xref: /linux/drivers/crypto/hisilicon/hpre/hpre_crypto.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 HiSilicon Limited. */
3 #include <crypto/akcipher.h>
4 #include <crypto/curve25519.h>
5 #include <crypto/dh.h>
6 #include <crypto/ecc_curve.h>
7 #include <crypto/ecdh.h>
8 #include <crypto/rng.h>
9 #include <crypto/internal/akcipher.h>
10 #include <crypto/internal/kpp.h>
11 #include <crypto/internal/rsa.h>
12 #include <crypto/kpp.h>
13 #include <crypto/scatterwalk.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/fips.h>
16 #include <linux/module.h>
17 #include <linux/time.h>
18 #include "hpre.h"
19 
20 struct hpre_ctx;
21 
22 #define HPRE_CRYPTO_ALG_PRI	1000
23 #define HPRE_ALIGN_SZ		64
24 #define HPRE_BITS_2_BYTES_SHIFT	3
25 #define HPRE_RSA_512BITS_KSZ	64
26 #define HPRE_RSA_1536BITS_KSZ	192
27 #define HPRE_CRT_PRMS		5
28 #define HPRE_CRT_Q		2
29 #define HPRE_CRT_P		3
30 #define HPRE_CRT_INV		4
31 #define HPRE_DH_G_FLAG		0x02
32 #define HPRE_TRY_SEND_TIMES	100
33 #define HPRE_INVLD_REQ_ID		(-1)
34 
35 #define HPRE_SQE_ALG_BITS	5
36 #define HPRE_SQE_DONE_SHIFT	30
37 #define HPRE_DH_MAX_P_SZ	512
38 
39 #define HPRE_DFX_SEC_TO_US	1000000
40 #define HPRE_DFX_US_TO_NS	1000
41 
42 /* due to nist p521  */
43 #define HPRE_ECC_MAX_KSZ	66
44 
45 /* size in bytes of the n prime */
46 #define HPRE_ECC_NIST_P192_N_SIZE	24
47 #define HPRE_ECC_NIST_P256_N_SIZE	32
48 #define HPRE_ECC_NIST_P384_N_SIZE	48
49 
50 /* size in bytes */
51 #define HPRE_ECC_HW256_KSZ_B	32
52 #define HPRE_ECC_HW384_KSZ_B	48
53 
54 /* capability register mask of driver */
55 #define HPRE_DRV_RSA_MASK_CAP		BIT(0)
56 #define HPRE_DRV_DH_MASK_CAP		BIT(1)
57 #define HPRE_DRV_ECDH_MASK_CAP		BIT(2)
58 #define HPRE_DRV_X25519_MASK_CAP	BIT(5)
59 
60 static DEFINE_MUTEX(hpre_algs_lock);
61 static unsigned int hpre_available_devs;
62 
63 typedef void (*hpre_cb)(struct hpre_ctx *ctx, void *sqe);
64 
65 struct hpre_rsa_ctx {
66 	/* low address: e--->n */
67 	char *pubkey;
68 	dma_addr_t dma_pubkey;
69 
70 	/* low address: d--->n */
71 	char *prikey;
72 	dma_addr_t dma_prikey;
73 
74 	/* low address: dq->dp->q->p->qinv */
75 	char *crt_prikey;
76 	dma_addr_t dma_crt_prikey;
77 
78 	struct crypto_akcipher *soft_tfm;
79 };
80 
81 struct hpre_dh_ctx {
82 	/*
83 	 * If base is g we compute the public key
84 	 *	ya = g^xa mod p; [RFC2631 sec 2.1.1]
85 	 * else if base if the counterpart public key we
86 	 * compute the shared secret
87 	 *	ZZ = yb^xa mod p; [RFC2631 sec 2.1.1]
88 	 * low address: d--->n, please refer to Hisilicon HPRE UM
89 	 */
90 	char *xa_p;
91 	dma_addr_t dma_xa_p;
92 
93 	char *g; /* m */
94 	dma_addr_t dma_g;
95 };
96 
97 struct hpre_ecdh_ctx {
98 	/* low address: p->a->k->b */
99 	unsigned char *p;
100 	dma_addr_t dma_p;
101 
102 	/* low address: x->y */
103 	unsigned char *g;
104 	dma_addr_t dma_g;
105 };
106 
107 struct hpre_curve25519_ctx {
108 	/* low address: p->a->k */
109 	unsigned char *p;
110 	dma_addr_t dma_p;
111 
112 	/* gx coordinate */
113 	unsigned char *g;
114 	dma_addr_t dma_g;
115 };
116 
117 struct hpre_ctx {
118 	struct hisi_qp *qp;
119 	struct device *dev;
120 	struct hpre_asym_request **req_list;
121 	struct hpre *hpre;
122 	spinlock_t req_lock;
123 	unsigned int key_sz;
124 	bool crt_g2_mode;
125 	struct idr req_idr;
126 	union {
127 		struct hpre_rsa_ctx rsa;
128 		struct hpre_dh_ctx dh;
129 		struct hpre_ecdh_ctx ecdh;
130 		struct hpre_curve25519_ctx curve25519;
131 	};
132 	/* for ecc algorithms */
133 	unsigned int curve_id;
134 };
135 
136 struct hpre_asym_request {
137 	char *src;
138 	char *dst;
139 	struct hpre_sqe req;
140 	struct hpre_ctx *ctx;
141 	union {
142 		struct akcipher_request *rsa;
143 		struct kpp_request *dh;
144 		struct kpp_request *ecdh;
145 		struct kpp_request *curve25519;
146 	} areq;
147 	int err;
148 	int req_id;
149 	hpre_cb cb;
150 	struct timespec64 req_time;
151 };
152 
153 static inline unsigned int hpre_align_sz(void)
154 {
155 	return ((crypto_dma_align() - 1) | (HPRE_ALIGN_SZ - 1)) + 1;
156 }
157 
158 static inline unsigned int hpre_align_pd(void)
159 {
160 	return (hpre_align_sz() - 1) & ~(crypto_tfm_ctx_alignment() - 1);
161 }
162 
163 static int hpre_alloc_req_id(struct hpre_ctx *ctx)
164 {
165 	unsigned long flags;
166 	int id;
167 
168 	spin_lock_irqsave(&ctx->req_lock, flags);
169 	id = idr_alloc(&ctx->req_idr, NULL, 0, ctx->qp->sq_depth, GFP_ATOMIC);
170 	spin_unlock_irqrestore(&ctx->req_lock, flags);
171 
172 	return id;
173 }
174 
175 static void hpre_free_req_id(struct hpre_ctx *ctx, int req_id)
176 {
177 	unsigned long flags;
178 
179 	spin_lock_irqsave(&ctx->req_lock, flags);
180 	idr_remove(&ctx->req_idr, req_id);
181 	spin_unlock_irqrestore(&ctx->req_lock, flags);
182 }
183 
184 static int hpre_add_req_to_ctx(struct hpre_asym_request *hpre_req)
185 {
186 	struct hpre_ctx *ctx;
187 	struct hpre_dfx *dfx;
188 	int id;
189 
190 	ctx = hpre_req->ctx;
191 	id = hpre_alloc_req_id(ctx);
192 	if (unlikely(id < 0))
193 		return -EINVAL;
194 
195 	ctx->req_list[id] = hpre_req;
196 	hpre_req->req_id = id;
197 
198 	dfx = ctx->hpre->debug.dfx;
199 	if (atomic64_read(&dfx[HPRE_OVERTIME_THRHLD].value))
200 		ktime_get_ts64(&hpre_req->req_time);
201 
202 	return id;
203 }
204 
205 static void hpre_rm_req_from_ctx(struct hpre_asym_request *hpre_req)
206 {
207 	struct hpre_ctx *ctx = hpre_req->ctx;
208 	int id = hpre_req->req_id;
209 
210 	if (hpre_req->req_id >= 0) {
211 		hpre_req->req_id = HPRE_INVLD_REQ_ID;
212 		ctx->req_list[id] = NULL;
213 		hpre_free_req_id(ctx, id);
214 	}
215 }
216 
217 static struct hisi_qp *hpre_get_qp_and_start(u8 type)
218 {
219 	struct hisi_qp *qp;
220 	int ret;
221 
222 	qp = hpre_create_qp(type);
223 	if (!qp) {
224 		pr_err("Can not create hpre qp!\n");
225 		return ERR_PTR(-ENODEV);
226 	}
227 
228 	ret = hisi_qm_start_qp(qp, 0);
229 	if (ret < 0) {
230 		hisi_qm_free_qps(&qp, 1);
231 		pci_err(qp->qm->pdev, "Can not start qp!\n");
232 		return ERR_PTR(-EINVAL);
233 	}
234 
235 	return qp;
236 }
237 
238 static int hpre_get_data_dma_addr(struct hpre_asym_request *hpre_req,
239 				  struct scatterlist *data, unsigned int len,
240 				  int is_src, dma_addr_t *tmp)
241 {
242 	struct device *dev = hpre_req->ctx->dev;
243 	enum dma_data_direction dma_dir;
244 
245 	if (is_src) {
246 		hpre_req->src = NULL;
247 		dma_dir = DMA_TO_DEVICE;
248 	} else {
249 		hpre_req->dst = NULL;
250 		dma_dir = DMA_FROM_DEVICE;
251 	}
252 	*tmp = dma_map_single(dev, sg_virt(data), len, dma_dir);
253 	if (unlikely(dma_mapping_error(dev, *tmp))) {
254 		dev_err(dev, "dma map data err!\n");
255 		return -ENOMEM;
256 	}
257 
258 	return 0;
259 }
260 
261 static int hpre_prepare_dma_buf(struct hpre_asym_request *hpre_req,
262 				struct scatterlist *data, unsigned int len,
263 				int is_src, dma_addr_t *tmp)
264 {
265 	struct hpre_ctx *ctx = hpre_req->ctx;
266 	struct device *dev = ctx->dev;
267 	void *ptr;
268 	int shift;
269 
270 	shift = ctx->key_sz - len;
271 	if (unlikely(shift < 0))
272 		return -EINVAL;
273 
274 	ptr = dma_alloc_coherent(dev, ctx->key_sz, tmp, GFP_ATOMIC);
275 	if (unlikely(!ptr))
276 		return -ENOMEM;
277 
278 	if (is_src) {
279 		scatterwalk_map_and_copy(ptr + shift, data, 0, len, 0);
280 		hpre_req->src = ptr;
281 	} else {
282 		hpre_req->dst = ptr;
283 	}
284 
285 	return 0;
286 }
287 
288 static int hpre_hw_data_init(struct hpre_asym_request *hpre_req,
289 			     struct scatterlist *data, unsigned int len,
290 			     int is_src, int is_dh)
291 {
292 	struct hpre_sqe *msg = &hpre_req->req;
293 	struct hpre_ctx *ctx = hpre_req->ctx;
294 	dma_addr_t tmp = 0;
295 	int ret;
296 
297 	/* when the data is dh's source, we should format it */
298 	if ((sg_is_last(data) && len == ctx->key_sz) &&
299 	    ((is_dh && !is_src) || !is_dh))
300 		ret = hpre_get_data_dma_addr(hpre_req, data, len, is_src, &tmp);
301 	else
302 		ret = hpre_prepare_dma_buf(hpre_req, data, len, is_src, &tmp);
303 
304 	if (unlikely(ret))
305 		return ret;
