829 static struct hisi_qp *qm_create_qp_nolock(struct hisi_qm *qm, u8 alg_type)
1830 {
1831 	struct device *dev = &qm->pdev->dev;
1832 	struct hisi_qp *qp;
1833 	int qp_id;
1834 
1835 	if (atomic_read(&qm->status.flags) == QM_STOP) {
1836 		dev_info_ratelimited(dev, "failed to create qp as qm is stop!\n");
1837 		return ERR_PTR(-EPERM);
1838 	}
1839 
1840 	if (qm->qp_in_used == qm->qp_num) {
1841 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
1842 				     qm->qp_num);
1843 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
1844 		return ERR_PTR(-EBUSY);
1845 	}
1846 
1847 	qp_id = idr_alloc_cyclic(&qm->qp_idr, NULL, 0, qm->qp_num, GFP_ATOMIC);
1848 	if (qp_id < 0) {
1849 		dev_info_ratelimited(dev, "All %u queues of QM are busy!\n",
1850 				    qm->qp_num);
1851 		atomic64_inc(&qm->debug.dfx.create_qp_err_cnt);
1852 		return ERR_PTR(-EBUSY);
1853 	}
1854 
1855 	qp = &qm->qp_array[qp_id];
1856 	hisi_qm_unset_hw_reset(qp);
1857 	memset(qp->cqe, 0, sizeof(struct qm_cqe) * qp->cq_depth);
1858 
1859 	qp->event_cb = NULL;
1860 	qp->req_cb = NULL;
1861 	qp->qp_id = qp_id;
1862 	qp->alg_type = alg_type;
1863 	qp->is_in_kernel = true;
1864 	qm->qp_in_used++;
1865 
1866 	return qp;
1867 }
1868 
1869 /**
1870  * hisi_qm_create_qp() - Create a queue pair from qm.
1871  * @qm: The qm we create a qp from.
1872  * @alg_type: Accelerator specific algorithm type in sqc.
1873  *
1874  * Return created qp, negative error code if failed.
1875  */
1876 static struct hisi_qp *hisi_qm_create_qp(struct hisi_qm *qm, u8 alg_type)
1877 {
1878 	struct hisi_qp *qp;
1879 	int ret;
1880 
1881 	ret = qm_pm_get_sync(qm);
1882 	if (ret)
1883 		return ERR_PTR(ret);
1884 
1885 	down_write(&qm->qps_lock);
1886 	qp = qm_create_qp_nolock(qm, alg_type);
1887 	up_write(&qm->qps_lock);
1888 
1889 	if (IS_ERR(qp))
1890 		qm_pm_put_sync(qm);
1891 
1892 	return qp;
1893 }
1894 
1895 /**
1896  * hisi_qm_release_qp() - Release a qp back to its qm.
1897  * @qp: The qp we want to release.
1898  *
1899  * This function releases the resource of a qp.
1900  */
1901 static void hisi_qm_release_qp(struct hisi_qp *qp)
1902 {
1903 	struct hisi_qm *qm = qp->qm;
1904 
1905 	down_write(&qm->qps_lock);
1906 
1907 	qm->qp_in_used--;
1908 	idr_remove(&qm->qp_idr, qp->qp_id);
1909 
1910 	up_write(&qm->qps_lock);
1911 
1912 	qm_pm_put_sync(qm);
1913 }
1914 
1915 static int qm_sq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
1916 {
1917 	struct hisi_qm *qm = qp->qm;
1918 	enum qm_hw_ver ver = qm->ver;
1919 	struct qm_sqc sqc = {0};
1920 
1921 	if (ver == QM_HW_V1) {
1922 		sqc.dw3 = cpu_to_le32(QM_MK_SQC_DW3_V1(0, 0, 0, qm->sqe_size));
1923 		sqc.w8 = cpu_to_le16(qp->sq_depth - 1);
1924 	} else {
1925 		sqc.dw3 = cpu_to_le32(QM_MK_SQC_DW3_V2(qm->sqe_size, qp->sq_depth));
1926 		sqc.w8 = 0; /* rand_qc */
1927 	}
1928 	sqc.w13 = cpu_to_le16(QM_MK_SQC_W13(0, 1, qp->alg_type));
1929 	sqc.base_l = cpu_to_le32(lower_32_bits(qp->sqe_dma));
1930 	sqc.base_h = cpu_to_le32(upper_32_bits(qp->sqe_dma));
1931 	sqc.cq_num = cpu_to_le16(qp_id);
1932 	sqc.pasid = cpu_to_le16(pasid);
1933 
1934 	if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
1935 		sqc.w11 = cpu_to_le16(QM_QC_PASID_ENABLE <<
1936 				      QM_QC_PASID_ENABLE_SHIFT);
1937 
1938 	return qm_set_and_get_xqc(qm, QM_MB_CMD_SQC, &sqc, qp_id, 0);
1939 }
1940 
1941 static int qm_cq_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
1942 {
1943 	struct hisi_qm *qm = qp->qm;
1944 	enum qm_hw_ver ver = qm->ver;
1945 	struct qm_cqc cqc = {0};
1946 
1947 	if (ver == QM_HW_V1) {
1948 		cqc.dw3 = cpu_to_le32(QM_MK_CQC_DW3_V1(0, 0, 0, QM_QC_CQE_SIZE));
1949 		cqc.w8 = cpu_to_le16(qp->cq_depth - 1);
1950 	} else {
1951 		cqc.dw3 = cpu_to_le32(QM_MK_CQC_DW3_V2(QM_QC_CQE_SIZE, qp->cq_depth));
1952 		cqc.w8 = 0; /* rand_qc */
1953 	}
1954 	/*
1955 	 * Enable request finishing interrupts defaultly.
1956 	 * So, there will be some interrupts until disabling
1957 	 * this.
1958 	 */
1959 	cqc.dw6 = cpu_to_le32(1 << QM_CQ_PHASE_SHIFT | 1 << QM_CQ_FLAG_SHIFT);
1960 	cqc.base_l = cpu_to_le32(lower_32_bits(qp->cqe_dma));
1961 	cqc.base_h = cpu_to_le32(upper_32_bits(qp->cqe_dma));
1962 	cqc.pasid = cpu_to_le16(pasid);
1963 
1964 	if (ver >= QM_HW_V3 && qm->use_sva && !qp->is_in_kernel)
1965 		cqc.w11 = cpu_to_le16(QM_QC_PASID_ENABLE);
1966 
1967 	return qm_set_and_get_xqc(qm, QM_MB_CMD_CQC, &cqc, qp_id, 0);
1968 }
1969 
1970 static int qm_qp_ctx_cfg(struct hisi_qp *qp, int qp_id, u32 pasid)
1971 {
1972 	int ret;
1973 
1974 	qm_init_qp_status(qp);
1975 
1976 	ret = qm_sq_ctx_cfg(qp, qp_id, pasid);
1977 	if (ret)
1978 		return ret;
1979 
1980 	return qm_cq_ctx_cfg(qp, qp_id, pasid);
1981 }
1982 
1983 static int qm_start_qp_nolock(struct hisi_qp *qp, unsigned long arg)
1984 {
1985 	struct hisi_qm *qm = qp->qm;
1986 	struct device *dev = &qm->pdev->dev;
1987 	int qp_id = qp->qp_id;
1988 	u32 pasid = arg;
1989 	int ret;
1990 
1991 	if (atomic_read(&qm->status.flags) == QM_STOP) {
1992 		dev_info_ratelimited(dev, "failed to start qp as qm is stop!\n");
1993 		return -EPERM;
1994 	}
1995 
1996 	ret = qm_qp_ctx_cfg(qp, qp_id, pasid);
1997 	if (ret)
1998 		return ret;
1999 
2000 	atomic_set(&qp->qp_status.flags, QP_START);
2001 	dev_dbg(dev, "queue %d started\n", qp_id);
2002 
2003 	return 0;
2004 }
2005 
2006 /**
2007  * hisi_qm_start_qp() - Start a qp into running.
2008  * @qp: The qp we want to start to run.
2009  * @arg: Accelerator specific argument.
2010  *
2011  * After this function, qp can receive request from user. Return 0 if
2012  * successful, negative error code if failed.
2013  */
2014 int hisi_qm_start_qp(struct hisi_qp *qp, unsigned long arg)
2015 {
2016 	struct hisi_qm *qm = qp->qm;
2017 	int ret;
2018 
2019 	down_write(&qm->qps_lock);
2020 	ret = qm_start_qp_nolock(qp, arg);
2021 	up_write(&qm->qps_lock);
2022 
2023 	return ret;
2024 }
2025 EXPORT_SYMBOL_GPL(hisi_qm_start_qp);
2026 
2027 /**
2028  * qp_stop_fail_cb() - call request cb.
2029  * @qp: stopped failed qp.
2030  *
2031  * Callback function should be called whether task completed or not.
2032  */
2033 static void qp_stop_fail_cb(struct hisi_qp *qp)
2034 {
2035 	int qp_used = atomic_read(&qp->qp_status.used);
2036 	u16 cur_tail = qp->qp_status.sq_tail;
2037 	u16 sq_depth = qp->sq_depth;
2038 	u16 cur_head = (cur_tail + sq_depth - qp_used) % sq_depth;
2039 	struct hisi_qm *qm = qp->qm;
2040 	u16 pos;
2041 	int i;
2042 
2043 	for (i = 0; i < qp_used; i++) {
2044 		pos = (i + cur_head) % sq_depth;
2045 		qp->req_cb(qp, qp->sqe + (u32)(qm->sqe_size * pos));
2046 		atomic_dec(&qp->qp_status.used);
2047 	}
2048 }
2049 
2050 static int qm_wait_qp_empty(struct hisi_qm *qm, u32 *state, u32 qp_id)
2051 {
2052 	struct device *dev = &qm->pdev->dev;
2053 	struct qm_sqc sqc;
2054 	struct qm_cqc cqc;
2055 	int ret, i = 0;
2056 
2057 	while (++i) {
2058 		ret = qm_set_and_get_xqc(qm, QM_MB_CMD_SQC, &sqc, qp_id, 1);
2059 		if (ret) {
2060 			dev_err_ratelimited(dev, "Failed to dump sqc!\n");
2061 			*state = QM_DUMP_SQC_FAIL;
2062 			return ret;
2063 		}
2064 
2065 		ret = qm_set_and_get_xqc(qm, QM_MB_CMD_CQC, &cqc, qp_id, 1);
2066 		if (ret) {
2067 			dev_err_ratelimited(dev, "Failed to dump cqc!\n");
2068 			*state = QM_DUMP_CQC_FAIL;
2069 			return ret;
2070 		}
2071 
2072 		if ((sqc.tail == cqc.tail) &&
2073 		    (QM_SQ_TAIL_IDX(sqc) == QM_CQ_TAIL_IDX(cqc)))
2074 			break;
2075 
2076 		if (i == MAX_WAIT_COUNTS) {
2077 			dev_err(dev, "Fail to empty queue %u!\n", qp_id);
2078 			*state = QM_STOP_QUEUE_FAIL;
2079 			return -ETIMEDOUT;
2080 		}
2081 
2082 		usleep_range(WAIT_PERIOD_US_MIN, WAIT_PERIOD_US_MAX);
2083 	}
2084 
2085 	return 0;
2086 }
2087 
2088 /**
2089  * qm_drain_qp() - Drain a qp.
2090  * @qp: The qp we want to drain.
2091  *
2092  * If the device does not support stopping queue by sending mailbox,
2093  * determine whether the queue is cleared by judging the tail pointers of
2094  * sq and cq.
2095  */
2096 static int qm_drain_qp(struct hisi_qp *qp)
2097 {
2098 	struct hisi_qm *qm = qp->qm;
2099 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
2100 	u32 state = 0;
2101 	int ret;
2102 
2103 	/* No need to judge if master OOO is blocked. */
2104 	if (qm_check_dev_error(pf_qm))
2105 		return 0;
2106 
2107 	/* HW V3 supports drain qp by device */
2108 	if (test_bit(QM_SUPPORT_STOP_QP, &qm->caps)) {
2109 		ret = qm_stop_qp(qp);
2110 		if (ret) {
2111 			dev_err(&qm->pdev->dev, "Failed to stop qp!\n");
2112 			state = QM_STOP_QUEUE_FAIL;
2113 			goto set_dev_state;
2114 		}
2115 		return ret;
2116 	}
2117 
2118 	ret = qm_wait_qp_empty(qm, &state, qp->qp_id);
2119 	if (ret)
2120 		goto set_dev_state;
2121 
2122 	return 0;
2123 
2124 set_dev_state:
2125 	if (qm->debug.dev_dfx.dev_timeout)
2126 		qm->debug.dev_dfx.dev_state = state;
2127 
2128 	return ret;
2129 }
2130 
2131 static void qm_stop_qp_nolock(struct hisi_qp *qp)
2132 {
2133 	struct hisi_qm *qm = qp->qm;
2134 	struct device *dev = &qm->pdev->dev;
2135 	int ret;
2136 
2137 	/*
2138 	 * It is allowed to stop and release qp when reset, If the qp is
2139 	 * stopped when reset but still want to be released then, the
2140 	 * is_resetting flag should be set negative so that this qp will not
2141 	 * be restarted after reset.
2142 	 */
2143 	if (atomic_read(&qp->qp_status.flags) != QP_START) {
2144 		qp->is_resetting = false;
2145 		return;
2146 	}
2147 
2148 	atomic_set(&qp->qp_status.flags, QP_STOP);
2149 
2150 	/* V3 supports direct stop function when FLR prepare */
2151 	if (qm->ver < QM_HW_V3 || qm->status.stop_reason == QM_NORMAL) {
2152 		ret = qm_drain_qp(qp);
2153 		if (ret)
2154 			dev_err(dev, "Failed to drain out data for stopping qp(%u)!\n", qp->qp_id);
2155 	}
2156 
2157 	flush_workqueue(qm->wq);
2158 	if (unlikely(qp->is_resetting && atomic_read(&qp->qp_status.used)))
2159 		qp_stop_fail_cb(qp);
2160 
2161 	dev_dbg(dev, "stop queue %u!", qp->qp_id);
2162 }
2163 
2164 /**
2165  * hisi_qm_stop_qp() - Stop a qp in qm.
2166  * @qp: The qp we want to stop.
2167  *
2168  * This function is reverse of hisi_qm_start_qp.
2169  */
2170 void hisi_qm_stop_qp(struct hisi_qp *qp)
2171 {
2172 	down_write(&qp->qm->qps_lock);
2173 	qm_stop_qp_nolock(qp);
2174 	up_write(&qp->qm->qps_lock);
2175 }
2176 EXPORT_SYMBOL_GPL(hisi_qm_stop_qp);
2177 
2178 /**
2179  * hisi_qp_send() - Queue up a task in the hardware queue.
2180  * @qp: The qp in which to put the message.
2181  * @msg: The message.
2182  *
2183  * This function will return -EBUSY if qp is currently full, and -EAGAIN
2184  * if qp related qm is resetting.
2185  *
2186  * Note: This function may run with qm_irq_thread and ACC reset at same time.
2187  *       It has no race with qm_irq_thread. However, during hisi_qp_send, ACC
2188  *       reset may happen, we have no lock here considering performance. This
2189  *       causes current qm_db sending fail or can not receive sended sqe. QM
2190  *       sync/async receive function should handle the error sqe. ACC reset
2191  *       done function should clear used sqe to 0.
2192  */
2193 int hisi_qp_send(struct hisi_qp *qp, const void *msg)
2194 {
2195 	struct hisi_qp_status *qp_status = &qp->qp_status;
2196 	u16 sq_tail = qp_status->sq_tail;
2197 	u16 sq_tail_next = (sq_tail + 1) % qp->sq_depth;
2198 	void *sqe = qm_get_avail_sqe(qp);
2199 
2200 	if (unlikely(atomic_read(&qp->qp_status.flags) == QP_STOP ||
2201 		     atomic_read(&qp->qm->status.flags) == QM_STOP ||
2202 		     qp->is_resetting)) {
2203 		dev_info_ratelimited(&qp->qm->pdev->dev, "QP is stopped or resetting\n");
2204 		return -EAGAIN;
2205 	}
2206 
2207 	if (!sqe)
2208 		return -EBUSY;
2209 
2210 	memcpy(sqe, msg, qp->qm->sqe_size);
2211 
2212 	qm_db(qp->qm, qp->qp_id, QM_DOORBELL_CMD_SQ, sq_tail_next, 0);
2213 	atomic_inc(&qp->qp_status.used);
2214 	qp_status->sq_tail = sq_tail_next;
2215 
2216 	return 0;
2217 }
2218 EXPORT_SYMBOL_GPL(hisi_qp_send);
2219 
2220 static void hisi_qm_cache_wb(struct hisi_qm *qm)
2221 {
2222 	unsigned int val;
2223 
2224 	if (qm->ver == QM_HW_V1)
2225 		return;
2226 
2227 	writel(0x1, qm->io_base + QM_CACHE_WB_START);
2228 	if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE,
2229 				       val, val & BIT(0), POLL_PERIOD,
2230 				       POLL_TIMEOUT))
2231 		dev_err(&qm->pdev->dev, "QM writeback sqc cache fail!\n");
2232 }
2233 
2234 static void qm_qp_event_notifier(struct hisi_qp *qp)
2235 {
2236 	wake_up_interruptible(&qp->uacce_q->wait);
2237 }
2238 
2239  /* This function returns free number of qp in qm. */
2240 static int hisi_qm_get_available_instances(struct uacce_device *uacce)
2241 {
2242 	struct hisi_qm *qm = uacce->priv;
2243 	int ret;
2244 
2245 	down_read(&qm->qps_lock);
2246 	ret = qm->qp_num - qm->qp_in_used;
2247 	up_read(&qm->qps_lock);
2248 
2249 	return ret;
2250 }
2251 
2252 static void hisi_qm_set_hw_reset(struct hisi_qm *qm, int offset)
2253 {
2254 	int i;
2255 
2256 	for (i = 0; i < qm->qp_num; i++)
2257 		qm_set_qp_disable(&qm->qp_array[i], offset);
2258 }
2259 
2260 static int hisi_qm_uacce_get_queue(struct uacce_device *uacce,
2261 				   unsigned long arg,
2262 				   struct uacce_queue *q)
2263 {
2264 	struct hisi_qm *qm = uacce->priv;
2265 	struct hisi_qp *qp;
2266 	u8 alg_type = 0;
2267 
2268 	qp = hisi_qm_create_qp(qm, alg_type);
2269 	if (IS_ERR(qp))
2270 		return PTR_ERR(qp);
2271 
2272 	q->priv = qp;
2273 	q->uacce = uacce;
2274 	qp->uacce_q = q;
2275 	qp->event_cb = qm_qp_event_notifier;
2276 	qp->pasid = arg;
2277 	qp->is_in_kernel = false;
2278 
2279 	return 0;
2280 }
2281 
2282 static void hisi_qm_uacce_put_queue(struct uacce_queue *q)
2283 {
2284 	struct hisi_qp *qp = q->priv;
2285 
2286 	hisi_qm_release_qp(qp);
2287 }
2288 
2289 /* map sq/cq/doorbell to user space */
2290 static int hisi_qm_uacce_mmap(struct uacce_queue *q,
2291 			      struct vm_area_struct *vma,
2292 			      struct uacce_qfile_region *qfr)
2293 {
2294 	struct hisi_qp *qp = q->priv;
2295 	struct hisi_qm *qm = qp->qm;
2296 	resource_size_t phys_base = qm->db_phys_base +
2297 				    qp->qp_id * qm->db_interval;
2298 	size_t sz = vma->vm_end - vma->vm_start;
2299 	struct pci_dev *pdev = qm->pdev;
2300 	struct device *dev = &pdev->dev;
2301 	unsigned long vm_pgoff;
2302 	int ret;
2303 
2304 	switch (qfr->type) {
2305 	case UACCE_QFRT_MMIO:
2306 		if (qm->ver == QM_HW_V1) {
2307 			if (sz > PAGE_SIZE * QM_DOORBELL_PAGE_NR)
2308 				return -EINVAL;
2309 		} else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) {
2310 			if (sz > PAGE_SIZE * (QM_DOORBELL_PAGE_NR +
2311 			    QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE))
2312 				return -EINVAL;
2313 		} else {
2314 			if (sz > qm->db_interval)
2315 				return -EINVAL;
2316 		}
2317 
2318 		vm_flags_set(vma, VM_IO);
2319 
2320 		return remap_pfn_range(vma, vma->vm_start,
2321 				       phys_base >> PAGE_SHIFT,
2322 				       sz, pgprot_noncached(vma->vm_page_prot));
2323 	case UACCE_QFRT_DUS:
2324 		if (sz != qp->qdma.size)
2325 			return -EINVAL;
2326 
2327 		/*
2328 		 * dma_mmap_coherent() requires vm_pgoff as 0
2329 		 * restore vm_pfoff to initial value for mmap()
2330 		 */
2331 		vm_pgoff = vma->vm_pgoff;
2332 		vma->vm_pgoff = 0;
2333 		ret = dma_mmap_coherent(dev, vma, qp->qdma.va,
2334 					qp->qdma.dma, sz);
2335 		vma->vm_pgoff = vm_pgoff;
2336 		return ret;
2337 
2338 	default:
2339 		return -EINVAL;
2340 	}
2341 }
2342 
2343 static int hisi_qm_uacce_start_queue(struct uacce_queue *q)
2344 {
2345 	struct hisi_qp *qp = q->priv;
2346 
2347 	return hisi_qm_start_qp(qp, qp->pasid);
2348 }
2349 
2350 static void hisi_qm_uacce_stop_queue(struct uacce_queue *q)
2351 {
2352 	struct hisi_qp *qp = q->priv;
2353 	struct hisi_qm *qm = qp->qm;
2354 	struct qm_dev_dfx *dev_dfx = &qm->debug.dev_dfx;
2355 	u32 i = 0;
2356 
2357 	hisi_qm_stop_qp(qp);
2358 
2359 	if (!dev_dfx->dev_timeout || !dev_dfx->dev_state)
2360 		return;
2361 
2362 	/*
2363 	 * After the queue fails to be stopped,
2364 	 * wait for a period of time before releasing the queue.
