1 /* 2 * 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru> 3 * All rights reserved. 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/module.h> 18 #include <linux/moduleparam.h> 19 #include <linux/mod_devicetable.h> 20 #include <linux/interrupt.h> 21 #include <linux/pci.h> 22 #include <linux/slab.h> 23 #include <linux/delay.h> 24 #include <linux/mm.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/scatterlist.h> 27 #include <linux/highmem.h> 28 #include <linux/crypto.h> 29 #include <linux/hw_random.h> 30 #include <linux/ktime.h> 31 32 #include <crypto/algapi.h> 33 #include <crypto/des.h> 34 35 static char hifn_pll_ref[sizeof("extNNN")] = "ext"; 36 module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444); 37 MODULE_PARM_DESC(hifn_pll_ref, 38 "PLL reference clock (pci[freq] or ext[freq], default ext)"); 39 40 static atomic_t hifn_dev_number; 41 42 #define ACRYPTO_OP_DECRYPT 0 43 #define ACRYPTO_OP_ENCRYPT 1 44 #define ACRYPTO_OP_HMAC 2 45 #define ACRYPTO_OP_RNG 3 46 47 #define ACRYPTO_MODE_ECB 0 48 #define ACRYPTO_MODE_CBC 1 49 #define ACRYPTO_MODE_CFB 2 50 #define ACRYPTO_MODE_OFB 3 51 52 #define ACRYPTO_TYPE_AES_128 0 53 #define ACRYPTO_TYPE_AES_192 1 54 #define ACRYPTO_TYPE_AES_256 2 55 #define ACRYPTO_TYPE_3DES 3 56 #define ACRYPTO_TYPE_DES 4 57 58 #define PCI_VENDOR_ID_HIFN 0x13A3 59 #define PCI_DEVICE_ID_HIFN_7955 0x0020 60 #define PCI_DEVICE_ID_HIFN_7956 0x001d 61 62 /* I/O region sizes */ 63 64 #define HIFN_BAR0_SIZE 0x1000 65 #define HIFN_BAR1_SIZE 0x2000 66 #define HIFN_BAR2_SIZE 0x8000 67 68 /* DMA registres */ 69 70 #define HIFN_DMA_CRA 0x0C /* DMA Command Ring Address */ 71 #define HIFN_DMA_SDRA 0x1C /* DMA Source Data Ring Address */ 72 #define HIFN_DMA_RRA 0x2C /* DMA Result Ring Address */ 73 #define HIFN_DMA_DDRA 0x3C /* DMA Destination Data Ring Address */ 74 #define HIFN_DMA_STCTL 0x40 /* DMA Status and Control */ 75 #define HIFN_DMA_INTREN 0x44 /* DMA Interrupt Enable */ 76 #define HIFN_DMA_CFG1 0x48 /* DMA Configuration #1 */ 77 #define HIFN_DMA_CFG2 0x6C /* DMA Configuration #2 */ 78 #define HIFN_CHIP_ID 0x98 /* Chip ID */ 79 80 /* 81 * Processing Unit Registers (offset from BASEREG0) 82 */ 83 #define HIFN_0_PUDATA 0x00 /* Processing Unit Data */ 84 #define HIFN_0_PUCTRL 0x04 /* Processing Unit Control */ 85 #define HIFN_0_PUISR 0x08 /* Processing Unit Interrupt Status */ 86 #define HIFN_0_PUCNFG 0x0c /* Processing Unit Configuration */ 87 #define HIFN_0_PUIER 0x10 /* Processing Unit Interrupt Enable */ 88 #define HIFN_0_PUSTAT 0x14 /* Processing Unit Status/Chip ID */ 89 #define HIFN_0_FIFOSTAT 0x18 /* FIFO Status */ 90 #define HIFN_0_FIFOCNFG 0x1c /* FIFO Configuration */ 91 #define HIFN_0_SPACESIZE 0x20 /* Register space size */ 92 93 /* Processing Unit Control Register (HIFN_0_PUCTRL) */ 94 #define HIFN_PUCTRL_CLRSRCFIFO 0x0010 /* clear source fifo */ 95 #define HIFN_PUCTRL_STOP 0x0008 /* stop pu */ 96 #define HIFN_PUCTRL_LOCKRAM 0x0004 /* lock ram */ 97 #define HIFN_PUCTRL_DMAENA 0x0002 /* enable dma */ 98 #define HIFN_PUCTRL_RESET 0x0001 /* Reset processing unit */ 99 100 /* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */ 101 #define HIFN_PUISR_CMDINVAL 0x8000 /* Invalid command interrupt */ 102 #define HIFN_PUISR_DATAERR 0x4000 /* Data error interrupt */ 103 #define HIFN_PUISR_SRCFIFO 0x2000 /* Source FIFO ready interrupt */ 104 #define HIFN_PUISR_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */ 105 #define HIFN_PUISR_DSTOVER 0x0200 /* Destination overrun interrupt */ 106 #define HIFN_PUISR_SRCCMD 0x0080 /* Source command interrupt */ 107 #define HIFN_PUISR_SRCCTX 0x0040 /* Source context interrupt */ 108 #define HIFN_PUISR_SRCDATA 0x0020 /* Source data interrupt */ 109 #define HIFN_PUISR_DSTDATA 0x0010 /* Destination data interrupt */ 110 #define HIFN_PUISR_DSTRESULT 0x0004 /* Destination result interrupt */ 111 112 /* Processing Unit Configuration Register (HIFN_0_PUCNFG) */ 113 #define HIFN_PUCNFG_DRAMMASK 0xe000 /* DRAM size mask */ 114 #define HIFN_PUCNFG_DSZ_256K 0x0000 /* 256k dram */ 115 #define HIFN_PUCNFG_DSZ_512K 0x2000 /* 512k dram */ 116 #define HIFN_PUCNFG_DSZ_1M 0x4000 /* 1m dram */ 117 #define HIFN_PUCNFG_DSZ_2M 0x6000 /* 2m dram */ 118 #define HIFN_PUCNFG_DSZ_4M 0x8000 /* 4m dram */ 119 #define HIFN_PUCNFG_DSZ_8M 0xa000 /* 8m dram */ 120 #define HIFN_PUNCFG_DSZ_16M 0xc000 /* 16m dram */ 121 #define HIFN_PUCNFG_DSZ_32M 0xe000 /* 32m dram */ 122 #define HIFN_PUCNFG_DRAMREFRESH 0x1800 /* DRAM refresh rate mask */ 123 #define HIFN_PUCNFG_DRFR_512 0x0000 /* 512 divisor of ECLK */ 124 #define HIFN_PUCNFG_DRFR_256 0x0800 /* 256 divisor of ECLK */ 125 #define HIFN_PUCNFG_DRFR_128 0x1000 /* 128 divisor of ECLK */ 126 #define HIFN_PUCNFG_TCALLPHASES 0x0200 /* your guess is as good as mine... */ 127 #define HIFN_PUCNFG_TCDRVTOTEM 0x0100 /* your guess is as good as mine... */ 128 #define HIFN_PUCNFG_BIGENDIAN 0x0080 /* DMA big endian mode */ 129 #define HIFN_PUCNFG_BUS32 0x0040 /* Bus width 32bits */ 130 #define HIFN_PUCNFG_BUS16 0x0000 /* Bus width 16 bits */ 131 #define HIFN_PUCNFG_CHIPID 0x0020 /* Allow chipid from PUSTAT */ 132 #define HIFN_PUCNFG_DRAM 0x0010 /* Context RAM is DRAM */ 133 #define HIFN_PUCNFG_SRAM 0x0000 /* Context RAM is SRAM */ 134 #define HIFN_PUCNFG_COMPSING 0x0004 /* Enable single compression context */ 135 #define HIFN_PUCNFG_ENCCNFG 0x0002 /* Encryption configuration */ 136 137 /* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */ 138 #define HIFN_PUIER_CMDINVAL 0x8000 /* Invalid command interrupt */ 139 #define HIFN_PUIER_DATAERR 0x4000 /* Data error interrupt */ 140 #define HIFN_PUIER_SRCFIFO 0x2000 /* Source FIFO ready interrupt */ 141 #define HIFN_PUIER_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */ 142 #define HIFN_PUIER_DSTOVER 0x0200 /* Destination overrun interrupt */ 143 #define HIFN_PUIER_SRCCMD 0x0080 /* Source command interrupt */ 144 #define HIFN_PUIER_SRCCTX 0x0040 /* Source context interrupt */ 145 #define HIFN_PUIER_SRCDATA 0x0020 /* Source data interrupt */ 146 #define HIFN_PUIER_DSTDATA 0x0010 /* Destination data interrupt */ 147 #define HIFN_PUIER_DSTRESULT 0x0004 /* Destination result interrupt */ 148 149 /* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */ 150 #define HIFN_PUSTAT_CMDINVAL 0x8000 /* Invalid command interrupt */ 151 #define HIFN_PUSTAT_DATAERR 0x4000 /* Data error interrupt */ 152 #define HIFN_PUSTAT_SRCFIFO 0x2000 /* Source FIFO ready interrupt */ 153 #define HIFN_PUSTAT_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */ 154 #define HIFN_PUSTAT_DSTOVER 0x0200 /* Destination overrun interrupt */ 155 #define HIFN_PUSTAT_SRCCMD 0x0080 /* Source command interrupt */ 156 #define HIFN_PUSTAT_SRCCTX 0x0040 /* Source context interrupt */ 157 #define HIFN_PUSTAT_SRCDATA 0x0020 /* Source data interrupt */ 158 #define HIFN_PUSTAT_DSTDATA 0x0010 /* Destination data interrupt */ 159 #define HIFN_PUSTAT_DSTRESULT 0x0004 /* Destination result interrupt */ 160 #define HIFN_PUSTAT_CHIPREV 0x00ff /* Chip revision mask */ 161 #define HIFN_PUSTAT_CHIPENA 0xff00 /* Chip enabled mask */ 162 #define HIFN_PUSTAT_ENA_2 0x1100 /* Level 2 enabled */ 163 #define HIFN_PUSTAT_ENA_1 0x1000 /* Level 1 enabled */ 164 #define HIFN_PUSTAT_ENA_0 0x3000 /* Level 0 enabled */ 165 #define HIFN_PUSTAT_REV_2 0x0020 /* 7751 PT6/2 */ 166 #define HIFN_PUSTAT_REV_3 0x0030 /* 7751 PT6/3 */ 167 168 /* FIFO Status Register (HIFN_0_FIFOSTAT) */ 169 #define HIFN_FIFOSTAT_SRC 0x7f00 /* Source FIFO available */ 170 #define HIFN_FIFOSTAT_DST 0x007f /* Destination FIFO available */ 171 172 /* FIFO Configuration Register (HIFN_0_FIFOCNFG) */ 173 #define HIFN_FIFOCNFG_THRESHOLD 0x0400 /* must be written as 1 */ 174 175 /* 176 * DMA Interface Registers (offset from BASEREG1) 177 */ 178 #define HIFN_1_DMA_CRAR 0x0c /* DMA Command Ring Address */ 179 #define HIFN_1_DMA_SRAR 0x1c /* DMA Source Ring Address */ 180 #define HIFN_1_DMA_RRAR 0x2c /* DMA Result Ring Address */ 181 #define HIFN_1_DMA_DRAR 0x3c /* DMA Destination Ring Address */ 182 #define HIFN_1_DMA_CSR 0x40 /* DMA Status and Control */ 183 #define HIFN_1_DMA_IER 0x44 /* DMA Interrupt Enable */ 184 #define HIFN_1_DMA_CNFG 0x48 /* DMA Configuration */ 185 #define HIFN_1_PLL 0x4c /* 795x: PLL config */ 186 #define HIFN_1_7811_RNGENA 0x60 /* 7811: rng enable */ 187 #define HIFN_1_7811_RNGCFG 0x64 /* 7811: rng config */ 188 #define HIFN_1_7811_RNGDAT 0x68 /* 7811: rng data */ 189 #define HIFN_1_7811_RNGSTS 0x6c /* 7811: rng status */ 190 #define HIFN_1_7811_MIPSRST 0x94 /* 7811: MIPS reset */ 191 #define HIFN_1_REVID 0x98 /* Revision ID */ 192 #define HIFN_1_UNLOCK_SECRET1 0xf4 193 #define HIFN_1_UNLOCK_SECRET2 0xfc 194 #define HIFN_1_PUB_RESET 0x204 /* Public/RNG Reset */ 195 #define HIFN_1_PUB_BASE 0x300 /* Public Base Address */ 196 #define HIFN_1_PUB_OPLEN 0x304 /* Public Operand Length */ 197 #define HIFN_1_PUB_OP 0x308 /* Public Operand */ 198 #define HIFN_1_PUB_STATUS 0x30c /* Public Status */ 199 #define HIFN_1_PUB_IEN 0x310 /* Public Interrupt enable */ 200 #define HIFN_1_RNG_CONFIG 0x314 /* RNG config */ 201 #define HIFN_1_RNG_DATA 0x318 /* RNG data */ 202 #define HIFN_1_PUB_MEM 0x400 /* start of Public key memory */ 203 #define HIFN_1_PUB_MEMEND 0xbff /* end of Public key memory */ 204 205 /* DMA Status and Control Register (HIFN_1_DMA_CSR) */ 206 #define HIFN_DMACSR_D_CTRLMASK 0xc0000000 /* Destinition Ring Control */ 207 #define HIFN_DMACSR_D_CTRL_NOP 0x00000000 /* Dest. Control: no-op */ 208 #define HIFN_DMACSR_D_CTRL_DIS 0x40000000 /* Dest. Control: disable */ 209 #define HIFN_DMACSR_D_CTRL_ENA 0x80000000 /* Dest. Control: enable */ 210 #define HIFN_DMACSR_D_ABORT 0x20000000 /* Destinition Ring PCIAbort */ 211 #define HIFN_DMACSR_D_DONE 0x10000000 /* Destinition Ring Done */ 212 #define HIFN_DMACSR_D_LAST 0x08000000 /* Destinition Ring Last */ 213 #define HIFN_DMACSR_D_WAIT 0x04000000 /* Destinition Ring Waiting */ 214 #define HIFN_DMACSR_D_OVER 0x02000000 /* Destinition Ring Overflow */ 215 #define HIFN_DMACSR_R_CTRL 0x00c00000 /* Result Ring Control */ 216 #define HIFN_DMACSR_R_CTRL_NOP 0x00000000 /* Result Control: no-op */ 217 #define HIFN_DMACSR_R_CTRL_DIS 0x00400000 /* Result Control: disable */ 218 #define HIFN_DMACSR_R_CTRL_ENA 0x00800000 /* Result Control: enable */ 219 #define HIFN_DMACSR_R_ABORT 0x00200000 /* Result Ring PCI Abort */ 220 #define HIFN_DMACSR_R_DONE 0x00100000 /* Result Ring Done */ 221 #define HIFN_DMACSR_R_LAST 0x00080000 /* Result Ring Last */ 222 #define HIFN_DMACSR_R_WAIT 0x00040000 /* Result Ring Waiting */ 223 #define HIFN_DMACSR_R_OVER 0x00020000 /* Result Ring Overflow */ 224 #define HIFN_DMACSR_S_CTRL 0x0000c000 /* Source Ring Control */ 225 #define HIFN_DMACSR_S_CTRL_NOP 0x00000000 /* Source Control: no-op */ 226 #define HIFN_DMACSR_S_CTRL_DIS 