306 
307 	if (is_src)
308 		msg->in = cpu_to_le64(tmp);
309 	else
310 		msg->out = cpu_to_le64(tmp);
311 
312 	return 0;
313 }
314 
315 static void hpre_hw_data_clr_all(struct hpre_ctx *ctx,
316 				 struct hpre_asym_request *req,
317 				 struct scatterlist *dst,
318 				 struct scatterlist *src)
319 {
320 	struct device *dev = ctx->dev;
321 	struct hpre_sqe *sqe = &req->req;
322 	dma_addr_t tmp;
323 
324 	tmp = le64_to_cpu(sqe->in);
325 	if (unlikely(dma_mapping_error(dev, tmp)))
326 		return;
327 
328 	if (src) {
329 		if (req->src)
330 			dma_free_coherent(dev, ctx->key_sz, req->src, tmp);
331 		else
332 			dma_unmap_single(dev, tmp, ctx->key_sz, DMA_TO_DEVICE);
333 	}
334 
335 	tmp = le64_to_cpu(sqe->out);
336 	if (unlikely(dma_mapping_error(dev, tmp)))
337 		return;
338 
339 	if (req->dst) {
340 		if (dst)
341 			scatterwalk_map_and_copy(req->dst, dst, 0,
342 						 ctx->key_sz, 1);
343 		dma_free_coherent(dev, ctx->key_sz, req->dst, tmp);
344 	} else {
345 		dma_unmap_single(dev, tmp, ctx->key_sz, DMA_FROM_DEVICE);
346 	}
347 }
348 
349 static int hpre_alg_res_post_hf(struct hpre_ctx *ctx, struct hpre_sqe *sqe,
350 				void **kreq)
351 {
352 	struct hpre_asym_request *req;
353 	unsigned int err, done, alg;
354 	int id;
355 
356 #define HPRE_NO_HW_ERR		0
357 #define HPRE_HW_TASK_DONE	3
358 #define HREE_HW_ERR_MASK	GENMASK(10, 0)
359 #define HREE_SQE_DONE_MASK	GENMASK(1, 0)
360 #define HREE_ALG_TYPE_MASK	GENMASK(4, 0)
361 	id = (int)le16_to_cpu(sqe->tag);
362 	req = ctx->req_list[id];
363 	hpre_rm_req_from_ctx(req);
364 	*kreq = req;
365 
366 	err = (le32_to_cpu(sqe->dw0) >> HPRE_SQE_ALG_BITS) &
367 		HREE_HW_ERR_MASK;
368 
369 	done = (le32_to_cpu(sqe->dw0) >> HPRE_SQE_DONE_SHIFT) &
370 		HREE_SQE_DONE_MASK;
371 
372 	if (likely(err == HPRE_NO_HW_ERR && done == HPRE_HW_TASK_DONE))
373 		return 0;
374 
375 	alg = le32_to_cpu(sqe->dw0) & HREE_ALG_TYPE_MASK;
376 	dev_err_ratelimited(ctx->dev, "alg[0x%x] error: done[0x%x], etype[0x%x]\n",
377 		alg, done, err);
378 
379 	return -EINVAL;
380 }
381 
382 static int hpre_ctx_set(struct hpre_ctx *ctx, struct hisi_qp *qp, int qlen)
383 {
384 	struct hpre *hpre;
385 
386 	if (!ctx || !qp || qlen < 0)
387 		return -EINVAL;
388 
389 	spin_lock_init(&ctx->req_lock);
390 	ctx->qp = qp;
391 	ctx->dev = &qp->qm->pdev->dev;
392 
393 	hpre = container_of(ctx->qp->qm, struct hpre, qm);
394 	ctx->hpre = hpre;
395 	ctx->req_list = kcalloc(qlen, sizeof(void *), GFP_KERNEL);
396 	if (!ctx->req_list)
397 		return -ENOMEM;
398 	ctx->key_sz = 0;
399 	ctx->crt_g2_mode = false;
400 	idr_init(&ctx->req_idr);
401 
402 	return 0;
403 }
404 
405 static void hpre_ctx_clear(struct hpre_ctx *ctx, bool is_clear_all)
406 {
407 	if (is_clear_all) {
408 		idr_destroy(&ctx->req_idr);
409 		kfree(ctx->req_list);
410 		hisi_qm_free_qps(&ctx->qp, 1);
411 	}
412 
413 	ctx->crt_g2_mode = false;
414 	ctx->key_sz = 0;
415 }
416 
417 static bool hpre_is_bd_timeout(struct hpre_asym_request *req,
418 			       u64 overtime_thrhld)
419 {
420 	struct timespec64 reply_time;
421 	u64 time_use_us;
422 
423 	ktime_get_ts64(&reply_time);
424 	time_use_us = (reply_time.tv_sec - req->req_time.tv_sec) *
425 		HPRE_DFX_SEC_TO_US +
426 		(reply_time.tv_nsec - req->req_time.tv_nsec) /
427 		HPRE_DFX_US_TO_NS;
428 
429 	if (time_use_us <= overtime_thrhld)
430 		return false;
431 
432 	return true;
433 }
434 
435 static void hpre_dh_cb(struct hpre_ctx *ctx, void *resp)
436 {
437 	struct hpre_dfx *dfx = ctx->hpre->debug.dfx;
438 	struct hpre_asym_request *req;
439 	struct kpp_request *areq;
440 	u64 overtime_thrhld;
441 	int ret;
442 
443 	ret = hpre_alg_res_post_hf(ctx, resp, (void **)&req);
444 	areq = req->areq.dh;
445 	areq->dst_len = ctx->key_sz;
446 
447 	overtime_thrhld = atomic64_read(&dfx[HPRE_OVERTIME_THRHLD].value);
448 	if (overtime_thrhld && hpre_is_bd_timeout(req, overtime_thrhld))
449 		atomic64_inc(&dfx[HPRE_OVER_THRHLD_CNT].value);
450 
451 	hpre_hw_data_clr_all(ctx, req, areq->dst, areq->src);
452 	kpp_request_complete(areq, ret);
453 	atomic64_inc(&dfx[HPRE_RECV_CNT].value);
454 }
455 
456 static void hpre_rsa_cb(struct hpre_ctx *ctx, void *resp)
457 {
458 	struct hpre_dfx *dfx = ctx->hpre->debug.dfx;
459 	struct hpre_asym_request *req;
460 	struct akcipher_request *areq;
461 	u64 overtime_thrhld;
462 	int ret;
463 
464 	ret = hpre_alg_res_post_hf(ctx, resp, (void **)&req);
465 
466 	overtime_thrhld = atomic64_read(&dfx[HPRE_OVERTIME_THRHLD].value);
467 	if (overtime_thrhld && hpre_is_bd_timeout(req, overtime_thrhld))
468 		atomic64_inc(&dfx[HPRE_OVER_THRHLD_CNT].value);
469 
470 	areq = req->areq.rsa;
471 	areq->dst_len = ctx->key_sz;
472 	hpre_hw_data_clr_all(ctx, req, areq->dst, areq->src);
473 	akcipher_request_complete(areq, ret);
474 	atomic64_inc(&dfx[HPRE_RECV_CNT].value);
475 }
476 
477 static void hpre_alg_cb(struct hisi_qp *qp, void *resp)
478 {
479 	struct hpre_ctx *ctx = qp->qp_ctx;
480 	struct hpre_dfx *dfx = ctx->hpre->debug.dfx;
481 	struct hpre_sqe *sqe = resp;
482 	struct hpre_asym_request *req = ctx->req_list[le16_to_cpu(sqe->tag)];
483 
484 	if (unlikely(!req)) {
485 		atomic64_inc(&dfx[HPRE_INVALID_REQ_CNT].value);
486 		return;
487 	}
488 
489 	req->cb(ctx, resp);
490 }
491 
492 static void hpre_stop_qp_and_put(struct hisi_qp *qp)
493 {
494 	hisi_qm_stop_qp(qp);
495 	hisi_qm_free_qps(&qp, 1);
496 }
497 
498 static int hpre_ctx_init(struct hpre_ctx *ctx, u8 type)
499 {
500 	struct hisi_qp *qp;
501 	int ret;
502 
503 	qp = hpre_get_qp_and_start(type);
504 	if (IS_ERR(qp))
505 		return PTR_ERR(qp);
506 
507 	qp->qp_ctx = ctx;
508 	qp->req_cb = hpre_alg_cb;
509 
510 	ret = hpre_ctx_set(ctx, qp, qp->sq_depth);
511 	if (ret)
512 		hpre_stop_qp_and_put(qp);
513 
514 	return ret;
515 }
516 
517 static int hpre_msg_request_set(struct hpre_ctx *ctx, void *req, bool is_rsa)
518 {
519 	struct hpre_asym_request *h_req;
520 	struct hpre_sqe *msg;
521 	int req_id;
522 	void *tmp;
523 
524 	if (is_rsa) {
525 		struct akcipher_request *akreq = req;
526 
527 		if (akreq->dst_len < ctx->key_sz) {
528 			akreq->dst_len = ctx->key_sz;
529 			return -EOVERFLOW;
530 		}
531 
532 		tmp = akcipher_request_ctx(akreq);
533 		h_req = PTR_ALIGN(tmp, hpre_align_sz());
534 		h_req->cb = hpre_rsa_cb;
535 		h_req->areq.rsa = akreq;
536 		msg = &h_req->req;
537 		memset(msg, 0, sizeof(*msg));
538 	} else {
539 		struct kpp_request *kreq = req;
540 
541 		if (kreq->dst_len < ctx->key_sz) {
542 			kreq->dst_len = ctx->key_sz;
543 			return -EOVERFLOW;
544 		}
545 
546 		tmp = kpp_request_ctx(kreq);
547 		h_req = PTR_ALIGN(tmp, hpre_align_sz());
548 		h_req->cb = hpre_dh_cb;
549 		h_req->areq.dh = kreq;
550 		msg = &h_req->req;
551 		memset(msg, 0, sizeof(*msg));
552 		msg->key = cpu_to_le64(ctx->dh.dma_xa_p);
553 	}
554 
555 	msg->in = cpu_to_le64(DMA_MAPPING_ERROR);
556 	msg->out = cpu_to_le64(DMA_MAPPING_ERROR);
557 	msg->dw0 |= cpu_to_le32(0x1 << HPRE_SQE_DONE_SHIFT);
558 	msg->task_len1 = (ctx->key_sz >> HPRE_BITS_2_BYTES_SHIFT) - 1;
559 	h_req->ctx = ctx;
560 
561 	req_id = hpre_add_req_to_ctx(h_req);
562 	if (req_id < 0)
563 		return -EBUSY;
564 
565 	msg->tag = cpu_to_le16((u16)req_id);
566 
567 	return 0;
568 }
569 
570 static int hpre_send(struct hpre_ctx *ctx, struct hpre_sqe *msg)
571 {
572 	struct hpre_dfx *dfx = ctx->hpre->debug.dfx;
573 	int ctr = 0;
574 	int ret;
575 
576 	do {
577 		atomic64_inc(&dfx[HPRE_SEND_CNT].value);
578 		spin_lock_bh(&ctx->req_lock);
579 		ret = hisi_qp_send(ctx->qp, msg);
580 		spin_unlock_bh(&ctx->req_lock);
581 		if (ret != -EBUSY)
582 			break;
583 		atomic64_inc(&dfx[HPRE_SEND_BUSY_CNT].value);
584 	} while (ctr++ < HPRE_TRY_SEND_TIMES);
585 
586 	if (likely(!ret))
587 		return ret;
588 
589 	if (ret != -EBUSY)
590 		atomic64_inc(&dfx[HPRE_SEND_FAIL_CNT].value);
591 
592 	return ret;
593 }
594 
595 static int hpre_dh_compute_value(struct kpp_request *req)
596 {
597 	struct crypto_kpp *tfm = crypto_kpp_reqtfm(req);
598 	struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
