xref: /linux/drivers/crypto/hifn_795x.c (revision a703a4c2a3280835003d4d0eb8845bac0f1a6ef1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru>
4  * All rights reserved.
5  */
6 
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/moduleparam.h>
10 #include <linux/mod_devicetable.h>
11 #include <linux/interrupt.h>
12 #include <linux/pci.h>
13 #include <linux/slab.h>
14 #include <linux/delay.h>
15 #include <linux/mm.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/scatterlist.h>
18 #include <linux/highmem.h>
19 #include <linux/crypto.h>
20 #include <linux/hw_random.h>
21 #include <linux/ktime.h>
22 
23 #include <crypto/algapi.h>
24 #include <crypto/internal/des.h>
25 #include <crypto/internal/skcipher.h>
26 
27 static char hifn_pll_ref[sizeof("extNNN")] = "ext";
28 module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444);
29 MODULE_PARM_DESC(hifn_pll_ref,
30 		 "PLL reference clock (pci[freq] or ext[freq], default ext)");
31 
32 static atomic_t hifn_dev_number;
33 
34 #define ACRYPTO_OP_DECRYPT	0
35 #define ACRYPTO_OP_ENCRYPT	1
36 #define ACRYPTO_OP_HMAC		2
37 #define ACRYPTO_OP_RNG		3
38 
39 #define ACRYPTO_MODE_ECB		0
40 #define ACRYPTO_MODE_CBC		1
41 #define ACRYPTO_MODE_CFB		2
42 #define ACRYPTO_MODE_OFB		3
43 
44 #define ACRYPTO_TYPE_AES_128	0
45 #define ACRYPTO_TYPE_AES_192	1
46 #define ACRYPTO_TYPE_AES_256	2
47 #define ACRYPTO_TYPE_3DES	3
48 #define ACRYPTO_TYPE_DES	4
49 
50 #define PCI_VENDOR_ID_HIFN		0x13A3
51 #define PCI_DEVICE_ID_HIFN_7955		0x0020
52 #define	PCI_DEVICE_ID_HIFN_7956		0x001d
53 
54 /* I/O region sizes */
55 
56 #define HIFN_BAR0_SIZE			0x1000
57 #define HIFN_BAR1_SIZE			0x2000
58 #define HIFN_BAR2_SIZE			0x8000
59 
60 /* DMA registres */
61 
62 #define HIFN_DMA_CRA			0x0C	/* DMA Command Ring Address */
63 #define HIFN_DMA_SDRA			0x1C	/* DMA Source Data Ring Address */
64 #define HIFN_DMA_RRA			0x2C	/* DMA Result Ring Address */
65 #define HIFN_DMA_DDRA			0x3C	/* DMA Destination Data Ring Address */
66 #define HIFN_DMA_STCTL			0x40	/* DMA Status and Control */
67 #define HIFN_DMA_INTREN			0x44	/* DMA Interrupt Enable */
68 #define HIFN_DMA_CFG1			0x48	/* DMA Configuration #1 */
69 #define HIFN_DMA_CFG2			0x6C	/* DMA Configuration #2 */
70 #define HIFN_CHIP_ID			0x98	/* Chip ID */
71 
72 /*
73  * Processing Unit Registers (offset from BASEREG0)
74  */
75 #define	HIFN_0_PUDATA		0x00	/* Processing Unit Data */
76 #define	HIFN_0_PUCTRL		0x04	/* Processing Unit Control */
77 #define	HIFN_0_PUISR		0x08	/* Processing Unit Interrupt Status */
78 #define	HIFN_0_PUCNFG		0x0c	/* Processing Unit Configuration */
79 #define	HIFN_0_PUIER		0x10	/* Processing Unit Interrupt Enable */
80 #define	HIFN_0_PUSTAT		0x14	/* Processing Unit Status/Chip ID */
81 #define	HIFN_0_FIFOSTAT		0x18	/* FIFO Status */
82 #define	HIFN_0_FIFOCNFG		0x1c	/* FIFO Configuration */
83 #define	HIFN_0_SPACESIZE	0x20	/* Register space size */
84 
85 /* Processing Unit Control Register (HIFN_0_PUCTRL) */
86 #define	HIFN_PUCTRL_CLRSRCFIFO	0x0010	/* clear source fifo */
87 #define	HIFN_PUCTRL_STOP	0x0008	/* stop pu */
88 #define	HIFN_PUCTRL_LOCKRAM	0x0004	/* lock ram */
89 #define	HIFN_PUCTRL_DMAENA	0x0002	/* enable dma */
90 #define	HIFN_PUCTRL_RESET	0x0001	/* Reset processing unit */
91 
92 /* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */
93 #define	HIFN_PUISR_CMDINVAL	0x8000	/* Invalid command interrupt */
94 #define	HIFN_PUISR_DATAERR	0x4000	/* Data error interrupt */
95 #define	HIFN_PUISR_SRCFIFO	0x2000	/* Source FIFO ready interrupt */
96 #define	HIFN_PUISR_DSTFIFO	0x1000	/* Destination FIFO ready interrupt */
97 #define	HIFN_PUISR_DSTOVER	0x0200	/* Destination overrun interrupt */
98 #define	HIFN_PUISR_SRCCMD	0x0080	/* Source command interrupt */
99 #define	HIFN_PUISR_SRCCTX	0x0040	/* Source context interrupt */
100 #define	HIFN_PUISR_SRCDATA	0x0020	/* Source data interrupt */
101 #define	HIFN_PUISR_DSTDATA	0x0010	/* Destination data interrupt */
102 #define	HIFN_PUISR_DSTRESULT	0x0004	/* Destination result interrupt */
103 
104 /* Processing Unit Configuration Register (HIFN_0_PUCNFG) */
105 #define	HIFN_PUCNFG_DRAMMASK	0xe000	/* DRAM size mask */
106 #define	HIFN_PUCNFG_DSZ_256K	0x0000	/* 256k dram */
107 #define	HIFN_PUCNFG_DSZ_512K	0x2000	/* 512k dram */
108 #define	HIFN_PUCNFG_DSZ_1M	0x4000	/* 1m dram */
109 #define	HIFN_PUCNFG_DSZ_2M	0x6000	/* 2m dram */
110 #define	HIFN_PUCNFG_DSZ_4M	0x8000	/* 4m dram */
111 #define	HIFN_PUCNFG_DSZ_8M	0xa000	/* 8m dram */
112 #define	HIFN_PUNCFG_DSZ_16M	0xc000	/* 16m dram */
113 #define	HIFN_PUCNFG_DSZ_32M	0xe000	/* 32m dram */
114 #define	HIFN_PUCNFG_DRAMREFRESH	0x1800	/* DRAM refresh rate mask */
115 #define	HIFN_PUCNFG_DRFR_512	0x0000	/* 512 divisor of ECLK */
116 #define	HIFN_PUCNFG_DRFR_256	0x0800	/* 256 divisor of ECLK */
117 #define	HIFN_PUCNFG_DRFR_128	0x1000	/* 128 divisor of ECLK */
118 #define	HIFN_PUCNFG_TCALLPHASES	0x0200	/* your guess is as good as mine... */
119 #define	HIFN_PUCNFG_TCDRVTOTEM	0x0100	/* your guess is as good as mine... */
120 #define	HIFN_PUCNFG_BIGENDIAN	0x0080	/* DMA big endian mode */
121 #define	HIFN_PUCNFG_BUS32	0x0040	/* Bus width 32bits */
122 #define	HIFN_PUCNFG_BUS16	0x0000	/* Bus width 16 bits */
123 #define	HIFN_PUCNFG_CHIPID	0x0020	/* Allow chipid from PUSTAT */
124 #define	HIFN_PUCNFG_DRAM	0x0010	/* Context RAM is DRAM */
125 #define	HIFN_PUCNFG_SRAM	0x0000	/* Context RAM is SRAM */
126 #define	HIFN_PUCNFG_COMPSING	0x0004	/* Enable single compression context */
127 #define	HIFN_PUCNFG_ENCCNFG	0x0002	/* Encryption configuration */
128 
129 /* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */
130 #define	HIFN_PUIER_CMDINVAL	0x8000	/* Invalid command interrupt */
131 #define	HIFN_PUIER_DATAERR	0x4000	/* Data error interrupt */
132 #define	HIFN_PUIER_SRCFIFO	0x2000	/* Source FIFO ready interrupt */
133 #define	HIFN_PUIER_DSTFIFO	0x1000	/* Destination FIFO ready interrupt */
134 #define	HIFN_PUIER_DSTOVER	0x0200	/* Destination overrun interrupt */
135 #define	HIFN_PUIER_SRCCMD	0x0080	/* Source command interrupt */
136 #define	HIFN_PUIER_SRCCTX	0x0040	/* Source context interrupt */
137 #define	HIFN_PUIER_SRCDATA	0x0020	/* Source data interrupt */
138 #define	HIFN_PUIER_DSTDATA	0x0010	/* Destination data interrupt */
139 #define	HIFN_PUIER_DSTRESULT	0x0004	/* Destination result interrupt */
140 
141 /* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */
142 #define	HIFN_PUSTAT_CMDINVAL	0x8000	/* Invalid command interrupt */
143 #define	HIFN_PUSTAT_DATAERR	0x4000	/* Data error interrupt */
144 #define	HIFN_PUSTAT_SRCFIFO	0x2000	/* Source FIFO ready interrupt */
145 #define	HIFN_PUSTAT_DSTFIFO	0x1000	/* Destination FIFO ready interrupt */
146 #define	HIFN_PUSTAT_DSTOVER	0x0200	/* Destination overrun interrupt */
147 #define	HIFN_PUSTAT_SRCCMD	0x0080	/* Source command interrupt */
148 #define	HIFN_PUSTAT_SRCCTX	0x0040	/* Source context interrupt */
149 #define	HIFN_PUSTAT_SRCDATA	0x0020	/* Source data interrupt */
150 #define	HIFN_PUSTAT_DSTDATA	0x0010	/* Destination data interrupt */
151 #define	HIFN_PUSTAT_DSTRESULT	0x0004	/* Destination result interrupt */
152 #define	HIFN_PUSTAT_CHIPREV	0x00ff	/* Chip revision mask */
153 #define	HIFN_PUSTAT_CHIPENA	0xff00	/* Chip enabled mask */
154 #define	HIFN_PUSTAT_ENA_2	0x1100	/* Level 2 enabled */
155 #define	HIFN_PUSTAT_ENA_1	0x1000	/* Level 1 enabled */
156 #define	HIFN_PUSTAT_ENA_0	0x3000	/* Level 0 enabled */
157 #define	HIFN_PUSTAT_REV_2	0x0020	/* 7751 PT6/2 */
158 #define	HIFN_PUSTAT_REV_3	0x0030	/* 7751 PT6/3 */
159 
160 /* FIFO Status Register (HIFN_0_FIFOSTAT) */
161 #define	HIFN_FIFOSTAT_SRC	0x7f00	/* Source FIFO available */
162 #define	HIFN_FIFOSTAT_DST	0x007f	/* Destination FIFO available */
163 
164 /* FIFO Configuration Register (HIFN_0_FIFOCNFG) */
165 #define	HIFN_FIFOCNFG_THRESHOLD	0x0400	/* must be written as 1 */
166 
167 /*
168  * DMA Interface Registers (offset from BASEREG1)
169  */
170 #define	HIFN_1_DMA_CRAR		0x0c	/* DMA Command Ring Address */
171 #define	HIFN_1_DMA_SRAR		0x1c	/* DMA Source Ring Address */
172 #define	HIFN_1_DMA_RRAR		0x2c	/* DMA Result Ring Address */
173 #define	HIFN_1_DMA_DRAR		0x3c	/* DMA Destination Ring Address */
174 #define	HIFN_1_DMA_CSR		0x40	/* DMA Status and Control */
175 #define	HIFN_1_DMA_IER		0x44	/* DMA Interrupt Enable */
176 #define	HIFN_1_DMA_CNFG		0x48	/* DMA Configuration */
177 #define	HIFN_1_PLL		0x4c	/* 795x: PLL config */
178 #define	HIFN_1_7811_RNGENA	0x60	/* 7811: rng enable */
179 #define	HIFN_1_7811_RNGCFG	0x64	/* 7811: rng config */
180 #define	HIFN_1_7811_RNGDAT	0x68	/* 7811: rng data */
181 #define	HIFN_1_7811_RNGSTS	0x6c	/* 7811: rng status */
182 #define	HIFN_1_7811_MIPSRST	0x94	/* 7811: MIPS reset */
183 #define	HIFN_1_REVID		0x98	/* Revision ID */
184 #define	HIFN_1_UNLOCK_SECRET1	0xf4
185 #define	HIFN_1_UNLOCK_SECRET2	0xfc
186 #define	HIFN_1_PUB_RESET	0x204	/* Public/RNG Reset */
187 #define	HIFN_1_PUB_BASE		0x300	/* Public Base Address */
188 #define	HIFN_1_PUB_OPLEN	0x304	/* Public Operand Length */
189 #define	HIFN_1_PUB_OP		0x308	/* Public Operand */
190 #define	HIFN_1_PUB_STATUS	0x30c	/* Public Status */
191 #define	HIFN_1_PUB_IEN		0x310	/* Public Interrupt enable */
192 #define	HIFN_1_RNG_CONFIG	0x314	/* RNG config */
193 #define	HIFN_1_RNG_DATA		0x318	/* RNG data */
194 #define	HIFN_1_PUB_MEM		0x400	/* start of Public key memory */
195 #define	HIFN_1_PUB_MEMEND	0xbff	/* end of Public key memory */
196 
197 /* DMA Status and Control Register (HIFN_1_DMA_CSR) */
198 #define	HIFN_DMACSR_D_CTRLMASK	0xc0000000	/* Destinition Ring Control */
199 #define	HIFN_DMACSR_D_CTRL_NOP	0x00000000	/* Dest. Control: no-op */
200 #define	HIFN_DMACSR_D_CTRL_DIS	0x40000000	/* Dest. Control: disable */
201 #define	HIFN_DMACSR_D_CTRL_ENA	0x80000000	/* Dest. Control: enable */