2365 	 */
2366 	while (++i) {
2367 		msleep(WAIT_PERIOD);
2368 
2369 		/* Since dev_timeout maybe modified, check i >= dev_timeout */
2370 		if (i >= dev_dfx->dev_timeout) {
2371 			dev_err(&qm->pdev->dev, "Stop q %u timeout, state %u\n",
2372 			       qp->qp_id, dev_dfx->dev_state);
2373 			dev_dfx->dev_state = QM_FINISH_WAIT;
2374 			break;
2375 		}
2376 	}
2377 }
2378 
2379 static int hisi_qm_is_q_updated(struct uacce_queue *q)
2380 {
2381 	struct hisi_qp *qp = q->priv;
2382 	struct qm_cqe *cqe = qp->cqe + qp->qp_status.cq_head;
2383 	int updated = 0;
2384 
2385 	while (QM_CQE_PHASE(cqe) == qp->qp_status.cqc_phase) {
2386 		/* make sure to read data from memory */
2387 		dma_rmb();
2388 		qm_cq_head_update(qp);
2389 		cqe = qp->cqe + qp->qp_status.cq_head;
2390 		updated = 1;
2391 	}
2392 
2393 	return updated;
2394 }
2395 
2396 static void qm_set_sqctype(struct uacce_queue *q, u16 type)
2397 {
2398 	struct hisi_qm *qm = q->uacce->priv;
2399 	struct hisi_qp *qp = q->priv;
2400 
2401 	down_write(&qm->qps_lock);
2402 	qp->alg_type = type;
2403 	up_write(&qm->qps_lock);
2404 }
2405 
2406 static long hisi_qm_uacce_ioctl(struct uacce_queue *q, unsigned int cmd,
2407 				unsigned long arg)
2408 {
2409 	struct hisi_qp *qp = q->priv;
2410 	struct hisi_qp_info qp_info;
2411 	struct hisi_qp_ctx qp_ctx;
2412 
2413 	if (cmd == UACCE_CMD_QM_SET_QP_CTX) {
2414 		if (copy_from_user(&qp_ctx, (void __user *)arg,
2415 				   sizeof(struct hisi_qp_ctx)))
2416 			return -EFAULT;
2417 
2418 		if (qp_ctx.qc_type != 0 && qp_ctx.qc_type != 1)
2419 			return -EINVAL;
2420 
2421 		qm_set_sqctype(q, qp_ctx.qc_type);
2422 		qp_ctx.id = qp->qp_id;
2423 
2424 		if (copy_to_user((void __user *)arg, &qp_ctx,
2425 				 sizeof(struct hisi_qp_ctx)))
2426 			return -EFAULT;
2427 
2428 		return 0;
2429 	} else if (cmd == UACCE_CMD_QM_SET_QP_INFO) {
2430 		if (copy_from_user(&qp_info, (void __user *)arg,
2431 				   sizeof(struct hisi_qp_info)))
2432 			return -EFAULT;
2433 
2434 		qp_info.sqe_size = qp->qm->sqe_size;
2435 		qp_info.sq_depth = qp->sq_depth;
2436 		qp_info.cq_depth = qp->cq_depth;
2437 
2438 		if (copy_to_user((void __user *)arg, &qp_info,
2439 				  sizeof(struct hisi_qp_info)))
2440 			return -EFAULT;
2441 
2442 		return 0;
2443 	}
2444 
2445 	return -EINVAL;
2446 }
2447 
2448 /**
2449  * qm_hw_err_isolate() - Try to set the isolation status of the uacce device
2450  * according to user's configuration of error threshold.
2451  * @qm: the uacce device
2452  */
2453 static int qm_hw_err_isolate(struct hisi_qm *qm)
2454 {
2455 	struct qm_hw_err *err, *tmp, *hw_err;
2456 	struct qm_err_isolate *isolate;
2457 	u32 count = 0;
2458 
2459 	isolate = &qm->isolate_data;
2460 
2461 #define SECONDS_PER_HOUR	3600
2462 
2463 	/* All the hw errs are processed by PF driver */
2464 	if (qm->uacce->is_vf || isolate->is_isolate || !isolate->err_threshold)
2465 		return 0;
2466 
2467 	hw_err = kzalloc(sizeof(*hw_err), GFP_KERNEL);
2468 	if (!hw_err)
2469 		return -ENOMEM;
2470 
2471 	/*
2472 	 * Time-stamp every slot AER error. Then check the AER error log when the
2473 	 * next device AER error occurred. if the device slot AER error count exceeds
2474 	 * the setting error threshold in one hour, the isolated state will be set
2475 	 * to true. And the AER error logs that exceed one hour will be cleared.
2476 	 */
2477 	mutex_lock(&isolate->isolate_lock);
2478 	hw_err->timestamp = jiffies;
2479 	list_for_each_entry_safe(err, tmp, &isolate->qm_hw_errs, list) {
2480 		if ((hw_err->timestamp - err->timestamp) / HZ >
2481 		    SECONDS_PER_HOUR) {
2482 			list_del(&err->list);
2483 			kfree(err);
2484 		} else {
2485 			count++;
2486 		}
2487 	}
2488 	list_add(&hw_err->list, &isolate->qm_hw_errs);
2489 	mutex_unlock(&isolate->isolate_lock);
2490 
2491 	if (count >= isolate->err_threshold)
2492 		isolate->is_isolate = true;
2493 
2494 	return 0;
2495 }
2496 
2497 static void qm_hw_err_destroy(struct hisi_qm *qm)
2498 {
2499 	struct qm_hw_err *err, *tmp;
2500 
2501 	mutex_lock(&qm->isolate_data.isolate_lock);
2502 	list_for_each_entry_safe(err, tmp, &qm->isolate_data.qm_hw_errs, list) {
2503 		list_del(&err->list);
2504 		kfree(err);
2505 	}
2506 	mutex_unlock(&qm->isolate_data.isolate_lock);
2507 }
2508 
2509 static enum uacce_dev_state hisi_qm_get_isolate_state(struct uacce_device *uacce)
2510 {
2511 	struct hisi_qm *qm = uacce->priv;
2512 	struct hisi_qm *pf_qm;
2513 
2514 	if (uacce->is_vf)
2515 		pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
2516 	else
2517 		pf_qm = qm;
2518 
2519 	return pf_qm->isolate_data.is_isolate ?
2520 			UACCE_DEV_ISOLATE : UACCE_DEV_NORMAL;
2521 }
2522 
2523 static int hisi_qm_isolate_threshold_write(struct uacce_device *uacce, u32 num)
2524 {
2525 	struct hisi_qm *qm = uacce->priv;
2526 
2527 	/* Must be set by PF */
2528 	if (uacce->is_vf)
2529 		return -EPERM;
2530 
2531 	if (qm->isolate_data.is_isolate)
2532 		return -EPERM;
2533 
2534 	qm->isolate_data.err_threshold = num;
2535 
2536 	/* After the policy is updated, need to reset the hardware err list */
2537 	qm_hw_err_destroy(qm);
2538 
2539 	return 0;
2540 }
2541 
2542 static u32 hisi_qm_isolate_threshold_read(struct uacce_device *uacce)
2543 {
2544 	struct hisi_qm *qm = uacce->priv;
2545 	struct hisi_qm *pf_qm;
2546 
2547 	if (uacce->is_vf) {
2548 		pf_qm = pci_get_drvdata(pci_physfn(qm->pdev));
2549 		return pf_qm->isolate_data.err_threshold;
2550 	}
2551 
2552 	return qm->isolate_data.err_threshold;
2553 }
2554 
2555 static const struct uacce_ops uacce_qm_ops = {
2556 	.get_available_instances = hisi_qm_get_available_instances,
2557 	.get_queue = hisi_qm_uacce_get_queue,
2558 	.put_queue = hisi_qm_uacce_put_queue,
2559 	.start_queue = hisi_qm_uacce_start_queue,
2560 	.stop_queue = hisi_qm_uacce_stop_queue,
2561 	.mmap = hisi_qm_uacce_mmap,
2562 	.ioctl = hisi_qm_uacce_ioctl,
2563 	.is_q_updated = hisi_qm_is_q_updated,
2564 	.get_isolate_state = hisi_qm_get_isolate_state,
2565 	.isolate_err_threshold_write = hisi_qm_isolate_threshold_write,
2566 	.isolate_err_threshold_read = hisi_qm_isolate_threshold_read,
2567 };
2568 
2569 static void qm_remove_uacce(struct hisi_qm *qm)
2570 {
2571 	struct uacce_device *uacce = qm->uacce;
2572 
2573 	if (qm->use_sva) {
2574 		qm_hw_err_destroy(qm);
2575 		uacce_remove(uacce);
2576 		qm->uacce = NULL;
2577 	}
2578 }
2579 
2580 static int qm_alloc_uacce(struct hisi_qm *qm)
2581 {
2582 	struct pci_dev *pdev = qm->pdev;
2583 	struct uacce_device *uacce;
2584 	unsigned long mmio_page_nr;
2585 	unsigned long dus_page_nr;
2586 	u16 sq_depth, cq_depth;
2587 	struct uacce_interface interface = {
2588 		.flags = UACCE_DEV_SVA,
2589 		.ops = &uacce_qm_ops,
2590 	};
2591 	int ret;
2592 
2593 	ret = strscpy(interface.name, dev_driver_string(&pdev->dev),
2594 		      sizeof(interface.name));
2595 	if (ret < 0)
2596 		return -ENAMETOOLONG;
2597 
2598 	uacce = uacce_alloc(&pdev->dev, &interface);
2599 	if (IS_ERR(uacce))
2600 		return PTR_ERR(uacce);
2601 
2602 	if (uacce->flags & UACCE_DEV_SVA) {
2603 		qm->use_sva = true;
2604 	} else {
2605 		/* only consider sva case */
2606 		qm_remove_uacce(qm);
2607 		return -EINVAL;
2608 	}
2609 
2610 	uacce->is_vf = pdev->is_virtfn;
2611 	uacce->priv = qm;
2612 
2613 	if (qm->ver == QM_HW_V1)
2614 		uacce->api_ver = HISI_QM_API_VER_BASE;
2615 	else if (qm->ver == QM_HW_V2)
2616 		uacce->api_ver = HISI_QM_API_VER2_BASE;
2617 	else
2618 		uacce->api_ver = HISI_QM_API_VER3_BASE;
2619 
2620 	if (qm->ver == QM_HW_V1)
2621 		mmio_page_nr = QM_DOORBELL_PAGE_NR;
2622 	else if (!test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
2623 		mmio_page_nr = QM_DOORBELL_PAGE_NR +
2624 			QM_DOORBELL_SQ_CQ_BASE_V2 / PAGE_SIZE;
2625 	else
2626 		mmio_page_nr = qm->db_interval / PAGE_SIZE;
2627 
2628 	qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP);
2629 
2630 	/* Add one more page for device or qp status */
2631 	dus_page_nr = (PAGE_SIZE - 1 + qm->sqe_size * sq_depth +
2632 		       sizeof(struct qm_cqe) * cq_depth  + PAGE_SIZE) >>
2633 					 PAGE_SHIFT;
2634 
2635 	uacce->qf_pg_num[UACCE_QFRT_MMIO] = mmio_page_nr;
2636 	uacce->qf_pg_num[UACCE_QFRT_DUS]  = dus_page_nr;
2637 
2638 	qm->uacce = uacce;
2639 	INIT_LIST_HEAD(&qm->isolate_data.qm_hw_errs);
2640 	mutex_init(&qm->isolate_data.isolate_lock);
2641 
2642 	return 0;
2643 }
2644 
2645 /**
2646  * qm_frozen() - Try to froze QM to cut continuous queue request. If
2647  * there is user on the QM, return failure without doing anything.
2648  * @qm: The qm needed to be fronzen.
2649  *
2650  * This function frozes QM, then we can do SRIOV disabling.
2651  */
2652 static int qm_frozen(struct hisi_qm *qm)
2653 {
2654 	if (test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl))
2655 		return 0;
2656 
2657 	down_write(&qm->qps_lock);
2658 
2659 	if (!qm->qp_in_used) {
2660 		qm->qp_in_used = qm->qp_num;
2661 		up_write(&qm->qps_lock);
2662 		set_bit(QM_DRIVER_REMOVING, &qm->misc_ctl);
2663 		return 0;
2664 	}
2665 
2666 	up_write(&qm->qps_lock);
2667 
2668 	return -EBUSY;
2669 }
2670 
2671 static int qm_try_frozen_vfs(struct pci_dev *pdev,
2672 			     struct hisi_qm_list *qm_list)
2673 {
2674 	struct hisi_qm *qm, *vf_qm;
2675 	struct pci_dev *dev;
2676 	int ret = 0;
2677 
2678 	if (!qm_list || !pdev)
2679 		return -EINVAL;
2680 
2681 	/* Try to frozen all the VFs as disable SRIOV */
2682 	mutex_lock(&qm_list->lock);
2683 	list_for_each_entry(qm, &qm_list->list, list) {
2684 		dev = qm->pdev;
2685 		if (dev == pdev)
2686 			continue;
2687 		if (pci_physfn(dev) == pdev) {
2688 			vf_qm = pci_get_drvdata(dev);
2689 			ret = qm_frozen(vf_qm);
2690 			if (ret)
2691 				goto frozen_fail;
2692 		}
2693 	}
2694 
2695 frozen_fail:
2696 	mutex_unlock(&qm_list->lock);
2697 
2698 	return ret;
2699 }
2700 
2701 /**
2702  * hisi_qm_wait_task_finish() - Wait until the task is finished
2703  * when removing the driver.
2704  * @qm: The qm needed to wait for the task to finish.
2705  * @qm_list: The list of all available devices.
