1 /* 2 * 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru> 3 * All rights reserved. 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/module.h> 18 #include <linux/moduleparam.h> 19 #include <linux/mod_devicetable.h> 20 #include <linux/interrupt.h> 21 #include <linux/pci.h> 22 #include <linux/slab.h> 23 #include <linux/delay.h> 24 #include <linux/mm.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/scatterlist.h> 27 #include <linux/highmem.h> 28 #include <linux/crypto.h> 29 #include <linux/hw_random.h> 30 #include <linux/ktime.h> 31 32 #include <crypto/algapi.h> 33 #include <crypto/des.h> 34 35 static char hifn_pll_ref[sizeof("extNNN")] = "ext"; 36 module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444); 37 MODULE_PARM_DESC(hifn_pll_ref, 38 "PLL reference clock (pci[freq] or ext[freq], default ext)"); 39 40 static atomic_t hifn_dev_number; 41 42 #define ACRYPTO_OP_DECRYPT 0 43 #define ACRYPTO_OP_ENCRYPT 1 44 #define ACRYPTO_OP_HMAC 2 45 #define ACRYPTO_OP_RNG 3 46 47 #define ACRYPTO_MODE_ECB 0 48 #define ACRYPTO_MODE_CBC 1 49 #define ACRYPTO_MODE_CFB 2 50 #define ACRYPTO_MODE_OFB 3 51 52 #define ACRYPTO_TYPE_AES_128 0 53 #define ACRYPTO_TYPE_AES_192 1 54 #define ACRYPTO_TYPE_AES_256 2 55 #define ACRYPTO_TYPE_3DES 3 56 #define ACRYPTO_TYPE_DES 4 57 58 #define PCI_VENDOR_ID_HIFN 0x13A3 59 #define PCI_DEVICE_ID_HIFN_7955 0x0020 60 #define PCI_DEVICE_ID_HIFN_7956 0x001d 61 62 /* I/O region sizes */ 63 64 #define HIFN_BAR0_SIZE 0x1000 65 #define HIFN_BAR1_SIZE 0x2000 66 #define HIFN_BAR2_SIZE 0x8000 67 68 /* DMA registres */ 69 70 #define HIFN_DMA_CRA 0x0C /* DMA Command Ring Address */ 71 #define HIFN_DMA_SDRA 0x1C /* DMA Source Data Ring Address */ 72 #define HIFN_DMA_RRA 0x2C /* DMA Result Ring Address */ 73 #define HIFN_DMA_DDRA 0x3C /* DMA Destination Data Ring Address */ 74 #define HIFN_DMA_STCTL 0x40 /* DMA Status and Control */ 75 #define HIFN_DMA_INTREN 0x44 /* DMA Interrupt Enable */ 76 #define HIFN_DMA_CFG1 0x48 /* DMA Configuration #1 */ 77 #define HIFN_DMA_CFG2 0x6C /* DMA Configuration #2 */ 78 #define HIFN_CHIP_ID 0x98 /* Chip ID */ 79 80 /* 81 * Processing Unit Registers (offset from BASEREG0) 82 */ 83 #define HIFN_0_PUDATA 0x00 /* Processing Unit Data */ 84 #define HIFN_0_PUCTRL 0x04 /* Processing Unit Control */ 85 #define HIFN_0_PUISR 0x08 /* Processing Unit Interrupt Status */ 86 #define HIFN_0_PUCNFG 0x0c /* Processing Unit Configuration */ 87 #define HIFN_0_PUIER 0x10 /* Processing Unit Interrupt Enable */ 88 #define HIFN_0_PUSTAT 0x14 /* Processing Unit Status/Chip ID */ 89 #define HIFN_0_FIFOSTAT 0x18 /* FIFO Status */ 90 #define HIFN_0_FIFOCNFG 0x1c /* FIFO Configuration */ 91 #define HIFN_0_SPACESIZE 0x20 /* Register space size */ 92 93 /* Processing Unit Control Register (HIFN_0_PUCTRL) */ 94 #define HIFN_PUCTRL_CLRSRCFIFO 0x0010 /* clear source fifo */ 95 #define HIFN_PUCTRL_STOP 0x0008 /* stop pu */ 96 #define HIFN_PUCTRL_LOCKRAM 0x0004 /* lock ram */ 97 #define HIFN_PUCTRL_DMAENA 0x0002 /* enable dma */ 98 #define HIFN_PUCTRL_RESET 0x0001 /* Reset processing unit */ 99 100 /* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */ 101 #define HIFN_PUISR_CMDINVAL 0x8000 /* Invalid command interrupt */ 102 #define HIFN_PUISR_DATAERR 0x4000 /* Data error interrupt */ 103 #define HIFN_PUISR_SRCFIFO 0x2000 /* Source FIFO ready interrupt */ 104 #define HIFN_PUISR_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */ 105 #define HIFN_PUISR_DSTOVER 0x0200 /* Destination overrun interrupt */ 106 #define HIFN_PUISR_SRCCMD 0x0080 /* Source command interrupt */ 107 #define HIFN_PUISR_SRCCTX 0x0040 /* Source context interrupt */ 108 #define HIFN_PUISR_SRCDATA 0x0020 /* Source data interrupt */ 109 #define HIFN_PUISR_DSTDATA 0x0010 /* Destination data interrupt */ 110 #define HIFN_PUISR_DSTRESULT 0x0004 /* Destination result interrupt */ 111 112 /* Processing Unit Configuration Register (HIFN_0_PUCNFG) */ 113 #define HIFN_PUCNFG_DRAMMASK 0xe000 /* DRAM size mask */ 114 #define HIFN_PUCNFG_DSZ_256K 0x0000 /* 256k dram */ 115 #define HIFN_PUCNFG_DSZ_512K 0x2000 /* 512k dram */ 116 #define HIFN_PUCNFG_DSZ_1M 0x4000 /* 1m dram */ 117 #define HIFN_PUCNFG_DSZ_2M 0x6000 /* 2m dram */ 118 #define HIFN_PUCNFG_DSZ_4M 0x8000 /* 4m dram */ 119 #define HIFN_PUCNFG_DSZ_8M 0xa000 /* 8m dram */ 120 #define HIFN_PUNCFG_DSZ_16M 0xc000 /* 16m dram */ 121 #define HIFN_PUCNFG_DSZ_32M 0xe000 /* 32m dram */ 122 #define HIFN_PUCNFG_DRAMREFRESH 0x1800 /* DRAM refresh rate mask */ 123 #define HIFN_PUCNFG_DRFR_512 0x0000 /* 512 divisor of ECLK */ 124 #define HIFN_PUCNFG_DRFR_256 0x0800 /* 256 divisor of ECLK */ 125 #define HIFN_PUCNFG_DRFR_128 0x1000 /* 128 divisor of ECLK */ 126 #define HIFN_PUCNFG_TCALLPHASES 0x0200 /* your guess is as good as mine... */ 127 #define HIFN_PUCNFG_TCDRVTOTEM 0x0100 /* your guess is as good as mine... */ 128 #define HIFN_PUCNFG_BIGENDIAN 0x0080 /* DMA big endian mode */ 129 #define HIFN_PUCNFG_BUS32 0x0040 /* Bus width 32bits */ 130 #define HIFN_PUCNFG_BUS16 0x0000 /* Bus width 16 bits */ 131 #define HIFN_PUCNFG_CHIPID 0x0020 /* Allow chipid from PUSTAT */ 132 #define HIFN_PUCNFG_DRAM 0x0010 /* Context RAM is DRAM */ 133 #define HIFN_PUCNFG_SRAM 0x0000 /* Context RAM is SRAM */ 134 #define HIFN_PUCNFG_COMPSING 0x0004 /* Enable single compression context */ 135 #define HIFN_PUCNFG_ENCCNFG 0x0002 /* Encryption configuration */ 136 137 /* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */ 138 #define HIFN_PUIER_CMDINVAL 0x8000 /* Invalid command interrupt */ 139 #define HIFN_PUIER_DATAERR 0x4000 /* Data error interrupt */ 140 #define HIFN_PUIER_SRCFIFO 0x2000 /* Source FIFO ready interrupt */ 141 #define HIFN_PUIER_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */ 142 #define HIFN_PUIER_DSTOVER 0x0200 /* Destination overrun interrupt */ 143 #define HIFN_PUIER_SRCCMD 0x0080 /* Source command interrupt */ 144 #define HIFN_PUIER_SRCCTX 0x0040 /* Source context interrupt */ 145 #define HIFN_PUIER_SRCDATA 0x0020 /* Source data interrupt */ 146 #define HIFN_PUIER_DSTDATA 0x0010 /* Destination data interrupt */ 147 #define HIFN_PUIER_DSTRESULT 0x0004 /* Destination result interrupt */ 148 149 /* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */ 150 #define HIFN_PUSTAT_CMDINVAL 0x8000 /* Invalid command interrupt */ 151 #define HIFN_PUSTAT_DATAERR 0x4000 /* Data error interrupt */ 152 #define HIFN_PUSTAT_SRCFIFO 0x2000 /* Source FIFO ready interrupt */ 153 #define HIFN_PUSTAT_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */ 154 #define HIFN_PUSTAT_DSTOVER 0x0200 /* Destination overrun interrupt */ 155 #define HIFN_PUSTAT_SRCCMD 0x0080 /* Source command interrupt */ 156 #define HIFN_PUSTAT_SRCCTX 0x0040 /* Source context interrupt */ 157 #define HIFN_PUSTAT_SRCDATA 0x0020 /* Source data interrupt */ 158 #define HIFN_PUSTAT_DSTDATA 0x0010 /* Destination data interrupt */ 159 #define HIFN_PUSTAT_DSTRESULT 0x0004 /* Destination result interrupt */ 160 #define HIFN_PUSTAT_CHIPREV 0x00ff /* Chip revision mask */ 161 #define HIFN_PUSTAT_CHIPENA 0xff00 /* Chip enabled mask */ 162 #define HIFN_PUSTAT_ENA_2 0x1100 /* Level 2 enabled */ 163 #define HIFN_PUSTAT_ENA_1 0x1000 /* Level 1 enabled */ 164 #define HIFN_PUSTAT_ENA_0 0x3000 /* Level 0 enabled */ 165 #define HIFN_PUSTAT_REV_2 0x0020 /* 7751 PT6/2 */ 166 #define HIFN_PUSTAT_REV_3 0x0030 /* 7751 PT6/3 */ 167 168 /* FIFO Status Register (HIFN_0_FIFOSTAT) */ 169 #define HIFN_FIFOSTAT_SRC 0x7f00 /* Source FIFO available */ 170 #define HIFN_FIFOSTAT_DST 0x007f /* Destination FIFO available */ 171 172 /* FIFO Configuration Register (HIFN_0_FIFOCNFG) */ 173 #define HIFN_FIFOCNFG_THRESHOLD 0x0400 /* must be written as 1 */ 174 175 /* 176 * DMA Interface Registers (offset from BASEREG1) 177 */ 178 #define HIFN_1_DMA_CRAR 0x0c /* DMA Command Ring Address */ 179 #define HIFN_1_DMA_SRAR 0x1c /* DMA Source Ring Address */ 180 #define HIFN_1_DMA_RRAR 0x2c /* DMA Result Ring Address */ 181 #define HIFN_1_DMA_DRAR 0x3c /* DMA Destination Ring Address */ 182 #define HIFN_1_DMA_CSR 0x40 /* DMA Status and Control */ 183 #define HIFN_1_DMA_IER 0x44 /* DMA Interrupt Enable */ 184 #define HIFN_1_DMA_CNFG 0x48 /* DMA Configuration */ 185 #define HIFN_1_PLL 0x4c /* 795x: PLL config */ 186 #define HIFN_1_7811_RNGENA 0x60 /* 7811: rng enable */ 187 #define HIFN_1_7811_RNGCFG 0x64 /* 7811: rng config */ 188 #define HIFN_1_7811_RNGDAT 0x68 /* 7811: rng data */ 189 #define HIFN_1_7811_RNGSTS 0x6c /* 7811: rng status */ 190 #define HIFN_1_7811_MIPSRST 0x94 /* 7811: MIPS reset */ 191 #define HIFN_1_REVID 0x98 /* Revision ID */ 192 #define HIFN_1_UNLOCK_SECRET1 0xf4 193 #define HIFN_1_UNLOCK_SECRET2 0xfc 194 #define HIFN_1_PUB_RESET 0x204 /* Public/RNG Reset */ 195 #define HIFN_1_PUB_BASE 0x300 /* Public Base Address */ 196 #define HIFN_1_PUB_OPLEN 0x304 /* Public Operand Length */ 197 #define HIFN_1_PUB_OP 0x308 /* Public Operand */ 198 #define HIFN_1_PUB_STATUS 0x30c /* Public Status */ 199 #define HIFN_1_PUB_IEN 0x310 /* Public Interrupt enable */ 200 #define HIFN_1_RNG_CONFIG 0x314 /* RNG config */ 201 #define HIFN_1_RNG_DATA 0x318 /* RNG data */ 202 #define HIFN_1_PUB_MEM 0x400 /* start of Public key memory */ 203 #define HIFN_1_PUB_MEMEND 0xbff /* end of Public key memory */ 204 205 /* DMA Status and Control Register (HIFN_1_DMA_CSR) */ 206 #define HIFN_DMACSR_D_CTRLMASK 0xc0000000 /* Destinition Ring Control */ 207 #define HIFN_DMACSR_D_CTRL_NOP 0x00000000 /* Dest. Control: no-op */ 208 #define HIFN_DMACSR_D_CTRL_DIS 0x40000000 /* Dest. Control: disable */ 209 #define HIFN_DMACSR_D_CTRL_ENA 0x80000000 /* Dest. Control: enable */ 210 #define HIFN_DMACSR_D_ABORT 0x20000000 /* Destinition Ring PCIAbort */ 211 #define HIFN_DMACSR_D_DONE 0x10000000 /* Destinition Ring Done */ 212 #define HIFN_DMACSR_D_LAST 0x08000000 /* Destinition Ring Last */ 213 #define HIFN_DMACSR_D_WAIT 0x04000000 /* Destinition Ring Waiting */ 214 #define HIFN_DMACSR_D_OVER 0x02000000 /* Destinition Ring Overflow */ 215 #define HIFN_DMACSR_R_CTRL 0x00c00000 /* Result Ring Control */ 216 #define HIFN_DMACSR_R_CTRL_NOP 0x00000000 /* Result Control: no-op */ 217 #define HIFN_DMACSR_R_CTRL_DIS 0x00400000 /* Result Control: disable */ 218 #define HIFN_DMACSR_R_CTRL_ENA 0x00800000 /* Result Control: enable */ 219 #define HIFN_DMACSR_R_ABORT 0x00200000 /* Result Ring PCI Abort */ 220 #define HIFN_DMACSR_R_DONE 0x00100000 /* Result Ring Done */ 221 #define HIFN_DMACSR_R_LAST 0x00080000 /* Result Ring Last */ 222 #define HIFN_DMACSR_R_WAIT 0x00040000 /* Result Ring Waiting */ 223 #define HIFN_DMACSR_R_OVER 0x00020000 /* Result Ring Overflow */ 224 #define HIFN_DMACSR_S_CTRL 0x0000c000 /* Source Ring Control */ 225 #define HIFN_DMACSR_S_CTRL_NOP 0x00000000 /* Source Control: no-op */ 226 #define HIFN_DMACSR_S_CTRL_DIS 0x00004000 /* Source Control: disable */ 227 #define HIFN_DMACSR_S_CTRL_ENA 0x00008000 /* Source Control: enable */ 228 #define HIFN_DMACSR_S_ABORT 0x00002000 /* Source Ring PCI Abort */ 229 #define HIFN_DMACSR_S_DONE 0x00001000 /* Source Ring Done */ 230 #define HIFN_DMACSR_S_LAST 0x00000800 /* Source Ring Last */ 231 #define HIFN_DMACSR_S_WAIT 0x00000400 /* Source Ring Waiting */ 232 #define HIFN_DMACSR_ILLW 0x00000200 /* Illegal write (7811 only) */ 233 #define HIFN_DMACSR_ILLR 0x00000100 /* Illegal read (7811 only) */ 234 #define HIFN_DMACSR_C_CTRL 0x000000c0 /* Command Ring Control */ 235 #define HIFN_DMACSR_C_CTRL_NOP 0x00000000 /* Command Control: no-op */ 236 #define HIFN_DMACSR_C_CTRL_DIS 0x00000040 /* Command Control: disable */ 237 #define HIFN_DMACSR_C_CTRL_ENA 0x00000080 /* Command Control: enable */ 238 #define HIFN_DMACSR_C_ABORT 0x00000020 /* Command Ring PCI Abort */ 239 #define HIFN_DMACSR_C_DONE 0x00000010 /* Command Ring Done */ 240 #define HIFN_DMACSR_C_LAST 0x00000008 /* Command Ring Last */ 241 #define HIFN_DMACSR_C_WAIT 0x00000004 /* Command Ring Waiting */ 242 #define HIFN_DMACSR_PUBDONE 0x00000002 /* Public op done (7951 only) */ 243 #define HIFN_DMACSR_ENGINE 0x00000001 /* Command Ring Engine IRQ */ 244 245 /* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */ 246 #define HIFN_DMAIER_D_ABORT 0x20000000 /* Destination Ring PCIAbort */ 247 #define HIFN_DMAIER_D_DONE 0x10000000 /* Destination Ring Done */ 248 #define HIFN_DMAIER_D_LAST 0x08000000 /* Destination Ring Last */ 249 #define HIFN_DMAIER_D_WAIT 0x04000000 /* Destination Ring Waiting */ 250 #define HIFN_DMAIER_D_OVER 0x02000000 /* Destination Ring Overflow */ 251 #define HIFN_DMAIER_R_ABORT 0x00200000 /* Result Ring PCI Abort */ 252 #define HIFN_DMAIER_R_DONE 0x00100000 /* Result Ring Done */ 253 #define HIFN_DMAIER_R_LAST 0x00080000 /* Result Ring Last */ 254 #define HIFN_DMAIER_R_WAIT 0x00040000 /* Result Ring Waiting */ 255 #define HIFN_DMAIER_R_OVER 0x00020000 /* Result Ring Overflow */ 256 #define HIFN_DMAIER_S_ABORT 0x00002000 /* Source Ring PCI Abort */ 257 #define HIFN_DMAIER_S_DONE 0x00001000 /* Source Ring Done */ 258 #define HIFN_DMAIER_S_LAST 0x00000800 /* Source Ring Last */ 259 #define HIFN_DMAIER_S_WAIT 0x00000400 /* Source Ring Waiting */ 260 #define HIFN_DMAIER_ILLW 0x00000200 /* Illegal write (7811 only) */ 261 #define HIFN_DMAIER_ILLR 0x00000100 /* Illegal read (7811 only) */ 262 #define HIFN_DMAIER_C_ABORT 0x00000020 /* Command Ring PCI Abort */ 263 #define HIFN_DMAIER_C_DONE 0x00000010 /* Command Ring Done */ 264 #define HIFN_DMAIER_C_LAST 0x00000008 /* Command Ring Last */ 265 #define HIFN_DMAIER_C_WAIT 0x00000004 /* Command Ring Waiting */ 266 #define HIFN_DMAIER_PUBDONE 0x00000002 /* public op done (7951 only) */ 267 #define HIFN_DMAIER_ENGINE 0x00000001 /* Engine IRQ */ 268 269 /* DMA Configuration Register (HIFN_1_DMA_CNFG) */ 270 #define HIFN_DMACNFG_BIGENDIAN 0x10000000 /* big endian mode */ 271 #define HIFN_DMACNFG_POLLFREQ 0x00ff0000 /* Poll frequency mask */ 272 #define HIFN_DMACNFG_UNLOCK 0x00000800 273 #define HIFN_DMACNFG_POLLINVAL 0x00000700 /* Invalid Poll Scalar */ 274 #define HIFN_DMACNFG_LAST 0x00000010 /* Host control LAST bit */ 275 #define HIFN_DMACNFG_MODE 0x00000004 /* DMA mode */ 276 #define HIFN_DMACNFG_DMARESET 0x00000002 /* DMA Reset # */ 277 #define HIFN_DMACNFG_MSTRESET 0x00000001 /* Master Reset # */ 278 279 /* PLL configuration register */ 280 #define HIFN_PLL_REF_CLK_HBI 0x00000000 /* HBI reference clock */ 281 #define HIFN_PLL_REF_CLK_PLL 0x00000001 /* PLL reference clock */ 282 #define HIFN_PLL_BP 0x00000002 /* Reference clock bypass */ 283 #define HIFN_PLL_PK_CLK_HBI 0x00000000 /* PK engine HBI clock */ 284 #define HIFN_PLL_PK_CLK_PLL 0x00000008 /* PK engine PLL clock */ 285 #define HIFN_PLL_PE_CLK_HBI 0x00000000 /* PE engine HBI clock */ 286 #define HIFN_PLL_PE_CLK_PLL 0x00000010 /* PE engine PLL clock */ 287 #define HIFN_PLL_RESERVED_1 0x00000400 /* Reserved bit, must be 1 */ 288 #define HIFN_PLL_ND_SHIFT 11 /* Clock multiplier shift */ 289 #define HIFN_PLL_ND_MULT_2 0x00000000 /* PLL clock multiplier 2 */ 290 #define HIFN_PLL_ND_MULT_4 0x00000800 /* PLL clock multiplier 4 */ 291 #define HIFN_PLL_ND_MULT_6 0x00001000 /* PLL clock multiplier 6 */ 292 #define HIFN_PLL_ND_MULT_8 0x00001800 /* PLL