xref: /linux/drivers/crypto/hifn_795x.c (revision e04e2b760ddbe3d7b283a05898c3a029085cd8cd)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru>
4  * All rights reserved.
5  */
6 
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/moduleparam.h>
10 #include <linux/mod_devicetable.h>
11 #include <linux/interrupt.h>
12 #include <linux/pci.h>
13 #include <linux/slab.h>
14 #include <linux/delay.h>
15 #include <linux/mm.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/scatterlist.h>
18 #include <linux/highmem.h>
19 #include <linux/crypto.h>
20 #include <linux/hw_random.h>
21 #include <linux/ktime.h>
22 
23 #include <crypto/algapi.h>
24 #include <crypto/internal/des.h>
25 #include <crypto/internal/skcipher.h>
26 
27 static char hifn_pll_ref[sizeof("extNNN")] = "ext";
28 module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444);
29 MODULE_PARM_DESC(hifn_pll_ref,
30 		 "PLL reference clock (pci[freq] or ext[freq], default ext)");
31 
32 static atomic_t hifn_dev_number;
33 
34 #define ACRYPTO_OP_DECRYPT	0
35 #define ACRYPTO_OP_ENCRYPT	1
36 #define ACRYPTO_OP_HMAC		2
37 #define ACRYPTO_OP_RNG		3
38 
39 #define ACRYPTO_MODE_ECB		0
40 #define ACRYPTO_MODE_CBC		1
41 #define ACRYPTO_MODE_CFB		2
42 #define ACRYPTO_MODE_OFB		3
43 
44 #define ACRYPTO_TYPE_AES_128	0
45 #define ACRYPTO_TYPE_AES_192	1
46 #define ACRYPTO_TYPE_AES_256	2
47 #define ACRYPTO_TYPE_3DES	3
48 #define ACRYPTO_TYPE_DES	4
49 
50 #define PCI_VENDOR_ID_HIFN		0x13A3
51 #define PCI_DEVICE_ID_HIFN_7955		0x0020
52 #define	PCI_DEVICE_ID_HIFN_7956		0x001d
53 
54 /* I/O region sizes */
55 
56 #define HIFN_BAR0_SIZE			0x1000
57 #define HIFN_BAR1_SIZE			0x2000
58 #define HIFN_BAR2_SIZE			0x8000
59 
60 /* DMA registres */
61 
62 #define HIFN_DMA_CRA			0x0C	/* DMA Command Ring Address */
63 #define HIFN_DMA_SDRA			0x1C	/* DMA Source Data Ring Address */
64 #define HIFN_DMA_RRA			0x2C	/* DMA Result Ring Address */
65 #define HIFN_DMA_DDRA			0x3C	/* DMA Destination Data Ring Address */
66 #define HIFN_DMA_STCTL			0x40	/* DMA Status and Control */
67 #define HIFN_DMA_INTREN			0x44	/* DMA Interrupt Enable */
68 #define HIFN_DMA_CFG1			0x48	/* DMA Configuration #1 */
69 #define HIFN_DMA_CFG2			0x6C	/* DMA Configuration #2 */
70 #define HIFN_CHIP_ID			0x98	/* Chip ID */
71 
72 /*
73  * Processing Unit Registers (offset from BASEREG0)
74  */
75 #define	HIFN_0_PUDATA		0x00	/* Processing Unit Data */
76 #define	HIFN_0_PUCTRL		0x04	/* Processing Unit Control */
77 #define	HIFN_0_PUISR		0x08	/* Processing Unit Interrupt Status */
78 #define	HIFN_0_PUCNFG		0x0c	/* Processing Unit Configuration */
79 #define	HIFN_0_PUIER		0x10	/* Processing Unit Interrupt Enable */
80 #define	HIFN_0_PUSTAT		0x14	/* Processing Unit Status/Chip ID */
81 #define	HIFN_0_FIFOSTAT		0x18	/* FIFO Status */
82 #define	HIFN_0_FIFOCNFG		0x1c	/* FIFO Configuration */
83 #define	HIFN_0_SPACESIZE	0x20	/* Register space size */
84 
85 /* Processing Unit Control Register (HIFN_0_PUCTRL) */
86 #define	HIFN_PUCTRL_CLRSRCFIFO	0x0010	/* clear source fifo */
87 #define	HIFN_PUCTRL_STOP	0x0008	/* stop pu */
88 #define	HIFN_PUCTRL_LOCKRAM	0x0004	/* lock ram */
89 #define	HIFN_PUCTRL_DMAENA	0x0002	/* enable dma */
90 #define	HIFN_PUCTRL_RESET	0x0001	/* Reset processing unit */
91 
92 /* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */
93 #define	HIFN_PUISR_CMDINVAL	0x8000	/* Invalid command interrupt */
94 #define	HIFN_PUISR_DATAERR	0x4000	/* Data error interrupt */
95 #define	HIFN_PUISR_SRCFIFO	0x2000	/* Source FIFO ready interrupt */
96 #define	HIFN_PUISR_DSTFIFO	0x1000	/* Destination FIFO ready interrupt */
97 #define	HIFN_PUISR_DSTOVER	0x0200	/* Destination overrun interrupt */
98 #define	HIFN_PUISR_SRCCMD	0x0080	/* Source command interrupt */
99 #define	HIFN_PUISR_SRCCTX	0x0040	/* Source context interrupt */
100 #define	HIFN_PUISR_SRCDATA	0x0020	/* Source data interrupt */
101 #define	HIFN_PUISR_DSTDATA	0x0010	/* Destination data interrupt */
102 #define	HIFN_PUISR_DSTRESULT	0x0004	/* Destination result interrupt */
103 
104 /* Processing Unit Configuration Register (HIFN_0_PUCNFG) */
105 #define	HIFN_PUCNFG_DRAMMASK	0xe000	/* DRAM size mask */
106 #define	HIFN_PUCNFG_DSZ_256K	0x0000	/* 256k dram */
107 #define	HIFN_PUCNFG_DSZ_512K	0x2000	/* 512k dram */
108 #define	HIFN_PUCNFG_DSZ_1M	0x4000	/* 1m dram */
109 #define	HIFN_PUCNFG_DSZ_2M	0x6000	/* 2m dram */
110 #define	HIFN_PUCNFG_DSZ_4M	0x8000	/* 4m dram */
111 #define	HIFN_PUCNFG_DSZ_8M	0xa000	/* 8m dram */
112 #define	HIFN_PUNCFG_DSZ_16M	0xc000	/* 16m dram */
113 #define	HIFN_PUCNFG_DSZ_32M	0xe000	/* 32m dram */
114 #define	HIFN_PUCNFG_DRAMREFRESH	0x1800	/* DRAM refresh rate mask */
115 #define	HIFN_PUCNFG_DRFR_512	0x0000	/* 512 divisor of ECLK */
116 #define	HIFN_PUCNFG_DRFR_256	0x0800	/* 256 divisor of ECLK */
117 #define	HIFN_PUCNFG_DRFR_128	0x1000	/* 128 divisor of ECLK */
118 #define	HIFN_PUCNFG_TCALLPHASES	0x0200	/* your guess is as good as mine... */
119 #define	HIFN_PUCNFG_TCDRVTOTEM	0x0100	/* your guess is as good as mine... */
120 #define	HIFN_PUCNFG_BIGENDIAN	0x0080	/* DMA big endian mode */
121 #define	HIFN_PUCNFG_BUS32	0x0040	/* Bus width 32bits */
122 #define	HIFN_PUCNFG_BUS16	0x0000	/* Bus width 16 bits */
123 #define	HIFN_PUCNFG_CHIPID	0x0020	/* Allow chipid from PUSTAT */
124 #define	HIFN_PUCNFG_DRAM	0x0010	/* Context RAM is DRAM */
125 #define	HIFN_PUCNFG_SRAM	0x0000	/* Context RAM is SRAM */
126 #define	HIFN_PUCNFG_COMPSING	0x0004	/* Enable single compression context */
127 #define	HIFN_PUCNFG_ENCCNFG	0x0002	/* Encryption configuration */
128 
129 /* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */
130 #define	HIFN_PUIER_CMDINVAL	0x8000	/* Invalid command interrupt */
131 #define	HIFN_PUIER_DATAERR	0x4000	/* Data error interrupt */
132 #define	HIFN_PUIER_SRCFIFO	0x2000	/* Source FIFO ready interrupt */
133 #define	HIFN_PUIER_DSTFIFO	0x1000	/* Destination FIFO ready interrupt */
134 #define	HIFN_PUIER_DSTOVER	0x0200	/* Destination overrun interrupt */
135 #define	HIFN_PUIER_SRCCMD	0x0080	/* Source command interrupt */
136 #define	HIFN_PUIER_SRCCTX	0x0040	/* Source context interrupt */
137 #define	HIFN_PUIER_SRCDATA	0x0020	/* Source data interrupt */
138 #define	HIFN_PUIER_DSTDATA	0x0010	/* Destination data interrupt */
139 #define	HIFN_PUIER_DSTRESULT	0x0004	/* Destination result interrupt */
140 
141 /* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */
142 #define	HIFN_PUSTAT_CMDINVAL	0x8000	/* Invalid command interrupt */
143 #define	HIFN_PUSTAT_DATAERR	0x4000	/* Data error interrupt */
144 #define	HIFN_PUSTAT_SRCFIFO	0x2000	/* Source FIFO ready interrupt */
145 #define	HIFN_PUSTAT_DSTFIFO	0x1000	/* Destination FIFO ready interrupt */
146 #define	HIFN_PUSTAT_DSTOVER	0x0200	/* Destination overrun interrupt */
147 #define	HIFN_PUSTAT_SRCCMD	0x0080	/* Source command interrupt */
148 #define	HIFN_PUSTAT_SRCCTX	0x0040	/* Source context interrupt */
149 #define	HIFN_PUSTAT_SRCDATA	0x0020	/* Source data interrupt */
150 #define	HIFN_PUSTAT_DSTDATA	0x0010	/* Destination data interrupt */
151 #define	HIFN_PUSTAT_DSTRESULT	0x0004	/* Destination result interrupt */
152 #define	HIFN_PUSTAT_CHIPREV	0x00ff	/* Chip revision mask */
153 #define	HIFN_PUSTAT_CHIPENA	0xff00	/* Chip enabled mask */
154 #define	HIFN_PUSTAT_ENA_2	0x1100	/* Level 2 enabled */
155 #define	HIFN_PUSTAT_ENA_1	0x1000	/* Level 1 enabled */
156 #define	HIFN_PUSTAT_ENA_0	0x3000	/* Level 0 enabled */
157 #define	HIFN_PUSTAT_REV_2	0x0020	/* 7751 PT6/2 */
158 #define	HIFN_PUSTAT_REV_3	0x0030	/* 7751 PT6/3 */
159 
160 /* FIFO Status Register (HIFN_0_FIFOSTAT) */
161 #define	HIFN_FIFOSTAT_SRC	0x7f00	/* Source FIFO available */
162 #define	HIFN_FIFOSTAT_DST	0x007f	/* Destination FIFO available */
163 
164 /* FIFO Configuration Register (HIFN_0_FIFOCNFG) */
165 #define	HIFN_FIFOCNFG_THRESHOLD	0x0400	/* must be written as 1 */
166 
167 /*
168  * DMA Interface Registers (offset from BASEREG1)
169  */
170 #define	HIFN_1_DMA_CRAR		0x0c	/* DMA Command Ring Address */
171 #define	HIFN_1_DMA_SRAR		0x1c	/* DMA Source Ring Address */
172 #define	HIFN_1_DMA_RRAR		0x2c	/* DMA Result Ring Address */
173 #define	HIFN_1_DMA_DRAR		0x3c	/* DMA Destination Ring Address */
174 #define	HIFN_1_DMA_CSR		0x40	/* DMA Status and Control */
175 #define	HIFN_1_DMA_IER		0x44	/* DMA Interrupt Enable */
176 #define	HIFN_1_DMA_CNFG		0x48	/* DMA Configuration */
177 #define	HIFN_1_PLL		0x4c	/* 795x: PLL config */
178 #define	HIFN_1_7811_RNGENA	0x60	/* 7811: rng enable */
179 #define	HIFN_1_7811_RNGCFG	0x64	/* 7811: rng config */
180 #define	HIFN_1_7811_RNGDAT	0x68	/* 7811: rng data */
181 #define	HIFN_1_7811_RNGSTS	0x6c	/* 7811: rng status */
182 #define	HIFN_1_7811_MIPSRST	0x94	/* 7811: MIPS reset */
183 #define	HIFN_1_REVID		0x98	/* Revision ID */
184 #define	HIFN_1_UNLOCK_SECRET1	0xf4
185 #define	HIFN_1_UNLOCK_SECRET2	0xfc
186 #define	HIFN_1_PUB_RESET	0x204	/* Public/RNG Reset */
187 #define	HIFN_1_PUB_BASE		0x300	/* Public Base Address */
188 #define	HIFN_1_PUB_OPLEN	0x304	/* Public Operand Length */
189 #define	HIFN_1_PUB_OP		0x308	/* Public Operand */
190 #define	HIFN_1_PUB_STATUS	0x30c	/* Public Status */
191 #define	HIFN_1_PUB_IEN		0x310	/* Public Interrupt enable */
192 #define	HIFN_1_RNG_CONFIG	0x314	/* RNG config */
193 #define	HIFN_1_RNG_DATA		0x318	/* RNG data */
194 #define	HIFN_1_PUB_MEM		0x400	/* start of Public key memory */
195 #define	HIFN_1_PUB_MEMEND	0xbff	/* end of Public key memory */
196 
197 /* DMA Status and Control Register (HIFN_1_DMA_CSR) */
198 #define	HIFN_DMACSR_D_CTRLMASK	0xc0000000	/* Destinition Ring Control */
199 #define	HIFN_DMACSR_D_CTRL_NOP	0x00000000	/* Dest. Control: no-op */
200 #define	HIFN_DMACSR_D_CTRL_DIS	0x40000000	/* Dest. Control: disable */
201 #define	HIFN_DMACSR_D_CTRL_ENA	0x80000000	/* Dest. Control: enable */