202 #define	HIFN_DMACSR_D_ABORT	0x20000000	/* Destinition Ring PCIAbort */
203 #define	HIFN_DMACSR_D_DONE	0x10000000	/* Destinition Ring Done */
204 #define	HIFN_DMACSR_D_LAST	0x08000000	/* Destinition Ring Last */
205 #define	HIFN_DMACSR_D_WAIT	0x04000000	/* Destinition Ring Waiting */
206 #define	HIFN_DMACSR_D_OVER	0x02000000	/* Destinition Ring Overflow */
207 #define	HIFN_DMACSR_R_CTRL	0x00c00000	/* Result Ring Control */
208 #define	HIFN_DMACSR_R_CTRL_NOP	0x00000000	/* Result Control: no-op */
209 #define	HIFN_DMACSR_R_CTRL_DIS	0x00400000	/* Result Control: disable */
210 #define	HIFN_DMACSR_R_CTRL_ENA	0x00800000	/* Result Control: enable */
211 #define	HIFN_DMACSR_R_ABORT	0x00200000	/* Result Ring PCI Abort */
212 #define	HIFN_DMACSR_R_DONE	0x00100000	/* Result Ring Done */
213 #define	HIFN_DMACSR_R_LAST	0x00080000	/* Result Ring Last */
214 #define	HIFN_DMACSR_R_WAIT	0x00040000	/* Result Ring Waiting */
215 #define	HIFN_DMACSR_R_OVER	0x00020000	/* Result Ring Overflow */
216 #define	HIFN_DMACSR_S_CTRL	0x0000c000	/* Source Ring Control */
217 #define	HIFN_DMACSR_S_CTRL_NOP	0x00000000	/* Source Control: no-op */
218 #define	HIFN_DMACSR_S_CTRL_DIS	0x00004000	/* Source Control: disable */
219 #define	HIFN_DMACSR_S_CTRL_ENA	0x00008000	/* Source Control: enable */
220 #define	HIFN_DMACSR_S_ABORT	0x00002000	/* Source Ring PCI Abort */
221 #define	HIFN_DMACSR_S_DONE	0x00001000	/* Source Ring Done */
222 #define	HIFN_DMACSR_S_LAST	0x00000800	/* Source Ring Last */
223 #define	HIFN_DMACSR_S_WAIT	0x00000400	/* Source Ring Waiting */
224 #define	HIFN_DMACSR_ILLW	0x00000200	/* Illegal write (7811 only) */
225 #define	HIFN_DMACSR_ILLR	0x00000100	/* Illegal read (7811 only) */
226 #define	HIFN_DMACSR_C_CTRL	0x000000c0	/* Command Ring Control */
227 #define	HIFN_DMACSR_C_CTRL_NOP	0x00000000	/* Command Control: no-op */
228 #define	HIFN_DMACSR_C_CTRL_DIS	0x00000040	/* Command Control: disable */
229 #define	HIFN_DMACSR_C_CTRL_ENA	0x00000080	/* Command Control: enable */
230 #define	HIFN_DMACSR_C_ABORT	0x00000020	/* Command Ring PCI Abort */
231 #define	HIFN_DMACSR_C_DONE	0x00000010	/* Command Ring Done */
232 #define	HIFN_DMACSR_C_LAST	0x00000008	/* Command Ring Last */
233 #define	HIFN_DMACSR_C_WAIT	0x00000004	/* Command Ring Waiting */
234 #define	HIFN_DMACSR_PUBDONE	0x00000002	/* Public op done (7951 only) */
235 #define	HIFN_DMACSR_ENGINE	0x00000001	/* Command Ring Engine IRQ */
236 
237 /* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */
238 #define	HIFN_DMAIER_D_ABORT	0x20000000	/* Destination Ring PCIAbort */
239 #define	HIFN_DMAIER_D_DONE	0x10000000	/* Destination Ring Done */
240 #define	HIFN_DMAIER_D_LAST	0x08000000	/* Destination Ring Last */
241 #define	HIFN_DMAIER_D_WAIT	0x04000000	/* Destination Ring Waiting */
242 #define	HIFN_DMAIER_D_OVER	0x02000000	/* Destination Ring Overflow */
243 #define	HIFN_DMAIER_R_ABORT	0x00200000	/* Result Ring PCI Abort */
244 #define	HIFN_DMAIER_R_DONE	0x00100000	/* Result Ring Done */
245 #define	HIFN_DMAIER_R_LAST	0x00080000	/* Result Ring Last */
246 #define	HIFN_DMAIER_R_WAIT	0x00040000	/* Result Ring Waiting */
247 #define	HIFN_DMAIER_R_OVER	0x00020000	/* Result Ring Overflow */
248 #define	HIFN_DMAIER_S_ABORT	0x00002000	/* Source Ring PCI Abort */
249 #define	HIFN_DMAIER_S_DONE	0x00001000	/* Source Ring Done */
250 #define	HIFN_DMAIER_S_LAST	0x00000800	/* Source Ring Last */
251 #define	HIFN_DMAIER_S_WAIT	0x00000400	/* Source Ring Waiting */
252 #define	HIFN_DMAIER_ILLW	0x00000200	/* Illegal write (7811 only) */
253 #define	HIFN_DMAIER_ILLR	0x00000100	/* Illegal read (7811 only) */
254 #define	HIFN_DMAIER_C_ABORT	0x00000020	/* Command Ring PCI Abort */
255 #define	HIFN_DMAIER_C_DONE	0x00000010	/* Command Ring Done */
256 #define	HIFN_DMAIER_C_LAST	0x00000008	/* Command Ring Last */
257 #define	HIFN_DMAIER_C_WAIT	0x00000004	/* Command Ring Waiting */
258 #define	HIFN_DMAIER_PUBDONE	0x00000002	/* public op done (7951 only) */
259 #define	HIFN_DMAIER_ENGINE	0x00000001	/* Engine IRQ */
260 
261 /* DMA Configuration Register (HIFN_1_DMA_CNFG) */
262 #define	HIFN_DMACNFG_BIGENDIAN	0x10000000	/* big endian mode */
263 #define	HIFN_DMACNFG_POLLFREQ	0x00ff0000	/* Poll frequency mask */
264 #define	HIFN_DMACNFG_UNLOCK	0x00000800
265 #define	HIFN_DMACNFG_POLLINVAL	0x00000700	/* Invalid Poll Scalar */
266 #define	HIFN_DMACNFG_LAST	0x00000010	/* Host control LAST bit */
267 #define	HIFN_DMACNFG_MODE	0x00000004	/* DMA mode */
268 #define	HIFN_DMACNFG_DMARESET	0x00000002	/* DMA Reset # */
269 #define	HIFN_DMACNFG_MSTRESET	0x00000001	/* Master Reset # */
270 
271 /* PLL configuration register */
272 #define HIFN_PLL_REF_CLK_HBI	0x00000000	/* HBI reference clock */
273 #define HIFN_PLL_REF_CLK_PLL	0x00000001	/* PLL reference clock */
274 #define HIFN_PLL_BP		0x00000002	/* Reference clock bypass */
275 #define HIFN_PLL_PK_CLK_HBI	0x00000000	/* PK engine HBI clock */
276 #define HIFN_PLL_PK_CLK_PLL	0x00000008	/* PK engine PLL clock */
277 #define HIFN_PLL_PE_CLK_HBI	0x00000000	/* PE engine HBI clock */
278 #define HIFN_PLL_PE_CLK_PLL	0x00000010	/* PE engine PLL clock */
279 #define HIFN_PLL_RESERVED_1	0x00000400	/* Reserved bit, must be 1 */
280 #define HIFN_PLL_ND_SHIFT	11		/* Clock multiplier shift */
281 #define HIFN_PLL_ND_MULT_2	0x00000000	/* PLL clock multiplier 2 */
282 #define HIFN_PLL_ND_MULT_4	0x00000800	/* PLL clock multiplier 4 */
283 #define HIFN_PLL_ND_MULT_6	0x00001000	/* PLL clock multiplier 6 */
284 #define HIFN_PLL_ND_MULT_8	0x00001800	/* PLL clock multiplier 8 */
285 #define HIFN_PLL_ND_MULT_10	0x00002000	/* PLL clock multiplier 10 */
286 #define HIFN_PLL_ND_MULT_12	0x00002800	/* PLL clock multiplier 12 */
287 #define HIFN_PLL_IS_1_8		0x00000000	/* charge pump (mult. 1-8) */
288 #define HIFN_PLL_IS_9_12	0x00010000	/* charge pump (mult. 9-12) */
289 
290 #define HIFN_PLL_FCK_MAX	266		/* Maximum PLL frequency */
291 
292 /* Public key reset register (HIFN_1_PUB_RESET) */
293 #define	HIFN_PUBRST_RESET	0x00000001	/* reset public/rng unit */
294 
295 /* Public base address register (HIFN_1_PUB_BASE) */
296 #define	HIFN_PUBBASE_ADDR	0x00003fff	/* base address */
297 
298 /* Public operand length register (HIFN_1_PUB_OPLEN) */
299 #define	HIFN_PUBOPLEN_MOD_M	0x0000007f	/* modulus length mask */
300 #define	HIFN_PUBOPLEN_MOD_S	0		/* modulus length shift */
301 #define	HIFN_PUBOPLEN_EXP_M	0x0003ff80	/* exponent length mask */
302 #define	HIFN_PUBOPLEN_EXP_S	7		/* exponent length shift */
303 #define	HIFN_PUBOPLEN_RED_M	0x003c0000	/* reducend length mask */
304 #define	HIFN_PUBOPLEN_RED_S	18		/* reducend length shift */
305 
306 /* Public operation register (HIFN_1_PUB_OP) */
307 #define	HIFN_PUBOP_AOFFSET_M	0x0000007f	/* A offset mask */
308 #define	HIFN_PUBOP_AOFFSET_S	0		/* A offset shift */
309 #define	HIFN_PUBOP_BOFFSET_M	0x00000f80	/* B offset mask */
310 #define	HIFN_PUBOP_BOFFSET_S	7		/* B offset shift */
311 #define	HIFN_PUBOP_MOFFSET_M	0x0003f000	/* M offset mask */
312 #define	HIFN_PUBOP_MOFFSET_S	12		/* M offset shift */
313 #define	HIFN_PUBOP_OP_MASK	0x003c0000	/* Opcode: */
314 #define	HIFN_PUBOP_OP_NOP	0x00000000	/*  NOP */
315 #define	HIFN_PUBOP_OP_ADD	0x00040000	/*  ADD */
316 #define	HIFN_PUBOP_OP_ADDC	0x00080000	/*  ADD w/carry */
317 #define	HIFN_PUBOP_OP_SUB	0x000c0000	/*  SUB */
318 #define	HIFN_PUBOP_OP_SUBC	0x00100000	/*  SUB w/carry */
319 #define	HIFN_PUBOP_OP_MODADD	0x00140000	/*  Modular ADD */
320 #define	HIFN_PUBOP_OP_MODSUB	0x00180000	/*  Modular SUB */
321 #define	HIFN_PUBOP_OP_INCA	0x001c0000	/*  INC A */
322 #define	HIFN_PUBOP_OP_DECA	0x00200000	/*  DEC A */
323 #define	HIFN_PUBOP_OP_MULT	0x00240000	/*  MULT */
324 #define	HIFN_PUBOP_OP_MODMULT	0x00280000	/*  Modular MULT */
325 #define	HIFN_PUBOP_OP_MODRED	0x002c0000	/*  Modular RED */
326 #define	HIFN_PUBOP_OP_MODEXP	0x00300000	/*  Modular EXP */
327 
328 /* Public status register (HIFN_1_PUB_STATUS) */
329 #define	HIFN_PUBSTS_DONE	0x00000001	/* operation done */
330 #define	HIFN_PUBSTS_CARRY	0x00000002	/* carry */
331 
332 /* Public interrupt enable register (HIFN_1_PUB_IEN) */
333 #define	HIFN_PUBIEN_DONE	0x00000001	/* operation done interrupt */
334 
335 /* Random number generator config register (HIFN_1_RNG_CONFIG) */
336 #define	HIFN_RNGCFG_ENA		0x00000001	/* enable rng */
337 
338 #define HIFN_NAMESIZE			32
339 #define HIFN_MAX_RESULT_ORDER		5
340 
341 #define	HIFN_D_CMD_RSIZE		(24 * 1)
342 #define	HIFN_D_SRC_RSIZE		(80 * 1)
343 #define	HIFN_D_DST_RSIZE		(80 * 1)
344 #define	HIFN_D_RES_RSIZE		(24 * 1)
345 
346 #define HIFN_D_DST_DALIGN		4
347 
348 #define HIFN_QUEUE_LENGTH		(HIFN_D_CMD_RSIZE - 1)
349 
350 #define AES_MIN_KEY_SIZE		16
351 #define AES_MAX_KEY_SIZE		32
352 
353 #define HIFN_DES_KEY_LENGTH		8
354 #define HIFN_3DES_KEY_LENGTH		24
355 #define HIFN_MAX_CRYPT_KEY_LENGTH	AES_MAX_KEY_SIZE
356 #define HIFN_IV_LENGTH			8
357 #define HIFN_AES_IV_LENGTH		16
358 #define	HIFN_MAX_IV_LENGTH		HIFN_AES_IV_LENGTH
359 
360 #define HIFN_MAC_KEY_LENGTH		64
361 #define HIFN_MD5_LENGTH			16
362 #define HIFN_SHA1_LENGTH		20
363 #define HIFN_MAC_TRUNC_LENGTH		12
364 
365 #define	HIFN_MAX_COMMAND		(8 + 8 + 8 + 64 + 260)
366 #define	HIFN_MAX_RESULT			(8 + 4 + 4 + 20 + 4)
367 #define HIFN_USED_RESULT		12
368 
369 struct hifn_desc {
370 	volatile __le32		l;
371 	volatile __le32		p;
372 };
373 
374 struct hifn_dma {
375 	struct hifn_desc	cmdr[HIFN_D_CMD_RSIZE + 1];
376 	struct hifn_desc	srcr[HIFN_D_SRC_RSIZE + 1];
377 	struct hifn_desc	dstr[HIFN_D_DST_RSIZE + 1];
378 	struct hifn_desc	resr[HIFN_D_RES_RSIZE + 1];
379 
380 	u8			command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND];
381 	u8			result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT];
382 
383 	/*
384 	 *  Our current positions for insertion and removal from the descriptor
385 	 *  rings.