clock multiplier 8 */ 293 #define HIFN_PLL_ND_MULT_10 0x00002000 /* PLL clock multiplier 10 */ 294 #define HIFN_PLL_ND_MULT_12 0x00002800 /* PLL clock multiplier 12 */ 295 #define HIFN_PLL_IS_1_8 0x00000000 /* charge pump (mult. 1-8) */ 296 #define HIFN_PLL_IS_9_12 0x00010000 /* charge pump (mult. 9-12) */ 297 298 #define HIFN_PLL_FCK_MAX 266 /* Maximum PLL frequency */ 299 300 /* Public key reset register (HIFN_1_PUB_RESET) */ 301 #define HIFN_PUBRST_RESET 0x00000001 /* reset public/rng unit */ 302 303 /* Public base address register (HIFN_1_PUB_BASE) */ 304 #define HIFN_PUBBASE_ADDR 0x00003fff /* base address */ 305 306 /* Public operand length register (HIFN_1_PUB_OPLEN) */ 307 #define HIFN_PUBOPLEN_MOD_M 0x0000007f /* modulus length mask */ 308 #define HIFN_PUBOPLEN_MOD_S 0 /* modulus length shift */ 309 #define HIFN_PUBOPLEN_EXP_M 0x0003ff80 /* exponent length mask */ 310 #define HIFN_PUBOPLEN_EXP_S 7 /* exponent length shift */ 311 #define HIFN_PUBOPLEN_RED_M 0x003c0000 /* reducend length mask */ 312 #define HIFN_PUBOPLEN_RED_S 18 /* reducend length shift */ 313 314 /* Public operation register (HIFN_1_PUB_OP) */ 315 #define HIFN_PUBOP_AOFFSET_M 0x0000007f /* A offset mask */ 316 #define HIFN_PUBOP_AOFFSET_S 0 /* A offset shift */ 317 #define HIFN_PUBOP_BOFFSET_M 0x00000f80 /* B offset mask */ 318 #define HIFN_PUBOP_BOFFSET_S 7 /* B offset shift */ 319 #define HIFN_PUBOP_MOFFSET_M 0x0003f000 /* M offset mask */ 320 #define HIFN_PUBOP_MOFFSET_S 12 /* M offset shift */ 321 #define HIFN_PUBOP_OP_MASK 0x003c0000 /* Opcode: */ 322 #define HIFN_PUBOP_OP_NOP 0x00000000 /* NOP */ 323 #define HIFN_PUBOP_OP_ADD 0x00040000 /* ADD */ 324 #define HIFN_PUBOP_OP_ADDC 0x00080000 /* ADD w/carry */ 325 #define HIFN_PUBOP_OP_SUB 0x000c0000 /* SUB */ 326 #define HIFN_PUBOP_OP_SUBC 0x00100000 /* SUB w/carry */ 327 #define HIFN_PUBOP_OP_MODADD 0x00140000 /* Modular ADD */ 328 #define HIFN_PUBOP_OP_MODSUB 0x00180000 /* Modular SUB */ 329 #define HIFN_PUBOP_OP_INCA 0x001c0000 /* INC A */ 330 #define HIFN_PUBOP_OP_DECA 0x00200000 /* DEC A */ 331 #define HIFN_PUBOP_OP_MULT 0x00240000 /* MULT */ 332 #define HIFN_PUBOP_OP_MODMULT 0x00280000 /* Modular MULT */ 333 #define HIFN_PUBOP_OP_MODRED 0x002c0000 /* Modular RED */ 334 #define HIFN_PUBOP_OP_MODEXP 0x00300000 /* Modular EXP */ 335 336 /* Public status register (HIFN_1_PUB_STATUS) */ 337 #define HIFN_PUBSTS_DONE 0x00000001 /* operation done */ 338 #define HIFN_PUBSTS_CARRY 0x00000002 /* carry */ 339 340 /* Public interrupt enable register (HIFN_1_PUB_IEN) */ 341 #define HIFN_PUBIEN_DONE 0x00000001 /* operation done interrupt */ 342 343 /* Random number generator config register (HIFN_1_RNG_CONFIG) */ 344 #define HIFN_RNGCFG_ENA 0x00000001 /* enable rng */ 345 346 #define HIFN_NAMESIZE 32 347 #define HIFN_MAX_RESULT_ORDER 5 348 349 #define HIFN_D_CMD_RSIZE (24 * 1) 350 #define HIFN_D_SRC_RSIZE (80 * 1) 351 #define HIFN_D_DST_RSIZE (80 * 1) 352 #define HIFN_D_RES_RSIZE (24 * 1) 353 354 #define HIFN_D_DST_DALIGN 4 355 356 #define HIFN_QUEUE_LENGTH (HIFN_D_CMD_RSIZE - 1) 357 358 #define AES_MIN_KEY_SIZE 16 359 #define AES_MAX_KEY_SIZE 32 360 361 #define HIFN_DES_KEY_LENGTH 8 362 #define HIFN_3DES_KEY_LENGTH 24 363 #define HIFN_MAX_CRYPT_KEY_LENGTH AES_MAX_KEY_SIZE 364 #define HIFN_IV_LENGTH 8 365 #define HIFN_AES_IV_LENGTH 16 366 #define HIFN_MAX_IV_LENGTH HIFN_AES_IV_LENGTH 367 368 #define HIFN_MAC_KEY_LENGTH 64 369 #define HIFN_MD5_LENGTH 16 370 #define HIFN_SHA1_LENGTH 20 371 #define HIFN_MAC_TRUNC_LENGTH 12 372 373 #define HIFN_MAX_COMMAND (8 + 8 + 8 + 64 + 260) 374 #define HIFN_MAX_RESULT (8 + 4 + 4 + 20 + 4) 375 #define HIFN_USED_RESULT 12 376 377 struct hifn_desc { 378 volatile __le32 l; 379 volatile __le32 p; 380 }; 381 382 struct hifn_dma { 383 struct hifn_desc cmdr[HIFN_D_CMD_RSIZE + 1]; 384 struct hifn_desc srcr[HIFN_D_SRC_RSIZE + 1]; 385 struct hifn_desc dstr[HIFN_D_DST_RSIZE + 1]; 386 struct hifn_desc resr[HIFN_D_RES_RSIZE + 1]; 387 388 u8 command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND]; 389 u8 result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT]; 390 391 /* 392 * Our current positions for insertion and removal from the descriptor 393 * rings. 394 */ 395 volatile int cmdi, srci, dsti, resi; 396 volatile int cmdu, srcu, dstu, resu; 397 int cmdk, srck, dstk, resk; 398 }; 399 400 #define HIFN_FLAG_CMD_BUSY (1 << 0) 401 #define HIFN_FLAG_SRC_BUSY (1 << 1) 402 #define HIFN_FLAG_DST_BUSY (1 << 2) 403 #define HIFN_FLAG_RES_BUSY (1 << 3) 404 #define HIFN_FLAG_OLD_KEY (1 << 4) 405 406 #define HIFN_DEFAULT_ACTIVE_NUM 5 407 408 struct hifn_device { 409 char name[HIFN_NAMESIZE]; 410 411 int irq; 412 413 struct pci_dev *pdev; 414 void __iomem *bar[3]; 415 416 void *desc_virt; 417 dma_addr_t desc_dma; 418 419 u32 dmareg; 420 421 void *sa[HIFN_D_RES_RSIZE]; 422 423 spinlock_t lock; 424 425 u32 flags; 426 int active, started; 427 struct delayed_work work; 428 unsigned long reset; 429 unsigned long success; 430 unsigned long prev_success; 431 432 u8 snum; 433 434 struct tasklet_struct tasklet; 435 436 struct crypto_queue queue; 437 struct list_head alg_list; 438 439 unsigned int pk_clk_freq; 440 441 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG 442 unsigned int rng_wait_time; 443 ktime_t rngtime; 444 struct hwrng rng; 445 #endif 446 }; 447 448 #define HIFN_D_LENGTH 0x0000ffff 449 #define HIFN_D_NOINVALID 0x01000000 450 #define HIFN_D_MASKDONEIRQ 0x02000000 451 #define HIFN_D_DESTOVER 0x04000000 452 #define HIFN_D_OVER 0x08000000 453 #define HIFN_D_LAST 0x20000000 454 #define HIFN_D_JUMP 0x40000000 455 #define HIFN_D_VALID 0x80000000 456 457 struct hifn_base_command { 458 volatile __le16 masks; 459 volatile __le16 session_num; 460 volatile __le16 total_source_count; 461 volatile __le16 total_dest_count; 462 }; 463 464 #define HIFN_BASE_CMD_COMP 0x0100 /* enable compression engine */ 465 #define HIFN_BASE_CMD_PAD 0x0200 /* enable padding engine */ 466 #define HIFN_BASE_CMD_MAC 0x0400 /* enable MAC engine */ 467 #define HIFN_BASE_CMD_CRYPT 0x0800 /* enable crypt engine */ 468 #define HIFN_BASE_CMD_DECODE 0x2000 469 #define HIFN_BASE_CMD_SRCLEN_M 0xc000 470 #define HIFN_BASE_CMD_SRCLEN_S 14 471 #define HIFN_BASE_CMD_DSTLEN_M 0x3000 472 #define HIFN_BASE_CMD_DSTLEN_S 12 473 #define HIFN_BASE_CMD_LENMASK_HI 0x30000 474 #define HIFN_BASE_CMD_LENMASK_LO 0x0ffff 475 476 /* 477 * Structure to help build up the command data structure. 478 */ 479 struct hifn_crypt_command { 480 volatile __le16 masks; 481 volatile __le16 header_skip; 482 volatile __le16 source_count; 483 volatile __le16 reserved; 484 }; 485 486 #define HIFN_CRYPT_CMD_ALG_MASK 0x0003 /* algorithm: */ 487 #define HIFN_CRYPT_CMD_ALG_DES 0x0000 /* DES */ 488 #define HIFN_CRYPT_CMD_ALG_3DES 0x0001 /* 3DES */ 489 #define HIFN_CRYPT_CMD_ALG_RC4 0x0002 /* RC4 */ 490 #define HIFN_CRYPT_CMD_ALG_AES 0x0003 /* AES */ 491 #define HIFN_CRYPT_CMD_MODE_MASK 0x0018 /* Encrypt mode: */ 492 #define HIFN_CRYPT_CMD_MODE_ECB 0x0000 /* ECB */ 493 #define HIFN_CRYPT_CMD_MODE_CBC 0x0008 /* CBC */ 494 #define HIFN_CRYPT_CMD_MODE_CFB 0x0010 /* CFB */ 495 #define HIFN_CRYPT_CMD_MODE_OFB 0x0018 /* OFB */ 496 #define HIFN_CRYPT_CMD_CLR_CTX 0x0040 /* clear context */ 497 #define HIFN_CRYPT_CMD_KSZ_MASK 0x0600 /* AES key size: */ 498 #define HIFN_CRYPT_CMD_KSZ_128 0x0000 /* 128 bit */ 499 #define HIFN_CRYPT_CMD_KSZ_192 0x0200 /* 192 bit */ 500 #define HIFN_CRYPT_CMD_KSZ_256 0x0400 /* 256 bit */ 501 #define HIFN_CRYPT_CMD_NEW_KEY 0x0800 /* expect new key */ 502 #define HIFN_CRYPT_CMD_NEW_IV 0x1000 /* expect new iv */ 503 #define HIFN_CRYPT_CMD_SRCLEN_M 0xc000 504 #define HIFN_CRYPT_CMD_SRCLEN_S 14 505 506 /* 507 * Structure to help build up the command data structure. 