202 #define	HIFN_DMACSR_D_ABORT	0x20000000	/* Destinition Ring PCIAbort */
203 #define	HIFN_DMACSR_D_DONE	0x10000000	/* Destinition Ring Done */
204 #define	HIFN_DMACSR_D_LAST	0x08000000	/* Destinition Ring Last */
205 #define	HIFN_DMACSR_D_WAIT	0x04000000	/* Destinition Ring Waiting */
206 #define	HIFN_DMACSR_D_OVER	0x02000000	/* Destinition Ring Overflow */
207 #define	HIFN_DMACSR_R_CTRL	0x00c00000	/* Result Ring Control */
208 #define	HIFN_DMACSR_R_CTRL_NOP	0x00000000	/* Result Control: no-op */
209 #define	HIFN_DMACSR_R_CTRL_DIS	0x00400000	/* Result Control: disable */
210 #define	HIFN_DMACSR_R_CTRL_ENA	0x00800000	/* Result Control: enable */
211 #define	HIFN_DMACSR_R_ABORT	0x00200000	/* Result Ring PCI Abort */
212 #define	HIFN_DMACSR_R_DONE	0x00100000	/* Result Ring Done */
213 #define	HIFN_DMACSR_R_LAST	0x00080000	/* Result Ring Last */
214 #define	HIFN_DMACSR_R_WAIT	0x00040000	/* Result Ring Waiting */
215 #define	HIFN_DMACSR_R_OVER	0x00020000	/* Result Ring Overflow */
216 #define	HIFN_DMACSR_S_CTRL	0x0000c000	/* Source Ring Control */
217 #define	HIFN_DMACSR_S_CTRL_NOP	0x00000000	/* Source Control: no-op */
218 #define	HIFN_DMACSR_S_CTRL_DIS	0x00004000	/* Source Control: disable */
219 #define	HIFN_DMACSR_S_CTRL_ENA	0x00008000	/* Source Control: enable */
220 #define	HIFN_DMACSR_S_ABORT	0x00002000	/* Source Ring PCI Abort */
221 #define	HIFN_DMACSR_S_DONE	0x00001000	/* Source Ring Done */
222 #define	HIFN_DMACSR_S_LAST	0x00000800	/* Source Ring Last */
223 #define	HIFN_DMACSR_S_WAIT	0x00000400	/* Source Ring Waiting */
224 #define	HIFN_DMACSR_ILLW	0x00000200	/* Illegal write (7811 only) */
225 #define	HIFN_DMACSR_ILLR	0x00000100	/* Illegal read (7811 only) */
226 #define	HIFN_DMACSR_C_CTRL	0x000000c0	/* Command Ring Control */
227 #define	HIFN_DMACSR_C_CTRL_NOP	0x00000000	/* Command Control: no-op */
228 #define	HIFN_DMACSR_C_CTRL_DIS	0x00000040	/* Command Control: disable */
229 #define	HIFN_DMACSR_C_CTRL_ENA	0x00000080	/* Command Control: enable */
230 #define	HIFN_DMACSR_C_ABORT	0x00000020	/* Command Ring PCI Abort */
231 #define	HIFN_DMACSR_C_DONE	0x00000010	/* Command Ring Done */
232 #define	HIFN_DMACSR_C_LAST	0x00000008	/* Command Ring Last */
233 #define	HIFN_DMACSR_C_WAIT	0x00000004	/* Command Ring Waiting */
234 #define	HIFN_DMACSR_PUBDONE	0x00000002	/* Public op done (7951 only) */
235 #define	HIFN_DMACSR_ENGINE	0x00000001	/* Command Ring Engine IRQ */
236 
237 /* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */
238 #define	HIFN_DMAIER_D_ABORT	0x20000000	/* Destination Ring PCIAbort */
239 #define	HIFN_DMAIER_D_DONE	0x10000000	/* Destination Ring Done */
240 #define	HIFN_DMAIER_D_LAST	0x08000000	/* Destination Ring Last */
241 #define	HIFN_DMAIER_D_WAIT	0x04000000	/* Destination Ring Waiting */
242 #define	HIFN_DMAIER_D_OVER	0x02000000	/* Destination Ring Overflow */
243 #define	HIFN_DMAIER_R_ABORT	0x00200000	/* Result Ring PCI Abort */
244 #define	HIFN_DMAIER_R_DONE	0x00100000	/* Result Ring Done */
245 #define	HIFN_DMAIER_R_LAST	0x00080000	/* Result Ring Last */
246 #define	HIFN_DMAIER_R_WAIT	0x00040000	/* Result Ring Waiting */
247 #define	HIFN_DMAIER_R_OVER	0x00020000	/* Result Ring Overflow */
248 #define	HIFN_DMAIER_S_ABORT	0x00002000	/* Source Ring PCI Abort */
249 #define	HIFN_DMAIER_S_DONE	0x00001000	/* Source Ring Done */
250 #define	HIFN_DMAIER_S_LAST	0x00000800	/* Source Ring Last */
251 #define	HIFN_DMAIER_S_WAIT	0x00000400	/* Source Ring Waiting */
252 #define	HIFN_DMAIER_ILLW	0x00000200	/* Illegal write (7811 only) */
253 #define	HIFN_DMAIER_ILLR	0x00000100	/* Illegal read (7811 only) */
254 #define	HIFN_DMAIER_C_ABORT	0x00000020	/* Command Ring PCI Abort */
255 #define	HIFN_DMAIER_C_DONE	0x00000010	/* Command Ring Done */
256 #define	HIFN_DMAIER_C_LAST	0x00000008	/* Command Ring Last */
257 #define	HIFN_DMAIER_C_WAIT	0x00000004	/* Command Ring Waiting */
258 #define	HIFN_DMAIER_PUBDONE	0x00000002	/* public op done (7951 only) */
259 #define	HIFN_DMAIER_ENGINE	0x00000001	/* Engine IRQ */
260 
261 /* DMA Configuration Register (HIFN_1_DMA_CNFG) */
262 #define	HIFN_DMACNFG_BIGENDIAN	0x10000000	/* big endian mode */
263 #define	HIFN_DMACNFG_POLLFREQ	0x00ff0000	/* Poll frequency mask */
264 #define	HIFN_DMACNFG_UNLOCK	0x00000800
265 #define	HIFN_DMACNFG_POLLINVAL	0x00000700	/* Invalid Poll Scalar */
266 #define	HIFN_DMACNFG_LAST	0x00000010	/* Host control LAST bit */
267 #define	HIFN_DMACNFG_MODE	0x00000004	/* DMA mode */
268 #define	HIFN_DMACNFG_DMARESET	0x00000002	/* DMA Reset # */
269 #define	HIFN_DMACNFG_MSTRESET	0x00000001	/* Master Reset # */
270 
271 /* PLL configuration register */
272 #define HIFN_PLL_REF_CLK_HBI	0x00000000	/* HBI reference clock */
273 #define HIFN_PLL_REF_CLK_PLL	0x00000001	/* PLL reference clock */
274 #define HIFN_PLL_BP		0x00000002	/* Reference clock bypass */
275 #define HIFN_PLL_PK_CLK_HBI	0x00000000	/* PK engine HBI clock */
276 #define HIFN_PLL_PK_CLK_PLL	0x00000008	/* PK engine PLL clock */
277 #define HIFN_PLL_PE_CLK_HBI	0x00000000	/* PE engine HBI clock */
278 #define HIFN_PLL_PE_CLK_PLL	0x00000010	/* PE engine PLL clock */
279 #define HIFN_PLL_RESERVED_1	0x00000400	/* Reserved bit, must be 1 */
280 #define HIFN_PLL_ND_SHIFT	11		/* Clock multiplier shift */
281 #define HIFN_PLL_ND_MULT_2	0x00000000	/* PLL clock multiplier 2 */
282 #define HIFN_PLL_ND_MULT_4	0x00000800	/* PLL clock multiplier 4 */
283 #define HIFN_PLL_ND_MULT_6	0x00001000	/* PLL clock multiplier 6 */
284 #define HIFN_PLL_ND_MULT_8	0x00001800	/* PLL clock multiplier 8 */
285 #define HIFN_PLL_ND_MULT_10	0x00002000	/* PLL clock multiplier 10 */
286 #define HIFN_PLL_ND_MULT_12	0x00002800	/* PLL clock multiplier 12 */
287 #define HIFN_PLL_IS_1_8		0x00000000	/* charge pump (mult. 1-8) */
288 #define HIFN_PLL_IS_9_12	0x00010000	/* charge pump (mult. 9-12) */
289 
290 #define HIFN_PLL_FCK_MAX	266		/* Maximum PLL frequency */
291 
292 /* Public key reset register (HIFN_1_PUB_RESET) */
293 #define	HIFN_PUBRST_RESET	0x00000001	/* reset public/rng unit */
294 
295 /* Public base address register (HIFN_1_PUB_BASE) */
296 #define	HIFN_PUBBASE_ADDR	0x00003fff	/* base address */
297 
298 /* Public operand length register (HIFN_1_PUB_OPLEN) */
299 #define	HIFN_PUBOPLEN_MOD_M	0x0000007f	/* modulus length mask */
300 #define	HIFN_PUBOPLEN_MOD_S	0		/* modulus length shift */
301 #define	HIFN_PUBOPLEN_EXP_M	0x0003ff80	/* exponent length mask */
302 #define	HIFN_PUBOPLEN_EXP_S	7		/* exponent length shift */
303 #define	HIFN_PUBOPLEN_RED_M	0x003c0000	/* reducend length mask */
304 #define	HIFN_PUBOPLEN_RED_S	18		/* reducend length shift */
305 
306 /* Public operation register (HIFN_1_PUB_OP) */
307 #define	HIFN_PUBOP_AOFFSET_M	0x0000007f	/* A offset mask */
308 #define	HIFN_PUBOP_AOFFSET_S	0		/* A offset shift */
309 #define	HIFN_PUBOP_BOFFSET_M	0x00000f80	/* B offset mask */
310 #define	HIFN_PUBOP_BOFFSET_S	7		/* B offset shift */
311 #define	HIFN_PUBOP_MOFFSET_M	0x0003f000	/* M offset mask */
312 #define	HIFN_PUBOP_MOFFSET_S	12		/* M offset shift */
313 #define	HIFN_PUBOP_OP_MASK	0x003c0000	/* Opcode: */
314 #define	HIFN_PUBOP_OP_NOP	0x00000000	/*  NOP */
315 #define	HIFN_PUBOP_OP_ADD	0x00040000	/*  ADD */
316 #define	HIFN_PUBOP_OP_ADDC	0x00080000	/*  ADD w/carry */
317 #define	HIFN_PUBOP_OP_SUB	0x000c0000	/*  SUB */
318 #define	HIFN_PUBOP_OP_SUBC	0x00100000	/*  SUB w/carry */
319 #define	HIFN_PUBOP_OP_MODADD	0x00140000	/*  Modular ADD */
320 #define	HIFN_PUBOP_OP_MODSUB	0x00180000	/*  Modular SUB */
321 #define	HIFN_PUBOP_OP_INCA	0x001c0000	/*  INC A */
322 #define	HIFN_PUBOP_OP_DECA	0x00200000	/*  DEC A */
323 #define	HIFN_PUBOP_OP_MULT	0x00240000	/*  MULT */
324 #define	HIFN_PUBOP_OP_MODMULT	0x00280000	/*  Modular MULT */
325 #define	HIFN_PUBOP_OP_MODRED	0x002c0000	/*  Modular RED */
326 #define	HIFN_PUBOP_OP_MODEXP	0x00300000	/*  Modular EXP */
327 
328 /* Public status register (HIFN_1_PUB_STATUS) */
329 #define	HIFN_PUBSTS_DONE	0x00000001	/* operation done */
330 #define	HIFN_PUBSTS_CARRY	0x00000002	/* carry */
331 
332 /* Public interrupt enable register (HIFN_1_PUB_IEN) */
333 #define	HIFN_PUBIEN_DONE	0x00000001	/* operation done interrupt */
334 
335 /* Random number generator config register (HIFN_1_RNG_CONFIG) */
336 #define	HIFN_RNGCFG_ENA		0x00000001	/* enable rng */
337 
338 #define HIFN_NAMESIZE			32
339 #define HIFN_MAX_RESULT_ORDER		5
340 
341 #define	HIFN_D_CMD_RSIZE		(24 * 1)
342 #define	HIFN_D_SRC_RSIZE		(80 * 1)
343 #define	HIFN_D_DST_RSIZE		(80 * 1)
344 #define	HIFN_D_RES_RSIZE		(24 * 1)
345 
346 #define HIFN_D_DST_DALIGN		4
347 
348 #define HIFN_QUEUE_LENGTH		(HIFN_D_CMD_RSIZE - 1)
349 
350 #define AES_MIN_KEY_SIZE		16
351 #define AES_MAX_KEY_SIZE		32
352 
353 #define HIFN_DES_KEY_LENGTH		8
354 #define HIFN_3DES_KEY_LENGTH		24
355 #define HIFN_MAX_CRYPT_KEY_LENGTH	AES_MAX_KEY_SIZE
356 #define HIFN_IV_LENGTH			8
357 #define HIFN_AES_IV_LENGTH		16
358 #define	HIFN_MAX_IV_LENGTH		HIFN_AES_IV_LENGTH
359 
360 #define HIFN_MAC_KEY_LENGTH		64
361 #define HIFN_MD5_LENGTH			16
362 #define HIFN_SHA1_LENGTH		20
363 #define HIFN_MAC_TRUNC_LENGTH		12
364 
365 #define	HIFN_MAX_COMMAND		(8 + 8 + 8 + 64 + 260)
366 #define	HIFN_MAX_RESULT			(8 + 4 + 4 + 20 + 4)
367 #define HIFN_USED_RESULT		12
368 
369 struct hifn_desc {
370 	volatile __le32		l;
371 	volatile __le32		p;
372 };
373 
374 struct hifn_dma {
375 	struct hifn_desc	cmdr[HIFN_D_CMD_RSIZE + 1];
376 	struct hifn_desc	srcr[HIFN_D_SRC_RSIZE + 1];
377 	struct hifn_desc	dstr[HIFN_D_DST_RSIZE + 1];
378 	struct hifn_desc	resr[HIFN_D_RES_RSIZE + 1];
379 
380 	u8			command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND];
381 	u8			result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT];
382 
383 	/*
384 	 *  Our current positions for insertion and removal from the descriptor
385 	 *  rings.
