1 /* 2 * 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru> 3 * All rights reserved. 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 */ 19 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/mod_devicetable.h> 23 #include <linux/interrupt.h> 24 #include <linux/pci.h> 25 #include <linux/slab.h> 26 #include <linux/delay.h> 27 #include <linux/mm.h> 28 #include <linux/highmem.h> 29 #include <linux/crypto.h> 30 31 #include <crypto/algapi.h> 32 33 #include <asm/kmap_types.h> 34 35 #undef dprintk 36 37 #define HIFN_TEST 38 //#define HIFN_DEBUG 39 40 #ifdef HIFN_DEBUG 41 #define dprintk(f, a...) printk(f, ##a) 42 #else 43 #define dprintk(f, a...) do {} while (0) 44 #endif 45 46 static atomic_t hifn_dev_number; 47 48 #define ACRYPTO_OP_DECRYPT 0 49 #define ACRYPTO_OP_ENCRYPT 1 50 #define ACRYPTO_OP_HMAC 2 51 #define ACRYPTO_OP_RNG 3 52 53 #define ACRYPTO_MODE_ECB 0 54 #define ACRYPTO_MODE_CBC 1 55 #define ACRYPTO_MODE_CFB 2 56 #define ACRYPTO_MODE_OFB 3 57 58 #define ACRYPTO_TYPE_AES_128 0 59 #define ACRYPTO_TYPE_AES_192 1 60 #define ACRYPTO_TYPE_AES_256 2 61 #define ACRYPTO_TYPE_3DES 3 62 #define ACRYPTO_TYPE_DES 4 63 64 #define PCI_VENDOR_ID_HIFN 0x13A3 65 #define PCI_DEVICE_ID_HIFN_7955 0x0020 66 #define PCI_DEVICE_ID_HIFN_7956 0x001d 67 68 /* I/O region sizes */ 69 70 #define HIFN_BAR0_SIZE 0x1000 71 #define HIFN_BAR1_SIZE 0x2000 72 #define HIFN_BAR2_SIZE 0x8000 73 74 /* DMA registres */ 75 76 #define HIFN_DMA_CRA 0x0C /* DMA Command Ring Address */ 77 #define HIFN_DMA_SDRA 0x1C /* DMA Source Data Ring Address */ 78 #define HIFN_DMA_RRA 0x2C /* DMA Result Ring Address */ 79 #define HIFN_DMA_DDRA 0x3C /* DMA Destination Data Ring Address */ 80 #define HIFN_DMA_STCTL 0x40 /* DMA Status and Control */ 81 #define HIFN_DMA_INTREN 0x44 /* DMA Interrupt Enable */ 82 #define HIFN_DMA_CFG1 0x48 /* DMA Configuration #1 */ 83 #define HIFN_DMA_CFG2 0x6C /* DMA Configuration #2 */ 84 #define HIFN_CHIP_ID 0x98 /* Chip ID */ 85 86 /* 87 * Processing Unit Registers (offset from BASEREG0) 88 */ 89 #define HIFN_0_PUDATA 0x00 /* Processing Unit Data */ 90 #define HIFN_0_PUCTRL 0x04 /* Processing Unit Control */ 91 #define HIFN_0_PUISR 0x08 /* Processing Unit Interrupt Status */ 92 #define HIFN_0_PUCNFG 0x0c /* Processing Unit Configuration */ 93 #define HIFN_0_PUIER 0x10 /* Processing Unit Interrupt Enable */ 94 #define HIFN_0_PUSTAT 0x14 /* Processing Unit Status/Chip ID */ 95 #define HIFN_0_FIFOSTAT 0x18 /* FIFO Status */ 96 #define HIFN_0_FIFOCNFG 0x1c /* FIFO Configuration */ 97 #define HIFN_0_SPACESIZE 0x20 /* Register space size */ 98 99 /* Processing Unit Control Register (HIFN_0_PUCTRL) */ 100 #define HIFN_PUCTRL_CLRSRCFIFO 0x0010 /* clear source fifo */ 101 #define HIFN_PUCTRL_STOP 0x0008 /* stop pu */ 102 #define HIFN_PUCTRL_LOCKRAM 0x0004 /* lock ram */ 103 #define HIFN_PUCTRL_DMAENA 0x0002 /* enable dma */ 104 #define HIFN_PUCTRL_RESET 0x0001 /* Reset processing unit */ 105 106 /* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */ 107 #define HIFN_PUISR_CMDINVAL 0x8000 /* Invalid command interrupt */ 108 #define HIFN_PUISR_DATAERR 0x4000 /* Data error interrupt */ 109 #define HIFN_PUISR_SRCFIFO 0x2000 /* Source FIFO ready interrupt */ 110 #define HIFN_PUISR_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */ 111 #define HIFN_PUISR_DSTOVER 0x0200 /* Destination overrun interrupt */ 112 #define HIFN_PUISR_SRCCMD 0x0080 /* Source command interrupt */ 113 #define HIFN_PUISR_SRCCTX 0x0040 /* Source context interrupt */ 114 #define HIFN_PUISR_SRCDATA 0x0020 /* Source data interrupt */ 115 #define HIFN_PUISR_DSTDATA 0x0010 /* Destination data interrupt */ 116 #define HIFN_PUISR_DSTRESULT 0x0004 /* Destination result interrupt */ 117 118 /* Processing Unit Configuration Register (HIFN_0_PUCNFG) */ 119 #define HIFN_PUCNFG_DRAMMASK 0xe000 /* DRAM size mask */ 120 #define HIFN_PUCNFG_DSZ_256K 0x0000 /* 256k dram */ 121 #define HIFN_PUCNFG_DSZ_512K 0x2000 /* 512k dram */ 122 #define HIFN_PUCNFG_DSZ_1M 0x4000 /* 1m dram */ 123 #define HIFN_PUCNFG_DSZ_2M 0x6000 /* 2m dram */ 124 #define HIFN_PUCNFG_DSZ_4M 0x8000 /* 4m dram */ 125 #define HIFN_PUCNFG_DSZ_8M 0xa000 /* 8m dram */ 126 #define HIFN_PUNCFG_DSZ_16M 0xc000 /* 16m dram */ 127 #define HIFN_PUCNFG_DSZ_32M 0xe000 /* 32m dram */ 128 #define HIFN_PUCNFG_DRAMREFRESH 0x1800 /* DRAM refresh rate mask */ 129 #define HIFN_PUCNFG_DRFR_512 0x0000 /* 512 divisor of ECLK */ 130 #define HIFN_PUCNFG_DRFR_256 0x0800 /* 256 divisor of ECLK */ 131 #define HIFN_PUCNFG_DRFR_128 0x1000 /* 128 divisor of ECLK */ 132 #define HIFN_PUCNFG_TCALLPHASES 0x0200 /* your guess is as good as mine... */ 133 #define HIFN_PUCNFG_TCDRVTOTEM 0x0100 /* your guess is as good as mine... */ 134 #define HIFN_PUCNFG_BIGENDIAN 0x0080 /* DMA big endian mode */ 135 #define HIFN_PUCNFG_BUS32 0x0040 /* Bus width 32bits */ 136 #define HIFN_PUCNFG_BUS16 0x0000 /* Bus width 16 bits */ 137 #define HIFN_PUCNFG_CHIPID 0x0020 /* Allow chipid from PUSTAT */ 138 #define HIFN_PUCNFG_DRAM 0x0010 /* Context RAM is DRAM */ 139 #define HIFN_PUCNFG_SRAM 0x0000 /* Context RAM is SRAM */ 140 #define HIFN_PUCNFG_COMPSING 0x0004 /* Enable single compression context */ 141 #define HIFN_PUCNFG_ENCCNFG 0x0002 /* Encryption configuration */ 142 143 /* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */ 144 #define HIFN_PUIER_CMDINVAL 0x8000 /* Invalid command interrupt */ 145 #define HIFN_PUIER_DATAERR 0x4000 /* Data error interrupt */ 146 #define HIFN_PUIER_SRCFIFO 0x2000 /* Source FIFO ready interrupt */ 147 #define HIFN_PUIER_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */ 148 #define HIFN_PUIER_DSTOVER 0x0200 /* Destination overrun interrupt */ 149 #define HIFN_PUIER_SRCCMD 0x0080 /* Source command interrupt */ 150 #define HIFN_PUIER_SRCCTX 0x0040 /* Source context interrupt */ 151 #define HIFN_PUIER_SRCDATA 0x0020 /* Source data interrupt */ 152 #define HIFN_PUIER_DSTDATA 0x0010 /* Destination data interrupt */ 153 #define HIFN_PUIER_DSTRESULT 0x0004 /* Destination result interrupt */ 154 155 /* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */ 156 #define HIFN_PUSTAT_CMDINVAL 0x8000 /* Invalid command interrupt */ 157 #define HIFN_PUSTAT_DATAERR 0x4000 /* Data error interrupt */ 158 #define HIFN_PUSTAT_SRCFIFO 0x2000 /* Source FIFO ready interrupt */ 159 #define HIFN_PUSTAT_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */ 160 #define HIFN_PUSTAT_DSTOVER 0x0200 /* Destination overrun interrupt */ 161 #define HIFN_PUSTAT_SRCCMD 0x0080 /* Source command interrupt */ 162 #define HIFN_PUSTAT_SRCCTX 0x0040 /* Source context interrupt */ 163 #define HIFN_PUSTAT_SRCDATA 0x0020 /* Source data interrupt */ 164 #define HIFN_PUSTAT_DSTDATA 0x0010 /* Destination data interrupt */ 165 #define HIFN_PUSTAT_DSTRESULT 0x0004 /* Destination result interrupt */ 166 #define HIFN_PUSTAT_CHIPREV 0x00ff /* Chip revision mask */ 167 #define HIFN_PUSTAT_CHIPENA 0xff00 /* Chip enabled mask */ 168 #define HIFN_PUSTAT_ENA_2 0x1100 /* Level 2 enabled */ 169 #define HIFN_PUSTAT_ENA_1 0x1000 /* Level 1 enabled */ 170 #define HIFN_PUSTAT_ENA_0 0x3000 /* Level 0 enabled */ 171 #define HIFN_PUSTAT_REV_2 0x0020 /* 7751 PT6/2 */ 172 #define HIFN_PUSTAT_REV_3 0x0030 /* 7751 PT6/3 */ 173 174 /* FIFO Status Register (HIFN_0_FIFOSTAT) */ 175 #define HIFN_FIFOSTAT_SRC 0x7f00 /* Source FIFO available */ 176 #define HIFN_FIFOSTAT_DST 0x007f /* Destination FIFO available */ 177 178 /* FIFO Configuration Register (HIFN_0_FIFOCNFG) */ 179 #define HIFN_FIFOCNFG_THRESHOLD 0x0400 /* must be written as 1 */ 180 181 /* 182 * DMA Interface Registers (offset from BASEREG1) 183 */ 184 #define HIFN_1_DMA_CRAR 0x0c /* DMA Command Ring Address */ 185 #define HIFN_1_DMA_SRAR 0x1c /* DMA Source Ring Address */ 186 #define HIFN_1_DMA_RRAR 0x2c /* DMA Result Ring Address */ 187 #define HIFN_1_DMA_DRAR 0x3c /* DMA Destination Ring Address */ 188 #define HIFN_1_DMA_CSR 0x40 /* DMA Status and Control */ 189 #define HIFN_1_DMA_IER 0x44 /* DMA Interrupt Enable */ 190 #define HIFN_1_DMA_CNFG 0x48 /* DMA Configuration */ 191 #define HIFN_1_PLL 0x4c /* 795x: PLL config */ 192 #define HIFN_1_7811_RNGENA 0x60 /* 7811: rng enable */ 193 #define HIFN_1_7811_RNGCFG 0x64 /* 7811: rng config */ 194 #define HIFN_1_7811_RNGDAT 0x68 /* 7811: rng data */ 195 #define HIFN_1_7811_RNGSTS 0x6c /* 7811: rng status */ 196 #define HIFN_1_7811_MIPSRST 0x94 /* 7811: MIPS reset */ 197 #define HIFN_1_REVID 0x98 /* Revision ID */ 198 #define HIFN_1_UNLOCK_SECRET1 0xf4 199 #define HIFN_1_UNLOCK_SECRET2 0xfc 200 #define HIFN_1_PUB_RESET 0x204 /* Public/RNG Reset */ 201 #define HIFN_1_PUB_BASE 0x300 /* Public Base Address */ 202 #define HIFN_1_PUB_OPLEN 0x304 /* Public Operand Length */ 203 #define HIFN_1_PUB_OP 0x308 /* Public Operand */ 204 #define HIFN_1_PUB_STATUS 0x30c /* Public Status */ 205 #define HIFN_1_PUB_IEN 0x310 /* Public Interrupt enable */ 206 #define HIFN_1_RNG_CONFIG 0x314 /* RNG config */ 207 #define HIFN_1_RNG_DATA 0x318 /* RNG data */ 208 #define HIFN_1_PUB_MEM 0x400 /* start of Public key memory */ 209 #define HIFN_1_PUB_MEMEND 0xbff /* end of Public key memory */ 210 211 /* DMA Status and Control Register (HIFN_1_DMA_CSR) */ 212 #define HIFN_DMACSR_D_CTRLMASK 0xc0000000 /* Destinition Ring Control */ 213 #define HIFN_DMACSR_D_CTRL_NOP 0x00000000 /* Dest. Control: no-op */ 214 #define HIFN_DMACSR_D_CTRL_DIS 0x40000000 /* Dest. Control: disable */ 215 #define HIFN_DMACSR_D_CTRL_ENA 0x80000000 /* Dest. Control: enable */ 216 #define HIFN_DMACSR_D_ABORT 0x20000000 /* Destinition Ring PCIAbort */ 217 #define HIFN_DMACSR_D_DONE 0x10000000 /* Destinition Ring Done */ 218 #define HIFN_DMACSR_D_LAST 0x08000000 /* Destinition Ring Last */ 219 #define HIFN_DMACSR_D_WAIT 0x04000000 /* Destinition Ring Waiting */ 220 #define HIFN_DMACSR_D_OVER 0x02000000 /* Destinition Ring Overflow */ 221 #define HIFN_DMACSR_R_CTRL 0x00c00000 /* Result Ring Control */ 222 #define HIFN_DMACSR_R_CTRL_NOP 0x00000000 /* Result Control: no-op */ 223 #define HIFN_DMACSR_R_CTRL_DIS 0x00400000 /* Result Control: disable */ 224 #define HIFN_DMACSR_R_CTRL_ENA 0x00800000 /* Result Control: enable */ 225 #define HIFN_DMACSR_R_ABORT 0x00200000 /* Result Ring PCI Abort */ 226 #define HIFN_DMACSR_R_DONE 0x00100000 /* Result Ring Done */ 227 #define HIFN_DMACSR_R_LAST 0x00080000 /* Result Ring Last */ 228 #define HIFN_DMACSR_R_WAIT 0x00040000 /* Result Ring Waiting */ 229 #define HIFN_DMACSR_R_OVER 0x00020000 /* Result Ring Overflow */ 230 #define HIFN_DMACSR_S_CTRL 0x0000c000 /* Source Ring Control */ 231 #define HIFN_DMACSR_S_CTRL_NOP 0x00000000 /* Source Control: no-op */ 232 #define HIFN_DMACSR_S_CTRL_DIS 0x00004000 /* Source Control: disable */ 233 #define HIFN_DMACSR_S_CTRL_ENA 0x00008000 /* Source Control: enable */ 234 #define HIFN_DMACSR_S_ABORT 0x00002000 /* Source Ring PCI Abort */ 235 #define HIFN_DMACSR_S_DONE 0x00001000 /* Source Ring Done */ 236 #define HIFN_DMACSR_S_LAST 0x00000800 /* Source Ring Last */ 237 #define HIFN_DMACSR_S_WAIT 0x00000400 /* Source Ring Waiting */ 238 #define HIFN_DMACSR_ILLW 0x00000200 /* Illegal write (7811 only) */ 239 #define HIFN_DMACSR_ILLR 0x00000100 /* Illegal read (7811 only) */ 240 #define HIFN_DMACSR_C_CTRL 0x000000c0 /* Command Ring Control */ 241 #define HIFN_DMACSR_C_CTRL_NOP 0x00000000 /* Command Control: no-op */ 242 #define HIFN_DMACSR_C_CTRL_DIS 0x00000040 /* Command Control: disable */ 243 #define HIFN_DMACSR_C_CTRL_ENA 0x00000080 /* Command Control: enable */ 244 #define HIFN_DMACSR_C_ABORT 0x00000020 /* Command Ring PCI Abort */ 245 #define HIFN_DMACSR_C_DONE 0x00000010 /* Command Ring Done */ 246 #define HIFN_DMACSR_C_LAST 0x00000008 /* Command Ring Last */ 247 #define HIFN_DMACSR_C_WAIT 0x00000004 /* Command Ring Waiting */ 248 #define HIFN_DMACSR_PUBDONE 0x00000002 /* Public op done (7951 only) */ 249 #define HIFN_DMACSR_ENGINE 0x00000001 /* Command Ring Engine IRQ */ 250 251 /* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */ 252 #define HIFN_DMAIER_D_ABORT 0x20000000 /* Destination Ring PCIAbort */ 253 #define HIFN_DMAIER_D_DONE 0x10000000 /* Destination Ring Done */ 254 #define HIFN_DMAIER_D_LAST 0x08000000 /* Destination Ring Last */ 255 #define HIFN_DMAIER_D_WAIT 0x04000000 /* Destination Ring Waiting */ 256 #define HIFN_DMAIER_D_OVER 0x02000000 /* Destination Ring Overflow */ 257 #define HIFN_DMAIER_R_ABORT 0x00200000 /* Result Ring PCI Abort */ 258 #define HIFN_DMAIER_R_DONE 0x00100000 /* Result Ring Done */ 259 #define HIFN_DMAIER_R_LAST 0x00080000 /* Result Ring Last */ 260 #define HIFN_DMAIER_R_WAIT 0x00040000 /* Result Ring Waiting */ 261 #define HIFN_DMAIER_R_OVER 0x00020000 /* Result Ring Overflow */ 262 #define HIFN_DMAIER_S_ABORT 0x00002000 /* Source Ring PCI Abort */ 263 #define HIFN_DMAIER_S_DONE 0x00001000 /* Source Ring Done */ 264 #define HIFN_DMAIER_S_LAST 0x00000800 /* Source Ring Last */ 265 #define HIFN_DMAIER_S_WAIT 0x00000400 /* Source Ring Waiting */ 266 #define HIFN_DMAIER_ILLW 0x00000200 /* Illegal write (7811 only) */ 267 #define HIFN_DMAIER_ILLR 0x00000100 /* Illegal read (7811 only) */ 268 #define HIFN_DMAIER_C_ABORT 0x00000020 /* Command Ring PCI Abort */ 269 #define HIFN_DMAIER_C_DONE 0x00000010 /* Command Ring Done */ 270 #define HIFN_DMAIER_C_LAST 0x00000008 /* Command Ring Last */ 271 #define HIFN_DMAIER_C_WAIT 0x00000004 /* Command Ring Waiting */ 272 #define HIFN_DMAIER_PUBDONE 0x00000002 /* public op done (7951 only) */ 273 #define HIFN_DMAIER_ENGINE 0x00000001 /* Engine IRQ */ 274 275 /* DMA Configuration Register (HIFN_1_DMA_CNFG) */ 276 #define HIFN_DMACNFG_BIGENDIAN 0x10000000 /* big endian mode */ 277 #define HIFN_DMACNFG_POLLFREQ 0x00ff0000 /* Poll frequency mask */ 278 #define HIFN_DMACNFG_UNLOCK 0x00000800 279 #define HIFN_DMACNFG_POLLINVAL 0x00000700 /* Invalid Poll Scalar */ 280 #define HIFN_DMACNFG_LAST 0x00000010 /* Host control LAST bit */ 281 #define HIFN_DMACNFG_MODE 0x00000004 /* DMA mode */ 282 #define HIFN_DMACNFG_DMARESET 0x00000002 /* DMA Reset # */ 283 #define HIFN_DMACNFG_MSTRESET 0x00000001 /* Master Reset # */ 284 285 #define HIFN_PLL_7956 0x00001d18 /* 7956 PLL config value */ 286 287 /* Public key reset register (HIFN_1_PUB_RESET) */ 288 #define HIFN_PUBRST_RESET 0x00000001 /* reset public/rng unit */ 289 290 /* Public base address register (HIFN_1_PUB_BASE) */ 291 #define HIFN_PUBBASE_ADDR 0x00003fff /* base address */ 292 293 /* Public operand length register (HIFN_1_PUB_OPLEN) */ 294 #define HIFN_PUBOPLEN_MOD_M 0x0000007f /* modulus length mask */ 295 #define HIFN_PUBOPLEN_MOD_S 0 /* modulus length shift */ 296 #define HIFN_PUBOPLEN_EXP_M 0x0003ff80 /* exponent length mask */ 297 #define HIFN_PUBOPLEN_EXP_S 7 /* exponent lenght shift */ 298 #define HIFN_PUBOPLEN_RED_M 0x003c0000 /* reducend length mask */ 299 #define HIFN_PUBOPLEN_RED_S 18 /* reducend length shift */ 300 301 /* Public operation register (HIFN_1_PUB_OP) */ 302 #define HIFN_PUBOP_AOFFSET_M 0x0000007f /* A offset mask */ 303 #define HIFN_PUBOP_AOFFSET_S 0 /* A offset shift */ 304 #define HIFN_PUBOP_BOFFSET_M 0x00000f80 /* B offset mask */ 305 #define HIFN_PUBOP_BOFFSET_S 7 /* B offset shift */ 306 #define HIFN_PUBOP_MOFFSET_M 0x0003f000 /* M offset mask */ 307 #define HIFN_PUBOP_MOFFSET_S 12 /* M offset shift */ 308 #define HIFN_PUBOP_OP_MASK 0x003c0000 /* Opcode: */ 309 #define HIFN_PUBOP_OP_NOP 0x00000000 /* NOP */ 310 #define HIFN_PUBOP_OP_ADD 0x00040000 /* ADD */ 311 #define HIFN_PUBOP_OP_ADDC 0x00080000 /* ADD w/carry */ 312 #define HIFN_PUBOP_OP_SUB 0x000c0000 /* SUB */ 313 #define HIFN_PUBOP_OP_SUBC 0x00100000 /* SUB w/carry */ 314 #define HIFN_PUBOP_OP_MODADD 0x00140000 /* Modular ADD */ 315 #define HIFN_PUBOP_OP_MODSUB 0x00180000 /* Modular SUB */ 316 #define HIFN_PUBOP_OP_INCA 0x001c0000 /* INC A */ 317 #define HIFN_PUBOP_OP_DECA 0x00200000 /* DEC A */ 318 #define HIFN_PUBOP_OP_MULT 0x00240000 /* MULT */ 319 #define HIFN_PUBOP_OP_MODMULT 0x00280000 /* Modular MULT */ 320 #define HIFN_PUBOP_OP_MODRED 0x002c0000 /* Modular RED */ 321 #define HIFN_PUBOP_OP_MODEXP 0x00300000 /* Modular EXP */ 322 323 /* Public status register (HIFN_1_PUB_STATUS) */ 324 #define HIFN_PUBSTS_DONE 0x00000001 /* operation done */ 325 #define HIFN_PUBSTS_CARRY 0x00000002 /* carry */ 326 327 /* Public interrupt enable register (HIFN_1_PUB_IEN) */ 328 #define HIFN_PUBIEN_DONE 0x00000001 /* operation done interrupt */ 329 330 /* Random number generator config register (HIFN_1_RNG_CONFIG) */ 331 #define HIFN_RNGCFG_ENA 0x00000001 /* enable rng */ 332 333 #define HIFN_NAMESIZE 32 334 #define HIFN_MAX_RESULT_ORDER 5 335 336 #define HIFN_D_CMD_RSIZE 24*4 337 #define HIFN_D_SRC_RSIZE 80*4 338 #define HIFN_D_DST_RSIZE 80*4 339 #define HIFN_D_RES_RSIZE 24*4 340 341 #define HIFN_QUEUE_LENGTH HIFN_D_CMD_RSIZE-5 342 343 #define AES_MIN_KEY_SIZE 16 344 #define AES_MAX_KEY_SIZE 32 345 346 #define HIFN_DES_KEY_LENGTH 8 347 #define HIFN_3DES_KEY_LENGTH 24 348 #define HIFN_MAX_CRYPT_KEY_LENGTH AES_MAX_KEY_SIZE 349 #define HIFN_IV_LENGTH 8 350 #define HIFN_AES_IV_LENGTH 16 351 #define HIFN_MAX_IV_LENGTH HIFN_AES_IV_LENGTH 352 353 #define HIFN_MAC_KEY_LENGTH 64 354 #define HIFN_MD5_LENGTH 16 355 #define HIFN_SHA1_LENGTH 20 356 #define HIFN_MAC_TRUNC_LENGTH 12 357 358 #define HIFN_MAX_COMMAND (8 + 8 + 8 + 64 + 260) 359 #define HIFN_MAX_RESULT (8 + 4 + 4 + 20 + 4) 360 #define HIFN_USED_RESULT 12 361 362 struct hifn_desc 363 { 364 volatile u32 l; 365 volatile u32 p; 366 }; 367 368 struct hifn_dma { 369 struct hifn_desc cmdr[HIFN_D_CMD_RSIZE+1]; 370 struct hifn_desc srcr[HIFN_D_SRC_RSIZE+1]; 371 struct hifn_desc dstr[HIFN_D_DST_RSIZE+1]; 372 struct hifn_desc resr[HIFN_D_RES_RSIZE+1]; 373 374 u8 command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND]; 375 u8 result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT]; 376 377 u64 test_src, test_dst; 378 379 /* 380 * Our current positions for insertion and removal from the descriptor 381 * rings. 382 */ 383 volatile int cmdi, srci, dsti, resi; 384 volatile int cmdu, srcu, dstu, resu; 385 int cmdk, srck, dstk, resk; 386 }; 387 388 #define HIFN_FLAG_CMD_BUSY (1<<0) 389 #define HIFN_FLAG_SRC_BUSY (1<<1) 390 #define HIFN_FLAG_DST_BUSY (1<<2) 391 #define HIFN_FLAG_RES_BUSY (1<<3) 392 #define HIFN_FLAG_OLD_KEY (1<<4) 393 394 #define HIFN_DEFAULT_ACTIVE_NUM 5 395 396 struct hifn_device 397 { 398 char name[HIFN_NAMESIZE]; 399 400 int irq; 401 402 struct pci_dev *pdev; 403 void __iomem *bar[3]; 404 405 unsigned long result_mem; 406 dma_addr_t dst; 407 408 void *desc_virt; 409 dma_addr_t desc_dma; 410 411 u32 dmareg; 412 413 void *sa[HIFN_D_RES_RSIZE]; 414 415 spinlock_t lock; 416 417 void *priv; 418 419 u32 flags; 420 int active, started; 421 struct delayed_work work; 422 unsigned long reset; 423 unsigned long success; 424 unsigned long prev_success; 425 426 u8 snum; 427 428 struct crypto_queue queue; 429 struct list_head alg_list; 430 }; 431 432 #define HIFN_D_LENGTH 0x0000ffff 433 #define HIFN_D_NOINVALID 0x01000000 434 #define HIFN_D_MASKDONEIRQ 0x02000000 435 #define HIFN_D_DESTOVER 0x04000000 436 #define HIFN_D_OVER 0x08000000 437 #define HIFN_D_LAST 0x20000000 438 #define HIFN_D_JUMP 0x40000000 439 #define HIFN_D_VALID 0x80000000 440 441 struct hifn_base_command 442 { 443 volatile u16 masks; 444 volatile u16 session_num; 445 volatile u16 total_source_count; 446 volatile u16 total_dest_count; 447 }; 448 449 #define HIFN_BASE_CMD_COMP 0x0100 /* enable compression engine */ 450 #define HIFN_BASE_CMD_PAD 0x0200 /* enable padding engine */ 451 #define HIFN_BASE_CMD_MAC 0x0400 /* enable MAC engine */ 452 #define HIFN_BASE_CMD_CRYPT 0x0800 /* enable crypt engine */ 453 #define HIFN_BASE_CMD_DECODE 0x2000 454 #define HIFN_BASE_CMD_SRCLEN_M 0xc000 455 #define HIFN_BASE_CMD_SRCLEN_S 14 456 #define HIFN_BASE_CMD_DSTLEN_M 0x3000 457 #define HIFN_BASE_CMD_DSTLEN_S 12 458 #define HIFN_BASE_CMD_LENMASK_HI 0x30000 459 #define HIFN_BASE_CMD_LENMASK_LO 0x0ffff 460 461 /* 462 * Structure to help build up the command data structure. 