508 */ 509 struct hifn_mac_command { 510 volatile __le16 masks; 511 volatile __le16 header_skip; 512 volatile __le16 source_count; 513 volatile __le16 reserved; 514 }; 515 516 #define HIFN_MAC_CMD_ALG_MASK 0x0001 517 #define HIFN_MAC_CMD_ALG_SHA1 0x0000 518 #define HIFN_MAC_CMD_ALG_MD5 0x0001 519 #define HIFN_MAC_CMD_MODE_MASK 0x000c 520 #define HIFN_MAC_CMD_MODE_HMAC 0x0000 521 #define HIFN_MAC_CMD_MODE_SSL_MAC 0x0004 522 #define HIFN_MAC_CMD_MODE_HASH 0x0008 523 #define HIFN_MAC_CMD_MODE_FULL 0x0004 524 #define HIFN_MAC_CMD_TRUNC 0x0010 525 #define HIFN_MAC_CMD_RESULT 0x0020 526 #define HIFN_MAC_CMD_APPEND 0x0040 527 #define HIFN_MAC_CMD_SRCLEN_M 0xc000 528 #define HIFN_MAC_CMD_SRCLEN_S 14 529 530 /* 531 * MAC POS IPsec initiates authentication after encryption on encodes 532 * and before decryption on decodes. 533 */ 534 #define HIFN_MAC_CMD_POS_IPSEC 0x0200 535 #define HIFN_MAC_CMD_NEW_KEY 0x0800 536 537 struct hifn_comp_command { 538 volatile __le16 masks; 539 volatile __le16 header_skip; 540 volatile __le16 source_count; 541 volatile __le16 reserved; 542 }; 543 544 #define HIFN_COMP_CMD_SRCLEN_M 0xc000 545 #define HIFN_COMP_CMD_SRCLEN_S 14 546 #define HIFN_COMP_CMD_ONE 0x0100 /* must be one */ 547 #define HIFN_COMP_CMD_CLEARHIST 0x0010 /* clear history */ 548 #define HIFN_COMP_CMD_UPDATEHIST 0x0008 /* update history */ 549 #define HIFN_COMP_CMD_LZS_STRIP0 0x0004 /* LZS: strip zero */ 550 #define HIFN_COMP_CMD_MPPC_RESTART 0x0004 /* MPPC: restart */ 551 #define HIFN_COMP_CMD_ALG_MASK 0x0001 /* compression mode: */ 552 #define HIFN_COMP_CMD_ALG_MPPC 0x0001 /* MPPC */ 553 #define HIFN_COMP_CMD_ALG_LZS 0x0000 /* LZS */ 554 555 struct hifn_base_result { 556 volatile __le16 flags; 557 volatile __le16 session; 558 volatile __le16 src_cnt; /* 15:0 of source count */ 559 volatile __le16 dst_cnt; /* 15:0 of dest count */ 560 }; 561 562 #define HIFN_BASE_RES_DSTOVERRUN 0x0200 /* destination overrun */ 563 #define HIFN_BASE_RES_SRCLEN_M 0xc000 /* 17:16 of source count */ 564 #define HIFN_BASE_RES_SRCLEN_S 14 565 #define HIFN_BASE_RES_DSTLEN_M 0x3000 /* 17:16 of dest count */ 566 #define HIFN_BASE_RES_DSTLEN_S 12 567 568 struct hifn_comp_result { 569 volatile __le16 flags; 570 volatile __le16 crc; 571 }; 572 573 #define HIFN_COMP_RES_LCB_M 0xff00 /* longitudinal check byte */ 574 #define HIFN_COMP_RES_LCB_S 8 575 #define HIFN_COMP_RES_RESTART 0x0004 /* MPPC: restart */ 576 #define HIFN_COMP_RES_ENDMARKER 0x0002 /* LZS: end marker seen */ 577 #define HIFN_COMP_RES_SRC_NOTZERO 0x0001 /* source expired */ 578 579 struct hifn_mac_result { 580 volatile __le16 flags; 581 volatile __le16 reserved; 582 /* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */ 583 }; 584 585 #define HIFN_MAC_RES_MISCOMPARE 0x0002 /* compare failed */ 586 #define HIFN_MAC_RES_SRC_NOTZERO 0x0001 /* source expired */ 587 588 struct hifn_crypt_result { 589 volatile __le16 flags; 590 volatile __le16 reserved; 591 }; 592 593 #define HIFN_CRYPT_RES_SRC_NOTZERO 0x0001 /* source expired */ 594 595 #ifndef HIFN_POLL_FREQUENCY 596 #define HIFN_POLL_FREQUENCY 0x1 597 #endif 598 599 #ifndef HIFN_POLL_SCALAR 600 #define HIFN_POLL_SCALAR 0x0 601 #endif 602 603 #define HIFN_MAX_SEGLEN 0xffff /* maximum dma segment len */ 604 #define HIFN_MAX_DMALEN 0x3ffff /* maximum dma length */ 605 606 struct hifn_crypto_alg { 607 struct list_head entry; 608 struct crypto_alg alg; 609 struct hifn_device *dev; 610 }; 611 612 #define ASYNC_SCATTERLIST_CACHE 16 613 614 #define ASYNC_FLAGS_MISALIGNED (1 << 0) 615 616 struct hifn_cipher_walk { 617 struct scatterlist cache[ASYNC_SCATTERLIST_CACHE]; 618 u32 flags; 619 int num; 620 }; 621 622 struct hifn_context { 623 u8 key[HIFN_MAX_CRYPT_KEY_LENGTH]; 624 struct hifn_device *dev; 625 unsigned int keysize; 626 }; 627 628 struct hifn_request_context { 629 u8 *iv; 630 unsigned int ivsize; 631 u8 op, type, mode, unused; 632 struct hifn_cipher_walk walk; 633 }; 634 635 #define crypto_alg_to_hifn(a) container_of(a, struct hifn_crypto_alg, alg) 636 637 static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg) 638 { 639 return readl(dev->bar[0] + reg); 640 } 641 642 static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg) 643 { 644 return readl(dev->bar[1] + reg); 645 } 646 647 static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val) 648 { 649 writel((__force u32)cpu_to_le32(val), dev->bar[0] + reg); 650 } 651 652 static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val) 653 { 654 writel((__force u32)cpu_to_le32(val), dev->bar[1] + reg); 655 } 656 657 static void hifn_wait_puc(struct hifn_device *dev) 658 { 659 int i; 660 u32 ret; 661 662 for (i = 10000; i > 0; --i) { 663 ret = hifn_read_0(dev, HIFN_0_PUCTRL); 664 if (!(ret & HIFN_PUCTRL_RESET)) 665 break; 666 667 udelay(1); 668 } 669 670 if (!i) 671 dev_err(&dev->pdev->dev, "Failed to reset PUC unit.\n"); 672 } 673 674 static void hifn_reset_puc(struct hifn_device *dev) 675 { 676 hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA); 677 hifn_wait_puc(dev); 678 } 679 680 static void hifn_stop_device(struct hifn_device *dev) 681 { 682 hifn_write_1(dev, HIFN_1_DMA_CSR, 683 HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS | 684 HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS); 685 hifn_write_0(dev, HIFN_0_PUIER, 0); 686 hifn_write_1(dev, HIFN_1_DMA_IER, 0); 687 } 688 689 static void hifn_reset_dma(struct hifn_device *dev, int full) 690 { 691 hifn_stop_device(dev); 692 693 /* 694 * Setting poll frequency and others to 0. 695 */ 696 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET | 697 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE); 698 mdelay(1); 699 700 /* 701 * Reset DMA. 702 */ 703 if (full) { 704 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE); 705 mdelay(1); 706 } else { 707 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE | 708 HIFN_DMACNFG_MSTRESET); 709 hifn_reset_puc(dev); 710 } 711 712 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET | 713 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE); 714 715 hifn_reset_puc(dev); 716 } 717 718 static u32 hifn_next_signature(u32 a, u_int cnt) 719 { 720 int i; 721 u32 v; 722 723 for (i = 0; i < cnt; i++) { 724 /* get the parity */ 725 v = a & 0x80080125; 726 v ^= v >> 16; 727 v ^= v >> 8; 728 v ^= v >> 4; 729 v ^= v >> 2; 730 v ^= v >> 1; 731 732 a = (v & 1) ^ (a << 1); 733 } 734 735 return a; 736 } 737 738 static struct pci2id { 739 u_short pci_vendor; 740 u_short pci_prod; 741 char card_id[13]; 742 } pci2id[] = { 743 { 744 PCI_VENDOR_ID_HIFN, 745 PCI_DEVICE_ID_HIFN_7955, 746 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 747 0x00, 0x00, 0x00, 0x00, 0x00 } 748 }, 749 { 750 PCI_VENDOR_ID_HIFN, 751 PCI_DEVICE_ID_HIFN_7956, 752 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 753 0x00, 0x00, 0x00, 0x00, 0x00 } 754 } 755 }; 756 757 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG 758 static int hifn_rng_data_present(struct hwrng *rng, int wait) 759 { 760 struct hifn_device *dev = (struct hifn_device *)rng->priv; 761 s64 nsec; 762 763 nsec = ktime_to_ns(ktime_sub(ktime_get(), dev->rngtime)); 764 nsec -= dev->rng_wait_time; 765 if (nsec <= 0) 766 return 1; 767 if (!wait) 768 return 0; 769 ndelay(nsec); 770 return 1; 771 } 772 773 static int hifn_rng_data_read(struct hwrng *rng, u32 *data) 774 { 775 struct hifn_device *dev = (struct hifn_device *)rng->priv; 776 777 *data = hifn_read_1(dev, HIFN_1_RNG_DATA); 778 dev->rngtime = ktime_get(); 779 return 4; 780 } 781 782 static int hifn_register_rng(struct hifn_device *dev) 783 { 784 /* 785 * We must wait at least 256 Pk_clk cycles between two reads of the rng. 786 */ 787 dev->rng_wait_time = DIV_ROUND_UP_ULL(NSEC_PER_SEC, 788 dev->pk_clk_freq) * 256; 789 790 dev->rng.name = dev->name; 791 dev->rng.data_present = hifn_rng_data_present, 792 dev->rng.data_read = hifn_rng_data_read, 793 dev->rng.priv = (unsigned long)dev; 794 795 return hwrng_register(&dev->rng); 796 } 797 798 static void hifn_unregister_rng(struct hifn_device *dev) 799 { 800 hwrng_unregister(&dev->rng); 801 } 802 #else 803 #define hifn_register_rng(dev) 0 804 #define hifn_unregister_rng(dev) 805 #endif 806 807 static int hifn_init_pubrng(struct hifn_device *dev) 808 { 809 int i; 810 811 hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) | 812 HIFN_PUBRST_RESET); 813 814 for (i = 100; i > 0; --i) { 815 mdelay(1); 816 817 if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0) 818 break; 819 } 820 821 if (!i) { 822 dev_err(&dev->pdev->dev, "Failed to initialise public key engine.\n"); 823 } else { 824 hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE); 825 dev->dmareg |= HIFN_DMAIER_PUBDONE; 826 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg); 827 828 dev_dbg(&dev->pdev->dev, "Public key engine has been successfully initialised.\n"); 829 } 830 831 /* Enable RNG engine. */ 832 833 hifn_write_1(dev, HIFN_1_RNG_CONFIG, 834 hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA); 835 dev_dbg(&dev->pdev->dev, "RNG engine has been successfully initialised.\n"); 836 837 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG 838 /* First value must be discarded */ 839 hifn_read_1(dev, HIFN_1_RNG_DATA); 840 dev->rngtime = ktime_get(); 841 #endif 842 return 0; 843 } 844 845 static int hifn_enable_crypto(struct hifn_device *dev) 846 { 847 u32 dmacfg, addr; 848 char *offtbl = NULL; 849 int i; 850 851 for (i = 0; i < ARRAY_SIZE(pci2id); i++) { 852 if (pci2id[i].pci_vendor == dev->pdev->vendor && 853 pci2id[i].pci_prod == dev->pdev->device) { 854 offtbl = pci2id[i].card_id; 855 break; 856 } 857 } 858 859 if (!offtbl) { 860 dev_err(&dev->pdev->dev, "Unknown card!\n"); 861 return -ENODEV; 862 } 863 864 dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG); 865 866 hifn_write_1(dev, HIFN_1_DMA_CNFG, 867 HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET | 868 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE); 869 mdelay(1); 870 addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1); 871 mdelay(1); 872 hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0); 873 mdelay(1); 874 875 for (i = 0; i < 12; ++i) { 876 addr = hifn_next_signature(addr, offtbl[i] + 0x101); 877 hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr); 878 879 mdelay(1); 880 } 881 hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg); 882 883 dev_dbg(&dev->pdev->dev, "%s %s.\n", dev->name, pci_name(dev->pdev)); 884 885 return 0; 886 } 887 888 static void hifn_init_dma(struct hifn_device *dev) 889 { 890 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 891 u32 dptr = dev->desc_dma; 892 int i; 893 894 for (i = 0; i < HIFN_D_CMD_RSIZE; ++i) 895 dma->cmdr[i].p = __cpu_to_le32(dptr + 896 offsetof(struct hifn_dma, command_bufs[i][0])); 897 for (i = 0; i < HIFN_D_RES_RSIZE; ++i) 898 dma->resr[i].p = __cpu_to_le32(dptr + 899 offsetof(struct hifn_dma, result_bufs[i][0])); 900 901 /* Setup LAST descriptors. */ 902 dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr + 903 offsetof(struct hifn_dma, cmdr[0])); 904 dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr + 905 offsetof(struct hifn_dma, srcr[0])); 906 dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr + 907 offsetof(struct hifn_dma, dstr[0])); 908 dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr + 909 offsetof(struct hifn_dma, resr[0])); 910 911 dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0; 912 dma->cmdi = dma->srci = dma->dsti = dma->resi = 0; 913 dma->cmdk = dma->srck = dma->dstk = dma->resk = 0; 914 } 915 916 /* 917 * Initialize the PLL. We need to know the frequency of the reference clock 918 * to calculate the optimal multiplier. For PCI we assume 66MHz, since that 919 * allows us to operate without the risk of overclocking the chip. If it 920 * actually uses 33MHz, the chip will operate at half the speed, this can be 921 * overridden by specifying the frequency as module parameter (pci33). 922 * 923 * Unfortunately the PCI clock is not very suitable since the HIFN needs a 924 * stable clock and the PCI clock frequency may vary, so the default is the 925 * external clock. There is no way to find out its frequency, we default to 926 * 66MHz since according to Mike Ham of HiFn, almost every board in existence 927 * has an external crystal populated at 66MHz. 928 */ 929 static void hifn_init_pll(struct hifn_device *dev) 930 { 931 unsigned int freq, m; 932 u32 pllcfg; 933 934 pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1; 935 936 if (strncmp(hifn_pll_ref, "ext", 3) == 0) 937 pllcfg |= HIFN_PLL_REF_CLK_PLL; 938 else 939 pllcfg |= HIFN_PLL_REF_CLK_HBI; 940 941 if (hifn_pll_ref[3] != '\0') 942 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10); 943 else { 944 freq = 66; 945 dev_info(&dev->pdev->dev, "assuming %uMHz clock speed, override with hifn_pll_ref=%.3s<frequency>\n", 946 freq, hifn_pll_ref); 947 } 948 949 m = HIFN_PLL_FCK_MAX / freq; 950 951 pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT; 952 if (m <= 8) 953 pllcfg |= HIFN_PLL_IS_1_8; 954 else 955 pllcfg |= HIFN_PLL_IS_9_12; 956 957 /* Select clock source and enable clock bypass */ 958 hifn_write_1(dev, HIFN_1_PLL, pllcfg | 959 HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI | HIFN_PLL_BP); 960 961 /* Let the chip lock to the input clock */ 962 mdelay(10); 963 964 /* Disable clock bypass */ 965 hifn_write_1(dev, HIFN_1_PLL, pllcfg | 966 HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI); 967 968 /* Switch the engines to the PLL */ 969 hifn_write_1(dev, HIFN_1_PLL, pllcfg | 970 HIFN_PLL_PK_CLK_PLL | HIFN_PLL_PE_CLK_PLL); 971 972 /* 973 * The Fpk_clk runs at half the total speed. Its frequency is needed to 974 * calculate the minimum time between two reads of the rng. Since 33MHz 975 * is actually 33.333... we overestimate the frequency here, resulting 976 * in slightly larger intervals. 