386 	 */
387 	volatile int		cmdi, srci, dsti, resi;
388 	volatile int		cmdu, srcu, dstu, resu;
389 	int			cmdk, srck, dstk, resk;
390 };
391 
392 #define HIFN_FLAG_CMD_BUSY	(1 << 0)
393 #define HIFN_FLAG_SRC_BUSY	(1 << 1)
394 #define HIFN_FLAG_DST_BUSY	(1 << 2)
395 #define HIFN_FLAG_RES_BUSY	(1 << 3)
396 #define HIFN_FLAG_OLD_KEY	(1 << 4)
397 
398 #define HIFN_DEFAULT_ACTIVE_NUM	5
399 
400 struct hifn_device {
401 	char			name[HIFN_NAMESIZE];
402 
403 	int			irq;
404 
405 	struct pci_dev		*pdev;
406 	void __iomem		*bar[3];
407 
408 	void			*desc_virt;
409 	dma_addr_t		desc_dma;
410 
411 	u32			dmareg;
412 
413 	void			*sa[HIFN_D_RES_RSIZE];
414 
415 	spinlock_t		lock;
416 
417 	u32			flags;
418 	int			active, started;
419 	struct delayed_work	work;
420 	unsigned long		reset;
421 	unsigned long		success;
422 	unsigned long		prev_success;
423 
424 	u8			snum;
425 
426 	struct tasklet_struct	tasklet;
427 
428 	struct crypto_queue	queue;
429 	struct list_head	alg_list;
430 
431 	unsigned int		pk_clk_freq;
432 
433 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
434 	unsigned int		rng_wait_time;
435 	ktime_t			rngtime;
436 	struct hwrng		rng;
437 #endif
438 };
439 
440 #define	HIFN_D_LENGTH			0x0000ffff
441 #define	HIFN_D_NOINVALID		0x01000000
442 #define	HIFN_D_MASKDONEIRQ		0x02000000
443 #define	HIFN_D_DESTOVER			0x04000000
444 #define	HIFN_D_OVER			0x08000000
445 #define	HIFN_D_LAST			0x20000000
446 #define	HIFN_D_JUMP			0x40000000
447 #define	HIFN_D_VALID			0x80000000
448 
449 struct hifn_base_command {
450 	volatile __le16		masks;
451 	volatile __le16		session_num;
452 	volatile __le16		total_source_count;
453 	volatile __le16		total_dest_count;
454 };
455 
456 #define	HIFN_BASE_CMD_COMP		0x0100	/* enable compression engine */
457 #define	HIFN_BASE_CMD_PAD		0x0200	/* enable padding engine */
458 #define	HIFN_BASE_CMD_MAC		0x0400	/* enable MAC engine */
459 #define	HIFN_BASE_CMD_CRYPT		0x0800	/* enable crypt engine */
460 #define	HIFN_BASE_CMD_DECODE		0x2000
461 #define	HIFN_BASE_CMD_SRCLEN_M		0xc000
462 #define	HIFN_BASE_CMD_SRCLEN_S		14
463 #define	HIFN_BASE_CMD_DSTLEN_M		0x3000
464 #define	HIFN_BASE_CMD_DSTLEN_S		12
465 #define	HIFN_BASE_CMD_LENMASK_HI	0x30000
466 #define	HIFN_BASE_CMD_LENMASK_LO	0x0ffff
467 
468 /*
469  * Structure to help build up the command data structure.
470  */
471 struct hifn_crypt_command {
472 	volatile __le16		masks;
473 	volatile __le16		header_skip;
474 	volatile __le16		source_count;
475 	volatile __le16		reserved;
476 };
477 
478 #define	HIFN_CRYPT_CMD_ALG_MASK		0x0003		/* algorithm: */
479 #define	HIFN_CRYPT_CMD_ALG_DES		0x0000		/*   DES */
480 #define	HIFN_CRYPT_CMD_ALG_3DES		0x0001		/*   3DES */
481 #define	HIFN_CRYPT_CMD_ALG_RC4		0x0002		/*   RC4 */
482 #define	HIFN_CRYPT_CMD_ALG_AES		0x0003		/*   AES */
483 #define	HIFN_CRYPT_CMD_MODE_MASK	0x0018		/* Encrypt mode: */
484 #define	HIFN_CRYPT_CMD_MODE_ECB		0x0000		/*   ECB */
485 #define	HIFN_CRYPT_CMD_MODE_CBC		0x0008		/*   CBC */
486 #define	HIFN_CRYPT_CMD_MODE_CFB		0x0010		/*   CFB */
487 #define	HIFN_CRYPT_CMD_MODE_OFB		0x0018		/*   OFB */
488 #define	HIFN_CRYPT_CMD_CLR_CTX		0x0040		/* clear context */
489 #define	HIFN_CRYPT_CMD_KSZ_MASK		0x0600		/* AES key size: */
490 #define	HIFN_CRYPT_CMD_KSZ_128		0x0000		/*  128 bit */
491 #define	HIFN_CRYPT_CMD_KSZ_192		0x0200		/*  192 bit */
492 #define	HIFN_CRYPT_CMD_KSZ_256		0x0400		/*  256 bit */
493 #define	HIFN_CRYPT_CMD_NEW_KEY		0x0800		/* expect new key */
494 #define	HIFN_CRYPT_CMD_NEW_IV		0x1000		/* expect new iv */
495 #define	HIFN_CRYPT_CMD_SRCLEN_M		0xc000
496 #define	HIFN_CRYPT_CMD_SRCLEN_S		14
497 
498 #define	HIFN_MAC_CMD_ALG_MASK		0x0001
499 #define	HIFN_MAC_CMD_ALG_SHA1		0x0000
500 #define	HIFN_MAC_CMD_ALG_MD5		0x0001
501 #define	HIFN_MAC_CMD_MODE_MASK		0x000c
502 #define	HIFN_MAC_CMD_MODE_HMAC		0x0000
503 #define	HIFN_MAC_CMD_MODE_SSL_MAC	0x0004
504 #define	HIFN_MAC_CMD_MODE_HASH		0x0008
505 #define	HIFN_MAC_CMD_MODE_FULL		0x0004
506 #define	HIFN_MAC_CMD_TRUNC		0x0010
507 #define	HIFN_MAC_CMD_RESULT		0x0020
508 #define	HIFN_MAC_CMD_APPEND		0x0040
509 #define	HIFN_MAC_CMD_SRCLEN_M		0xc000
510 #define	HIFN_MAC_CMD_SRCLEN_S		14
511 
512 /*
513  * MAC POS IPsec initiates authentication after encryption on encodes
514  * and before decryption on decodes.
515  */
516 #define	HIFN_MAC_CMD_POS_IPSEC		0x0200
517 #define	HIFN_MAC_CMD_NEW_KEY		0x0800
518 
519 #define	HIFN_COMP_CMD_SRCLEN_M		0xc000
520 #define	HIFN_COMP_CMD_SRCLEN_S		14
521 #define	HIFN_COMP_CMD_ONE		0x0100	/* must be one */
522 #define	HIFN_COMP_CMD_CLEARHIST		0x0010	/* clear history */
523 #define	HIFN_COMP_CMD_UPDATEHIST	0x0008	/* update history */
524 #define	HIFN_COMP_CMD_LZS_STRIP0	0x0004	/* LZS: strip zero */
525 #define	HIFN_COMP_CMD_MPPC_RESTART	0x0004	/* MPPC: restart */
526 #define	HIFN_COMP_CMD_ALG_MASK		0x0001	/* compression mode: */
527 #define	HIFN_COMP_CMD_ALG_MPPC		0x0001	/*   MPPC */
528 #define	HIFN_COMP_CMD_ALG_LZS		0x0000	/*   LZS */
529 
530 struct hifn_base_result {
531 	volatile __le16		flags;
532 	volatile __le16		session;
533 	volatile __le16		src_cnt;		/* 15:0 of source count */
534 	volatile __le16		dst_cnt;		/* 15:0 of dest count */
535 };
536 
537 #define	HIFN_BASE_RES_DSTOVERRUN	0x0200	/* destination overrun */
538 #define	HIFN_BASE_RES_SRCLEN_M		0xc000	/* 17:16 of source count */
539 #define	HIFN_BASE_RES_SRCLEN_S		14
540 #define	HIFN_BASE_RES_DSTLEN_M		0x3000	/* 17:16 of dest count */
541 #define	HIFN_BASE_RES_DSTLEN_S		12
542 
543 struct hifn_comp_result {
544 	volatile __le16		flags;
545 	volatile __le16		crc;
546 };
547 
548 #define	HIFN_COMP_RES_LCB_M		0xff00	/* longitudinal check byte */
549 #define	HIFN_COMP_RES_LCB_S		8
550 #define	HIFN_COMP_RES_RESTART		0x0004	/* MPPC: restart */
551 #define	HIFN_COMP_RES_ENDMARKER		0x0002	/* LZS: end marker seen */
552 #define	HIFN_COMP_RES_SRC_NOTZERO	0x0001	/* source expired */
553 
554 struct hifn_mac_result {
555 	volatile __le16		flags;
556 	volatile __le16		reserved;
557 	/* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */
558 };
559 
560 #define	HIFN_MAC_RES_MISCOMPARE		0x0002	/* compare failed */
561 #define	HIFN_MAC_RES_SRC_NOTZERO	0x0001	/* source expired */
562 
563 struct hifn_crypt_result {
564 	volatile __le16		flags;
565 	volatile __le16		reserved;
566 };
567 
568 #define	HIFN_CRYPT_RES_SRC_NOTZERO	0x0001	/* source expired */
569 
570 #ifndef HIFN_POLL_FREQUENCY
571 #define	HIFN_POLL_FREQUENCY	0x1
572 #endif
573 
574 #ifndef HIFN_POLL_SCALAR
575 #define	HIFN_POLL_SCALAR	0x0
576 #endif
577 
578 #define	HIFN_MAX_SEGLEN		0xffff		/* maximum dma segment len */
579 #define	HIFN_MAX_DMALEN		0x3ffff		/* maximum dma length */
580 
581 struct hifn_crypto_alg {
582 	struct list_head	entry;
583 	struct skcipher_alg	alg;
584 	struct hifn_device	*dev;
585 };
586 
587 #define ASYNC_SCATTERLIST_CACHE	16
588 
589 #define ASYNC_FLAGS_MISALIGNED	(1 << 0)
590 
591 struct hifn_cipher_walk {
592 	struct scatterlist	cache[ASYNC_SCATTERLIST_CACHE];
593 	u32			flags;
594 	int			num;
595 };
596 
597 struct hifn_context {
598 	u8			key[HIFN_MAX_CRYPT_KEY_LENGTH];
599 	struct hifn_device	*dev;
600 	unsigned int		keysize;
601 };
602 
603 struct hifn_request_context {
604 	u8			*iv;
605 	unsigned int		ivsize;
606 	u8			op, type, mode, unused;
607 	struct hifn_cipher_walk	walk;
608 };
609 
610 #define crypto_alg_to_hifn(a)	container_of(a, struct hifn_crypto_alg, alg)
611 
612 static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg)
613 {
614 	return readl(dev->bar[0] + reg);
615 }
616 
617 static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg)
618 {
619 	return readl(dev->bar[1] + reg);
620 }
621 
622 static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val)
623 {
624 	writel((__force u32)cpu_to_le32(val), dev->bar[0] + reg);
625 }
626 
627 static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val)
628 {
629 	writel((__force u32)cpu_to_le32(val), dev->bar[1] + reg);
630 }
631 
632 static void hifn_wait_puc(struct hifn_device *dev)
633 {
634 	int i;
635 	u32 ret;
636 
637 	for (i = 10000; i > 0; --i) {
638 		ret = hifn_read_0(dev, HIFN_0_PUCTRL);
639 		if (!(ret & HIFN_PUCTRL_RESET))
640 			break;
641 
642 		udelay(1);
643 	}
644 
645 	if (!i)
646 		dev_err(&dev->pdev->dev, "Failed to reset PUC unit.\n");
647 }
648 
649 static void hifn_reset_puc(struct hifn_device *dev)
650 {
651 	hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
652 	hifn_wait_puc(dev);
653 }
654 
655 static void hifn_stop_device(struct hifn_device *dev)
656 {
657 	hifn_write_1(dev, HIFN_1_DMA_CSR,
658 		HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
659 		HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS);
660 	hifn_write_0(dev, HIFN_0_PUIER, 0);
661 	hifn_write_1(dev, HIFN_1_DMA_IER, 0);
662 }
663 
664 static void hifn_reset_dma(struct hifn_device *dev, int full)
665 {
666 	hifn_stop_device(dev);
667 
668 	/*
669 	 * Setting poll frequency and others to 0.