0x00004000 /* Source Control: disable */ 227 #define HIFN_DMACSR_S_CTRL_ENA 0x00008000 /* Source Control: enable */ 228 #define HIFN_DMACSR_S_ABORT 0x00002000 /* Source Ring PCI Abort */ 229 #define HIFN_DMACSR_S_DONE 0x00001000 /* Source Ring Done */ 230 #define HIFN_DMACSR_S_LAST 0x00000800 /* Source Ring Last */ 231 #define HIFN_DMACSR_S_WAIT 0x00000400 /* Source Ring Waiting */ 232 #define HIFN_DMACSR_ILLW 0x00000200 /* Illegal write (7811 only) */ 233 #define HIFN_DMACSR_ILLR 0x00000100 /* Illegal read (7811 only) */ 234 #define HIFN_DMACSR_C_CTRL 0x000000c0 /* Command Ring Control */ 235 #define HIFN_DMACSR_C_CTRL_NOP 0x00000000 /* Command Control: no-op */ 236 #define HIFN_DMACSR_C_CTRL_DIS 0x00000040 /* Command Control: disable */ 237 #define HIFN_DMACSR_C_CTRL_ENA 0x00000080 /* Command Control: enable */ 238 #define HIFN_DMACSR_C_ABORT 0x00000020 /* Command Ring PCI Abort */ 239 #define HIFN_DMACSR_C_DONE 0x00000010 /* Command Ring Done */ 240 #define HIFN_DMACSR_C_LAST 0x00000008 /* Command Ring Last */ 241 #define HIFN_DMACSR_C_WAIT 0x00000004 /* Command Ring Waiting */ 242 #define HIFN_DMACSR_PUBDONE 0x00000002 /* Public op done (7951 only) */ 243 #define HIFN_DMACSR_ENGINE 0x00000001 /* Command Ring Engine IRQ */ 244 245 /* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */ 246 #define HIFN_DMAIER_D_ABORT 0x20000000 /* Destination Ring PCIAbort */ 247 #define HIFN_DMAIER_D_DONE 0x10000000 /* Destination Ring Done */ 248 #define HIFN_DMAIER_D_LAST 0x08000000 /* Destination Ring Last */ 249 #define HIFN_DMAIER_D_WAIT 0x04000000 /* Destination Ring Waiting */ 250 #define HIFN_DMAIER_D_OVER 0x02000000 /* Destination Ring Overflow */ 251 #define HIFN_DMAIER_R_ABORT 0x00200000 /* Result Ring PCI Abort */ 252 #define HIFN_DMAIER_R_DONE 0x00100000 /* Result Ring Done */ 253 #define HIFN_DMAIER_R_LAST 0x00080000 /* Result Ring Last */ 254 #define HIFN_DMAIER_R_WAIT 0x00040000 /* Result Ring Waiting */ 255 #define HIFN_DMAIER_R_OVER 0x00020000 /* Result Ring Overflow */ 256 #define HIFN_DMAIER_S_ABORT 0x00002000 /* Source Ring PCI Abort */ 257 #define HIFN_DMAIER_S_DONE 0x00001000 /* Source Ring Done */ 258 #define HIFN_DMAIER_S_LAST 0x00000800 /* Source Ring Last */ 259 #define HIFN_DMAIER_S_WAIT 0x00000400 /* Source Ring Waiting */ 260 #define HIFN_DMAIER_ILLW 0x00000200 /* Illegal write (7811 only) */ 261 #define HIFN_DMAIER_ILLR 0x00000100 /* Illegal read (7811 only) */ 262 #define HIFN_DMAIER_C_ABORT 0x00000020 /* Command Ring PCI Abort */ 263 #define HIFN_DMAIER_C_DONE 0x00000010 /* Command Ring Done */ 264 #define HIFN_DMAIER_C_LAST 0x00000008 /* Command Ring Last */ 265 #define HIFN_DMAIER_C_WAIT 0x00000004 /* Command Ring Waiting */ 266 #define HIFN_DMAIER_PUBDONE 0x00000002 /* public op done (7951 only) */ 267 #define HIFN_DMAIER_ENGINE 0x00000001 /* Engine IRQ */ 268 269 /* DMA Configuration Register (HIFN_1_DMA_CNFG) */ 270 #define HIFN_DMACNFG_BIGENDIAN 0x10000000 /* big endian mode */ 271 #define HIFN_DMACNFG_POLLFREQ 0x00ff0000 /* Poll frequency mask */ 272 #define HIFN_DMACNFG_UNLOCK 0x00000800 273 #define HIFN_DMACNFG_POLLINVAL 0x00000700 /* Invalid Poll Scalar */ 274 #define HIFN_DMACNFG_LAST 0x00000010 /* Host control LAST bit */ 275 #define HIFN_DMACNFG_MODE 0x00000004 /* DMA mode */ 276 #define HIFN_DMACNFG_DMARESET 0x00000002 /* DMA Reset # */ 277 #define HIFN_DMACNFG_MSTRESET 0x00000001 /* Master Reset # */ 278 279 /* PLL configuration register */ 280 #define HIFN_PLL_REF_CLK_HBI 0x00000000 /* HBI reference clock */ 281 #define HIFN_PLL_REF_CLK_PLL 0x00000001 /* PLL reference clock */ 282 #define HIFN_PLL_BP 0x00000002 /* Reference clock bypass */ 283 #define HIFN_PLL_PK_CLK_HBI 0x00000000 /* PK engine HBI clock */ 284 #define HIFN_PLL_PK_CLK_PLL 0x00000008 /* PK engine PLL clock */ 285 #define HIFN_PLL_PE_CLK_HBI 0x00000000 /* PE engine HBI clock */ 286 #define HIFN_PLL_PE_CLK_PLL 0x00000010 /* PE engine PLL clock */ 287 #define HIFN_PLL_RESERVED_1 0x00000400 /* Reserved bit, must be 1 */ 288 #define HIFN_PLL_ND_SHIFT 11 /* Clock multiplier shift */ 289 #define HIFN_PLL_ND_MULT_2 0x00000000 /* PLL clock multiplier 2 */ 290 #define HIFN_PLL_ND_MULT_4 0x00000800 /* PLL clock multiplier 4 */ 291 #define HIFN_PLL_ND_MULT_6 0x00001000 /* PLL clock multiplier 6 */ 292 #define HIFN_PLL_ND_MULT_8 0x00001800 /* PLL clock multiplier 8 */ 293 #define HIFN_PLL_ND_MULT_10 0x00002000 /* PLL clock multiplier 10 */ 294 #define HIFN_PLL_ND_MULT_12 0x00002800 /* PLL clock multiplier 12 */ 295 #define HIFN_PLL_IS_1_8 0x00000000 /* charge pump (mult. 1-8) */ 296 #define HIFN_PLL_IS_9_12 0x00010000 /* charge pump (mult. 9-12) */ 297 298 #define HIFN_PLL_FCK_MAX 266 /* Maximum PLL frequency */ 299 300 /* Public key reset register (HIFN_1_PUB_RESET) */ 301 #define HIFN_PUBRST_RESET 0x00000001 /* reset public/rng unit */ 302 303 /* Public base address register (HIFN_1_PUB_BASE) */ 304 #define HIFN_PUBBASE_ADDR 0x00003fff /* base address */ 305 306 /* Public operand length register (HIFN_1_PUB_OPLEN) */ 307 #define HIFN_PUBOPLEN_MOD_M 0x0000007f /* modulus length mask */ 308 #define HIFN_PUBOPLEN_MOD_S 0 /* modulus length shift */ 309 #define HIFN_PUBOPLEN_EXP_M 0x0003ff80 /* exponent length mask */ 310 #define HIFN_PUBOPLEN_EXP_S 7 /* exponent length shift */ 311 #define HIFN_PUBOPLEN_RED_M 0x003c0000 /* reducend length mask */ 312 #define HIFN_PUBOPLEN_RED_S 18 /* reducend length shift */ 313 314 /* Public operation register (HIFN_1_PUB_OP) */ 315 #define HIFN_PUBOP_AOFFSET_M 0x0000007f /* A offset mask */ 316 #define HIFN_PUBOP_AOFFSET_S 0 /* A offset shift */ 317 #define HIFN_PUBOP_BOFFSET_M 0x00000f80 /* B offset mask */ 318 #define HIFN_PUBOP_BOFFSET_S 7 /* B offset shift */ 319 #define HIFN_PUBOP_MOFFSET_M 0x0003f000 /* M offset mask */ 320 #define HIFN_PUBOP_MOFFSET_S 12 /* M offset shift */ 321 #define HIFN_PUBOP_OP_MASK 0x003c0000 /* Opcode: */ 322 #define HIFN_PUBOP_OP_NOP 0x00000000 /* NOP */ 323 #define HIFN_PUBOP_OP_ADD 0x00040000 /* ADD */ 324 #define HIFN_PUBOP_OP_ADDC 0x00080000 /* ADD w/carry */ 325 #define HIFN_PUBOP_OP_SUB 0x000c0000 /* SUB */ 326 #define HIFN_PUBOP_OP_SUBC 0x00100000 /* SUB w/carry */ 327 #define HIFN_PUBOP_OP_MODADD 0x00140000 /* Modular ADD */ 328 #define HIFN_PUBOP_OP_MODSUB 0x00180000 /* Modular SUB */ 329 #define HIFN_PUBOP_OP_INCA 0x001c0000 /* INC A */ 330 #define HIFN_PUBOP_OP_DECA 0x00200000 /* DEC A */ 331 #define HIFN_PUBOP_OP_MULT 0x00240000 /* MULT */ 332 #define HIFN_PUBOP_OP_MODMULT 0x00280000 /* Modular MULT */ 333 #define HIFN_PUBOP_OP_MODRED 0x002c0000 /* Modular RED */ 334 #define HIFN_PUBOP_OP_MODEXP 0x00300000 /* Modular EXP */ 335 336 /* Public status register (HIFN_1_PUB_STATUS) */ 337 #define HIFN_PUBSTS_DONE 0x00000001 /* operation done */ 338 #define HIFN_PUBSTS_CARRY 0x00000002 /* carry */ 339 340 /* Public interrupt enable register (HIFN_1_PUB_IEN) */ 341 #define HIFN_PUBIEN_DONE 0x00000001 /* operation done interrupt */ 342 343 /* Random number generator config register (HIFN_1_RNG_CONFIG) */ 344 #define HIFN_RNGCFG_ENA 0x00000001 /* enable rng */ 345 346 #define HIFN_NAMESIZE 32 347 #define HIFN_MAX_RESULT_ORDER 5 348 349 #define HIFN_D_CMD_RSIZE (24 * 1) 350 #define HIFN_D_SRC_RSIZE (80 * 1) 351 #define HIFN_D_DST_RSIZE (80 * 1) 352 #define HIFN_D_RES_RSIZE (24 * 1) 353 354 #define HIFN_D_DST_DALIGN 4 355 356 #define HIFN_QUEUE_LENGTH (HIFN_D_CMD_RSIZE - 1) 357 358 #define AES_MIN_KEY_SIZE 16 359 #define AES_MAX_KEY_SIZE 32 360 361 #define HIFN_DES_KEY_LENGTH 8 362 #define HIFN_3DES_KEY_LENGTH 24 363 #define HIFN_MAX_CRYPT_KEY_LENGTH AES_MAX_KEY_SIZE 364 #define HIFN_IV_LENGTH 8 365 #define HIFN_AES_IV_LENGTH 16 366 #define HIFN_MAX_IV_LENGTH HIFN_AES_IV_LENGTH 367 368 #define HIFN_MAC_KEY_LENGTH 64 369 #define HIFN_MD5_LENGTH 16 370 #define HIFN_SHA1_LENGTH 20 371 #define HIFN_MAC_TRUNC_LENGTH 12 372 373 #define HIFN_MAX_COMMAND (8 + 8 + 8 + 64 + 260) 374 #define HIFN_MAX_RESULT (8 + 4 + 4 + 20 + 4) 375 #define HIFN_USED_RESULT 12 376 377 struct hifn_desc { 378 volatile __le32 l; 379 volatile __le32 p; 380 }; 381 382 struct hifn_dma { 383 struct hifn_desc cmdr[HIFN_D_CMD_RSIZE + 1]; 384 struct hifn_desc srcr[HIFN_D_SRC_RSIZE + 1]; 385 struct hifn_desc dstr[HIFN_D_DST_RSIZE + 1]; 386 struct hifn_desc resr[HIFN_D_RES_RSIZE + 1]; 387 388 u8 command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND]; 389 u8 result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT]; 390 391 /* 392 * Our current positions for insertion and removal from the descriptor 393 * rings. 394 */ 395 volatile int cmdi, srci, dsti, resi; 396 volatile int cmdu, srcu, dstu, resu; 397 int cmdk, srck, dstk, resk; 398 }; 399 400 #define HIFN_FLAG_CMD_BUSY (1 << 0) 401 #define HIFN_FLAG_SRC_BUSY (1 << 1) 402 #define HIFN_FLAG_DST_BUSY (1 << 2) 403 #define HIFN_FLAG_RES_BUSY (1 << 3) 404 #define HIFN_FLAG_OLD_KEY (1 << 4) 405 406 #define HIFN_DEFAULT_ACTIVE_NUM 5 407 408 struct hifn_device { 409 char name[HIFN_NAMESIZE]; 410 411 int irq; 412 413 struct pci_dev *pdev; 414 void __iomem *bar[3]; 415 416 void *desc_virt; 417 dma_addr_t desc_dma; 418 419 u32 dmareg; 420 421 void *sa[HIFN_D_RES_RSIZE]; 422 423 spinlock_t lock; 424 425 u32 flags; 426 int active, started; 427 struct delayed_work work; 428 unsigned long reset; 429 unsigned long success; 430 unsigned long prev_success; 431 432 u8 snum; 433 434 struct tasklet_struct tasklet; 435 436 struct crypto_queue queue; 437 struct list_head alg_list; 438 439 unsigned int pk_clk_freq; 440 441 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG 442 unsigned int rng_wait_time; 443 ktime_t rngtime; 444 struct hwrng rng; 445 #endif 446 }; 447 448 #define HIFN_D_LENGTH 0x0000ffff 449 #define HIFN_D_NOINVALID 0x01000000 450 #define HIFN_D_MASKDONEIRQ 0x02000000 451 #define HIFN_D_DESTOVER 0x04000000 452 #define HIFN_D_OVER 0x08000000 453 #define HIFN_D_LAST 0x20000000 454 #define HIFN_D_JUMP 0x40000000 455 #define HIFN_D_VALID 0x80000000 456 457 struct hifn_base_command { 458 volatile __le16 masks; 459 volatile __le16 session_num; 460 volatile __le16 total_source_count; 461 volatile __le16 total_dest_count; 462 }; 463 464 #define HIFN_BASE_CMD_COMP 0x0100 /* enable compression engine */ 465 #define HIFN_BASE_CMD_PAD 0x0200 /* enable padding engine */ 466 #define HIFN_BASE_CMD_MAC 0x0400 /* enable MAC engine */ 467 #define HIFN_BASE_CMD_CRYPT 0x0800 /* enable crypt engine */ 468 #define HIFN_BASE_CMD_DECODE 0x2000 469 #define HIFN_BASE_CMD_SRCLEN_M 0xc000 470 #define HIFN_BASE_CMD_SRCLEN_S 14 471 #define HIFN_BASE_CMD_DSTLEN_M 0x3000 472 #define HIFN_BASE_CMD_DSTLEN_S 12 473 #define HIFN_BASE_CMD_LENMASK_HI 0x30000 474 #define HIFN_BASE_CMD_LENMASK_LO 0x0ffff 475 476 /* 477 * Structure to help build up the command data structure. 