2706  */
2707 void hisi_qm_wait_task_finish(struct hisi_qm *qm, struct hisi_qm_list *qm_list)
2708 {
2709 	while (qm_frozen(qm) ||
2710 	       ((qm->fun_type == QM_HW_PF) &&
2711 	       qm_try_frozen_vfs(qm->pdev, qm_list))) {
2712 		msleep(WAIT_PERIOD);
2713 	}
2714 
2715 	while (test_bit(QM_RST_SCHED, &qm->misc_ctl) ||
2716 	       test_bit(QM_RESETTING, &qm->misc_ctl))
2717 		msleep(WAIT_PERIOD);
2718 
2719 	if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
2720 		flush_work(&qm->cmd_process);
2721 
2722 	udelay(REMOVE_WAIT_DELAY);
2723 }
2724 EXPORT_SYMBOL_GPL(hisi_qm_wait_task_finish);
2725 
2726 static void hisi_qp_memory_uninit(struct hisi_qm *qm, int num)
2727 {
2728 	struct device *dev = &qm->pdev->dev;
2729 	struct qm_dma *qdma;
2730 	int i;
2731 
2732 	for (i = num - 1; i >= 0; i--) {
2733 		qdma = &qm->qp_array[i].qdma;
2734 		dma_free_coherent(dev, qdma->size, qdma->va, qdma->dma);
2735 		kfree(qm->poll_data[i].qp_finish_id);
2736 	}
2737 
2738 	kfree(qm->poll_data);
2739 	kfree(qm->qp_array);
2740 }
2741 
2742 static int hisi_qp_memory_init(struct hisi_qm *qm, size_t dma_size, int id,
2743 			       u16 sq_depth, u16 cq_depth)
2744 {
2745 	struct device *dev = &qm->pdev->dev;
2746 	size_t off = qm->sqe_size * sq_depth;
2747 	struct hisi_qp *qp;
2748 	int ret = -ENOMEM;
2749 
2750 	qm->poll_data[id].qp_finish_id = kcalloc(qm->qp_num, sizeof(u16),
2751 						 GFP_KERNEL);
2752 	if (!qm->poll_data[id].qp_finish_id)
2753 		return -ENOMEM;
2754 
2755 	qp = &qm->qp_array[id];
2756 	qp->qdma.va = dma_alloc_coherent(dev, dma_size, &qp->qdma.dma,
2757 					 GFP_KERNEL);
2758 	if (!qp->qdma.va)
2759 		goto err_free_qp_finish_id;
2760 
2761 	qp->sqe = qp->qdma.va;
2762 	qp->sqe_dma = qp->qdma.dma;
2763 	qp->cqe = qp->qdma.va + off;
2764 	qp->cqe_dma = qp->qdma.dma + off;
2765 	qp->qdma.size = dma_size;
2766 	qp->sq_depth = sq_depth;
2767 	qp->cq_depth = cq_depth;
2768 	qp->qm = qm;
2769 	qp->qp_id = id;
2770 
2771 	return 0;
2772 
2773 err_free_qp_finish_id:
2774 	kfree(qm->poll_data[id].qp_finish_id);
2775 	return ret;
2776 }
2777 
2778 static void hisi_qm_pre_init(struct hisi_qm *qm)
2779 {
2780 	struct pci_dev *pdev = qm->pdev;
2781 
2782 	if (qm->ver == QM_HW_V1)
2783 		qm->ops = &qm_hw_ops_v1;
2784 	else if (qm->ver == QM_HW_V2)
2785 		qm->ops = &qm_hw_ops_v2;
2786 	else
2787 		qm->ops = &qm_hw_ops_v3;
2788 
2789 	pci_set_drvdata(pdev, qm);
2790 	mutex_init(&qm->mailbox_lock);
2791 	init_rwsem(&qm->qps_lock);
2792 	qm->qp_in_used = 0;
2793 	if (test_bit(QM_SUPPORT_RPM, &qm->caps)) {
2794 		if (!acpi_device_power_manageable(ACPI_COMPANION(&pdev->dev)))
2795 			dev_info(&pdev->dev, "_PS0 and _PR0 are not defined");
2796 	}
2797 }
2798 
2799 static void qm_cmd_uninit(struct hisi_qm *qm)
2800 {
2801 	u32 val;
2802 
2803 	if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
2804 		return;
2805 
2806 	val = readl(qm->io_base + QM_IFC_INT_MASK);
2807 	val |= QM_IFC_INT_DISABLE;
2808 	writel(val, qm->io_base + QM_IFC_INT_MASK);
2809 }
2810 
2811 static void qm_cmd_init(struct hisi_qm *qm)
2812 {
2813 	u32 val;
2814 
2815 	if (!test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
2816 		return;
2817 
2818 	/* Clear communication interrupt source */
2819 	qm_clear_cmd_interrupt(qm, QM_IFC_INT_SOURCE_CLR);
2820 
2821 	/* Enable pf to vf communication reg. */
2822 	val = readl(qm->io_base + QM_IFC_INT_MASK);
2823 	val &= ~QM_IFC_INT_DISABLE;
2824 	writel(val, qm->io_base + QM_IFC_INT_MASK);
2825 }
2826 
2827 static void qm_put_pci_res(struct hisi_qm *qm)
2828 {
2829 	struct pci_dev *pdev = qm->pdev;
2830 
2831 	if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
2832 		iounmap(qm->db_io_base);
2833 
2834 	iounmap(qm->io_base);
2835 	pci_release_mem_regions(pdev);
2836 }
2837 
2838 static void hisi_qm_pci_uninit(struct hisi_qm *qm)
2839 {
2840 	struct pci_dev *pdev = qm->pdev;
2841 
2842 	pci_free_irq_vectors(pdev);
2843 	qm_put_pci_res(qm);
2844 	pci_disable_device(pdev);
2845 }
2846 
2847 static void hisi_qm_set_state(struct hisi_qm *qm, u8 state)
2848 {
2849 	if (qm->ver > QM_HW_V2 && qm->fun_type == QM_HW_VF)
2850 		writel(state, qm->io_base + QM_VF_STATE);
2851 }
2852 
2853 static void hisi_qm_unint_work(struct hisi_qm *qm)
2854 {
2855 	destroy_workqueue(qm->wq);
2856 }
2857 
2858 static void hisi_qm_free_rsv_buf(struct hisi_qm *qm)
2859 {
2860 	struct qm_dma *xqc_dma = &qm->xqc_buf.qcdma;
2861 	struct device *dev = &qm->pdev->dev;
2862 
2863 	dma_free_coherent(dev, xqc_dma->size, xqc_dma->va, xqc_dma->dma);
2864 }
2865 
2866 static void hisi_qm_memory_uninit(struct hisi_qm *qm)
2867 {
2868 	struct device *dev = &qm->pdev->dev;
2869 
2870 	hisi_qp_memory_uninit(qm, qm->qp_num);
2871 	hisi_qm_free_rsv_buf(qm);
2872 	if (qm->qdma.va) {
2873 		hisi_qm_cache_wb(qm);
2874 		dma_free_coherent(dev, qm->qdma.size,
2875 				  qm->qdma.va, qm->qdma.dma);
2876 	}
2877 
2878 	idr_destroy(&qm->qp_idr);
2879 
2880 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
2881 		kfree(qm->factor);
2882 }
2883 
2884 /**
2885  * hisi_qm_uninit() - Uninitialize qm.
2886  * @qm: The qm needed uninit.
2887  *
2888  * This function uninits qm related device resources.
2889  */
2890 void hisi_qm_uninit(struct hisi_qm *qm)
2891 {
2892 	qm_cmd_uninit(qm);
2893 	hisi_qm_unint_work(qm);
2894 
2895 	down_write(&qm->qps_lock);
2896 	hisi_qm_memory_uninit(qm);
2897 	hisi_qm_set_state(qm, QM_NOT_READY);
2898 	up_write(&qm->qps_lock);
2899 
2900 	qm_remove_uacce(qm);
2901 	qm_irqs_unregister(qm);
2902 	hisi_qm_pci_uninit(qm);
2903 }
2904 EXPORT_SYMBOL_GPL(hisi_qm_uninit);
2905 
2906 /**
2907  * hisi_qm_get_vft() - Get vft from a qm.
2908  * @qm: The qm we want to get its vft.
2909  * @base: The base number of queue in vft.
2910  * @number: The number of queues in vft.
2911  *
2912  * We can allocate multiple queues to a qm by configuring virtual function
2913  * table. We get related configures by this function. Normally, we call this
2914  * function in VF driver to get the queue information.
2915  *
2916  * qm hw v1 does not support this interface.
2917  */
2918 static int hisi_qm_get_vft(struct hisi_qm *qm, u32 *base, u32 *number)
2919 {
2920 	if (!base || !number)
2921 		return -EINVAL;
2922 
2923 	if (!qm->ops->get_vft) {
2924 		dev_err(&qm->pdev->dev, "Don't support vft read!\n");
2925 		return -EINVAL;
2926 	}
2927 
2928 	return qm->ops->get_vft(qm, base, number);
2929 }
2930 
2931 /**
2932  * hisi_qm_set_vft() - Set vft to a qm.
2933  * @qm: The qm we want to set its vft.
2934  * @fun_num: The function number.
2935  * @base: The base number of queue in vft.
2936  * @number: The number of queues in vft.
2937  *
2938  * This function is alway called in PF driver, it is used to assign queues
2939  * among PF and VFs.
2940  *
2941  * Assign queues A~B to PF: hisi_qm_set_vft(qm, 0, A, B - A + 1)
2942  * Assign queues A~B to VF: hisi_qm_set_vft(qm, 2, A, B - A + 1)
2943  * (VF function number 0x2)
2944  */
2945 static int hisi_qm_set_vft(struct hisi_qm *qm, u32 fun_num, u32 base,
2946 		    u32 number)
2947 {
2948 	u32 max_q_num = qm->ctrl_qp_num;
2949 
2950 	if (base >= max_q_num || number > max_q_num ||
2951 	    (base + number) > max_q_num)
2952 		return -EINVAL;
2953 
2954 	return qm_set_sqc_cqc_vft(qm, fun_num, base, number);
2955 }
2956 
2957 static void qm_init_eq_aeq_status(struct hisi_qm *qm)
2958 {
2959 	struct hisi_qm_status *status = &qm->status;
2960 
2961 	status->eq_head = 0;
2962 	status->aeq_head = 0;
2963 	status->eqc_phase = true;
2964 	status->aeqc_phase = true;
2965 }
2966 
2967 static void qm_enable_eq_aeq_interrupts(struct hisi_qm *qm)
2968 {
2969 	/* Clear eq/aeq interrupt source */
2970 	qm_db(qm, 0, QM_DOORBELL_CMD_AEQ, qm->status.aeq_head, 0);
2971 	qm_db(qm, 0, QM_DOORBELL_CMD_EQ, qm->status.eq_head, 0);
2972 
2973 	writel(0x0, qm->io_base + QM_VF_EQ_INT_MASK);
2974 	writel(0x0, qm->io_base + QM_VF_AEQ_INT_MASK);
2975 }
2976 
2977 static void qm_disable_eq_aeq_interrupts(struct hisi_qm *qm)
2978 {
2979 	writel(0x1, qm->io_base + QM_VF_EQ_INT_MASK);
2980 	writel(0x1, qm->io_base + QM_VF_AEQ_INT_MASK);
2981 }
2982 
2983 static int qm_eq_ctx_cfg(struct hisi_qm *qm)
2984 {
2985 	struct qm_eqc eqc = {0};
2986 
2987 	eqc.base_l = cpu_to_le32(lower_32_bits(qm->eqe_dma));
2988 	eqc.base_h = cpu_to_le32(upper_32_bits(qm->eqe_dma));
2989 	if (qm->ver == QM_HW_V1)
2990 		eqc.dw3 = cpu_to_le32(QM_EQE_AEQE_SIZE);
2991 	eqc.dw6 = cpu_to_le32(((u32)qm->eq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT));
2992 
2993 	return qm_set_and_get_xqc(qm, QM_MB_CMD_EQC, &eqc, 0, 0);
2994 }
2995 
2996 static int qm_aeq_ctx_cfg(struct hisi_qm *qm)
2997 {
2998 	struct qm_aeqc aeqc = {0};
2999 
3000 	aeqc.base_l = cpu_to_le32(lower_32_bits(qm->aeqe_dma));
3001 	aeqc.base_h = cpu_to_le32(upper_32_bits(qm->aeqe_dma));
3002 	aeqc.dw6 = cpu_to_le32(((u32)qm->aeq_depth - 1) | (1 << QM_EQC_PHASE_SHIFT));
3003 
3004 	return qm_set_and_get_xqc(qm, QM_MB_CMD_AEQC, &aeqc, 0, 0);
3005 }
3006 
3007 static int qm_eq_aeq_ctx_cfg(struct hisi_qm *qm)
3008 {
3009 	struct device *dev = &qm->pdev->dev;
3010 	int ret;
3011 
3012 	qm_init_eq_aeq_status(qm);
3013 
3014 	ret = qm_eq_ctx_cfg(qm);
3015 	if (ret) {
3016 		dev_err(dev, "Set eqc failed!\n");
3017 		return ret;
3018 	}
3019 
3020 	return qm_aeq_ctx_cfg(qm);
3021 }
3022 
3023 static int __hisi_qm_start(struct hisi_qm *qm)
3024 {
3025 	int ret;
3026 
3027 	WARN_ON(!qm->qdma.va);
3028 
3029 	if (qm->fun_type == QM_HW_PF) {
3030 		ret = hisi_qm_set_vft(qm, 0, qm->qp_base, qm->qp_num);
3031 		if (ret)
3032 			return ret;
3033 	}
3034 
3035 	ret = qm_eq_aeq_ctx_cfg(qm);
3036 	if (ret)
3037 		return ret;
3038 
3039 	ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0);
3040 	if (ret)
3041 		return ret;
3042 
3043 	ret = hisi_qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0);
3044 	if (ret)
3045 		return ret;
3046 
3047 	qm_init_prefetch(qm);
3048 	qm_enable_eq_aeq_interrupts(qm);
3049 
3050 	return 0;
3051 }
3052 
3053 /**
3054  * hisi_qm_start() - start qm
3055  * @qm: The qm to be started.
3056  *
3057  * This function starts a qm, then we can allocate qp from this qm.
3058  */
3059 int hisi_qm_start(struct hisi_qm *qm)
3060 {
3061 	struct device *dev = &qm->pdev->dev;
3062 	int ret = 0;
3063 
3064 	down_write(&qm->qps_lock);
3065 
3066 	dev_dbg(dev, "qm start with %u queue pairs\n", qm->qp_num);
3067 
3068 	if (!qm->qp_num) {
3069 		dev_err(dev, "qp_num should not be 0\n");
3070 		ret = -EINVAL;
3071 		goto err_unlock;
3072 	}
3073 
3074 	ret = __hisi_qm_start(qm);
3075 	if (ret)
3076 		goto err_unlock;
3077 
3078 	atomic_set(&qm->status.flags, QM_WORK);
3079 	hisi_qm_set_state(qm, QM_READY);
3080 
3081 err_unlock:
3082 	up_write(&qm->qps_lock);
3083 	return ret;
3084 }
3085 EXPORT_SYMBOL_GPL(hisi_qm_start);
3086 
3087 static int qm_restart(struct hisi_qm *qm)
3088 {
3089 	struct device *dev = &qm->pdev->dev;
3090 	struct hisi_qp *qp;
3091 	int ret, i;
3092 
3093 	ret = hisi_qm_start(qm);
3094 	if (ret < 0)
3095 		return ret;
3096 
3097 	down_write(&qm->qps_lock);
3098 	for (i = 0; i < qm->qp_num; i++) {
3099 		qp = &qm->qp_array[i];
3100 		if (atomic_read(&qp->qp_status.flags) == QP_STOP &&
3101 		    qp->is_resetting == true) {
3102 			ret = qm_start_qp_nolock(qp, 0);
3103 			if (ret < 0) {
3104 				dev_err(dev, "Failed to start qp%d!\n", i);
3105 
3106 				up_write(&qm->qps_lock);
3107 				return ret;
3108 			}
3109 			qp->is_resetting = false;
3110 		}
3111 	}
3112 	up_write(&qm->qps_lock);
3113 
3114 	return 0;
3115 }
3116 
3117 /* Stop started qps in reset flow */
3118 static void qm_stop_started_qp(struct hisi_qm *qm)
3119 {
3120 	struct hisi_qp *qp;
3121 	int i;
3122 
3123 	for (i = 0; i < qm->qp_num; i++) {
3124 		qp = &qm->qp_array[i];
3125 		if (atomic_read(&qp->qp_status.flags) == QP_START) {
3126 			qp->is_resetting = true;
3127 			qm_stop_qp_nolock(qp);
3128 		}
3129 	}
3130 }
3131 
3132 /**
3133  * qm_clear_queues() - Clear all queues memory in a qm.
3134  * @qm: The qm in which the queues will be cleared.
3135  *
3136  * This function clears all queues memory in a qm. Reset of accelerator can
3137  * use this to clear queues.
3138  */
3139 static void qm_clear_queues(struct hisi_qm *qm)
3140 {
3141 	struct hisi_qp *qp;
3142 	int i;
3143 
3144 	for (i = 0; i < qm->qp_num; i++) {
3145 		qp = &qm->qp_array[i];
3146 		if (qp->is_in_kernel && qp->is_resetting)
3147 			memset(qp->qdma.va, 0, qp->qdma.size);
3148 	}
3149 
3150 	memset(qm->qdma.va, 0, qm->qdma.size);
3151 }
3152 
3153 /**
3154  * hisi_qm_stop() - Stop a qm.
3155  * @qm: The qm which will be stopped.
3156  * @r: The reason to stop qm.
3157  *
3158  * This function stops qm and its qps, then qm can not accept request.
3159  * Related resources are not released at this state, we can use hisi_qm_start
3160  * to let qm start again.
3161  */
3162 int hisi_qm_stop(struct hisi_qm *qm, enum qm_stop_reason r)
3163 {
3164 	struct device *dev = &qm->pdev->dev;
3165 	int ret = 0;
3166 
3167 	down_write(&qm->qps_lock);
3168 
3169 	if (atomic_read(&qm->status.flags) == QM_STOP)
3170 		goto err_unlock;
3171 
3172 	/* Stop all the request sending at first. */
3173 	atomic_set(&qm->status.flags, QM_STOP);
3174 	qm->status.stop_reason = r;
3175 
3176 	if (qm->status.stop_reason != QM_NORMAL) {
3177 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
3178 		/*
3179 		 * When performing soft reset, the hardware will no longer
3180 		 * do tasks, and the tasks in the device will be flushed
3181 		 * out directly since the master ooo is closed.
3182 		 */
3183 		if (test_bit(QM_SUPPORT_STOP_FUNC, &qm->caps) &&
3184 		    r != QM_SOFT_RESET) {
3185 			ret = qm_drain_qm(qm);
3186 			if (ret) {
3187 				dev_err(dev, "failed to drain qm!\n");
3188 				goto err_unlock;
3189 			}
3190 		}
3191 
3192 		qm_stop_started_qp(qm);
3193 
3194 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
3195 	}
3196 
3197 	qm_disable_eq_aeq_interrupts(qm);
3198 	if (qm->fun_type == QM_HW_PF) {
3199 		ret = hisi_qm_set_vft(qm, 0, 0, 0);
3200 		if (ret < 0) {
3201 			dev_err(dev, "Failed to set vft!\n");
3202 			ret = -EBUSY;
3203 			goto err_unlock;
3204 		}
3205 	}
3206 
3207 	qm_clear_queues(qm);
3208 	qm->status.stop_reason = QM_NORMAL;
3209 
3210 err_unlock:
3211 	up_write(&qm->qps_lock);
3212 	return ret;
3213 }
3214 EXPORT_SYMBOL_GPL(hisi_qm_stop);
3215 
3216 static void qm_hw_error_init(struct hisi_qm *qm)
3217 {
3218 	if (!qm->ops->hw_error_init) {
3219 		dev_err(&qm->pdev->dev, "QM doesn't support hw error handling!\n");
3220 		return;
3221 	}
3222 
3223 	qm->ops->hw_error_init(qm);
3224 }
3225 
3226 static void qm_hw_error_uninit(struct hisi_qm *qm)
3227 {
3228 	if (!qm->ops->hw_error_uninit) {
3229 		dev_err(&qm->pdev->dev, "Unexpected QM hw error uninit!\n");
3230 		return;
3231 	}
3232 
3233 	qm->ops->hw_error_uninit(qm);
3234 }
3235 
3236 static enum acc_err_result qm_hw_error_handle(struct hisi_qm *qm)
3237 {
3238 	if (!qm->ops->hw_error_handle) {
3239 		dev_err(&qm->pdev->dev, "QM doesn't support hw error report!\n");
3240 		return ACC_ERR_NONE;
3241 	}
3242 
3243 	return qm->ops->hw_error_handle(qm);
3244 }
3245 
3246 /**
3247  * hisi_qm_dev_err_init() - Initialize device error configuration.