670 	 */
671 	hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
672 			HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
673 	mdelay(1);
674 
675 	/*
676 	 * Reset DMA.
677 	 */
678 	if (full) {
679 		hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE);
680 		mdelay(1);
681 	} else {
682 		hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE |
683 				HIFN_DMACNFG_MSTRESET);
684 		hifn_reset_puc(dev);
685 	}
686 
687 	hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
688 			HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
689 
690 	hifn_reset_puc(dev);
691 }
692 
693 static u32 hifn_next_signature(u32 a, u_int cnt)
694 {
695 	int i;
696 	u32 v;
697 
698 	for (i = 0; i < cnt; i++) {
699 		/* get the parity */
700 		v = a & 0x80080125;
701 		v ^= v >> 16;
702 		v ^= v >> 8;
703 		v ^= v >> 4;
704 		v ^= v >> 2;
705 		v ^= v >> 1;
706 
707 		a = (v & 1) ^ (a << 1);
708 	}
709 
710 	return a;
711 }
712 
713 static struct pci2id {
714 	u_short		pci_vendor;
715 	u_short		pci_prod;
716 	char		card_id[13];
717 } pci2id[] = {
718 	{
719 		PCI_VENDOR_ID_HIFN,
720 		PCI_DEVICE_ID_HIFN_7955,
721 		{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
722 		  0x00, 0x00, 0x00, 0x00, 0x00 }
723 	},
724 	{
725 		PCI_VENDOR_ID_HIFN,
726 		PCI_DEVICE_ID_HIFN_7956,
727 		{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
728 		  0x00, 0x00, 0x00, 0x00, 0x00 }
729 	}
730 };
731 
732 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
733 static int hifn_rng_data_present(struct hwrng *rng, int wait)
734 {
735 	struct hifn_device *dev = (struct hifn_device *)rng->priv;
736 	s64 nsec;
737 
738 	nsec = ktime_to_ns(ktime_sub(ktime_get(), dev->rngtime));
739 	nsec -= dev->rng_wait_time;
740 	if (nsec <= 0)
741 		return 1;
742 	if (!wait)
743 		return 0;
744 	ndelay(nsec);
745 	return 1;
746 }
747 
748 static int hifn_rng_data_read(struct hwrng *rng, u32 *data)
749 {
750 	struct hifn_device *dev = (struct hifn_device *)rng->priv;
751 
752 	*data = hifn_read_1(dev, HIFN_1_RNG_DATA);
753 	dev->rngtime = ktime_get();
754 	return 4;
755 }
756 
757 static int hifn_register_rng(struct hifn_device *dev)
758 {
759 	/*
760 	 * We must wait at least 256 Pk_clk cycles between two reads of the rng.
761 	 */
762 	dev->rng_wait_time	= DIV_ROUND_UP_ULL(NSEC_PER_SEC,
763 						   dev->pk_clk_freq) * 256;
764 
765 	dev->rng.name		= dev->name;
766 	dev->rng.data_present	= hifn_rng_data_present;
767 	dev->rng.data_read	= hifn_rng_data_read;
768 	dev->rng.priv		= (unsigned long)dev;
769 
770 	return hwrng_register(&dev->rng);
771 }
772 
773 static void hifn_unregister_rng(struct hifn_device *dev)
774 {
775 	hwrng_unregister(&dev->rng);
776 }
777 #else
778 #define hifn_register_rng(dev)		0
779 #define hifn_unregister_rng(dev)
780 #endif
781 
782 static int hifn_init_pubrng(struct hifn_device *dev)
783 {
784 	int i;
785 
786 	hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) |
787 			HIFN_PUBRST_RESET);
788 
789 	for (i = 100; i > 0; --i) {
790 		mdelay(1);
791 
792 		if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0)
793 			break;
794 	}
795 
796 	if (!i) {
797 		dev_err(&dev->pdev->dev, "Failed to initialise public key engine.\n");
798 	} else {
799 		hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE);
800 		dev->dmareg |= HIFN_DMAIER_PUBDONE;
801 		hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
802 
803 		dev_dbg(&dev->pdev->dev, "Public key engine has been successfully initialised.\n");
804 	}
805 
806 	/* Enable RNG engine. */
807 
808 	hifn_write_1(dev, HIFN_1_RNG_CONFIG,
809 			hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA);
810 	dev_dbg(&dev->pdev->dev, "RNG engine has been successfully initialised.\n");
811 
812 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
813 	/* First value must be discarded */
814 	hifn_read_1(dev, HIFN_1_RNG_DATA);
815 	dev->rngtime = ktime_get();
816 #endif
817 	return 0;
818 }
819 
820 static int hifn_enable_crypto(struct hifn_device *dev)
821 {
822 	u32 dmacfg, addr;
823 	char *offtbl = NULL;
824 	int i;
825 
826 	for (i = 0; i < ARRAY_SIZE(pci2id); i++) {
827 		if (pci2id[i].pci_vendor == dev->pdev->vendor &&
828 				pci2id[i].pci_prod == dev->pdev->device) {
829 			offtbl = pci2id[i].card_id;
830 			break;
831 		}
832 	}
833 
834 	if (!offtbl) {
835 		dev_err(&dev->pdev->dev, "Unknown card!\n");
836 		return -ENODEV;
837 	}
838 
839 	dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG);
840 
841 	hifn_write_1(dev, HIFN_1_DMA_CNFG,
842 			HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET |
843 			HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
844 	mdelay(1);
845 	addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1);
846 	mdelay(1);
847 	hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0);
848 	mdelay(1);
849 
850 	for (i = 0; i < 12; ++i) {
851 		addr = hifn_next_signature(addr, offtbl[i] + 0x101);
852 		hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr);
853 
854 		mdelay(1);
855 	}
856 	hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg);
857 
858 	dev_dbg(&dev->pdev->dev, "%s %s.\n", dev->name, pci_name(dev->pdev));
859 
860 	return 0;
861 }
862 
863 static void hifn_init_dma(struct hifn_device *dev)
864 {
865 	struct hifn_dma *dma = dev->desc_virt;
866 	u32 dptr = dev->desc_dma;
867 	int i;
868 
869 	for (i = 0; i < HIFN_D_CMD_RSIZE; ++i)
870 		dma->cmdr[i].p = __cpu_to_le32(dptr +
871 				offsetof(struct hifn_dma, command_bufs[i][0]));
872 	for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
873 		dma->resr[i].p = __cpu_to_le32(dptr +
874 				offsetof(struct hifn_dma, result_bufs[i][0]));
875 
876 	/* Setup LAST descriptors. */
877 	dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr +
878 			offsetof(struct hifn_dma, cmdr[0]));
879 	dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr +
880 			offsetof(struct hifn_dma, srcr[0]));
881 	dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr +
882 			offsetof(struct hifn_dma, dstr[0]));
883 	dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr +
884 			offsetof(struct hifn_dma, resr[0]));
885 
886 	dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0;
887 	dma->cmdi = dma->srci = dma->dsti = dma->resi = 0;
888 	dma->cmdk = dma->srck = dma->dstk = dma->resk = 0;
889 }
890 
891 /*
892  * Initialize the PLL. We need to know the frequency of the reference clock
893  * to calculate the optimal multiplier. For PCI we assume 66MHz, since that
894  * allows us to operate without the risk of overclocking the chip. If it
895  * actually uses 33MHz, the chip will operate at half the speed, this can be
896  * overridden by specifying the frequency as module parameter (pci33).
897  *
898  * Unfortunately the PCI clock is not very suitable since the HIFN needs a
899  * stable clock and the PCI clock frequency may vary, so the default is the
900  * external clock. There is no way to find out its frequency, we default to
901  * 66MHz since according to Mike Ham of HiFn, almost every board in existence
902  * has an external crystal populated at 66MHz.
903  */
904 static void hifn_init_pll(struct hifn_device *dev)
905 {
906 	unsigned int freq, m;
907 	u32 pllcfg;
908 
909 	pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1;
910 
911 	if (strncmp(hifn_pll_ref, "ext", 3) == 0)
912 		pllcfg |= HIFN_PLL_REF_CLK_PLL;
913 	else
914 		pllcfg |= HIFN_PLL_REF_CLK_HBI;
915 
916 	if (hifn_pll_ref[3] != '\0')
917 		freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
918 	else {
919 		freq = 66;
920 		dev_info(&dev->pdev->dev, "assuming %uMHz clock speed, override with hifn_pll_ref=%.3s<frequency>\n",
921 			 freq, hifn_pll_ref);
922 	}
923 
924 	m = HIFN_PLL_FCK_MAX / freq;
925 
926 	pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT;
927 	if (m <= 8)
928 		pllcfg |= HIFN_PLL_IS_1_8;
929 	else
930 		pllcfg |= HIFN_PLL_IS_9_12;
931 
932 	/* Select clock source and enable clock bypass */
933 	hifn_write_1(dev, HIFN_1_PLL, pllcfg |
934 		     HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI | HIFN_PLL_BP);
935 
936 	/* Let the chip lock to the input clock */
937 	mdelay(10);
938 
939 	/* Disable clock bypass */
940 	hifn_write_1(dev, HIFN_1_PLL, pllcfg |
941 		     HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI);
942 
943 	/* Switch the engines to the PLL */
944 	hifn_write_1(dev, HIFN_1_PLL, pllcfg |
945 		     HIFN_PLL_PK_CLK_PLL | HIFN_PLL_PE_CLK_PLL);
946 
947 	/*
948 	 * The Fpk_clk runs at half the total speed. Its frequency is needed to
949 	 * calculate the minimum time between two reads of the rng. Since 33MHz
950 	 * is actually 33.333... we overestimate the frequency here, resulting
951 	 * in slightly larger intervals.