977 */ 978 dev->pk_clk_freq = 1000000 * (freq + 1) * m / 2; 979 } 980 981 static void hifn_init_registers(struct hifn_device *dev) 982 { 983 u32 dptr = dev->desc_dma; 984 985 /* Initialization magic... */ 986 hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA); 987 hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD); 988 hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER); 989 990 /* write all 4 ring address registers */ 991 hifn_write_1(dev, HIFN_1_DMA_CRAR, dptr + 992 offsetof(struct hifn_dma, cmdr[0])); 993 hifn_write_1(dev, HIFN_1_DMA_SRAR, dptr + 994 offsetof(struct hifn_dma, srcr[0])); 995 hifn_write_1(dev, HIFN_1_DMA_DRAR, dptr + 996 offsetof(struct hifn_dma, dstr[0])); 997 hifn_write_1(dev, HIFN_1_DMA_RRAR, dptr + 998 offsetof(struct hifn_dma, resr[0])); 999 1000 mdelay(2); 1001 #if 0 1002 hifn_write_1(dev, HIFN_1_DMA_CSR, 1003 HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS | 1004 HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS | 1005 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST | 1006 HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER | 1007 HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST | 1008 HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER | 1009 HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST | 1010 HIFN_DMACSR_S_WAIT | 1011 HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST | 1012 HIFN_DMACSR_C_WAIT | 1013 HIFN_DMACSR_ENGINE | 1014 HIFN_DMACSR_PUBDONE); 1015 #else 1016 hifn_write_1(dev, HIFN_1_DMA_CSR, 1017 HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA | 1018 HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA | 1019 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST | 1020 HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER | 1021 HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST | 1022 HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER | 1023 HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST | 1024 HIFN_DMACSR_S_WAIT | 1025 HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST | 1026 HIFN_DMACSR_C_WAIT | 1027 HIFN_DMACSR_ENGINE | 1028 HIFN_DMACSR_PUBDONE); 1029 #endif 1030 hifn_read_1(dev, HIFN_1_DMA_CSR); 1031 1032 dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT | 1033 HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER | 1034 HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT | 1035 HIFN_DMAIER_ENGINE; 1036 dev->dmareg &= ~HIFN_DMAIER_C_WAIT; 1037 1038 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg); 1039 hifn_read_1(dev, HIFN_1_DMA_IER); 1040 #if 0 1041 hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG | 1042 HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES | 1043 HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 | 1044 HIFN_PUCNFG_DRAM); 1045 #else 1046 hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342); 1047 #endif 1048 hifn_init_pll(dev); 1049 1050 hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER); 1051 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET | 1052 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST | 1053 ((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) | 1054 ((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL)); 1055 } 1056 1057 static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf, 1058 unsigned dlen, unsigned slen, u16 mask, u8 snum) 1059 { 1060 struct hifn_base_command *base_cmd; 1061 u8 *buf_pos = buf; 1062 1063 base_cmd = (struct hifn_base_command *)buf_pos; 1064 base_cmd->masks = __cpu_to_le16(mask); 1065 base_cmd->total_source_count = 1066 __cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO); 1067 base_cmd->total_dest_count = 1068 __cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO); 1069 1070 dlen >>= 16; 1071 slen >>= 16; 1072 base_cmd->session_num = __cpu_to_le16(snum | 1073 ((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) | 1074 ((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M)); 1075 1076 return sizeof(struct hifn_base_command); 1077 } 1078 1079 static int hifn_setup_crypto_command(struct hifn_device *dev, 1080 u8 *buf, unsigned dlen, unsigned slen, 1081 u8 *key, int keylen, u8 *iv, int ivsize, u16 mode) 1082 { 1083 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1084 struct hifn_crypt_command *cry_cmd; 1085 u8 *buf_pos = buf; 1086 u16 cmd_len; 1087 1088 cry_cmd = (struct hifn_crypt_command *)buf_pos; 1089 1090 cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff); 1091 dlen >>= 16; 1092 cry_cmd->masks = __cpu_to_le16(mode | 1093 ((dlen << HIFN_CRYPT_CMD_SRCLEN_S) & 1094 HIFN_CRYPT_CMD_SRCLEN_M)); 1095 cry_cmd->header_skip = 0; 1096 cry_cmd->reserved = 0; 1097 1098 buf_pos += sizeof(struct hifn_crypt_command); 1099 1100 dma->cmdu++; 1101 if (dma->cmdu > 1) { 1102 dev->dmareg |= HIFN_DMAIER_C_WAIT; 1103 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg); 1104 } 1105 1106 if (keylen) { 1107 memcpy(buf_pos, key, keylen); 1108 buf_pos += keylen; 1109 } 1110 if (ivsize) { 1111 memcpy(buf_pos, iv, ivsize); 1112 buf_pos += ivsize; 1113 } 1114 1115 cmd_len = buf_pos - buf; 1116 1117 return cmd_len; 1118 } 1119 1120 static int hifn_setup_cmd_desc(struct hifn_device *dev, 1121 struct hifn_context *ctx, struct hifn_request_context *rctx, 1122 void *priv, unsigned int nbytes) 1123 { 1124 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1125 int cmd_len, sa_idx; 1126 u8 *buf, *buf_pos; 1127 u16 mask; 1128 1129 sa_idx = dma->cmdi; 1130 buf_pos = buf = dma->command_bufs[dma->cmdi]; 1131 1132 mask = 0; 1133 switch (rctx->op) { 1134 case ACRYPTO_OP_DECRYPT: 1135 mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE; 1136 break; 1137 case ACRYPTO_OP_ENCRYPT: 1138 mask = HIFN_BASE_CMD_CRYPT; 1139 break; 1140 case ACRYPTO_OP_HMAC: 1141 mask = HIFN_BASE_CMD_MAC; 1142 break; 1143 default: 1144 goto err_out; 1145 } 1146 1147 buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes, 1148 nbytes, mask, dev->snum); 1149 1150 if (rctx->op == ACRYPTO_OP_ENCRYPT || rctx->op == ACRYPTO_OP_DECRYPT) { 1151 u16 md = 0; 1152 1153 if (ctx->keysize) 1154 md |= HIFN_CRYPT_CMD_NEW_KEY; 1155 if (rctx->iv && rctx->mode != ACRYPTO_MODE_ECB) 1156 md |= HIFN_CRYPT_CMD_NEW_IV; 1157 1158 switch (rctx->mode) { 1159 case ACRYPTO_MODE_ECB: 1160 md |= HIFN_CRYPT_CMD_MODE_ECB; 1161 break; 1162 case ACRYPTO_MODE_CBC: 1163 md |= HIFN_CRYPT_CMD_MODE_CBC; 1164 break; 1165 case ACRYPTO_MODE_CFB: 1166 md |= HIFN_CRYPT_CMD_MODE_CFB; 1167 break; 1168 case ACRYPTO_MODE_OFB: 1169 md |= HIFN_CRYPT_CMD_MODE_OFB; 1170 break; 1171 default: 1172 goto err_out; 1173 } 1174 1175 switch (rctx->type) { 1176 case ACRYPTO_TYPE_AES_128: 1177 if (ctx->keysize != 16) 1178 goto err_out; 1179 md |= HIFN_CRYPT_CMD_KSZ_128 | 1180 HIFN_CRYPT_CMD_ALG_AES; 1181 break; 1182 case ACRYPTO_TYPE_AES_192: 1183 if (ctx->keysize != 24) 1184 goto err_out; 1185 md |= HIFN_CRYPT_CMD_KSZ_192 | 1186 HIFN_CRYPT_CMD_ALG_AES; 1187 break; 1188 case ACRYPTO_TYPE_AES_256: 1189 if (ctx->keysize != 32) 1190 goto err_out; 1191 md |= HIFN_CRYPT_CMD_KSZ_256 | 1192 HIFN_CRYPT_CMD_ALG_AES; 1193 break; 1194 case ACRYPTO_TYPE_3DES: 1195 if (ctx->keysize != 24) 1196 goto err_out; 1197 md |= HIFN_CRYPT_CMD_ALG_3DES; 1198 break; 1199 case ACRYPTO_TYPE_DES: 1200 if (ctx->keysize != 8) 1201 goto err_out; 1202 md |= HIFN_CRYPT_CMD_ALG_DES; 1203 break; 1204 default: 1205 goto err_out; 1206 } 1207 1208 buf_pos += hifn_setup_crypto_command(dev, buf_pos, 1209 nbytes, nbytes, ctx->key, ctx->keysize, 1210 rctx->iv, rctx->ivsize, md); 1211 } 1212 1213 dev->sa[sa_idx] = priv; 1214 dev->started++; 1215 1216 cmd_len = buf_pos - buf; 1217 dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID | 1218 HIFN_D_LAST | HIFN_D_MASKDONEIRQ); 1219 1220 if (++dma->cmdi == HIFN_D_CMD_RSIZE) { 1221 dma->cmdr[dma->cmdi].l = __cpu_to_le32( 1222 HIFN_D_VALID | HIFN_D_LAST | 1223 HIFN_D_MASKDONEIRQ | HIFN_D_JUMP); 1224 dma->cmdi = 0; 1225 } else { 1226 dma->cmdr[dma->cmdi - 1].l |= __cpu_to_le32(HIFN_D_VALID); 1227 } 1228 1229 if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) { 1230 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA); 1231 dev->flags |= HIFN_FLAG_CMD_BUSY; 1232 } 1233 return 0; 1234 1235 err_out: 1236 return -EINVAL; 1237 } 1238 1239 static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page, 1240 unsigned int offset, unsigned int size, int last) 1241 { 1242 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1243 int idx; 1244 dma_addr_t addr; 1245 1246 addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_TODEVICE); 1247 1248 idx = dma->srci; 1249 1250 dma->srcr[idx].p = __cpu_to_le32(addr); 1251 dma->srcr[idx].l = __cpu_to_le32(size | HIFN_D_VALID | 1252 HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0)); 1253 1254 if (++idx == HIFN_D_SRC_RSIZE) { 1255 dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID | 1256 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | 1257 (last ? HIFN_D_LAST : 0)); 1258 idx = 0; 1259 } 1260 1261 dma->srci = idx; 1262 dma->srcu++; 1263 1264 if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) { 1265 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA); 1266 dev->flags |= HIFN_FLAG_SRC_BUSY; 1267 } 1268 1269 return size; 1270 } 1271 1272 static void hifn_setup_res_desc(struct hifn_device *dev) 1273 { 1274 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1275 1276 dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT | 1277 HIFN_D_VALID | HIFN_D_LAST); 1278 /* 1279 * dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID | 1280 * HIFN_D_LAST); 1281 */ 1282 1283 if (++dma->resi == HIFN_D_RES_RSIZE) { 1284 dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID | 1285 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST); 1286 dma->resi = 0; 1287 } 1288 1289 dma->resu++; 1290 1291 if (!