599 	void *tmp = kpp_request_ctx(req);
600 	struct hpre_asym_request *hpre_req = PTR_ALIGN(tmp, hpre_align_sz());
601 	struct hpre_sqe *msg = &hpre_req->req;
602 	int ret;
603 
604 	ret = hpre_msg_request_set(ctx, req, false);
605 	if (unlikely(ret))
606 		return ret;
607 
608 	if (req->src) {
609 		ret = hpre_hw_data_init(hpre_req, req->src, req->src_len, 1, 1);
610 		if (unlikely(ret))
611 			goto clear_all;
612 	} else {
613 		msg->in = cpu_to_le64(ctx->dh.dma_g);
614 	}
615 
616 	ret = hpre_hw_data_init(hpre_req, req->dst, req->dst_len, 0, 1);
617 	if (unlikely(ret))
618 		goto clear_all;
619 
620 	if (ctx->crt_g2_mode && !req->src)
621 		msg->dw0 = cpu_to_le32(le32_to_cpu(msg->dw0) | HPRE_ALG_DH_G2);
622 	else
623 		msg->dw0 = cpu_to_le32(le32_to_cpu(msg->dw0) | HPRE_ALG_DH);
624 
625 	/* success */
626 	ret = hpre_send(ctx, msg);
627 	if (likely(!ret))
628 		return -EINPROGRESS;
629 
630 clear_all:
631 	hpre_rm_req_from_ctx(hpre_req);
632 	hpre_hw_data_clr_all(ctx, hpre_req, req->dst, req->src);
633 
634 	return ret;
635 }
636 
637 static int hpre_is_dh_params_length_valid(unsigned int key_sz)
638 {
639 #define _HPRE_DH_GRP1		768
640 #define _HPRE_DH_GRP2		1024
641 #define _HPRE_DH_GRP5		1536
642 #define _HPRE_DH_GRP14		2048
643 #define _HPRE_DH_GRP15		3072
644 #define _HPRE_DH_GRP16		4096
645 	switch (key_sz) {
646 	case _HPRE_DH_GRP1:
647 	case _HPRE_DH_GRP2:
648 	case _HPRE_DH_GRP5:
649 	case _HPRE_DH_GRP14:
650 	case _HPRE_DH_GRP15:
651 	case _HPRE_DH_GRP16:
652 		return 0;
653 	default:
654 		return -EINVAL;
655 	}
656 }
657 
658 static int hpre_dh_set_params(struct hpre_ctx *ctx, struct dh *params)
659 {
660 	struct device *dev = ctx->dev;
661 	unsigned int sz;
662 
663 	if (params->p_size > HPRE_DH_MAX_P_SZ)
664 		return -EINVAL;
665 
666 	if (hpre_is_dh_params_length_valid(params->p_size <<
667 					   HPRE_BITS_2_BYTES_SHIFT))
668 		return -EINVAL;
669 
670 	sz = ctx->key_sz = params->p_size;
671 	ctx->dh.xa_p = dma_alloc_coherent(dev, sz << 1,
672 					  &ctx->dh.dma_xa_p, GFP_KERNEL);
673 	if (!ctx->dh.xa_p)
674 		return -ENOMEM;
675 
676 	memcpy(ctx->dh.xa_p + sz, params->p, sz);
677 
678 	/* If g equals 2 don't copy it */
679 	if (params->g_size == 1 && *(char *)params->g == HPRE_DH_G_FLAG) {
680 		ctx->crt_g2_mode = true;
681 		return 0;
682 	}
683 
684 	ctx->dh.g = dma_alloc_coherent(dev, sz, &ctx->dh.dma_g, GFP_KERNEL);
685 	if (!ctx->dh.g) {
686 		dma_free_coherent(dev, sz << 1, ctx->dh.xa_p,
687 				  ctx->dh.dma_xa_p);
688 		ctx->dh.xa_p = NULL;
689 		return -ENOMEM;
690 	}
691 
692 	memcpy(ctx->dh.g + (sz - params->g_size), params->g, params->g_size);
693 
694 	return 0;
695 }
696 
697 static void hpre_dh_clear_ctx(struct hpre_ctx *ctx, bool is_clear_all)
698 {
699 	struct device *dev = ctx->dev;
700 	unsigned int sz = ctx->key_sz;
701 
702 	if (is_clear_all)
703 		hisi_qm_stop_qp(ctx->qp);
704 
705 	if (ctx->dh.g) {
706 		dma_free_coherent(dev, sz, ctx->dh.g, ctx->dh.dma_g);
707 		ctx->dh.g = NULL;
708 	}
709 
710 	if (ctx->dh.xa_p) {
711 		memzero_explicit(ctx->dh.xa_p, sz);
712 		dma_free_coherent(dev, sz << 1, ctx->dh.xa_p,
713 				  ctx->dh.dma_xa_p);
714 		ctx->dh.xa_p = NULL;
715 	}
716 
717 	hpre_ctx_clear(ctx, is_clear_all);
718 }
719 
720 static int hpre_dh_set_secret(struct crypto_kpp *tfm, const void *buf,
721 			      unsigned int len)
722 {
723 	struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
724 	struct dh params;
725 	int ret;
726 
727 	if (crypto_dh_decode_key(buf, len, &params) < 0)
728 		return -EINVAL;
729 
730 	/* Free old secret if any */
731 	hpre_dh_clear_ctx(ctx, false);
732 
733 	ret = hpre_dh_set_params(ctx, &params);
734 	if (ret < 0)
735 		goto err_clear_ctx;
736 
737 	memcpy(ctx->dh.xa_p + (ctx->key_sz - params.key_size), params.key,
738 	       params.key_size);
739 
740 	return 0;
741 
742 err_clear_ctx:
743 	hpre_dh_clear_ctx(ctx, false);
744 	return ret;
745 }
746 
747 static unsigned int hpre_dh_max_size(struct crypto_kpp *tfm)
748 {
749 	struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
750 
751 	return ctx->key_sz;
752 }
753 
754 static int hpre_dh_init_tfm(struct crypto_kpp *tfm)
755 {
756 	struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
757 
758 	kpp_set_reqsize(tfm, sizeof(struct hpre_asym_request) + hpre_align_pd());
759 
760 	return hpre_ctx_init(ctx, HPRE_V2_ALG_TYPE);
761 }
762 
763 static void hpre_dh_exit_tfm(struct crypto_kpp *tfm)
764 {
765 	struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
766 
767 	hpre_dh_clear_ctx(ctx, true);
768 }
769 
770 static void hpre_rsa_drop_leading_zeros(const char **ptr, size_t *len)
771 {
772 	while (!**ptr && *len) {
773 		(*ptr)++;
774 		(*len)--;
775 	}
776 }
777 
778 static bool hpre_rsa_key_size_is_support(unsigned int len)
779 {
780 	unsigned int bits = len << HPRE_BITS_2_BYTES_SHIFT;
781 
782 #define _RSA_1024BITS_KEY_WDTH		1024
783 #define _RSA_2048BITS_KEY_WDTH		2048
784 #define _RSA_3072BITS_KEY_WDTH		3072
785 #define _RSA_4096BITS_KEY_WDTH		4096
786 
787 	switch (bits) {
788 	case _RSA_1024BITS_KEY_WDTH:
789 	case _RSA_2048BITS_KEY_WDTH:
790 	case _RSA_3072BITS_KEY_WDTH:
791 	case _RSA_4096BITS_KEY_WDTH:
792 		return true;
793 	default:
794 		return false;
795 	}
796 }
797 
798 static int hpre_rsa_enc(struct akcipher_request *req)
799 {
800 	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
801 	struct hpre_ctx *ctx = akcipher_tfm_ctx(tfm);
802 	void *tmp = akcipher_request_ctx(req);
803 	struct hpre_asym_request *hpre_req = PTR_ALIGN(tmp, hpre_align_sz());
804 	struct hpre_sqe *msg = &hpre_req->req;
805 	int ret;
806 
807 	/* For 512 and 1536 bits key size, use soft tfm instead */
808 	if (ctx->key_sz == HPRE_RSA_512BITS_KSZ ||
809 	    ctx->key_sz == HPRE_RSA_1536BITS_KSZ) {
810 		akcipher_request_set_tfm(req, ctx->rsa.soft_tfm);
811 		ret = crypto_akcipher_encrypt(req);
812 		akcipher_request_set_tfm(req, tfm);
813 		return ret;
814 	}
815 
816 	if (unlikely(!ctx->rsa.pubkey))
817 		return -EINVAL;
818 
819 	ret = hpre_msg_request_set(ctx, req, true);
820 	if (unlikely(ret))
821 		return ret;
822 
823 	msg->dw0 |= cpu_to_le32(HPRE_ALG_NC_NCRT);
824 	msg->key = cpu_to_le64(ctx->rsa.dma_pubkey);
825 
826 	ret = hpre_hw_data_init(hpre_req, req->src, req->src_len, 1, 0);
827 	if (unlikely(ret))
828 		goto clear_all;
829 
830 	ret = hpre_hw_data_init(hpre_req, req->dst, req->dst_len, 0, 0);
831 	if (unlikely(ret))
832 		goto clear_all;
833 
834 	/* success */
835 	ret = hpre_send(ctx, msg);
836 	if (likely(!ret))
837 		return -EINPROGRESS;
838 
839 clear_all:
840 	hpre_rm_req_from_ctx(hpre_req);
841 	hpre_hw_data_clr_all(ctx, hpre_req, req->dst, req->src);
842 
843 	return ret;
844 }
845 
846 static int hpre_rsa_dec(struct akcipher_request *req)
847 {
848 	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
849 	struct hpre_ctx *ctx = akcipher_tfm_ctx(tfm);
850 	void *tmp = akcipher_request_ctx(req);
851 	struct hpre_asym_request *hpre_req = PTR_ALIGN(tmp, hpre_align_sz());
852 	struct hpre_sqe *msg = &hpre_req->req;
853 	int ret;
854 
855 	/* For 512 and 1536 bits key size, use soft tfm instead */
856 	if (ctx->key_sz == HPRE_RSA_512BITS_KSZ ||
857 	    ctx->key_sz == HPRE_RSA_1536BITS_KSZ) {
858 		akcipher_request_set_tfm(req, ctx->rsa.soft_tfm);
859 		ret = crypto_akcipher_decrypt(req);
860 		akcipher_request_set_tfm(req, tfm);
861 		return ret;
862 	}
863 
864 	if (unlikely(!ctx->rsa.prikey))
865 		return -EINVAL;
866 
867 	ret = hpre_msg_request_set(ctx, req, true);
868 	if (unlikely(ret))
869 		return ret;
870 
871 	if (ctx->crt_g2_mode) {
872 		msg->key = cpu_to_le64(ctx->rsa.dma_crt_prikey);
873 		msg->dw0 = cpu_to_le32(le32_to_cpu(msg->dw0) |
874 				       HPRE_ALG_NC_CRT);
875 	} else {
876 		msg->key = cpu_to_le64(ctx->rsa.dma_prikey);
877 		msg->dw0 = cpu_to_le32(le32_to_cpu(msg->dw0) |
878 				       HPRE_ALG_NC_NCRT);
879 	}
880 
881 	ret = hpre_hw_data_init(hpre_req, req->src, req->src_len, 1, 0);