386 	 */
387 	volatile int		cmdi, srci, dsti, resi;
388 	volatile int		cmdu, srcu, dstu, resu;
389 	int			cmdk, srck, dstk, resk;
390 };
391 
392 #define HIFN_FLAG_CMD_BUSY	(1 << 0)
393 #define HIFN_FLAG_SRC_BUSY	(1 << 1)
394 #define HIFN_FLAG_DST_BUSY	(1 << 2)
395 #define HIFN_FLAG_RES_BUSY	(1 << 3)
396 #define HIFN_FLAG_OLD_KEY	(1 << 4)
397 
398 #define HIFN_DEFAULT_ACTIVE_NUM	5
399 
400 struct hifn_device {
401 	char			name[HIFN_NAMESIZE];
402 
403 	int			irq;
404 
405 	struct pci_dev		*pdev;
406 	void __iomem		*bar[3];
407 
408 	void			*desc_virt;
409 	dma_addr_t		desc_dma;
410 
411 	u32			dmareg;
412 
413 	void			*sa[HIFN_D_RES_RSIZE];
414 
415 	spinlock_t		lock;
416 
417 	u32			flags;
418 	int			active, started;
419 	struct delayed_work	work;
420 	unsigned long		reset;
421 	unsigned long		success;
422 	unsigned long		prev_success;
423 
424 	u8			snum;
425 
426 	struct tasklet_struct	tasklet;
427 
428 	struct crypto_queue	queue;
429 	struct list_head	alg_list;
430 
431 	unsigned int		pk_clk_freq;
432 
433 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
434 	unsigned int		rng_wait_time;
435 	ktime_t			rngtime;
436 	struct hwrng		rng;
437 #endif
438 };
439 
440 #define	HIFN_D_LENGTH			0x0000ffff
441 #define	HIFN_D_NOINVALID		0x01000000
442 #define	HIFN_D_MASKDONEIRQ		0x02000000
443 #define	HIFN_D_DESTOVER			0x04000000
444 #define	HIFN_D_OVER			0x08000000
445 #define	HIFN_D_LAST			0x20000000
446 #define	HIFN_D_JUMP			0x40000000
447 #define	HIFN_D_VALID			0x80000000
448 
449 struct hifn_base_command {
450 	volatile __le16		masks;
451 	volatile __le16		session_num;
452 	volatile __le16		total_source_count;
453 	volatile __le16		total_dest_count;
454 };
455 
456 #define	HIFN_BASE_CMD_COMP		0x0100	/* enable compression engine */
457 #define	HIFN_BASE_CMD_PAD		0x0200	/* enable padding engine */
458 #define	HIFN_BASE_CMD_MAC		0x0400	/* enable MAC engine */
459 #define	HIFN_BASE_CMD_CRYPT		0x0800	/* enable crypt engine */
460 #define	HIFN_BASE_CMD_DECODE		0x2000
461 #define	HIFN_BASE_CMD_SRCLEN_M		0xc000
462 #define	HIFN_BASE_CMD_SRCLEN_S		14
463 #define	HIFN_BASE_CMD_DSTLEN_M		0x3000
464 #define	HIFN_BASE_CMD_DSTLEN_S		12
465 #define	HIFN_BASE_CMD_LENMASK_HI	0x30000
466 #define	HIFN_BASE_CMD_LENMASK_LO	0x0ffff
467 
468 /*
469  * Structure to help build up the command data structure.
470  */
471 struct hifn_crypt_command {
472 	volatile __le16		masks;
473 	volatile __le16		header_skip;
474 	volatile __le16		source_count;
475 	volatile __le16		reserved;
476 };
477 
478 #define	HIFN_CRYPT_CMD_ALG_MASK		0x0003		/* algorithm: */
479 #define	HIFN_CRYPT_CMD_ALG_DES		0x0000		/*   DES */
480 #define	HIFN_CRYPT_CMD_ALG_3DES		0x0001		/*   3DES */
481 #define	HIFN_CRYPT_CMD_ALG_RC4		0x0002		/*   RC4 */
482 #define	HIFN_CRYPT_CMD_ALG_AES		0x0003		/*   AES */
483 #define	HIFN_CRYPT_CMD_MODE_MASK	0x0018		/* Encrypt mode: */
484 #define	HIFN_CRYPT_CMD_MODE_ECB		0x0000		/*   ECB */
485 #define	HIFN_CRYPT_CMD_MODE_CBC		0x0008		/*   CBC */
486 #define	HIFN_CRYPT_CMD_MODE_CFB		0x0010		/*   CFB */
487 #define	HIFN_CRYPT_CMD_MODE_OFB		0x0018		/*   OFB */
488 #define	HIFN_CRYPT_CMD_CLR_CTX		0x0040		/* clear context */
489 #define	HIFN_CRYPT_CMD_KSZ_MASK		0x0600		/* AES key size: */
490 #define	HIFN_CRYPT_CMD_KSZ_128		0x0000		/*  128 bit */
491 #define	HIFN_CRYPT_CMD_KSZ_192		0x0200		/*  192 bit */
492 #define	HIFN_CRYPT_CMD_KSZ_256		0x0400		/*  256 bit */
493 #define	HIFN_CRYPT_CMD_NEW_KEY		0x0800		/* expect new key */
494 #define	HIFN_CRYPT_CMD_NEW_IV		0x1000		/* expect new iv */
495 #define	HIFN_CRYPT_CMD_SRCLEN_M		0xc000
496 #define	HIFN_CRYPT_CMD_SRCLEN_S		14
497 
498 #define	HIFN_MAC_CMD_ALG_MASK		0x0001
499 #define	HIFN_MAC_CMD_ALG_SHA1		0x0000
500 #define	HIFN_MAC_CMD_ALG_MD5		0x0001
501 #define	HIFN_MAC_CMD_MODE_MASK		0x000c
502 #define	HIFN_MAC_CMD_MODE_HMAC		0x0000
503 #define	HIFN_MAC_CMD_MODE_SSL_MAC	0x0004
504 #define	HIFN_MAC_CMD_MODE_HASH		0x0008
505 #define	HIFN_MAC_CMD_MODE_FULL		0x0004
506 #define	HIFN_MAC_CMD_TRUNC		0x0010
507 #define	HIFN_MAC_CMD_RESULT		0x0020
508 #define	HIFN_MAC_CMD_APPEND		0x0040
509 #define	HIFN_MAC_CMD_SRCLEN_M		0xc000
510 #define	HIFN_MAC_CMD_SRCLEN_S		14
511 
512 /*
513  * MAC POS IPsec initiates authentication after encryption on encodes
514  * and before decryption on decodes.
515  */
516 #define	HIFN_MAC_CMD_POS_IPSEC		0x0200
517 #define	HIFN_MAC_CMD_NEW_KEY		0x0800
518 
519 #define	HIFN_COMP_CMD_SRCLEN_M		0xc000
520 #define	HIFN_COMP_CMD_SRCLEN_S		14
521 #define	HIFN_COMP_CMD_ONE		0x0100	/* must be one */
522 #define	HIFN_COMP_CMD_CLEARHIST		0x0010	/* clear history */
523 #define	HIFN_COMP_CMD_UPDATEHIST	0x0008	/* update history */
524 #define	HIFN_COMP_CMD_LZS_STRIP0	0x0004	/* LZS: strip zero */
525 #define	HIFN_COMP_CMD_MPPC_RESTART	0x0004	/* MPPC: restart */
526 #define	HIFN_COMP_CMD_ALG_MASK		0x0001	/* compression mode: */
527 #define	HIFN_COMP_CMD_ALG_MPPC		0x0001	/*   MPPC */
528 #define	HIFN_COMP_CMD_ALG_LZS		0x0000	/*   LZS */
529 
530 struct hifn_base_result {
531 	volatile __le16		flags;
532 	volatile __le16		session;
533 	volatile __le16		src_cnt;		/* 15:0 of source count */
534 	volatile __le16		dst_cnt;		/* 15:0 of dest count */
535 };
536 
537 #define	HIFN_BASE_RES_DSTOVERRUN	0x0200	/* destination overrun */
538 #define	HIFN_BASE_RES_SRCLEN_M		0xc000	/* 17:16 of source count */
539 #define	HIFN_BASE_RES_SRCLEN_S		14
540 #define	HIFN_BASE_RES_DSTLEN_M		0x3000	/* 17:16 of dest count */
541 #define	HIFN_BASE_RES_DSTLEN_S		12
542 
543 struct hifn_comp_result {
544 	volatile __le16		flags;
545 	volatile __le16		crc;
546 };
547 
548 #define	HIFN_COMP_RES_LCB_M		0xff00	/* longitudinal check byte */
549 #define	HIFN_COMP_RES_LCB_S		8
550 #define	HIFN_COMP_RES_RESTART		0x0004	/* MPPC: restart */
551 #define	HIFN_COMP_RES_ENDMARKER		0x0002	/* LZS: end marker seen */
552 #define	HIFN_COMP_RES_SRC_NOTZERO	0x0001	/* source expired */
553 
554 struct hifn_mac_result {
555 	volatile __le16		flags;
556 	volatile __le16		reserved;
557 	/* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */
558 };
559 
560 #define	HIFN_MAC_RES_MISCOMPARE		0x0002	/* compare failed */
561 #define	HIFN_MAC_RES_SRC_NOTZERO	0x0001	/* source expired */
562 
563 struct hifn_crypt_result {
564 	volatile __le16		flags;
565 	volatile __le16		reserved;
566 };
567 
568 #define	HIFN_CRYPT_RES_SRC_NOTZERO	0x0001	/* source expired */
569 
570 #ifndef HIFN_POLL_FREQUENCY
571 #define	HIFN_POLL_FREQUENCY	0x1
572 #endif
573 
574 #ifndef HIFN_POLL_SCALAR
575 #define	HIFN_POLL_SCALAR	0x0
576 #endif
577 
578 #define	HIFN_MAX_SEGLEN		0xffff		/* maximum dma segment len */
579 #define	HIFN_MAX_DMALEN		0x3ffff		/* maximum dma length */
580 
581 struct hifn_crypto_alg {
582 	struct list_head	entry;
583 	struct skcipher_alg	alg;
584 	struct hifn_device	*dev;
585 };
586 
587 #define ASYNC_SCATTERLIST_CACHE	16
588 
589 #define ASYNC_FLAGS_MISALIGNED	(1 << 0)
590 
591 struct hifn_cipher_walk {
592 	struct scatterlist	cache[ASYNC_SCATTERLIST_CACHE];
593 	u32			flags;
594 	int			num;
595 };
596 
597 struct hifn_context {
598 	u8			key[HIFN_MAX_CRYPT_KEY_LENGTH];
599 	struct hifn_device	*dev;
600 	unsigned int		keysize;
601 };
602 
603 struct hifn_request_context {
604 	u8			*iv;
605 	unsigned int		ivsize;
606 	u8			op, type, mode, unused;
607 	struct hifn_cipher_walk	walk;
608 };
609 
610 #define crypto_alg_to_hifn(a)	container_of(a, struct hifn_crypto_alg, alg)
611 
612 static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg)
613 {
614 	return readl(dev->bar[0] + reg);
615 }
616 
617 static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg)
618 {
619 	return readl(dev->bar[1] + reg);
620 }
621 
622 static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val)
623 {
624 	writel((__force u32)cpu_to_le32(val), dev->bar[0] + reg);
625 }
626 
627 static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val)
628 {
629 	writel((__force u32)cpu_to_le32(val), dev->bar[1] + reg);
630 }
631 
632 static void hifn_wait_puc(struct hifn_device *dev)
633 {
634 	int i;
635 	u32 ret;
636 
637 	for (i = 10000; i > 0; --i) {
638 		ret = hifn_read_0(dev, HIFN_0_PUCTRL);
639 		if (!(ret & HIFN_PUCTRL_RESET))
640 			break;
641 
642 		udelay(1);
643 	}
644 
645 	if (!i)
646 		dev_err(&dev->pdev->dev, "Failed to reset PUC unit.\n");
647 }
648 
649 static void hifn_reset_puc(struct hifn_device *dev)
650 {
651 	hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
652 	hifn_wait_puc(dev);
653 }
654 
655 static void hifn_stop_device(struct hifn_device *dev)
656 {
657 	hifn_write_1(dev, HIFN_1_DMA_CSR,
658 		HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
659 		HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS);
660 	hifn_write_0(dev, HIFN_0_PUIER, 0);
661 	hifn_write_1(dev, HIFN_1_DMA_IER, 0);
662 }
663 
664 static void hifn_reset_dma(struct hifn_device *dev, int full)
665 {
666 	hifn_stop_device(dev);
667 
668 	/*
669 	 * Setting poll frequency and others to 0.