478 */ 479 struct hifn_crypt_command { 480 volatile __le16 masks; 481 volatile __le16 header_skip; 482 volatile __le16 source_count; 483 volatile __le16 reserved; 484 }; 485 486 #define HIFN_CRYPT_CMD_ALG_MASK 0x0003 /* algorithm: */ 487 #define HIFN_CRYPT_CMD_ALG_DES 0x0000 /* DES */ 488 #define HIFN_CRYPT_CMD_ALG_3DES 0x0001 /* 3DES */ 489 #define HIFN_CRYPT_CMD_ALG_RC4 0x0002 /* RC4 */ 490 #define HIFN_CRYPT_CMD_ALG_AES 0x0003 /* AES */ 491 #define HIFN_CRYPT_CMD_MODE_MASK 0x0018 /* Encrypt mode: */ 492 #define HIFN_CRYPT_CMD_MODE_ECB 0x0000 /* ECB */ 493 #define HIFN_CRYPT_CMD_MODE_CBC 0x0008 /* CBC */ 494 #define HIFN_CRYPT_CMD_MODE_CFB 0x0010 /* CFB */ 495 #define HIFN_CRYPT_CMD_MODE_OFB 0x0018 /* OFB */ 496 #define HIFN_CRYPT_CMD_CLR_CTX 0x0040 /* clear context */ 497 #define HIFN_CRYPT_CMD_KSZ_MASK 0x0600 /* AES key size: */ 498 #define HIFN_CRYPT_CMD_KSZ_128 0x0000 /* 128 bit */ 499 #define HIFN_CRYPT_CMD_KSZ_192 0x0200 /* 192 bit */ 500 #define HIFN_CRYPT_CMD_KSZ_256 0x0400 /* 256 bit */ 501 #define HIFN_CRYPT_CMD_NEW_KEY 0x0800 /* expect new key */ 502 #define HIFN_CRYPT_CMD_NEW_IV 0x1000 /* expect new iv */ 503 #define HIFN_CRYPT_CMD_SRCLEN_M 0xc000 504 #define HIFN_CRYPT_CMD_SRCLEN_S 14 505 506 /* 507 * Structure to help build up the command data structure. 508 */ 509 struct hifn_mac_command { 510 volatile __le16 masks; 511 volatile __le16 header_skip; 512 volatile __le16 source_count; 513 volatile __le16 reserved; 514 }; 515 516 #define HIFN_MAC_CMD_ALG_MASK 0x0001 517 #define HIFN_MAC_CMD_ALG_SHA1 0x0000 518 #define HIFN_MAC_CMD_ALG_MD5 0x0001 519 #define HIFN_MAC_CMD_MODE_MASK 0x000c 520 #define HIFN_MAC_CMD_MODE_HMAC 0x0000 521 #define HIFN_MAC_CMD_MODE_SSL_MAC 0x0004 522 #define HIFN_MAC_CMD_MODE_HASH 0x0008 523 #define HIFN_MAC_CMD_MODE_FULL 0x0004 524 #define HIFN_MAC_CMD_TRUNC 0x0010 525 #define HIFN_MAC_CMD_RESULT 0x0020 526 #define HIFN_MAC_CMD_APPEND 0x0040 527 #define HIFN_MAC_CMD_SRCLEN_M 0xc000 528 #define HIFN_MAC_CMD_SRCLEN_S 14 529 530 /* 531 * MAC POS IPsec initiates authentication after encryption on encodes 532 * and before decryption on decodes. 533 */ 534 #define HIFN_MAC_CMD_POS_IPSEC 0x0200 535 #define HIFN_MAC_CMD_NEW_KEY 0x0800 536 537 struct hifn_comp_command { 538 volatile __le16 masks; 539 volatile __le16 header_skip; 540 volatile __le16 source_count; 541 volatile __le16 reserved; 542 }; 543 544 #define HIFN_COMP_CMD_SRCLEN_M 0xc000 545 #define HIFN_COMP_CMD_SRCLEN_S 14 546 #define HIFN_COMP_CMD_ONE 0x0100 /* must be one */ 547 #define HIFN_COMP_CMD_CLEARHIST 0x0010 /* clear history */ 548 #define HIFN_COMP_CMD_UPDATEHIST 0x0008 /* update history */ 549 #define HIFN_COMP_CMD_LZS_STRIP0 0x0004 /* LZS: strip zero */ 550 #define HIFN_COMP_CMD_MPPC_RESTART 0x0004 /* MPPC: restart */ 551 #define HIFN_COMP_CMD_ALG_MASK 0x0001 /* compression mode: */ 552 #define HIFN_COMP_CMD_ALG_MPPC 0x0001 /* MPPC */ 553 #define HIFN_COMP_CMD_ALG_LZS 0x0000 /* LZS */ 554 555 struct hifn_base_result { 556 volatile __le16 flags; 557 volatile __le16 session; 558 volatile __le16 src_cnt; /* 15:0 of source count */ 559 volatile __le16 dst_cnt; /* 15:0 of dest count */ 560 }; 561 562 #define HIFN_BASE_RES_DSTOVERRUN 0x0200 /* destination overrun */ 563 #define HIFN_BASE_RES_SRCLEN_M 0xc000 /* 17:16 of source count */ 564 #define HIFN_BASE_RES_SRCLEN_S 14 565 #define HIFN_BASE_RES_DSTLEN_M 0x3000 /* 17:16 of dest count */ 566 #define HIFN_BASE_RES_DSTLEN_S 12 567 568 struct hifn_comp_result { 569 volatile __le16 flags; 570 volatile __le16 crc; 571 }; 572 573 #define HIFN_COMP_RES_LCB_M 0xff00 /* longitudinal check byte */ 574 #define HIFN_COMP_RES_LCB_S 8 575 #define HIFN_COMP_RES_RESTART 0x0004 /* MPPC: restart */ 576 #define HIFN_COMP_RES_ENDMARKER 0x0002 /* LZS: end marker seen */ 577 #define HIFN_COMP_RES_SRC_NOTZERO 0x0001 /* source expired */ 578 579 struct hifn_mac_result { 580 volatile __le16 flags; 581 volatile __le16 reserved; 582 /* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */ 583 }; 584 585 #define HIFN_MAC_RES_MISCOMPARE 0x0002 /* compare failed */ 586 #define HIFN_MAC_RES_SRC_NOTZERO 0x0001 /* source expired */ 587 588 struct hifn_crypt_result { 589 volatile __le16 flags; 590 volatile __le16 reserved; 591 }; 592 593 #define HIFN_CRYPT_RES_SRC_NOTZERO 0x0001 /* source expired */ 594 595 #ifndef HIFN_POLL_FREQUENCY 596 #define HIFN_POLL_FREQUENCY 0x1 597 #endif 598 599 #ifndef HIFN_POLL_SCALAR 600 #define HIFN_POLL_SCALAR 0x0 601 #endif 602 603 #define HIFN_MAX_SEGLEN 0xffff /* maximum dma segment len */ 604 #define HIFN_MAX_DMALEN 0x3ffff /* maximum dma length */ 605 606 struct hifn_crypto_alg { 607 struct list_head entry; 608 struct crypto_alg alg; 609 struct hifn_device *dev; 610 }; 611 612 #define ASYNC_SCATTERLIST_CACHE 16 613 614 #define ASYNC_FLAGS_MISALIGNED (1 << 0) 615 616 struct hifn_cipher_walk { 617 struct scatterlist cache[ASYNC_SCATTERLIST_CACHE]; 618 u32 flags; 619 int num; 620 }; 621 622 struct hifn_context { 623 u8 key[HIFN_MAX_CRYPT_KEY_LENGTH]; 624 struct hifn_device *dev; 625 unsigned int keysize; 626 }; 627 628 struct hifn_request_context { 629 u8 *iv; 630 unsigned int ivsize; 631 u8 op, type, mode, unused; 632 struct hifn_cipher_walk walk; 633 }; 634 635 #define crypto_alg_to_hifn(a) container_of(a, struct hifn_crypto_alg, alg) 636 637 static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg) 638 { 639 u32 ret; 640 641 ret = readl(dev->bar[0] + reg); 642 643 return ret; 644 } 645 646 static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg) 647 { 648 u32 ret; 649 650 ret = readl(dev->bar[1] + reg); 651 652 return ret; 653 } 654 655 static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val) 656 { 657 writel((__force u32)cpu_to_le32(val), dev->bar[0] + reg); 658 } 659 660 static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val) 661 { 662 writel((__force u32)cpu_to_le32(val), dev->bar[1] + reg); 663 } 664 665 static void hifn_wait_puc(struct hifn_device *dev) 666 { 667 int i; 668 u32 ret; 669 670 for (i = 10000; i > 0; --i) { 671 ret = hifn_read_0(dev, HIFN_0_PUCTRL); 672 if (!(ret & HIFN_PUCTRL_RESET)) 673 break; 674 675 udelay(1); 676 } 677 678 if (!i) 679 dev_err(&dev->pdev->dev, "Failed to reset PUC unit.\n"); 680 } 681 682 static void hifn_reset_puc(struct hifn_device *dev) 683 { 684 hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA); 685 hifn_wait_puc(dev); 686 } 687 688 static void hifn_stop_device(struct hifn_device *dev) 689 { 690 hifn_write_1(dev, HIFN_1_DMA_CSR, 691 HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS | 692 HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS); 693 hifn_write_0(dev, HIFN_0_PUIER, 0); 694 hifn_write_1(dev, HIFN_1_DMA_IER, 0); 695 } 696 697 static void hifn_reset_dma(struct hifn_device *dev, int full) 698 { 699 hifn_stop_device(dev); 700 701 /* 702 * Setting poll frequency and others to 0. 703 */ 704 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET | 705 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE); 706 mdelay(1); 707 708 /* 709 * Reset DMA. 710 */ 711 if (full) { 712 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE); 713 mdelay(1); 714 } else { 715 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE | 716 HIFN_DMACNFG_MSTRESET); 717 hifn_reset_puc(dev); 718 } 719 720 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET | 721 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE); 722 723 hifn_reset_puc(dev); 724 } 725 726 static u32 hifn_next_signature(u32 a, u_int cnt) 727 { 728 int i; 729 u32 v; 730 731 for (i = 0; i < cnt; i++) { 732 /* get the parity */ 733 v = a & 0x80080125; 734 v ^= v >> 16; 735 v ^= v >> 8; 736 v ^= v >> 4; 737 v ^= v >> 2; 738 v ^= v >> 1; 739 740 a = (v & 1) ^ (a << 1); 741 } 742 743 return a; 744 } 745 746 static struct pci2id { 747 u_short pci_vendor; 748 u_short pci_prod; 749 char card_id[13]; 750 } pci2id[] = { 751 { 752 PCI_VENDOR_ID_HIFN, 753 PCI_DEVICE_ID_HIFN_7955, 754 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 755 0x00, 0x00, 0x00, 0x00, 0x00 } 756 }, 757 { 758 PCI_VENDOR_ID_HIFN, 759 PCI_DEVICE_ID_HIFN_7956, 760 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 761 0x00, 0x00, 0x00, 0x00, 0x00 } 762 } 763 }; 764 765 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG 766 static int hifn_rng_data_present(struct hwrng *rng, int wait) 767 { 768 struct hifn_device *dev = (struct hifn_device *)rng->priv; 769 s64 nsec; 770 771 nsec = ktime_to_ns(ktime_sub(ktime_get(), dev->rngtime)); 772 nsec -= dev->rng_wait_time; 773 if (nsec <= 0) 774 return 1; 775 if (!wait) 776 return 0; 777 ndelay(nsec); 778 return 1; 779 } 780 781 static int hifn_rng_data_read(struct hwrng *rng, u32 *data) 782 { 783 struct hifn_device *dev = (struct hifn_device *)rng->priv; 784 785 *data = hifn_read_1(dev, HIFN_1_RNG_DATA); 786 dev->rngtime = ktime_get(); 787 return 4; 788 } 789 790 static int hifn_register_rng(struct hifn_device *dev) 791 { 792 /* 793 * We must wait at least 256 Pk_clk cycles between two reads of the rng. 794 */ 795 dev->rng_wait_time = DIV_ROUND_UP_ULL(NSEC_PER_SEC, 796 dev->pk_clk_freq) * 256; 797 798 dev->rng.name = dev->name; 799 dev->rng.data_present = hifn_rng_data_present, 800 dev->rng.data_read = hifn_rng_data_read, 801 dev->rng.priv = (unsigned long)dev; 802 803 return hwrng_register(&dev->rng); 804 } 805 806 static void hifn_unregister_rng(struct hifn_device *dev) 807 { 808 hwrng_unregister(&dev->rng); 809 } 810 #else 811 #define hifn_register_rng(dev) 0 812 #define hifn_unregister_rng(dev) 813 #endif 814 815 static int hifn_init_pubrng(struct hifn_device *dev) 816 { 817 int i; 818 819 hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) | 820 HIFN_PUBRST_RESET); 821 822 for (i = 100; i > 0; --i) { 823 mdelay(1); 824 825 if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0) 826 break; 827 } 828 829 if (!i) { 830 dev_err(&dev->pdev->dev, "Failed to initialise public key engine.\n"); 831 } else { 832 hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE); 833 dev->dmareg |= HIFN_DMAIER_PUBDONE; 834 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg); 835 836 dev_dbg(&dev->pdev->dev, "Public key engine has been successfully initialised.\n"); 837 } 838 839 /* Enable RNG engine. */ 840 841 hifn_write_1(dev, HIFN_1_RNG_CONFIG, 842 hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA); 843 dev_dbg(&dev->pdev->dev, "RNG engine has been successfully initialised.\n"); 844 845 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG 846 /* First value must be discarded */ 847 hifn_read_1(dev, HIFN_1_RNG_DATA); 848 dev->rngtime = ktime_get(); 849 #endif 850 return 0; 851 } 852 853 static int hifn_enable_crypto(struct hifn_device *dev) 854 { 855 u32 dmacfg, addr; 856 char *offtbl = NULL; 857 int i; 858 859 for (i = 0; i < ARRAY_SIZE(pci2id); i++) { 860 if (pci2id[i].pci_vendor == dev->pdev->vendor && 861 pci2id[i].pci_prod == dev->pdev->device) { 862 offtbl = pci2id[i].card_id; 863 break; 864 } 865 } 866 867 if (!offtbl) { 868 dev_err(&dev->pdev->dev, "Unknown card!