3248  * @qm: The qm for which we want to do error initialization.
3249  *
3250  * Initialize QM and device error related configuration.
3251  */
3252 void hisi_qm_dev_err_init(struct hisi_qm *qm)
3253 {
3254 	if (qm->fun_type == QM_HW_VF)
3255 		return;
3256 
3257 	qm_hw_error_init(qm);
3258 
3259 	if (!qm->err_ini->hw_err_enable) {
3260 		dev_err(&qm->pdev->dev, "Device doesn't support hw error init!\n");
3261 		return;
3262 	}
3263 	qm->err_ini->hw_err_enable(qm);
3264 }
3265 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_init);
3266 
3267 /**
3268  * hisi_qm_dev_err_uninit() - Uninitialize device error configuration.
3269  * @qm: The qm for which we want to do error uninitialization.
3270  *
3271  * Uninitialize QM and device error related configuration.
3272  */
3273 void hisi_qm_dev_err_uninit(struct hisi_qm *qm)
3274 {
3275 	if (qm->fun_type == QM_HW_VF)
3276 		return;
3277 
3278 	qm_hw_error_uninit(qm);
3279 
3280 	if (!qm->err_ini->hw_err_disable) {
3281 		dev_err(&qm->pdev->dev, "Unexpected device hw error uninit!\n");
3282 		return;
3283 	}
3284 	qm->err_ini->hw_err_disable(qm);
3285 }
3286 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_uninit);
3287 
3288 /**
3289  * hisi_qm_free_qps() - free multiple queue pairs.
3290  * @qps: The queue pairs need to be freed.
3291  * @qp_num: The num of queue pairs.
3292  */
3293 void hisi_qm_free_qps(struct hisi_qp **qps, int qp_num)
3294 {
3295 	int i;
3296 
3297 	if (!qps || qp_num <= 0)
3298 		return;
3299 
3300 	for (i = qp_num - 1; i >= 0; i--)
3301 		hisi_qm_release_qp(qps[i]);
3302 }
3303 EXPORT_SYMBOL_GPL(hisi_qm_free_qps);
3304 
3305 static void free_list(struct list_head *head)
3306 {
3307 	struct hisi_qm_resource *res, *tmp;
3308 
3309 	list_for_each_entry_safe(res, tmp, head, list) {
3310 		list_del(&res->list);
3311 		kfree(res);
3312 	}
3313 }
3314 
3315 static int hisi_qm_sort_devices(int node, struct list_head *head,
3316 				struct hisi_qm_list *qm_list)
3317 {
3318 	struct hisi_qm_resource *res, *tmp;
3319 	struct hisi_qm *qm;
3320 	struct list_head *n;
3321 	struct device *dev;
3322 	int dev_node;
3323 
3324 	list_for_each_entry(qm, &qm_list->list, list) {
3325 		dev = &qm->pdev->dev;
3326 
3327 		dev_node = dev_to_node(dev);
3328 		if (dev_node < 0)
3329 			dev_node = 0;
3330 
3331 		res = kzalloc(sizeof(*res), GFP_KERNEL);
3332 		if (!res)
3333 			return -ENOMEM;
3334 
3335 		res->qm = qm;
3336 		res->distance = node_distance(dev_node, node);
3337 		n = head;
3338 		list_for_each_entry(tmp, head, list) {
3339 			if (res->distance < tmp->distance) {
3340 				n = &tmp->list;
3341 				break;
3342 			}
3343 		}
3344 		list_add_tail(&res->list, n);
3345 	}
3346 
3347 	return 0;
3348 }
3349 
3350 /**
3351  * hisi_qm_alloc_qps_node() - Create multiple queue pairs.
3352  * @qm_list: The list of all available devices.
3353  * @qp_num: The number of queue pairs need created.
3354  * @alg_type: The algorithm type.
3355  * @node: The numa node.
3356  * @qps: The queue pairs need created.
3357  *
3358  * This function will sort all available device according to numa distance.
3359  * Then try to create all queue pairs from one device, if all devices do
3360  * not meet the requirements will return error.
3361  */
3362 int hisi_qm_alloc_qps_node(struct hisi_qm_list *qm_list, int qp_num,
3363 			   u8 alg_type, int node, struct hisi_qp **qps)
3364 {
3365 	struct hisi_qm_resource *tmp;
3366 	int ret = -ENODEV;
3367 	LIST_HEAD(head);
3368 	int i;
3369 
3370 	if (!qps || !qm_list || qp_num <= 0)
3371 		return -EINVAL;
3372 
3373 	mutex_lock(&qm_list->lock);
3374 	if (hisi_qm_sort_devices(node, &head, qm_list)) {
3375 		mutex_unlock(&qm_list->lock);
3376 		goto err;
3377 	}
3378 
3379 	list_for_each_entry(tmp, &head, list) {
3380 		for (i = 0; i < qp_num; i++) {
3381 			qps[i] = hisi_qm_create_qp(tmp->qm, alg_type);
3382 			if (IS_ERR(qps[i])) {
3383 				hisi_qm_free_qps(qps, i);
3384 				break;
3385 			}
3386 		}
3387 
3388 		if (i == qp_num) {
3389 			ret = 0;
3390 			break;
3391 		}
3392 	}
3393 
3394 	mutex_unlock(&qm_list->lock);
3395 	if (ret)
3396 		pr_info("Failed to create qps, node[%d], alg[%u], qp[%d]!\n",
3397 			node, alg_type, qp_num);
3398 
3399 err:
3400 	free_list(&head);
3401 	return ret;
3402 }
3403 EXPORT_SYMBOL_GPL(hisi_qm_alloc_qps_node);
3404 
3405 static int qm_vf_q_assign(struct hisi_qm *qm, u32 num_vfs)
3406 {
3407 	u32 remain_q_num, vfs_q_num, act_q_num, q_num, i, j;
3408 	u32 max_qp_num = qm->max_qp_num;
3409 	u32 q_base = qm->qp_num;
3410 	int ret;
3411 
3412 	if (!num_vfs)
3413 		return -EINVAL;
3414 
3415 	vfs_q_num = qm->ctrl_qp_num - qm->qp_num;
3416 
3417 	/* If vfs_q_num is less than num_vfs, return error. */
3418 	if (vfs_q_num < num_vfs)
3419 		return -EINVAL;
3420 
3421 	q_num = vfs_q_num / num_vfs;
3422 	remain_q_num = vfs_q_num % num_vfs;
3423 
3424 	for (i = num_vfs; i > 0; i--) {
3425 		/*
3426 		 * if q_num + remain_q_num > max_qp_num in last vf, divide the
3427 		 * remaining queues equally.
3428 		 */
3429 		if (i == num_vfs && q_num + remain_q_num <= max_qp_num) {
3430 			act_q_num = q_num + remain_q_num;
3431 			remain_q_num = 0;
3432 		} else if (remain_q_num > 0) {
3433 			act_q_num = q_num + 1;
3434 			remain_q_num--;
3435 		} else {
3436 			act_q_num = q_num;
3437 		}
3438 
3439 		act_q_num = min(act_q_num, max_qp_num);
3440 		ret = hisi_qm_set_vft(qm, i, q_base, act_q_num);
3441 		if (ret) {
3442 			for (j = num_vfs; j > i; j--)
3443 				hisi_qm_set_vft(qm, j, 0, 0);
3444 			return ret;
3445 		}
3446 		q_base += act_q_num;
3447 	}
3448 
3449 	return 0;
3450 }
3451 
3452 static int qm_clear_vft_config(struct hisi_qm *qm)
3453 {
3454 	int ret;
3455 	u32 i;
3456 
3457 	for (i = 1; i <= qm->vfs_num; i++) {
3458 		ret = hisi_qm_set_vft(qm, i, 0, 0);
3459 		if (ret)
3460 			return ret;
3461 	}
3462 	qm->vfs_num = 0;
3463 
3464 	return 0;
3465 }
3466 
3467 static int qm_func_shaper_enable(struct hisi_qm *qm, u32 fun_index, u32 qos)
3468 {
3469 	struct device *dev = &qm->pdev->dev;
3470 	u32 ir = qos * QM_QOS_RATE;
3471 	int ret, total_vfs, i;
3472 
3473 	total_vfs = pci_sriov_get_totalvfs(qm->pdev);
3474 	if (fun_index > total_vfs)
3475 		return -EINVAL;
3476 
3477 	qm->factor[fun_index].func_qos = qos;
3478 
3479 	ret = qm_get_shaper_para(ir, &qm->factor[fun_index]);
3480 	if (ret) {
3481 		dev_err(dev, "failed to calculate shaper parameter!\n");
3482 		return -EINVAL;
3483 	}
3484 
3485 	for (i = ALG_TYPE_0; i <= ALG_TYPE_1; i++) {
3486 		/* The base number of queue reuse for different alg type */
3487 		ret = qm_set_vft_common(qm, SHAPER_VFT, fun_index, i, 1);
3488 		if (ret) {
3489 			dev_err(dev, "type: %d, failed to set shaper vft!\n", i);
3490 			return -EINVAL;
3491 		}
3492 	}
3493 
3494 	return 0;
3495 }
3496 
3497 static u32 qm_get_shaper_vft_qos(struct hisi_qm *qm, u32 fun_index)
3498 {
3499 	u64 cir_u = 0, cir_b = 0, cir_s = 0;
3500 	u64 shaper_vft, ir_calc, ir;
3501 	unsigned int val;
3502 	u32 error_rate;
3503 	int ret;
3504 
3505 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
3506 					 val & BIT(0), POLL_PERIOD,
3507 					 POLL_TIMEOUT);
3508 	if (ret)
3509 		return 0;
3510 
3511 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_WR);
3512 	writel(SHAPER_VFT, qm->io_base + QM_VFT_CFG_TYPE);
3513 	writel(fun_index, qm->io_base + QM_VFT_CFG);
3514 
3515 	writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
3516 	writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
3517 
3518 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
3519 					 val & BIT(0), POLL_PERIOD,
3520 					 POLL_TIMEOUT);
3521 	if (ret)
3522 		return 0;
3523 
3524 	shaper_vft = readl(qm->io_base + QM_VFT_CFG_DATA_L) |
3525 		  ((u64)readl(qm->io_base + QM_VFT_CFG_DATA_H) << 32);
3526 
3527 	cir_b = shaper_vft & QM_SHAPER_CIR_B_MASK;
3528 	cir_u = shaper_vft & QM_SHAPER_CIR_U_MASK;
3529 	cir_u = cir_u >> QM_SHAPER_FACTOR_CIR_U_SHIFT;
3530 
3531 	cir_s = shaper_vft & QM_SHAPER_CIR_S_MASK;
3532 	cir_s = cir_s >> QM_SHAPER_FACTOR_CIR_S_SHIFT;
3533 
3534 	ir_calc = acc_shaper_para_calc(cir_b, cir_u, cir_s);
3535 
3536 	ir = qm->factor[fun_index].func_qos * QM_QOS_RATE;
3537 
3538 	error_rate = QM_QOS_EXPAND_RATE * (u32)abs(ir_calc - ir) / ir;
3539 	if (error_rate > QM_QOS_MIN_ERROR_RATE) {
3540 		pci_err(qm->pdev, "error_rate: %u, get function qos is error!\n", error_rate);
3541 		return 0;
3542 	}
3543 
3544 	return ir;
3545 }
3546 
3547 static void qm_vf_get_qos(struct hisi_qm *qm, u32 fun_num)
3548 {
3549 	struct device *dev = &qm->pdev->dev;
3550 	u64 mb_cmd;
3551 	u32 qos;
3552 	int ret;
3553 
3554 	qos = qm_get_shaper_vft_qos(qm, fun_num);
3555 	if (!qos) {
3556 		dev_err(dev, "function(%u) failed to get qos by PF!\n", fun_num);
3557 		return;
3558 	}
3559 
3560 	mb_cmd = QM_PF_SET_QOS | (u64)qos << QM_MB_CMD_DATA_SHIFT;
3561 	ret = qm_ping_single_vf(qm, mb_cmd, fun_num);
3562 	if (ret)
3563 		dev_err(dev, "failed to send cmd to VF(%u)!\n", fun_num);
3564 }
3565 
3566 static int qm_vf_read_qos(struct hisi_qm *qm)
3567 {
3568 	int cnt = 0;
3569 	int ret = -EINVAL;
3570 
3571 	/* reset mailbox qos val */
3572 	qm->mb_qos = 0;
3573 
3574 	/* vf ping pf to get function qos */
3575 	ret = qm_ping_pf(qm, QM_VF_GET_QOS);
3576 	if (ret) {
3577 		pci_err(qm->pdev, "failed to send cmd to PF to get qos!\n");
3578 		return ret;
3579 	}
3580 
3581 	while (true) {
3582 		msleep(QM_WAIT_DST_ACK);
3583 		if (qm->mb_qos)
3584 			break;
3585 
3586 		if (++cnt > QM_MAX_VF_WAIT_COUNT) {
3587 			pci_err(qm->pdev, "PF ping VF timeout!\n");
3588 			return  -ETIMEDOUT;
3589 		}
3590 	}
3591 
3592 	return ret;
3593 }
3594 
3595 static ssize_t qm_algqos_read(struct file *filp, char __user *buf,
3596 			       size_t count, loff_t *pos)
3597 {
3598 	struct hisi_qm *qm = filp->private_data;
3599 	char tbuf[QM_DBG_READ_LEN];
3600 	u32 qos_val, ir;
3601 	int ret;
3602 
3603 	ret = hisi_qm_get_dfx_access(qm);
3604 	if (ret)
3605 		return ret;
3606 
3607 	/* Mailbox and reset cannot be operated at the same time */
3608 	if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
3609 		pci_err(qm->pdev, "dev resetting, read alg qos failed!\n");
3610 		ret = -EAGAIN;
3611 		goto err_put_dfx_access;
3612 	}
3613 
3614 	if (qm->fun_type == QM_HW_PF) {
3615 		ir = qm_get_shaper_vft_qos(qm, 0);
3616 	} else {
3617 		ret = qm_vf_read_qos(qm);
3618 		if (ret)
3619 			goto err_get_status;
3620 		ir = qm->mb_qos;
3621 	}
3622 
3623 	qos_val = ir / QM_QOS_RATE;
3624 	ret = scnprintf(tbuf, QM_DBG_READ_LEN, "%u\n", qos_val);
3625 
3626 	ret = simple_read_from_buffer(buf, count, pos, tbuf, ret);
3627 
3628 err_get_status:
3629 	clear_bit(QM_RESETTING, &qm->misc_ctl);
3630 err_put_dfx_access:
3631 	hisi_qm_put_dfx_access(qm);
3632 	return ret;
3633 }
3634 
3635 static ssize_t qm_get_qos_value(struct hisi_qm *qm, const char *buf,
3636 			       unsigned long *val,
3637 			       unsigned int *fun_index)
3638 {
3639 	const struct bus_type *bus_type = qm->pdev->dev.bus;
3640 	char tbuf_bdf[QM_DBG_READ_LEN] = {0};
3641 	char val_buf[QM_DBG_READ_LEN] = {0};
3642 	struct pci_dev *pdev;
3643 	struct device *dev;
3644 	int ret;
3645 
3646 	ret = sscanf(buf, "%s %s", tbuf_bdf, val_buf);
3647 	if (ret != QM_QOS_PARAM_NUM)
3648 		return -EINVAL;
3649 
3650 	ret = kstrtoul(val_buf, 10, val);
3651 	if (ret || *val == 0 || *val > QM_QOS_MAX_VAL) {
3652 		pci_err(qm->pdev, "input qos value is error, please set 1~1000!\n");
3653 		return -EINVAL;
3654 	}
3655 
3656 	dev = bus_find_device_by_name(bus_type, NULL, tbuf_bdf);
3657 	if (!dev) {
3658 		pci_err(qm->pdev, "input pci bdf number is error!\n");
3659 		return -ENODEV;
3660 	}
3661 
3662 	pdev = container_of(dev, struct pci_dev, dev);
3663 
3664 	*fun_index = pdev->devfn;
3665 
3666 	return 0;
3667 }
3668 
3669 static ssize_t qm_algqos_write(struct file *filp, const char __user *buf,
3670 			       size_t count, loff_t *pos)
3671 {
3672 	struct hisi_qm *qm = filp->private_data;
3673 	char tbuf[QM_DBG_READ_LEN];
3674 	unsigned int fun_index;
3675 	unsigned long val;
3676 	int len, ret;
3677 
3678 	if (*pos != 0)
3679 		return 0;
3680 
3681 	if (count >= QM_DBG_READ_LEN)
3682 		return -ENOSPC;
3683 
3684 	len = simple_write_to_buffer(tbuf, QM_DBG_READ_LEN - 1, pos, buf, count);
3685 	if (len < 0)
3686 		return len;
3687 
3688 	tbuf[len] = '\0';
3689 	ret = qm_get_qos_value(qm, tbuf, &val, &fun_index);
3690 	if (ret)
3691 		return ret;
3692 
3693 	/* Mailbox and reset cannot be operated at the same time */
3694 	if (test_and_set_bit(QM_RESETTING, &qm->misc_ctl)) {
3695 		pci_err(qm->pdev, "dev resetting, write alg qos failed!\n");
3696 		return -EAGAIN;
3697 	}
3698 
3699 	ret = qm_pm_get_sync(qm);
3700 	if (ret) {
3701 		ret = -EINVAL;
3702 		goto err_get_status;
3703 	}
3704 
3705 	ret = qm_func_shaper_enable(qm, fun_index, val);
3706 	if (ret) {
3707 		pci_err(qm->pdev, "failed to enable function shaper!\n");
3708 		ret = -EINVAL;
3709 		goto err_put_sync;
3710 	}
3711 
3712 	pci_info(qm->pdev, "the qos value of function%u is set to %lu.\n",
3713 		 fun_index, val);
3714 	ret = count;
3715 
3716 err_put_sync:
3717 	qm_pm_put_sync(qm);
3718 err_get_status:
3719 	clear_bit(QM_RESETTING, &qm->misc_ctl);
3720 	return ret;
3721 }
3722 
3723 static const struct file_operations qm_algqos_fops = {
3724 	.owner = THIS_MODULE,
3725 	.open = simple_open,
3726 	.read = qm_algqos_read,
3727 	.write = qm_algqos_write,
3728 };
3729 
3730 /**
3731  * hisi_qm_set_algqos_init() - Initialize function qos debugfs files.
3732  * @qm: The qm for which we want to add debugfs files.
3733  *
3734  * Create function qos debugfs files, VF ping PF to get function qos.