670 	 */
671 	hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
672 			HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
673 	mdelay(1);
674 
675 	/*
676 	 * Reset DMA.
677 	 */
678 	if (full) {
679 		hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE);
680 		mdelay(1);
681 	} else {
682 		hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE |
683 				HIFN_DMACNFG_MSTRESET);
684 		hifn_reset_puc(dev);
685 	}
686 
687 	hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
688 			HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
689 
690 	hifn_reset_puc(dev);
691 }
692 
693 static u32 hifn_next_signature(u32 a, u_int cnt)
694 {
695 	int i;
696 	u32 v;
697 
698 	for (i = 0; i < cnt; i++) {
699 		/* get the parity */
700 		v = a & 0x80080125;
701 		v ^= v >> 16;
702 		v ^= v >> 8;
703 		v ^= v >> 4;
704 		v ^= v >> 2;
705 		v ^= v >> 1;
706 
707 		a = (v & 1) ^ (a << 1);
708 	}
709 
710 	return a;
711 }
712 
713 static struct pci2id {
714 	u_short		pci_vendor;
715 	u_short		pci_prod;
716 	char		card_id[13];
717 } pci2id[] = {
718 	{
719 		PCI_VENDOR_ID_HIFN,
720 		PCI_DEVICE_ID_HIFN_7955,
721 		{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
722 		  0x00, 0x00, 0x00, 0x00, 0x00 }
723 	},
724 	{
725 		PCI_VENDOR_ID_HIFN,
726 		PCI_DEVICE_ID_HIFN_7956,
727 		{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
728 		  0x00, 0x00, 0x00, 0x00, 0x00 }
729 	}
730 };
731 
732 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
733 static int hifn_rng_data_present(struct hwrng *rng, int wait)
734 {
735 	struct hifn_device *dev = (struct hifn_device *)rng->priv;
736 	s64 nsec;
737 
738 	nsec = ktime_to_ns(ktime_sub(ktime_get(), dev->rngtime));
739 	nsec -= dev->rng_wait_time;
740 	if (nsec <= 0)
741 		return 1;
742 	if (!wait)
743 		return 0;
744 	ndelay(nsec);
745 	return 1;
746 }
747 
748 static int hifn_rng_data_read(struct hwrng *rng, u32 *data)
749 {
750 	struct hifn_device *dev = (struct hifn_device *)rng->priv;
751 
752 	*data = hifn_read_1(dev, HIFN_1_RNG_DATA);
753 	dev->rngtime = ktime_get();
754 	return 4;
755 }
756 
757 static int hifn_register_rng(struct hifn_device *dev)
758 {
759 	/*
760 	 * We must wait at least 256 Pk_clk cycles between two reads of the rng.
761 	 */
762 	dev->rng_wait_time	= DIV_ROUND_UP_ULL(NSEC_PER_SEC,
763 						   dev->pk_clk_freq) * 256;
764 
765 	dev->rng.name		= dev->name;
766 	dev->rng.data_present	= hifn_rng_data_present;
767 	dev->rng.data_read	= hifn_rng_data_read;
768 	dev->rng.priv		= (unsigned long)dev;
769 
770 	return hwrng_register(&dev->rng);
771 }
772 
773 static void hifn_unregister_rng(struct hifn_device *dev)
774 {
775 	hwrng_unregister(&dev->rng);
776 }
777 #else
778 #define hifn_register_rng(dev)		0
779 #define hifn_unregister_rng(dev)
780 #endif
781 
782 static int hifn_init_pubrng(struct hifn_device *dev)
783 {
784 	int i;
785 
786 	hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) |
787 			HIFN_PUBRST_RESET);
788 
789 	for (i = 100; i > 0; --i) {
790 		mdelay(1);
791 
792 		if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0)
793 			break;
794 	}
795 
796 	if (!i) {
797 		dev_err(&dev->pdev->dev, "Failed to initialise public key engine.\n");
798 	} else {
799 		hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE);
800 		dev->dmareg |= HIFN_DMAIER_PUBDONE;
801 		hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
802 
803 		dev_dbg(&dev->pdev->dev, "Public key engine has been successfully initialised.\n");
804 	}
805 
806 	/* Enable RNG engine. */
807 
808 	hifn_write_1(dev, HIFN_1_RNG_CONFIG,
809 			hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA);
810 	dev_dbg(&dev->pdev->dev, "RNG engine has been successfully initialised.\n");
811 
812 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
813 	/* First value must be discarded */
814 	hifn_read_1(dev, HIFN_1_RNG_DATA);
815 	dev->rngtime = ktime_get();
816 #endif
817 	return 0;
818 }
819 
820 static int hifn_enable_crypto(struct hifn_device *dev)
821 {
822 	u32 dmacfg, addr;
823 	char *offtbl = NULL;
824 	int i;
825 
826 	for (i = 0; i < ARRAY_SIZE(pci2id); i++) {
827 		if (pci2id[i].pci_vendor == dev->pdev->vendor &&
828 				pci2id[i].pci_prod == dev->pdev->device) {
829 			offtbl = pci2id[i].card_id;
830 			break;
831 		}
832 	}
833 
834 	if (!offtbl) {
835 		dev_err(&dev->pdev->dev, "Unknown card!\n");
836 		return -ENODEV;
837 	}
838 
839 	dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG);
840 
841 	hifn_write_1(dev, HIFN_1_DMA_CNFG,
842 			HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET |
843 			HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
844 	mdelay(1);
845 	addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1);
846 	mdelay(1);
847 	hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0);
848 	mdelay(1);
849 
850 	for (i = 0; i < 12; ++i) {
851 		addr = hifn_next_signature(addr, offtbl[i] + 0x101);
852 		hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr);
853 
854 		mdelay(1);
855 	}
856 	hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg);
857 
858 	dev_dbg(&dev->pdev->dev, "%s %s.\n", dev->name, pci_name(dev->pdev));
859 
860 	return 0;
861 }
862 
863 static void hifn_init_dma(struct hifn_device *dev)
864 {
865 	struct hifn_dma *dma = dev->desc_virt;
866 	u32 dptr = dev->desc_dma;
867 	int i;
868 
869 	for (i = 0; i < HIFN_D_CMD_RSIZE; ++i)
870 		dma->cmdr[i].p = __cpu_to_le32(dptr +
871 				offsetof(struct hifn_dma, command_bufs[i][0]));
872 	for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
873 		dma->resr[i].p = __cpu_to_le32(dptr +
874 				offsetof(struct hifn_dma, result_bufs[i][0]));
875 
876 	/* Setup LAST descriptors. */
877 	dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr +
878 			offsetof(struct hifn_dma, cmdr[0]));
879 	dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr +
880 			offsetof(struct hifn_dma, srcr[0]));
881 	dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr +
882 			offsetof(struct hifn_dma, dstr[0]));
883 	dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr +
884 			offsetof(struct hifn_dma, resr[0]));
885 
886 	dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0;
887 	dma->cmdi = dma->srci = dma->dsti = dma->resi = 0;
888 	dma->cmdk = dma->srck = dma->dstk = dma->resk = 0;
889 }
890 
891 /*
892  * Initialize the PLL. We need to know the frequency of the reference clock
893  * to calculate the optimal multiplier. For PCI we assume 66MHz, since that
894  * allows us to operate without the risk of overclocking the chip. If it
895  * actually uses 33MHz, the chip will operate at half the speed, this can be
896  * overridden by specifying the frequency as module parameter (pci33).
897  *
898  * Unfortunately the PCI clock is not very suitable since the HIFN needs a
899  * stable clock and the PCI clock frequency may vary, so the default is the
900  * external clock. There is no way to find out its frequency, we default to
901  * 66MHz since according to Mike Ham of HiFn, almost every board in existence
902  * has an external crystal populated at 66MHz.
903  */
904 static void hifn_init_pll(struct hifn_device *dev)
905 {
906 	unsigned int freq, m;
907 	u32 pllcfg;
908 
909 	pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1;
910 
911 	if (strncmp(hifn_pll_ref, "ext", 3) == 0)
912 		pllcfg |= HIFN_PLL_REF_CLK_PLL;
913 	else
914 		pllcfg |= HIFN_PLL_REF_CLK_HBI;
915 
916 	if (hifn_pll_ref[3] == '\0' ||
917 	    kstrtouint(hifn_pll_ref + 3, 10, &freq)) {
918 		freq = 66;
919 		dev_info(&dev->pdev->dev, "assuming %u MHz clock speed, override with hifn_pll_ref=%.3s<frequency>\n",
920 			 freq, hifn_pll_ref);
921 	}
922 
923 	m = HIFN_PLL_FCK_MAX / freq;
924 
925 	pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT;
926 	if (m <= 8)
927 		pllcfg |= HIFN_PLL_IS_1_8;
928 	else
929 		pllcfg |= HIFN_PLL_IS_9_12;
930 
931 	/* Select clock source and enable clock bypass */
932 	hifn_write_1(dev, HIFN_1_PLL, pllcfg |
933 		     HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI | HIFN_PLL_BP);
934 
935 	/* Let the chip lock to the input clock */
936 	mdelay(10);
937 
938 	/* Disable clock bypass */
939 	hifn_write_1(dev, HIFN_1_PLL, pllcfg |
940 		     HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI);
941 
942 	/* Switch the engines to the PLL */
943 	hifn_write_1(dev, HIFN_1_PLL, pllcfg |
944 		     HIFN_PLL_PK_CLK_PLL | HIFN_PLL_PE_CLK_PLL);
945 
946 	/*
947 	 * The Fpk_clk runs at half the total speed. Its frequency is needed to
948 	 * calculate the minimum time between two reads of the rng. Since 33MHz
949 	 * is actually 33.333... we overestimate the frequency here, resulting
950 	 * in slightly larger intervals.