952 	 */
953 	dev->pk_clk_freq = 1000000 * (freq + 1) * m / 2;
954 }
955 
956 static void hifn_init_registers(struct hifn_device *dev)
957 {
958 	u32 dptr = dev->desc_dma;
959 
960 	/* Initialization magic... */
961 	hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
962 	hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD);
963 	hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);
964 
965 	/* write all 4 ring address registers */
966 	hifn_write_1(dev, HIFN_1_DMA_CRAR, dptr +
967 				offsetof(struct hifn_dma, cmdr[0]));
968 	hifn_write_1(dev, HIFN_1_DMA_SRAR, dptr +
969 				offsetof(struct hifn_dma, srcr[0]));
970 	hifn_write_1(dev, HIFN_1_DMA_DRAR, dptr +
971 				offsetof(struct hifn_dma, dstr[0]));
972 	hifn_write_1(dev, HIFN_1_DMA_RRAR, dptr +
973 				offsetof(struct hifn_dma, resr[0]));
974 
975 	mdelay(2);
976 #if 0
977 	hifn_write_1(dev, HIFN_1_DMA_CSR,
978 	    HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
979 	    HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS |
980 	    HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
981 	    HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
982 	    HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
983 	    HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
984 	    HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
985 	    HIFN_DMACSR_S_WAIT |
986 	    HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
987 	    HIFN_DMACSR_C_WAIT |
988 	    HIFN_DMACSR_ENGINE |
989 	    HIFN_DMACSR_PUBDONE);
990 #else
991 	hifn_write_1(dev, HIFN_1_DMA_CSR,
992 	    HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
993 	    HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA |
994 	    HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
995 	    HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
996 	    HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
997 	    HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
998 	    HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
999 	    HIFN_DMACSR_S_WAIT |
1000 	    HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1001 	    HIFN_DMACSR_C_WAIT |
1002 	    HIFN_DMACSR_ENGINE |
1003 	    HIFN_DMACSR_PUBDONE);
1004 #endif
1005 	hifn_read_1(dev, HIFN_1_DMA_CSR);
1006 
1007 	dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT |
1008 	    HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER |
1009 	    HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT |
1010 	    HIFN_DMAIER_ENGINE;
1011 	dev->dmareg &= ~HIFN_DMAIER_C_WAIT;
1012 
1013 	hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1014 	hifn_read_1(dev, HIFN_1_DMA_IER);
1015 #if 0
1016 	hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG |
1017 		    HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES |
1018 		    HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 |
1019 		    HIFN_PUCNFG_DRAM);
1020 #else
1021 	hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342);
1022 #endif
1023 	hifn_init_pll(dev);
1024 
1025 	hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1026 	hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
1027 	    HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST |
1028 	    ((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) |
1029 	    ((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL));
1030 }
1031 
1032 static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf,
1033 		unsigned dlen, unsigned slen, u16 mask, u8 snum)
1034 {
1035 	struct hifn_base_command *base_cmd;
1036 	u8 *buf_pos = buf;
1037 
1038 	base_cmd = (struct hifn_base_command *)buf_pos;
1039 	base_cmd->masks = __cpu_to_le16(mask);
1040 	base_cmd->total_source_count =
1041 		__cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO);
1042 	base_cmd->total_dest_count =
1043 		__cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO);
1044 
1045 	dlen >>= 16;
1046 	slen >>= 16;
1047 	base_cmd->session_num = __cpu_to_le16(snum |
1048 	    ((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) |
1049 	    ((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M));
1050 
1051 	return sizeof(struct hifn_base_command);
1052 }
1053 
1054 static int hifn_setup_crypto_command(struct hifn_device *dev,
1055 		u8 *buf, unsigned dlen, unsigned slen,
1056 		u8 *key, int keylen, u8 *iv, int ivsize, u16 mode)
1057 {
1058 	struct hifn_dma *dma = dev->desc_virt;
1059 	struct hifn_crypt_command *cry_cmd;
1060 	u8 *buf_pos = buf;
1061 	u16 cmd_len;
1062 
1063 	cry_cmd = (struct hifn_crypt_command *)buf_pos;
1064 
1065 	cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff);
1066 	dlen >>= 16;
1067 	cry_cmd->masks = __cpu_to_le16(mode |
1068 			((dlen << HIFN_CRYPT_CMD_SRCLEN_S) &
1069 			 HIFN_CRYPT_CMD_SRCLEN_M));
1070 	cry_cmd->header_skip = 0;
1071 	cry_cmd->reserved = 0;
1072 
1073 	buf_pos += sizeof(struct hifn_crypt_command);
1074 
1075 	dma->cmdu++;
1076 	if (dma->cmdu > 1) {
1077 		dev->dmareg |= HIFN_DMAIER_C_WAIT;
1078 		hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1079 	}
1080 
1081 	if (keylen) {
1082 		memcpy(buf_pos, key, keylen);
1083 		buf_pos += keylen;
1084 	}
1085 	if (ivsize) {
1086 		memcpy(buf_pos, iv, ivsize);
1087 		buf_pos += ivsize;
1088 	}
1089 
1090 	cmd_len = buf_pos - buf;
1091 
1092 	return cmd_len;
1093 }
1094 
1095 static int hifn_setup_cmd_desc(struct hifn_device *dev,
1096 		struct hifn_context *ctx, struct hifn_request_context *rctx,
1097 		void *priv, unsigned int nbytes)
1098 {
1099 	struct hifn_dma *dma = dev->desc_virt;
1100 	int cmd_len, sa_idx;
1101 	u8 *buf, *buf_pos;
1102 	u16 mask;
1103 
1104 	sa_idx = dma->cmdi;
1105 	buf_pos = buf = dma->command_bufs[dma->cmdi];
1106 
1107 	mask = 0;
1108 	switch (rctx->op) {
1109 	case ACRYPTO_OP_DECRYPT:
1110 		mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE;
1111 		break;
1112 	case ACRYPTO_OP_ENCRYPT:
1113 		mask = HIFN_BASE_CMD_CRYPT;
1114 		break;
1115 	case ACRYPTO_OP_HMAC:
1116 		mask = HIFN_BASE_CMD_MAC;
1117 		break;
1118 	default:
1119 		goto err_out;
1120 	}
1121 
1122 	buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes,
1123 			nbytes, mask, dev->snum);
1124 
1125 	if (rctx->op == ACRYPTO_OP_ENCRYPT || rctx->op == ACRYPTO_OP_DECRYPT) {
1126 		u16 md = 0;
1127 
1128 		if (ctx->keysize)
1129 			md |= HIFN_CRYPT_CMD_NEW_KEY;
1130 		if (rctx->iv && rctx->mode != ACRYPTO_MODE_ECB)
1131 			md |= HIFN_CRYPT_CMD_NEW_IV;
1132 
1133 		switch (rctx->mode) {
1134 		case ACRYPTO_MODE_ECB:
1135 			md |= HIFN_CRYPT_CMD_MODE_ECB;
1136 			break;
1137 		case ACRYPTO_MODE_CBC:
1138 			md |= HIFN_CRYPT_CMD_MODE_CBC;
1139 			break;
1140 		case ACRYPTO_MODE_CFB:
1141 			md |= HIFN_CRYPT_CMD_MODE_CFB;
1142 			break;
1143 		case ACRYPTO_MODE_OFB:
1144 			md |= HIFN_CRYPT_CMD_MODE_OFB;
1145 			break;
1146 		default:
1147 			goto err_out;
1148 		}
1149 
1150 		switch (rctx->type) {
1151 		case ACRYPTO_TYPE_AES_128:
1152 			if (ctx->keysize != 16)
1153 				goto err_out;
1154 			md |= HIFN_CRYPT_CMD_KSZ_128 |
1155 				HIFN_CRYPT_CMD_ALG_AES;
1156 			break;
1157 		case ACRYPTO_TYPE_AES_192:
1158 			if (ctx->keysize != 24)
1159 				goto err_out;
1160 			md |= HIFN_CRYPT_CMD_KSZ_192 |
1161 				HIFN_CRYPT_CMD_ALG_AES;
1162 			break;
1163 		case ACRYPTO_TYPE_AES_256:
1164 			if (ctx->keysize != 32)
1165 				goto err_out;
1166 			md |= HIFN_CRYPT_CMD_KSZ_256 |
1167 				HIFN_CRYPT_CMD_ALG_AES;
1168 			break;
1169 		case ACRYPTO_TYPE_3DES:
1170 			if (ctx->keysize != 24)
1171 				goto err_out;
1172 			md |= HIFN_CRYPT_CMD_ALG_3DES;
1173 			break;
1174 		case ACRYPTO_TYPE_DES:
1175 			if (ctx->keysize != 8)
1176 				goto err_out;
1177 			md |= HIFN_CRYPT_CMD_ALG_DES;
1178 			break;
1179 		default:
1180 			goto err_out;
1181 		}
1182 
1183 		buf_pos += hifn_setup_crypto_command(dev, buf_pos,
1184 				nbytes, nbytes, ctx->key, ctx->keysize,
1185 				rctx->iv, rctx->ivsize, md);
1186 	}
1187 
1188 	dev->sa[sa_idx] = priv;
1189 	dev->started++;
1190 
1191 	cmd_len = buf_pos - buf;
1192 	dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID |
1193 			HIFN_D_LAST | HIFN_D_MASKDONEIRQ);
1194 
1195 	if (++dma->cmdi == HIFN_D_CMD_RSIZE) {
1196 		dma->cmdr[dma->cmdi].l = __cpu_to_le32(
1197 			HIFN_D_VALID | HIFN_D_LAST |
1198 			HIFN_D_MASKDONEIRQ | HIFN_D_JUMP);
1199 		dma->cmdi = 0;
1200 	} else {
1201 		dma->cmdr[dma->cmdi - 1].l |= __cpu_to_le32(HIFN_D_VALID);
1202 	}
1203 
1204 	if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) {
1205 		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA);
1206 		dev->flags |= HIFN_FLAG_CMD_BUSY;
1207 	}
1208 	return 0;
1209 
1210 err_out:
1211 	return -EINVAL;
1212 }
1213 
1214 static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page,
1215 		unsigned int offset, unsigned int size, int last)
1216 {
1217 	struct hifn_dma *dma = dev->desc_virt;
1218 	int idx;
1219 	dma_addr_t addr;
1220 
1221 	addr = dma_map_page(&dev->pdev->dev, page, offset, size,
1222 			    DMA_TO_DEVICE);
1223 
1224 	idx = dma->srci;
1225 
1226 	dma->srcr[idx].p = __cpu_to_le32(addr);
1227 	dma->srcr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1228 			HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1229 
1230 	if (++idx == HIFN_D_SRC_RSIZE) {
1231 		dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1232 				HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1233 				(last ? HIFN_D_LAST : 0));
1234 		idx = 0;
1235 	}
1236 
1237 	dma->srci = idx;
1238 	dma->srcu++;
1239 
1240 	if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) {
1241 		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA);
1242 		dev->flags |= HIFN_FLAG_SRC_BUSY;
1243 	}
1244 
1245 	return size;
1246 }
1247 
1248 static void hifn_setup_res_desc(struct hifn_device *dev)
1249 {
1250 	struct hifn_dma *dma = dev->desc_virt;
1251 
1252 	dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT |
1253 			HIFN_D_VALID | HIFN_D_LAST);
1254 	/*
1255 	 * dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID |
1256 	 *					HIFN_D_LAST);
1257 	 */
1258 
1259 	if (++dma->resi == HIFN_D_RES_RSIZE) {
1260 		dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID |
1261 				HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
1262 		dma->resi = 0;
1263 	}
1264 
1265 	dma->resu++;
1266 
1267 	if (!(dev->flags & HIFN_FLAG_RES_BUSY)) {
1268 		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA);
1269 		dev->flags |= HIFN_FLAG_RES_BUSY;
1270 	}
1271 }
1272 
1273 static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page,
1274 		unsigned offset, unsigned size, int last)
1275 {
1276 	struct hifn_dma *dma = dev->desc_virt;
1277 	int idx;
1278 	dma_addr_t addr;
1279 
1280 	addr = dma_map_page(&dev->pdev->dev, page, offset, size,
1281 			    DMA_FROM_DEVICE);
1282 
1283 	idx = dma->dsti;
1284 	dma->dstr[idx].p = __cpu_to_le32(addr);
1285 	dma->dstr[idx].l = __cpu_to_le32(size |	HIFN_D_VALID |
1286 			HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1287 
1288 	if (++idx == HIFN_D_DST_RSIZE) {
1289 		dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1290 				HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1291 				(last ? HIFN_D_LAST : 0));
1292 		idx = 0;
1293 	}
1294 	dma->dsti = idx;
1295 	dma->dstu++;
1296 
1297 	if (!(dev->flags & HIFN_FLAG_DST_BUSY)) {
1298 		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA);
1299 		dev->flags |= HIFN_FLAG_DST_BUSY;
1300 	}
1301 }
1302 
1303 static int hifn_setup_dma(struct hifn_device *dev,
1304 		struct hifn_context *ctx, struct hifn_request_context *rctx,
1305 		struct scatterlist *src, struct scatterlist *dst,
1306 		unsigned int nbytes, void *priv)
1307 {
1308 	struct scatterlist *t;
1309 	struct page *spage, *dpage;
1310 	unsigned int soff, doff;
1311 	unsigned int n, len;
1312 
1313 	n = nbytes;
1314 	while (n) {
1315 		spage = sg_page(src);
1316 		soff = src->offset;
1317 		len = min(src->length, n);
1318 
1319 		hifn_setup_src_desc(dev, spage, soff, len, n - len == 0);
1320 
1321 		src++;
1322 		n -= len;
1323 	}
1324 
1325 	t = &rctx->walk.cache[0];
1326 	n = nbytes;
1327 	while (n) {
1328 		if (t->length && rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1329 			BUG_ON(!sg_page(t));
1330 			dpage = sg_page(t);
1331 			doff = 0;
1332 			len = t->length;
1333 		} else {
1334 			BUG_ON(!sg_page(dst));
1335 			dpage = sg_page(dst);
1336 			doff = dst->offset;
1337 			len = dst->length;
1338 		}
1339 		len = min(len, n);
1340 
1341 		hifn_setup_dst_desc(dev, dpage, doff, len, n - len == 0);
1342 
1343 		dst++;
1344 		t++;
1345 		n -= len;
1346 	}
1347 
1348 	hifn_setup_cmd_desc(dev, ctx, rctx, priv, nbytes);
1349 	hifn_setup_res_desc(dev);
1350 	return 0;
1351 }
1352 
1353 static int hifn_cipher_walk_init(struct hifn_cipher_walk *w,
1354 		int num, gfp_t gfp_flags)
1355 {
1356 	int i;
1357 
1358 	num = min(ASYNC_SCATTERLIST_CACHE, num);
1359 	sg_init_table(w->cache, num);
1360 
1361 	w->num = 0;
1362 	for (i = 0; i < num; ++i) {
1363 		struct page *page = alloc_page(gfp_flags);
1364 		struct scatterlist *s;
1365 
1366 		if (!page)
1367 			break;
1368 
1369 		s = &w->cache[i];
1370 
1371 		sg_set_page(s, page, PAGE_SIZE, 0);
1372 		w->num++;
1373 	}
1374 
1375 	return i;
1376 }
1377 
1378 static void hifn_cipher_walk_exit(struct hifn_cipher_walk *w)
1379 {
1380 	int i;
1381 
1382 	for (i = 0; i < w->num; ++i) {
1383 		struct scatterlist *s = &w->cache[i];
1384 
1385 		__free_page(sg_page(s));
1386 
1387 		s->length = 0;
1388 	}
1389 
1390 	w->num = 0;
1391 }
1392 
1393 static int skcipher_add(unsigned int *drestp, struct scatterlist *dst,
1394 		unsigned int size, unsigned int *nbytesp)
1395 {
1396 	unsigned int copy, drest = *drestp, nbytes = *nbytesp;
1397 	int idx = 0;
1398 
1399 	if (drest < size || size > nbytes)
1400 		return -EINVAL;
1401 
1402 	while (size) {
1403 		copy = min3(drest, size, dst->length);
1404 
1405 		size -= copy;
1406 		drest -= copy;
1407 		nbytes -= copy;
1408 
1409 		pr_debug("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n",
1410 			 __func__, copy, size, drest, nbytes);
1411 
1412 		dst++;
1413 		idx++;
1414 	}
1415 
1416 	*nbytesp = nbytes;
1417 	*drestp = drest;
1418 
1419 	return idx;
1420 }
1421 
1422 static int hifn_cipher_walk(struct skcipher_request *req,
1423 		struct hifn_cipher_walk *w)
1424 {
1425 	struct scatterlist *dst, *t;
1426 	unsigned int nbytes = req->cryptlen, offset, copy, diff;
1427 	int idx, tidx, err;
1428 
1429 	tidx = idx = 0;
1430 	offset = 0;
1431 	while (nbytes) {
1432 		if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED))
1433 			return -EINVAL;
1434 
1435 		dst = &req->dst[idx];
1436 
1437 		pr_debug("\n%s: dlen: %u, doff: %u, offset: %u, nbytes: %u.\n",
1438 			 __func__, dst->length, dst->offset, offset, nbytes);
1439 
1440 		if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1441 		    !IS_ALIGNED(dst->length, HIFN_D_DST_DALIGN) ||
1442 		    offset) {
1443 			unsigned slen = min(dst->length - offset, nbytes);
1444 			unsigned dlen = PAGE_SIZE;
1445 
1446 			t = &w->cache[idx];
1447 
1448 			err = skcipher_add(&dlen, dst, slen, &nbytes);
1449 			if (err < 0)
1450 				return err;
1451 
1452 			idx += err;
1453 
1454 			copy = slen & ~(HIFN_D_DST_DALIGN - 1);
1455 			diff = slen & (HIFN_D_DST_DALIGN - 1);
1456 
1457 			if (dlen < nbytes) {
1458 				/*
1459 				 * Destination page does not have enough space
1460 				 * to put there additional blocksized chunk,
1461 				 * so we mark that page as containing only
1462 				 * blocksize aligned chunks:
1463 				 *	t->length = (slen & ~(HIFN_D_DST_DALIGN - 1));
1464 				 * and increase number of bytes to be processed
1465 				 * in next chunk:
1466 				 *	nbytes += diff;
1467 				 */
1468 				nbytes += diff;
1469 
1470 				/*
1471 				 * Temporary of course...