\n"); 869 return -ENODEV; 870 } 871 872 dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG); 873 874 hifn_write_1(dev, HIFN_1_DMA_CNFG, 875 HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET | 876 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE); 877 mdelay(1); 878 addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1); 879 mdelay(1); 880 hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0); 881 mdelay(1); 882 883 for (i = 0; i < 12; ++i) { 884 addr = hifn_next_signature(addr, offtbl[i] + 0x101); 885 hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr); 886 887 mdelay(1); 888 } 889 hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg); 890 891 dev_dbg(&dev->pdev->dev, "%s %s.\n", dev->name, pci_name(dev->pdev)); 892 893 return 0; 894 } 895 896 static void hifn_init_dma(struct hifn_device *dev) 897 { 898 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 899 u32 dptr = dev->desc_dma; 900 int i; 901 902 for (i = 0; i < HIFN_D_CMD_RSIZE; ++i) 903 dma->cmdr[i].p = __cpu_to_le32(dptr + 904 offsetof(struct hifn_dma, command_bufs[i][0])); 905 for (i = 0; i < HIFN_D_RES_RSIZE; ++i) 906 dma->resr[i].p = __cpu_to_le32(dptr + 907 offsetof(struct hifn_dma, result_bufs[i][0])); 908 909 /* Setup LAST descriptors. */ 910 dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr + 911 offsetof(struct hifn_dma, cmdr[0])); 912 dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr + 913 offsetof(struct hifn_dma, srcr[0])); 914 dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr + 915 offsetof(struct hifn_dma, dstr[0])); 916 dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr + 917 offsetof(struct hifn_dma, resr[0])); 918 919 dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0; 920 dma->cmdi = dma->srci = dma->dsti = dma->resi = 0; 921 dma->cmdk = dma->srck = dma->dstk = dma->resk = 0; 922 } 923 924 /* 925 * Initialize the PLL. We need to know the frequency of the reference clock 926 * to calculate the optimal multiplier. For PCI we assume 66MHz, since that 927 * allows us to operate without the risk of overclocking the chip. If it 928 * actually uses 33MHz, the chip will operate at half the speed, this can be 929 * overridden by specifying the frequency as module parameter (pci33). 930 * 931 * Unfortunately the PCI clock is not very suitable since the HIFN needs a 932 * stable clock and the PCI clock frequency may vary, so the default is the 933 * external clock. There is no way to find out its frequency, we default to 934 * 66MHz since according to Mike Ham of HiFn, almost every board in existence 935 * has an external crystal populated at 66MHz. 936 */ 937 static void hifn_init_pll(struct hifn_device *dev) 938 { 939 unsigned int freq, m; 940 u32 pllcfg; 941 942 pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1; 943 944 if (strncmp(hifn_pll_ref, "ext", 3) == 0) 945 pllcfg |= HIFN_PLL_REF_CLK_PLL; 946 else 947 pllcfg |= HIFN_PLL_REF_CLK_HBI; 948 949 if (hifn_pll_ref[3] != '\0') 950 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10); 951 else { 952 freq = 66; 953 dev_info(&dev->pdev->dev, "assuming %uMHz clock speed, override with hifn_pll_ref=%.3s<frequency>\n", 954 freq, hifn_pll_ref); 955 } 956 957 m = HIFN_PLL_FCK_MAX / freq; 958 959 pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT; 960 if (m <= 8) 961 pllcfg |= HIFN_PLL_IS_1_8; 962 else 963 pllcfg |= HIFN_PLL_IS_9_12; 964 965 /* Select clock source and enable clock bypass */ 966 hifn_write_1(dev, HIFN_1_PLL, pllcfg | 967 HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI | HIFN_PLL_BP); 968 969 /* Let the chip lock to the input clock */ 970 mdelay(10); 971 972 /* Disable clock bypass */ 973 hifn_write_1(dev, HIFN_1_PLL, pllcfg | 974 HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI); 975 976 /* Switch the engines to the PLL */ 977 hifn_write_1(dev, HIFN_1_PLL, pllcfg | 978 HIFN_PLL_PK_CLK_PLL | HIFN_PLL_PE_CLK_PLL); 979 980 /* 981 * The Fpk_clk runs at half the total speed. Its frequency is needed to 982 * calculate the minimum time between two reads of the rng. Since 33MHz 983 * is actually 33.333... we overestimate the frequency here, resulting 984 * in slightly larger intervals. 985 */ 986 dev->pk_clk_freq = 1000000 * (freq + 1) * m / 2; 987 } 988 989 static void hifn_init_registers(struct hifn_device *dev) 990 { 991 u32 dptr = dev->desc_dma; 992 993 /* Initialization magic... */ 994 hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA); 995 hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD); 996 hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER); 997 998 /* write all 4 ring address registers */ 999 hifn_write_1(dev, HIFN_1_DMA_CRAR, dptr + 1000 offsetof(struct hifn_dma, cmdr[0])); 1001 hifn_write_1(dev, HIFN_1_DMA_SRAR, dptr + 1002 offsetof(struct hifn_dma, srcr[0])); 1003 hifn_write_1(dev, HIFN_1_DMA_DRAR, dptr + 1004 offsetof(struct hifn_dma, dstr[0])); 1005 hifn_write_1(dev, HIFN_1_DMA_RRAR, dptr + 1006 offsetof(struct hifn_dma, resr[0])); 1007 1008 mdelay(2); 1009 #if 0 1010 hifn_write_1(dev, HIFN_1_DMA_CSR, 1011 HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS | 1012 HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS | 1013 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST | 1014 HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER | 1015 HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST | 1016 HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER | 1017 HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST | 1018 HIFN_DMACSR_S_WAIT | 1019 HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST | 1020 HIFN_DMACSR_C_WAIT | 1021 HIFN_DMACSR_ENGINE | 1022 HIFN_DMACSR_PUBDONE); 1023 #else 1024 hifn_write_1(dev, HIFN_1_DMA_CSR, 1025 HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA | 1026 HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA | 1027 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST | 1028 HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER | 1029 HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST | 1030 HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER | 1031 HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST | 1032 HIFN_DMACSR_S_WAIT | 1033 HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST | 1034 HIFN_DMACSR_C_WAIT | 1035 HIFN_DMACSR_ENGINE | 1036 HIFN_DMACSR_PUBDONE); 1037 #endif 1038 hifn_read_1(dev, HIFN_1_DMA_CSR); 1039 1040 dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT | 1041 HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER | 1042 HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT | 1043 HIFN_DMAIER_ENGINE; 1044 dev->dmareg &= ~HIFN_DMAIER_C_WAIT; 1045 1046 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg); 1047 hifn_read_1(dev, HIFN_1_DMA_IER); 1048 #if 0 1049 hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG | 1050 HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES | 1051 HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 | 1052 HIFN_PUCNFG_DRAM); 1053 #else 1054 hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342); 1055 #endif 1056 hifn_init_pll(dev); 1057 1058 hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER); 1059 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET | 1060 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST | 1061 ((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) | 1062 ((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL)); 1063 } 1064 1065 static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf, 1066 unsigned dlen, unsigned slen, u16 mask, u8 snum) 1067 { 1068 struct hifn_base_command *base_cmd; 1069 u8 *buf_pos = buf; 1070 1071 base_cmd = (struct hifn_base_command *)buf_pos; 1072 base_cmd->masks = __cpu_to_le16(mask); 1073 base_cmd->total_source_count = 1074 __cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO); 1075 base_cmd->total_dest_count = 1076 __cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO); 1077 1078 dlen >>= 16; 1079 slen >>= 16; 1080 base_cmd->session_num = __cpu_to_le16(snum | 1081 ((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) | 1082 ((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M)); 1083 1084 return sizeof(struct hifn_base_command); 1085 } 1086 1087 static int hifn_setup_crypto_command(struct hifn_device *dev, 1088 u8 *buf, unsigned dlen, unsigned slen, 1089 u8 *key, int keylen, u8 *iv, int ivsize, u16 mode) 1090 { 1091 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1092 struct hifn_crypt_command *cry_cmd; 1093 u8 *buf_pos = buf; 1094 u16 cmd_len; 1095 1096 cry_cmd = (struct hifn_crypt_command *)buf_pos; 1097 1098 cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff); 1099 dlen >>= 16; 1100 cry_cmd->masks = __cpu_to_le16(mode | 1101 ((dlen << HIFN_CRYPT_CMD_SRCLEN_S) & 1102 HIFN_CRYPT_CMD_SRCLEN_M)); 1103 cry_cmd->header_skip = 0; 1104 cry_cmd->reserved = 0; 1105 1106 buf_pos += sizeof(struct hifn_crypt_command); 1107 1108 dma->cmdu++; 1109 if (dma->cmdu > 1) { 1110 dev->dmareg |= HIFN_DMAIER_C_WAIT; 1111 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg); 1112 } 1113 1114 if (keylen) { 1115 memcpy(buf_pos, key, keylen); 1116 buf_pos += keylen; 1117 } 1118 if (ivsize) { 1119 memcpy(buf_pos, iv, ivsize); 1120 buf_pos += ivsize; 1121 } 1122 1123 cmd_len = buf_pos - buf; 1124 1125 return cmd_len; 1126 } 1127 1128 static int hifn_setup_cmd_desc(struct hifn_device *dev, 1129 struct hifn_context *ctx, struct hifn_request_context *rctx, 1130 void *priv, unsigned int nbytes) 1131 { 1132 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1133 int cmd_len, sa_idx; 1134 u8 *buf, *buf_pos; 1135 u16 mask; 1136 1137 sa_idx = dma->cmdi; 1138 buf_pos = buf = dma->command_bufs[dma->cmdi]; 1139 1140 mask = 0; 1141 switch (rctx->op) { 1142 case ACRYPTO_OP_DECRYPT: 1143 mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE; 1144 break; 1145 case ACRYPTO_OP_ENCRYPT: 1146 mask = HIFN_BASE_CMD_CRYPT; 1147 break; 1148 case ACRYPTO_OP_HMAC: 1149 mask = HIFN_BASE_CMD_MAC; 1150 break; 1151 default: 1152 goto err_out; 1153 } 1154 1155 buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes, 1156 nbytes, mask, dev->snum); 1157 1158 if (rctx->op == ACRYPTO_OP_ENCRYPT || rctx->op == ACRYPTO_OP_DECRYPT) { 1159 u16 md = 0; 1160 1161 if (ctx->keysize) 1162 md |= HIFN_CRYPT_CMD_NEW_KEY; 1163 if (rctx->iv && rctx->mode != ACRYPTO_MODE_ECB) 1164 md |= HIFN_CRYPT_CMD_NEW_IV; 1165 1166 switch (rctx->mode) { 1167 case ACRYPTO_MODE_ECB: 1168 md |= HIFN_CRYPT_CMD_MODE_ECB; 1169 break; 1170 case ACRYPTO_MODE_CBC: 1171 md |= HIFN_CRYPT_CMD_MODE_CBC; 1172 break; 1173 case ACRYPTO_MODE_CFB: 