951 	 */
952 	dev->pk_clk_freq = 1000000 * (freq + 1) * m / 2;
953 }
954 
955 static void hifn_init_registers(struct hifn_device *dev)
956 {
957 	u32 dptr = dev->desc_dma;
958 
959 	/* Initialization magic... */
960 	hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
961 	hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD);
962 	hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);
963 
964 	/* write all 4 ring address registers */
965 	hifn_write_1(dev, HIFN_1_DMA_CRAR, dptr +
966 				offsetof(struct hifn_dma, cmdr[0]));
967 	hifn_write_1(dev, HIFN_1_DMA_SRAR, dptr +
968 				offsetof(struct hifn_dma, srcr[0]));
969 	hifn_write_1(dev, HIFN_1_DMA_DRAR, dptr +
970 				offsetof(struct hifn_dma, dstr[0]));
971 	hifn_write_1(dev, HIFN_1_DMA_RRAR, dptr +
972 				offsetof(struct hifn_dma, resr[0]));
973 
974 	mdelay(2);
975 #if 0
976 	hifn_write_1(dev, HIFN_1_DMA_CSR,
977 	    HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
978 	    HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS |
979 	    HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
980 	    HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
981 	    HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
982 	    HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
983 	    HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
984 	    HIFN_DMACSR_S_WAIT |
985 	    HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
986 	    HIFN_DMACSR_C_WAIT |
987 	    HIFN_DMACSR_ENGINE |
988 	    HIFN_DMACSR_PUBDONE);
989 #else
990 	hifn_write_1(dev, HIFN_1_DMA_CSR,
991 	    HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
992 	    HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA |
993 	    HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
994 	    HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
995 	    HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
996 	    HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
997 	    HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
998 	    HIFN_DMACSR_S_WAIT |
999 	    HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1000 	    HIFN_DMACSR_C_WAIT |
1001 	    HIFN_DMACSR_ENGINE |
1002 	    HIFN_DMACSR_PUBDONE);
1003 #endif
1004 	hifn_read_1(dev, HIFN_1_DMA_CSR);
1005 
1006 	dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT |
1007 	    HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER |
1008 	    HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT |
1009 	    HIFN_DMAIER_ENGINE;
1010 	dev->dmareg &= ~HIFN_DMAIER_C_WAIT;
1011 
1012 	hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1013 	hifn_read_1(dev, HIFN_1_DMA_IER);
1014 #if 0
1015 	hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG |
1016 		    HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES |
1017 		    HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 |
1018 		    HIFN_PUCNFG_DRAM);
1019 #else
1020 	hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342);
1021 #endif
1022 	hifn_init_pll(dev);
1023 
1024 	hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1025 	hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
1026 	    HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST |
1027 	    ((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) |
1028 	    ((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL));
1029 }
1030 
1031 static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf,
1032 		unsigned dlen, unsigned slen, u16 mask, u8 snum)
1033 {
1034 	struct hifn_base_command *base_cmd;
1035 	u8 *buf_pos = buf;
1036 
1037 	base_cmd = (struct hifn_base_command *)buf_pos;
1038 	base_cmd->masks = __cpu_to_le16(mask);
1039 	base_cmd->total_source_count =
1040 		__cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO);
1041 	base_cmd->total_dest_count =
1042 		__cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO);
1043 
1044 	dlen >>= 16;
1045 	slen >>= 16;
1046 	base_cmd->session_num = __cpu_to_le16(snum |
1047 	    ((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) |
1048 	    ((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M));
1049 
1050 	return sizeof(struct hifn_base_command);
1051 }
1052 
1053 static int hifn_setup_crypto_command(struct hifn_device *dev,
1054 		u8 *buf, unsigned dlen, unsigned slen,
1055 		u8 *key, int keylen, u8 *iv, int ivsize, u16 mode)
1056 {
1057 	struct hifn_dma *dma = dev->desc_virt;
1058 	struct hifn_crypt_command *cry_cmd;
1059 	u8 *buf_pos = buf;
1060 	u16 cmd_len;
1061 
1062 	cry_cmd = (struct hifn_crypt_command *)buf_pos;
1063 
1064 	cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff);
1065 	dlen >>= 16;
1066 	cry_cmd->masks = __cpu_to_le16(mode |
1067 			((dlen << HIFN_CRYPT_CMD_SRCLEN_S) &
1068 			 HIFN_CRYPT_CMD_SRCLEN_M));
1069 	cry_cmd->header_skip = 0;
1070 	cry_cmd->reserved = 0;
1071 
1072 	buf_pos += sizeof(struct hifn_crypt_command);
1073 
1074 	dma->cmdu++;
1075 	if (dma->cmdu > 1) {
1076 		dev->dmareg |= HIFN_DMAIER_C_WAIT;
1077 		hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1078 	}
1079 
1080 	if (keylen) {
1081 		memcpy(buf_pos, key, keylen);
1082 		buf_pos += keylen;
1083 	}
1084 	if (ivsize) {
1085 		memcpy(buf_pos, iv, ivsize);
1086 		buf_pos += ivsize;
1087 	}
1088 
1089 	cmd_len = buf_pos - buf;
1090 
1091 	return cmd_len;
1092 }
1093 
1094 static int hifn_setup_cmd_desc(struct hifn_device *dev,
1095 		struct hifn_context *ctx, struct hifn_request_context *rctx,
1096 		void *priv, unsigned int nbytes)
1097 {
1098 	struct hifn_dma *dma = dev->desc_virt;
1099 	int cmd_len, sa_idx;
1100 	u8 *buf, *buf_pos;
1101 	u16 mask;
1102 
1103 	sa_idx = dma->cmdi;
1104 	buf_pos = buf = dma->command_bufs[dma->cmdi];
1105 
1106 	mask = 0;
1107 	switch (rctx->op) {
1108 	case ACRYPTO_OP_DECRYPT:
1109 		mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE;
1110 		break;
1111 	case ACRYPTO_OP_ENCRYPT:
1112 		mask = HIFN_BASE_CMD_CRYPT;
1113 		break;
1114 	case ACRYPTO_OP_HMAC:
1115 		mask = HIFN_BASE_CMD_MAC;
1116 		break;
1117 	default:
1118 		goto err_out;
1119 	}
1120 
1121 	buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes,
1122 			nbytes, mask, dev->snum);
1123 
1124 	if (rctx->op == ACRYPTO_OP_ENCRYPT || rctx->op == ACRYPTO_OP_DECRYPT) {
1125 		u16 md = 0;
1126 
1127 		if (ctx->keysize)
1128 			md |= HIFN_CRYPT_CMD_NEW_KEY;
1129 		if (rctx->iv && rctx->mode != ACRYPTO_MODE_ECB)
1130 			md |= HIFN_CRYPT_CMD_NEW_IV;
1131 
1132 		switch (rctx->mode) {
1133 		case ACRYPTO_MODE_ECB:
1134 			md |= HIFN_CRYPT_CMD_MODE_ECB;
1135 			break;
1136 		case ACRYPTO_MODE_CBC:
1137 			md |= HIFN_CRYPT_CMD_MODE_CBC;
1138 			break;
1139 		case ACRYPTO_MODE_CFB:
1140 			md |= HIFN_CRYPT_CMD_MODE_CFB;
1141 			break;
1142 		case ACRYPTO_MODE_OFB:
1143 			md |= HIFN_CRYPT_CMD_MODE_OFB;
1144 			break;
1145 		default:
1146 			goto err_out;
1147 		}
1148 
1149 		switch (rctx->type) {
1150 		case ACRYPTO_TYPE_AES_128:
1151 			if (ctx->keysize != 16)
1152 				goto err_out;
1153 			md |= HIFN_CRYPT_CMD_KSZ_128 |
1154 				HIFN_CRYPT_CMD_ALG_AES;
1155 			break;
1156 		case ACRYPTO_TYPE_AES_192:
1157 			if (ctx->keysize != 24)
1158 				goto err_out;
1159 			md |= HIFN_CRYPT_CMD_KSZ_192 |
1160 				HIFN_CRYPT_CMD_ALG_AES;
1161 			break;
1162 		case ACRYPTO_TYPE_AES_256:
1163 			if (ctx->keysize != 32)
1164 				goto err_out;
1165 			md |= HIFN_CRYPT_CMD_KSZ_256 |
1166 				HIFN_CRYPT_CMD_ALG_AES;
1167 			break;
1168 		case ACRYPTO_TYPE_3DES:
1169 			if (ctx->keysize != 24)
1170 				goto err_out;
1171 			md |= HIFN_CRYPT_CMD_ALG_3DES;
1172 			break;
1173 		case ACRYPTO_TYPE_DES:
1174 			if (ctx->keysize != 8)
1175 				goto err_out;
1176 			md |= HIFN_CRYPT_CMD_ALG_DES;
1177 			break;
1178 		default:
1179 			goto err_out;
1180 		}
1181 
1182 		buf_pos += hifn_setup_crypto_command(dev, buf_pos,
1183 				nbytes, nbytes, ctx->key, ctx->keysize,
1184 				rctx->iv, rctx->ivsize, md);
1185 	}
1186 
1187 	dev->sa[sa_idx] = priv;
1188 	dev->started++;
1189 
1190 	cmd_len = buf_pos - buf;
1191 	dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID |
1192 			HIFN_D_LAST | HIFN_D_MASKDONEIRQ);
1193 
1194 	if (++dma->cmdi == HIFN_D_CMD_RSIZE) {
1195 		dma->cmdr[dma->cmdi].l = __cpu_to_le32(
1196 			HIFN_D_VALID | HIFN_D_LAST |
1197 			HIFN_D_MASKDONEIRQ | HIFN_D_JUMP);
1198 		dma->cmdi = 0;
1199 	} else {
1200 		dma->cmdr[dma->cmdi - 1].l |= __cpu_to_le32(HIFN_D_VALID);
1201 	}
1202 
1203 	if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) {
1204 		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA);
1205 		dev->flags |= HIFN_FLAG_CMD_BUSY;
1206 	}
1207 	return 0;
1208 
1209 err_out:
1210 	return -EINVAL;
1211 }
1212 
1213 static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page,
1214 		unsigned int offset, unsigned int size, int last)
1215 {
1216 	struct hifn_dma *dma = dev->desc_virt;
1217 	int idx;
1218 	dma_addr_t addr;
1219 
1220 	addr = dma_map_page(&dev->pdev->dev, page, offset, size,
1221 			    DMA_TO_DEVICE);
1222 
1223 	idx = dma->srci;
1224 
1225 	dma->srcr[idx].p = __cpu_to_le32(addr);
1226 	dma->srcr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1227 			HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1228 
1229 	if (++idx == HIFN_D_SRC_RSIZE) {
1230 		dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1231 				HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1232 				(last ? HIFN_D_LAST : 0));
1233 		idx = 0;
1234 	}
1235 
1236 	dma->srci = idx;
1237 	dma->srcu++;
1238 
1239 	if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) {
1240 		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA);
1241 		dev->flags |= HIFN_FLAG_SRC_BUSY;
1242 	}
1243 
1244 	return size;
1245 }
1246 
1247 static void hifn_setup_res_desc(struct hifn_device *dev)
1248 {
1249 	struct hifn_dma *dma = dev->desc_virt;
1250 
1251 	dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT |
1252 			HIFN_D_VALID | HIFN_D_LAST);
1253 	/*
1254 	 * dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID |
1255 	 *					HIFN_D_LAST);
1256 	 */
1257 
1258 	if (++dma->resi == HIFN_D_RES_RSIZE) {
1259 		dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID |
1260 				HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
1261 		dma->resi = 0;
1262 	}
1263 
1264 	dma->resu++;
1265 
1266 	if (!(dev->flags & HIFN_FLAG_RES_BUSY)) {
1267 		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA);
1268 		dev->flags |= HIFN_FLAG_RES_BUSY;
1269 	}
1270 }
1271 
1272 static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page,
1273 		unsigned offset, unsigned size, int last)
1274 {
1275 	struct hifn_dma *dma = dev->desc_virt;
1276 	int idx;
1277 	dma_addr_t addr;
1278 
1279 	addr = dma_map_page(&dev->pdev->dev, page, offset, size,
1280 			    DMA_FROM_DEVICE);
1281 
1282 	idx = dma->dsti;
1283 	dma->dstr[idx].p = __cpu_to_le32(addr);
1284 	dma->dstr[idx].l = __cpu_to_le32(size |	HIFN_D_VALID |
1285 			HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1286 
1287 	if (++idx == HIFN_D_DST_RSIZE) {
1288 		dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1289 				HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1290 				(last ? HIFN_D_LAST : 0));
1291 		idx = 0;
1292 	}
1293 	dma->dsti = idx;
1294 	dma->dstu++;
1295 
1296 	if (!(dev->flags & HIFN_FLAG_DST_BUSY)) {
1297 		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA);
1298 		dev->flags |= HIFN_FLAG_DST_BUSY;
1299 	}
1300 }
1301 
1302 static int hifn_setup_dma(struct hifn_device *dev,
1303 		struct hifn_context *ctx, struct hifn_request_context *rctx,
1304 		struct scatterlist *src, struct scatterlist *dst,
1305 		unsigned int nbytes, void *priv)
1306 {
1307 	struct scatterlist *t;
1308 	struct page *spage, *dpage;
1309 	unsigned int soff, doff;
1310 	unsigned int n, len;
1311 
1312 	n = nbytes;
1313 	while (n) {
1314 		spage = sg_page(src);
1315 		soff = src->offset;
1316 		len = min(src->length, n);
1317 
1318 		hifn_setup_src_desc(dev, spage, soff, len, n - len == 0);
1319 
1320 		src++;
1321 		n -= len;
1322 	}
1323 
1324 	t = &rctx->walk.cache[0];
1325 	n = nbytes;
1326 	while (n) {
1327 		if (t->length && rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1328 			BUG_ON(!sg_page(t));
1329 			dpage = sg_page(t);
1330 			doff = 0;
1331 			len = t->length;
1332 		} else {
1333 			BUG_ON(!sg_page(dst));
1334 			dpage = sg_page(dst);
1335 			doff = dst->offset;
1336 			len = dst->length;
1337 		}
1338 		len = min(len, n);
1339 
1340 		hifn_setup_dst_desc(dev, dpage, doff, len, n - len == 0);
1341 
1342 		dst++;
1343 		t++;
1344 		n -= len;
1345 	}
1346 
1347 	hifn_setup_cmd_desc(dev, ctx, rctx, priv, nbytes);
1348 	hifn_setup_res_desc(dev);
1349 	return 0;
1350 }
1351 
1352 static int hifn_cipher_walk_init(struct hifn_cipher_walk *w,
1353 		int num, gfp_t gfp_flags)
1354 {
1355 	int i;
1356 
1357 	num = min(ASYNC_SCATTERLIST_CACHE, num);
1358 	sg_init_table(w->cache, num);
1359 
1360 	w->num = 0;
1361 	for (i = 0; i < num; ++i) {
1362 		struct page *page = alloc_page(gfp_flags);
1363 		struct scatterlist *s;
1364 
1365 		if (!page)
1366 			break;
1367 
1368 		s = &w->cache[i];
1369 
1370 		sg_set_page(s, page, PAGE_SIZE, 0);
1371 		w->num++;
1372 	}
1373 
1374 	return i;
1375 }
1376 
1377 static void hifn_cipher_walk_exit(struct hifn_cipher_walk *w)
1378 {
1379 	int i;
1380 
1381 	for (i = 0; i < w->num; ++i) {
1382 		struct scatterlist *s = &w->cache[i];
1383 
1384 		__free_page(sg_page(s));
1385 
1386 		s->length = 0;
1387 	}
1388 
1389 	w->num = 0;
1390 }
1391 
1392 static int skcipher_add(unsigned int *drestp, struct scatterlist *dst,
1393 		unsigned int size, unsigned int *nbytesp)
1394 {
1395 	unsigned int copy, drest = *drestp, nbytes = *nbytesp;
1396 	int idx = 0;
1397 
1398 	if (drest < size || size > nbytes)
1399 		return -EINVAL;
1400 
1401 	while (size) {
1402 		copy = min3(drest, size, dst->length);
1403 
1404 		size -= copy;
1405 		drest -= copy;
1406 		nbytes -= copy;
1407 
1408 		pr_debug("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n",
1409 			 __func__, copy, size, drest, nbytes);
1410 
1411 		dst++;
1412 		idx++;
1413 	}
1414 
1415 	*nbytesp = nbytes;
1416 	*drestp = drest;
1417 
1418 	return idx;
1419 }
1420 
1421 static int hifn_cipher_walk(struct skcipher_request *req,
1422 		struct hifn_cipher_walk *w)
1423 {
1424 	struct scatterlist *dst, *t;
1425 	unsigned int nbytes = req->cryptlen, offset, copy, diff;
1426 	int idx, tidx, err;
1427 
1428 	tidx = idx = 0;
1429 	offset = 0;
1430 	while (nbytes) {
1431 		if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED))
1432 			return -EINVAL;
1433 
1434 		dst = &req->dst[idx];
1435 
1436 		pr_debug("\n%s: dlen: %u, doff: %u, offset: %u, nbytes: %u.\n",
1437 			 __func__, dst->length, dst->offset, offset, nbytes);
1438 
1439 		if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1440 		    !IS_ALIGNED(dst->length, HIFN_D_DST_DALIGN) ||
1441 		    offset) {
1442 			unsigned slen = min(dst->length - offset, nbytes);
1443 			unsigned dlen = PAGE_SIZE;
1444 
1445 			t = &w->cache[idx];
1446 
1447 			err = skcipher_add(&dlen, dst, slen, &nbytes);
1448 			if (err < 0)
1449 				return err;
1450 
1451 			idx += err;
1452 
1453 			copy = slen & ~(HIFN_D_DST_DALIGN - 1);
1454 			diff = slen & (HIFN_D_DST_DALIGN - 1);
1455 
1456 			if (dlen < nbytes) {
1457 				/*
1458 				 * Destination page does not have enough space
1459 				 * to put there additional blocksized chunk,
1460 				 * so we mark that page as containing only
1461 				 * blocksize aligned chunks:
1462 				 *	t->length = (slen & ~(HIFN_D_DST_DALIGN - 1));
1463 				 * and increase number of bytes to be processed
1464 				 * in next chunk:
1465 				 *	nbytes += diff;
1466 				 */
1467 				nbytes += diff;
1468 
1469 				/*
1470 				 * Temporary of course...