463 */ 464 struct hifn_crypt_command 465 { 466 volatile u16 masks; 467 volatile u16 header_skip; 468 volatile u16 source_count; 469 volatile u16 reserved; 470 }; 471 472 #define HIFN_CRYPT_CMD_ALG_MASK 0x0003 /* algorithm: */ 473 #define HIFN_CRYPT_CMD_ALG_DES 0x0000 /* DES */ 474 #define HIFN_CRYPT_CMD_ALG_3DES 0x0001 /* 3DES */ 475 #define HIFN_CRYPT_CMD_ALG_RC4 0x0002 /* RC4 */ 476 #define HIFN_CRYPT_CMD_ALG_AES 0x0003 /* AES */ 477 #define HIFN_CRYPT_CMD_MODE_MASK 0x0018 /* Encrypt mode: */ 478 #define HIFN_CRYPT_CMD_MODE_ECB 0x0000 /* ECB */ 479 #define HIFN_CRYPT_CMD_MODE_CBC 0x0008 /* CBC */ 480 #define HIFN_CRYPT_CMD_MODE_CFB 0x0010 /* CFB */ 481 #define HIFN_CRYPT_CMD_MODE_OFB 0x0018 /* OFB */ 482 #define HIFN_CRYPT_CMD_CLR_CTX 0x0040 /* clear context */ 483 #define HIFN_CRYPT_CMD_KSZ_MASK 0x0600 /* AES key size: */ 484 #define HIFN_CRYPT_CMD_KSZ_128 0x0000 /* 128 bit */ 485 #define HIFN_CRYPT_CMD_KSZ_192 0x0200 /* 192 bit */ 486 #define HIFN_CRYPT_CMD_KSZ_256 0x0400 /* 256 bit */ 487 #define HIFN_CRYPT_CMD_NEW_KEY 0x0800 /* expect new key */ 488 #define HIFN_CRYPT_CMD_NEW_IV 0x1000 /* expect new iv */ 489 #define HIFN_CRYPT_CMD_SRCLEN_M 0xc000 490 #define HIFN_CRYPT_CMD_SRCLEN_S 14 491 492 /* 493 * Structure to help build up the command data structure. 494 */ 495 struct hifn_mac_command 496 { 497 volatile u16 masks; 498 volatile u16 header_skip; 499 volatile u16 source_count; 500 volatile u16 reserved; 501 }; 502 503 #define HIFN_MAC_CMD_ALG_MASK 0x0001 504 #define HIFN_MAC_CMD_ALG_SHA1 0x0000 505 #define HIFN_MAC_CMD_ALG_MD5 0x0001 506 #define HIFN_MAC_CMD_MODE_MASK 0x000c 507 #define HIFN_MAC_CMD_MODE_HMAC 0x0000 508 #define HIFN_MAC_CMD_MODE_SSL_MAC 0x0004 509 #define HIFN_MAC_CMD_MODE_HASH 0x0008 510 #define HIFN_MAC_CMD_MODE_FULL 0x0004 511 #define HIFN_MAC_CMD_TRUNC 0x0010 512 #define HIFN_MAC_CMD_RESULT 0x0020 513 #define HIFN_MAC_CMD_APPEND 0x0040 514 #define HIFN_MAC_CMD_SRCLEN_M 0xc000 515 #define HIFN_MAC_CMD_SRCLEN_S 14 516 517 /* 518 * MAC POS IPsec initiates authentication after encryption on encodes 519 * and before decryption on decodes. 520 */ 521 #define HIFN_MAC_CMD_POS_IPSEC 0x0200 522 #define HIFN_MAC_CMD_NEW_KEY 0x0800 523 524 struct hifn_comp_command 525 { 526 volatile u16 masks; 527 volatile u16 header_skip; 528 volatile u16 source_count; 529 volatile u16 reserved; 530 }; 531 532 #define HIFN_COMP_CMD_SRCLEN_M 0xc000 533 #define HIFN_COMP_CMD_SRCLEN_S 14 534 #define HIFN_COMP_CMD_ONE 0x0100 /* must be one */ 535 #define HIFN_COMP_CMD_CLEARHIST 0x0010 /* clear history */ 536 #define HIFN_COMP_CMD_UPDATEHIST 0x0008 /* update history */ 537 #define HIFN_COMP_CMD_LZS_STRIP0 0x0004 /* LZS: strip zero */ 538 #define HIFN_COMP_CMD_MPPC_RESTART 0x0004 /* MPPC: restart */ 539 #define HIFN_COMP_CMD_ALG_MASK 0x0001 /* compression mode: */ 540 #define HIFN_COMP_CMD_ALG_MPPC 0x0001 /* MPPC */ 541 #define HIFN_COMP_CMD_ALG_LZS 0x0000 /* LZS */ 542 543 struct hifn_base_result 544 { 545 volatile u16 flags; 546 volatile u16 session; 547 volatile u16 src_cnt; /* 15:0 of source count */ 548 volatile u16 dst_cnt; /* 15:0 of dest count */ 549 }; 550 551 #define HIFN_BASE_RES_DSTOVERRUN 0x0200 /* destination overrun */ 552 #define HIFN_BASE_RES_SRCLEN_M 0xc000 /* 17:16 of source count */ 553 #define HIFN_BASE_RES_SRCLEN_S 14 554 #define HIFN_BASE_RES_DSTLEN_M 0x3000 /* 17:16 of dest count */ 555 #define HIFN_BASE_RES_DSTLEN_S 12 556 557 struct hifn_comp_result 558 { 559 volatile u16 flags; 560 volatile u16 crc; 561 }; 562 563 #define HIFN_COMP_RES_LCB_M 0xff00 /* longitudinal check byte */ 564 #define HIFN_COMP_RES_LCB_S 8 565 #define HIFN_COMP_RES_RESTART 0x0004 /* MPPC: restart */ 566 #define HIFN_COMP_RES_ENDMARKER 0x0002 /* LZS: end marker seen */ 567 #define HIFN_COMP_RES_SRC_NOTZERO 0x0001 /* source expired */ 568 569 struct hifn_mac_result 570 { 571 volatile u16 flags; 572 volatile u16 reserved; 573 /* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */ 574 }; 575 576 #define HIFN_MAC_RES_MISCOMPARE 0x0002 /* compare failed */ 577 #define HIFN_MAC_RES_SRC_NOTZERO 0x0001 /* source expired */ 578 579 struct hifn_crypt_result 580 { 581 volatile u16 flags; 582 volatile u16 reserved; 583 }; 584 585 #define HIFN_CRYPT_RES_SRC_NOTZERO 0x0001 /* source expired */ 586 587 #ifndef HIFN_POLL_FREQUENCY 588 #define HIFN_POLL_FREQUENCY 0x1 589 #endif 590 591 #ifndef HIFN_POLL_SCALAR 592 #define HIFN_POLL_SCALAR 0x0 593 #endif 594 595 #define HIFN_MAX_SEGLEN 0xffff /* maximum dma segment len */ 596 #define HIFN_MAX_DMALEN 0x3ffff /* maximum dma length */ 597 598 struct hifn_crypto_alg 599 { 600 struct list_head entry; 601 struct crypto_alg alg; 602 struct hifn_device *dev; 603 }; 604 605 #define ASYNC_SCATTERLIST_CACHE 16 606 607 #define ASYNC_FLAGS_MISALIGNED (1<<0) 608 609 struct ablkcipher_walk 610 { 611 struct scatterlist cache[ASYNC_SCATTERLIST_CACHE]; 612 u32 flags; 613 int num; 614 }; 615 616 struct hifn_context 617 { 618 u8 key[HIFN_MAX_CRYPT_KEY_LENGTH], *iv; 619 struct hifn_device *dev; 620 unsigned int keysize, ivsize; 621 u8 op, type, mode, unused; 622 struct ablkcipher_walk walk; 623 atomic_t sg_num; 624 }; 625 626 #define crypto_alg_to_hifn(alg) container_of(alg, struct hifn_crypto_alg, alg) 627 628 static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg) 629 { 630 u32 ret; 631 632 ret = readl((char *)(dev->bar[0]) + reg); 633 634 return ret; 635 } 636 637 static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg) 638 { 639 u32 ret; 640 641 ret = readl((char *)(dev->bar[1]) + reg); 642 643 return ret; 644 } 645 646 static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val) 647 { 648 writel(val, (char *)(dev->bar[0]) + reg); 649 } 650 651 static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val) 652 { 653 writel(val, (char *)(dev->bar[1]) + reg); 654 } 655 656 static void hifn_wait_puc(struct hifn_device *dev) 657 { 658 int i; 659 u32 ret; 660 661 for (i=10000; i > 0; --i) { 662 ret = hifn_read_0(dev, HIFN_0_PUCTRL); 663 if (!(ret & HIFN_PUCTRL_RESET)) 664 break; 665 666 udelay(1); 667 } 668 669 if (!i) 670 dprintk("%s: Failed to reset PUC unit.\n", dev->name); 671 } 672 673 static void hifn_reset_puc(struct hifn_device *dev) 674 { 675 hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA); 676 hifn_wait_puc(dev); 677 } 678 679 static void hifn_stop_device(struct hifn_device *dev) 680 { 681 hifn_write_1(dev, HIFN_1_DMA_CSR, 682 HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS | 683 HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS); 684 hifn_write_0(dev, HIFN_0_PUIER, 0); 685 hifn_write_1(dev, HIFN_1_DMA_IER, 0); 686 } 687 688 static void hifn_reset_dma(struct hifn_device *dev, int full) 689 { 690 hifn_stop_device(dev); 691 692 /* 693 * Setting poll frequency and others to 0. 694 */ 695 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET | 696 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE); 697 mdelay(1); 698 699 /* 700 * Reset DMA. 701 */ 702 if (full) { 703 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE); 704 mdelay(1); 705 } else { 706 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE | 707 HIFN_DMACNFG_MSTRESET); 708 hifn_reset_puc(dev); 709 } 710 711 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET | 712 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE); 713 714 hifn_reset_puc(dev); 715 } 716 717 static u32 hifn_next_signature(u_int32_t a, u_int cnt) 718 { 719 int i; 720 u32 v; 721 722 for (i = 0; i < cnt; i++) { 723 724 /* get the parity */ 725 v = a & 0x80080125; 726 v ^= v >> 16; 727 v ^= v >> 8; 728 v ^= v >> 4; 729 v ^= v >> 2; 730 v ^= v >> 1; 731 732 a = (v & 1) ^ (a << 1); 733 } 734 735 return a; 736 } 737 738 static struct pci2id { 739 u_short pci_vendor; 740 u_short pci_prod; 741 char card_id[13]; 742 } pci2id[] = { 743 { 744 PCI_VENDOR_ID_HIFN, 745 PCI_DEVICE_ID_HIFN_7955, 746 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 747 0x00, 0x00, 0x00, 0x00, 0x00 } 748 }, 749 { 750 PCI_VENDOR_ID_HIFN, 751 PCI_DEVICE_ID_HIFN_7956, 752 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 753 0x00, 0x00, 0x00, 0x00, 0x00 } 754 } 755 }; 756 757 static int hifn_init_pubrng(struct hifn_device *dev) 758 { 759 int i; 760 761 hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) | 762 HIFN_PUBRST_RESET); 763 764 for (i=100; i > 0; --i) { 765 mdelay(1); 766 767 if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0) 768 break; 769 } 770 771 if (!i) 772 dprintk("Chip %s: Failed to initialise public key engine.\n", 773 dev->name); 774 else { 775 hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE); 776 dev->dmareg |= HIFN_DMAIER_PUBDONE; 777 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg); 778 779 dprintk("Chip %s: Public key engine has been sucessfully " 780 "initialised.\n", dev->name); 781 } 782 783 /* 784 * Enable RNG engine. 785 */ 786 787 hifn_write_1(dev, HIFN_1_RNG_CONFIG, 788 hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA); 789 dprintk("Chip %s: RNG engine has been successfully initialised.\n", 790 dev->name); 791 792 return 0; 793 } 794 795 static int hifn_enable_crypto(struct hifn_device *dev) 796 { 797 u32 dmacfg, addr; 798 char *offtbl = NULL; 799 int i; 800 801 for (i = 0; i < sizeof(pci2id)/sizeof(pci2id[0]); i++) { 802 if (pci2id[i].pci_vendor == dev->pdev->vendor && 803 pci2id[i].pci_prod == dev->pdev->device) { 804 offtbl = pci2id[i].card_id; 805 break; 806 } 807 } 808 809 if (offtbl == NULL) { 810 dprintk("Chip %s: Unknown card!\n", dev->name); 811 return -ENODEV; 812 } 813 814 dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG); 815 816 hifn_write_1(dev, HIFN_1_DMA_CNFG, 817 HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET | 818 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE); 819 mdelay(1); 820 addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1); 821 mdelay(1); 822 hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0); 823 mdelay(1); 824 825 for (i=0; i<12; ++i) { 826 addr = hifn_next_signature(addr, offtbl[i] + 0x101); 827 hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr); 828 829 mdelay(1); 830 } 831 hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg); 832 833 dprintk("Chip %s: %s.\n", dev->name, pci_name(dev->pdev)); 834 835 return 0; 836 } 837 838 static void hifn_init_dma(struct hifn_device *dev) 839 { 840 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 841 u32 dptr = dev->desc_dma; 842 int i; 843 844 for (i=0; i<HIFN_D_CMD_RSIZE; ++i) 845 dma->cmdr[i].p = __cpu_to_le32(dptr + 846 offsetof(struct hifn_dma, command_bufs[i][0])); 847 for (i=0; i<HIFN_D_RES_RSIZE; ++i) 848 dma->resr[i].p = __cpu_to_le32(dptr + 849 offsetof(struct hifn_dma, result_bufs[i][0])); 850 851 /* 852 * Setup LAST descriptors. 