1174 md |= HIFN_CRYPT_CMD_MODE_CFB; 1175 break; 1176 case ACRYPTO_MODE_OFB: 1177 md |= HIFN_CRYPT_CMD_MODE_OFB; 1178 break; 1179 default: 1180 goto err_out; 1181 } 1182 1183 switch (rctx->type) { 1184 case ACRYPTO_TYPE_AES_128: 1185 if (ctx->keysize != 16) 1186 goto err_out; 1187 md |= HIFN_CRYPT_CMD_KSZ_128 | 1188 HIFN_CRYPT_CMD_ALG_AES; 1189 break; 1190 case ACRYPTO_TYPE_AES_192: 1191 if (ctx->keysize != 24) 1192 goto err_out; 1193 md |= HIFN_CRYPT_CMD_KSZ_192 | 1194 HIFN_CRYPT_CMD_ALG_AES; 1195 break; 1196 case ACRYPTO_TYPE_AES_256: 1197 if (ctx->keysize != 32) 1198 goto err_out; 1199 md |= HIFN_CRYPT_CMD_KSZ_256 | 1200 HIFN_CRYPT_CMD_ALG_AES; 1201 break; 1202 case ACRYPTO_TYPE_3DES: 1203 if (ctx->keysize != 24) 1204 goto err_out; 1205 md |= HIFN_CRYPT_CMD_ALG_3DES; 1206 break; 1207 case ACRYPTO_TYPE_DES: 1208 if (ctx->keysize != 8) 1209 goto err_out; 1210 md |= HIFN_CRYPT_CMD_ALG_DES; 1211 break; 1212 default: 1213 goto err_out; 1214 } 1215 1216 buf_pos += hifn_setup_crypto_command(dev, buf_pos, 1217 nbytes, nbytes, ctx->key, ctx->keysize, 1218 rctx->iv, rctx->ivsize, md); 1219 } 1220 1221 dev->sa[sa_idx] = priv; 1222 dev->started++; 1223 1224 cmd_len = buf_pos - buf; 1225 dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID | 1226 HIFN_D_LAST | HIFN_D_MASKDONEIRQ); 1227 1228 if (++dma->cmdi == HIFN_D_CMD_RSIZE) { 1229 dma->cmdr[dma->cmdi].l = __cpu_to_le32( 1230 HIFN_D_VALID | HIFN_D_LAST | 1231 HIFN_D_MASKDONEIRQ | HIFN_D_JUMP); 1232 dma->cmdi = 0; 1233 } else { 1234 dma->cmdr[dma->cmdi - 1].l |= __cpu_to_le32(HIFN_D_VALID); 1235 } 1236 1237 if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) { 1238 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA); 1239 dev->flags |= HIFN_FLAG_CMD_BUSY; 1240 } 1241 return 0; 1242 1243 err_out: 1244 return -EINVAL; 1245 } 1246 1247 static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page, 1248 unsigned int offset, unsigned int size, int last) 1249 { 1250 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1251 int idx; 1252 dma_addr_t addr; 1253 1254 addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_TODEVICE); 1255 1256 idx = dma->srci; 1257 1258 dma->srcr[idx].p = __cpu_to_le32(addr); 1259 dma->srcr[idx].l = __cpu_to_le32(size | HIFN_D_VALID | 1260 HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0)); 1261 1262 if (++idx == HIFN_D_SRC_RSIZE) { 1263 dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID | 1264 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | 1265 (last ? HIFN_D_LAST : 0)); 1266 idx = 0; 1267 } 1268 1269 dma->srci = idx; 1270 dma->srcu++; 1271 1272 if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) { 1273 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA); 1274 dev->flags |= HIFN_FLAG_SRC_BUSY; 1275 } 1276 1277 return size; 1278 } 1279 1280 static void hifn_setup_res_desc(struct hifn_device *dev) 1281 { 1282 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1283 1284 dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT | 1285 HIFN_D_VALID | HIFN_D_LAST); 1286 /* 1287 * dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID | 1288 * HIFN_D_LAST); 1289 */ 1290 1291 if (++dma->resi == HIFN_D_RES_RSIZE) { 1292 dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID | 1293 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST); 1294 dma->resi = 0; 1295 } 1296 1297 dma->resu++; 1298 1299 if (!(dev->flags & HIFN_FLAG_RES_BUSY)) { 1300 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA); 1301 dev->flags |= HIFN_FLAG_RES_BUSY; 1302 } 1303 } 1304 1305 static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page, 1306 unsigned offset, unsigned size, int last) 1307 { 1308 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1309 int idx; 1310 dma_addr_t addr; 1311 1312 addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_FROMDEVICE); 1313 1314 idx = dma->dsti; 1315 dma->dstr[idx].p = __cpu_to_le32(addr); 1316 dma->dstr[idx].l = __cpu_to_le32(size | HIFN_D_VALID | 1317 HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0)); 1318 1319 if (++idx == HIFN_D_DST_RSIZE) { 1320 dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID | 1321 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | 1322 (last ? HIFN_D_LAST : 0)); 1323 idx = 0; 1324 } 1325 dma->dsti = idx; 1326 dma->dstu++; 1327 1328 if (!(dev->flags & HIFN_FLAG_DST_BUSY)) { 1329 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA); 1330 dev->flags |= HIFN_FLAG_DST_BUSY; 1331 } 1332 } 1333 1334 static int hifn_setup_dma(struct hifn_device *dev, 1335 struct hifn_context *ctx, struct hifn_request_context *rctx, 1336 struct scatterlist *src, struct scatterlist *dst, 1337 unsigned int nbytes, void *priv) 1338 { 1339 struct scatterlist *t; 1340 struct page *spage, *dpage; 1341 unsigned int soff, doff; 1342 unsigned int n, len; 1343 1344 n = nbytes; 1345 while (n) { 1346 spage = sg_page(src); 1347 soff = src->offset; 1348 len = min(src->length, n); 1349 1350 hifn_setup_src_desc(dev, spage, soff, len, n - len == 0); 1351 1352 src++; 1353 n -= len; 1354 } 1355 1356 t = &rctx->walk.cache[0]; 1357 n = nbytes; 1358 while (n) { 1359 if (t->length && rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) { 1360 BUG_ON(!sg_page(t)); 1361 dpage = sg_page(t); 1362 doff = 0; 1363 len = t->length; 1364 } else { 1365 BUG_ON(!sg_page(dst)); 1366 dpage = sg_page(dst); 1367 doff = dst->offset; 1368 len = dst->length; 1369 } 1370 len = min(len, n); 1371 1372 hifn_setup_dst_desc(dev, dpage, doff, len, n - len == 0); 1373 1374 dst++; 1375 t++; 1376 n -= len; 1377 } 1378 1379 hifn_setup_cmd_desc(dev, ctx, rctx, priv, nbytes); 1380 hifn_setup_res_desc(dev); 1381 return 0; 1382 } 1383 1384 static int hifn_cipher_walk_init(struct hifn_cipher_walk *w, 1385 int num, gfp_t gfp_flags) 1386 { 1387 int i; 1388 1389 num = min(ASYNC_SCATTERLIST_CACHE, num); 1390 sg_init_table(w->cache, num); 1391 1392 w->num = 0; 1393 for (i = 0; i < num; ++i) { 1394 struct page *page = alloc_page(gfp_flags); 1395 struct scatterlist *s; 1396 1397 if (!page) 1398 break; 1399 1400 s = &w->cache[i]; 1401 1402 sg_set_page(s, page, PAGE_SIZE, 0); 1403 w->num++; 1404 } 1405 1406 return i; 1407 } 1408 1409 static void hifn_cipher_walk_exit(struct hifn_cipher_walk *w) 1410 { 1411 int i; 1412 1413 for (i = 0; i < w->num; ++i) { 1414 struct scatterlist *s = &w->cache[i]; 1415 1416 __free_page(sg_page(s)); 1417 1418 s->length = 0; 1419 } 1420 1421 w->num = 0; 1422 } 1423 1424 static int ablkcipher_add(unsigned int *drestp, struct scatterlist *dst, 1425 unsigned int size, unsigned int *nbytesp) 1426 { 1427 unsigned int copy, drest = *drestp, nbytes = *nbytesp; 1428 int idx = 0; 1429 1430 if (drest < size || size > nbytes) 1431 return -EINVAL; 1432 1433 while (size) { 1434 copy = min3(drest, size, dst->length); 1435 1436 size -= copy; 1437 drest -= copy; 1438 nbytes -= copy; 1439 1440 pr_debug("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n", 1441 __func__, copy, size, drest, nbytes); 1442 1443 dst++; 1444 idx++; 1445 } 1446 1447 *nbytesp = nbytes; 1448 *drestp = drest; 1449 1450 return idx; 1451 } 1452 1453 static int hifn_cipher_walk(struct ablkcipher_request *req, 1454 struct hifn_cipher_walk *w) 1455 { 1456 struct scatterlist *dst, *t; 1457 unsigned int nbytes = req->nbytes, offset, copy, diff; 1458 int idx, tidx, err; 1459 1460 tidx = idx = 0; 1461 offset = 0; 1462 while (nbytes) { 1463 if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED)) 1464 return -EINVAL; 1465 1466 dst = &req->dst[idx]; 1467 1468 pr_debug("\n%s: dlen: %u, doff: %u, offset: %u, nbytes: %u.\n", 1469 __func__, dst->length, dst->offset, offset, nbytes); 1470 1471 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) || 1472 !IS_ALIGNED(dst->length, HIFN_D_DST_DALIGN) || 1473 offset) { 1474 unsigned slen = min(dst->length - offset, nbytes); 1475 unsigned dlen = PAGE_SIZE; 1476 1477 t = &w->cache[idx]; 1478 1479 err = ablkcipher_add(&dlen, dst, slen, &nbytes); 1480 if (err < 0) 1481 return err; 1482 1483 idx += err; 1484 1485 copy = slen & ~(HIFN_D_DST_DALIGN - 1); 1486 diff = slen & (HIFN_D_DST_DALIGN - 1); 1487 1488 if (dlen < nbytes) { 1489 /* 1490 * Destination page does not have enough space 1491 * to put there additional blocksized chunk, 1492 * so we mark that page as containing only 1493 * blocksize aligned chunks: 1494 * t->length = (slen & ~(HIFN_D_DST_DALIGN - 1)); 1495 * and increase number of bytes to be processed 1496 * in next chunk: 1497 * nbytes += diff; 1498 */ 1499 nbytes += diff; 1500 1501 /* 1502 * Temporary of course... 1503 * Kick author if you will catch this one. 1504 */ 1505 pr_err("%s: dlen: %u, nbytes: %u, slen: %u, offset: %u.\n", 1506 __func__, dlen, nbytes, slen, offset); 1507 pr_err("%s: please contact author to fix this " 1508 "issue, generally you should not catch " 1509 "this path under any condition but who " 1510 "knows how did you use crypto code.\n" 1511 "Thank you.\n", __func__); 1512 BUG(); 1513 } else { 1514 copy += diff + nbytes; 1515 1516 dst = &req->dst[idx]; 1517 1518 err = ablkcipher_add(&dlen, dst, nbytes, &nbytes); 1519 if (err < 0) 1520 return err; 1521 1522 idx += err; 1523 } 1524 1525 t->length = copy; 1526 t->offset = offset; 1527 } else { 1528 nbytes -= min(dst->length, nbytes); 1529 idx++; 1530 } 1531 1532 tidx++; 1533 } 1534 1535 return tidx; 1536 } 1537 1538 static int hifn_setup_session(struct ablkcipher_request *req) 1539 { 1540 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm); 1541 struct hifn_request_context *rctx = ablkcipher_request_ctx(req); 1542 struct hifn_device *dev = ctx->dev; 1543 unsigned long dlen, flags; 1544 unsigned int nbytes = req->nbytes, idx = 0; 1545 int err = -EINVAL, sg_num; 1546 struct scatterlist *dst; 1547 1548 if (rctx->iv && !rctx->ivsize && rctx->mode != ACRYPTO_MODE_ECB) 1549 goto err_out_exit; 1550 1551 rctx->walk.flags = 0; 1552 1553 while (nbytes) { 1554 dst = &req->dst[idx]; 1555 dlen = min(dst->length, nbytes); 1556 1557 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) || 1558 !IS_ALIGNED(dlen, HIFN_D_DST_DALIGN)) 1559 rctx->walk.flags |= ASYNC_FLAGS_MISALIGNED; 1560 1561 nbytes -= dlen; 1562 idx++; 1563 } 1564 1565 if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) { 1566 err = hifn_cipher_walk_init(&rctx->walk, idx, GFP_ATOMIC); 1567 if (err < 0) 1568 return err; 1569 } 1570 1571 sg_num = hifn_cipher_walk(req, &rctx->walk); 1572 if (sg_num < 0) { 1573 err = sg_num; 1574 goto err_out_exit; 1575 } 1576 1577 spin_lock_irqsave(&dev->lock, flags); 1578 if (dev->started + sg_num > HIFN_QUEUE_LENGTH) { 1579 err = -EAGAIN; 1580 goto err_out; 1581 } 1582 1583 err = hifn_setup_dma(dev, ctx, rctx, req->src, req->dst, req->nbytes, req); 1584 if (err) 1585 goto err_out; 1586 1587 dev->snum++; 1588 1589 dev->active = HIFN_DEFAULT_ACTIVE_NUM; 1590 spin_unlock_irqrestore(&dev->lock, flags); 1591 1592 return 0; 1593 1594 err_out: 1595 spin_unlock_irqrestore(&dev->lock, flags); 1596 err_out_exit: 1597 if (err) { 1598 dev_info(&dev->pdev->dev, "iv: %p [%d], key: %p [%d], mode: %u, op: %u, " 1599 "type: %u, err: %d.