3735  */
3736 void hisi_qm_set_algqos_init(struct hisi_qm *qm)
3737 {
3738 	if (qm->fun_type == QM_HW_PF)
3739 		debugfs_create_file("alg_qos", 0644, qm->debug.debug_root,
3740 				    qm, &qm_algqos_fops);
3741 	else if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps))
3742 		debugfs_create_file("alg_qos", 0444, qm->debug.debug_root,
3743 				    qm, &qm_algqos_fops);
3744 }
3745 
3746 static void hisi_qm_init_vf_qos(struct hisi_qm *qm, int total_func)
3747 {
3748 	int i;
3749 
3750 	for (i = 1; i <= total_func; i++)
3751 		qm->factor[i].func_qos = QM_QOS_MAX_VAL;
3752 }
3753 
3754 /**
3755  * hisi_qm_sriov_enable() - enable virtual functions
3756  * @pdev: the PCIe device
3757  * @max_vfs: the number of virtual functions to enable
3758  *
3759  * Returns the number of enabled VFs. If there are VFs enabled already or
3760  * max_vfs is more than the total number of device can be enabled, returns
3761  * failure.
3762  */
3763 int hisi_qm_sriov_enable(struct pci_dev *pdev, int max_vfs)
3764 {
3765 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3766 	int pre_existing_vfs, num_vfs, total_vfs, ret;
3767 
3768 	ret = qm_pm_get_sync(qm);
3769 	if (ret)
3770 		return ret;
3771 
3772 	total_vfs = pci_sriov_get_totalvfs(pdev);
3773 	pre_existing_vfs = pci_num_vf(pdev);
3774 	if (pre_existing_vfs) {
3775 		pci_err(pdev, "%d VFs already enabled. Please disable pre-enabled VFs!\n",
3776 			pre_existing_vfs);
3777 		goto err_put_sync;
3778 	}
3779 
3780 	if (max_vfs > total_vfs) {
3781 		pci_err(pdev, "%d VFs is more than total VFs %d!\n", max_vfs, total_vfs);
3782 		ret = -ERANGE;
3783 		goto err_put_sync;
3784 	}
3785 
3786 	num_vfs = max_vfs;
3787 
3788 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
3789 		hisi_qm_init_vf_qos(qm, num_vfs);
3790 
3791 	ret = qm_vf_q_assign(qm, num_vfs);
3792 	if (ret) {
3793 		pci_err(pdev, "Can't assign queues for VF!\n");
3794 		goto err_put_sync;
3795 	}
3796 
3797 	ret = pci_enable_sriov(pdev, num_vfs);
3798 	if (ret) {
3799 		pci_err(pdev, "Can't enable VF!\n");
3800 		qm_clear_vft_config(qm);
3801 		goto err_put_sync;
3802 	}
3803 	qm->vfs_num = num_vfs;
3804 
3805 	pci_info(pdev, "VF enabled, vfs_num(=%d)!\n", num_vfs);
3806 
3807 	return num_vfs;
3808 
3809 err_put_sync:
3810 	qm_pm_put_sync(qm);
3811 	return ret;
3812 }
3813 EXPORT_SYMBOL_GPL(hisi_qm_sriov_enable);
3814 
3815 /**
3816  * hisi_qm_sriov_disable - disable virtual functions
3817  * @pdev: the PCI device.
3818  * @is_frozen: true when all the VFs are frozen.
3819  *
3820  * Return failure if there are VFs assigned already or VF is in used.
3821  */
3822 int hisi_qm_sriov_disable(struct pci_dev *pdev, bool is_frozen)
3823 {
3824 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3825 
3826 	if (pci_vfs_assigned(pdev)) {
3827 		pci_err(pdev, "Failed to disable VFs as VFs are assigned!\n");
3828 		return -EPERM;
3829 	}
3830 
3831 	/* While VF is in used, SRIOV cannot be disabled. */
3832 	if (!is_frozen && qm_try_frozen_vfs(pdev, qm->qm_list)) {
3833 		pci_err(pdev, "Task is using its VF!\n");
3834 		return -EBUSY;
3835 	}
3836 
3837 	pci_disable_sriov(pdev);
3838 
3839 	qm->vfs_num = 0;
3840 	qm_pm_put_sync(qm);
3841 
3842 	return qm_clear_vft_config(qm);
3843 }
3844 EXPORT_SYMBOL_GPL(hisi_qm_sriov_disable);
3845 
3846 /**
3847  * hisi_qm_sriov_configure - configure the number of VFs
3848  * @pdev: The PCI device
3849  * @num_vfs: The number of VFs need enabled
3850  *
3851  * Enable SR-IOV according to num_vfs, 0 means disable.
3852  */
3853 int hisi_qm_sriov_configure(struct pci_dev *pdev, int num_vfs)
3854 {
3855 	if (num_vfs == 0)
3856 		return hisi_qm_sriov_disable(pdev, false);
3857 	else
3858 		return hisi_qm_sriov_enable(pdev, num_vfs);
3859 }
3860 EXPORT_SYMBOL_GPL(hisi_qm_sriov_configure);
3861 
3862 static enum acc_err_result qm_dev_err_handle(struct hisi_qm *qm)
3863 {
3864 	u32 err_sts;
3865 
3866 	if (!qm->err_ini->get_dev_hw_err_status) {
3867 		dev_err(&qm->pdev->dev, "Device doesn't support get hw error status!\n");
3868 		return ACC_ERR_NONE;
3869 	}
3870 
3871 	/* get device hardware error status */
3872 	err_sts = qm->err_ini->get_dev_hw_err_status(qm);
3873 	if (err_sts) {
3874 		if (err_sts & qm->err_info.ecc_2bits_mask)
3875 			qm->err_status.is_dev_ecc_mbit = true;
3876 
3877 		if (qm->err_ini->log_dev_hw_err)
3878 			qm->err_ini->log_dev_hw_err(qm, err_sts);
3879 
3880 		if (err_sts & qm->err_info.dev_reset_mask)
3881 			return ACC_ERR_NEED_RESET;
3882 
3883 		if (qm->err_ini->clear_dev_hw_err_status)
3884 			qm->err_ini->clear_dev_hw_err_status(qm, err_sts);
3885 	}
3886 
3887 	return ACC_ERR_RECOVERED;
3888 }
3889 
3890 static enum acc_err_result qm_process_dev_error(struct hisi_qm *qm)
3891 {
3892 	enum acc_err_result qm_ret, dev_ret;
3893 
3894 	/* log qm error */
3895 	qm_ret = qm_hw_error_handle(qm);
3896 
3897 	/* log device error */
3898 	dev_ret = qm_dev_err_handle(qm);
3899 
3900 	return (qm_ret == ACC_ERR_NEED_RESET ||
3901 		dev_ret == ACC_ERR_NEED_RESET) ?
3902 		ACC_ERR_NEED_RESET : ACC_ERR_RECOVERED;
3903 }
3904 
3905 /**
3906  * hisi_qm_dev_err_detected() - Get device and qm error status then log it.
3907  * @pdev: The PCI device which need report error.
3908  * @state: The connectivity between CPU and device.
3909  *
3910  * We register this function into PCIe AER handlers, It will report device or
3911  * qm hardware error status when error occur.
3912  */
3913 pci_ers_result_t hisi_qm_dev_err_detected(struct pci_dev *pdev,
3914 					  pci_channel_state_t state)
3915 {
3916 	struct hisi_qm *qm = pci_get_drvdata(pdev);
3917 	enum acc_err_result ret;
3918 
3919 	if (pdev->is_virtfn)
3920 		return PCI_ERS_RESULT_NONE;
3921 
3922 	pci_info(pdev, "PCI error detected, state(=%u)!!\n", state);
3923 	if (state == pci_channel_io_perm_failure)
3924 		return PCI_ERS_RESULT_DISCONNECT;
3925 
3926 	ret = qm_process_dev_error(qm);
3927 	if (ret == ACC_ERR_NEED_RESET)
3928 		return PCI_ERS_RESULT_NEED_RESET;
3929 
3930 	return PCI_ERS_RESULT_RECOVERED;
3931 }
3932 EXPORT_SYMBOL_GPL(hisi_qm_dev_err_detected);
3933 
3934 static int qm_check_req_recv(struct hisi_qm *qm)
3935 {
3936 	struct pci_dev *pdev = qm->pdev;
3937 	int ret;
3938 	u32 val;
3939 
3940 	if (qm->ver >= QM_HW_V3)
3941 		return 0;
3942 
3943 	writel(ACC_VENDOR_ID_VALUE, qm->io_base + QM_PEH_VENDOR_ID);
3944 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
3945 					 (val == ACC_VENDOR_ID_VALUE),
3946 					 POLL_PERIOD, POLL_TIMEOUT);
3947 	if (ret) {
3948 		dev_err(&pdev->dev, "Fails to read QM reg!\n");
3949 		return ret;
3950 	}
3951 
3952 	writel(PCI_VENDOR_ID_HUAWEI, qm->io_base + QM_PEH_VENDOR_ID);
3953 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_PEH_VENDOR_ID, val,
3954 					 (val == PCI_VENDOR_ID_HUAWEI),
3955 					 POLL_PERIOD, POLL_TIMEOUT);
3956 	if (ret)
3957 		dev_err(&pdev->dev, "Fails to read QM reg in the second time!\n");
3958 
3959 	return ret;
3960 }
3961 
3962 static int qm_set_pf_mse(struct hisi_qm *qm, bool set)
3963 {
3964 	struct pci_dev *pdev = qm->pdev;
3965 	u16 cmd;
3966 	int i;
3967 
3968 	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
3969 	if (set)
3970 		cmd |= PCI_COMMAND_MEMORY;
3971 	else
3972 		cmd &= ~PCI_COMMAND_MEMORY;
3973 
3974 	pci_write_config_word(pdev, PCI_COMMAND, cmd);
3975 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
3976 		pci_read_config_word(pdev, PCI_COMMAND, &cmd);
3977 		if (set == ((cmd & PCI_COMMAND_MEMORY) >> 1))
3978 			return 0;
3979 
3980 		udelay(1);
3981 	}
3982 
3983 	return -ETIMEDOUT;
3984 }
3985 
3986 static int qm_set_vf_mse(struct hisi_qm *qm, bool set)
3987 {
3988 	struct pci_dev *pdev = qm->pdev;
3989 	u16 sriov_ctrl;
3990 	int pos;
3991 	int i;
3992 
3993 	/*
3994 	 * Since function qm_set_vf_mse is called only after SRIOV is enabled,
3995 	 * pci_find_ext_capability cannot return 0, pos does not need to be
3996 	 * checked.
3997 	 */
3998 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
3999 	pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
4000 	if (set)
4001 		sriov_ctrl |= PCI_SRIOV_CTRL_MSE;
4002 	else
4003 		sriov_ctrl &= ~PCI_SRIOV_CTRL_MSE;
4004 	pci_write_config_word(pdev, pos + PCI_SRIOV_CTRL, sriov_ctrl);
4005 
4006 	for (i = 0; i < MAX_WAIT_COUNTS; i++) {
4007 		pci_read_config_word(pdev, pos + PCI_SRIOV_CTRL, &sriov_ctrl);
4008 		if (set == (sriov_ctrl & PCI_SRIOV_CTRL_MSE) >>
4009 		    ACC_PEH_SRIOV_CTRL_VF_MSE_SHIFT)
4010 			return 0;
4011 
4012 		udelay(1);
4013 	}
4014 
4015 	return -ETIMEDOUT;
4016 }
4017 
4018 static void qm_dev_ecc_mbit_handle(struct hisi_qm *qm)
4019 {
4020 	u32 nfe_enb = 0;
4021 
4022 	/* Kunpeng930 hardware automatically close master ooo when NFE occurs */
4023 	if (qm->ver >= QM_HW_V3)
4024 		return;
4025 
4026 	if (!qm->err_status.is_dev_ecc_mbit &&
4027 	    qm->err_status.is_qm_ecc_mbit &&
4028 	    qm->err_ini->close_axi_master_ooo) {
4029 		qm->err_ini->close_axi_master_ooo(qm);
4030 	} else if (qm->err_status.is_dev_ecc_mbit &&
4031 		   !qm->err_status.is_qm_ecc_mbit &&
4032 		   !qm->err_ini->close_axi_master_ooo) {
4033 		nfe_enb = readl(qm->io_base + QM_RAS_NFE_ENABLE);
4034 		writel(nfe_enb & QM_RAS_NFE_MBIT_DISABLE,
4035 		       qm->io_base + QM_RAS_NFE_ENABLE);
4036 		writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SET);
4037 	}
4038 }
4039 
4040 static int qm_vf_reset_prepare(struct hisi_qm *qm,
4041 			       enum qm_stop_reason stop_reason)
4042 {
4043 	struct hisi_qm_list *qm_list = qm->qm_list;
4044 	struct pci_dev *pdev = qm->pdev;
4045 	struct pci_dev *virtfn;
4046 	struct hisi_qm *vf_qm;
4047 	int ret = 0;
4048 
4049 	mutex_lock(&qm_list->lock);
4050 	list_for_each_entry(vf_qm, &qm_list->list, list) {
4051 		virtfn = vf_qm->pdev;
4052 		if (virtfn == pdev)
4053 			continue;
4054 
4055 		if (pci_physfn(virtfn) == pdev) {
4056 			/* save VFs PCIE BAR configuration */
4057 			pci_save_state(virtfn);
4058 
4059 			ret = hisi_qm_stop(vf_qm, stop_reason);
4060 			if (ret)
4061 				goto stop_fail;
4062 		}
4063 	}
4064 
4065 stop_fail:
4066 	mutex_unlock(&qm_list->lock);
4067 	return ret;
4068 }
4069 
4070 static int qm_try_stop_vfs(struct hisi_qm *qm, u64 cmd,
4071 			   enum qm_stop_reason stop_reason)
4072 {
4073 	struct pci_dev *pdev = qm->pdev;
4074 	int ret;
4075 
4076 	if (!qm->vfs_num)
4077 		return 0;
4078 
4079 	/* Kunpeng930 supports to notify VFs to stop before PF reset */
4080 	if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) {
4081 		ret = qm_ping_all_vfs(qm, cmd);
4082 		if (ret)
4083 			pci_err(pdev, "failed to send cmd to all VFs before PF reset!\n");
4084 	} else {
4085 		ret = qm_vf_reset_prepare(qm, stop_reason);
4086 		if (ret)
4087 			pci_err(pdev, "failed to prepare reset, ret = %d.\n", ret);
4088 	}
4089 
4090 	return ret;
4091 }
4092 
4093 static int qm_controller_reset_prepare(struct hisi_qm *qm)
4094 {
4095 	struct pci_dev *pdev = qm->pdev;
4096 	int ret;
4097 
4098 	ret = qm_reset_prepare_ready(qm);
4099 	if (ret) {
4100 		pci_err(pdev, "Controller reset not ready!\n");
4101 		return ret;
4102 	}
4103 
4104 	qm_dev_ecc_mbit_handle(qm);
4105 
4106 	/* PF obtains the information of VF by querying the register. */
4107 	qm_cmd_uninit(qm);
4108 
4109 	/* Whether VFs stop successfully, soft reset will continue. */
4110 	ret = qm_try_stop_vfs(qm, QM_PF_SRST_PREPARE, QM_SOFT_RESET);
4111 	if (ret)
4112 		pci_err(pdev, "failed to stop vfs by pf in soft reset.\n");
4113 
4114 	ret = hisi_qm_stop(qm, QM_SOFT_RESET);
4115 	if (ret) {
4116 		pci_err(pdev, "Fails to stop QM!\n");
4117 		qm_reset_bit_clear(qm);
4118 		return ret;
4119 	}
4120 
4121 	if (qm->use_sva) {
4122 		ret = qm_hw_err_isolate(qm);
4123 		if (ret)
4124 			pci_err(pdev, "failed to isolate hw err!\n");
4125 	}
4126 
4127 	ret = qm_wait_vf_prepare_finish(qm);
4128 	if (ret)
4129 		pci_err(pdev, "failed to stop by vfs in soft reset!\n");
4130 
4131 	clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4132 
4133 	return 0;
4134 }
4135 
4136 static int qm_master_ooo_check(struct hisi_qm *qm)
4137 {
4138 	u32 val;
4139 	int ret;
4140 
4141 	/* Check the ooo register of the device before resetting the device. */
4142 	writel(ACC_MASTER_GLOBAL_CTRL_SHUTDOWN, qm->io_base + ACC_MASTER_GLOBAL_CTRL);
4143 	ret = readl_relaxed_poll_timeout(qm->io_base + ACC_MASTER_TRANS_RETURN,
4144 					 val, (val == ACC_MASTER_TRANS_RETURN_RW),
4145 					 POLL_PERIOD, POLL_TIMEOUT);
4146 	if (ret)
4147 		pci_warn(qm->pdev, "Bus lock! Please reset system.\n");
4148 
4149 	return ret;
4150 }
4151 
4152 static int qm_soft_reset_prepare(struct hisi_qm *qm)
4153 {
4154 	struct pci_dev *pdev = qm->pdev;
4155 	int ret;
4156 
4157 	/* Ensure all doorbells and mailboxes received by QM */
4158 	ret = qm_check_req_recv(qm);
4159 	if (ret)
4160 		return ret;
4161 
4162 	if (qm->vfs_num) {
4163 		ret = qm_set_vf_mse(qm, false);
4164 		if (ret) {
4165 			pci_err(pdev, "Fails to disable vf MSE bit.\n");
4166 			return ret;
4167 		}
4168 	}
4169 
4170 	ret = qm->ops->set_msi(qm, false);
4171 	if (ret) {
4172 		pci_err(pdev, "Fails to disable PEH MSI bit.\n");
4173 		return ret;
4174 	}
4175 
4176 	ret = qm_master_ooo_check(qm);
4177 	if (ret)
4178 		return ret;
4179 
4180 	if (qm->err_ini->close_sva_prefetch)
4181 		qm->err_ini->close_sva_prefetch(qm);
4182 
4183 	ret = qm_set_pf_mse(qm, false);
4184 	if (ret)
4185 		pci_err(pdev, "Fails to disable pf MSE bit.\n");
4186 
4187 	return ret;
4188 }
4189 
4190 static int qm_reset_device(struct hisi_qm *qm)
4191 {
4192 	struct pci_dev *pdev = qm->pdev;
4193 
4194 	/* The reset related sub-control registers are not in PCI BAR */
4195 	if (ACPI_HANDLE(&pdev->dev)) {
4196 		unsigned long long value = 0;
4197 		acpi_status s;
4198 
4199 		s = acpi_evaluate_integer(ACPI_HANDLE(&pdev->dev),
4200 					  qm->err_info.acpi_rst,
4201 					  NULL, &value);
4202 		if (ACPI_FAILURE(s)) {
4203 			pci_err(pdev, "NO controller reset method!\n");
4204 			return -EIO;