882 	if (unlikely(ret))
883 		goto clear_all;
884 
885 	ret = hpre_hw_data_init(hpre_req, req->dst, req->dst_len, 0, 0);
886 	if (unlikely(ret))
887 		goto clear_all;
888 
889 	/* success */
890 	ret = hpre_send(ctx, msg);
891 	if (likely(!ret))
892 		return -EINPROGRESS;
893 
894 clear_all:
895 	hpre_rm_req_from_ctx(hpre_req);
896 	hpre_hw_data_clr_all(ctx, hpre_req, req->dst, req->src);
897 
898 	return ret;
899 }
900 
901 static int hpre_rsa_set_n(struct hpre_ctx *ctx, const char *value,
902 			  size_t vlen, bool private)
903 {
904 	const char *ptr = value;
905 
906 	hpre_rsa_drop_leading_zeros(&ptr, &vlen);
907 
908 	ctx->key_sz = vlen;
909 
910 	/* if invalid key size provided, we use software tfm */
911 	if (!hpre_rsa_key_size_is_support(ctx->key_sz))
912 		return 0;
913 
914 	ctx->rsa.pubkey = dma_alloc_coherent(ctx->dev, vlen << 1,
915 					     &ctx->rsa.dma_pubkey,
916 					     GFP_KERNEL);
917 	if (!ctx->rsa.pubkey)
918 		return -ENOMEM;
919 
920 	if (private) {
921 		ctx->rsa.prikey = dma_alloc_coherent(ctx->dev, vlen << 1,
922 						     &ctx->rsa.dma_prikey,
923 						     GFP_KERNEL);
924 		if (!ctx->rsa.prikey) {
925 			dma_free_coherent(ctx->dev, vlen << 1,
926 					  ctx->rsa.pubkey,
927 					  ctx->rsa.dma_pubkey);
928 			ctx->rsa.pubkey = NULL;
929 			return -ENOMEM;
930 		}
931 		memcpy(ctx->rsa.prikey + vlen, ptr, vlen);
932 	}
933 	memcpy(ctx->rsa.pubkey + vlen, ptr, vlen);
934 
935 	/* Using hardware HPRE to do RSA */
936 	return 1;
937 }
938 
939 static int hpre_rsa_set_e(struct hpre_ctx *ctx, const char *value,
940 			  size_t vlen)
941 {
942 	const char *ptr = value;
943 
944 	hpre_rsa_drop_leading_zeros(&ptr, &vlen);
945 
946 	if (!ctx->key_sz || !vlen || vlen > ctx->key_sz)
947 		return -EINVAL;
948 
949 	memcpy(ctx->rsa.pubkey + ctx->key_sz - vlen, ptr, vlen);
950 
951 	return 0;
952 }
953 
954 static int hpre_rsa_set_d(struct hpre_ctx *ctx, const char *value,
955 			  size_t vlen)
956 {
957 	const char *ptr = value;
958 
959 	hpre_rsa_drop_leading_zeros(&ptr, &vlen);
960 
961 	if (!ctx->key_sz || !vlen || vlen > ctx->key_sz)
962 		return -EINVAL;
963 
964 	memcpy(ctx->rsa.prikey + ctx->key_sz - vlen, ptr, vlen);
965 
966 	return 0;
967 }
968 
969 static int hpre_crt_para_get(char *para, size_t para_sz,
970 			     const char *raw, size_t raw_sz)
971 {
972 	const char *ptr = raw;
973 	size_t len = raw_sz;
974 
975 	hpre_rsa_drop_leading_zeros(&ptr, &len);
976 	if (!len || len > para_sz)
977 		return -EINVAL;
978 
979 	memcpy(para + para_sz - len, ptr, len);
980 
981 	return 0;
982 }
983 
984 static int hpre_rsa_setkey_crt(struct hpre_ctx *ctx, struct rsa_key *rsa_key)
985 {
986 	unsigned int hlf_ksz = ctx->key_sz >> 1;
987 	struct device *dev = ctx->dev;
988 	u64 offset;
989 	int ret;
990 
991 	ctx->rsa.crt_prikey = dma_alloc_coherent(dev, hlf_ksz * HPRE_CRT_PRMS,
992 					&ctx->rsa.dma_crt_prikey,
993 					GFP_KERNEL);
994 	if (!ctx->rsa.crt_prikey)
995 		return -ENOMEM;
996 
997 	ret = hpre_crt_para_get(ctx->rsa.crt_prikey, hlf_ksz,
998 				rsa_key->dq, rsa_key->dq_sz);
999 	if (ret)
1000 		goto free_key;
1001 
1002 	offset = hlf_ksz;
1003 	ret = hpre_crt_para_get(ctx->rsa.crt_prikey + offset, hlf_ksz,
1004 				rsa_key->dp, rsa_key->dp_sz);
1005 	if (ret)
1006 		goto free_key;
1007 
1008 	offset = hlf_ksz * HPRE_CRT_Q;
1009 	ret = hpre_crt_para_get(ctx->rsa.crt_prikey + offset, hlf_ksz,
1010 				rsa_key->q, rsa_key->q_sz);
1011 	if (ret)
1012 		goto free_key;
1013 
1014 	offset = hlf_ksz * HPRE_CRT_P;
1015 	ret = hpre_crt_para_get(ctx->rsa.crt_prikey + offset, hlf_ksz,
1016 				rsa_key->p, rsa_key->p_sz);
1017 	if (ret)
1018 		goto free_key;
1019 
1020 	offset = hlf_ksz * HPRE_CRT_INV;
1021 	ret = hpre_crt_para_get(ctx->rsa.crt_prikey + offset, hlf_ksz,
1022 				rsa_key->qinv, rsa_key->qinv_sz);
1023 	if (ret)
1024 		goto free_key;
1025 
1026 	ctx->crt_g2_mode = true;
1027 
1028 	return 0;
1029 
1030 free_key:
1031 	offset = hlf_ksz * HPRE_CRT_PRMS;
1032 	memzero_explicit(ctx->rsa.crt_prikey, offset);
1033 	dma_free_coherent(dev, hlf_ksz * HPRE_CRT_PRMS, ctx->rsa.crt_prikey,
1034 			  ctx->rsa.dma_crt_prikey);
1035 	ctx->rsa.crt_prikey = NULL;
1036 	ctx->crt_g2_mode = false;
1037 
1038 	return ret;
1039 }
1040 
1041 /* If it is clear all, all the resources of the QP will be cleaned. */
1042 static void hpre_rsa_clear_ctx(struct hpre_ctx *ctx, bool is_clear_all)
1043 {
1044 	unsigned int half_key_sz = ctx->key_sz >> 1;
1045 	struct device *dev = ctx->dev;
1046 
1047 	if (is_clear_all)
1048 		hisi_qm_stop_qp(ctx->qp);
1049 
1050 	if (ctx->rsa.pubkey) {
1051 		dma_free_coherent(dev, ctx->key_sz << 1,
1052 				  ctx->rsa.pubkey, ctx->rsa.dma_pubkey);
1053 		ctx->rsa.pubkey = NULL;
1054 	}
1055 
1056 	if (ctx->rsa.crt_prikey) {
1057 		memzero_explicit(ctx->rsa.crt_prikey,
1058 				 half_key_sz * HPRE_CRT_PRMS);
1059 		dma_free_coherent(dev, half_key_sz * HPRE_CRT_PRMS,
1060 				  ctx->rsa.crt_prikey, ctx->rsa.dma_crt_prikey);
1061 		ctx->rsa.crt_prikey = NULL;
1062 	}
1063 
1064 	if (ctx->rsa.prikey) {
1065 		memzero_explicit(ctx->rsa.prikey, ctx->key_sz);
1066 		dma_free_coherent(dev, ctx->key_sz << 1, ctx->rsa.prikey,
1067 				  ctx->rsa.dma_prikey);
1068 		ctx->rsa.prikey = NULL;
1069 	}
1070 
1071 	hpre_ctx_clear(ctx, is_clear_all);
1072 }
1073 
1074 /*
1075  * we should judge if it is CRT or not,
1076  * CRT: return true,  N-CRT: return false .
1077  */
1078 static bool hpre_is_crt_key(struct rsa_key *key)
1079 {
1080 	u16 len = key->p_sz + key->q_sz + key->dp_sz + key->dq_sz +
1081 		  key->qinv_sz;
1082 
1083 #define LEN_OF_NCRT_PARA	5
1084 
1085 	/* N-CRT less than 5 parameters */
1086 	return len > LEN_OF_NCRT_PARA;
1087 }
1088 
1089 static int hpre_rsa_setkey(struct hpre_ctx *ctx, const void *key,
1090 			   unsigned int keylen, bool private)
1091 {
1092 	struct rsa_key rsa_key;
1093 	int ret;
1094 
1095 	hpre_rsa_clear_ctx(ctx, false);
1096 
1097 	if (private)
1098 		ret = rsa_parse_priv_key(&rsa_key, key, keylen);
1099 	else
1100 		ret = rsa_parse_pub_key(&rsa_key, key, keylen);
1101 	if (ret < 0)
1102 		return ret;
1103 
1104 	ret = hpre_rsa_set_n(ctx, rsa_key.n, rsa_key.n_sz, private);
1105 	if (ret <= 0)
1106 		return ret;
1107 
1108 	if (private) {
1109 		ret = hpre_rsa_set_d(ctx, rsa_key.d, rsa_key.d_sz);
1110 		if (ret < 0)
1111 			goto free;
1112 
1113 		if (hpre_is_crt_key(&rsa_key)) {
1114 			ret = hpre_rsa_setkey_crt(ctx, &rsa_key);
1115 			if (ret < 0)
1116 				goto free;
1117 		}
1118 	}
1119 
1120 	ret = hpre_rsa_set_e(ctx, rsa_key.e, rsa_key.e_sz);
1121 	if (ret < 0)
1122 		goto free;
1123 
1124 	if ((private && !ctx->rsa.prikey) || !ctx->rsa.pubkey) {
1125 		ret = -EINVAL;
1126 		goto free;
1127 	}
1128 
1129 	return 0;
1130 
1131 free:
1132 	hpre_rsa_clear_ctx(ctx, false);
1133 	return ret;
1134 }
1135 
1136 static int hpre_rsa_setpubkey(struct crypto_akcipher *tfm, const void *key,
1137 			      unsigned int keylen)
1138 {
1139 	struct hpre_ctx *ctx = akcipher_tfm_ctx(tfm);
1140 	int ret;
1141 
1142 	ret = crypto_akcipher_set_pub_key(ctx->rsa.soft_tfm, key, keylen);
1143 	if (ret)
1144 		return ret;
1145 
1146 	return hpre_rsa_setkey(ctx, key, keylen, false);
1147 }
1148 
1149 static int hpre_rsa_setprivkey(struct crypto_akcipher *tfm, const void *key,
1150 			       unsigned int keylen)
1151 {
1152 	struct hpre_ctx *ctx = akcipher_tfm_ctx(tfm);
1153 	int ret;
1154 
1155 	ret = crypto_akcipher_set_priv_key(ctx->rsa.soft_tfm, key, keylen);
1156 	if (ret)
1157 		return ret;
1158 
1159 	return hpre_rsa_setkey(ctx, key, keylen, true);
1160 }
1161 
1162 static unsigned int hpre_rsa_max_size(struct crypto_akcipher *tfm)
1163 {
1164 	struct hpre_ctx *ctx = akcipher_tfm_ctx(tfm);
1165 
1166 	/* For 512 and 1536 bits key size, use soft tfm instead */
1167 	if (ctx->key_sz == HPRE_RSA_512BITS_KSZ ||
1168 	    ctx->key_sz == HPRE_RSA_1536BITS_KSZ)
1169 		return crypto_akcipher_maxsize(ctx->rsa.soft_tfm);
1170 
1171 	return ctx->key_sz;
1172 }