\n", 1600 rctx->iv, rctx->ivsize, 1601 ctx->key, ctx->keysize, 1602 rctx->mode, rctx->op, rctx->type, err); 1603 } 1604 1605 return err; 1606 } 1607 1608 static int hifn_start_device(struct hifn_device *dev) 1609 { 1610 int err; 1611 1612 dev->started = dev->active = 0; 1613 hifn_reset_dma(dev, 1); 1614 1615 err = hifn_enable_crypto(dev); 1616 if (err) 1617 return err; 1618 1619 hifn_reset_puc(dev); 1620 1621 hifn_init_dma(dev); 1622 1623 hifn_init_registers(dev); 1624 1625 hifn_init_pubrng(dev); 1626 1627 return 0; 1628 } 1629 1630 static int ablkcipher_get(void *saddr, unsigned int *srestp, unsigned int offset, 1631 struct scatterlist *dst, unsigned int size, unsigned int *nbytesp) 1632 { 1633 unsigned int srest = *srestp, nbytes = *nbytesp, copy; 1634 void *daddr; 1635 int idx = 0; 1636 1637 if (srest < size || size > nbytes) 1638 return -EINVAL; 1639 1640 while (size) { 1641 copy = min3(srest, dst->length, size); 1642 1643 daddr = kmap_atomic(sg_page(dst)); 1644 memcpy(daddr + dst->offset + offset, saddr, copy); 1645 kunmap_atomic(daddr); 1646 1647 nbytes -= copy; 1648 size -= copy; 1649 srest -= copy; 1650 saddr += copy; 1651 offset = 0; 1652 1653 pr_debug("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n", 1654 __func__, copy, size, srest, nbytes); 1655 1656 dst++; 1657 idx++; 1658 } 1659 1660 *nbytesp = nbytes; 1661 *srestp = srest; 1662 1663 return idx; 1664 } 1665 1666 static inline void hifn_complete_sa(struct hifn_device *dev, int i) 1667 { 1668 unsigned long flags; 1669 1670 spin_lock_irqsave(&dev->lock, flags); 1671 dev->sa[i] = NULL; 1672 dev->started--; 1673 if (dev->started < 0) 1674 dev_info(&dev->pdev->dev, "%s: started: %d.\n", __func__, 1675 dev->started); 1676 spin_unlock_irqrestore(&dev->lock, flags); 1677 BUG_ON(dev->started < 0); 1678 } 1679 1680 static void hifn_process_ready(struct ablkcipher_request *req, int error) 1681 { 1682 struct hifn_request_context *rctx = ablkcipher_request_ctx(req); 1683 1684 if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) { 1685 unsigned int nbytes = req->nbytes; 1686 int idx = 0, err; 1687 struct scatterlist *dst, *t; 1688 void *saddr; 1689 1690 while (nbytes) { 1691 t = &rctx->walk.cache[idx]; 1692 dst = &req->dst[idx]; 1693 1694 pr_debug("\n%s: sg_page(t): %p, t->length: %u, " 1695 "sg_page(dst): %p, dst->length: %u, " 1696 "nbytes: %u.\n", 1697 __func__, sg_page(t), t->length, 1698 sg_page(dst), dst->length, nbytes); 1699 1700 if (!t->length) { 1701 nbytes -= min(dst->length, nbytes); 1702 idx++; 1703 continue; 1704 } 1705 1706 saddr = kmap_atomic(sg_page(t)); 1707 1708 err = ablkcipher_get(saddr, &t->length, t->offset, 1709 dst, nbytes, &nbytes); 1710 if (err < 0) { 1711 kunmap_atomic(saddr); 1712 break; 1713 } 1714 1715 idx += err; 1716 kunmap_atomic(saddr); 1717 } 1718 1719 hifn_cipher_walk_exit(&rctx->walk); 1720 } 1721 1722 req->base.complete(&req->base, error); 1723 } 1724 1725 static void hifn_clear_rings(struct hifn_device *dev, int error) 1726 { 1727 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1728 int i, u; 1729 1730 dev_dbg(&dev->pdev->dev, "ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, " 1731 "k: %d.%d.%d.%d.\n", 1732 dma->cmdi, dma->srci, dma->dsti, dma->resi, 1733 dma->cmdu, dma->srcu, dma->dstu, dma->resu, 1734 dma->cmdk, dma->srck, dma->dstk, dma->resk); 1735 1736 i = dma->resk; u = dma->resu; 1737 while (u != 0) { 1738 if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID)) 1739 break; 1740 1741 if (dev->sa[i]) { 1742 dev->success++; 1743 dev->reset = 0; 1744 hifn_process_ready(dev->sa[i], error); 1745 hifn_complete_sa(dev, i); 1746 } 1747 1748 if (++i == HIFN_D_RES_RSIZE) 1749 i = 0; 1750 u--; 1751 } 1752 dma->resk = i; dma->resu = u; 1753 1754 i = dma->srck; u = dma->srcu; 1755 while (u != 0) { 1756 if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID)) 1757 break; 1758 if (++i == HIFN_D_SRC_RSIZE) 1759 i = 0; 1760 u--; 1761 } 1762 dma->srck = i; dma->srcu = u; 1763 1764 i = dma->cmdk; u = dma->cmdu; 1765 while (u != 0) { 1766 if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID)) 1767 break; 1768 if (++i == HIFN_D_CMD_RSIZE) 1769 i = 0; 1770 u--; 1771 } 1772 dma->cmdk = i; dma->cmdu = u; 1773 1774 i = dma->dstk; u = dma->dstu; 1775 while (u != 0) { 1776 if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID)) 1777 break; 1778 if (++i == HIFN_D_DST_RSIZE) 1779 i = 0; 1780 u--; 1781 } 1782 dma->dstk = i; dma->dstu = u; 1783 1784 dev_dbg(&dev->pdev->dev, "ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, " 1785 "k: %d.%d.%d.%d.\n", 1786 dma->cmdi, dma->srci, dma->dsti, dma->resi, 1787 dma->cmdu, dma->srcu, dma->dstu, dma->resu, 1788 dma->cmdk, dma->srck, dma->dstk, dma->resk); 1789 } 1790 1791 static void hifn_work(struct work_struct *work) 1792 { 1793 struct delayed_work *dw = to_delayed_work(work); 1794 struct hifn_device *dev = container_of(dw, struct hifn_device, work); 1795 unsigned long flags; 1796 int reset = 0; 1797 u32 r = 0; 1798 1799 spin_lock_irqsave(&dev->lock, flags); 1800 if (dev->active == 0) { 1801 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1802 1803 if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) { 1804 dev->flags &= ~HIFN_FLAG_CMD_BUSY; 1805 r |= HIFN_DMACSR_C_CTRL_DIS; 1806 } 1807 if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) { 1808 dev->flags &= ~HIFN_FLAG_SRC_BUSY; 1809 r |= HIFN_DMACSR_S_CTRL_DIS; 1810 } 1811 if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) { 1812 dev->flags &= ~HIFN_FLAG_DST_BUSY; 1813 r |= HIFN_DMACSR_D_CTRL_DIS; 1814 } 1815 if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) { 1816 dev->flags &= ~HIFN_FLAG_RES_BUSY; 1817 r |= HIFN_DMACSR_R_CTRL_DIS; 1818 } 1819 if (r) 1820 hifn_write_1(dev, HIFN_1_DMA_CSR, r); 1821 } else 1822 dev->active--; 1823 1824 if ((dev->prev_success == dev->success) && dev->started) 1825 reset = 1; 1826 dev->prev_success = dev->success; 1827 spin_unlock_irqrestore(&dev->lock, flags); 1828 1829 if (reset) { 1830 if (++dev->reset >= 5) { 1831 int i; 1832 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1833 1834 dev_info(&dev->pdev->dev, 1835 "r: %08x, active: %d, started: %d, " 1836 "success: %lu: qlen: %u/%u, reset: %d.\n", 1837 r, dev->active, dev->started, 1838 dev->success, dev->queue.qlen, dev->queue.max_qlen, 1839 reset); 1840 1841 dev_info(&dev->pdev->dev, "%s: res: ", __func__); 1842 for (i = 0; i < HIFN_D_RES_RSIZE; ++i) { 1843 pr_info("%x.%p ", dma->resr[i].l, dev->sa[i]); 1844 if (dev->sa[i]) { 1845 hifn_process_ready(dev->sa[i], -ENODEV); 1846 hifn_complete_sa(dev, i); 1847 } 1848 } 1849 pr_info("\n"); 1850 1851 hifn_reset_dma(dev, 1); 1852 hifn_stop_device(dev); 1853 hifn_start_device(dev); 1854 dev->reset = 0; 1855 } 1856 1857 tasklet_schedule(&dev->tasklet); 1858 } 1859 1860 schedule_delayed_work(&dev->work, HZ); 1861 } 1862 1863 static irqreturn_t hifn_interrupt(int irq, void *data) 1864 { 1865 struct hifn_device *dev = (struct hifn_device *)data; 1866 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1867 u32 dmacsr, restart; 1868 1869 dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR); 1870 1871 dev_dbg(&dev->pdev->dev, "1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], " 1872 "i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n", 1873 dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi, 1874 dma->cmdi, dma->srci, dma->dsti, dma->resi, 1875 dma->cmdu, dma->srcu, dma->dstu, dma->resu); 1876 1877 if ((dmacsr & dev->dmareg) == 0) 1878 return IRQ_NONE; 1879 1880 hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg); 1881 1882 if (dmacsr & HIFN_DMACSR_ENGINE) 1883 hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR)); 1884 if (dmacsr & HIFN_DMACSR_PUBDONE) 1885 hifn_write_1(dev, HIFN_1_PUB_STATUS, 1886 hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE); 1887 1888 restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER); 1889 if (restart) { 1890 u32 puisr = hifn_read_0(dev, HIFN_0_PUISR); 1891 1892 dev_warn(&dev->pdev->dev, "overflow: r: %d, d: %d, puisr: %08x, d: %u.\n", 1893 !!(dmacsr & HIFN_DMACSR_R_OVER), 1894 !!(dmacsr & HIFN_DMACSR_D_OVER), 1895 puisr, !!(puisr & HIFN_PUISR_DSTOVER)); 1896 if (!!(puisr & HIFN_PUISR_DSTOVER)) 1897 hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER); 1898 hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER | 1899 HIFN_DMACSR_D_OVER)); 1900 } 1901 1902 restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT | 1903 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT); 1904 if (restart) { 1905 dev_warn(&dev->pdev->dev, "abort: c: %d, s: %d, d: %d, r: %d.\n", 1906 !!(dmacsr & HIFN_DMACSR_C_ABORT), 1907 !!(dmacsr & HIFN_DMACSR_S_ABORT), 1908 !!(dmacsr & HIFN_DMACSR_D_ABORT), 1909 !!(dmacsr & HIFN_DMACSR_R_ABORT)); 1910 hifn_reset_dma(dev, 1); 1911 hifn_init_dma(dev); 1912 hifn_init_registers(dev); 1913 } 1914 1915 if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) { 1916 dev_dbg(&dev->pdev->dev, "wait on command.