853 */ 854 dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr + 855 offsetof(struct hifn_dma, cmdr[0])); 856 dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr + 857 offsetof(struct hifn_dma, srcr[0])); 858 dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr + 859 offsetof(struct hifn_dma, dstr[0])); 860 dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr + 861 offsetof(struct hifn_dma, resr[0])); 862 863 dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0; 864 dma->cmdi = dma->srci = dma->dsti = dma->resi = 0; 865 dma->cmdk = dma->srck = dma->dstk = dma->resk = 0; 866 } 867 868 static void hifn_init_registers(struct hifn_device *dev) 869 { 870 u32 dptr = dev->desc_dma; 871 872 /* Initialization magic... */ 873 hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA); 874 hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD); 875 hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER); 876 877 /* write all 4 ring address registers */ 878 hifn_write_1(dev, HIFN_1_DMA_CRAR, __cpu_to_le32(dptr + 879 offsetof(struct hifn_dma, cmdr[0]))); 880 hifn_write_1(dev, HIFN_1_DMA_SRAR, __cpu_to_le32(dptr + 881 offsetof(struct hifn_dma, srcr[0]))); 882 hifn_write_1(dev, HIFN_1_DMA_DRAR, __cpu_to_le32(dptr + 883 offsetof(struct hifn_dma, dstr[0]))); 884 hifn_write_1(dev, HIFN_1_DMA_RRAR, __cpu_to_le32(dptr + 885 offsetof(struct hifn_dma, resr[0]))); 886 887 mdelay(2); 888 #if 0 889 hifn_write_1(dev, HIFN_1_DMA_CSR, 890 HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS | 891 HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS | 892 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST | 893 HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER | 894 HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST | 895 HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER | 896 HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST | 897 HIFN_DMACSR_S_WAIT | 898 HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST | 899 HIFN_DMACSR_C_WAIT | 900 HIFN_DMACSR_ENGINE | 901 HIFN_DMACSR_PUBDONE); 902 #else 903 hifn_write_1(dev, HIFN_1_DMA_CSR, 904 HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA | 905 HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA | 906 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST | 907 HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER | 908 HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST | 909 HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER | 910 HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST | 911 HIFN_DMACSR_S_WAIT | 912 HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST | 913 HIFN_DMACSR_C_WAIT | 914 HIFN_DMACSR_ENGINE | 915 HIFN_DMACSR_PUBDONE); 916 #endif 917 hifn_read_1(dev, HIFN_1_DMA_CSR); 918 919 dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT | 920 HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER | 921 HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT | 922 HIFN_DMAIER_ENGINE; 923 dev->dmareg &= ~HIFN_DMAIER_C_WAIT; 924 925 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg); 926 hifn_read_1(dev, HIFN_1_DMA_IER); 927 #if 0 928 hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG | 929 HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES | 930 HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 | 931 HIFN_PUCNFG_DRAM); 932 #else 933 hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342); 934 #endif 935 hifn_write_1(dev, HIFN_1_PLL, HIFN_PLL_7956); 936 937 hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER); 938 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET | 939 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST | 940 ((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) | 941 ((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL)); 942 } 943 944 static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf, 945 unsigned dlen, unsigned slen, u16 mask, u8 snum) 946 { 947 struct hifn_base_command *base_cmd; 948 u8 *buf_pos = buf; 949 950 base_cmd = (struct hifn_base_command *)buf_pos; 951 base_cmd->masks = __cpu_to_le16(mask); 952 base_cmd->total_source_count = 953 __cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO); 954 base_cmd->total_dest_count = 955 __cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO); 956 957 dlen >>= 16; 958 slen >>= 16; 959 base_cmd->session_num = __cpu_to_le16(snum | 960 ((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) | 961 ((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M)); 962 963 return sizeof(struct hifn_base_command); 964 } 965 966 static int hifn_setup_crypto_command(struct hifn_device *dev, 967 u8 *buf, unsigned dlen, unsigned slen, 968 u8 *key, int keylen, u8 *iv, int ivsize, u16 mode) 969 { 970 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 971 struct hifn_crypt_command *cry_cmd; 972 u8 *buf_pos = buf; 973 u16 cmd_len; 974 975 cry_cmd = (struct hifn_crypt_command *)buf_pos; 976 977 cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff); 978 dlen >>= 16; 979 cry_cmd->masks = __cpu_to_le16(mode | 980 ((dlen << HIFN_CRYPT_CMD_SRCLEN_S) & 981 HIFN_CRYPT_CMD_SRCLEN_M)); 982 cry_cmd->header_skip = 0; 983 cry_cmd->reserved = 0; 984 985 buf_pos += sizeof(struct hifn_crypt_command); 986 987 dma->cmdu++; 988 if (dma->cmdu > 1) { 989 dev->dmareg |= HIFN_DMAIER_C_WAIT; 990 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg); 991 } 992 993 if (keylen) { 994 memcpy(buf_pos, key, keylen); 995 buf_pos += keylen; 996 } 997 if (ivsize) { 998 memcpy(buf_pos, iv, ivsize); 999 buf_pos += ivsize; 1000 } 1001 1002 cmd_len = buf_pos - buf; 1003 1004 return cmd_len; 1005 } 1006 1007 static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page, 1008 unsigned int offset, unsigned int size) 1009 { 1010 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1011 int idx; 1012 dma_addr_t addr; 1013 1014 addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_TODEVICE); 1015 1016 idx = dma->srci; 1017 1018 dma->srcr[idx].p = __cpu_to_le32(addr); 1019 dma->srcr[idx].l = __cpu_to_le32(size) | HIFN_D_VALID | 1020 HIFN_D_MASKDONEIRQ | HIFN_D_NOINVALID | HIFN_D_LAST; 1021 1022 if (++idx == HIFN_D_SRC_RSIZE) { 1023 dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID | 1024 HIFN_D_JUMP | 1025 HIFN_D_MASKDONEIRQ | HIFN_D_LAST); 1026 idx = 0; 1027 } 1028 1029 dma->srci = idx; 1030 dma->srcu++; 1031 1032 if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) { 1033 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA); 1034 dev->flags |= HIFN_FLAG_SRC_BUSY; 1035 } 1036 1037 return size; 1038 } 1039 1040 static void hifn_setup_res_desc(struct hifn_device *dev) 1041 { 1042 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1043 1044 dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT | 1045 HIFN_D_VALID | HIFN_D_LAST); 1046 /* 1047 * dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID | 1048 * HIFN_D_LAST | HIFN_D_NOINVALID); 1049 */ 1050 1051 if (++dma->resi == HIFN_D_RES_RSIZE) { 1052 dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID | 1053 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST); 1054 dma->resi = 0; 1055 } 1056 1057 dma->resu++; 1058 1059 if (!(dev->flags & HIFN_FLAG_RES_BUSY)) { 1060 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA); 1061 dev->flags |= HIFN_FLAG_RES_BUSY; 1062 } 1063 } 1064 1065 static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page, 1066 unsigned offset, unsigned size) 1067 { 1068 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1069 int idx; 1070 dma_addr_t addr; 1071 1072 addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_FROMDEVICE); 1073 1074 idx = dma->dsti; 1075 dma->dstr[idx].p = __cpu_to_le32(addr); 1076 dma->dstr[idx].l = __cpu_to_le32(size | HIFN_D_VALID | 1077 HIFN_D_MASKDONEIRQ | HIFN_D_NOINVALID | HIFN_D_LAST); 1078 1079 if (++idx == HIFN_D_DST_RSIZE) { 1080 dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID | 1081 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | 1082 HIFN_D_LAST | HIFN_D_NOINVALID); 1083 idx = 0; 1084 } 1085 dma->dsti = idx; 1086 dma->dstu++; 1087 1088 if (!(dev->flags & HIFN_FLAG_DST_BUSY)) { 1089 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA); 1090 dev->flags |= HIFN_FLAG_DST_BUSY; 1091 } 1092 } 1093 1094 static int hifn_setup_dma(struct hifn_device *dev, struct page *spage, unsigned int soff, 1095 struct page *dpage, unsigned int doff, unsigned int nbytes, void *priv, 1096 struct hifn_context *ctx) 1097 { 1098 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1099 int cmd_len, sa_idx; 1100 u8 *buf, *buf_pos; 1101 u16 mask; 1102 1103 dprintk("%s: spage: %p, soffset: %u, dpage: %p, doffset: %u, nbytes: %u, priv: %p, ctx: %p.\n", 1104 dev->name, spage, soff, dpage, doff, nbytes, priv, ctx); 1105 1106 sa_idx = dma->resi; 1107 1108 hifn_setup_src_desc(dev, spage, soff, nbytes); 1109 1110 buf_pos = buf = dma->command_bufs[dma->cmdi]; 1111 1112 mask = 0; 1113 switch (ctx->op) { 1114 case ACRYPTO_OP_DECRYPT: 1115 mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE; 1116 break; 1117 case ACRYPTO_OP_ENCRYPT: 1118 mask = HIFN_BASE_CMD_CRYPT; 1119 break; 1120 case ACRYPTO_OP_HMAC: 1121 mask = HIFN_BASE_CMD_MAC; 1122 break; 1123 default: 1124 goto err_out; 1125 } 1126 1127 buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes, 1128 nbytes, mask, dev->snum); 1129 1130 if (ctx->op == ACRYPTO_OP_ENCRYPT || ctx->op == ACRYPTO_OP_DECRYPT) { 1131 u16 md = 0; 1132 1133 if (ctx->keysize) 1134 md |= HIFN_CRYPT_CMD_NEW_KEY; 1135 if (ctx->iv && ctx->mode != ACRYPTO_MODE_ECB) 1136 md |= HIFN_CRYPT_CMD_NEW_IV; 1137 1138 switch (ctx->mode) { 1139 case ACRYPTO_MODE_ECB: 1140 md |= HIFN_CRYPT_CMD_MODE_ECB; 1141 break; 1142 case ACRYPTO_MODE_CBC: 1143 md |= HIFN_CRYPT_CMD_MODE_CBC; 1144 break; 1145 case ACRYPTO_MODE_CFB: 1146 md |= HIFN_CRYPT_CMD_MODE_CFB; 1147 break; 1148 case ACRYPTO_MODE_OFB: 1149 md |= HIFN_CRYPT_CMD_MODE_OFB; 1150 break; 1151 default: 1152 goto err_out; 1153 } 1154 1155 switch (ctx->type) { 1156 case ACRYPTO_TYPE_AES_128: 1157 if (ctx->keysize != 16) 1158 goto err_out; 1159 md |= HIFN_CRYPT_CMD_KSZ_128 | 1160 HIFN_CRYPT_CMD_ALG_AES; 1161 break; 1162 case ACRYPTO_TYPE_AES_192: 1163 if (ctx->keysize != 24) 1164 goto err_out; 1165 md |= HIFN_CRYPT_CMD_KSZ_192 | 1166 HIFN_CRYPT_CMD_ALG_AES; 