1472 				 * Kick author if you will catch this one.
1473 				 */
1474 				pr_err("%s: dlen: %u, nbytes: %u, slen: %u, offset: %u.\n",
1475 				       __func__, dlen, nbytes, slen, offset);
1476 				pr_err("%s: please contact author to fix this "
1477 				       "issue, generally you should not catch "
1478 				       "this path under any condition but who "
1479 				       "knows how did you use crypto code.\n"
1480 				       "Thank you.\n",	__func__);
1481 				BUG();
1482 			} else {
1483 				copy += diff + nbytes;
1484 
1485 				dst = &req->dst[idx];
1486 
1487 				err = skcipher_add(&dlen, dst, nbytes, &nbytes);
1488 				if (err < 0)
1489 					return err;
1490 
1491 				idx += err;
1492 			}
1493 
1494 			t->length = copy;
1495 			t->offset = offset;
1496 		} else {
1497 			nbytes -= min(dst->length, nbytes);
1498 			idx++;
1499 		}
1500 
1501 		tidx++;
1502 	}
1503 
1504 	return tidx;
1505 }
1506 
1507 static int hifn_setup_session(struct skcipher_request *req)
1508 {
1509 	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1510 	struct hifn_request_context *rctx = skcipher_request_ctx(req);
1511 	struct hifn_device *dev = ctx->dev;
1512 	unsigned long dlen, flags;
1513 	unsigned int nbytes = req->cryptlen, idx = 0;
1514 	int err = -EINVAL, sg_num;
1515 	struct scatterlist *dst;
1516 
1517 	if (rctx->iv && !rctx->ivsize && rctx->mode != ACRYPTO_MODE_ECB)
1518 		goto err_out_exit;
1519 
1520 	rctx->walk.flags = 0;
1521 
1522 	while (nbytes) {
1523 		dst = &req->dst[idx];
1524 		dlen = min(dst->length, nbytes);
1525 
1526 		if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1527 		    !IS_ALIGNED(dlen, HIFN_D_DST_DALIGN))
1528 			rctx->walk.flags |= ASYNC_FLAGS_MISALIGNED;
1529 
1530 		nbytes -= dlen;
1531 		idx++;
1532 	}
1533 
1534 	if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1535 		err = hifn_cipher_walk_init(&rctx->walk, idx, GFP_ATOMIC);
1536 		if (err < 0)
1537 			return err;
1538 	}
1539 
1540 	sg_num = hifn_cipher_walk(req, &rctx->walk);
1541 	if (sg_num < 0) {
1542 		err = sg_num;
1543 		goto err_out_exit;
1544 	}
1545 
1546 	spin_lock_irqsave(&dev->lock, flags);
1547 	if (dev->started + sg_num > HIFN_QUEUE_LENGTH) {
1548 		err = -EAGAIN;
1549 		goto err_out;
1550 	}
1551 
1552 	err = hifn_setup_dma(dev, ctx, rctx, req->src, req->dst, req->cryptlen, req);
1553 	if (err)
1554 		goto err_out;
1555 
1556 	dev->snum++;
1557 
1558 	dev->active = HIFN_DEFAULT_ACTIVE_NUM;
1559 	spin_unlock_irqrestore(&dev->lock, flags);
1560 
1561 	return 0;
1562 
1563 err_out:
1564 	spin_unlock_irqrestore(&dev->lock, flags);
1565 err_out_exit:
1566 	if (err) {
1567 		dev_info(&dev->pdev->dev, "iv: %p [%d], key: %p [%d], mode: %u, op: %u, "
1568 			 "type: %u, err: %d.\n",
1569 			 rctx->iv, rctx->ivsize,
1570 			 ctx->key, ctx->keysize,
1571 			 rctx->mode, rctx->op, rctx->type, err);
1572 	}
1573 
1574 	return err;
1575 }
1576 
1577 static int hifn_start_device(struct hifn_device *dev)
1578 {
1579 	int err;
1580 
1581 	dev->started = dev->active = 0;
1582 	hifn_reset_dma(dev, 1);
1583 
1584 	err = hifn_enable_crypto(dev);
1585 	if (err)
1586 		return err;
1587 
1588 	hifn_reset_puc(dev);
1589 
1590 	hifn_init_dma(dev);
1591 
1592 	hifn_init_registers(dev);
1593 
1594 	hifn_init_pubrng(dev);
1595 
1596 	return 0;
1597 }
1598 
1599 static int skcipher_get(void *saddr, unsigned int *srestp, unsigned int offset,
1600 		struct scatterlist *dst, unsigned int size, unsigned int *nbytesp)
1601 {
1602 	unsigned int srest = *srestp, nbytes = *nbytesp, copy;
1603 	void *daddr;
1604 	int idx = 0;
1605 
1606 	if (srest < size || size > nbytes)
1607 		return -EINVAL;
1608 
1609 	while (size) {
1610 		copy = min3(srest, dst->length, size);
1611 
1612 		daddr = kmap_atomic(sg_page(dst));
1613 		memcpy(daddr + dst->offset + offset, saddr, copy);
1614 		kunmap_atomic(daddr);
1615 
1616 		nbytes -= copy;
1617 		size -= copy;
1618 		srest -= copy;
1619 		saddr += copy;
1620 		offset = 0;
1621 
1622 		pr_debug("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n",
1623 			 __func__, copy, size, srest, nbytes);
1624 
1625 		dst++;
1626 		idx++;
1627 	}
1628 
1629 	*nbytesp = nbytes;
1630 	*srestp = srest;
1631 
1632 	return idx;
1633 }
1634 
1635 static inline void hifn_complete_sa(struct hifn_device *dev, int i)
1636 {
1637 	unsigned long flags;
1638 
1639 	spin_lock_irqsave(&dev->lock, flags);
1640 	dev->sa[i] = NULL;
1641 	dev->started--;
1642 	if (dev->started < 0)
1643 		dev_info(&dev->pdev->dev, "%s: started: %d.\n", __func__,
1644 			 dev->started);
1645 	spin_unlock_irqrestore(&dev->lock, flags);
1646 	BUG_ON(dev->started < 0);
1647 }
1648 
1649 static void hifn_process_ready(struct skcipher_request *req, int error)
1650 {
1651 	struct hifn_request_context *rctx = skcipher_request_ctx(req);
1652 
1653 	if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1654 		unsigned int nbytes = req->cryptlen;
1655 		int idx = 0, err;
1656 		struct scatterlist *dst, *t;
1657 		void *saddr;
1658 
1659 		while (nbytes) {
1660 			t = &rctx->walk.cache[idx];
1661 			dst = &req->dst[idx];
1662 
1663 			pr_debug("\n%s: sg_page(t): %p, t->length: %u, "
1664 				"sg_page(dst): %p, dst->length: %u, "
1665 				"nbytes: %u.\n",
1666 				__func__, sg_page(t), t->length,
1667 				sg_page(dst), dst->length, nbytes);
1668 
1669 			if (!t->length) {
1670 				nbytes -= min(dst->length, nbytes);
1671 				idx++;
1672 				continue;
1673 			}
1674 
1675 			saddr = kmap_atomic(sg_page(t));
1676 
1677 			err = skcipher_get(saddr, &t->length, t->offset,
1678 					dst, nbytes, &nbytes);
1679 			if (err < 0) {
1680 				kunmap_atomic(saddr);
1681 				break;
1682 			}
1683 
1684 			idx += err;
1685 			kunmap_atomic(saddr);
1686 		}
1687 
1688 		hifn_cipher_walk_exit(&rctx->walk);
1689 	}
1690 
1691 	skcipher_request_complete(req, error);
1692 }
1693 
1694 static void hifn_clear_rings(struct hifn_device *dev, int error)
1695 {
1696 	struct hifn_dma *dma = dev->desc_virt;
1697 	int i, u;
1698 
1699 	dev_dbg(&dev->pdev->dev, "ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1700 			"k: %d.%d.%d.%d.\n",
1701 			dma->cmdi, dma->srci, dma->dsti, dma->resi,
1702 			dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1703 			dma->cmdk, dma->srck, dma->dstk, dma->resk);
1704 
1705 	i = dma->resk; u = dma->resu;
1706 	while (u != 0) {
1707 		if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID))
1708 			break;
1709 
1710 		if (dev->sa[i]) {
1711 			dev->success++;
1712 			dev->reset = 0;
1713 			hifn_process_ready(dev->sa[i], error);
1714 			hifn_complete_sa(dev, i);
1715 		}
1716 
1717 		if (++i == HIFN_D_RES_RSIZE)
1718 			i = 0;
1719 		u--;
1720 	}
1721 	dma->resk = i; dma->resu = u;
1722 
1723 	i = dma->srck; u = dma->srcu;
1724 	while (u != 0) {
1725 		if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID))
1726 			break;
1727 		if (++i == HIFN_D_SRC_RSIZE)
1728 			i = 0;
1729 		u--;
1730 	}
1731 	dma->srck = i; dma->srcu = u;
1732 
1733 	i = dma->cmdk; u = dma->cmdu;
1734 	while (u != 0) {
1735 		if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID))
1736 			break;
1737 		if (++i == HIFN_D_CMD_RSIZE)
1738 			i = 0;
1739 		u--;
1740 	}
1741 	dma->cmdk = i; dma->cmdu = u;
1742 
1743 	i = dma->dstk; u = dma->dstu;
1744 	while (u != 0) {
1745 		if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID))
1746 			break;
1747 		if (++i == HIFN_D_DST_RSIZE)
1748 			i = 0;
1749 		u--;
1750 	}
1751 	dma->dstk = i; dma->dstu = u;
1752 
1753 	dev_dbg(&dev->pdev->dev, "ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1754 			"k: %d.%d.%d.%d.\n",
1755 			dma->cmdi, dma->srci, dma->dsti, dma->resi,
1756 			dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1757 			dma->cmdk, dma->srck, dma->dstk, dma->resk);
1758 }
1759 
1760 static void hifn_work(struct work_struct *work)
1761 {
1762 	struct delayed_work *dw = to_delayed_work(work);
1763 	struct hifn_device *dev = container_of(dw, struct hifn_device, work);
1764 	unsigned long flags;
1765 	int reset = 0;
1766 	u32 r = 0;
1767 
1768 	spin_lock_irqsave(&dev->lock, flags);
1769 	if (dev->active == 0) {
1770 		struct hifn_dma *dma = dev->desc_virt;
1771 
1772 		if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) {
1773 			dev->flags &= ~HIFN_FLAG_CMD_BUSY;
1774 			r |= HIFN_DMACSR_C_CTRL_DIS;
1775 		}
1776 		if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) {
1777 			dev->flags &= ~HIFN_FLAG_SRC_BUSY;
1778 			r |= HIFN_DMACSR_S_CTRL_DIS;
1779 		}
1780 		if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) {
1781 			dev->flags &= ~HIFN_FLAG_DST_BUSY;
1782 			r |= HIFN_DMACSR_D_CTRL_DIS;
1783 		}
1784 		if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) {
1785 			dev->flags &= ~HIFN_FLAG_RES_BUSY;
1786 			r |= HIFN_DMACSR_R_CTRL_DIS;
1787 		}
1788 		if (r)
1789 			hifn_write_1(dev, HIFN_1_DMA_CSR, r);
1790 	} else
1791 		dev->active--;
1792 
1793 	if ((dev->prev_success == dev->success) && dev->started)
1794 		reset = 1;
1795 	dev->prev_success = dev->success;
1796 	spin_unlock_irqrestore(&dev->lock, flags);
1797 
1798 	if (reset) {
1799 		if (++dev->reset >= 5) {
1800 			int i;
1801 			struct hifn_dma *dma = dev->desc_virt;
1802 
1803 			dev_info(&dev->pdev->dev,
1804 				 "r: %08x, active: %d, started: %d, "
1805 				 "success: %lu: qlen: %u/%u, reset: %d.\n",
1806 				 r, dev->active, dev->started,
1807 				 dev->success, dev->queue.qlen, dev->queue.max_qlen,
1808 				 reset);
1809 
1810 			dev_info(&dev->pdev->dev, "%s: res: ", __func__);
1811 			for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1812 				pr_info("%x.%p ", dma->resr[i].l, dev->sa[i]);
1813 				if (dev->sa[i]) {
1814 					hifn_process_ready(dev->sa[i], -ENODEV);
1815 					hifn_complete_sa(dev, i);
1816 				}
1817 			}
1818 			pr_info("\n");
1819 
1820 			hifn_reset_dma(dev, 1);
1821 			hifn_stop_device(dev);
1822 			hifn_start_device(dev);
1823 			dev->reset = 0;
1824 		}
1825 
1826 		tasklet_schedule(&dev->tasklet);
1827 	}
1828 
1829 	schedule_delayed_work(&dev->work, HZ);
1830 }
1831 
1832 static irqreturn_t hifn_interrupt(int irq, void *data)
1833 {
1834 	struct hifn_device *dev = data;
1835 	struct hifn_dma *dma = dev->desc_virt;
1836 	u32 dmacsr, restart;
1837 
1838 	dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR);
1839 
1840 	dev_dbg(&dev->pdev->dev, "1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], "
1841 			"i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n",
1842 		dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi,
1843 		dma->cmdi, dma->srci, dma->dsti, dma->resi,
1844 		dma->cmdu, dma->srcu, dma->dstu, dma->resu);
1845 