(dev->flags & HIFN_FLAG_RES_BUSY)) { 1292 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA); 1293 dev->flags |= HIFN_FLAG_RES_BUSY; 1294 } 1295 } 1296 1297 static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page, 1298 unsigned offset, unsigned size, int last) 1299 { 1300 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1301 int idx; 1302 dma_addr_t addr; 1303 1304 addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_FROMDEVICE); 1305 1306 idx = dma->dsti; 1307 dma->dstr[idx].p = __cpu_to_le32(addr); 1308 dma->dstr[idx].l = __cpu_to_le32(size | HIFN_D_VALID | 1309 HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0)); 1310 1311 if (++idx == HIFN_D_DST_RSIZE) { 1312 dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID | 1313 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | 1314 (last ? HIFN_D_LAST : 0)); 1315 idx = 0; 1316 } 1317 dma->dsti = idx; 1318 dma->dstu++; 1319 1320 if (!(dev->flags & HIFN_FLAG_DST_BUSY)) { 1321 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA); 1322 dev->flags |= HIFN_FLAG_DST_BUSY; 1323 } 1324 } 1325 1326 static int hifn_setup_dma(struct hifn_device *dev, 1327 struct hifn_context *ctx, struct hifn_request_context *rctx, 1328 struct scatterlist *src, struct scatterlist *dst, 1329 unsigned int nbytes, void *priv) 1330 { 1331 struct scatterlist *t; 1332 struct page *spage, *dpage; 1333 unsigned int soff, doff; 1334 unsigned int n, len; 1335 1336 n = nbytes; 1337 while (n) { 1338 spage = sg_page(src); 1339 soff = src->offset; 1340 len = min(src->length, n); 1341 1342 hifn_setup_src_desc(dev, spage, soff, len, n - len == 0); 1343 1344 src++; 1345 n -= len; 1346 } 1347 1348 t = &rctx->walk.cache[0]; 1349 n = nbytes; 1350 while (n) { 1351 if (t->length && rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) { 1352 BUG_ON(!sg_page(t)); 1353 dpage = sg_page(t); 1354 doff = 0; 1355 len = t->length; 1356 } else { 1357 BUG_ON(!sg_page(dst)); 1358 dpage = sg_page(dst); 1359 doff = dst->offset; 1360 len = dst->length; 1361 } 1362 len = min(len, n); 1363 1364 hifn_setup_dst_desc(dev, dpage, doff, len, n - len == 0); 1365 1366 dst++; 1367 t++; 1368 n -= len; 1369 } 1370 1371 hifn_setup_cmd_desc(dev, ctx, rctx, priv, nbytes); 1372 hifn_setup_res_desc(dev); 1373 return 0; 1374 } 1375 1376 static int hifn_cipher_walk_init(struct hifn_cipher_walk *w, 1377 int num, gfp_t gfp_flags) 1378 { 1379 int i; 1380 1381 num = min(ASYNC_SCATTERLIST_CACHE, num); 1382 sg_init_table(w->cache, num); 1383 1384 w->num = 0; 1385 for (i = 0; i < num; ++i) { 1386 struct page *page = alloc_page(gfp_flags); 1387 struct scatterlist *s; 1388 1389 if (!page) 1390 break; 1391 1392 s = &w->cache[i]; 1393 1394 sg_set_page(s, page, PAGE_SIZE, 0); 1395 w->num++; 1396 } 1397 1398 return i; 1399 } 1400 1401 static void hifn_cipher_walk_exit(struct hifn_cipher_walk *w) 1402 { 1403 int i; 1404 1405 for (i = 0; i < w->num; ++i) { 1406 struct scatterlist *s = &w->cache[i]; 1407 1408 __free_page(sg_page(s)); 1409 1410 s->length = 0; 1411 } 1412 1413 w->num = 0; 1414 } 1415 1416 static int ablkcipher_add(unsigned int *drestp, struct scatterlist *dst, 1417 unsigned int size, unsigned int *nbytesp) 1418 { 1419 unsigned int copy, drest = *drestp, nbytes = *nbytesp; 1420 int idx = 0; 1421 1422 if (drest < size || size > nbytes) 1423 return -EINVAL; 1424 1425 while (size) { 1426 copy = min3(drest, size, dst->length); 1427 1428 size -= copy; 1429 drest -= copy; 1430 nbytes -= copy; 1431 1432 pr_debug("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n", 1433 __func__, copy, size, drest, nbytes); 1434 1435 dst++; 1436 idx++; 1437 } 1438 1439 *nbytesp = nbytes; 1440 *drestp = drest; 1441 1442 return idx; 1443 } 1444 1445 static int hifn_cipher_walk(struct ablkcipher_request *req, 1446 struct hifn_cipher_walk *w) 1447 { 1448 struct scatterlist *dst, *t; 1449 unsigned int nbytes = req->nbytes, offset, copy, diff; 1450 int idx, tidx, err; 1451 1452 tidx = idx = 0; 1453 offset = 0; 1454 while (nbytes) { 1455 if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED)) 1456 return -EINVAL; 1457 1458 dst = &req->dst[idx]; 1459 1460 pr_debug("\n%s: dlen: %u, doff: %u, offset: %u, nbytes: %u.\n", 1461 __func__, dst->length, dst->offset, offset, nbytes); 1462 1463 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) || 1464 !IS_ALIGNED(dst->length, HIFN_D_DST_DALIGN) || 1465 offset) { 1466 unsigned slen = min(dst->length - offset, nbytes); 1467 unsigned dlen = PAGE_SIZE; 1468 1469 t = &w->cache[idx]; 1470 1471 err = ablkcipher_add(&dlen, dst, slen, &nbytes); 1472 if (err < 0) 1473 return err; 1474 1475 idx += err; 1476 1477 copy = slen & ~(HIFN_D_DST_DALIGN - 1); 1478 diff = slen & (HIFN_D_DST_DALIGN - 1); 1479 1480 if (dlen < nbytes) { 1481 /* 1482 * Destination page does not have enough space 1483 * to put there additional blocksized chunk, 1484 * so we mark that page as containing only 1485 * blocksize aligned chunks: 1486 * t->length = (slen & ~(HIFN_D_DST_DALIGN - 1)); 1487 * and increase number of bytes to be processed 1488 * in next chunk: 1489 * nbytes += diff; 1490 */ 1491 nbytes += diff; 1492 1493 /* 1494 * Temporary of course... 1495 * Kick author if you will catch this one. 1496 */ 1497 pr_err("%s: dlen: %u, nbytes: %u, slen: %u, offset: %u.\n", 1498 __func__, dlen, nbytes, slen, offset); 1499 pr_err("%s: please contact author to fix this " 1500 "issue, generally you should not catch " 1501 "this path under any condition but who " 1502 "knows how did you use crypto code.\n" 1503 "Thank you.