1173 
1174 static int hpre_rsa_init_tfm(struct crypto_akcipher *tfm)
1175 {
1176 	struct hpre_ctx *ctx = akcipher_tfm_ctx(tfm);
1177 	int ret;
1178 
1179 	ctx->rsa.soft_tfm = crypto_alloc_akcipher("rsa-generic", 0, 0);
1180 	if (IS_ERR(ctx->rsa.soft_tfm)) {
1181 		pr_err("Can not alloc_akcipher!\n");
1182 		return PTR_ERR(ctx->rsa.soft_tfm);
1183 	}
1184 
1185 	akcipher_set_reqsize(tfm, sizeof(struct hpre_asym_request) +
1186 				  hpre_align_pd());
1187 
1188 	ret = hpre_ctx_init(ctx, HPRE_V2_ALG_TYPE);
1189 	if (ret)
1190 		crypto_free_akcipher(ctx->rsa.soft_tfm);
1191 
1192 	return ret;
1193 }
1194 
1195 static void hpre_rsa_exit_tfm(struct crypto_akcipher *tfm)
1196 {
1197 	struct hpre_ctx *ctx = akcipher_tfm_ctx(tfm);
1198 
1199 	hpre_rsa_clear_ctx(ctx, true);
1200 	crypto_free_akcipher(ctx->rsa.soft_tfm);
1201 }
1202 
1203 static void hpre_key_to_big_end(u8 *data, int len)
1204 {
1205 	int i, j;
1206 
1207 	for (i = 0; i < len / 2; i++) {
1208 		j = len - i - 1;
1209 		swap(data[j], data[i]);
1210 	}
1211 }
1212 
1213 static void hpre_ecc_clear_ctx(struct hpre_ctx *ctx, bool is_clear_all,
1214 			       bool is_ecdh)
1215 {
1216 	struct device *dev = ctx->dev;
1217 	unsigned int sz = ctx->key_sz;
1218 	unsigned int shift = sz << 1;
1219 
1220 	if (is_clear_all)
1221 		hisi_qm_stop_qp(ctx->qp);
1222 
1223 	if (is_ecdh && ctx->ecdh.p) {
1224 		/* ecdh: p->a->k->b */
1225 		memzero_explicit(ctx->ecdh.p + shift, sz);
1226 		dma_free_coherent(dev, sz << 3, ctx->ecdh.p, ctx->ecdh.dma_p);
1227 		ctx->ecdh.p = NULL;
1228 	} else if (!is_ecdh && ctx->curve25519.p) {
1229 		/* curve25519: p->a->k */
1230 		memzero_explicit(ctx->curve25519.p + shift, sz);
1231 		dma_free_coherent(dev, sz << 2, ctx->curve25519.p,
1232 				  ctx->curve25519.dma_p);
1233 		ctx->curve25519.p = NULL;
1234 	}
1235 
1236 	hpre_ctx_clear(ctx, is_clear_all);
1237 }
1238 
1239 /*
1240  * The bits of 192/224/256/384/521 are supported by HPRE,
1241  * and convert the bits like:
1242  * bits<=256, bits=256; 256<bits<=384, bits=384; 384<bits<=576, bits=576;
1243  * If the parameter bit width is insufficient, then we fill in the
1244  * high-order zeros by soft, so TASK_LENGTH1 is 0x3/0x5/0x8;
1245  */
1246 static unsigned int hpre_ecdh_supported_curve(unsigned short id)
1247 {
1248 	switch (id) {
1249 	case ECC_CURVE_NIST_P192:
1250 	case ECC_CURVE_NIST_P256:
1251 		return HPRE_ECC_HW256_KSZ_B;
1252 	case ECC_CURVE_NIST_P384:
1253 		return HPRE_ECC_HW384_KSZ_B;
1254 	default:
1255 		break;
1256 	}
1257 
1258 	return 0;
1259 }
1260 
1261 static void fill_curve_param(void *addr, u64 *param, unsigned int cur_sz, u8 ndigits)
1262 {
1263 	unsigned int sz = cur_sz - (ndigits - 1) * sizeof(u64);
1264 	u8 i = 0;
1265 
1266 	while (i < ndigits - 1) {
1267 		memcpy(addr + sizeof(u64) * i, &param[i], sizeof(u64));
1268 		i++;
1269 	}
1270 
1271 	memcpy(addr + sizeof(u64) * i, &param[ndigits - 1], sz);
1272 	hpre_key_to_big_end((u8 *)addr, cur_sz);
1273 }
1274 
1275 static int hpre_ecdh_fill_curve(struct hpre_ctx *ctx, struct ecdh *params,
1276 				unsigned int cur_sz)
1277 {
1278 	unsigned int shifta = ctx->key_sz << 1;
1279 	unsigned int shiftb = ctx->key_sz << 2;
1280 	void *p = ctx->ecdh.p + ctx->key_sz - cur_sz;
1281 	void *a = ctx->ecdh.p + shifta - cur_sz;
1282 	void *b = ctx->ecdh.p + shiftb - cur_sz;
1283 	void *x = ctx->ecdh.g + ctx->key_sz - cur_sz;
1284 	void *y = ctx->ecdh.g + shifta - cur_sz;
1285 	const struct ecc_curve *curve = ecc_get_curve(ctx->curve_id);
1286 	char *n;
1287 
1288 	if (unlikely(!curve))
1289 		return -EINVAL;
1290 
1291 	n = kzalloc(ctx->key_sz, GFP_KERNEL);
1292 	if (!n)
1293 		return -ENOMEM;
1294 
1295 	fill_curve_param(p, curve->p, cur_sz, curve->g.ndigits);
1296 	fill_curve_param(a, curve->a, cur_sz, curve->g.ndigits);
1297 	fill_curve_param(b, curve->b, cur_sz, curve->g.ndigits);
1298 	fill_curve_param(x, curve->g.x, cur_sz, curve->g.ndigits);
1299 	fill_curve_param(y, curve->g.y, cur_sz, curve->g.ndigits);
1300 	fill_curve_param(n, curve->n, cur_sz, curve->g.ndigits);
1301 
1302 	if (params->key_size == cur_sz && memcmp(params->key, n, cur_sz) >= 0) {
1303 		kfree(n);
1304 		return -EINVAL;
1305 	}
1306 
1307 	kfree(n);
1308 	return 0;
1309 }
1310 
1311 static unsigned int hpre_ecdh_get_curvesz(unsigned short id)
1312 {
1313 	switch (id) {
1314 	case ECC_CURVE_NIST_P192:
1315 		return HPRE_ECC_NIST_P192_N_SIZE;
1316 	case ECC_CURVE_NIST_P256:
1317 		return HPRE_ECC_NIST_P256_N_SIZE;
1318 	case ECC_CURVE_NIST_P384:
1319 		return HPRE_ECC_NIST_P384_N_SIZE;
1320 	default:
1321 		break;
1322 	}
1323 
1324 	return 0;
1325 }
1326 
1327 static int hpre_ecdh_set_param(struct hpre_ctx *ctx, struct ecdh *params)
1328 {
1329 	struct device *dev = ctx->dev;
1330 	unsigned int sz, shift, curve_sz;
1331 	int ret;
1332 
1333 	ctx->key_sz = hpre_ecdh_supported_curve(ctx->curve_id);
1334 	if (!ctx->key_sz)
1335 		return -EINVAL;
1336 
1337 	curve_sz = hpre_ecdh_get_curvesz(ctx->curve_id);
1338 	if (!curve_sz || params->key_size > curve_sz)
1339 		return -EINVAL;
1340 
1341 	sz = ctx->key_sz;
1342 
1343 	if (!ctx->ecdh.p) {
1344 		ctx->ecdh.p = dma_alloc_coherent(dev, sz << 3, &ctx->ecdh.dma_p,
1345 						 GFP_KERNEL);
1346 		if (!ctx->ecdh.p)
1347 			return -ENOMEM;
1348 	}
1349 
1350 	shift = sz << 2;
1351 	ctx->ecdh.g = ctx->ecdh.p + shift;
1352 	ctx->ecdh.dma_g = ctx->ecdh.dma_p + shift;
1353 
1354 	ret = hpre_ecdh_fill_curve(ctx, params, curve_sz);
1355 	if (ret) {
1356 		dev_err(dev, "failed to fill curve_param, ret = %d!\n", ret);
1357 		dma_free_coherent(dev, sz << 3, ctx->ecdh.p, ctx->ecdh.dma_p);
1358 		ctx->ecdh.p = NULL;
1359 		return ret;
1360 	}
1361 
1362 	return 0;
1363 }
1364 
1365 static bool hpre_key_is_zero(char *key, unsigned short key_sz)
1366 {
1367 	int i;
1368 
1369 	for (i = 0; i < key_sz; i++)
1370 		if (key[i])
1371 			return false;
1372 
1373 	return true;
1374 }
1375 
1376 static int ecdh_gen_privkey(struct hpre_ctx *ctx, struct ecdh *params)
1377 {
1378 	struct device *dev = ctx->dev;
1379 	int ret;
1380 
1381 	ret = crypto_get_default_rng();
1382 	if (ret) {
1383 		dev_err(dev, "failed to get default rng, ret = %d!\n", ret);
1384 		return ret;
1385 	}
1386 
1387 	ret = crypto_rng_get_bytes(crypto_default_rng, (u8 *)params->key,
1388 				   params->key_size);
1389 	crypto_put_default_rng();
1390 	if (ret)
1391 		dev_err(dev, "failed to get rng, ret = %d!\n", ret);
1392 
1393 	return ret;
1394 }
1395 
1396 static int hpre_ecdh_set_secret(struct crypto_kpp *tfm, const void *buf,
1397 				unsigned int len)
1398 {
1399 	struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
1400 	unsigned int sz, sz_shift, curve_sz;
1401 	struct device *dev = ctx->dev;
1402 	char key[HPRE_ECC_MAX_KSZ];
1403 	struct ecdh params;
1404 	int ret;
1405 
1406 	if (crypto_ecdh_decode_key(buf, len, &params) < 0) {
1407 		dev_err(dev, "failed to decode ecdh key!\n");
1408 		return -EINVAL;
1409 	}
1410 
1411 	/* Use stdrng to generate private key */
1412 	if (!params.key || !params.key_size) {
1413 		params.key = key;
1414 		curve_sz = hpre_ecdh_get_curvesz(ctx->curve_id);
1415 		if (!curve_sz) {
1416 			dev_err(dev, "Invalid curve size!\n");
1417 			return -EINVAL;
1418 		}
1419 
1420 		params.key_size = curve_sz - 1;
1421 		ret = ecdh_gen_privkey(ctx, &params);
1422 		if (ret)
1423 			return ret;
1424 	}
1425 
1426 	if (hpre_key_is_zero(params.key, params.key_size)) {
1427 		dev_err(dev, "Invalid hpre key!\n");
1428 		return -EINVAL;
1429 	}
1430 
1431 	hpre_ecc_clear_ctx(ctx, false, true);
1432 
1433 	ret = hpre_ecdh_set_param(ctx, &params);
1434 	if (ret < 0) {
1435 		dev_err(dev, "failed to set hpre param, ret = %d!\n", ret);
1436 		return ret;
1437 	}
1438 
1439 	sz = ctx->key_sz;
1440 	sz_shift = (sz << 1) + sz - params.key_size;
1441 	memcpy(ctx->ecdh.p + sz_shift, params.key, params.key_size);
1442 
1443 	return 0;
1444 }
1445 
1446 static void hpre_ecdh_hw_data_clr_all(struct hpre_ctx *ctx,