4205 		}
4206 
4207 		if (value) {
4208 			pci_err(pdev, "Reset step %llu failed!\n", value);
4209 			return -EIO;
4210 		}
4211 
4212 		return 0;
4213 	}
4214 
4215 	pci_err(pdev, "No reset method!\n");
4216 	return -EINVAL;
4217 }
4218 
4219 static int qm_soft_reset(struct hisi_qm *qm)
4220 {
4221 	int ret;
4222 
4223 	ret = qm_soft_reset_prepare(qm);
4224 	if (ret)
4225 		return ret;
4226 
4227 	return qm_reset_device(qm);
4228 }
4229 
4230 static int qm_vf_reset_done(struct hisi_qm *qm)
4231 {
4232 	struct hisi_qm_list *qm_list = qm->qm_list;
4233 	struct pci_dev *pdev = qm->pdev;
4234 	struct pci_dev *virtfn;
4235 	struct hisi_qm *vf_qm;
4236 	int ret = 0;
4237 
4238 	mutex_lock(&qm_list->lock);
4239 	list_for_each_entry(vf_qm, &qm_list->list, list) {
4240 		virtfn = vf_qm->pdev;
4241 		if (virtfn == pdev)
4242 			continue;
4243 
4244 		if (pci_physfn(virtfn) == pdev) {
4245 			/* enable VFs PCIE BAR configuration */
4246 			pci_restore_state(virtfn);
4247 
4248 			ret = qm_restart(vf_qm);
4249 			if (ret)
4250 				goto restart_fail;
4251 		}
4252 	}
4253 
4254 restart_fail:
4255 	mutex_unlock(&qm_list->lock);
4256 	return ret;
4257 }
4258 
4259 static int qm_try_start_vfs(struct hisi_qm *qm, enum qm_mb_cmd cmd)
4260 {
4261 	struct pci_dev *pdev = qm->pdev;
4262 	int ret;
4263 
4264 	if (!qm->vfs_num)
4265 		return 0;
4266 
4267 	ret = qm_vf_q_assign(qm, qm->vfs_num);
4268 	if (ret) {
4269 		pci_err(pdev, "failed to assign VFs, ret = %d.\n", ret);
4270 		return ret;
4271 	}
4272 
4273 	/* Kunpeng930 supports to notify VFs to start after PF reset. */
4274 	if (test_bit(QM_SUPPORT_MB_COMMAND, &qm->caps)) {
4275 		ret = qm_ping_all_vfs(qm, cmd);
4276 		if (ret)
4277 			pci_warn(pdev, "failed to send cmd to all VFs after PF reset!\n");
4278 	} else {
4279 		ret = qm_vf_reset_done(qm);
4280 		if (ret)
4281 			pci_warn(pdev, "failed to start vfs, ret = %d.\n", ret);
4282 	}
4283 
4284 	return ret;
4285 }
4286 
4287 static int qm_dev_hw_init(struct hisi_qm *qm)
4288 {
4289 	return qm->err_ini->hw_init(qm);
4290 }
4291 
4292 static void qm_restart_prepare(struct hisi_qm *qm)
4293 {
4294 	u32 value;
4295 
4296 	if (qm->err_ini->open_sva_prefetch)
4297 		qm->err_ini->open_sva_prefetch(qm);
4298 
4299 	if (qm->ver >= QM_HW_V3)
4300 		return;
4301 
4302 	if (!qm->err_status.is_qm_ecc_mbit &&
4303 	    !qm->err_status.is_dev_ecc_mbit)
4304 		return;
4305 
4306 	/* temporarily close the OOO port used for PEH to write out MSI */
4307 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4308 	writel(value & ~qm->err_info.msi_wr_port,
4309 	       qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4310 
4311 	/* clear dev ecc 2bit error source if having */
4312 	value = qm_get_dev_err_status(qm) & qm->err_info.ecc_2bits_mask;
4313 	if (value && qm->err_ini->clear_dev_hw_err_status)
4314 		qm->err_ini->clear_dev_hw_err_status(qm, value);
4315 
4316 	/* clear QM ecc mbit error source */
4317 	writel(QM_ECC_MBIT, qm->io_base + QM_ABNORMAL_INT_SOURCE);
4318 
4319 	/* clear AM Reorder Buffer ecc mbit source */
4320 	writel(ACC_ROB_ECC_ERR_MULTPL, qm->io_base + ACC_AM_ROB_ECC_INT_STS);
4321 }
4322 
4323 static void qm_restart_done(struct hisi_qm *qm)
4324 {
4325 	u32 value;
4326 
4327 	if (qm->ver >= QM_HW_V3)
4328 		goto clear_flags;
4329 
4330 	if (!qm->err_status.is_qm_ecc_mbit &&
4331 	    !qm->err_status.is_dev_ecc_mbit)
4332 		return;
4333 
4334 	/* open the OOO port for PEH to write out MSI */
4335 	value = readl(qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4336 	value |= qm->err_info.msi_wr_port;
4337 	writel(value, qm->io_base + ACC_AM_CFG_PORT_WR_EN);
4338 
4339 clear_flags:
4340 	qm->err_status.is_qm_ecc_mbit = false;
4341 	qm->err_status.is_dev_ecc_mbit = false;
4342 }
4343 
4344 static int qm_controller_reset_done(struct hisi_qm *qm)
4345 {
4346 	struct pci_dev *pdev = qm->pdev;
4347 	int ret;
4348 
4349 	ret = qm->ops->set_msi(qm, true);
4350 	if (ret) {
4351 		pci_err(pdev, "Fails to enable PEH MSI bit!\n");
4352 		return ret;
4353 	}
4354 
4355 	ret = qm_set_pf_mse(qm, true);
4356 	if (ret) {
4357 		pci_err(pdev, "Fails to enable pf MSE bit!\n");
4358 		return ret;
4359 	}
4360 
4361 	if (qm->vfs_num) {
4362 		ret = qm_set_vf_mse(qm, true);
4363 		if (ret) {
4364 			pci_err(pdev, "Fails to enable vf MSE bit!\n");
4365 			return ret;
4366 		}
4367 	}
4368 
4369 	ret = qm_dev_hw_init(qm);
4370 	if (ret) {
4371 		pci_err(pdev, "Failed to init device\n");
4372 		return ret;
4373 	}
4374 
4375 	qm_restart_prepare(qm);
4376 	hisi_qm_dev_err_init(qm);
4377 	if (qm->err_ini->open_axi_master_ooo)
4378 		qm->err_ini->open_axi_master_ooo(qm);
4379 
4380 	ret = qm_dev_mem_reset(qm);
4381 	if (ret) {
4382 		pci_err(pdev, "failed to reset device memory\n");
4383 		return ret;
4384 	}
4385 
4386 	ret = qm_restart(qm);
4387 	if (ret) {
4388 		pci_err(pdev, "Failed to start QM!\n");
4389 		return ret;
4390 	}
4391 
4392 	ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE);
4393 	if (ret)
4394 		pci_err(pdev, "failed to start vfs by pf in soft reset.\n");
4395 
4396 	ret = qm_wait_vf_prepare_finish(qm);
4397 	if (ret)
4398 		pci_err(pdev, "failed to start by vfs in soft reset!\n");
4399 
4400 	qm_cmd_init(qm);
4401 	qm_restart_done(qm);
4402 
4403 	qm_reset_bit_clear(qm);
4404 
4405 	return 0;
4406 }
4407 
4408 static int qm_controller_reset(struct hisi_qm *qm)
4409 {
4410 	struct pci_dev *pdev = qm->pdev;
4411 	int ret;
4412 
4413 	pci_info(pdev, "Controller resetting...\n");
4414 
4415 	ret = qm_controller_reset_prepare(qm);
4416 	if (ret) {
4417 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4418 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4419 		clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4420 		return ret;
4421 	}
4422 
4423 	hisi_qm_show_last_dfx_regs(qm);
4424 	if (qm->err_ini->show_last_dfx_regs)
4425 		qm->err_ini->show_last_dfx_regs(qm);
4426 
4427 	ret = qm_soft_reset(qm);
4428 	if (ret)
4429 		goto err_reset;
4430 
4431 	ret = qm_controller_reset_done(qm);
4432 	if (ret)
4433 		goto err_reset;
4434 
4435 	pci_info(pdev, "Controller reset complete\n");
4436 
4437 	return 0;
4438 
4439 err_reset:
4440 	pci_err(pdev, "Controller reset failed (%d)\n", ret);
4441 	qm_reset_bit_clear(qm);
4442 
4443 	/* if resetting fails, isolate the device */
4444 	if (qm->use_sva)
4445 		qm->isolate_data.is_isolate = true;
4446 	return ret;
4447 }
4448 
4449 /**
4450  * hisi_qm_dev_slot_reset() - slot reset
4451  * @pdev: the PCIe device
4452  *
4453  * This function offers QM relate PCIe device reset interface. Drivers which
4454  * use QM can use this function as slot_reset in its struct pci_error_handlers.
4455  */
4456 pci_ers_result_t hisi_qm_dev_slot_reset(struct pci_dev *pdev)
4457 {
4458 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4459 	int ret;
4460 
4461 	if (pdev->is_virtfn)
4462 		return PCI_ERS_RESULT_RECOVERED;
4463 
4464 	/* reset pcie device controller */
4465 	ret = qm_controller_reset(qm);
4466 	if (ret) {
4467 		pci_err(pdev, "Controller reset failed (%d)\n", ret);
4468 		return PCI_ERS_RESULT_DISCONNECT;
4469 	}
4470 
4471 	return PCI_ERS_RESULT_RECOVERED;
4472 }
4473 EXPORT_SYMBOL_GPL(hisi_qm_dev_slot_reset);
4474 
4475 void hisi_qm_reset_prepare(struct pci_dev *pdev)
4476 {
4477 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
4478 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4479 	u32 delay = 0;
4480 	int ret;
4481 
4482 	hisi_qm_dev_err_uninit(pf_qm);
4483 
4484 	/*
4485 	 * Check whether there is an ECC mbit error, If it occurs, need to
4486 	 * wait for soft reset to fix it.
4487 	 */
4488 	while (qm_check_dev_error(pf_qm)) {
4489 		msleep(++delay);
4490 		if (delay > QM_RESET_WAIT_TIMEOUT)
4491 			return;
4492 	}
4493 
4494 	ret = qm_reset_prepare_ready(qm);
4495 	if (ret) {
4496 		pci_err(pdev, "FLR not ready!\n");
4497 		return;
4498 	}
4499 
4500 	/* PF obtains the information of VF by querying the register. */
4501 	if (qm->fun_type == QM_HW_PF)
4502 		qm_cmd_uninit(qm);
4503 
4504 	ret = qm_try_stop_vfs(qm, QM_PF_FLR_PREPARE, QM_DOWN);
4505 	if (ret)
4506 		pci_err(pdev, "failed to stop vfs by pf in FLR.\n");
4507 
4508 	ret = hisi_qm_stop(qm, QM_DOWN);
4509 	if (ret) {
4510 		pci_err(pdev, "Failed to stop QM, ret = %d.\n", ret);
4511 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4512 		hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4513 		return;
4514 	}
4515 
4516 	ret = qm_wait_vf_prepare_finish(qm);
4517 	if (ret)
4518 		pci_err(pdev, "failed to stop by vfs in FLR!\n");
4519 
4520 	pci_info(pdev, "FLR resetting...\n");
4521 }
4522 EXPORT_SYMBOL_GPL(hisi_qm_reset_prepare);
4523 
4524 static bool qm_flr_reset_complete(struct pci_dev *pdev)
4525 {
4526 	struct pci_dev *pf_pdev = pci_physfn(pdev);
4527 	struct hisi_qm *qm = pci_get_drvdata(pf_pdev);
4528 	u32 id;
4529 
4530 	pci_read_config_dword(qm->pdev, PCI_COMMAND, &id);
4531 	if (id == QM_PCI_COMMAND_INVALID) {
4532 		pci_err(pdev, "Device can not be used!\n");
4533 		return false;
4534 	}
4535 
4536 	return true;
4537 }
4538 
4539 void hisi_qm_reset_done(struct pci_dev *pdev)
4540 {
4541 	struct hisi_qm *pf_qm = pci_get_drvdata(pci_physfn(pdev));
4542 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4543 	int ret;
4544 
4545 	if (qm->fun_type == QM_HW_PF) {
4546 		ret = qm_dev_hw_init(qm);
4547 		if (ret) {
4548 			pci_err(pdev, "Failed to init PF, ret = %d.\n", ret);
4549 			goto flr_done;
4550 		}
4551 	}
4552 
4553 	hisi_qm_dev_err_init(pf_qm);
4554 
4555 	ret = qm_restart(qm);
4556 	if (ret) {
4557 		pci_err(pdev, "Failed to start QM, ret = %d.\n", ret);
4558 		goto flr_done;
4559 	}
4560 
4561 	ret = qm_try_start_vfs(qm, QM_PF_RESET_DONE);
4562 	if (ret)
4563 		pci_err(pdev, "failed to start vfs by pf in FLR.\n");
4564 
4565 	ret = qm_wait_vf_prepare_finish(qm);
4566 	if (ret)
4567 		pci_err(pdev, "failed to start by vfs in FLR!\n");
4568 
4569 flr_done:
4570 	if (qm->fun_type == QM_HW_PF)
4571 		qm_cmd_init(qm);
4572 
4573 	if (qm_flr_reset_complete(pdev))
4574 		pci_info(pdev, "FLR reset complete\n");
4575 
4576 	qm_reset_bit_clear(qm);
4577 }
4578 EXPORT_SYMBOL_GPL(hisi_qm_reset_done);
4579 
4580 static irqreturn_t qm_abnormal_irq(int irq, void *data)
4581 {
4582 	struct hisi_qm *qm = data;
4583 	enum acc_err_result ret;
4584 
4585 	atomic64_inc(&qm->debug.dfx.abnormal_irq_cnt);
4586 	ret = qm_process_dev_error(qm);
4587 	if (ret == ACC_ERR_NEED_RESET &&
4588 	    !test_bit(QM_DRIVER_REMOVING, &qm->misc_ctl) &&
4589 	    !test_and_set_bit(QM_RST_SCHED, &qm->misc_ctl))
4590 		schedule_work(&qm->rst_work);
4591 
4592 	return IRQ_HANDLED;
4593 }
4594 
4595 /**
4596  * hisi_qm_dev_shutdown() - Shutdown device.
4597  * @pdev: The device will be shutdown.
4598  *
4599  * This function will stop qm when OS shutdown or rebooting.
4600  */
4601 void hisi_qm_dev_shutdown(struct pci_dev *pdev)
4602 {
4603 	struct hisi_qm *qm = pci_get_drvdata(pdev);
4604 	int ret;
4605 
4606 	ret = hisi_qm_stop(qm, QM_DOWN);
4607 	if (ret)
4608 		dev_err(&pdev->dev, "Fail to stop qm in shutdown!\n");
4609 
4610 	hisi_qm_cache_wb(qm);
4611 }
4612 EXPORT_SYMBOL_GPL(hisi_qm_dev_shutdown);
4613 
4614 static void hisi_qm_controller_reset(struct work_struct *rst_work)
4615 {
4616 	struct hisi_qm *qm = container_of(rst_work, struct hisi_qm, rst_work);
4617 	int ret;
4618 
4619 	ret = qm_pm_get_sync(qm);
4620 	if (ret) {
4621 		clear_bit(QM_RST_SCHED, &qm->misc_ctl);
4622 		return;
4623 	}
4624 
4625 	/* reset pcie device controller */
4626 	ret = qm_controller_reset(qm);
4627 	if (ret)
4628 		dev_err(&qm->pdev->dev, "controller reset failed (%d)\n", ret);
4629 
4630 	qm_pm_put_sync(qm);
4631 }
4632 
4633 static void qm_pf_reset_vf_prepare(struct hisi_qm *qm,
4634 				   enum qm_stop_reason stop_reason)
4635 {
4636 	enum qm_mb_cmd cmd = QM_VF_PREPARE_DONE;
4637 	struct pci_dev *pdev = qm->pdev;
4638 	int ret;
4639 
4640 	ret = qm_reset_prepare_ready(qm);
4641 	if (ret) {
4642 		dev_err(&pdev->dev, "reset prepare not ready!\n");
4643 		atomic_set(&qm->status.flags, QM_STOP);
4644 		cmd = QM_VF_PREPARE_FAIL;
4645 		goto err_prepare;
4646 	}
4647 
4648 	ret = hisi_qm_stop(qm, stop_reason);
4649 	if (ret) {
4650 		dev_err(&pdev->dev, "failed to stop QM, ret = %d.\n", ret);
4651 		atomic_set(&qm->status.flags, QM_STOP);
4652 		cmd = QM_VF_PREPARE_FAIL;
4653 		goto err_prepare;
4654 	} else {
4655 		goto out;
4656 	}
4657 
4658 err_prepare:
4659 	hisi_qm_set_hw_reset(qm, QM_RESET_STOP_TX_OFFSET);
4660 	hisi_qm_set_hw_reset(qm, QM_RESET_STOP_RX_OFFSET);
4661 out:
4662 	pci_save_state(pdev);
4663 	ret = qm_ping_pf(qm, cmd);
4664 	if (ret)
4665 		dev_warn(&pdev->dev, "PF responds timeout in reset prepare!\n");
4666 }
4667 
4668 static void qm_pf_reset_vf_done(struct hisi_qm *qm)
4669 {
4670 	enum qm_mb_cmd cmd = QM_VF_START_DONE;
4671 	struct pci_dev *pdev = qm->pdev;
4672 	int ret;
4673 
4674 	pci_restore_state(pdev);
4675 	ret = hisi_qm_start(qm);
4676 	if (ret) {
4677 		dev_err(&pdev->dev, "failed to start QM, ret = %d.\n", ret);
4678 		cmd = QM_VF_START_FAIL;
4679 	}
4680 
4681 	qm_cmd_init(qm);
4682 	ret = qm_ping_pf(qm, cmd);
4683 	if (ret)
4684 		dev_warn(&pdev->dev, "PF responds timeout in reset done!\n");
4685 
4686 	qm_reset_bit_clear(qm);
4687 }
4688 
4689 static int qm_wait_pf_reset_finish(struct hisi_qm *qm)
4690 {
4691 	struct device *dev = &qm->pdev->dev;
4692 	u32 val, cmd;
4693 	u64 msg;
4694 	int ret;
4695 
4696 	/* Wait for reset to finish */
4697 	ret = readl_relaxed_poll_timeout(qm->io_base + QM_IFC_INT_SOURCE_V, val,
4698 					 val == BIT(0), QM_VF_RESET_WAIT_US,
4699 					 QM_VF_RESET_WAIT_TIMEOUT_US);
4700 	/* hardware completion status should be available by this time */
4701 	if (ret) {
4702 		dev_err(dev, "couldn't get reset done status from PF, timeout!\n");
4703 		return -ETIMEDOUT;
4704 	}
4705 
4706 	/*
4707 	 * Whether message is got successfully,
4708 	 * VF needs to ack PF by clearing the interrupt.