1167 break; 1168 case ACRYPTO_TYPE_AES_256: 1169 if (ctx->keysize != 32) 1170 goto err_out; 1171 md |= HIFN_CRYPT_CMD_KSZ_256 | 1172 HIFN_CRYPT_CMD_ALG_AES; 1173 break; 1174 case ACRYPTO_TYPE_3DES: 1175 if (ctx->keysize != 24) 1176 goto err_out; 1177 md |= HIFN_CRYPT_CMD_ALG_3DES; 1178 break; 1179 case ACRYPTO_TYPE_DES: 1180 if (ctx->keysize != 8) 1181 goto err_out; 1182 md |= HIFN_CRYPT_CMD_ALG_DES; 1183 break; 1184 default: 1185 goto err_out; 1186 } 1187 1188 buf_pos += hifn_setup_crypto_command(dev, buf_pos, 1189 nbytes, nbytes, ctx->key, ctx->keysize, 1190 ctx->iv, ctx->ivsize, md); 1191 } 1192 1193 dev->sa[sa_idx] = priv; 1194 1195 cmd_len = buf_pos - buf; 1196 dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID | 1197 HIFN_D_LAST | HIFN_D_MASKDONEIRQ); 1198 1199 if (++dma->cmdi == HIFN_D_CMD_RSIZE) { 1200 dma->cmdr[dma->cmdi].l = __cpu_to_le32(HIFN_MAX_COMMAND | 1201 HIFN_D_VALID | HIFN_D_LAST | 1202 HIFN_D_MASKDONEIRQ | HIFN_D_JUMP); 1203 dma->cmdi = 0; 1204 } else 1205 dma->cmdr[dma->cmdi-1].l |= __cpu_to_le32(HIFN_D_VALID); 1206 1207 if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) { 1208 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA); 1209 dev->flags |= HIFN_FLAG_CMD_BUSY; 1210 } 1211 1212 hifn_setup_dst_desc(dev, dpage, doff, nbytes); 1213 hifn_setup_res_desc(dev); 1214 1215 return 0; 1216 1217 err_out: 1218 return -EINVAL; 1219 } 1220 1221 static int ablkcipher_walk_init(struct ablkcipher_walk *w, 1222 int num, gfp_t gfp_flags) 1223 { 1224 int i; 1225 1226 num = min(ASYNC_SCATTERLIST_CACHE, num); 1227 sg_init_table(w->cache, num); 1228 1229 w->num = 0; 1230 for (i=0; i<num; ++i) { 1231 struct page *page = alloc_page(gfp_flags); 1232 struct scatterlist *s; 1233 1234 if (!page) 1235 break; 1236 1237 s = &w->cache[i]; 1238 1239 sg_set_page(s, page, PAGE_SIZE, 0); 1240 w->num++; 1241 } 1242 1243 return i; 1244 } 1245 1246 static void ablkcipher_walk_exit(struct ablkcipher_walk *w) 1247 { 1248 int i; 1249 1250 for (i=0; i<w->num; ++i) { 1251 struct scatterlist *s = &w->cache[i]; 1252 1253 __free_page(sg_page(s)); 1254 1255 s->length = 0; 1256 } 1257 1258 w->num = 0; 1259 } 1260 1261 static int ablkcipher_add(void *daddr, unsigned int *drestp, struct scatterlist *src, 1262 unsigned int size, unsigned int *nbytesp) 1263 { 1264 unsigned int copy, drest = *drestp, nbytes = *nbytesp; 1265 int idx = 0; 1266 void *saddr; 1267 1268 if (drest < size || size > nbytes) 1269 return -EINVAL; 1270 1271 while (size) { 1272 copy = min(drest, src->length); 1273 1274 saddr = kmap_atomic(sg_page(src), KM_SOFTIRQ1); 1275 memcpy(daddr, saddr + src->offset, copy); 1276 kunmap_atomic(saddr, KM_SOFTIRQ1); 1277 1278 size -= copy; 1279 drest -= copy; 1280 nbytes -= copy; 1281 daddr += copy; 1282 1283 dprintk("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n", 1284 __func__, copy, size, drest, nbytes); 1285 1286 src++; 1287 idx++; 1288 } 1289 1290 *nbytesp = nbytes; 1291 *drestp = drest; 1292 1293 return idx; 1294 } 1295 1296 static int ablkcipher_walk(struct ablkcipher_request *req, 1297 struct ablkcipher_walk *w) 1298 { 1299 unsigned blocksize = 1300 crypto_ablkcipher_blocksize(crypto_ablkcipher_reqtfm(req)); 1301 unsigned alignmask = 1302 crypto_ablkcipher_alignmask(crypto_ablkcipher_reqtfm(req)); 1303 struct scatterlist *src, *dst, *t; 1304 void *daddr; 1305 unsigned int nbytes = req->nbytes, offset, copy, diff; 1306 int idx, tidx, err; 1307 1308 tidx = idx = 0; 1309 offset = 0; 1310 while (nbytes) { 1311 if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED)) 1312 return -EINVAL; 1313 1314 src = &req->src[idx]; 1315 dst = &req->dst[idx]; 1316 1317 dprintk("\n%s: slen: %u, dlen: %u, soff: %u, doff: %u, offset: %u, " 1318 "blocksize: %u, nbytes: %u.\n", 1319 __func__, src->length, dst->length, src->offset, 1320 dst->offset, offset, blocksize, nbytes); 1321 1322 if (src->length & (blocksize - 1) || 1323 src->offset & (alignmask - 1) || 1324 dst->length & (blocksize - 1) || 1325 dst->offset & (alignmask - 1) || 1326 offset) { 1327 unsigned slen = src->length - offset; 1328 unsigned dlen = PAGE_SIZE; 1329 1330 t = &w->cache[idx]; 1331 1332 daddr = kmap_atomic(sg_page(t), KM_SOFTIRQ0); 1333 err = ablkcipher_add(daddr, &dlen, src, slen, &nbytes); 1334 if (err < 0) 1335 goto err_out_unmap; 1336 1337 idx += err; 1338 1339 copy = slen & ~(blocksize - 1); 1340 diff = slen & (blocksize - 1); 1341 1342 if (dlen < nbytes) { 1343 /* 1344 * Destination page does not have enough space 1345 * to put there additional blocksized chunk, 1346 * so we mark that page as containing only 1347 * blocksize aligned chunks: 1348 * t->length = (slen & ~(blocksize - 1)); 1349 * and increase number of bytes to be processed 1350 * in next chunk: 1351 * nbytes += diff; 1352 */ 1353 nbytes += diff; 1354 1355 /* 1356 * Temporary of course... 1357 * Kick author if you will catch this one. 1358 */ 1359 printk(KERN_ERR "%s: dlen: %u, nbytes: %u," 1360 "slen: %u, offset: %u.\n", 1361 __func__, dlen, nbytes, slen, offset); 1362 printk(KERN_ERR "%s: please contact author to fix this " 1363 "issue, generally you should not catch " 1364 "this path under any condition but who " 1365 "knows how did you use crypto code.\n" 1366 "Thank you.\n", __func__); 1367 BUG(); 1368 } else { 1369 copy += diff + nbytes; 1370 1371 src = &req->src[idx]; 1372 1373 err = ablkcipher_add(daddr + slen, &dlen, src, nbytes, &nbytes); 1374 if (err < 0) 1375 goto err_out_unmap; 1376 1377 idx += err; 1378 } 1379 1380 t->length = copy; 1381 t->offset = offset; 1382 1383 kunmap_atomic(daddr, KM_SOFTIRQ0); 1384 } else { 1385 nbytes -= src->length; 1386 idx++; 1387 } 1388 1389 tidx++; 1390 } 1391 1392 return tidx; 1393 1394 err_out_unmap: 1395 kunmap_atomic(daddr, KM_SOFTIRQ0); 1396 return err; 1397 } 1398 1399 static int hifn_setup_session(struct ablkcipher_request *req) 1400 { 1401 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm); 1402 struct hifn_device *dev = ctx->dev; 1403 struct page *spage, *dpage; 1404 unsigned long soff, doff, flags; 1405 unsigned int nbytes = req->nbytes, idx = 0, len; 1406 int err = -EINVAL, sg_num; 1407 struct scatterlist *src, *dst, *t; 1408 unsigned blocksize = 1409 crypto_ablkcipher_blocksize(crypto_ablkcipher_reqtfm(req)); 1410 unsigned alignmask = 1411 crypto_ablkcipher_alignmask(crypto_ablkcipher_reqtfm(req)); 1412 1413 if (ctx->iv && !ctx->ivsize && ctx->mode != ACRYPTO_MODE_ECB) 1414 goto err_out_exit; 1415 1416 ctx->walk.flags = 0; 1417 1418 while (nbytes) { 1419 src = &req->src[idx]; 1420 dst = &req->dst[idx]; 1421 1422 if (src->length & (blocksize - 1) || 1423 src->offset & (alignmask - 1) || 1424 dst->length & (blocksize - 1) || 1425 dst->offset & (alignmask - 1)) { 1426 ctx->walk.flags |= ASYNC_FLAGS_MISALIGNED; 1427 } 1428 1429 nbytes -= src->length; 1430 idx++; 1431 } 1432 1433 if (ctx->walk.flags & ASYNC_FLAGS_MISALIGNED) { 1434 err = ablkcipher_walk_init(&ctx->walk, idx, GFP_ATOMIC); 1435 if (err < 0) 1436 return err; 1437 } 1438 1439 nbytes = req->nbytes; 1440 idx = 0; 1441 1442 sg_num = ablkcipher_walk(req, &ctx->walk); 1443 1444 atomic_set(&ctx->sg_num, sg_num); 1445 1446 spin_lock_irqsave(&dev->lock, flags); 1447 if (dev->started + sg_num > HIFN_QUEUE_LENGTH) { 1448 err = -EAGAIN; 1449 goto err_out; 1450 } 1451 1452 dev->snum++; 1453 dev->started += sg_num; 1454 1455 while (nbytes) { 1456 src = &req->src[idx]; 1457 dst = &req->dst[idx]; 1458 t = &ctx->walk.cache[idx]; 1459 1460 if (t->length) { 1461 spage = dpage = sg_page(t); 1462 soff = doff = 0; 1463 len = t->length; 1464 } else { 1465 spage = sg_page(src); 1466 soff = src->offset; 1467 1468 dpage = sg_page(dst); 1469 doff = dst->offset; 1470 1471 len = dst->length; 1472 } 1473 1474 idx++; 1475 1476 err = hifn_setup_dma(dev, spage, soff, dpage, doff, nbytes, 1477 req, ctx); 1478 if (err) 1479 goto err_out; 1480 1481 nbytes -= len; 1482 } 1483 1484 dev->active = HIFN_DEFAULT_ACTIVE_NUM; 1485 spin_unlock_irqrestore(&dev->lock, flags); 1486 1487 return 0; 1488 1489 err_out: 1490 spin_unlock_irqrestore(&dev->lock, flags); 1491 err_out_exit: 1492 if (err && printk_ratelimit()) 1493 dprintk("%s: iv: %p [%d], key: %p [%d], mode: %u, op: %u, " 1494 "type: %u, err: %d.\n", 1495 dev->name, ctx->iv, ctx->ivsize, 1496 ctx->key, ctx->keysize, 1497 ctx->mode, ctx->op, ctx->type, err); 1498 1499 return err; 1500 } 1501 1502 static int hifn_test(struct hifn_device *dev, int encdec, u8 snum) 1503 { 1504 int n, err; 1505 u8 src[16]; 1506 struct hifn_context ctx; 1507 u8 fips_aes_ecb_from_zero[16] = { 1508 0x66, 0xE9, 0x4B, 0xD4, 1509 0xEF, 0x8A, 0x2C, 0x3B, 1510 0x88, 0x4C, 0xFA, 0x59, 1511 0xCA, 0x34, 0x2B, 0x2E}; 1512 1513 memset(src, 0, sizeof(src)); 1514 memset(ctx.key, 0, sizeof(ctx.key)); 1515 1516 ctx.dev = dev; 1517 ctx.keysize = 16; 1518 ctx.ivsize = 0; 1519 ctx.iv = NULL; 1520 ctx.op = (encdec)?ACRYPTO_OP_ENCRYPT:ACRYPTO_OP_DECRYPT; 1521 ctx.mode = ACRYPTO_MODE_ECB; 1522 ctx.type = ACRYPTO_TYPE_AES_128; 1523 atomic_set(&ctx.sg_num, 1); 1524 1525 err = hifn_setup_dma(dev, 1526 virt_to_page(src), offset_in_page(src), 1527 virt_to_page(src), offset_in_page(src), 1528 sizeof(src), NULL, &ctx); 1529 if (err) 1530 goto err_out; 1531 1532 msleep(200); 1533 1534 dprintk("%s: decoded: ", dev->name); 1535 for (n=0; n<sizeof(src); ++n) 1536 dprintk("%02x ", src[n]); 1537 dprintk("\n"); 1538 dprintk("%s: FIPS : ", dev->name); 1539 for (n=0; n<sizeof(fips_aes_ecb_from_zero); ++n) 1540 dprintk("%02x ", fips_aes_ecb_from_zero[n]); 1541 dprintk("\n"); 1542 1543 if (!memcmp(src, fips_aes_ecb_from_zero, sizeof(fips_aes_ecb_from_zero))) { 1544 printk(KERN_INFO "%s: AES 128 ECB test has been successfully " 1545 "passed.\n", dev->name); 1546 return 0; 1547 } 1548 1549 err_out: 1550 printk(KERN_INFO "%s: AES 128 ECB test has been failed.