1447 				      struct hpre_asym_request *req,
1448 				      struct scatterlist *dst,
1449 				      struct scatterlist *src)
1450 {
1451 	struct device *dev = ctx->dev;
1452 	struct hpre_sqe *sqe = &req->req;
1453 	dma_addr_t dma;
1454 
1455 	dma = le64_to_cpu(sqe->in);
1456 	if (unlikely(dma_mapping_error(dev, dma)))
1457 		return;
1458 
1459 	if (src && req->src)
1460 		dma_free_coherent(dev, ctx->key_sz << 2, req->src, dma);
1461 
1462 	dma = le64_to_cpu(sqe->out);
1463 	if (unlikely(dma_mapping_error(dev, dma)))
1464 		return;
1465 
1466 	if (req->dst)
1467 		dma_free_coherent(dev, ctx->key_sz << 1, req->dst, dma);
1468 	if (dst)
1469 		dma_unmap_single(dev, dma, ctx->key_sz << 1, DMA_FROM_DEVICE);
1470 }
1471 
1472 static void hpre_ecdh_cb(struct hpre_ctx *ctx, void *resp)
1473 {
1474 	unsigned int curve_sz = hpre_ecdh_get_curvesz(ctx->curve_id);
1475 	struct hpre_dfx *dfx = ctx->hpre->debug.dfx;
1476 	struct hpre_asym_request *req = NULL;
1477 	struct kpp_request *areq;
1478 	u64 overtime_thrhld;
1479 	char *p;
1480 	int ret;
1481 
1482 	ret = hpre_alg_res_post_hf(ctx, resp, (void **)&req);
1483 	areq = req->areq.ecdh;
1484 	areq->dst_len = ctx->key_sz << 1;
1485 
1486 	overtime_thrhld = atomic64_read(&dfx[HPRE_OVERTIME_THRHLD].value);
1487 	if (overtime_thrhld && hpre_is_bd_timeout(req, overtime_thrhld))
1488 		atomic64_inc(&dfx[HPRE_OVER_THRHLD_CNT].value);
1489 
1490 	p = sg_virt(areq->dst);
1491 	memmove(p, p + ctx->key_sz - curve_sz, curve_sz);
1492 	memmove(p + curve_sz, p + areq->dst_len - curve_sz, curve_sz);
1493 
1494 	hpre_ecdh_hw_data_clr_all(ctx, req, areq->dst, areq->src);
1495 	kpp_request_complete(areq, ret);
1496 
1497 	atomic64_inc(&dfx[HPRE_RECV_CNT].value);
1498 }
1499 
1500 static int hpre_ecdh_msg_request_set(struct hpre_ctx *ctx,
1501 				     struct kpp_request *req)
1502 {
1503 	struct hpre_asym_request *h_req;
1504 	struct hpre_sqe *msg;
1505 	int req_id;
1506 	void *tmp;
1507 
1508 	if (req->dst_len < ctx->key_sz << 1) {
1509 		req->dst_len = ctx->key_sz << 1;
1510 		return -EINVAL;
1511 	}
1512 
1513 	tmp = kpp_request_ctx(req);
1514 	h_req = PTR_ALIGN(tmp, hpre_align_sz());
1515 	h_req->cb = hpre_ecdh_cb;
1516 	h_req->areq.ecdh = req;
1517 	msg = &h_req->req;
1518 	memset(msg, 0, sizeof(*msg));
1519 	msg->in = cpu_to_le64(DMA_MAPPING_ERROR);
1520 	msg->out = cpu_to_le64(DMA_MAPPING_ERROR);
1521 	msg->key = cpu_to_le64(ctx->ecdh.dma_p);
1522 
1523 	msg->dw0 |= cpu_to_le32(0x1U << HPRE_SQE_DONE_SHIFT);
1524 	msg->task_len1 = (ctx->key_sz >> HPRE_BITS_2_BYTES_SHIFT) - 1;
1525 	h_req->ctx = ctx;
1526 
1527 	req_id = hpre_add_req_to_ctx(h_req);
1528 	if (req_id < 0)
1529 		return -EBUSY;
1530 
1531 	msg->tag = cpu_to_le16((u16)req_id);
1532 	return 0;
1533 }
1534 
1535 static int hpre_ecdh_src_data_init(struct hpre_asym_request *hpre_req,
1536 				   struct scatterlist *data, unsigned int len)
1537 {
1538 	struct hpre_sqe *msg = &hpre_req->req;
1539 	struct hpre_ctx *ctx = hpre_req->ctx;
1540 	struct device *dev = ctx->dev;
1541 	unsigned int tmpshift;
1542 	dma_addr_t dma = 0;
1543 	void *ptr;
1544 	int shift;
1545 
1546 	/* Src_data include gx and gy. */
1547 	shift = ctx->key_sz - (len >> 1);
1548 	if (unlikely(shift < 0))
1549 		return -EINVAL;
1550 
1551 	ptr = dma_alloc_coherent(dev, ctx->key_sz << 2, &dma, GFP_KERNEL);
1552 	if (unlikely(!ptr))
1553 		return -ENOMEM;
1554 
1555 	tmpshift = ctx->key_sz << 1;
1556 	scatterwalk_map_and_copy(ptr + tmpshift, data, 0, len, 0);
1557 	memcpy(ptr + shift, ptr + tmpshift, len >> 1);
1558 	memcpy(ptr + ctx->key_sz + shift, ptr + tmpshift + (len >> 1), len >> 1);
1559 
1560 	hpre_req->src = ptr;
1561 	msg->in = cpu_to_le64(dma);
1562 	return 0;
1563 }
1564 
1565 static int hpre_ecdh_dst_data_init(struct hpre_asym_request *hpre_req,
1566 				   struct scatterlist *data, unsigned int len)
1567 {
1568 	struct hpre_sqe *msg = &hpre_req->req;
1569 	struct hpre_ctx *ctx = hpre_req->ctx;
1570 	struct device *dev = ctx->dev;
1571 	dma_addr_t dma;
1572 
1573 	if (unlikely(!data || !sg_is_last(data) || len != ctx->key_sz << 1)) {
1574 		dev_err(dev, "data or data length is illegal!\n");
1575 		return -EINVAL;
1576 	}
1577 
1578 	hpre_req->dst = NULL;
1579 	dma = dma_map_single(dev, sg_virt(data), len, DMA_FROM_DEVICE);
1580 	if (unlikely(dma_mapping_error(dev, dma))) {
1581 		dev_err(dev, "dma map data err!\n");
1582 		return -ENOMEM;
1583 	}
1584 
1585 	msg->out = cpu_to_le64(dma);
1586 	return 0;
1587 }
1588 
1589 static int hpre_ecdh_compute_value(struct kpp_request *req)
1590 {
1591 	struct crypto_kpp *tfm = crypto_kpp_reqtfm(req);
1592 	struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
1593 	struct device *dev = ctx->dev;
1594 	void *tmp = kpp_request_ctx(req);
1595 	struct hpre_asym_request *hpre_req = PTR_ALIGN(tmp, hpre_align_sz());
1596 	struct hpre_sqe *msg = &hpre_req->req;
1597 	int ret;
1598 
1599 	ret = hpre_ecdh_msg_request_set(ctx, req);
1600 	if (unlikely(ret)) {
1601 		dev_err(dev, "failed to set ecdh request, ret = %d!\n", ret);
1602 		return ret;
1603 	}
1604 
1605 	if (req->src) {
1606 		ret = hpre_ecdh_src_data_init(hpre_req, req->src, req->src_len);
1607 		if (unlikely(ret)) {
1608 			dev_err(dev, "failed to init src data, ret = %d!\n", ret);
1609 			goto clear_all;
1610 		}
1611 	} else {
1612 		msg->in = cpu_to_le64(ctx->ecdh.dma_g);
1613 	}
1614 
1615 	ret = hpre_ecdh_dst_data_init(hpre_req, req->dst, req->dst_len);
1616 	if (unlikely(ret)) {
1617 		dev_err(dev, "failed to init dst data, ret = %d!\n", ret);
1618 		goto clear_all;
1619 	}
1620 
1621 	msg->dw0 = cpu_to_le32(le32_to_cpu(msg->dw0) | HPRE_ALG_ECC_MUL);
1622 	ret = hpre_send(ctx, msg);
1623 	if (likely(!ret))
1624 		return -EINPROGRESS;
1625 
1626 clear_all:
1627 	hpre_rm_req_from_ctx(hpre_req);
1628 	hpre_ecdh_hw_data_clr_all(ctx, hpre_req, req->dst, req->src);
1629 	return ret;
1630 }
1631 
1632 static unsigned int hpre_ecdh_max_size(struct crypto_kpp *tfm)
1633 {
1634 	struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
1635 
1636 	/* max size is the pub_key_size, include x and y */
1637 	return ctx->key_sz << 1;
1638 }
1639 
1640 static int hpre_ecdh_nist_p192_init_tfm(struct crypto_kpp *tfm)
1641 {
1642 	struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
1643 
1644 	ctx->curve_id = ECC_CURVE_NIST_P192;
1645 
1646 	kpp_set_reqsize(tfm, sizeof(struct hpre_asym_request) + hpre_align_pd());
1647 
1648 	return hpre_ctx_init(ctx, HPRE_V3_ECC_ALG_TYPE);
1649 }
1650 
1651 static int hpre_ecdh_nist_p256_init_tfm(struct crypto_kpp *tfm)
1652 {
1653 	struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
1654 
1655 	ctx->curve_id = ECC_CURVE_NIST_P256;
1656 
1657 	kpp_set_reqsize(tfm, sizeof(struct hpre_asym_request) + hpre_align_pd());
1658 
1659 	return hpre_ctx_init(ctx, HPRE_V3_ECC_ALG_TYPE);
1660 }
1661 
1662 static int hpre_ecdh_nist_p384_init_tfm(struct crypto_kpp *tfm)
1663 {
1664 	struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
1665 
1666 	ctx->curve_id = ECC_CURVE_NIST_P384;
1667 
1668 	kpp_set_reqsize(tfm, sizeof(struct hpre_asym_request) + hpre_align_pd());
1669 
1670 	return hpre_ctx_init(ctx, HPRE_V3_ECC_ALG_TYPE);
1671 }
1672 
1673 static void hpre_ecdh_exit_tfm(struct crypto_kpp *tfm)
1674 {
1675 	struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
1676 
1677 	hpre_ecc_clear_ctx(ctx, true, true);
1678 }
1679 
1680 static void hpre_curve25519_fill_curve(struct hpre_ctx *ctx, const void *buf,
1681 				       unsigned int len)
1682 {
1683 	u8 secret[CURVE25519_KEY_SIZE] = { 0 };
1684 	unsigned int sz = ctx->key_sz;
1685 	const struct ecc_curve *curve;
1686 	unsigned int shift = sz << 1;
1687 	void *p;
1688 
1689 	/*
1690 	 * The key from 'buf' is in little-endian, we should preprocess it as
1691 	 * the description in rfc7748: "k[0] &= 248, k[31] &= 127, k[31] |= 64",
1692 	 * then convert it to big endian. Only in this way, the result can be
1693 	 * the same as the software curve-25519 that exists in crypto.