1846 	if ((dmacsr & dev->dmareg) == 0)
1847 		return IRQ_NONE;
1848 
1849 	hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg);
1850 
1851 	if (dmacsr & HIFN_DMACSR_ENGINE)
1852 		hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR));
1853 	if (dmacsr & HIFN_DMACSR_PUBDONE)
1854 		hifn_write_1(dev, HIFN_1_PUB_STATUS,
1855 			hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE);
1856 
1857 	restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER);
1858 	if (restart) {
1859 		u32 puisr = hifn_read_0(dev, HIFN_0_PUISR);
1860 
1861 		dev_warn(&dev->pdev->dev, "overflow: r: %d, d: %d, puisr: %08x, d: %u.\n",
1862 			 !!(dmacsr & HIFN_DMACSR_R_OVER),
1863 			 !!(dmacsr & HIFN_DMACSR_D_OVER),
1864 			puisr, !!(puisr & HIFN_PUISR_DSTOVER));
1865 		if (!!(puisr & HIFN_PUISR_DSTOVER))
1866 			hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1867 		hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER |
1868 					HIFN_DMACSR_D_OVER));
1869 	}
1870 
1871 	restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT |
1872 			HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT);
1873 	if (restart) {
1874 		dev_warn(&dev->pdev->dev, "abort: c: %d, s: %d, d: %d, r: %d.\n",
1875 			 !!(dmacsr & HIFN_DMACSR_C_ABORT),
1876 			 !!(dmacsr & HIFN_DMACSR_S_ABORT),
1877 			 !!(dmacsr & HIFN_DMACSR_D_ABORT),
1878 			 !!(dmacsr & HIFN_DMACSR_R_ABORT));
1879 		hifn_reset_dma(dev, 1);
1880 		hifn_init_dma(dev);
1881 		hifn_init_registers(dev);
1882 	}
1883 
1884 	if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) {
1885 		dev_dbg(&dev->pdev->dev, "wait on command.\n");
1886 		dev->dmareg &= ~(HIFN_DMAIER_C_WAIT);
1887 		hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1888 	}
1889 
1890 	tasklet_schedule(&dev->tasklet);
1891 
1892 	return IRQ_HANDLED;
1893 }
1894 
1895 static void hifn_flush(struct hifn_device *dev)
1896 {
1897 	unsigned long flags;
1898 	struct crypto_async_request *async_req;
1899 	struct skcipher_request *req;
1900 	struct hifn_dma *dma = dev->desc_virt;
1901 	int i;
1902 
1903 	for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1904 		struct hifn_desc *d = &dma->resr[i];
1905 
1906 		if (dev->sa[i]) {
1907 			hifn_process_ready(dev->sa[i],
1908 				(d->l & __cpu_to_le32(HIFN_D_VALID)) ? -ENODEV : 0);
1909 			hifn_complete_sa(dev, i);
1910 		}
1911 	}
1912 
1913 	spin_lock_irqsave(&dev->lock, flags);
1914 	while ((async_req = crypto_dequeue_request(&dev->queue))) {
1915 		req = skcipher_request_cast(async_req);
1916 		spin_unlock_irqrestore(&dev->lock, flags);
1917 
1918 		hifn_process_ready(req, -ENODEV);
1919 
1920 		spin_lock_irqsave(&dev->lock, flags);
1921 	}
1922 	spin_unlock_irqrestore(&dev->lock, flags);
1923 }
1924 
1925 static int hifn_setkey(struct crypto_skcipher *cipher, const u8 *key,
1926 		unsigned int len)
1927 {
1928 	struct hifn_context *ctx = crypto_skcipher_ctx(cipher);
1929 	struct hifn_device *dev = ctx->dev;
1930 	int err;
1931 
1932 	err = verify_skcipher_des_key(cipher, key);
1933 	if (err)
1934 		return err;
1935 
1936 	dev->flags &= ~HIFN_FLAG_OLD_KEY;
1937 
1938 	memcpy(ctx->key, key, len);
1939 	ctx->keysize = len;
1940 
1941 	return 0;
1942 }
1943 
1944 static int hifn_des3_setkey(struct crypto_skcipher *cipher, const u8 *key,
1945 			    unsigned int len)
1946 {
1947 	struct hifn_context *ctx = crypto_skcipher_ctx(cipher);
1948 	struct hifn_device *dev = ctx->dev;
1949 	int err;
1950 
1951 	err = verify_skcipher_des3_key(cipher, key);
1952 	if (err)
1953 		return err;
1954 
1955 	dev->flags &= ~HIFN_FLAG_OLD_KEY;
1956 
1957 	memcpy(ctx->key, key, len);
1958 	ctx->keysize = len;
1959 
1960 	return 0;
1961 }
1962 
1963 static int hifn_handle_req(struct skcipher_request *req)
1964 {
1965 	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1966 	struct hifn_device *dev = ctx->dev;
1967 	int err = -EAGAIN;
1968 
1969 	if (dev->started + DIV_ROUND_UP(req->cryptlen, PAGE_SIZE) <= HIFN_QUEUE_LENGTH)
1970 		err = hifn_setup_session(req);
1971 
1972 	if (err == -EAGAIN) {
1973 		unsigned long flags;
1974 
1975 		spin_lock_irqsave(&dev->lock, flags);
1976 		err = crypto_enqueue_request(&dev->queue, &req->base);
1977 		spin_unlock_irqrestore(&dev->lock, flags);
1978 	}
1979 
1980 	return err;
1981 }
1982 
1983 static int hifn_setup_crypto_req(struct skcipher_request *req, u8 op,
1984 		u8 type, u8 mode)
1985 {
1986 	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1987 	struct hifn_request_context *rctx = skcipher_request_ctx(req);
1988 	unsigned ivsize;
1989 
1990 	ivsize = crypto_skcipher_ivsize(crypto_skcipher_reqtfm(req));
1991 
1992 	if (req->iv && mode != ACRYPTO_MODE_ECB) {
1993 		if (type == ACRYPTO_TYPE_AES_128)
1994 			ivsize = HIFN_AES_IV_LENGTH;
1995 		else if (type == ACRYPTO_TYPE_DES)
1996 			ivsize = HIFN_DES_KEY_LENGTH;
1997 		else if (type == ACRYPTO_TYPE_3DES)
1998 			ivsize = HIFN_3DES_KEY_LENGTH;
1999 	}
2000 
2001 	if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) {
2002 		if (ctx->keysize == 24)
2003 			type = ACRYPTO_TYPE_AES_192;
2004 		else if (ctx->keysize == 32)
2005 			type = ACRYPTO_TYPE_AES_256;
2006 	}
2007 
2008 	rctx->op = op;
2009 	rctx->mode = mode;
2010 	rctx->type = type;
2011 	rctx->iv = req->iv;
2012 	rctx->ivsize = ivsize;
2013 
2014 	/*
2015 	 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2016 	 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2017 	 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2018 	 */
2019 
2020 	return hifn_handle_req(req);
2021 }
2022 
2023 static int hifn_process_queue(struct hifn_device *dev)
2024 {
2025 	struct crypto_async_request *async_req, *backlog;
2026 	struct skcipher_request *req;
2027 	unsigned long flags;
2028 	int err = 0;
2029 
2030 	while (dev->started < HIFN_QUEUE_LENGTH) {
2031 		spin_lock_irqsave(&dev->lock, flags);
2032 		backlog = crypto_get_backlog(&dev->queue);
2033 		async_req = crypto_dequeue_request(&dev->queue);
2034 		spin_unlock_irqrestore(&dev->lock, flags);
2035 
2036 		if (!async_req)
2037 			break;
2038 
2039 		if (backlog)
2040 			crypto_request_complete(backlog, -EINPROGRESS);
2041 
2042 		req = skcipher_request_cast(async_req);
2043 
2044 		err = hifn_handle_req(req);
2045 		if (err)
2046 			break;
2047 	}
2048 
2049 	return err;
2050 }
2051 
2052 static int hifn_setup_crypto(struct skcipher_request *req, u8 op,
2053 		u8 type, u8 mode)
2054 {
2055 	int err;
2056 	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2057 	struct hifn_device *dev = ctx->dev;
2058 
2059 	err = hifn_setup_crypto_req(req, op, type, mode);
2060 	if (err)
2061 		return err;
2062 
2063 	if (dev->started < HIFN_QUEUE_LENGTH &&	dev->queue.qlen)
2064 		hifn_process_queue(dev);
2065 
2066 	return -EINPROGRESS;
2067 }
2068 
2069 /*
2070  * AES ecryption functions.
2071  */
2072 static inline int hifn_encrypt_aes_ecb(struct skcipher_request *req)
2073 {
2074 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2075 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2076 }
2077 static inline int hifn_encrypt_aes_cbc(struct skcipher_request *req)
2078 {
2079 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2080 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2081 }
2082 
2083 /*
2084  * AES decryption functions.
2085  */
2086 static inline int hifn_decrypt_aes_ecb(struct skcipher_request *req)
2087 {
2088 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2089 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2090 }
2091 static inline int hifn_decrypt_aes_cbc(struct skcipher_request *req)
2092 {
2093 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2094 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2095 }
2096 
2097 /*
2098  * DES ecryption functions.
2099  */
2100 static inline int hifn_encrypt_des_ecb(struct skcipher_request *req)
2101 {
2102 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2103 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2104 }
2105 static inline int hifn_encrypt_des_cbc(struct skcipher_request *req)
2106 {
2107 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2108 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2109 }
2110 
2111 /*
2112  * DES decryption functions.
2113  */
2114 static inline int hifn_decrypt_des_ecb(struct skcipher_request *req)
2115 {
2116 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2117 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2118 }
2119 static inline int hifn_decrypt_des_cbc(struct skcipher_request *req)
2120 {
2121 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2122 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2123 }
2124 
2125 /*
2126  * 3DES ecryption functions.
2127  */
2128 static inline int hifn_encrypt_3des_ecb(struct skcipher_request *req)
2129 {
2130 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2131 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2132 }
2133 static inline int hifn_encrypt_3des_cbc(struct skcipher_request *req)
2134 {
2135 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2136 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2137 }
2138 
2139 /* 3DES decryption functions. */
2140 static inline int hifn_decrypt_3des_ecb(struct skcipher_request *req)
2141 {
2142 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2143 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2144 }
2145 static inline int hifn_decrypt_3des_cbc(struct skcipher_request *req)
2146 {
2147 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2148 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2149 }
2150 
2151 struct hifn_alg_template {
2152 	char name[CRYPTO_MAX_ALG_NAME];
2153 	char drv_name[CRYPTO_MAX_ALG_NAME];
2154 	unsigned int bsize;
2155 	struct skcipher_alg skcipher;
2156 };
2157 
2158 static const struct hifn_alg_template hifn_alg_templates[] = {
2159 	/*
2160 	 * 3DES ECB and CBC modes.
2161 	 */
2162 	{
2163 		.name = "cbc(des3_ede)", .drv_name = "cbc-3des", .bsize = 8,
2164 		.skcipher = {
2165 			.ivsize		=	HIFN_IV_LENGTH,
2166 			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2167 			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2168 			.setkey		=	hifn_des3_setkey,
2169 			.encrypt	=	hifn_encrypt_3des_cbc,
2170 			.decrypt	=	hifn_decrypt_3des_cbc,
2171 		},
2172 	},
2173 	{
2174 		.name = "ecb(des3_ede)", .drv_name = "ecb-3des", .bsize = 8,
2175 		.skcipher = {
2176 			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2177 			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2178 			.setkey		=	hifn_des3_setkey,
2179 			.encrypt	=	hifn_encrypt_3des_ecb,
2180 			.decrypt	=	hifn_decrypt_3des_ecb,
2181 		},
2182 	},
2183 
2184 	/*
2185 	 * DES ECB and CBC modes.