\n"); 1917 dev->dmareg &= ~(HIFN_DMAIER_C_WAIT); 1918 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg); 1919 } 1920 1921 tasklet_schedule(&dev->tasklet); 1922 1923 return IRQ_HANDLED; 1924 } 1925 1926 static void hifn_flush(struct hifn_device *dev) 1927 { 1928 unsigned long flags; 1929 struct crypto_async_request *async_req; 1930 struct ablkcipher_request *req; 1931 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1932 int i; 1933 1934 for (i = 0; i < HIFN_D_RES_RSIZE; ++i) { 1935 struct hifn_desc *d = &dma->resr[i]; 1936 1937 if (dev->sa[i]) { 1938 hifn_process_ready(dev->sa[i], 1939 (d->l & __cpu_to_le32(HIFN_D_VALID)) ? -ENODEV : 0); 1940 hifn_complete_sa(dev, i); 1941 } 1942 } 1943 1944 spin_lock_irqsave(&dev->lock, flags); 1945 while ((async_req = crypto_dequeue_request(&dev->queue))) { 1946 req = ablkcipher_request_cast(async_req); 1947 spin_unlock_irqrestore(&dev->lock, flags); 1948 1949 hifn_process_ready(req, -ENODEV); 1950 1951 spin_lock_irqsave(&dev->lock, flags); 1952 } 1953 spin_unlock_irqrestore(&dev->lock, flags); 1954 } 1955 1956 static int hifn_setkey(struct crypto_ablkcipher *cipher, const u8 *key, 1957 unsigned int len) 1958 { 1959 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); 1960 struct hifn_context *ctx = crypto_tfm_ctx(tfm); 1961 struct hifn_device *dev = ctx->dev; 1962 1963 if (len > HIFN_MAX_CRYPT_KEY_LENGTH) { 1964 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); 1965 return -1; 1966 } 1967 1968 if (len == HIFN_DES_KEY_LENGTH) { 1969 u32 tmp[DES_EXPKEY_WORDS]; 1970 int ret = des_ekey(tmp, key); 1971 1972 if (unlikely(ret == 0) && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) { 1973 tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY; 1974 return -EINVAL; 1975 } 1976 } 1977 1978 dev->flags &= ~HIFN_FLAG_OLD_KEY; 1979 1980 memcpy(ctx->key, key, len); 1981 ctx->keysize = len; 1982 1983 return 0; 1984 } 1985 1986 static int hifn_handle_req(struct ablkcipher_request *req) 1987 { 1988 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm); 1989 struct hifn_device *dev = ctx->dev; 1990 int err = -EAGAIN; 1991 1992 if (dev->started + DIV_ROUND_UP(req->nbytes, PAGE_SIZE) <= HIFN_QUEUE_LENGTH) 1993 err = hifn_setup_session(req); 1994 1995 if (err == -EAGAIN) { 1996 unsigned long flags; 1997 1998 spin_lock_irqsave(&dev->lock, flags); 1999 err = ablkcipher_enqueue_request(&dev->queue, req); 2000 spin_unlock_irqrestore(&dev->lock, flags); 2001 } 2002 2003 return err; 2004 } 2005 2006 static int hifn_setup_crypto_req(struct ablkcipher_request *req, u8 op, 2007 u8 type, u8 mode) 2008 { 2009 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm); 2010 struct hifn_request_context *rctx = ablkcipher_request_ctx(req); 2011 unsigned ivsize; 2012 2013 ivsize = crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req)); 2014 2015 if (req->info && mode != ACRYPTO_MODE_ECB) { 2016 if (type == ACRYPTO_TYPE_AES_128) 2017 ivsize = HIFN_AES_IV_LENGTH; 2018 else if (type == ACRYPTO_TYPE_DES) 2019 ivsize = HIFN_DES_KEY_LENGTH; 2020 else if (type == ACRYPTO_TYPE_3DES) 2021 ivsize = HIFN_3DES_KEY_LENGTH; 2022 } 2023 2024 if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) { 2025 if (ctx->keysize == 24) 2026 type = ACRYPTO_TYPE_AES_192; 2027 else if (ctx->keysize == 32) 2028 type = ACRYPTO_TYPE_AES_256; 2029 } 2030 2031 rctx->op = op; 2032 rctx->mode = mode; 2033 rctx->type = type; 2034 rctx->iv = req->info; 2035 rctx->ivsize = ivsize; 2036 2037 /* 2038 * HEAVY TODO: needs to kick Herbert XU to write documentation. 2039 * HEAVY TODO: needs to kick Herbert XU to write documentation. 2040 * HEAVY TODO: needs to kick Herbert XU to write documentation. 2041 */ 2042 2043 return hifn_handle_req(req); 2044 } 2045 2046 static int hifn_process_queue(struct hifn_device *dev) 2047 { 2048 struct crypto_async_request *async_req, *backlog; 2049 struct ablkcipher_request *req; 2050 unsigned long flags; 2051 int err = 0; 2052 2053 while (dev->started < HIFN_QUEUE_LENGTH) { 2054 spin_lock_irqsave(&dev->lock, flags); 2055 backlog = crypto_get_backlog(&dev->queue); 2056 async_req = crypto_dequeue_request(&dev->queue); 2057 spin_unlock_irqrestore(&dev->lock, flags); 2058 2059 if (!async_req) 2060 break; 2061 2062 if (backlog) 2063 backlog->complete(backlog, -EINPROGRESS); 2064 2065 req = ablkcipher_request_cast(async_req); 2066 2067 err = hifn_handle_req(req); 2068 if (err) 2069 break; 2070 } 2071 2072 return err; 2073 } 2074 2075 static int hifn_setup_crypto(struct ablkcipher_request *req, u8 op, 2076 u8 type, u8 mode) 2077 { 2078 int err; 2079 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm); 2080 struct hifn_device *dev = ctx->dev; 2081 2082 err = hifn_setup_crypto_req(req, op, type, mode); 2083 if (err) 2084 return err; 2085 2086 if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen) 2087 hifn_process_queue(dev); 2088 2089 return -EINPROGRESS; 2090 } 2091 2092 /* 2093 * AES ecryption functions. 2094 */ 2095 static inline int hifn_encrypt_aes_ecb(struct ablkcipher_request *req) 2096 { 2097 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2098 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB); 2099 } 2100 static inline int hifn_encrypt_aes_cbc(struct ablkcipher_request *req) 2101 { 2102 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2103 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC); 2104 } 2105 static inline int hifn_encrypt_aes_cfb(struct ablkcipher_request *req) 2106 { 2107 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2108 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB); 2109 } 2110 static inline int hifn_encrypt_aes_ofb(struct ablkcipher_request *req) 2111 { 2112 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2113 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB); 2114 } 2115 2116 /* 2117 * AES decryption functions. 2118 */ 2119 static inline int hifn_decrypt_aes_ecb(struct ablkcipher_request *req) 2120 { 2121 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2122 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB); 2123 } 2124 static inline int hifn_decrypt_aes_cbc(struct ablkcipher_request *req) 2125 { 2126 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2127 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC); 2128 } 2129 static inline int hifn_decrypt_aes_cfb(struct ablkcipher_request *req) 2130 { 2131 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2132 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB); 2133 } 2134 static inline int hifn_decrypt_aes_ofb(struct ablkcipher_request *req) 2135 { 2136 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2137 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB); 2138 } 2139 2140 /* 2141 * DES ecryption functions. 2142 */ 2143 static inline int hifn_encrypt_des_ecb(struct ablkcipher_request *req) 2144 { 2145 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2146 ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB); 2147 } 2148 static inline int hifn_encrypt_des_cbc(struct ablkcipher_request *req) 2149 { 2150 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2151 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC); 2152 } 2153 static inline int hifn_encrypt_des_cfb(struct ablkcipher_request *req) 2154 { 2155 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2156 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB); 2157 } 2158 static inline int hifn_encrypt_des_ofb(struct ablkcipher_request *req) 2159 { 2160 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2161 ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB); 2162 } 2163 2164 /* 2165 * DES decryption functions. 2166 */ 2167 static inline int hifn_decrypt_des_ecb(struct ablkcipher_request *req) 2168 { 2169 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2170 ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB); 2171 } 2172 static inline int hifn_decrypt_des_cbc(struct ablkcipher_request *req) 2173 { 2174 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2175 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC); 2176 } 2177 static inline int hifn_decrypt_des_cfb(struct ablkcipher_request *req) 2178 { 2179 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2180 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB); 2181 } 2182 static inline int hifn_decrypt_des_ofb(struct ablkcipher_request *req) 2183 { 2184 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2185 ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB); 2186 } 2187 2188 /* 2189 * 3DES ecryption functions. 2190 */ 2191 static inline int hifn_encrypt_3des_ecb(struct ablkcipher_request *req) 2192 { 2193 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2194 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB); 2195 } 2196 static inline int hifn_encrypt_3des_cbc(struct ablkcipher_request *req) 2197 { 2198 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2199 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC); 2200 } 2201 static inline int hifn_encrypt_3des_cfb(struct ablkcipher_request *req) 2202 { 2203 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2204 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB); 2205 } 2206 static inline int hifn_encrypt_3des_ofb(struct ablkcipher_request *req) 2207 { 2208 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2209 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB); 2210 } 2211 2212 /* 3DES decryption functions. */ 2213 static inline int hifn_decrypt_3des_ecb(struct ablkcipher_request *req) 2214 { 2215 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2216 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB); 2217 } 2218 static inline int hifn_decrypt_3des_cbc(struct ablkcipher_request *req) 2219 { 2220 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2221 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC); 2222 } 2223 static inline int hifn_decrypt_3des_cfb(struct ablkcipher_request *req) 2224 { 2225 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2226 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB); 2227 } 2228 static inline int hifn_decrypt_3des_ofb(struct ablkcipher_request *req) 2229 { 2230 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2231 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB); 2232 } 2233 2234 struct hifn_alg_template { 2235 char name[CRYPTO_MAX_ALG_NAME]; 2236 char drv_name[CRYPTO_MAX_ALG_NAME]; 2237 unsigned int bsize; 2238 struct ablkcipher_alg ablkcipher; 2239 }; 2240 2241 static struct hifn_alg_template hifn_alg_templates[] = { 2242 /* 2243 * 3DES ECB, CBC, CFB and OFB modes. 2244 */ 2245 { 2246 .name = "cfb(des3_ede)", .drv_name = "cfb-3des", .bsize = 8, 2247 .ablkcipher = { 2248 .min_keysize = HIFN_3DES_KEY_LENGTH, 2249 .max_keysize = HIFN_3DES_KEY_LENGTH, 2250 .setkey = hifn_setkey, 2251 .encrypt = hifn_encrypt_3des_cfb, 2252 .decrypt = hifn_decrypt_3des_cfb, 2253 }, 2254 }, 2255 { 2256 .name = "ofb(des3_ede)", .drv_name = "ofb-3des", .bsize = 8, 2257 .ablkcipher = { 2258 .min_keysize = HIFN_3DES_KEY_LENGTH, 2259 .max_keysize = HIFN_3DES_KEY_LENGTH, 2260 .setkey = hifn_setkey, 2261 .encrypt = hifn_encrypt_3des_ofb, 2262 .decrypt = hifn_decrypt_3des_ofb, 2263 }, 2264 }, 2265 { 2266 .name = "cbc(des3_ede)", .drv_name = "cbc-3des", .bsize = 8, 2267 .ablkcipher = { 2268 .ivsize = HIFN_IV_LENGTH, 2269 .min_keysize = HIFN_3DES_KEY_LENGTH, 2270 .max_keysize = HIFN_3DES_KEY_LENGTH, 2271 .setkey = hifn_setkey, 2272 .encrypt = hifn_encrypt_3des_cbc, 2273 .decrypt = hifn_decrypt_3des_cbc, 2274 }, 2275 }, 2276 { 2277 .name = "ecb(des3_ede)", .drv_name = "ecb-3des", .bsize = 8, 2278 .ablkcipher = { 2279 .min_keysize = HIFN_3DES_KEY_LENGTH, 2280 .max_keysize = HIFN_3DES_KEY_LENGTH, 2281 .setkey = hifn_setkey, 2282 .encrypt = hifn_encrypt_3des_ecb, 2283 .decrypt = hifn_decrypt_3des_ecb, 2284 }, 2285 }, 2286 2287 /* 2288 * DES ECB, CBC, CFB and OFB modes. 