1694 	 */
1695 	memcpy(secret, buf, len);
1696 	curve25519_clamp_secret(secret);
1697 	hpre_key_to_big_end(secret, CURVE25519_KEY_SIZE);
1698 
1699 	p = ctx->curve25519.p + sz - len;
1700 
1701 	curve = ecc_get_curve25519();
1702 
1703 	/* fill curve parameters */
1704 	fill_curve_param(p, curve->p, len, curve->g.ndigits);
1705 	fill_curve_param(p + sz, curve->a, len, curve->g.ndigits);
1706 	memcpy(p + shift, secret, len);
1707 	fill_curve_param(p + shift + sz, curve->g.x, len, curve->g.ndigits);
1708 	memzero_explicit(secret, CURVE25519_KEY_SIZE);
1709 }
1710 
1711 static int hpre_curve25519_set_param(struct hpre_ctx *ctx, const void *buf,
1712 				     unsigned int len)
1713 {
1714 	struct device *dev = ctx->dev;
1715 	unsigned int sz = ctx->key_sz;
1716 	unsigned int shift = sz << 1;
1717 
1718 	/* p->a->k->gx */
1719 	if (!ctx->curve25519.p) {
1720 		ctx->curve25519.p = dma_alloc_coherent(dev, sz << 2,
1721 						       &ctx->curve25519.dma_p,
1722 						       GFP_KERNEL);
1723 		if (!ctx->curve25519.p)
1724 			return -ENOMEM;
1725 	}
1726 
1727 	ctx->curve25519.g = ctx->curve25519.p + shift + sz;
1728 	ctx->curve25519.dma_g = ctx->curve25519.dma_p + shift + sz;
1729 
1730 	hpre_curve25519_fill_curve(ctx, buf, len);
1731 
1732 	return 0;
1733 }
1734 
1735 static int hpre_curve25519_set_secret(struct crypto_kpp *tfm, const void *buf,
1736 				      unsigned int len)
1737 {
1738 	struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
1739 	struct device *dev = ctx->dev;
1740 	int ret = -EINVAL;
1741 
1742 	if (len != CURVE25519_KEY_SIZE ||
1743 	    !crypto_memneq(buf, curve25519_null_point, CURVE25519_KEY_SIZE)) {
1744 		dev_err(dev, "key is null or key len is not 32bytes!\n");
1745 		return ret;
1746 	}
1747 
1748 	/* Free old secret if any */
1749 	hpre_ecc_clear_ctx(ctx, false, false);
1750 
1751 	ctx->key_sz = CURVE25519_KEY_SIZE;
1752 	ret = hpre_curve25519_set_param(ctx, buf, CURVE25519_KEY_SIZE);
1753 	if (ret) {
1754 		dev_err(dev, "failed to set curve25519 param, ret = %d!\n", ret);
1755 		hpre_ecc_clear_ctx(ctx, false, false);
1756 		return ret;
1757 	}
1758 
1759 	return 0;
1760 }
1761 
1762 static void hpre_curve25519_hw_data_clr_all(struct hpre_ctx *ctx,
1763 					    struct hpre_asym_request *req,
1764 					    struct scatterlist *dst,
1765 					    struct scatterlist *src)
1766 {
1767 	struct device *dev = ctx->dev;
1768 	struct hpre_sqe *sqe = &req->req;
1769 	dma_addr_t dma;
1770 
1771 	dma = le64_to_cpu(sqe->in);
1772 	if (unlikely(dma_mapping_error(dev, dma)))
1773 		return;
1774 
1775 	if (src && req->src)
1776 		dma_free_coherent(dev, ctx->key_sz, req->src, dma);
1777 
1778 	dma = le64_to_cpu(sqe->out);
1779 	if (unlikely(dma_mapping_error(dev, dma)))
1780 		return;
1781 
1782 	if (req->dst)
1783 		dma_free_coherent(dev, ctx->key_sz, req->dst, dma);
1784 	if (dst)
1785 		dma_unmap_single(dev, dma, ctx->key_sz, DMA_FROM_DEVICE);
1786 }
1787 
1788 static void hpre_curve25519_cb(struct hpre_ctx *ctx, void *resp)
1789 {
1790 	struct hpre_dfx *dfx = ctx->hpre->debug.dfx;
1791 	struct hpre_asym_request *req = NULL;
1792 	struct kpp_request *areq;
1793 	u64 overtime_thrhld;
1794 	int ret;
1795 
1796 	ret = hpre_alg_res_post_hf(ctx, resp, (void **)&req);
1797 	areq = req->areq.curve25519;
1798 	areq->dst_len = ctx->key_sz;
1799 
1800 	overtime_thrhld = atomic64_read(&dfx[HPRE_OVERTIME_THRHLD].value);
1801 	if (overtime_thrhld && hpre_is_bd_timeout(req, overtime_thrhld))
1802 		atomic64_inc(&dfx[HPRE_OVER_THRHLD_CNT].value);
1803 
1804 	hpre_key_to_big_end(sg_virt(areq->dst), CURVE25519_KEY_SIZE);
1805 
1806 	hpre_curve25519_hw_data_clr_all(ctx, req, areq->dst, areq->src);
1807 	kpp_request_complete(areq, ret);
1808 
1809 	atomic64_inc(&dfx[HPRE_RECV_CNT].value);
1810 }
1811 
1812 static int hpre_curve25519_msg_request_set(struct hpre_ctx *ctx,
1813 					   struct kpp_request *req)
1814 {
1815 	struct hpre_asym_request *h_req;
1816 	struct hpre_sqe *msg;
1817 	int req_id;
1818 	void *tmp;
1819 
1820 	if (unlikely(req->dst_len < ctx->key_sz)) {
1821 		req->dst_len = ctx->key_sz;
1822 		return -EINVAL;
1823 	}
1824 
1825 	tmp = kpp_request_ctx(req);
1826 	h_req = PTR_ALIGN(tmp, hpre_align_sz());
1827 	h_req->cb = hpre_curve25519_cb;
1828 	h_req->areq.curve25519 = req;
1829 	msg = &h_req->req;
1830 	memset(msg, 0, sizeof(*msg));
1831 	msg->in = cpu_to_le64(DMA_MAPPING_ERROR);
1832 	msg->out = cpu_to_le64(DMA_MAPPING_ERROR);
1833 	msg->key = cpu_to_le64(ctx->curve25519.dma_p);
1834 
1835 	msg->dw0 |= cpu_to_le32(0x1U << HPRE_SQE_DONE_SHIFT);
1836 	msg->task_len1 = (ctx->key_sz >> HPRE_BITS_2_BYTES_SHIFT) - 1;
1837 	h_req->ctx = ctx;
1838 
1839 	req_id = hpre_add_req_to_ctx(h_req);
1840 	if (req_id < 0)
1841 		return -EBUSY;
1842 
1843 	msg->tag = cpu_to_le16((u16)req_id);
1844 	return 0;
1845 }
1846 
1847 static void hpre_curve25519_src_modulo_p(u8 *ptr)
1848 {
1849 	int i;
1850 
1851 	for (i = 0; i < CURVE25519_KEY_SIZE - 1; i++)
1852 		ptr[i] = 0;
1853 
1854 	/* The modulus is ptr's last byte minus '0xed'(last byte of p) */
1855 	ptr[i] -= 0xed;
1856 }
1857 
1858 static int hpre_curve25519_src_init(struct hpre_asym_request *hpre_req,
1859 				    struct scatterlist *data, unsigned int len)
1860 {
1861 	struct hpre_sqe *msg = &hpre_req->req;
1862 	struct hpre_ctx *ctx = hpre_req->ctx;
1863 	struct device *dev = ctx->dev;
1864 	u8 p[CURVE25519_KEY_SIZE] = { 0 };
1865 	const struct ecc_curve *curve;
1866 	dma_addr_t dma = 0;
1867 	u8 *ptr;
1868 
1869 	if (len != CURVE25519_KEY_SIZE) {
1870 		dev_err(dev, "sourc_data len is not 32bytes, len = %u!\n", len);
1871 		return -EINVAL;
1872 	}
1873 
1874 	ptr = dma_alloc_coherent(dev, ctx->key_sz, &dma, GFP_KERNEL);
1875 	if (unlikely(!ptr))
1876 		return -ENOMEM;
1877 
1878 	scatterwalk_map_and_copy(ptr, data, 0, len, 0);
1879 
1880 	if (!crypto_memneq(ptr, curve25519_null_point, CURVE25519_KEY_SIZE)) {
1881 		dev_err(dev, "gx is null!\n");
1882 		goto err;
1883 	}
1884 
1885 	/*
1886 	 * Src_data(gx) is in little-endian order, MSB in the final byte should
1887 	 * be masked as described in RFC7748, then transform it to big-endian
1888 	 * form, then hisi_hpre can use the data.
1889 	 */
1890 	ptr[31] &= 0x7f;
1891 	hpre_key_to_big_end(ptr, CURVE25519_KEY_SIZE);
1892 
1893 	curve = ecc_get_curve25519();
1894 
1895 	fill_curve_param(p, curve->p, CURVE25519_KEY_SIZE, curve->g.ndigits);
1896 
1897 	/*
1898 	 * When src_data equals (2^255 - 19) ~  (2^255 - 1), it is out of p,
1899 	 * we get its modulus to p, and then use it.