\n", dev->name); 1551 return -1; 1552 } 1553 1554 static int hifn_start_device(struct hifn_device *dev) 1555 { 1556 int err; 1557 1558 hifn_reset_dma(dev, 1); 1559 1560 err = hifn_enable_crypto(dev); 1561 if (err) 1562 return err; 1563 1564 hifn_reset_puc(dev); 1565 1566 hifn_init_dma(dev); 1567 1568 hifn_init_registers(dev); 1569 1570 hifn_init_pubrng(dev); 1571 1572 return 0; 1573 } 1574 1575 static int ablkcipher_get(void *saddr, unsigned int *srestp, unsigned int offset, 1576 struct scatterlist *dst, unsigned int size, unsigned int *nbytesp) 1577 { 1578 unsigned int srest = *srestp, nbytes = *nbytesp, copy; 1579 void *daddr; 1580 int idx = 0; 1581 1582 if (srest < size || size > nbytes) 1583 return -EINVAL; 1584 1585 while (size) { 1586 1587 copy = min(dst->length, srest); 1588 1589 daddr = kmap_atomic(sg_page(dst), KM_IRQ0); 1590 memcpy(daddr + dst->offset + offset, saddr, copy); 1591 kunmap_atomic(daddr, KM_IRQ0); 1592 1593 nbytes -= copy; 1594 size -= copy; 1595 srest -= copy; 1596 saddr += copy; 1597 offset = 0; 1598 1599 dprintk("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n", 1600 __func__, copy, size, srest, nbytes); 1601 1602 dst++; 1603 idx++; 1604 } 1605 1606 *nbytesp = nbytes; 1607 *srestp = srest; 1608 1609 return idx; 1610 } 1611 1612 static void hifn_process_ready(struct ablkcipher_request *req, int error) 1613 { 1614 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm); 1615 struct hifn_device *dev; 1616 1617 dprintk("%s: req: %p, ctx: %p.\n", __func__, req, ctx); 1618 1619 dev = ctx->dev; 1620 dprintk("%s: req: %p, started: %d, sg_num: %d.\n", 1621 __func__, req, dev->started, atomic_read(&ctx->sg_num)); 1622 1623 if (--dev->started < 0) 1624 BUG(); 1625 1626 if (atomic_dec_and_test(&ctx->sg_num)) { 1627 unsigned int nbytes = req->nbytes; 1628 int idx = 0, err; 1629 struct scatterlist *dst, *t; 1630 void *saddr; 1631 1632 if (ctx->walk.flags & ASYNC_FLAGS_MISALIGNED) { 1633 while (nbytes) { 1634 t = &ctx->walk.cache[idx]; 1635 dst = &req->dst[idx]; 1636 1637 dprintk("\n%s: sg_page(t): %p, t->length: %u, " 1638 "sg_page(dst): %p, dst->length: %u, " 1639 "nbytes: %u.\n", 1640 __func__, sg_page(t), t->length, 1641 sg_page(dst), dst->length, nbytes); 1642 1643 if (!t->length) { 1644 nbytes -= dst->length; 1645 idx++; 1646 continue; 1647 } 1648 1649 saddr = kmap_atomic(sg_page(t), KM_IRQ1); 1650 1651 err = ablkcipher_get(saddr, &t->length, t->offset, 1652 dst, nbytes, &nbytes); 1653 if (err < 0) { 1654 kunmap_atomic(saddr, KM_IRQ1); 1655 break; 1656 } 1657 1658 idx += err; 1659 kunmap_atomic(saddr, KM_IRQ1); 1660 } 1661 1662 ablkcipher_walk_exit(&ctx->walk); 1663 } 1664 1665 req->base.complete(&req->base, error); 1666 } 1667 } 1668 1669 static void hifn_check_for_completion(struct hifn_device *dev, int error) 1670 { 1671 int i; 1672 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1673 1674 for (i=0; i<HIFN_D_RES_RSIZE; ++i) { 1675 struct hifn_desc *d = &dma->resr[i]; 1676 1677 if (!(d->l & __cpu_to_le32(HIFN_D_VALID)) && dev->sa[i]) { 1678 dev->success++; 1679 dev->reset = 0; 1680 hifn_process_ready(dev->sa[i], error); 1681 dev->sa[i] = NULL; 1682 } 1683 1684 if (d->l & __cpu_to_le32(HIFN_D_DESTOVER | HIFN_D_OVER)) 1685 if (printk_ratelimit()) 1686 printk("%s: overflow detected [d: %u, o: %u] " 1687 "at %d resr: l: %08x, p: %08x.\n", 1688 dev->name, 1689 !!(d->l & __cpu_to_le32(HIFN_D_DESTOVER)), 1690 !!(d->l & __cpu_to_le32(HIFN_D_OVER)), 1691 i, d->l, d->p); 1692 } 1693 } 1694 1695 static void hifn_clear_rings(struct hifn_device *dev) 1696 { 1697 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1698 int i, u; 1699 1700 dprintk("%s: ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, " 1701 "k: %d.%d.%d.%d.\n", 1702 dev->name, 1703 dma->cmdi, dma->srci, dma->dsti, dma->resi, 1704 dma->cmdu, dma->srcu, dma->dstu, dma->resu, 1705 dma->cmdk, dma->srck, dma->dstk, dma->resk); 1706 1707 i = dma->resk; u = dma->resu; 1708 while (u != 0) { 1709 if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID)) 1710 break; 1711 1712 if (i != HIFN_D_RES_RSIZE) 1713 u--; 1714 1715 if (++i == (HIFN_D_RES_RSIZE + 1)) 1716 i = 0; 1717 } 1718 dma->resk = i; dma->resu = u; 1719 1720 i = dma->srck; u = dma->srcu; 1721 while (u != 0) { 1722 if (i == HIFN_D_SRC_RSIZE) 1723 i = 0; 1724 if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID)) 1725 break; 1726 i++, u--; 1727 } 1728 dma->srck = i; dma->srcu = u; 1729 1730 i = dma->cmdk; u = dma->cmdu; 1731 while (u != 0) { 1732 if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID)) 1733 break; 1734 if (i != HIFN_D_CMD_RSIZE) 1735 u--; 1736 if (++i == (HIFN_D_CMD_RSIZE + 1)) 1737 i = 0; 1738 } 1739 dma->cmdk = i; dma->cmdu = u; 1740 1741 i = dma->dstk; u = dma->dstu; 1742 while (u != 0) { 1743 if (i == HIFN_D_DST_RSIZE) 1744 i = 0; 1745 if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID)) 1746 break; 1747 i++, u--; 1748 } 1749 dma->dstk = i; dma->dstu = u; 1750 1751 dprintk("%s: ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, " 1752 "k: %d.%d.%d.%d.\n", 1753 dev->name, 1754 dma->cmdi, dma->srci, dma->dsti, dma->resi, 1755 dma->cmdu, dma->srcu, dma->dstu, dma->resu, 1756 dma->cmdk, dma->srck, dma->dstk, dma->resk); 1757 } 1758 1759 static void hifn_work(struct work_struct *work) 1760 { 1761 struct delayed_work *dw = container_of(work, struct delayed_work, work); 1762 struct hifn_device *dev = container_of(dw, struct hifn_device, work); 1763 unsigned long flags; 1764 int reset = 0; 1765 u32 r = 0; 1766 1767 spin_lock_irqsave(&dev->lock, flags); 1768 if (dev->active == 0) { 1769 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1770 1771 if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) { 1772 dev->flags &= ~HIFN_FLAG_CMD_BUSY; 1773 r |= HIFN_DMACSR_C_CTRL_DIS; 1774 } 1775 if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) { 1776 dev->flags &= ~HIFN_FLAG_SRC_BUSY; 1777 r |= HIFN_DMACSR_S_CTRL_DIS; 1778 } 1779 if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) { 1780 dev->flags &= ~HIFN_FLAG_DST_BUSY; 1781 r |= HIFN_DMACSR_D_CTRL_DIS; 1782 } 1783 if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) { 1784 dev->flags &= ~HIFN_FLAG_RES_BUSY; 1785 r |= HIFN_DMACSR_R_CTRL_DIS; 1786 } 1787 if (r) 1788 hifn_write_1(dev, HIFN_1_DMA_CSR, r); 1789 } else 1790 dev->active--; 1791 1792 if (dev->prev_success == dev->success && dev->started) 1793 reset = 1; 1794 dev->prev_success = dev->success; 1795 spin_unlock_irqrestore(&dev->lock, flags); 1796 1797 if (reset) { 1798 dprintk("%s: r: %08x, active: %d, started: %d, " 1799 "success: %lu: reset: %d.\n", 1800 dev->name, r, dev->active, dev->started, 1801 dev->success, reset); 1802 1803 if (++dev->reset >= 5) { 1804 dprintk("%s: really hard reset.\n", dev->name); 1805 hifn_reset_dma(dev, 1); 1806 hifn_stop_device(dev); 1807 hifn_start_device(dev); 1808 dev->reset = 0; 1809 } 1810 1811 spin_lock_irqsave(&dev->lock, flags); 1812 hifn_check_for_completion(dev, -EBUSY); 1813 hifn_clear_rings(dev); 1814 dev->started = 0; 1815 spin_unlock_irqrestore(&dev->lock, flags); 1816 } 1817 1818 schedule_delayed_work(&dev->work, HZ); 1819 } 1820 1821 static irqreturn_t hifn_interrupt(int irq, void *data) 1822 { 1823 struct hifn_device *dev = (struct hifn_device *)data; 1824 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1825 u32 dmacsr, restart; 1826 1827 dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR); 1828 1829 dprintk("%s: 1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], " 1830 "i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n", 1831 dev->name, dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi, 1832 dma->cmdu, dma->srcu, dma->dstu, dma->resu, 1833 dma->cmdi, dma->srci, dma->dsti, dma->resi); 1834 1835 if ((dmacsr & dev->dmareg) == 0) 1836 return IRQ_NONE; 1837 1838 hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg); 1839 1840 if (dmacsr & HIFN_DMACSR_ENGINE) 1841 hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR)); 1842 if (dmacsr & HIFN_DMACSR_PUBDONE) 1843 hifn_write_1(dev, HIFN_1_PUB_STATUS, 1844 hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE); 1845 1846 restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER); 1847 if (restart) { 1848 u32 puisr = hifn_read_0(dev, HIFN_0_PUISR); 1849 1850 if (printk_ratelimit()) 1851 printk("%s: overflow: r: %d, d: %d, puisr: %08x, d: %u.\n", 1852 dev->name, !!(dmacsr & HIFN_DMACSR_R_OVER), 1853 !!(dmacsr & HIFN_DMACSR_D_OVER), 1854 puisr, !!(puisr & HIFN_PUISR_DSTOVER)); 1855 if (!!(puisr & HIFN_PUISR_DSTOVER)) 1856 hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER); 1857 hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER | 1858 HIFN_DMACSR_D_OVER)); 1859 } 1860 1861 restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT | 1862 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT); 1863 if (restart) { 1864 if (printk_ratelimit()) 1865 printk("%s: abort: c: %d, s: %d, d: %d, r: %d.\n", 1866 dev->name, !!(dmacsr & HIFN_DMACSR_C_ABORT), 1867 !!(dmacsr & HIFN_DMACSR_S_ABORT), 1868 !!(dmacsr & HIFN_DMACSR_D_ABORT), 1869 !!(dmacsr & HIFN_DMACSR_R_ABORT)); 1870 hifn_reset_dma(dev, 1); 1871 hifn_init_dma(dev); 1872 hifn_init_registers(dev); 1873 } 1874 1875 if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) { 1876 dprintk("%s: wait on command.\n", dev->name); 1877 dev->dmareg &= ~(HIFN_DMAIER_C_WAIT); 1878 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg); 1879 } 1880 1881 hifn_check_for_completion(dev, 0); 1882 hifn_clear_rings(dev); 1883 1884 return IRQ_HANDLED; 1885 } 1886 1887 static void hifn_flush(struct hifn_device *dev) 1888 { 1889 unsigned long flags; 1890 struct crypto_async_request *async_req; 1891 struct hifn_context *ctx; 1892 struct ablkcipher_request *req; 1893 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1894 int i; 1895 1896 spin_lock_irqsave(&dev->lock, flags); 1897 for (i=0; i<HIFN_D_RES_RSIZE; ++i) { 1898 struct hifn_desc *d = &dma->resr[i]; 1899 1900 if (dev->sa[i]) { 1901 hifn_process_ready(dev->sa[i], 1902 (d->l & __cpu_to_le32(HIFN_D_VALID))?