4709 	 */
4710 	ret = qm_get_mb_cmd(qm, &msg, 0);
4711 	qm_clear_cmd_interrupt(qm, 0);
4712 	if (ret) {
4713 		dev_err(dev, "failed to get msg from PF in reset done!\n");
4714 		return ret;
4715 	}
4716 
4717 	cmd = msg & QM_MB_CMD_DATA_MASK;
4718 	if (cmd != QM_PF_RESET_DONE) {
4719 		dev_err(dev, "the cmd(%u) is not reset done!\n", cmd);
4720 		ret = -EINVAL;
4721 	}
4722 
4723 	return ret;
4724 }
4725 
4726 static void qm_pf_reset_vf_process(struct hisi_qm *qm,
4727 				   enum qm_stop_reason stop_reason)
4728 {
4729 	struct device *dev = &qm->pdev->dev;
4730 	int ret;
4731 
4732 	dev_info(dev, "device reset start...\n");
4733 
4734 	/* The message is obtained by querying the register during resetting */
4735 	qm_cmd_uninit(qm);
4736 	qm_pf_reset_vf_prepare(qm, stop_reason);
4737 
4738 	ret = qm_wait_pf_reset_finish(qm);
4739 	if (ret)
4740 		goto err_get_status;
4741 
4742 	qm_pf_reset_vf_done(qm);
4743 
4744 	dev_info(dev, "device reset done.\n");
4745 
4746 	return;
4747 
4748 err_get_status:
4749 	qm_cmd_init(qm);
4750 	qm_reset_bit_clear(qm);
4751 }
4752 
4753 static void qm_handle_cmd_msg(struct hisi_qm *qm, u32 fun_num)
4754 {
4755 	struct device *dev = &qm->pdev->dev;
4756 	u64 msg;
4757 	u32 cmd;
4758 	int ret;
4759 
4760 	/*
4761 	 * Get the msg from source by sending mailbox. Whether message is got
4762 	 * successfully, destination needs to ack source by clearing the interrupt.
4763 	 */
4764 	ret = qm_get_mb_cmd(qm, &msg, fun_num);
4765 	qm_clear_cmd_interrupt(qm, BIT(fun_num));
4766 	if (ret) {
4767 		dev_err(dev, "failed to get msg from source!\n");
4768 		return;
4769 	}
4770 
4771 	cmd = msg & QM_MB_CMD_DATA_MASK;
4772 	switch (cmd) {
4773 	case QM_PF_FLR_PREPARE:
4774 		qm_pf_reset_vf_process(qm, QM_DOWN);
4775 		break;
4776 	case QM_PF_SRST_PREPARE:
4777 		qm_pf_reset_vf_process(qm, QM_SOFT_RESET);
4778 		break;
4779 	case QM_VF_GET_QOS:
4780 		qm_vf_get_qos(qm, fun_num);
4781 		break;
4782 	case QM_PF_SET_QOS:
4783 		qm->mb_qos = msg >> QM_MB_CMD_DATA_SHIFT;
4784 		break;
4785 	default:
4786 		dev_err(dev, "unsupported cmd %u sent by function(%u)!\n", cmd, fun_num);
4787 		break;
4788 	}
4789 }
4790 
4791 static void qm_cmd_process(struct work_struct *cmd_process)
4792 {
4793 	struct hisi_qm *qm = container_of(cmd_process,
4794 					struct hisi_qm, cmd_process);
4795 	u32 vfs_num = qm->vfs_num;
4796 	u64 val;
4797 	u32 i;
4798 
4799 	if (qm->fun_type == QM_HW_PF) {
4800 		val = readq(qm->io_base + QM_IFC_INT_SOURCE_P);
4801 		if (!val)
4802 			return;
4803 
4804 		for (i = 1; i <= vfs_num; i++) {
4805 			if (val & BIT(i))
4806 				qm_handle_cmd_msg(qm, i);
4807 		}
4808 
4809 		return;
4810 	}
4811 
4812 	qm_handle_cmd_msg(qm, 0);
4813 }
4814 
4815 /**
4816  * hisi_qm_alg_register() - Register alg to crypto.
4817  * @qm: The qm needs add.
4818  * @qm_list: The qm list.
4819  * @guard: Guard of qp_num.
4820  *
4821  * Register algorithm to crypto when the function is satisfy guard.
4822  */
4823 int hisi_qm_alg_register(struct hisi_qm *qm, struct hisi_qm_list *qm_list, int guard)
4824 {
4825 	struct device *dev = &qm->pdev->dev;
4826 
4827 	if (qm->ver <= QM_HW_V2 && qm->use_sva) {
4828 		dev_info(dev, "HW V2 not both use uacce sva mode and hardware crypto algs.\n");
4829 		return 0;
4830 	}
4831 
4832 	if (qm->qp_num < guard) {
4833 		dev_info(dev, "qp_num is less than task need.\n");
4834 		return 0;
4835 	}
4836 
4837 	return qm_list->register_to_crypto(qm);
4838 }
4839 EXPORT_SYMBOL_GPL(hisi_qm_alg_register);
4840 
4841 /**
4842  * hisi_qm_alg_unregister() - Unregister alg from crypto.
4843  * @qm: The qm needs delete.
4844  * @qm_list: The qm list.
4845  * @guard: Guard of qp_num.
4846  *
4847  * Unregister algorithm from crypto when the last function is satisfy guard.
4848  */
4849 void hisi_qm_alg_unregister(struct hisi_qm *qm, struct hisi_qm_list *qm_list, int guard)
4850 {
4851 	if (qm->ver <= QM_HW_V2 && qm->use_sva)
4852 		return;
4853 
4854 	if (qm->qp_num < guard)
4855 		return;
4856 
4857 	qm_list->unregister_from_crypto(qm);
4858 }
4859 EXPORT_SYMBOL_GPL(hisi_qm_alg_unregister);
4860 
4861 static void qm_unregister_abnormal_irq(struct hisi_qm *qm)
4862 {
4863 	struct pci_dev *pdev = qm->pdev;
4864 	u32 irq_vector, val;
4865 
4866 	if (qm->fun_type == QM_HW_VF)
4867 		return;
4868 
4869 	val = qm->cap_tables.qm_cap_table[QM_ABN_IRQ_TYPE_CAP_IDX].cap_val;
4870 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK))
4871 		return;
4872 
4873 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4874 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
4875 }
4876 
4877 static int qm_register_abnormal_irq(struct hisi_qm *qm)
4878 {
4879 	struct pci_dev *pdev = qm->pdev;
4880 	u32 irq_vector, val;
4881 	int ret;
4882 
4883 	if (qm->fun_type == QM_HW_VF)
4884 		return 0;
4885 
4886 	val = qm->cap_tables.qm_cap_table[QM_ABN_IRQ_TYPE_CAP_IDX].cap_val;
4887 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_ABN_IRQ_TYPE_MASK))
4888 		return 0;
4889 
4890 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4891 	ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_abnormal_irq, 0, qm->dev_name, qm);
4892 	if (ret)
4893 		dev_err(&qm->pdev->dev, "failed to request abnormal irq, ret = %d", ret);
4894 
4895 	return ret;
4896 }
4897 
4898 static void qm_unregister_mb_cmd_irq(struct hisi_qm *qm)
4899 {
4900 	struct pci_dev *pdev = qm->pdev;
4901 	u32 irq_vector, val;
4902 
4903 	val = qm->cap_tables.qm_cap_table[QM_PF2VF_IRQ_TYPE_CAP_IDX].cap_val;
4904 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4905 		return;
4906 
4907 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4908 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
4909 }
4910 
4911 static int qm_register_mb_cmd_irq(struct hisi_qm *qm)
4912 {
4913 	struct pci_dev *pdev = qm->pdev;
4914 	u32 irq_vector, val;
4915 	int ret;
4916 
4917 	val = qm->cap_tables.qm_cap_table[QM_PF2VF_IRQ_TYPE_CAP_IDX].cap_val;
4918 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4919 		return 0;
4920 
4921 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4922 	ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_mb_cmd_irq, 0, qm->dev_name, qm);
4923 	if (ret)
4924 		dev_err(&pdev->dev, "failed to request function communication irq, ret = %d", ret);
4925 
4926 	return ret;
4927 }
4928 
4929 static void qm_unregister_aeq_irq(struct hisi_qm *qm)
4930 {
4931 	struct pci_dev *pdev = qm->pdev;
4932 	u32 irq_vector, val;
4933 
4934 	val = qm->cap_tables.qm_cap_table[QM_AEQ_IRQ_TYPE_CAP_IDX].cap_val;
4935 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4936 		return;
4937 
4938 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4939 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
4940 }
4941 
4942 static int qm_register_aeq_irq(struct hisi_qm *qm)
4943 {
4944 	struct pci_dev *pdev = qm->pdev;
4945 	u32 irq_vector, val;
4946 	int ret;
4947 
4948 	val = qm->cap_tables.qm_cap_table[QM_AEQ_IRQ_TYPE_CAP_IDX].cap_val;
4949 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4950 		return 0;
4951 
4952 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4953 	ret = request_threaded_irq(pci_irq_vector(pdev, irq_vector), NULL,
4954 						   qm_aeq_thread, IRQF_ONESHOT, qm->dev_name, qm);
4955 	if (ret)
4956 		dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret);
4957 
4958 	return ret;
4959 }
4960 
4961 static void qm_unregister_eq_irq(struct hisi_qm *qm)
4962 {
4963 	struct pci_dev *pdev = qm->pdev;
4964 	u32 irq_vector, val;
4965 
4966 	val = qm->cap_tables.qm_cap_table[QM_EQ_IRQ_TYPE_CAP_IDX].cap_val;
4967 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4968 		return;
4969 
4970 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4971 	free_irq(pci_irq_vector(pdev, irq_vector), qm);
4972 }
4973 
4974 static int qm_register_eq_irq(struct hisi_qm *qm)
4975 {
4976 	struct pci_dev *pdev = qm->pdev;
4977 	u32 irq_vector, val;
4978 	int ret;
4979 
4980 	val = qm->cap_tables.qm_cap_table[QM_EQ_IRQ_TYPE_CAP_IDX].cap_val;
4981 	if (!((val >> QM_IRQ_TYPE_SHIFT) & QM_IRQ_TYPE_MASK))
4982 		return 0;
4983 
4984 	irq_vector = val & QM_IRQ_VECTOR_MASK;
4985 	ret = request_irq(pci_irq_vector(pdev, irq_vector), qm_eq_irq, 0, qm->dev_name, qm);
4986 	if (ret)
4987 		dev_err(&pdev->dev, "failed to request eq irq, ret = %d", ret);
4988 
4989 	return ret;
4990 }
4991 
4992 static void qm_irqs_unregister(struct hisi_qm *qm)
4993 {
4994 	qm_unregister_mb_cmd_irq(qm);
4995 	qm_unregister_abnormal_irq(qm);
4996 	qm_unregister_aeq_irq(qm);
4997 	qm_unregister_eq_irq(qm);
4998 }
4999 
5000 static int qm_irqs_register(struct hisi_qm *qm)
5001 {
5002 	int ret;
5003 
5004 	ret = qm_register_eq_irq(qm);
5005 	if (ret)
5006 		return ret;
5007 
5008 	ret = qm_register_aeq_irq(qm);
5009 	if (ret)
5010 		goto free_eq_irq;
5011 
5012 	ret = qm_register_abnormal_irq(qm);
5013 	if (ret)
5014 		goto free_aeq_irq;
5015 
5016 	ret = qm_register_mb_cmd_irq(qm);
5017 	if (ret)
5018 		goto free_abnormal_irq;
5019 
5020 	return 0;
5021 
5022 free_abnormal_irq:
5023 	qm_unregister_abnormal_irq(qm);
5024 free_aeq_irq:
5025 	qm_unregister_aeq_irq(qm);
5026 free_eq_irq:
5027 	qm_unregister_eq_irq(qm);
5028 	return ret;
5029 }
5030 
5031 static int qm_get_qp_num(struct hisi_qm *qm)
5032 {
5033 	struct device *dev = &qm->pdev->dev;
5034 	bool is_db_isolation;
5035 
5036 	/* VF's qp_num assigned by PF in v2, and VF can get qp_num by vft. */
5037 	if (qm->fun_type == QM_HW_VF) {
5038 		if (qm->ver != QM_HW_V1)
5039 			/* v2 starts to support get vft by mailbox */
5040 			return hisi_qm_get_vft(qm, &qm->qp_base, &qm->qp_num);
5041 
5042 		return 0;
5043 	}
5044 
5045 	is_db_isolation = test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps);
5046 	qm->ctrl_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info, QM_TOTAL_QP_NUM_CAP, true);
5047 	qm->max_qp_num = hisi_qm_get_hw_info(qm, qm_basic_info,
5048 					     QM_FUNC_MAX_QP_CAP, is_db_isolation);
5049 
5050 	if (qm->qp_num <= qm->max_qp_num)
5051 		return 0;
5052 
5053 	if (test_bit(QM_MODULE_PARAM, &qm->misc_ctl)) {
5054 		/* Check whether the set qp number is valid */
5055 		dev_err(dev, "qp num(%u) is more than max qp num(%u)!\n",
5056 			qm->qp_num, qm->max_qp_num);
5057 		return -EINVAL;
5058 	}
5059 
5060 	dev_info(dev, "Default qp num(%u) is too big, reset it to Function's max qp num(%u)!\n",
5061 		 qm->qp_num, qm->max_qp_num);
5062 	qm->qp_num = qm->max_qp_num;
5063 	qm->debug.curr_qm_qp_num = qm->qp_num;
5064 
5065 	return 0;
5066 }
5067 
5068 static int qm_pre_store_irq_type_caps(struct hisi_qm *qm)
5069 {
5070 	struct hisi_qm_cap_record *qm_cap;
5071 	struct pci_dev *pdev = qm->pdev;
5072 	size_t i, size;
5073 
5074 	size = ARRAY_SIZE(qm_pre_store_caps);
5075 	qm_cap = devm_kzalloc(&pdev->dev, sizeof(*qm_cap) * size, GFP_KERNEL);
5076 	if (!qm_cap)
5077 		return -ENOMEM;
5078 
5079 	for (i = 0; i < size; i++) {
5080 		qm_cap[i].type = qm_pre_store_caps[i];
5081 		qm_cap[i].cap_val = hisi_qm_get_hw_info(qm, qm_basic_info,
5082 							qm_pre_store_caps[i], qm->cap_ver);
5083 	}
5084 
5085 	qm->cap_tables.qm_cap_table = qm_cap;
5086 
5087 	return 0;
5088 }
5089 
5090 static int qm_get_hw_caps(struct hisi_qm *qm)
5091 {
5092 	const struct hisi_qm_cap_info *cap_info = qm->fun_type == QM_HW_PF ?