2289 */ 2290 { 2291 .name = "cfb(des)", .drv_name = "cfb-des", .bsize = 8, 2292 .ablkcipher = { 2293 .min_keysize = HIFN_DES_KEY_LENGTH, 2294 .max_keysize = HIFN_DES_KEY_LENGTH, 2295 .setkey = hifn_setkey, 2296 .encrypt = hifn_encrypt_des_cfb, 2297 .decrypt = hifn_decrypt_des_cfb, 2298 }, 2299 }, 2300 { 2301 .name = "ofb(des)", .drv_name = "ofb-des", .bsize = 8, 2302 .ablkcipher = { 2303 .min_keysize = HIFN_DES_KEY_LENGTH, 2304 .max_keysize = HIFN_DES_KEY_LENGTH, 2305 .setkey = hifn_setkey, 2306 .encrypt = hifn_encrypt_des_ofb, 2307 .decrypt = hifn_decrypt_des_ofb, 2308 }, 2309 }, 2310 { 2311 .name = "cbc(des)", .drv_name = "cbc-des", .bsize = 8, 2312 .ablkcipher = { 2313 .ivsize = HIFN_IV_LENGTH, 2314 .min_keysize = HIFN_DES_KEY_LENGTH, 2315 .max_keysize = HIFN_DES_KEY_LENGTH, 2316 .setkey = hifn_setkey, 2317 .encrypt = hifn_encrypt_des_cbc, 2318 .decrypt = hifn_decrypt_des_cbc, 2319 }, 2320 }, 2321 { 2322 .name = "ecb(des)", .drv_name = "ecb-des", .bsize = 8, 2323 .ablkcipher = { 2324 .min_keysize = HIFN_DES_KEY_LENGTH, 2325 .max_keysize = HIFN_DES_KEY_LENGTH, 2326 .setkey = hifn_setkey, 2327 .encrypt = hifn_encrypt_des_ecb, 2328 .decrypt = hifn_decrypt_des_ecb, 2329 }, 2330 }, 2331 2332 /* 2333 * AES ECB, CBC, CFB and OFB modes. 2334 */ 2335 { 2336 .name = "ecb(aes)", .drv_name = "ecb-aes", .bsize = 16, 2337 .ablkcipher = { 2338 .min_keysize = AES_MIN_KEY_SIZE, 2339 .max_keysize = AES_MAX_KEY_SIZE, 2340 .setkey = hifn_setkey, 2341 .encrypt = hifn_encrypt_aes_ecb, 2342 .decrypt = hifn_decrypt_aes_ecb, 2343 }, 2344 }, 2345 { 2346 .name = "cbc(aes)", .drv_name = "cbc-aes", .bsize = 16, 2347 .ablkcipher = { 2348 .ivsize = HIFN_AES_IV_LENGTH, 2349 .min_keysize = AES_MIN_KEY_SIZE, 2350 .max_keysize = AES_MAX_KEY_SIZE, 2351 .setkey = hifn_setkey, 2352 .encrypt = hifn_encrypt_aes_cbc, 2353 .decrypt = hifn_decrypt_aes_cbc, 2354 }, 2355 }, 2356 { 2357 .name = "cfb(aes)", .drv_name = "cfb-aes", .bsize = 16, 2358 .ablkcipher = { 2359 .min_keysize = AES_MIN_KEY_SIZE, 2360 .max_keysize = AES_MAX_KEY_SIZE, 2361 .setkey = hifn_setkey, 2362 .encrypt = hifn_encrypt_aes_cfb, 2363 .decrypt = hifn_decrypt_aes_cfb, 2364 }, 2365 }, 2366 { 2367 .name = "ofb(aes)", .drv_name = "ofb-aes", .bsize = 16, 2368 .ablkcipher = { 2369 .min_keysize = AES_MIN_KEY_SIZE, 2370 .max_keysize = AES_MAX_KEY_SIZE, 2371 .setkey = hifn_setkey, 2372 .encrypt = hifn_encrypt_aes_ofb, 2373 .decrypt = hifn_decrypt_aes_ofb, 2374 }, 2375 }, 2376 }; 2377 2378 static int hifn_cra_init(struct crypto_tfm *tfm) 2379 { 2380 struct crypto_alg *alg = tfm->__crt_alg; 2381 struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg); 2382 struct hifn_context *ctx = crypto_tfm_ctx(tfm); 2383 2384 ctx->dev = ha->dev; 2385 tfm->crt_ablkcipher.reqsize = sizeof(struct hifn_request_context); 2386 return 0; 2387 } 2388 2389 static int hifn_alg_alloc(struct hifn_device *dev, struct hifn_alg_template *t) 2390 { 2391 struct hifn_crypto_alg *alg; 2392 int err; 2393 2394 alg = kzalloc(sizeof(*alg), GFP_KERNEL); 2395 if (!alg) 2396 return -ENOMEM; 2397 2398 snprintf(alg->alg.cra_name, CRYPTO_MAX_ALG_NAME, "%s", t->name); 2399 snprintf(alg->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-%s", 2400 t->drv_name, dev->name); 2401 2402 alg->alg.cra_priority = 300; 2403 alg->alg.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | 2404 CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC; 2405 alg->alg.cra_blocksize = t->bsize; 2406 alg->alg.cra_ctxsize = sizeof(struct hifn_context); 2407 alg->alg.cra_alignmask = 0; 2408 alg->alg.cra_type = &crypto_ablkcipher_type; 2409 alg->alg.cra_module = THIS_MODULE; 2410 alg->alg.cra_u.ablkcipher = t->ablkcipher; 2411 alg->alg.cra_init = hifn_cra_init; 2412 2413 alg->dev = dev; 2414 2415 list_add_tail(&alg->entry, &dev->alg_list); 2416 2417 err = crypto_register_alg(&alg->alg); 2418 if (err) { 2419 list_del(&alg->entry); 2420 kfree(alg); 2421 } 2422 2423 return err; 2424 } 2425 2426 static void hifn_unregister_alg(struct hifn_device *dev) 2427 { 2428 struct hifn_crypto_alg *a, *n; 2429 2430 list_for_each_entry_safe(a, n, &dev->alg_list, entry) { 2431 list_del(&a->entry); 2432 crypto_unregister_alg(&a->alg); 2433 kfree(a); 2434 } 2435 } 2436 2437 static int hifn_register_alg(struct hifn_device *dev) 2438 { 2439 int i, err; 2440 2441 for (i = 0; i < ARRAY_SIZE(hifn_alg_templates); ++i) { 2442 err = hifn_alg_alloc(dev, &hifn_alg_templates[i]); 2443 if (err) 2444 goto err_out_exit; 2445 } 2446 2447 return 0; 2448 2449 err_out_exit: 2450 hifn_unregister_alg(dev); 2451 return err; 2452 } 2453 2454 static void hifn_tasklet_callback(unsigned long data) 2455 { 2456 struct hifn_device *dev = (struct hifn_device *)data; 2457 2458 /* 2459 * This is ok to call this without lock being held, 2460 * althogh it modifies some parameters used in parallel, 2461 * (like dev->success), but they are used in process 2462 * context or update is atomic (like setting dev->sa[i] to NULL). 2463 */ 2464 hifn_clear_rings(dev, 0); 2465 2466 if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen) 2467 hifn_process_queue(dev); 2468 } 2469 2470 static int hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id) 2471 { 2472 int err, i; 2473 struct hifn_device *dev; 2474 char name[8]; 2475 2476 err = pci_enable_device(pdev); 2477 if (err) 2478 return err; 2479 pci_set_master(pdev); 2480 2481 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 2482 if (err) 2483 goto err_out_disable_pci_device; 2484 2485 snprintf(name, sizeof(name), "hifn%d", 2486 atomic_inc_return(&hifn_dev_number) - 1); 2487 2488 err = pci_request_regions(pdev, name); 2489 if (err) 2490 goto err_out_disable_pci_device; 2491 2492 if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE || 2493 pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE || 2494 pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) { 2495 dev_err(&pdev->dev, "Broken hardware - I/O regions are too small.\n"); 2496 err = -ENODEV; 2497 goto err_out_free_regions; 2498 } 2499 2500 dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg), 2501 GFP_KERNEL); 2502 if (!dev) { 2503 err = -ENOMEM; 2504 goto err_out_free_regions; 2505 } 2506 2507 INIT_LIST_HEAD(&dev->alg_list); 2508 2509 snprintf(dev->name, sizeof(dev->name), "%s", name); 2510 spin_lock_init(&dev->lock); 2511 2512 for (i = 0; i < 3; ++i) { 2513 unsigned long addr, size; 2514 2515 addr = pci_resource_start(pdev, i); 2516 size = pci_resource_len(pdev, i); 2517 2518 dev->bar[i] = ioremap_nocache(addr, size); 2519 if (!dev->bar[i]) { 2520 err = -ENOMEM; 2521 goto err_out_unmap_bars; 2522 } 2523 } 2524 2525 dev->desc_virt = pci_zalloc_consistent(pdev, sizeof(struct hifn_dma), 2526 &dev->desc_dma); 2527 if (!dev->desc_virt) { 2528 dev_err(&pdev->dev, "Failed to allocate descriptor rings.\n"); 2529 err = -ENOMEM; 2530 goto err_out_unmap_bars; 2531 } 2532 2533 dev->pdev = pdev; 2534 dev->irq = pdev->irq; 2535 2536 for (i = 0; i < HIFN_D_RES_RSIZE; ++i) 2537 dev->sa[i] = NULL; 2538 2539 pci_set_drvdata(pdev, dev); 2540 2541 tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev); 2542 2543 crypto_init_queue(&dev->queue, 1); 2544 2545 err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev); 2546 if (err) { 2547 dev_err(&pdev->dev, "Failed to request IRQ%d: err: %d.\n", 2548 dev->irq, err); 2549 dev->irq = 0; 2550 goto err_out_free_desc; 2551 } 2552 2553 err = hifn_start_device(dev); 2554 if (err) 2555 goto err_out_free_irq; 2556 2557 err = hifn_register_rng(dev); 2558 if (err) 2559 goto err_out_stop_device; 2560 2561 err = hifn_register_alg(dev); 2562 if (err) 2563 goto err_out_unregister_rng; 2564 2565 INIT_DELAYED_WORK(&dev->work, hifn_work); 2566 schedule_delayed_work(&dev->work, HZ); 2567 2568 dev_dbg(&pdev->dev, "HIFN crypto accelerator card at %s has been " 2569 "successfully registered as %s.\n", 2570 pci_name(pdev), dev->name); 2571 2572 return 0; 2573 2574 err_out_unregister_rng: 2575 hifn_unregister_rng(dev); 2576 err_out_stop_device: 2577 hifn_reset_dma(dev, 1); 2578 hifn_stop_device(dev); 2579 err_out_free_irq: 2580 free_irq(dev->irq, dev); 2581 tasklet_kill(&dev->tasklet); 2582 err_out_free_desc: 2583 pci_free_consistent(pdev, sizeof(struct hifn_dma), 2584 dev->desc_virt, dev->desc_dma); 2585 2586 err_out_unmap_bars: 2587 for (i = 0; i < 3; ++i) 2588 if (dev->bar[i]) 2589 iounmap(dev->bar[i]); 2590 2591 err_out_free_regions: 2592 pci_release_regions(pdev); 2593 2594 err_out_disable_pci_device: 2595 pci_disable_device(pdev); 2596 2597 return err; 2598 } 2599 2600 static void hifn_remove(struct pci_dev *pdev) 2601 { 2602 int i; 2603 struct hifn_device *dev; 2604 2605 dev = pci_get_drvdata(pdev); 2606 2607 if (dev) { 2608 cancel_delayed_work_sync(&dev->work); 2609 2610 hifn_unregister_rng(dev); 2611 hifn_unregister_alg(dev); 2612 hifn_reset_dma(dev, 1); 2613 hifn_stop_device(dev); 2614 2615 free_irq(dev->irq, dev); 2616 tasklet_kill(&dev->tasklet); 2617 2618 hifn_flush(dev); 2619 2620 pci_free_consistent(pdev, sizeof(struct hifn_dma), 2621 dev->desc_virt, dev->desc_dma); 2622 for (i = 0; i < 3; ++i) 2623 if (dev->bar[i]) 2624 iounmap(dev->bar[i]); 2625 2626 kfree(dev); 2627 } 2628 2629 pci_release_regions(pdev); 2630 pci_disable_device(pdev); 2631 } 2632 2633 static struct pci_device_id hifn_pci_tbl[] = { 2634 { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) }, 2635 { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) }, 2636 { 0 } 2637 }; 2638 MODULE_DEVICE_TABLE(pci, hifn_pci_tbl); 2639 2640 static struct pci_driver hifn_pci_driver = { 2641 .name = "hifn795x", 2642 .id_table = hifn_pci_tbl, 2643 .probe = hifn_probe, 2644 .remove = hifn_remove, 2645 }; 2646 2647 static int __init hifn_init(void) 2648 { 2649 unsigned int freq; 2650 int err; 2651 2652 /* HIFN supports only 32-bit addresses */ 2653 BUILD_BUG_ON(sizeof(dma_addr_t) != 4); 2654 2655 if (strncmp(hifn_pll_ref, "ext", 3) && 2656 strncmp(hifn_pll_ref, "pci", 3)) { 2657 pr_err("hifn795x: invalid hifn_pll_ref clock, must be pci or ext"); 2658 return -EINVAL; 2659 } 2660 2661 /* 2662 * For the 7955/7956 the reference clock frequency must be in the 2663 * range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz, 2664 * but this chip is currently not supported. 2665 */ 2666 if (hifn_pll_ref[3] != '\0') { 2667 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10); 2668 if (freq < 20 || freq > 100) { 2669 pr_err("hifn795x: invalid hifn_pll_ref frequency, must" 2670 "be in the range of 20-100"); 2671 return -EINVAL; 2672 } 2673 } 2674 2675 err = pci_register_driver(&hifn_pci_driver); 2676 if (err < 0) { 2677 pr_err("Failed to register PCI driver for %s device.\n", 2678 hifn_pci_driver.name); 2679 return -ENODEV; 2680 } 2681 2682 pr_info("Driver for HIFN 795x crypto accelerator chip " 2683 "has been successfully registered.\n"); 2684 2685 return 0; 2686 } 2687 2688 static void __exit hifn_fini(void) 2689 { 2690 pci_unregister_driver(&hifn_pci_driver); 2691 2692 pr_info("Driver for HIFN 795x crypto accelerator chip " 2693 "has been successfully unregistered.\n"); 2694 } 2695 2696 module_init(hifn_init); 2697 module_exit(hifn_fini); 2698 2699 MODULE_LICENSE("GPL"); 2700 MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>"); 2701 MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip."); 2702