-ENODEV:0); 1903 } 1904 } 1905 1906 while ((async_req = crypto_dequeue_request(&dev->queue))) { 1907 ctx = crypto_tfm_ctx(async_req->tfm); 1908 req = container_of(async_req, struct ablkcipher_request, base); 1909 1910 hifn_process_ready(req, -ENODEV); 1911 } 1912 spin_unlock_irqrestore(&dev->lock, flags); 1913 } 1914 1915 static int hifn_setkey(struct crypto_ablkcipher *cipher, const u8 *key, 1916 unsigned int len) 1917 { 1918 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); 1919 struct hifn_context *ctx = crypto_tfm_ctx(tfm); 1920 struct hifn_device *dev = ctx->dev; 1921 1922 if (len > HIFN_MAX_CRYPT_KEY_LENGTH) { 1923 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); 1924 return -1; 1925 } 1926 1927 dev->flags &= ~HIFN_FLAG_OLD_KEY; 1928 1929 memcpy(ctx->key, key, len); 1930 ctx->keysize = len; 1931 1932 return 0; 1933 } 1934 1935 static int hifn_handle_req(struct ablkcipher_request *req) 1936 { 1937 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm); 1938 struct hifn_device *dev = ctx->dev; 1939 int err = -EAGAIN; 1940 1941 if (dev->started + DIV_ROUND_UP(req->nbytes, PAGE_SIZE) <= HIFN_QUEUE_LENGTH) 1942 err = hifn_setup_session(req); 1943 1944 if (err == -EAGAIN) { 1945 unsigned long flags; 1946 1947 spin_lock_irqsave(&dev->lock, flags); 1948 err = ablkcipher_enqueue_request(&dev->queue, req); 1949 spin_unlock_irqrestore(&dev->lock, flags); 1950 } 1951 1952 return err; 1953 } 1954 1955 static int hifn_setup_crypto_req(struct ablkcipher_request *req, u8 op, 1956 u8 type, u8 mode) 1957 { 1958 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm); 1959 unsigned ivsize; 1960 1961 ivsize = crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req)); 1962 1963 if (req->info && mode != ACRYPTO_MODE_ECB) { 1964 if (type == ACRYPTO_TYPE_AES_128) 1965 ivsize = HIFN_AES_IV_LENGTH; 1966 else if (type == ACRYPTO_TYPE_DES) 1967 ivsize = HIFN_DES_KEY_LENGTH; 1968 else if (type == ACRYPTO_TYPE_3DES) 1969 ivsize = HIFN_3DES_KEY_LENGTH; 1970 } 1971 1972 if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) { 1973 if (ctx->keysize == 24) 1974 type = ACRYPTO_TYPE_AES_192; 1975 else if (ctx->keysize == 32) 1976 type = ACRYPTO_TYPE_AES_256; 1977 } 1978 1979 ctx->op = op; 1980 ctx->mode = mode; 1981 ctx->type = type; 1982 ctx->iv = req->info; 1983 ctx->ivsize = ivsize; 1984 1985 /* 1986 * HEAVY TODO: needs to kick Herbert XU to write documentation. 1987 * HEAVY TODO: needs to kick Herbert XU to write documentation. 1988 * HEAVY TODO: needs to kick Herbert XU to write documentation. 1989 */ 1990 1991 return hifn_handle_req(req); 1992 } 1993 1994 static int hifn_process_queue(struct hifn_device *dev) 1995 { 1996 struct crypto_async_request *async_req; 1997 struct hifn_context *ctx; 1998 struct ablkcipher_request *req; 1999 unsigned long flags; 2000 int err = 0; 2001 2002 while (dev->started < HIFN_QUEUE_LENGTH) { 2003 spin_lock_irqsave(&dev->lock, flags); 2004 async_req = crypto_dequeue_request(&dev->queue); 2005 spin_unlock_irqrestore(&dev->lock, flags); 2006 2007 if (!async_req) 2008 break; 2009 2010 ctx = crypto_tfm_ctx(async_req->tfm); 2011 req = container_of(async_req, struct ablkcipher_request, base); 2012 2013 err = hifn_handle_req(req); 2014 if (err) 2015 break; 2016 } 2017 2018 return err; 2019 } 2020 2021 static int hifn_setup_crypto(struct ablkcipher_request *req, u8 op, 2022 u8 type, u8 mode) 2023 { 2024 int err; 2025 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm); 2026 struct hifn_device *dev = ctx->dev; 2027 2028 err = hifn_setup_crypto_req(req, op, type, mode); 2029 if (err) 2030 return err; 2031 2032 if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen) 2033 err = hifn_process_queue(dev); 2034 2035 return err; 2036 } 2037 2038 /* 2039 * AES ecryption functions. 2040 */ 2041 static inline int hifn_encrypt_aes_ecb(struct ablkcipher_request *req) 2042 { 2043 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2044 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB); 2045 } 2046 static inline int hifn_encrypt_aes_cbc(struct ablkcipher_request *req) 2047 { 2048 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2049 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC); 2050 } 2051 static inline int hifn_encrypt_aes_cfb(struct ablkcipher_request *req) 2052 { 2053 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2054 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB); 2055 } 2056 static inline int hifn_encrypt_aes_ofb(struct ablkcipher_request *req) 2057 { 2058 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2059 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB); 2060 } 2061 2062 /* 2063 * AES decryption functions. 2064 */ 2065 static inline int hifn_decrypt_aes_ecb(struct ablkcipher_request *req) 2066 { 2067 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2068 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB); 2069 } 2070 static inline int hifn_decrypt_aes_cbc(struct ablkcipher_request *req) 2071 { 2072 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2073 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC); 2074 } 2075 static inline int hifn_decrypt_aes_cfb(struct ablkcipher_request *req) 2076 { 2077 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2078 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB); 2079 } 2080 static inline int hifn_decrypt_aes_ofb(struct ablkcipher_request *req) 2081 { 2082 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2083 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB); 2084 } 2085 2086 /* 2087 * DES ecryption functions. 2088 */ 2089 static inline int hifn_encrypt_des_ecb(struct ablkcipher_request *req) 2090 { 2091 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2092 ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB); 2093 } 2094 static inline int hifn_encrypt_des_cbc(struct ablkcipher_request *req) 2095 { 2096 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2097 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC); 2098 } 2099 static inline int hifn_encrypt_des_cfb(struct ablkcipher_request *req) 2100 { 2101 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2102 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB); 2103 } 2104 static inline int hifn_encrypt_des_ofb(struct ablkcipher_request *req) 2105 { 2106 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2107 ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB); 2108 } 2109 2110 /* 2111 * DES decryption functions. 2112 */ 2113 static inline int hifn_decrypt_des_ecb(struct ablkcipher_request *req) 2114 { 2115 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2116 ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB); 2117 } 2118 static inline int hifn_decrypt_des_cbc(struct ablkcipher_request *req) 2119 { 2120 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2121 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC); 2122 } 2123 static inline int hifn_decrypt_des_cfb(struct ablkcipher_request *req) 2124 { 2125 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2126 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB); 2127 } 2128 static inline int hifn_decrypt_des_ofb(struct ablkcipher_request *req) 2129 { 2130 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2131 ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB); 2132 } 2133 2134 /* 2135 * 3DES ecryption functions. 2136 */ 2137 static inline int hifn_encrypt_3des_ecb(struct ablkcipher_request *req) 2138 { 2139 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2140 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB); 2141 } 2142 static inline int hifn_encrypt_3des_cbc(struct ablkcipher_request *req) 2143 { 2144 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2145 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC); 2146 } 2147 static inline int hifn_encrypt_3des_cfb(struct ablkcipher_request *req) 2148 { 2149 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2150 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB); 2151 } 2152 static inline int hifn_encrypt_3des_ofb(struct ablkcipher_request *req) 2153 { 2154 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2155 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB); 2156 } 2157 2158 /* 2159 * 3DES decryption functions. 2160 */ 2161 static inline int hifn_decrypt_3des_ecb(struct ablkcipher_request *req) 2162 { 2163 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2164 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB); 2165 } 2166 static inline int hifn_decrypt_3des_cbc(struct ablkcipher_request *req) 2167 { 2168 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2169 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC); 2170 } 2171 static inline int hifn_decrypt_3des_cfb(struct ablkcipher_request *req) 2172 { 2173 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2174 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB); 2175 } 2176 static inline int hifn_decrypt_3des_ofb(struct ablkcipher_request *req) 2177 { 2178 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2179 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB); 2180 } 2181 2182 struct hifn_alg_template 2183 { 2184 char name[CRYPTO_MAX_ALG_NAME]; 2185 char drv_name[CRYPTO_MAX_ALG_NAME]; 2186 unsigned int bsize; 2187 struct ablkcipher_alg ablkcipher; 2188 }; 2189 2190 static struct hifn_alg_template hifn_alg_templates[] = { 2191 /* 2192 * 3DES ECB, CBC, CFB and OFB modes. 2193 */ 2194 { 2195 .name = "cfb(des3_ede)", .drv_name = "hifn-3des", .bsize = 8, 2196 .ablkcipher = { 2197 .min_keysize = HIFN_3DES_KEY_LENGTH, 2198 .max_keysize = HIFN_3DES_KEY_LENGTH, 2199 .setkey = hifn_setkey, 2200 .encrypt = hifn_encrypt_3des_cfb, 2201 .decrypt = hifn_decrypt_3des_cfb, 2202 }, 2203 }, 2204 { 2205 .name = "ofb(des3_ede)", .drv_name = "hifn-3des", .bsize = 8, 2206 .ablkcipher = { 2207 .min_keysize = HIFN_3DES_KEY_LENGTH, 2208 .max_keysize = HIFN_3DES_KEY_LENGTH, 2209 .setkey = hifn_setkey, 2210 .encrypt = hifn_encrypt_3des_ofb, 2211 .decrypt = hifn_decrypt_3des_ofb, 2212 }, 2213 }, 2214 { 2215 .name = "cbc(des3_ede)", .drv_name = "hifn-3des", .bsize = 8, 2216 .ablkcipher = { 2217 .min_keysize = HIFN_3DES_KEY_LENGTH, 2218 .max_keysize = HIFN_3DES_KEY_LENGTH, 2219 .setkey = hifn_setkey, 2220 .encrypt = hifn_encrypt_3des_cbc, 2221 .decrypt = hifn_decrypt_3des_cbc, 2222 }, 2223 }, 2224 { 2225 .name = "ecb(des3_ede)", .drv_name = "hifn-3des", .bsize = 8, 2226 .ablkcipher = { 2227 .min_keysize = HIFN_3DES_KEY_LENGTH, 2228 .max_keysize = HIFN_3DES_KEY_LENGTH, 2229 .setkey = hifn_setkey, 2230 .encrypt = hifn_encrypt_3des_ecb, 2231 .decrypt = hifn_decrypt_3des_ecb, 2232 }, 2233 }, 2234 2235 /* 2236 * DES ECB, CBC, CFB and OFB modes. 