1471 				 * Kick author if you will catch this one.
1472 				 */
1473 				pr_err("%s: dlen: %u, nbytes: %u, slen: %u, offset: %u.\n",
1474 				       __func__, dlen, nbytes, slen, offset);
1475 				pr_err("%s: please contact author to fix this "
1476 				       "issue, generally you should not catch "
1477 				       "this path under any condition but who "
1478 				       "knows how did you use crypto code.\n"
1479 				       "Thank you.\n",	__func__);
1480 				BUG();
1481 			} else {
1482 				copy += diff + nbytes;
1483 
1484 				dst = &req->dst[idx];
1485 
1486 				err = skcipher_add(&dlen, dst, nbytes, &nbytes);
1487 				if (err < 0)
1488 					return err;
1489 
1490 				idx += err;
1491 			}
1492 
1493 			t->length = copy;
1494 			t->offset = offset;
1495 		} else {
1496 			nbytes -= min(dst->length, nbytes);
1497 			idx++;
1498 		}
1499 
1500 		tidx++;
1501 	}
1502 
1503 	return tidx;
1504 }
1505 
1506 static int hifn_setup_session(struct skcipher_request *req)
1507 {
1508 	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1509 	struct hifn_request_context *rctx = skcipher_request_ctx(req);
1510 	struct hifn_device *dev = ctx->dev;
1511 	unsigned long dlen, flags;
1512 	unsigned int nbytes = req->cryptlen, idx = 0;
1513 	int err = -EINVAL, sg_num;
1514 	struct scatterlist *dst;
1515 
1516 	if (rctx->iv && !rctx->ivsize && rctx->mode != ACRYPTO_MODE_ECB)
1517 		goto err_out_exit;
1518 
1519 	rctx->walk.flags = 0;
1520 
1521 	while (nbytes) {
1522 		dst = &req->dst[idx];
1523 		dlen = min(dst->length, nbytes);
1524 
1525 		if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1526 		    !IS_ALIGNED(dlen, HIFN_D_DST_DALIGN))
1527 			rctx->walk.flags |= ASYNC_FLAGS_MISALIGNED;
1528 
1529 		nbytes -= dlen;
1530 		idx++;
1531 	}
1532 
1533 	if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1534 		err = hifn_cipher_walk_init(&rctx->walk, idx, GFP_ATOMIC);
1535 		if (err < 0)
1536 			return err;
1537 	}
1538 
1539 	sg_num = hifn_cipher_walk(req, &rctx->walk);
1540 	if (sg_num < 0) {
1541 		err = sg_num;
1542 		goto err_out_exit;
1543 	}
1544 
1545 	spin_lock_irqsave(&dev->lock, flags);
1546 	if (dev->started + sg_num > HIFN_QUEUE_LENGTH) {
1547 		err = -EAGAIN;
1548 		goto err_out;
1549 	}
1550 
1551 	err = hifn_setup_dma(dev, ctx, rctx, req->src, req->dst, req->cryptlen, req);
1552 	if (err)
1553 		goto err_out;
1554 
1555 	dev->snum++;
1556 
1557 	dev->active = HIFN_DEFAULT_ACTIVE_NUM;
1558 	spin_unlock_irqrestore(&dev->lock, flags);
1559 
1560 	return 0;
1561 
1562 err_out:
1563 	spin_unlock_irqrestore(&dev->lock, flags);
1564 err_out_exit:
1565 	if (err) {
1566 		dev_info(&dev->pdev->dev, "iv: %p [%d], key: %p [%d], mode: %u, op: %u, "
1567 			 "type: %u, err: %d.\n",
1568 			 rctx->iv, rctx->ivsize,
1569 			 ctx->key, ctx->keysize,
1570 			 rctx->mode, rctx->op, rctx->type, err);
1571 	}
1572 
1573 	return err;
1574 }
1575 
1576 static int hifn_start_device(struct hifn_device *dev)
1577 {
1578 	int err;
1579 
1580 	dev->started = dev->active = 0;
1581 	hifn_reset_dma(dev, 1);
1582 
1583 	err = hifn_enable_crypto(dev);
1584 	if (err)
1585 		return err;
1586 
1587 	hifn_reset_puc(dev);
1588 
1589 	hifn_init_dma(dev);
1590 
1591 	hifn_init_registers(dev);
1592 
1593 	hifn_init_pubrng(dev);
1594 
1595 	return 0;
1596 }
1597 
1598 static int skcipher_get(void *saddr, unsigned int *srestp, unsigned int offset,
1599 		struct scatterlist *dst, unsigned int size, unsigned int *nbytesp)
1600 {
1601 	unsigned int srest = *srestp, nbytes = *nbytesp, copy;
1602 	void *daddr;
1603 	int idx = 0;
1604 
1605 	if (srest < size || size > nbytes)
1606 		return -EINVAL;
1607 
1608 	while (size) {
1609 		copy = min3(srest, dst->length, size);
1610 
1611 		daddr = kmap_atomic(sg_page(dst));
1612 		memcpy(daddr + dst->offset + offset, saddr, copy);
1613 		kunmap_atomic(daddr);
1614 
1615 		nbytes -= copy;
1616 		size -= copy;
1617 		srest -= copy;
1618 		saddr += copy;
1619 		offset = 0;
1620 
1621 		pr_debug("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n",
1622 			 __func__, copy, size, srest, nbytes);
1623 
1624 		dst++;
1625 		idx++;
1626 	}
1627 
1628 	*nbytesp = nbytes;
1629 	*srestp = srest;
1630 
1631 	return idx;
1632 }
1633 
1634 static inline void hifn_complete_sa(struct hifn_device *dev, int i)
1635 {
1636 	unsigned long flags;
1637 
1638 	spin_lock_irqsave(&dev->lock, flags);
1639 	dev->sa[i] = NULL;
1640 	dev->started--;
1641 	if (dev->started < 0)
1642 		dev_info(&dev->pdev->dev, "%s: started: %d.\n", __func__,
1643 			 dev->started);
1644 	spin_unlock_irqrestore(&dev->lock, flags);
1645 	BUG_ON(dev->started < 0);
1646 }
1647 
1648 static void hifn_process_ready(struct skcipher_request *req, int error)
1649 {
1650 	struct hifn_request_context *rctx = skcipher_request_ctx(req);
1651 
1652 	if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1653 		unsigned int nbytes = req->cryptlen;
1654 		int idx = 0, err;
1655 		struct scatterlist *dst, *t;
1656 		void *saddr;
1657 
1658 		while (nbytes) {
1659 			t = &rctx->walk.cache[idx];
1660 			dst = &req->dst[idx];
1661 
1662 			pr_debug("\n%s: sg_page(t): %p, t->length: %u, "
1663 				"sg_page(dst): %p, dst->length: %u, "
1664 				"nbytes: %u.\n",
1665 				__func__, sg_page(t), t->length,
1666 				sg_page(dst), dst->length, nbytes);
1667 
1668 			if (!t->length) {
1669 				nbytes -= min(dst->length, nbytes);
1670 				idx++;
1671 				continue;
1672 			}
1673 
1674 			saddr = kmap_atomic(sg_page(t));
1675 
1676 			err = skcipher_get(saddr, &t->length, t->offset,
1677 					dst, nbytes, &nbytes);
1678 			if (err < 0) {
1679 				kunmap_atomic(saddr);
1680 				break;
1681 			}
1682 
1683 			idx += err;
1684 			kunmap_atomic(saddr);
1685 		}
1686 
1687 		hifn_cipher_walk_exit(&rctx->walk);
1688 	}
1689 
1690 	skcipher_request_complete(req, error);
1691 }
1692 
1693 static void hifn_clear_rings(struct hifn_device *dev, int error)
1694 {
1695 	struct hifn_dma *dma = dev->desc_virt;
1696 	int i, u;
1697 
1698 	dev_dbg(&dev->pdev->dev, "ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1699 			"k: %d.%d.%d.%d.\n",
1700 			dma->cmdi, dma->srci, dma->dsti, dma->resi,
1701 			dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1702 			dma->cmdk, dma->srck, dma->dstk, dma->resk);
1703 
1704 	i = dma->resk; u = dma->resu;
1705 	while (u != 0) {
1706 		if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID))
1707 			break;
1708 
1709 		if (dev->sa[i]) {
1710 			dev->success++;
1711 			dev->reset = 0;
1712 			hifn_process_ready(dev->sa[i], error);
1713 			hifn_complete_sa(dev, i);
1714 		}
1715 
1716 		if (++i == HIFN_D_RES_RSIZE)
1717 			i = 0;
1718 		u--;
1719 	}
1720 	dma->resk = i; dma->resu = u;
1721 
1722 	i = dma->srck; u = dma->srcu;
1723 	while (u != 0) {
1724 		if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID))
1725 			break;
1726 		if (++i == HIFN_D_SRC_RSIZE)
1727 			i = 0;
1728 		u--;
1729 	}
1730 	dma->srck = i; dma->srcu = u;
1731 
1732 	i = dma->cmdk; u = dma->cmdu;
1733 	while (u != 0) {
1734 		if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID))
1735 			break;
1736 		if (++i == HIFN_D_CMD_RSIZE)
1737 			i = 0;
1738 		u--;
1739 	}
1740 	dma->cmdk = i; dma->cmdu = u;
1741 
1742 	i = dma->dstk; u = dma->dstu;
1743 	while (u != 0) {
1744 		if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID))
1745 			break;
1746 		if (++i == HIFN_D_DST_RSIZE)
1747 			i = 0;
1748 		u--;
1749 	}
1750 	dma->dstk = i; dma->dstu = u;
1751 
1752 	dev_dbg(&dev->pdev->dev, "ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1753 			"k: %d.%d.%d.%d.\n",
1754 			dma->cmdi, dma->srci, dma->dsti, dma->resi,
1755 			dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1756 			dma->cmdk, dma->srck, dma->dstk, dma->resk);
1757 }
1758 
1759 static void hifn_work(struct work_struct *work)
1760 {
1761 	struct delayed_work *dw = to_delayed_work(work);
1762 	struct hifn_device *dev = container_of(dw, struct hifn_device, work);
1763 	unsigned long flags;
1764 	int reset = 0;
1765 	u32 r = 0;
1766 
1767 	spin_lock_irqsave(&dev->lock, flags);
1768 	if (dev->active == 0) {
1769 		struct hifn_dma *dma = dev->desc_virt;
1770 
1771 		if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) {
1772 			dev->flags &= ~HIFN_FLAG_CMD_BUSY;
1773 			r |= HIFN_DMACSR_C_CTRL_DIS;
1774 		}
1775 		if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) {
1776 			dev->flags &= ~HIFN_FLAG_SRC_BUSY;
1777 			r |= HIFN_DMACSR_S_CTRL_DIS;
1778 		}
1779 		if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) {
1780 			dev->flags &= ~HIFN_FLAG_DST_BUSY;
1781 			r |= HIFN_DMACSR_D_CTRL_DIS;
1782 		}
1783 		if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) {
1784 			dev->flags &= ~HIFN_FLAG_RES_BUSY;
1785 			r |= HIFN_DMACSR_R_CTRL_DIS;
1786 		}
1787 		if (r)
1788 			hifn_write_1(dev, HIFN_1_DMA_CSR, r);
1789 	} else
1790 		dev->active--;
1791 
1792 	if ((dev->prev_success == dev->success) && dev->started)
1793 		reset = 1;
1794 	dev->prev_success = dev->success;
1795 	spin_unlock_irqrestore(&dev->lock, flags);
1796 
1797 	if (reset) {
1798 		if (++dev->reset >= 5) {
1799 			int i;
1800 			struct hifn_dma *dma = dev->desc_virt;
1801 
1802 			dev_info(&dev->pdev->dev,
1803 				 "r: %08x, active: %d, started: %d, "
1804 				 "success: %lu: qlen: %u/%u, reset: %d.\n",
1805 				 r, dev->active, dev->started,
1806 				 dev->success, dev->queue.qlen, dev->queue.max_qlen,
1807 				 reset);
1808 
1809 			dev_info(&dev->pdev->dev, "%s: res: ", __func__);
1810 			for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1811 				pr_info("%x.%p ", dma->resr[i].l, dev->sa[i]);
1812 				if (dev->sa[i]) {
1813 					hifn_process_ready(dev->sa[i], -ENODEV);
1814 					hifn_complete_sa(dev, i);
1815 				}
1816 			}
1817 			pr_info("\n");
1818 
1819 			hifn_reset_dma(dev, 1);
1820 			hifn_stop_device(dev);
1821 			hifn_start_device(dev);
1822 			dev->reset = 0;
1823 		}
1824 
1825 		tasklet_schedule(&dev->tasklet);
1826 	}
1827 
1828 	schedule_delayed_work(&dev->work, HZ);
1829 }
1830 
1831 static irqreturn_t hifn_interrupt(int irq, void *data)
1832 {
1833 	struct hifn_device *dev = data;
1834 	struct hifn_dma *dma = dev->desc_virt;
1835 	u32 dmacsr, restart;
1836 
1837 	dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR);
1838 
1839 	dev_dbg(&dev->pdev->dev, "1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], "
1840 			"i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n",
1841 		dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi,
1842 		dma->cmdi, dma->srci, dma->dsti, dma->resi,
1843 		dma->cmdu, dma->srcu, dma->dstu, dma->resu);
1844 