2186 	 */
2187 	{
2188 		.name = "cbc(des)", .drv_name = "cbc-des", .bsize = 8,
2189 		.skcipher = {
2190 			.ivsize		=	HIFN_IV_LENGTH,
2191 			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2192 			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2193 			.setkey		=	hifn_setkey,
2194 			.encrypt	=	hifn_encrypt_des_cbc,
2195 			.decrypt	=	hifn_decrypt_des_cbc,
2196 		},
2197 	},
2198 	{
2199 		.name = "ecb(des)", .drv_name = "ecb-des", .bsize = 8,
2200 		.skcipher = {
2201 			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2202 			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2203 			.setkey		=	hifn_setkey,
2204 			.encrypt	=	hifn_encrypt_des_ecb,
2205 			.decrypt	=	hifn_decrypt_des_ecb,
2206 		},
2207 	},
2208 
2209 	/*
2210 	 * AES ECB and CBC modes.
2211 	 */
2212 	{
2213 		.name = "ecb(aes)", .drv_name = "ecb-aes", .bsize = 16,
2214 		.skcipher = {
2215 			.min_keysize	=	AES_MIN_KEY_SIZE,
2216 			.max_keysize	=	AES_MAX_KEY_SIZE,
2217 			.setkey		=	hifn_setkey,
2218 			.encrypt	=	hifn_encrypt_aes_ecb,
2219 			.decrypt	=	hifn_decrypt_aes_ecb,
2220 		},
2221 	},
2222 	{
2223 		.name = "cbc(aes)", .drv_name = "cbc-aes", .bsize = 16,
2224 		.skcipher = {
2225 			.ivsize		=	HIFN_AES_IV_LENGTH,
2226 			.min_keysize	=	AES_MIN_KEY_SIZE,
2227 			.max_keysize	=	AES_MAX_KEY_SIZE,
2228 			.setkey		=	hifn_setkey,
2229 			.encrypt	=	hifn_encrypt_aes_cbc,
2230 			.decrypt	=	hifn_decrypt_aes_cbc,
2231 		},
2232 	},
2233 };
2234 
2235 static int hifn_init_tfm(struct crypto_skcipher *tfm)
2236 {
2237 	struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
2238 	struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg);
2239 	struct hifn_context *ctx = crypto_skcipher_ctx(tfm);
2240 
2241 	ctx->dev = ha->dev;
2242 	crypto_skcipher_set_reqsize(tfm, sizeof(struct hifn_request_context));
2243 
2244 	return 0;
2245 }
2246 
2247 static int hifn_alg_alloc(struct hifn_device *dev, const struct hifn_alg_template *t)
2248 {
2249 	struct hifn_crypto_alg *alg;
2250 	int err;
2251 
2252 	alg = kzalloc(sizeof(*alg), GFP_KERNEL);
2253 	if (!alg)
2254 		return -ENOMEM;
2255 
2256 	alg->alg = t->skcipher;
2257 	alg->alg.init = hifn_init_tfm;
2258 
2259 	err = -EINVAL;
2260 	if (snprintf(alg->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
2261 		     "%s", t->name) >= CRYPTO_MAX_ALG_NAME)
2262 		goto out_free_alg;
2263 	if (snprintf(alg->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
2264 		     "%s-%s", t->drv_name, dev->name) >= CRYPTO_MAX_ALG_NAME)
2265 		goto out_free_alg;
2266 
2267 	alg->alg.base.cra_priority = 300;
2268 	alg->alg.base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
2269 	alg->alg.base.cra_blocksize = t->bsize;
2270 	alg->alg.base.cra_ctxsize = sizeof(struct hifn_context);
2271 	alg->alg.base.cra_alignmask = 0;
2272 	alg->alg.base.cra_module = THIS_MODULE;
2273 
2274 	alg->dev = dev;
2275 
2276 	list_add_tail(&alg->entry, &dev->alg_list);
2277 
2278 	err = crypto_register_skcipher(&alg->alg);
2279 	if (err) {
2280 		list_del(&alg->entry);
2281 out_free_alg:
2282 		kfree(alg);
2283 	}
2284 
2285 	return err;
2286 }
2287 
2288 static void hifn_unregister_alg(struct hifn_device *dev)
2289 {
2290 	struct hifn_crypto_alg *a, *n;
2291 
2292 	list_for_each_entry_safe(a, n, &dev->alg_list, entry) {
2293 		list_del(&a->entry);
2294 		crypto_unregister_skcipher(&a->alg);
2295 		kfree(a);
2296 	}
2297 }
2298 
2299 static int hifn_register_alg(struct hifn_device *dev)
2300 {
2301 	int i, err;
2302 
2303 	for (i = 0; i < ARRAY_SIZE(hifn_alg_templates); ++i) {
2304 		err = hifn_alg_alloc(dev, &hifn_alg_templates[i]);
2305 		if (err)
2306 			goto err_out_exit;
2307 	}
2308 
2309 	return 0;
2310 
2311 err_out_exit:
2312 	hifn_unregister_alg(dev);
2313 	return err;
2314 }
2315 
2316 static void hifn_tasklet_callback(unsigned long data)
2317 {
2318 	struct hifn_device *dev = (struct hifn_device *)data;
2319 
2320 	/*
2321 	 * This is ok to call this without lock being held,
2322 	 * althogh it modifies some parameters used in parallel,
2323 	 * (like dev->success), but they are used in process
2324 	 * context or update is atomic (like setting dev->sa[i] to NULL).
2325 	 */
2326 	hifn_clear_rings(dev, 0);
2327 
2328 	if (dev->started < HIFN_QUEUE_LENGTH &&	dev->queue.qlen)
2329 		hifn_process_queue(dev);
2330 }
2331 
2332 static int hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2333 {
2334 	int err, i;
2335 	struct hifn_device *dev;
2336 	char name[8];
2337 
2338 	err = pci_enable_device(pdev);
2339 	if (err)
2340 		return err;
2341 	pci_set_master(pdev);
2342 
2343 	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2344 	if (err)
2345 		goto err_out_disable_pci_device;
2346 
2347 	snprintf(name, sizeof(name), "hifn%d",
2348 			atomic_inc_return(&hifn_dev_number) - 1);
2349 
2350 	err = pci_request_regions(pdev, name);
2351 	if (err)
2352 		goto err_out_disable_pci_device;
2353 
2354 	if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE ||
2355 	    pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE ||
2356 	    pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) {
2357 		dev_err(&pdev->dev, "Broken hardware - I/O regions are too small.\n");
2358 		err = -ENODEV;
2359 		goto err_out_free_regions;
2360 	}
2361 
2362 	dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg),
2363 			GFP_KERNEL);
2364 	if (!dev) {
2365 		err = -ENOMEM;
2366 		goto err_out_free_regions;
2367 	}
2368 
2369 	INIT_LIST_HEAD(&dev->alg_list);
2370 
2371 	snprintf(dev->name, sizeof(dev->name), "%s", name);
2372 	spin_lock_init(&dev->lock);
2373 
2374 	for (i = 0; i < 3; ++i) {
2375 		unsigned long addr, size;
2376 
2377 		addr = pci_resource_start(pdev, i);
2378 		size = pci_resource_len(pdev, i);
2379 
2380 		dev->bar[i] = ioremap(addr, size);
2381 		if (!dev->bar[i]) {
2382 			err = -ENOMEM;
2383 			goto err_out_unmap_bars;
2384 		}
2385 	}
2386 
2387 	dev->desc_virt = dma_alloc_coherent(&pdev->dev,
2388 					    sizeof(struct hifn_dma),
2389 					    &dev->desc_dma, GFP_KERNEL);
2390 	if (!dev->desc_virt) {
2391 		dev_err(&pdev->dev, "Failed to allocate descriptor rings.\n");
2392 		err = -ENOMEM;
2393 		goto err_out_unmap_bars;
2394 	}
2395 
2396 	dev->pdev = pdev;
2397 	dev->irq = pdev->irq;
2398 
2399 	for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
2400 		dev->sa[i] = NULL;
2401 
2402 	pci_set_drvdata(pdev, dev);
2403 
2404 	tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev);
2405 
2406 	crypto_init_queue(&dev->queue, 1);
2407 
2408 	err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev);
2409 	if (err) {
2410 		dev_err(&pdev->dev, "Failed to request IRQ%d: err: %d.\n",
2411 			dev->irq, err);
2412 		dev->irq = 0;
2413 		goto err_out_free_desc;
2414 	}
2415 
2416 	err = hifn_start_device(dev);
2417 	if (err)
2418 		goto err_out_free_irq;
2419 
2420 	err = hifn_register_rng(dev);
2421 	if (err)
2422 		goto err_out_stop_device;
2423 
2424 	err = hifn_register_alg(dev);
2425 	if (err)
2426 		goto err_out_unregister_rng;
2427 
2428 	INIT_DELAYED_WORK(&dev->work, hifn_work);
2429 	schedule_delayed_work(&dev->work, HZ);
2430 
2431 	dev_dbg(&pdev->dev, "HIFN crypto accelerator card at %s has been "
2432 		"successfully registered as %s.\n",
2433 		pci_name(pdev), dev->name);
2434 
2435 	return 0;
2436 
2437 err_out_unregister_rng:
2438 	hifn_unregister_rng(dev);
2439 err_out_stop_device:
2440 	hifn_reset_dma(dev, 1);
2441 	hifn_stop_device(dev);
2442 err_out_free_irq:
2443 	free_irq(dev->irq, dev);
2444 	tasklet_kill(&dev->tasklet);
2445 err_out_free_desc:
2446 	dma_free_coherent(&pdev->dev, sizeof(struct hifn_dma), dev->desc_virt,
2447 			  dev->desc_dma);
2448 
2449 err_out_unmap_bars:
2450 	for (i = 0; i < 3; ++i)
2451 		if (dev->bar[i])
2452 			iounmap(dev->bar[i]);
2453 	kfree(dev);
2454 
2455 err_out_free_regions:
2456 	pci_release_regions(pdev);
2457 
2458 err_out_disable_pci_device:
2459 	pci_disable_device(pdev);
2460 
2461 	return err;
2462 }
2463 
2464 static void hifn_remove(struct pci_dev *pdev)
2465 {
2466 	int i;
2467 	struct hifn_device *dev;
2468 
2469 	dev = pci_get_drvdata(pdev);
2470 
2471 	if (dev) {
2472 		cancel_delayed_work_sync(&dev->work);
2473 
2474 		hifn_unregister_rng(dev);
2475 		hifn_unregister_alg(dev);
2476 		hifn_reset_dma(dev, 1);
2477 		hifn_stop_device(dev);
2478 
2479 		free_irq(dev->irq, dev);
2480 		tasklet_kill(&dev->tasklet);
2481 
2482 		hifn_flush(dev);
2483 
2484 		dma_free_coherent(&pdev->dev, sizeof(struct hifn_dma),
2485 				  dev->desc_virt, dev->desc_dma);
2486 		for (i = 0; i < 3; ++i)
2487 			if (dev->bar[i])
2488 				iounmap(dev->bar[i]);
2489 
2490 		kfree(dev);
2491 	}
2492 
2493 	pci_release_regions(pdev);
2494 	pci_disable_device(pdev);
2495 }
2496 
2497 static struct pci_device_id hifn_pci_tbl[] = {
2498 	{ PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) },
2499 	{ PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) },
2500 	{ 0 }
2501 };
2502 MODULE_DEVICE_TABLE(pci, hifn_pci_tbl);
2503 
2504 static struct pci_driver hifn_pci_driver = {
2505 	.name     = "hifn795x",
2506 	.id_table = hifn_pci_tbl,
2507 	.probe    = hifn_probe,
2508 	.remove   = hifn_remove,
2509 };
2510 
2511 static int __init hifn_init(void)
2512 {
2513 	unsigned int freq;
2514 	int err;
2515 
2516 	if (strncmp(hifn_pll_ref, "ext", 3) &&
2517 	    strncmp(hifn_pll_ref, "pci", 3)) {
2518 		pr_err("hifn795x: invalid hifn_pll_ref clock, must be pci or ext");
2519 		return -EINVAL;
2520 	}
2521 
2522 	/*
2523 	 * For the 7955/7956 the reference clock frequency must be in the
2524 	 * range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz,
2525 	 * but this chip is currently not supported.
2526 	 */
2527 	if (hifn_pll_ref[3] != '\0') {
2528 		freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
2529 		if (freq < 20 || freq > 100) {
2530 			pr_err("hifn795x: invalid hifn_pll_ref frequency, must"
2531 			       "be in the range of 20-100");
2532 			return -EINVAL;
2533 		}
2534 	}
2535 
2536 	err = pci_register_driver(&hifn_pci_driver);
2537 	if (err < 0) {
2538 		pr_err("Failed to register PCI driver for %s device.\n",
2539 		       hifn_pci_driver.name);
2540 		return -ENODEV;
2541 	}
2542 
2543 	pr_info("Driver for HIFN 795x crypto accelerator chip "
2544 		"has been successfully registered.\n");
2545 
2546 	return 0;
2547 }
2548 
2549 static void __exit hifn_fini(void)
2550 {
2551 	pci_unregister_driver(&hifn_pci_driver);
2552 
2553 	pr_info("Driver for HIFN 795x crypto accelerator chip "
2554 		"has been successfully unregistered.\n");
2555 }
2556 
2557 module_init(hifn_init);
2558 module_exit(hifn_fini);
2559 
2560 MODULE_LICENSE("GPL");
2561 MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
2562 MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip.");
2563