5093 						  qm_cap_info_pf : qm_cap_info_vf;
5094 	u32 size = qm->fun_type == QM_HW_PF ? ARRAY_SIZE(qm_cap_info_pf) :
5095 				   ARRAY_SIZE(qm_cap_info_vf);
5096 	u32 val, i;
5097 
5098 	/* Doorbell isolate register is a independent register. */
5099 	val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, QM_SUPPORT_DB_ISOLATION, true);
5100 	if (val)
5101 		set_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps);
5102 
5103 	if (qm->ver >= QM_HW_V3) {
5104 		val = readl(qm->io_base + QM_FUNC_CAPS_REG);
5105 		qm->cap_ver = val & QM_CAPBILITY_VERSION;
5106 	}
5107 
5108 	/* Get PF/VF common capbility */
5109 	for (i = 1; i < ARRAY_SIZE(qm_cap_info_comm); i++) {
5110 		val = hisi_qm_get_hw_info(qm, qm_cap_info_comm, i, qm->cap_ver);
5111 		if (val)
5112 			set_bit(qm_cap_info_comm[i].type, &qm->caps);
5113 	}
5114 
5115 	/* Get PF/VF different capbility */
5116 	for (i = 0; i < size; i++) {
5117 		val = hisi_qm_get_hw_info(qm, cap_info, i, qm->cap_ver);
5118 		if (val)
5119 			set_bit(cap_info[i].type, &qm->caps);
5120 	}
5121 
5122 	/* Fetch and save the value of irq type related capability registers */
5123 	return qm_pre_store_irq_type_caps(qm);
5124 }
5125 
5126 static int qm_get_pci_res(struct hisi_qm *qm)
5127 {
5128 	struct pci_dev *pdev = qm->pdev;
5129 	struct device *dev = &pdev->dev;
5130 	int ret;
5131 
5132 	ret = pci_request_mem_regions(pdev, qm->dev_name);
5133 	if (ret < 0) {
5134 		dev_err(dev, "Failed to request mem regions!\n");
5135 		return ret;
5136 	}
5137 
5138 	qm->phys_base = pci_resource_start(pdev, PCI_BAR_2);
5139 	qm->io_base = ioremap(qm->phys_base, pci_resource_len(pdev, PCI_BAR_2));
5140 	if (!qm->io_base) {
5141 		ret = -EIO;
5142 		goto err_request_mem_regions;
5143 	}
5144 
5145 	ret = qm_get_hw_caps(qm);
5146 	if (ret)
5147 		goto err_ioremap;
5148 
5149 	if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps)) {
5150 		qm->db_interval = QM_QP_DB_INTERVAL;
5151 		qm->db_phys_base = pci_resource_start(pdev, PCI_BAR_4);
5152 		qm->db_io_base = ioremap(qm->db_phys_base,
5153 					 pci_resource_len(pdev, PCI_BAR_4));
5154 		if (!qm->db_io_base) {
5155 			ret = -EIO;
5156 			goto err_ioremap;
5157 		}
5158 	} else {
5159 		qm->db_phys_base = qm->phys_base;
5160 		qm->db_io_base = qm->io_base;
5161 		qm->db_interval = 0;
5162 	}
5163 
5164 	ret = qm_get_qp_num(qm);
5165 	if (ret)
5166 		goto err_db_ioremap;
5167 
5168 	return 0;
5169 
5170 err_db_ioremap:
5171 	if (test_bit(QM_SUPPORT_DB_ISOLATION, &qm->caps))
5172 		iounmap(qm->db_io_base);
5173 err_ioremap:
5174 	iounmap(qm->io_base);
5175 err_request_mem_regions:
5176 	pci_release_mem_regions(pdev);
5177 	return ret;
5178 }
5179 
5180 static int qm_clear_device(struct hisi_qm *qm)
5181 {
5182 	acpi_handle handle = ACPI_HANDLE(&qm->pdev->dev);
5183 	int ret;
5184 
5185 	if (qm->fun_type == QM_HW_VF)
5186 		return 0;
5187 
5188 	/* Device does not support reset, return */
5189 	if (!qm->err_ini->err_info_init)
5190 		return 0;
5191 	qm->err_ini->err_info_init(qm);
5192 
5193 	if (!handle)
5194 		return 0;
5195 
5196 	/* No reset method, return */
5197 	if (!acpi_has_method(handle, qm->err_info.acpi_rst))
5198 		return 0;
5199 
5200 	ret = qm_master_ooo_check(qm);
5201 	if (ret) {
5202 		writel(0x0, qm->io_base + ACC_MASTER_GLOBAL_CTRL);
5203 		return ret;
5204 	}
5205 
5206 	return qm_reset_device(qm);
5207 }
5208 
5209 static int hisi_qm_pci_init(struct hisi_qm *qm)
5210 {
5211 	struct pci_dev *pdev = qm->pdev;
5212 	struct device *dev = &pdev->dev;
5213 	unsigned int num_vec;
5214 	int ret;
5215 
5216 	ret = pci_enable_device_mem(pdev);
5217 	if (ret < 0) {
5218 		dev_err(dev, "Failed to enable device mem!\n");
5219 		return ret;
5220 	}
5221 
5222 	ret = qm_get_pci_res(qm);
5223 	if (ret)
5224 		goto err_disable_pcidev;
5225 
5226 	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
5227 	if (ret < 0)
5228 		goto err_get_pci_res;
5229 	pci_set_master(pdev);
5230 
5231 	num_vec = qm_get_irq_num(qm);
5232 	ret = pci_alloc_irq_vectors(pdev, num_vec, num_vec, PCI_IRQ_MSI);
5233 	if (ret < 0) {
5234 		dev_err(dev, "Failed to enable MSI vectors!\n");
5235 		goto err_get_pci_res;
5236 	}
5237 
5238 	ret = qm_clear_device(qm);
5239 	if (ret)
5240 		goto err_free_vectors;
5241 
5242 	return 0;
5243 
5244 err_free_vectors:
5245 	pci_free_irq_vectors(pdev);
5246 err_get_pci_res:
5247 	qm_put_pci_res(qm);
5248 err_disable_pcidev:
5249 	pci_disable_device(pdev);
5250 	return ret;
5251 }
5252 
5253 static int hisi_qm_init_work(struct hisi_qm *qm)
5254 {
5255 	int i;
5256 
5257 	for (i = 0; i < qm->qp_num; i++)
5258 		INIT_WORK(&qm->poll_data[i].work, qm_work_process);
5259 
5260 	if (qm->fun_type == QM_HW_PF)
5261 		INIT_WORK(&qm->rst_work, hisi_qm_controller_reset);
5262 
5263 	if (qm->ver > QM_HW_V2)
5264 		INIT_WORK(&qm->cmd_process, qm_cmd_process);
5265 
5266 	qm->wq = alloc_workqueue("%s", WQ_HIGHPRI | WQ_MEM_RECLAIM |
5267 				 WQ_UNBOUND, num_online_cpus(),
5268 				 pci_name(qm->pdev));
5269 	if (!qm->wq) {
5270 		pci_err(qm->pdev, "failed to alloc workqueue!\n");
5271 		return -ENOMEM;
5272 	}
5273 
5274 	return 0;
5275 }
5276 
5277 static int hisi_qp_alloc_memory(struct hisi_qm *qm)
5278 {
5279 	struct device *dev = &qm->pdev->dev;
5280 	u16 sq_depth, cq_depth;
5281 	size_t qp_dma_size;
5282 	int i, ret;
5283 
5284 	qm->qp_array = kcalloc(qm->qp_num, sizeof(struct hisi_qp), GFP_KERNEL);
5285 	if (!qm->qp_array)
5286 		return -ENOMEM;
5287 
5288 	qm->poll_data = kcalloc(qm->qp_num, sizeof(struct hisi_qm_poll_data), GFP_KERNEL);
5289 	if (!qm->poll_data) {
5290 		kfree(qm->qp_array);
5291 		return -ENOMEM;
5292 	}
5293 
5294 	qm_get_xqc_depth(qm, &sq_depth, &cq_depth, QM_QP_DEPTH_CAP);
5295 
5296 	/* one more page for device or qp statuses */
5297 	qp_dma_size = qm->sqe_size * sq_depth + sizeof(struct qm_cqe) * cq_depth;
5298 	qp_dma_size = PAGE_ALIGN(qp_dma_size) + PAGE_SIZE;
5299 	for (i = 0; i < qm->qp_num; i++) {
5300 		qm->poll_data[i].qm = qm;
5301 		ret = hisi_qp_memory_init(qm, qp_dma_size, i, sq_depth, cq_depth);
5302 		if (ret)
5303 			goto err_init_qp_mem;
5304 
5305 		dev_dbg(dev, "allocate qp dma buf size=%zx)\n", qp_dma_size);
5306 	}
5307 
5308 	return 0;
5309 err_init_qp_mem:
5310 	hisi_qp_memory_uninit(qm, i);
5311 
5312 	return ret;
5313 }
5314 
5315 static int hisi_qm_alloc_rsv_buf(struct hisi_qm *qm)
5316 {
5317 	struct qm_rsv_buf *xqc_buf = &qm->xqc_buf;
5318 	struct qm_dma *xqc_dma = &xqc_buf->qcdma;
5319 	struct device *dev = &qm->pdev->dev;
5320 	size_t off = 0;
5321 
5322 #define QM_XQC_BUF_INIT(xqc_buf, type) do { \
5323 	(xqc_buf)->type = ((xqc_buf)->qcdma.va + (off)); \
5324 	(xqc_buf)->type##_dma = (xqc_buf)->qcdma.dma + (off); \
5325 	off += QMC_ALIGN(sizeof(struct qm_##type)); \
5326 } while (0)
5327 
5328 	xqc_dma->size = QMC_ALIGN(sizeof(struct qm_eqc)) +
5329 			QMC_ALIGN(sizeof(struct qm_aeqc)) +
5330 			QMC_ALIGN(sizeof(struct qm_sqc)) +
5331 			QMC_ALIGN(sizeof(struct qm_cqc));
5332 	xqc_dma->va = dma_alloc_coherent(dev, xqc_dma->size,
5333 					 &xqc_dma->dma, GFP_KERNEL);
5334 	if (!xqc_dma->va)
5335 		return -ENOMEM;
5336 
5337 	QM_XQC_BUF_INIT(xqc_buf, eqc);
5338 	QM_XQC_BUF_INIT(xqc_buf, aeqc);
5339 	QM_XQC_BUF_INIT(xqc_buf, sqc);
5340 	QM_XQC_BUF_INIT(xqc_buf, cqc);
5341 
5342 	return 0;
5343 }
5344 
5345 static int hisi_qm_memory_init(struct hisi_qm *qm)
5346 {
5347 	struct device *dev = &qm->pdev->dev;
5348 	int ret, total_func;
5349 	size_t off = 0;
5350 
5351 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps)) {
5352 		total_func = pci_sriov_get_totalvfs(qm->pdev) + 1;
5353 		qm->factor = kcalloc(total_func, sizeof(struct qm_shaper_factor), GFP_KERNEL);
5354 		if (!qm->factor)
5355 			return -ENOMEM;
5356 
5357 		/* Only the PF value needs to be initialized */
5358 		qm->factor[0].func_qos = QM_QOS_MAX_VAL;
5359 	}
5360 
5361 #define QM_INIT_BUF(qm, type, num) do { \
5362 	(qm)->type = ((qm)->qdma.va + (off)); \
5363 	(qm)->type##_dma = (qm)->qdma.dma + (off); \
5364 	off += QMC_ALIGN(sizeof(struct qm_##type) * (num)); \
5365 } while (0)
5366 
5367 	idr_init(&qm->qp_idr);
5368 	qm_get_xqc_depth(qm, &qm->eq_depth, &qm->aeq_depth, QM_XEQ_DEPTH_CAP);
5369 	qm->qdma.size = QMC_ALIGN(sizeof(struct qm_eqe) * qm->eq_depth) +
5370 			QMC_ALIGN(sizeof(struct qm_aeqe) * qm->aeq_depth) +
5371 			QMC_ALIGN(sizeof(struct qm_sqc) * qm->qp_num) +
5372 			QMC_ALIGN(sizeof(struct qm_cqc) * qm->qp_num);
5373 	qm->qdma.va = dma_alloc_coherent(dev, qm->qdma.size, &qm->qdma.dma,
5374 					 GFP_ATOMIC);
5375 	dev_dbg(dev, "allocate qm dma buf size=%zx)\n", qm->qdma.size);
5376 	if (!qm->qdma.va) {
5377 		ret = -ENOMEM;
5378 		goto err_destroy_idr;
5379 	}
5380 
5381 	QM_INIT_BUF(qm, eqe, qm->eq_depth);
5382 	QM_INIT_BUF(qm, aeqe, qm->aeq_depth);
5383 	QM_INIT_BUF(qm, sqc, qm->qp_num);
5384 	QM_INIT_BUF(qm, cqc, qm->qp_num);
5385 
5386 	ret = hisi_qm_alloc_rsv_buf(qm);
5387 	if (ret)
5388 		goto err_free_qdma;
5389 
5390 	ret = hisi_qp_alloc_memory(qm);
5391 	if (ret)
5392 		goto err_free_reserve_buf;
5393 
5394 	return 0;
5395 
5396 err_free_reserve_buf:
5397 	hisi_qm_free_rsv_buf(qm);
5398 err_free_qdma:
5399 	dma_free_coherent(dev, qm->qdma.size, qm->qdma.va, qm->qdma.dma);
5400 err_destroy_idr:
5401 	idr_destroy(&qm->qp_idr);
5402 	if (test_bit(QM_SUPPORT_FUNC_QOS, &qm->caps))
5403 		kfree(qm->factor);
5404 
5405 	return ret;
5406 }
5407 
5408 /**
5409  * hisi_qm_init() - Initialize configures about qm.
5410  * @qm: The qm needing init.
5411  *
5412  * This function init qm, then we can call hisi_qm_start to put qm into work.
5413  */
5414 int hisi_qm_init(struct hisi_qm *qm)
5415 {
5416 	struct pci_dev *pdev = qm->pdev;
5417 	struct device *dev = &pdev->dev;
5418 	int ret;
5419 
5420 	hisi_qm_pre_init(qm);
5421 
5422 	ret = hisi_qm_pci_init(qm);
5423 	if (ret)
5424 		return ret;
5425 
5426 	ret = qm_irqs_register(qm);
5427 	if (ret)
5428 		goto err_pci_init;
5429 
5430 	if (qm->fun_type == QM_HW_PF) {
5431 		/* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */
5432 		writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG);
5433 		qm_disable_clock_gate(qm);
5434 		ret = qm_dev_mem_reset(qm);
5435 		if (ret) {
5436 			dev_err(dev, "failed to reset device memory\n");
5437 			goto err_irq_register;
5438 		}
5439 	}
5440 
5441 	if (qm->mode == UACCE_MODE_SVA) {
5442 		ret = qm_alloc_uacce(qm);
5443 		if (ret < 0)
5444 			dev_warn(dev, "fail to alloc uacce (%d)\n", ret);
5445 	}
5446 
5447 	ret = hisi_qm_memory_init(qm);
5448 	if (ret)
5449 		goto err_alloc_uacce;
5450 
5451 	ret = hisi_qm_init_work(qm);
5452 	if (ret)
5453 		goto err_free_qm_memory;
5454 
5455 	qm_cmd_init(qm);
5456 
5457 	return 0;
5458 
5459 err_free_qm_memory:
5460 	hisi_qm_memory_uninit(qm);
5461 err_alloc_uacce:
5462 	qm_remove_uacce(qm);
5463 err_irq_register:
5464 	qm_irqs_unregister(qm);
5465 err_pci_init:
5466 	hisi_qm_pci_uninit(qm);
5467 	return ret;
5468 }
5469 EXPORT_SYMBOL_GPL(hisi_qm_init);
5470 
5471 /**
5472  * hisi_qm_get_dfx_access() - Try to get dfx access.
5473  * @qm: pointer to accelerator device.
5474  *
5475  * Try to get dfx access, then user can get message.
5476  *
5477  * If device is in suspended, return failure, otherwise
5478  * bump up the runtime PM usage counter.
5479  */
5480 int hisi_qm_get_dfx_access(struct hisi_qm *qm)
5481 {
5482 	struct device *dev = &qm->pdev->dev;
5483 
5484 	if (pm_runtime_suspended(dev)) {
5485 		dev_info(dev, "can not read/write - device in suspended.\n");
5486 		return -EAGAIN;
5487 	}
5488 
5489 	return qm_pm_get_sync(qm);
5490 }
5491 EXPORT_SYMBOL_GPL(hisi_qm_get_dfx_access);
5492 
5493 /**
5494  * hisi_qm_put_dfx_access() - Put dfx access.
5495  * @qm: pointer to accelerator device.
5496  *
5497  * Put dfx access, drop runtime PM usage counter.
5498  */
5499 void hisi_qm_put_dfx_access(struct hisi_qm *qm)
5500 {
5501 	qm_pm_put_sync(qm);
5502 }
5503 EXPORT_SYMBOL_GPL(hisi_qm_put_dfx_access);
5504 
5505 /**
5506  * hisi_qm_pm_init() - Initialize qm runtime PM.
5507  * @qm: pointer to accelerator device.
5508  *
5509  * Function that initialize qm runtime PM.
5510  */
5511 void hisi_qm_pm_init(struct hisi_qm *qm)
5512 {
5513 	struct device *dev = &qm->pdev->dev;
5514 
5515 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
5516 		return;
5517 
5518 	pm_runtime_set_autosuspend_delay(dev, QM_AUTOSUSPEND_DELAY);
5519 	pm_runtime_use_autosuspend(dev);
5520 	pm_runtime_put_noidle(dev);
5521 }
5522 EXPORT_SYMBOL_GPL(hisi_qm_pm_init);
5523 
5524 /**
5525  * hisi_qm_pm_uninit() - Uninitialize qm runtime PM.
5526  * @qm: pointer to accelerator device.
5527  *
5528  * Function that uninitialize qm runtime PM.
5529  */
5530 void hisi_qm_pm_uninit(struct hisi_qm *qm)
5531 {
5532 	struct device *dev = &qm->pdev->dev;
5533 
5534 	if (!test_bit(QM_SUPPORT_RPM, &qm->caps))
5535 		return;
5536 
5537 	pm_runtime_get_noresume(dev);
5538 	pm_runtime_dont_use_autosuspend(dev);
5539 }
5540 EXPORT_SYMBOL_GPL(hisi_qm_pm_uninit);
5541 
5542 static int qm_prepare_for_suspend(struct hisi_qm *qm)
5543 {
5544 	struct pci_dev *pdev = qm->pdev;
5545 	int ret;
5546 
5547 	ret = qm->ops->set_msi(qm, false);
5548 	if (ret) {
5549 		pci_err(pdev, "failed to disable MSI before suspending!\n");
5550 		return ret;
5551 	}
5552 
5553 	ret = qm_master_ooo_check(qm);
5554 	if (ret)
5555 		return ret;
5556 
5557 	ret = qm_set_pf_mse(qm, false);
5558 	if (ret)
5559 		pci_err(pdev, "failed to disable MSE before suspending!\n");
5560 
5561 	return ret;
5562 }
5563 
5564 static int qm_rebuild_for_resume(struct hisi_qm *qm)
5565 {
5566 	struct pci_dev *pdev = qm->pdev;
5567 	int ret;
5568 
5569 	ret = qm_set_pf_mse(qm, true);
5570 	if (ret) {
5571 		pci_err(pdev, "failed to enable MSE after resuming!\n");
5572 		return ret;
5573 	}
5574 
5575 	ret = qm->ops->set_msi(qm, true);
5576 	if (ret) {
5577 		pci_err(pdev, "failed to enable MSI after resuming!\n");
5578 		return ret;
5579 	}
5580 
5581 	ret = qm_dev_hw_init(qm);
5582 	if (ret) {
5583 		pci_err(pdev, "failed to init device after resuming\n");
5584 		return ret;
5585 	}
5586 
5587 	qm_cmd_init(qm);
5588 	hisi_qm_dev_err_init(qm);
5589 	/* Set the doorbell timeout to QM_DB_TIMEOUT_CFG ns. */
5590 	writel(QM_DB_TIMEOUT_SET, qm->io_base + QM_DB_TIMEOUT_CFG);
5591 	qm_disable_clock_gate(qm);
5592 	ret = qm_dev_mem_reset(qm);
5593 	if (ret)
5594 		pci_err(pdev, "failed to reset device memory\n");
5595 
5596 	return ret;
5597 }
5598 
5599 /**
5600  * hisi_qm_suspend() - Runtime suspend of given device.
5601  * @dev: device to suspend.
5602  *
5603  * Function that suspend the device.
5604  */
5605 int hisi_qm_suspend(struct device *dev)
5606 {
5607 	struct pci_dev *pdev = to_pci_dev(dev);
5608 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5609 	int ret;
5610 
5611 	pci_info(pdev, "entering suspended state\n");
5612 
5613 	ret = hisi_qm_stop(qm, QM_NORMAL);
5614 	if (ret) {
5615 		pci_err(pdev, "failed to stop qm(%d)\n", ret);
5616 		return ret;
5617 	}
5618 
5619 	ret = qm_prepare_for_suspend(qm);
5620 	if (ret)
5621 		pci_err(pdev, "failed to prepare suspended(%d)\n", ret);
5622 
5623 	return ret;
5624 }
5625 EXPORT_SYMBOL_GPL(hisi_qm_suspend);
5626 
5627 /**
5628  * hisi_qm_resume() - Runtime resume of given device.
5629  * @dev: device to resume.
5630  *
5631  * Function that resume the device.
5632  */
5633 int hisi_qm_resume(struct device *dev)
5634 {
5635 	struct pci_dev *pdev = to_pci_dev(dev);
5636 	struct hisi_qm *qm = pci_get_drvdata(pdev);
5637 	int ret;
5638 
5639 	pci_info(pdev, "resuming from suspend state\n");
5640 
5641 	ret = qm_rebuild_for_resume(qm);
5642 	if (ret) {
5643 		pci_err(pdev, "failed to rebuild resume(%d)\n", ret);
5644 		return ret;
5645 	}
5646 
5647 	ret = hisi_qm_start(qm);
5648 	if (ret) {
5649 		if (qm_check_dev_error(qm)) {
5650 			pci_info(pdev, "failed to start qm due to device error, device will be reset!\n");
5651 			return 0;
5652 		}
5653 
5654 		pci_err(pdev, "failed to start qm(%d)!\n", ret);
5655 	}
5656 
5657 	return ret;
5658 }
5659 EXPORT_SYMBOL_GPL(hisi_qm_resume);
5660 
5661 MODULE_LICENSE("GPL v2");
5662 MODULE_AUTHOR("Zhou Wang <wangzhou1@hisilicon.com>");
5663 MODULE_DESCRIPTION("HiSilicon Accelerator queue manager driver");
5664