1900 	 */
1901 	if (memcmp(ptr, p, ctx->key_sz) == 0) {
1902 		dev_err(dev, "gx is p!\n");
1903 		goto err;
1904 	} else if (memcmp(ptr, p, ctx->key_sz) > 0) {
1905 		hpre_curve25519_src_modulo_p(ptr);
1906 	}
1907 
1908 	hpre_req->src = ptr;
1909 	msg->in = cpu_to_le64(dma);
1910 	return 0;
1911 
1912 err:
1913 	dma_free_coherent(dev, ctx->key_sz, ptr, dma);
1914 	return -EINVAL;
1915 }
1916 
1917 static int hpre_curve25519_dst_init(struct hpre_asym_request *hpre_req,
1918 				    struct scatterlist *data, unsigned int len)
1919 {
1920 	struct hpre_sqe *msg = &hpre_req->req;
1921 	struct hpre_ctx *ctx = hpre_req->ctx;
1922 	struct device *dev = ctx->dev;
1923 	dma_addr_t dma;
1924 
1925 	if (!data || !sg_is_last(data) || len != ctx->key_sz) {
1926 		dev_err(dev, "data or data length is illegal!\n");
1927 		return -EINVAL;
1928 	}
1929 
1930 	hpre_req->dst = NULL;
1931 	dma = dma_map_single(dev, sg_virt(data), len, DMA_FROM_DEVICE);
1932 	if (unlikely(dma_mapping_error(dev, dma))) {
1933 		dev_err(dev, "dma map data err!\n");
1934 		return -ENOMEM;
1935 	}
1936 
1937 	msg->out = cpu_to_le64(dma);
1938 	return 0;
1939 }
1940 
1941 static int hpre_curve25519_compute_value(struct kpp_request *req)
1942 {
1943 	struct crypto_kpp *tfm = crypto_kpp_reqtfm(req);
1944 	struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
1945 	struct device *dev = ctx->dev;
1946 	void *tmp = kpp_request_ctx(req);
1947 	struct hpre_asym_request *hpre_req = PTR_ALIGN(tmp, hpre_align_sz());
1948 	struct hpre_sqe *msg = &hpre_req->req;
1949 	int ret;
1950 
1951 	ret = hpre_curve25519_msg_request_set(ctx, req);
1952 	if (unlikely(ret)) {
1953 		dev_err(dev, "failed to set curve25519 request, ret = %d!\n", ret);
1954 		return ret;
1955 	}
1956 
1957 	if (req->src) {
1958 		ret = hpre_curve25519_src_init(hpre_req, req->src, req->src_len);
1959 		if (unlikely(ret)) {
1960 			dev_err(dev, "failed to init src data, ret = %d!\n",
1961 				ret);
1962 			goto clear_all;
1963 		}
1964 	} else {
1965 		msg->in = cpu_to_le64(ctx->curve25519.dma_g);
1966 	}
1967 
1968 	ret = hpre_curve25519_dst_init(hpre_req, req->dst, req->dst_len);
1969 	if (unlikely(ret)) {
1970 		dev_err(dev, "failed to init dst data, ret = %d!\n", ret);
1971 		goto clear_all;
1972 	}
1973 
1974 	msg->dw0 = cpu_to_le32(le32_to_cpu(msg->dw0) | HPRE_ALG_CURVE25519_MUL);
1975 	ret = hpre_send(ctx, msg);
1976 	if (likely(!ret))
1977 		return -EINPROGRESS;
1978 
1979 clear_all:
1980 	hpre_rm_req_from_ctx(hpre_req);
1981 	hpre_curve25519_hw_data_clr_all(ctx, hpre_req, req->dst, req->src);
1982 	return ret;
1983 }
1984 
1985 static unsigned int hpre_curve25519_max_size(struct crypto_kpp *tfm)
1986 {
1987 	struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
1988 
1989 	return ctx->key_sz;
1990 }
1991 
1992 static int hpre_curve25519_init_tfm(struct crypto_kpp *tfm)
1993 {
1994 	struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
1995 
1996 	kpp_set_reqsize(tfm, sizeof(struct hpre_asym_request) + hpre_align_pd());
1997 
1998 	return hpre_ctx_init(ctx, HPRE_V3_ECC_ALG_TYPE);
1999 }
2000 
2001 static void hpre_curve25519_exit_tfm(struct crypto_kpp *tfm)
2002 {
2003 	struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
2004 
2005 	hpre_ecc_clear_ctx(ctx, true, false);
2006 }
2007 
2008 static struct akcipher_alg rsa = {
2009 	.sign = hpre_rsa_dec,
2010 	.verify = hpre_rsa_enc,
2011 	.encrypt = hpre_rsa_enc,
2012 	.decrypt = hpre_rsa_dec,
2013 	.set_pub_key = hpre_rsa_setpubkey,
2014 	.set_priv_key = hpre_rsa_setprivkey,
2015 	.max_size = hpre_rsa_max_size,
2016 	.init = hpre_rsa_init_tfm,
2017 	.exit = hpre_rsa_exit_tfm,
2018 	.base = {
2019 		.cra_ctxsize = sizeof(struct hpre_ctx),
2020 		.cra_priority = HPRE_CRYPTO_ALG_PRI,
2021 		.cra_name = "rsa",
2022 		.cra_driver_name = "hpre-rsa",
2023 		.cra_module = THIS_MODULE,
2024 	},
2025 };
2026 
2027 static struct kpp_alg dh = {
2028 	.set_secret = hpre_dh_set_secret,
2029 	.generate_public_key = hpre_dh_compute_value,
2030 	.compute_shared_secret = hpre_dh_compute_value,
2031 	.max_size = hpre_dh_max_size,
2032 	.init = hpre_dh_init_tfm,
2033 	.exit = hpre_dh_exit_tfm,
2034 	.base = {
2035 		.cra_ctxsize = sizeof(struct hpre_ctx),
2036 		.cra_priority = HPRE_CRYPTO_ALG_PRI,
2037 		.cra_name = "dh",
2038 		.cra_driver_name = "hpre-dh",
2039 		.cra_module = THIS_MODULE,
2040 	},
2041 };
2042 
2043 static struct kpp_alg ecdh_curves[] = {
2044 	{
2045 		.set_secret = hpre_ecdh_set_secret,
2046 		.generate_public_key = hpre_ecdh_compute_value,
2047 		.compute_shared_secret = hpre_ecdh_compute_value,
2048 		.max_size = hpre_ecdh_max_size,
2049 		.init = hpre_ecdh_nist_p192_init_tfm,
2050 		.exit = hpre_ecdh_exit_tfm,
2051 		.base = {
2052 			.cra_ctxsize = sizeof(struct hpre_ctx),
2053 			.cra_priority = HPRE_CRYPTO_ALG_PRI,
2054 			.cra_name = "ecdh-nist-p192",
2055 			.cra_driver_name = "hpre-ecdh-nist-p192",
2056 			.cra_module = THIS_MODULE,
2057 		},
2058 	}, {
2059 		.set_secret = hpre_ecdh_set_secret,
2060 		.generate_public_key = hpre_ecdh_compute_value,
2061 		.compute_shared_secret = hpre_ecdh_compute_value,
2062 		.max_size = hpre_ecdh_max_size,
2063 		.init = hpre_ecdh_nist_p256_init_tfm,
2064 		.exit = hpre_ecdh_exit_tfm,
2065 		.base = {
2066 			.cra_ctxsize = sizeof(struct hpre_ctx),
2067 			.cra_priority = HPRE_CRYPTO_ALG_PRI,
2068 			.cra_name = "ecdh-nist-p256",
2069 			.cra_driver_name = "hpre-ecdh-nist-p256",
2070 			.cra_module = THIS_MODULE,
2071 		},
2072 	}, {
2073 		.set_secret = hpre_ecdh_set_secret,
2074 		.generate_public_key = hpre_ecdh_compute_value,
2075 		.compute_shared_secret = hpre_ecdh_compute_value,
2076 		.max_size = hpre_ecdh_max_size,
2077 		.init = hpre_ecdh_nist_p384_init_tfm,
2078 		.exit = hpre_ecdh_exit_tfm,
2079 		.base = {
2080 			.cra_ctxsize = sizeof(struct hpre_ctx),
2081 			.cra_priority = HPRE_CRYPTO_ALG_PRI,
2082 			.cra_name = "ecdh-nist-p384",
2083 			.cra_driver_name = "hpre-ecdh-nist-p384",
2084 			.cra_module = THIS_MODULE,
2085 		},
2086 	}
2087 };
2088 
2089 static struct kpp_alg curve25519_alg = {
2090 	.set_secret = hpre_curve25519_set_secret,
2091 	.generate_public_key = hpre_curve25519_compute_value,
2092 	.compute_shared_secret = hpre_curve25519_compute_value,
2093 	.max_size = hpre_curve25519_max_size,
2094 	.init = hpre_curve25519_init_tfm,
2095 	.exit = hpre_curve25519_exit_tfm,
2096 	.base = {
2097 		.cra_ctxsize = sizeof(struct hpre_ctx),
2098 		.cra_priority = HPRE_CRYPTO_ALG_PRI,
2099 		.cra_name = "curve25519",
2100 		.cra_driver_name = "hpre-curve25519",
2101 		.cra_module = THIS_MODULE,
2102 	},
2103 };
2104 
2105 static int hpre_register_rsa(struct hisi_qm *qm)
2106 {
2107 	int ret;
2108 
2109 	if (!hpre_check_alg_support(qm, HPRE_DRV_RSA_MASK_CAP))
2110 		return 0;
2111 
2112 	rsa.base.cra_flags = 0;
2113 	ret = crypto_register_akcipher(&rsa);
2114 	if (ret)
2115 		dev_err(&qm->pdev->dev, "failed to register rsa (%d)!\n", ret);
2116 
2117 	return ret;
2118 }
2119 
2120 static void hpre_unregister_rsa(struct hisi_qm *qm)
2121 {
2122 	if (!hpre_check_alg_support(qm, HPRE_DRV_RSA_MASK_CAP))
2123 		return;
2124 
2125 	crypto_unregister_akcipher(&rsa);
2126 }
2127 
2128 static int hpre_register_dh(struct hisi_qm *qm)
2129 {
2130 	int ret;
2131 
2132 	if (!hpre_check_alg_support(qm, HPRE_DRV_DH_MASK_CAP))
2133 		return 0;
2134 
2135 	ret = crypto_register_kpp(&dh);
2136 	if (ret)
2137 		dev_err(&qm->pdev->dev, "failed to register dh (%d)!\n", ret);
2138 
2139 	return ret;
2140 }
2141 
2142 static void hpre_unregister_dh(struct hisi_qm *qm)
2143 {
2144 	if (!hpre_check_alg_support(qm, HPRE_DRV_DH_MASK_CAP))
2145 		return;
2146 
2147 	crypto_unregister_kpp(&dh);
2148 }
2149 
2150 static int hpre_register_ecdh(struct hisi_qm *qm)
2151 {
2152 	int ret, i;
2153 
2154 	if (!hpre_check_alg_support(qm, HPRE_DRV_ECDH_MASK_CAP))
2155 		return 0;
2156 
2157 	for (i = 0; i < ARRAY_SIZE(ecdh_curves); i++) {
2158 		ret = crypto_register_kpp(&ecdh_curves[i]);
2159 		if (ret) {
2160 			dev_err(&qm->pdev->dev, "failed to register %s (%d)!\n",
2161 				ecdh_curves[i].base.cra_name, ret);
2162 			goto unreg_kpp;
2163 		}
2164 	}
2165 
2166 	return 0;
2167 
2168 unreg_kpp:
2169 	for (--i; i >= 0; --i)
2170 		crypto_unregister_kpp(&ecdh_curves[i]);
2171 
2172 	return ret;
2173 }
2174 
2175 static void hpre_unregister_ecdh(struct hisi_qm *qm)
2176 {
2177 	int i;
2178 
2179 	if (!hpre_check_alg_support(qm, HPRE_DRV_ECDH_MASK_CAP))
2180 		return;
2181 
2182 	for (i = ARRAY_SIZE(ecdh_curves) - 1; i >= 0; --i)
2183 		crypto_unregister_kpp(&ecdh_curves[i]);
2184 }
2185 
2186 static int hpre_register_x25519(struct hisi_qm *qm)
2187 {
2188 	int ret;
2189 
2190 	if (!hpre_check_alg_support(qm, HPRE_DRV_X25519_MASK_CAP))
2191 		return 0;
2192 
2193 	ret = crypto_register_kpp(&curve25519_alg);
2194 	if (ret)
2195 		dev_err(&qm->pdev->dev, "failed to register x25519 (%d)!\n", ret);
2196 
2197 	return ret;
2198 }
2199 
2200 static void hpre_unregister_x25519(struct hisi_qm *qm)
2201 {
2202 	if (!hpre_check_alg_support(qm, HPRE_DRV_X25519_MASK_CAP))
2203 		return;
2204 
2205 	crypto_unregister_kpp(&curve25519_alg);
2206 }
2207 
2208 int hpre_algs_register(struct hisi_qm *qm)
2209 {
2210 	int ret = 0;
2211 
2212 	mutex_lock(&hpre_algs_lock);
2213 	if (hpre_available_devs) {
2214 		hpre_available_devs++;
2215 		goto unlock;
2216 	}
2217 
2218 	ret = hpre_register_rsa(qm);
2219 	if (ret)
2220 		goto unlock;
2221 
2222 	ret = hpre_register_dh(qm);
2223 	if (ret)
2224 		goto unreg_rsa;
2225 
2226 	ret = hpre_register_ecdh(qm);
2227 	if (ret)
2228 		goto unreg_dh;
2229 
2230 	ret = hpre_register_x25519(qm);
2231 	if (ret)
2232 		goto unreg_ecdh;
2233 
2234 	hpre_available_devs++;
2235 	mutex_unlock(&hpre_algs_lock);
2236 
2237 	return ret;
2238 
2239 unreg_ecdh:
2240 	hpre_unregister_ecdh(qm);
2241 unreg_dh:
2242 	hpre_unregister_dh(qm);
2243 unreg_rsa:
2244 	hpre_unregister_rsa(qm);
2245 unlock:
2246 	mutex_unlock(&hpre_algs_lock);
2247 	return ret;
2248 }
2249 
2250 void hpre_algs_unregister(struct hisi_qm *qm)
2251 {
2252 	mutex_lock(&hpre_algs_lock);
2253 	if (--hpre_available_devs)
2254 		goto unlock;
2255 
2256 	hpre_unregister_x25519(qm);
2257 	hpre_unregister_ecdh(qm);
2258 	hpre_unregister_dh(qm);
2259 	hpre_unregister_rsa(qm);
2260 
2261 unlock:
2262 	mutex_unlock(&hpre_algs_lock);
2263 }
2264