2237 */ 2238 { 2239 .name = "cfb(des)", .drv_name = "hifn-des", .bsize = 8, 2240 .ablkcipher = { 2241 .min_keysize = HIFN_DES_KEY_LENGTH, 2242 .max_keysize = HIFN_DES_KEY_LENGTH, 2243 .setkey = hifn_setkey, 2244 .encrypt = hifn_encrypt_des_cfb, 2245 .decrypt = hifn_decrypt_des_cfb, 2246 }, 2247 }, 2248 { 2249 .name = "ofb(des)", .drv_name = "hifn-des", .bsize = 8, 2250 .ablkcipher = { 2251 .min_keysize = HIFN_DES_KEY_LENGTH, 2252 .max_keysize = HIFN_DES_KEY_LENGTH, 2253 .setkey = hifn_setkey, 2254 .encrypt = hifn_encrypt_des_ofb, 2255 .decrypt = hifn_decrypt_des_ofb, 2256 }, 2257 }, 2258 { 2259 .name = "cbc(des)", .drv_name = "hifn-des", .bsize = 8, 2260 .ablkcipher = { 2261 .min_keysize = HIFN_DES_KEY_LENGTH, 2262 .max_keysize = HIFN_DES_KEY_LENGTH, 2263 .setkey = hifn_setkey, 2264 .encrypt = hifn_encrypt_des_cbc, 2265 .decrypt = hifn_decrypt_des_cbc, 2266 }, 2267 }, 2268 { 2269 .name = "ecb(des)", .drv_name = "hifn-des", .bsize = 8, 2270 .ablkcipher = { 2271 .min_keysize = HIFN_DES_KEY_LENGTH, 2272 .max_keysize = HIFN_DES_KEY_LENGTH, 2273 .setkey = hifn_setkey, 2274 .encrypt = hifn_encrypt_des_ecb, 2275 .decrypt = hifn_decrypt_des_ecb, 2276 }, 2277 }, 2278 2279 /* 2280 * AES ECB, CBC, CFB and OFB modes. 2281 */ 2282 { 2283 .name = "ecb(aes)", .drv_name = "hifn-aes", .bsize = 16, 2284 .ablkcipher = { 2285 .min_keysize = AES_MIN_KEY_SIZE, 2286 .max_keysize = AES_MAX_KEY_SIZE, 2287 .setkey = hifn_setkey, 2288 .encrypt = hifn_encrypt_aes_ecb, 2289 .decrypt = hifn_decrypt_aes_ecb, 2290 }, 2291 }, 2292 { 2293 .name = "cbc(aes)", .drv_name = "hifn-aes", .bsize = 16, 2294 .ablkcipher = { 2295 .min_keysize = AES_MIN_KEY_SIZE, 2296 .max_keysize = AES_MAX_KEY_SIZE, 2297 .setkey = hifn_setkey, 2298 .encrypt = hifn_encrypt_aes_cbc, 2299 .decrypt = hifn_decrypt_aes_cbc, 2300 }, 2301 }, 2302 { 2303 .name = "cfb(aes)", .drv_name = "hifn-aes", .bsize = 16, 2304 .ablkcipher = { 2305 .min_keysize = AES_MIN_KEY_SIZE, 2306 .max_keysize = AES_MAX_KEY_SIZE, 2307 .setkey = hifn_setkey, 2308 .encrypt = hifn_encrypt_aes_cfb, 2309 .decrypt = hifn_decrypt_aes_cfb, 2310 }, 2311 }, 2312 { 2313 .name = "ofb(aes)", .drv_name = "hifn-aes", .bsize = 16, 2314 .ablkcipher = { 2315 .min_keysize = AES_MIN_KEY_SIZE, 2316 .max_keysize = AES_MAX_KEY_SIZE, 2317 .setkey = hifn_setkey, 2318 .encrypt = hifn_encrypt_aes_ofb, 2319 .decrypt = hifn_decrypt_aes_ofb, 2320 }, 2321 }, 2322 }; 2323 2324 static int hifn_cra_init(struct crypto_tfm *tfm) 2325 { 2326 struct crypto_alg *alg = tfm->__crt_alg; 2327 struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg); 2328 struct hifn_context *ctx = crypto_tfm_ctx(tfm); 2329 2330 ctx->dev = ha->dev; 2331 2332 return 0; 2333 } 2334 2335 static int hifn_alg_alloc(struct hifn_device *dev, struct hifn_alg_template *t) 2336 { 2337 struct hifn_crypto_alg *alg; 2338 int err; 2339 2340 alg = kzalloc(sizeof(struct hifn_crypto_alg), GFP_KERNEL); 2341 if (!alg) 2342 return -ENOMEM; 2343 2344 snprintf(alg->alg.cra_name, CRYPTO_MAX_ALG_NAME, "%s", t->name); 2345 snprintf(alg->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s", t->drv_name); 2346 2347 alg->alg.cra_priority = 300; 2348 alg->alg.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER | CRYPTO_ALG_ASYNC; 2349 alg->alg.cra_blocksize = t->bsize; 2350 alg->alg.cra_ctxsize = sizeof(struct hifn_context); 2351 alg->alg.cra_alignmask = 15; 2352 if (t->bsize == 8) 2353 alg->alg.cra_alignmask = 3; 2354 alg->alg.cra_type = &crypto_ablkcipher_type; 2355 alg->alg.cra_module = THIS_MODULE; 2356 alg->alg.cra_u.ablkcipher = t->ablkcipher; 2357 alg->alg.cra_init = hifn_cra_init; 2358 2359 alg->dev = dev; 2360 2361 list_add_tail(&alg->entry, &dev->alg_list); 2362 2363 err = crypto_register_alg(&alg->alg); 2364 if (err) { 2365 list_del(&alg->entry); 2366 kfree(alg); 2367 } 2368 2369 return err; 2370 } 2371 2372 static void hifn_unregister_alg(struct hifn_device *dev) 2373 { 2374 struct hifn_crypto_alg *a, *n; 2375 2376 list_for_each_entry_safe(a, n, &dev->alg_list, entry) { 2377 list_del(&a->entry); 2378 crypto_unregister_alg(&a->alg); 2379 kfree(a); 2380 } 2381 } 2382 2383 static int hifn_register_alg(struct hifn_device *dev) 2384 { 2385 int i, err; 2386 2387 for (i=0; i<ARRAY_SIZE(hifn_alg_templates); ++i) { 2388 err = hifn_alg_alloc(dev, &hifn_alg_templates[i]); 2389 if (err) 2390 goto err_out_exit; 2391 } 2392 2393 return 0; 2394 2395 err_out_exit: 2396 hifn_unregister_alg(dev); 2397 return err; 2398 } 2399 2400 static int hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id) 2401 { 2402 int err, i; 2403 struct hifn_device *dev; 2404 char name[8]; 2405 2406 err = pci_enable_device(pdev); 2407 if (err) 2408 return err; 2409 pci_set_master(pdev); 2410 2411 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK); 2412 if (err) 2413 goto err_out_disable_pci_device; 2414 2415 snprintf(name, sizeof(name), "hifn%d", 2416 atomic_inc_return(&hifn_dev_number)-1); 2417 2418 err = pci_request_regions(pdev, name); 2419 if (err) 2420 goto err_out_disable_pci_device; 2421 2422 if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE || 2423 pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE || 2424 pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) { 2425 dprintk("%s: Broken hardware - I/O regions are too small.\n", 2426 pci_name(pdev)); 2427 err = -ENODEV; 2428 goto err_out_free_regions; 2429 } 2430 2431 dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg), 2432 GFP_KERNEL); 2433 if (!dev) { 2434 err = -ENOMEM; 2435 goto err_out_free_regions; 2436 } 2437 2438 INIT_LIST_HEAD(&dev->alg_list); 2439 2440 snprintf(dev->name, sizeof(dev->name), "%s", name); 2441 spin_lock_init(&dev->lock); 2442 2443 for (i=0; i<3; ++i) { 2444 unsigned long addr, size; 2445 2446 addr = pci_resource_start(pdev, i); 2447 size = pci_resource_len(pdev, i); 2448 2449 dev->bar[i] = ioremap_nocache(addr, size); 2450 if (!dev->bar[i]) 2451 goto err_out_unmap_bars; 2452 } 2453 2454 dev->result_mem = __get_free_pages(GFP_KERNEL, HIFN_MAX_RESULT_ORDER); 2455 if (!dev->result_mem) { 2456 dprintk("Failed to allocate %d pages for result_mem.\n", 2457 HIFN_MAX_RESULT_ORDER); 2458 goto err_out_unmap_bars; 2459 } 2460 memset((void *)dev->result_mem, 0, PAGE_SIZE*(1<<HIFN_MAX_RESULT_ORDER)); 2461 2462 dev->dst = pci_map_single(pdev, (void *)dev->result_mem, 2463 PAGE_SIZE << HIFN_MAX_RESULT_ORDER, PCI_DMA_FROMDEVICE); 2464 2465 dev->desc_virt = pci_alloc_consistent(pdev, sizeof(struct hifn_dma), 2466 &dev->desc_dma); 2467 if (!dev->desc_virt) { 2468 dprintk("Failed to allocate descriptor rings.\n"); 2469 goto err_out_free_result_pages; 2470 } 2471 memset(dev->desc_virt, 0, sizeof(struct hifn_dma)); 2472 2473 dev->pdev = pdev; 2474 dev->irq = pdev->irq; 2475 2476 for (i=0; i<HIFN_D_RES_RSIZE; ++i) 2477 dev->sa[i] = NULL; 2478 2479 pci_set_drvdata(pdev, dev); 2480 2481 crypto_init_queue(&dev->queue, 1); 2482 2483 err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev); 2484 if (err) { 2485 dprintk("Failed to request IRQ%d: err: %d.\n", dev->irq, err); 2486 dev->irq = 0; 2487 goto err_out_free_desc; 2488 } 2489 2490 err = hifn_start_device(dev); 2491 if (err) 2492 goto err_out_free_irq; 2493 2494 err = hifn_test(dev, 1, 0); 2495 if (err) 2496 goto err_out_stop_device; 2497 2498 err = hifn_register_alg(dev); 2499 if (err) 2500 goto err_out_stop_device; 2501 2502 INIT_DELAYED_WORK(&dev->work, hifn_work); 2503 schedule_delayed_work(&dev->work, HZ); 2504 2505 dprintk("HIFN crypto accelerator card at %s has been " 2506 "successfully registered as %s.\n", 2507 pci_name(pdev), dev->name); 2508 2509 return 0; 2510 2511 err_out_stop_device: 2512 hifn_reset_dma(dev, 1); 2513 hifn_stop_device(dev); 2514 err_out_free_irq: 2515 free_irq(dev->irq, dev->name); 2516 err_out_free_desc: 2517 pci_free_consistent(pdev, sizeof(struct hifn_dma), 2518 dev->desc_virt, dev->desc_dma); 2519 2520 err_out_free_result_pages: 2521 pci_unmap_single(pdev, dev->dst, PAGE_SIZE << HIFN_MAX_RESULT_ORDER, 2522 PCI_DMA_FROMDEVICE); 2523 free_pages(dev->result_mem, HIFN_MAX_RESULT_ORDER); 2524 2525 err_out_unmap_bars: 2526 for (i=0; i<3; ++i) 2527 if (dev->bar[i]) 2528 iounmap(dev->bar[i]); 2529 2530 err_out_free_regions: 2531 pci_release_regions(pdev); 2532 2533 err_out_disable_pci_device: 2534 pci_disable_device(pdev); 2535 2536 return err; 2537 } 2538 2539 static void hifn_remove(struct pci_dev *pdev) 2540 { 2541 int i; 2542 struct hifn_device *dev; 2543 2544 dev = pci_get_drvdata(pdev); 2545 2546 if (dev) { 2547 cancel_delayed_work(&dev->work); 2548 flush_scheduled_work(); 2549 2550 hifn_unregister_alg(dev); 2551 hifn_reset_dma(dev, 1); 2552 hifn_stop_device(dev); 2553 2554 free_irq(dev->irq, dev->name); 2555 2556 hifn_flush(dev); 2557 2558 pci_free_consistent(pdev, sizeof(struct hifn_dma), 2559 dev->desc_virt, dev->desc_dma); 2560 pci_unmap_single(pdev, dev->dst, 2561 PAGE_SIZE << HIFN_MAX_RESULT_ORDER, 2562 PCI_DMA_FROMDEVICE); 2563 free_pages(dev->result_mem, HIFN_MAX_RESULT_ORDER); 2564 for (i=0; i<3; ++i) 2565 if (dev->bar[i]) 2566 iounmap(dev->bar[i]); 2567 2568 kfree(dev); 2569 } 2570 2571 pci_release_regions(pdev); 2572 pci_disable_device(pdev); 2573 } 2574 2575 static struct pci_device_id hifn_pci_tbl[] = { 2576 { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) }, 2577 { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) }, 2578 { 0 } 2579 }; 2580 MODULE_DEVICE_TABLE(pci, hifn_pci_tbl); 2581 2582 static struct pci_driver hifn_pci_driver = { 2583 .name = "hifn795x", 2584 .id_table = hifn_pci_tbl, 2585 .probe = hifn_probe, 2586 .remove = __devexit_p(hifn_remove), 2587 }; 2588 2589 static int __devinit hifn_init(void) 2590 { 2591 int err; 2592 2593 err = pci_register_driver(&hifn_pci_driver); 2594 if (err < 0) { 2595 dprintk("Failed to register PCI driver for %s device.\n", 2596 hifn_pci_driver.name); 2597 return -ENODEV; 2598 } 2599 2600 printk(KERN_INFO "Driver for HIFN 795x crypto accelerator chip " 2601 "has been successfully registered.\n"); 2602 2603 return 0; 2604 } 2605 2606 static void __devexit hifn_fini(void) 2607 { 2608 pci_unregister_driver(&hifn_pci_driver); 2609 2610 printk(KERN_INFO "Driver for HIFN 795x crypto accelerator chip " 2611 "has been successfully unregistered.\n"); 2612 } 2613 2614 module_init(hifn_init); 2615 module_exit(hifn_fini); 2616 2617 MODULE_LICENSE("GPL"); 2618 MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>"); 2619 MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip."); 2620