1845 	if ((dmacsr & dev->dmareg) == 0)
1846 		return IRQ_NONE;
1847 
1848 	hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg);
1849 
1850 	if (dmacsr & HIFN_DMACSR_ENGINE)
1851 		hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR));
1852 	if (dmacsr & HIFN_DMACSR_PUBDONE)
1853 		hifn_write_1(dev, HIFN_1_PUB_STATUS,
1854 			hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE);
1855 
1856 	restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER);
1857 	if (restart) {
1858 		u32 puisr = hifn_read_0(dev, HIFN_0_PUISR);
1859 
1860 		dev_warn(&dev->pdev->dev, "overflow: r: %d, d: %d, puisr: %08x, d: %u.\n",
1861 			 !!(dmacsr & HIFN_DMACSR_R_OVER),
1862 			 !!(dmacsr & HIFN_DMACSR_D_OVER),
1863 			puisr, !!(puisr & HIFN_PUISR_DSTOVER));
1864 		if (!!(puisr & HIFN_PUISR_DSTOVER))
1865 			hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1866 		hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER |
1867 					HIFN_DMACSR_D_OVER));
1868 	}
1869 
1870 	restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT |
1871 			HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT);
1872 	if (restart) {
1873 		dev_warn(&dev->pdev->dev, "abort: c: %d, s: %d, d: %d, r: %d.\n",
1874 			 !!(dmacsr & HIFN_DMACSR_C_ABORT),
1875 			 !!(dmacsr & HIFN_DMACSR_S_ABORT),
1876 			 !!(dmacsr & HIFN_DMACSR_D_ABORT),
1877 			 !!(dmacsr & HIFN_DMACSR_R_ABORT));
1878 		hifn_reset_dma(dev, 1);
1879 		hifn_init_dma(dev);
1880 		hifn_init_registers(dev);
1881 	}
1882 
1883 	if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) {
1884 		dev_dbg(&dev->pdev->dev, "wait on command.\n");
1885 		dev->dmareg &= ~(HIFN_DMAIER_C_WAIT);
1886 		hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1887 	}
1888 
1889 	tasklet_schedule(&dev->tasklet);
1890 
1891 	return IRQ_HANDLED;
1892 }
1893 
1894 static void hifn_flush(struct hifn_device *dev)
1895 {
1896 	unsigned long flags;
1897 	struct crypto_async_request *async_req;
1898 	struct skcipher_request *req;
1899 	struct hifn_dma *dma = dev->desc_virt;
1900 	int i;
1901 
1902 	for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1903 		struct hifn_desc *d = &dma->resr[i];
1904 
1905 		if (dev->sa[i]) {
1906 			hifn_process_ready(dev->sa[i],
1907 				(d->l & __cpu_to_le32(HIFN_D_VALID)) ? -ENODEV : 0);
1908 			hifn_complete_sa(dev, i);
1909 		}
1910 	}
1911 
1912 	spin_lock_irqsave(&dev->lock, flags);
1913 	while ((async_req = crypto_dequeue_request(&dev->queue))) {
1914 		req = skcipher_request_cast(async_req);
1915 		spin_unlock_irqrestore(&dev->lock, flags);
1916 
1917 		hifn_process_ready(req, -ENODEV);
1918 
1919 		spin_lock_irqsave(&dev->lock, flags);
1920 	}
1921 	spin_unlock_irqrestore(&dev->lock, flags);
1922 }
1923 
1924 static int hifn_setkey(struct crypto_skcipher *cipher, const u8 *key,
1925 		unsigned int len)
1926 {
1927 	struct hifn_context *ctx = crypto_skcipher_ctx(cipher);
1928 	struct hifn_device *dev = ctx->dev;
1929 	int err;
1930 
1931 	err = verify_skcipher_des_key(cipher, key);
1932 	if (err)
1933 		return err;
1934 
1935 	dev->flags &= ~HIFN_FLAG_OLD_KEY;
1936 
1937 	memcpy(ctx->key, key, len);
1938 	ctx->keysize = len;
1939 
1940 	return 0;
1941 }
1942 
1943 static int hifn_des3_setkey(struct crypto_skcipher *cipher, const u8 *key,
1944 			    unsigned int len)
1945 {
1946 	struct hifn_context *ctx = crypto_skcipher_ctx(cipher);
1947 	struct hifn_device *dev = ctx->dev;
1948 	int err;
1949 
1950 	err = verify_skcipher_des3_key(cipher, key);
1951 	if (err)
1952 		return err;
1953 
1954 	dev->flags &= ~HIFN_FLAG_OLD_KEY;
1955 
1956 	memcpy(ctx->key, key, len);
1957 	ctx->keysize = len;
1958 
1959 	return 0;
1960 }
1961 
1962 static int hifn_handle_req(struct skcipher_request *req)
1963 {
1964 	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1965 	struct hifn_device *dev = ctx->dev;
1966 	int err = -EAGAIN;
1967 
1968 	if (dev->started + DIV_ROUND_UP(req->cryptlen, PAGE_SIZE) <= HIFN_QUEUE_LENGTH)
1969 		err = hifn_setup_session(req);
1970 
1971 	if (err == -EAGAIN) {
1972 		unsigned long flags;
1973 
1974 		spin_lock_irqsave(&dev->lock, flags);
1975 		err = crypto_enqueue_request(&dev->queue, &req->base);
1976 		spin_unlock_irqrestore(&dev->lock, flags);
1977 	}
1978 
1979 	return err;
1980 }
1981 
1982 static int hifn_setup_crypto_req(struct skcipher_request *req, u8 op,
1983 		u8 type, u8 mode)
1984 {
1985 	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1986 	struct hifn_request_context *rctx = skcipher_request_ctx(req);
1987 	unsigned ivsize;
1988 
1989 	ivsize = crypto_skcipher_ivsize(crypto_skcipher_reqtfm(req));
1990 
1991 	if (req->iv && mode != ACRYPTO_MODE_ECB) {
1992 		if (type == ACRYPTO_TYPE_AES_128)
1993 			ivsize = HIFN_AES_IV_LENGTH;
1994 		else if (type == ACRYPTO_TYPE_DES)
1995 			ivsize = HIFN_DES_KEY_LENGTH;
1996 		else if (type == ACRYPTO_TYPE_3DES)
1997 			ivsize = HIFN_3DES_KEY_LENGTH;
1998 	}
1999 
2000 	if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) {
2001 		if (ctx->keysize == 24)
2002 			type = ACRYPTO_TYPE_AES_192;
2003 		else if (ctx->keysize == 32)
2004 			type = ACRYPTO_TYPE_AES_256;
2005 	}
2006 
2007 	rctx->op = op;
2008 	rctx->mode = mode;
2009 	rctx->type = type;
2010 	rctx->iv = req->iv;
2011 	rctx->ivsize = ivsize;
2012 
2013 	/*
2014 	 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2015 	 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2016 	 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2017 	 */
2018 
2019 	return hifn_handle_req(req);
2020 }
2021 
2022 static int hifn_process_queue(struct hifn_device *dev)
2023 {
2024 	struct crypto_async_request *async_req, *backlog;
2025 	struct skcipher_request *req;
2026 	unsigned long flags;
2027 	int err = 0;
2028 
2029 	while (dev->started < HIFN_QUEUE_LENGTH) {
2030 		spin_lock_irqsave(&dev->lock, flags);
2031 		backlog = crypto_get_backlog(&dev->queue);
2032 		async_req = crypto_dequeue_request(&dev->queue);
2033 		spin_unlock_irqrestore(&dev->lock, flags);
2034 
2035 		if (!async_req)
2036 			break;
2037 
2038 		if (backlog)
2039 			crypto_request_complete(backlog, -EINPROGRESS);
2040 
2041 		req = skcipher_request_cast(async_req);
2042 
2043 		err = hifn_handle_req(req);
2044 		if (err)
2045 			break;
2046 	}
2047 
2048 	return err;
2049 }
2050 
2051 static int hifn_setup_crypto(struct skcipher_request *req, u8 op,
2052 		u8 type, u8 mode)
2053 {
2054 	int err;
2055 	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2056 	struct hifn_device *dev = ctx->dev;
2057 
2058 	err = hifn_setup_crypto_req(req, op, type, mode);
2059 	if (err)
2060 		return err;
2061 
2062 	if (dev->started < HIFN_QUEUE_LENGTH &&	dev->queue.qlen)
2063 		hifn_process_queue(dev);
2064 
2065 	return -EINPROGRESS;
2066 }
2067 
2068 /*
2069  * AES ecryption functions.
2070  */
2071 static inline int hifn_encrypt_aes_ecb(struct skcipher_request *req)
2072 {
2073 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2074 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2075 }
2076 static inline int hifn_encrypt_aes_cbc(struct skcipher_request *req)
2077 {
2078 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2079 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2080 }
2081 
2082 /*
2083  * AES decryption functions.
2084  */
2085 static inline int hifn_decrypt_aes_ecb(struct skcipher_request *req)
2086 {
2087 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2088 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2089 }
2090 static inline int hifn_decrypt_aes_cbc(struct skcipher_request *req)
2091 {
2092 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2093 			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2094 }
2095 
2096 /*
2097  * DES ecryption functions.
2098  */
2099 static inline int hifn_encrypt_des_ecb(struct skcipher_request *req)
2100 {
2101 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2102 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2103 }
2104 static inline int hifn_encrypt_des_cbc(struct skcipher_request *req)
2105 {
2106 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2107 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2108 }
2109 
2110 /*
2111  * DES decryption functions.
2112  */
2113 static inline int hifn_decrypt_des_ecb(struct skcipher_request *req)
2114 {
2115 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2116 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2117 }
2118 static inline int hifn_decrypt_des_cbc(struct skcipher_request *req)
2119 {
2120 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2121 			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2122 }
2123 
2124 /*
2125  * 3DES ecryption functions.
2126  */
2127 static inline int hifn_encrypt_3des_ecb(struct skcipher_request *req)
2128 {
2129 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2130 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2131 }
2132 static inline int hifn_encrypt_3des_cbc(struct skcipher_request *req)
2133 {
2134 	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2135 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2136 }
2137 
2138 /* 3DES decryption functions. */
2139 static inline int hifn_decrypt_3des_ecb(struct skcipher_request *req)
2140 {
2141 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2142 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2143 }
2144 static inline int hifn_decrypt_3des_cbc(struct skcipher_request *req)
2145 {
2146 	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2147 			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2148 }
2149 
2150 struct hifn_alg_template {
2151 	char name[CRYPTO_MAX_ALG_NAME];
2152 	char drv_name[CRYPTO_MAX_ALG_NAME];
2153 	unsigned int bsize;
2154 	struct skcipher_alg skcipher;
2155 };
2156 
2157 static const struct hifn_alg_template hifn_alg_templates[] = {
2158 	/*
2159 	 * 3DES ECB and CBC modes.
2160 	 */
2161 	{
2162 		.name = "cbc(des3_ede)", .drv_name = "cbc-3des", .bsize = 8,
2163 		.skcipher = {
2164 			.ivsize		=	HIFN_IV_LENGTH,
2165 			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2166 			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2167 			.setkey		=	hifn_des3_setkey,
2168 			.encrypt	=	hifn_encrypt_3des_cbc,
2169 			.decrypt	=	hifn_decrypt_3des_cbc,
2170 		},
2171 	},
2172 	{
2173 		.name = "ecb(des3_ede)", .drv_name = "ecb-3des", .bsize = 8,
2174 		.skcipher = {
2175 			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
2176 			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
2177 			.setkey		=	hifn_des3_setkey,
2178 			.encrypt	=	hifn_encrypt_3des_ecb,
2179 			.decrypt	=	hifn_decrypt_3des_ecb,
2180 		},
2181 	},
2182 
2183 	/*
2184 	 * DES ECB and CBC modes.
2185 	 */
2186 	{
2187 		.name = "cbc(des)", .drv_name = "cbc-des", .bsize = 8,
2188 		.skcipher = {
2189 			.ivsize		=	HIFN_IV_LENGTH,
2190 			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2191 			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2192 			.setkey		=	hifn_setkey,
2193 			.encrypt	=	hifn_encrypt_des_cbc,
2194 			.decrypt	=	hifn_decrypt_des_cbc,
2195 		},
2196 	},
2197 	{
2198 		.name = "ecb(des)", .drv_name = "ecb-des", .bsize = 8,
2199 		.skcipher = {
2200 			.min_keysize	=	HIFN_DES_KEY_LENGTH,
2201 			.max_keysize	=	HIFN_DES_KEY_LENGTH,
2202 			.setkey		=	hifn_setkey,
2203 			.encrypt	=	hifn_encrypt_des_ecb,
2204 			.decrypt	=	hifn_decrypt_des_ecb,
2205 		},
2206 	},
2207 
2208 	/*
2209 	 * AES ECB and CBC modes.
2210 	 */
2211 	{
2212 		.name = "ecb(aes)", .drv_name = "ecb-aes", .bsize = 16,
2213 		.skcipher = {
2214 			.min_keysize	=	AES_MIN_KEY_SIZE,
2215 			.max_keysize	=	AES_MAX_KEY_SIZE,
2216 			.setkey		=	hifn_setkey,
2217 			.encrypt	=	hifn_encrypt_aes_ecb,
2218 			.decrypt	=	hifn_decrypt_aes_ecb,
2219 		},
2220 	},
2221 	{
2222 		.name = "cbc(aes)", .drv_name = "cbc-aes", .bsize = 16,
2223 		.skcipher = {
2224 			.ivsize		=	HIFN_AES_IV_LENGTH,
2225 			.min_keysize	=	AES_MIN_KEY_SIZE,
2226 			.max_keysize	=	AES_MAX_KEY_SIZE,
2227 			.setkey		=	hifn_setkey,
2228 			.encrypt	=	hifn_encrypt_aes_cbc,
2229 			.decrypt	=	hifn_decrypt_aes_cbc,
2230 		},
2231 	},
2232 };
2233 
2234 static int hifn_init_tfm(struct crypto_skcipher *tfm)
2235 {
2236 	struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
2237 	struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg);
2238 	struct hifn_context *ctx = crypto_skcipher_ctx(tfm);
2239 
2240 	ctx->dev = ha->dev;
2241 	crypto_skcipher_set_reqsize(tfm, sizeof(struct hifn_request_context));
2242 
2243 	return 0;
2244 }
2245 
2246 static int hifn_alg_alloc(struct hifn_device *dev, const struct hifn_alg_template *t)
2247 {
2248 	struct hifn_crypto_alg *alg;
2249 	int err;
2250 
2251 	alg = kzalloc(sizeof(*alg), GFP_KERNEL);
2252 	if (!alg)
2253 		return -ENOMEM;
2254 
2255 	alg->alg = t->skcipher;
2256 	alg->alg.init = hifn_init_tfm;
2257 
2258 	err = -EINVAL;
2259 	if (snprintf(alg->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
2260 		     "%s", t->name) >= CRYPTO_MAX_ALG_NAME)
2261 		goto out_free_alg;
2262 	if (snprintf(alg->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
2263 		     "%s-%s", t->drv_name, dev->name) >= CRYPTO_MAX_ALG_NAME)
2264 		goto out_free_alg;
2265 
2266 	alg->alg.base.cra_priority = 300;
2267 	alg->alg.base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
2268 	alg->alg.base.cra_blocksize = t->bsize;
2269 	alg->alg.base.cra_ctxsize = sizeof(struct hifn_context);
2270 	alg->alg.base.cra_alignmask = 0;
2271 	alg->alg.base.cra_module = THIS_MODULE;
2272 
2273 	alg->dev = dev;
2274 
2275 	list_add_tail(&alg->entry, &dev->alg_list);
2276 
2277 	err = crypto_register_skcipher(&alg->alg);
2278 	if (err) {
2279 		list_del(&alg->entry);
2280 out_free_alg:
2281 		kfree(alg);
2282 	}
2283 
2284 	return err;
2285 }
2286 
2287 static void hifn_unregister_alg(struct hifn_device *dev)
2288 {
2289 	struct hifn_crypto_alg *a, *n;
2290 
2291 	list_for_each_entry_safe(a, n, &dev->alg_list, entry) {
2292 		list_del(&a->entry);
2293 		crypto_unregister_skcipher(&a->alg);
2294 		kfree(a);
2295 	}
2296 }
2297 
2298 static int hifn_register_alg(struct hifn_device *dev)
2299 {
2300 	int i, err;
2301 
2302 	for (i = 0; i < ARRAY_SIZE(hifn_alg_templates); ++i) {
2303 		err = hifn_alg_alloc(dev, &hifn_alg_templates[i]);
2304 		if (err)
2305 			goto err_out_exit;
2306 	}
2307 
2308 	return 0;
2309 
2310 err_out_exit:
2311 	hifn_unregister_alg(dev);
2312 	return err;
2313 }
2314 
2315 static void hifn_tasklet_callback(unsigned long data)
2316 {
2317 	struct hifn_device *dev = (struct hifn_device *)data;
2318 
2319 	/*
2320 	 * This is ok to call this without lock being held,
2321 	 * althogh it modifies some parameters used in parallel,
2322 	 * (like dev->success), but they are used in process
2323 	 * context or update is atomic (like setting dev->sa[i] to NULL).
2324 	 */
2325 	hifn_clear_rings(dev, 0);
2326 
2327 	if (dev->started < HIFN_QUEUE_LENGTH &&	dev->queue.qlen)
2328 		hifn_process_queue(dev);
2329 }
2330 
2331 static int hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2332 {
2333 	int err, i;
2334 	struct hifn_device *dev;
2335 	char name[8];
2336 
2337 	err = pci_enable_device(pdev);
2338 	if (err)
2339 		return err;
2340 	pci_set_master(pdev);
2341 
2342 	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2343 	if (err)
2344 		goto err_out_disable_pci_device;
2345 
2346 	snprintf(name, sizeof(name), "hifn%d",
2347 			atomic_inc_return(&hifn_dev_number) - 1);
2348 
2349 	err = pci_request_regions(pdev, name);
2350 	if (err)
2351 		goto err_out_disable_pci_device;
2352 
2353 	if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE ||
2354 	    pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE ||
2355 	    pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) {
2356 		dev_err(&pdev->dev, "Broken hardware - I/O regions are too small.\n");
2357 		err = -ENODEV;
2358 		goto err_out_free_regions;
2359 	}
2360 
2361 	dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg),
2362 			GFP_KERNEL);
2363 	if (!dev) {
2364 		err = -ENOMEM;
2365 		goto err_out_free_regions;
2366 	}
2367 
2368 	INIT_LIST_HEAD(&dev->alg_list);
2369 
2370 	snprintf(dev->name, sizeof(dev->name), "%s", name);
2371 	spin_lock_init(&dev->lock);
2372 
2373 	for (i = 0; i < 3; ++i) {
2374 		unsigned long addr, size;
2375 
2376 		addr = pci_resource_start(pdev, i);
2377 		size = pci_resource_len(pdev, i);
2378 
2379 		dev->bar[i] = ioremap(addr, size);
2380 		if (!dev->bar[i]) {
2381 			err = -ENOMEM;
2382 			goto err_out_unmap_bars;
2383 		}
2384 	}
2385 
2386 	dev->desc_virt = dma_alloc_coherent(&pdev->dev,
2387 					    sizeof(struct hifn_dma),
2388 					    &dev->desc_dma, GFP_KERNEL);
2389 	if (!dev->desc_virt) {
2390 		dev_err(&pdev->dev, "Failed to allocate descriptor rings.\n");
2391 		err = -ENOMEM;
2392 		goto err_out_unmap_bars;
2393 	}
2394 
2395 	dev->pdev = pdev;
2396 	dev->irq = pdev->irq;
2397 
2398 	for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
2399 		dev->sa[i] = NULL;
2400 
2401 	pci_set_drvdata(pdev, dev);
2402 
2403 	tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev);
2404 
2405 	crypto_init_queue(&dev->queue, 1);
2406 
2407 	err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev);
2408 	if (err) {
2409 		dev_err(&pdev->dev, "Failed to request IRQ%d: err: %d.\n",
2410 			dev->irq, err);
2411 		dev->irq = 0;
2412 		goto err_out_free_desc;
2413 	}
2414 
2415 	err = hifn_start_device(dev);
2416 	if (err)
2417 		goto err_out_free_irq;
2418 
2419 	err = hifn_register_rng(dev);
2420 	if (err)
2421 		goto err_out_stop_device;
2422 
2423 	err = hifn_register_alg(dev);
2424 	if (err)
2425 		goto err_out_unregister_rng;
2426 
2427 	INIT_DELAYED_WORK(&dev->work, hifn_work);
2428 	schedule_delayed_work(&dev->work, HZ);
2429 
2430 	dev_dbg(&pdev->dev, "HIFN crypto accelerator card at %s has been "
2431 		"successfully registered as %s.\n",
2432 		pci_name(pdev), dev->name);
2433 
2434 	return 0;
2435 
2436 err_out_unregister_rng:
2437 	hifn_unregister_rng(dev);
2438 err_out_stop_device:
2439 	hifn_reset_dma(dev, 1);
2440 	hifn_stop_device(dev);
2441 err_out_free_irq:
2442 	free_irq(dev->irq, dev);
2443 	tasklet_kill(&dev->tasklet);
2444 err_out_free_desc:
2445 	dma_free_coherent(&pdev->dev, sizeof(struct hifn_dma), dev->desc_virt,
2446 			  dev->desc_dma);
2447 
2448 err_out_unmap_bars:
2449 	for (i = 0; i < 3; ++i)
2450 		if (dev->bar[i])
2451 			iounmap(dev->bar[i]);
2452 	kfree(dev);
2453 
2454 err_out_free_regions:
2455 	pci_release_regions(pdev);
2456 
2457 err_out_disable_pci_device:
2458 	pci_disable_device(pdev);
2459 
2460 	return err;
2461 }
2462 
2463 static void hifn_remove(struct pci_dev *pdev)
2464 {
2465 	int i;
2466 	struct hifn_device *dev;
2467 
2468 	dev = pci_get_drvdata(pdev);
2469 
2470 	if (dev) {
2471 		cancel_delayed_work_sync(&dev->work);
2472 
2473 		hifn_unregister_rng(dev);
2474 		hifn_unregister_alg(dev);
2475 		hifn_reset_dma(dev, 1);
2476 		hifn_stop_device(dev);
2477 
2478 		free_irq(dev->irq, dev);
2479 		tasklet_kill(&dev->tasklet);
2480 
2481 		hifn_flush(dev);
2482 
2483 		dma_free_coherent(&pdev->dev, sizeof(struct hifn_dma),
2484 				  dev->desc_virt, dev->desc_dma);
2485 		for (i = 0; i < 3; ++i)
2486 			if (dev->bar[i])
2487 				iounmap(dev->bar[i]);
2488 
2489 		kfree(dev);
2490 	}
2491 
2492 	pci_release_regions(pdev);
2493 	pci_disable_device(pdev);
2494 }
2495 
2496 static struct pci_device_id hifn_pci_tbl[] = {
2497 	{ PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) },
2498 	{ PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) },
2499 	{ 0 }
2500 };
2501 MODULE_DEVICE_TABLE(pci, hifn_pci_tbl);
2502 
2503 static struct pci_driver hifn_pci_driver = {
2504 	.name     = "hifn795x",
2505 	.id_table = hifn_pci_tbl,
2506 	.probe    = hifn_probe,
2507 	.remove   = hifn_remove,
2508 };
2509 
2510 static int __init hifn_init(void)
2511 {
2512 	unsigned int freq;
2513 	int err;
2514 
2515 	if (strncmp(hifn_pll_ref, "ext", 3) &&
2516 	    strncmp(hifn_pll_ref, "pci", 3)) {
2517 		pr_err("hifn795x: invalid hifn_pll_ref clock, must be pci or ext");
2518 		return -EINVAL;
2519 	}
2520 
2521 	/*
2522 	 * For the 7955/7956 the reference clock frequency must be in the
2523 	 * range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz,
2524 	 * but this chip is currently not supported.
2525 	 */
2526 	if (hifn_pll_ref[3] != '\0') {
2527 		freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
2528 		if (freq < 20 || freq > 100) {
2529 			pr_err("hifn795x: invalid hifn_pll_ref frequency, must"
2530 			       "be in the range of 20-100");
2531 			return -EINVAL;
2532 		}
2533 	}
2534 
2535 	err = pci_register_driver(&hifn_pci_driver);
2536 	if (err < 0) {
2537 		pr_err("Failed to register PCI driver for %s device.\n",
2538 		       hifn_pci_driver.name);
2539 		return -ENODEV;
2540 	}
2541 
2542 	pr_info("Driver for HIFN 795x crypto accelerator chip "
2543 		"has been successfully registered.\n");
2544 
2545 	return 0;
2546 }
2547 
2548 static void __exit hifn_fini(void)
2549 {
2550 	pci_unregister_driver(&hifn_pci_driver);
2551 
2552 	pr_info("Driver for HIFN 795x crypto accelerator chip "
2553 		"has been successfully unregistered.\n");
2554 }
2555 
2556 module_init(hifn_init);
2557 module_exit(hifn_fini);
2558 
2559 MODULE_LICENSE("GPL");
2560 MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
2561 MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip.");
2562