\n", __func__); 1504 BUG(); 1505 } else { 1506 copy += diff + nbytes; 1507 1508 dst = &req->dst[idx]; 1509 1510 err = ablkcipher_add(&dlen, dst, nbytes, &nbytes); 1511 if (err < 0) 1512 return err; 1513 1514 idx += err; 1515 } 1516 1517 t->length = copy; 1518 t->offset = offset; 1519 } else { 1520 nbytes -= min(dst->length, nbytes); 1521 idx++; 1522 } 1523 1524 tidx++; 1525 } 1526 1527 return tidx; 1528 } 1529 1530 static int hifn_setup_session(struct ablkcipher_request *req) 1531 { 1532 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm); 1533 struct hifn_request_context *rctx = ablkcipher_request_ctx(req); 1534 struct hifn_device *dev = ctx->dev; 1535 unsigned long dlen, flags; 1536 unsigned int nbytes = req->nbytes, idx = 0; 1537 int err = -EINVAL, sg_num; 1538 struct scatterlist *dst; 1539 1540 if (rctx->iv && !rctx->ivsize && rctx->mode != ACRYPTO_MODE_ECB) 1541 goto err_out_exit; 1542 1543 rctx->walk.flags = 0; 1544 1545 while (nbytes) { 1546 dst = &req->dst[idx]; 1547 dlen = min(dst->length, nbytes); 1548 1549 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) || 1550 !IS_ALIGNED(dlen, HIFN_D_DST_DALIGN)) 1551 rctx->walk.flags |= ASYNC_FLAGS_MISALIGNED; 1552 1553 nbytes -= dlen; 1554 idx++; 1555 } 1556 1557 if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) { 1558 err = hifn_cipher_walk_init(&rctx->walk, idx, GFP_ATOMIC); 1559 if (err < 0) 1560 return err; 1561 } 1562 1563 sg_num = hifn_cipher_walk(req, &rctx->walk); 1564 if (sg_num < 0) { 1565 err = sg_num; 1566 goto err_out_exit; 1567 } 1568 1569 spin_lock_irqsave(&dev->lock, flags); 1570 if (dev->started + sg_num > HIFN_QUEUE_LENGTH) { 1571 err = -EAGAIN; 1572 goto err_out; 1573 } 1574 1575 err = hifn_setup_dma(dev, ctx, rctx, req->src, req->dst, req->nbytes, req); 1576 if (err) 1577 goto err_out; 1578 1579 dev->snum++; 1580 1581 dev->active = HIFN_DEFAULT_ACTIVE_NUM; 1582 spin_unlock_irqrestore(&dev->lock, flags); 1583 1584 return 0; 1585 1586 err_out: 1587 spin_unlock_irqrestore(&dev->lock, flags); 1588 err_out_exit: 1589 if (err) { 1590 dev_info(&dev->pdev->dev, "iv: %p [%d], key: %p [%d], mode: %u, op: %u, " 1591 "type: %u, err: %d.\n", 1592 rctx->iv, rctx->ivsize, 1593 ctx->key, ctx->keysize, 1594 rctx->mode, rctx->op, rctx->type, err); 1595 } 1596 1597 return err; 1598 } 1599 1600 static int hifn_start_device(struct hifn_device *dev) 1601 { 1602 int err; 1603 1604 dev->started = dev->active = 0; 1605 hifn_reset_dma(dev, 1); 1606 1607 err = hifn_enable_crypto(dev); 1608 if (err) 1609 return err; 1610 1611 hifn_reset_puc(dev); 1612 1613 hifn_init_dma(dev); 1614 1615 hifn_init_registers(dev); 1616 1617 hifn_init_pubrng(dev); 1618 1619 return 0; 1620 } 1621 1622 static int ablkcipher_get(void *saddr, unsigned int *srestp, unsigned int offset, 1623 struct scatterlist *dst, unsigned int size, unsigned int *nbytesp) 1624 { 1625 unsigned int srest = *srestp, nbytes = *nbytesp, copy; 1626 void *daddr; 1627 int idx = 0; 1628 1629 if (srest < size || size > nbytes) 1630 return -EINVAL; 1631 1632 while (size) { 1633 copy = min3(srest, dst->length, size); 1634 1635 daddr = kmap_atomic(sg_page(dst)); 1636 memcpy(daddr + dst->offset + offset, saddr, copy); 1637 kunmap_atomic(daddr); 1638 1639 nbytes -= copy; 1640 size -= copy; 1641 srest -= copy; 1642 saddr += copy; 1643 offset = 0; 1644 1645 pr_debug("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n", 1646 __func__, copy, size, srest, nbytes); 1647 1648 dst++; 1649 idx++; 1650 } 1651 1652 *nbytesp = nbytes; 1653 *srestp = srest; 1654 1655 return idx; 1656 } 1657 1658 static inline void hifn_complete_sa(struct hifn_device *dev, int i) 1659 { 1660 unsigned long flags; 1661 1662 spin_lock_irqsave(&dev->lock, flags); 1663 dev->sa[i] = NULL; 1664 dev->started--; 1665 if (dev->started < 0) 1666 dev_info(&dev->pdev->dev, "%s: started: %d.\n", __func__, 1667 dev->started); 1668 spin_unlock_irqrestore(&dev->lock, flags); 1669 BUG_ON(dev->started < 0); 1670 } 1671 1672 static void hifn_process_ready(struct ablkcipher_request *req, int error) 1673 { 1674 struct hifn_request_context *rctx = ablkcipher_request_ctx(req); 1675 1676 if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) { 1677 unsigned int nbytes = req->nbytes; 1678 int idx = 0, err; 1679 struct scatterlist *dst, *t; 1680 void *saddr; 1681 1682 while (nbytes) { 1683 t = &rctx->walk.cache[idx]; 1684 dst = &req->dst[idx]; 1685 1686 pr_debug("\n%s: sg_page(t): %p, t->length: %u, " 1687 "sg_page(dst): %p, dst->length: %u, " 1688 "nbytes: %u.\n", 1689 __func__, sg_page(t), t->length, 1690 sg_page(dst), dst->length, nbytes); 1691 1692 if (!t->length) { 1693 nbytes -= min(dst->length, nbytes); 1694 idx++; 1695 continue; 1696 } 1697 1698 saddr = kmap_atomic(sg_page(t)); 1699 1700 err = ablkcipher_get(saddr, &t->length, t->offset, 1701 dst, nbytes, &nbytes); 1702 if (err < 0) { 1703 kunmap_atomic(saddr); 1704 break; 1705 } 1706 1707 idx += err; 1708 kunmap_atomic(saddr); 1709 } 1710 1711 hifn_cipher_walk_exit(&rctx->walk); 1712 } 1713 1714 req->base.complete(&req->base, error); 1715 } 1716 1717 static void hifn_clear_rings(struct hifn_device *dev, int error) 1718 { 1719 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1720 int i, u; 1721 1722 dev_dbg(&dev->pdev->dev, "ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, " 1723 "k: %d.%d.%d.%d.\n", 1724 dma->cmdi, dma->srci, dma->dsti, dma->resi, 1725 dma->cmdu, dma->srcu, dma->dstu, dma->resu, 1726 dma->cmdk, dma->srck, dma->dstk, dma->resk); 1727 1728 i = dma->resk; u = dma->resu; 1729 while (u != 0) { 1730 if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID)) 1731 break; 1732 1733 if (dev->sa[i]) { 1734 dev->success++; 1735 dev->reset = 0; 1736 hifn_process_ready(dev->sa[i], error); 1737 hifn_complete_sa(dev, i); 1738 } 1739 1740 if (++i == HIFN_D_RES_RSIZE) 1741 i = 0; 1742 u--; 1743 } 1744 dma->resk = i; dma->resu = u; 1745 1746 i = dma->srck; u = dma->srcu; 1747 while (u != 0) { 1748 if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID)) 1749 break; 1750 if (++i == HIFN_D_SRC_RSIZE) 1751 i = 0; 1752 u--; 1753 } 1754 dma->srck = i; dma->srcu = u; 1755 1756 i = dma->cmdk; u = dma->cmdu; 1757 while (u != 0) { 1758 if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID)) 1759 break; 1760 if (++i == HIFN_D_CMD_RSIZE) 1761 i = 0; 1762 u--; 1763 } 1764 dma->cmdk = i; dma->cmdu = u; 1765 1766 i = dma->dstk; u = dma->dstu; 1767 while (u != 0) { 1768 if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID)) 1769 break; 1770 if (++i == HIFN_D_DST_RSIZE) 1771 i = 0; 1772 u--; 1773 } 1774 dma->dstk = i; dma->dstu = u; 1775 1776 dev_dbg(&dev->pdev->dev, "ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, " 1777 "k: %d.%d.%d.%d.\n", 1778 dma->cmdi, dma->srci, dma->dsti, dma->resi, 1779 dma->cmdu, dma->srcu, dma->dstu, dma->resu, 1780 dma->cmdk, dma->srck, dma->dstk, dma->resk); 1781 } 1782 1783 static void hifn_work(struct work_struct *work) 1784 { 1785 struct delayed_work *dw = to_delayed_work(work); 1786 struct hifn_device *dev = container_of(dw, struct hifn_device, work); 1787 unsigned long flags; 1788 int reset = 0; 1789 u32 r = 0; 1790 1791 spin_lock_irqsave(&dev->lock, flags); 1792 if (dev->active == 0) { 1793 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1794 1795 if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) { 1796 dev->flags &= ~HIFN_FLAG_CMD_BUSY; 1797 r |= HIFN_DMACSR_C_CTRL_DIS; 1798 } 1799 if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) { 1800 dev->flags &= ~HIFN_FLAG_SRC_BUSY; 1801 r |= HIFN_DMACSR_S_CTRL_DIS; 1802 } 1803 if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) { 1804 dev->flags &= ~HIFN_FLAG_DST_BUSY; 1805 r |= HIFN_DMACSR_D_CTRL_DIS; 1806 } 1807 if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) { 1808 dev->flags &= ~HIFN_FLAG_RES_BUSY; 1809 r |= HIFN_DMACSR_R_CTRL_DIS; 1810 } 1811 if (r) 1812 hifn_write_1(dev, HIFN_1_DMA_CSR, r); 1813 } else 1814 dev->active--; 1815 1816 if ((dev->prev_success == dev->success) && dev->started) 1817 reset = 1; 1818 dev->prev_success = dev->success; 1819 spin_unlock_irqrestore(&dev->lock, flags); 1820 1821 if (reset) { 1822 if (++dev->reset >= 5) { 1823 int i; 1824 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1825 1826 dev_info(&dev->pdev->dev, 1827 "r: %08x, active: %d, started: %d, " 1828 "success: %lu: qlen: %u/%u, reset: %d.\n", 1829 r, dev->active, dev->started, 1830 dev->success, dev->queue.qlen, dev->queue.max_qlen, 1831 reset); 1832 1833 dev_info(&dev->pdev->dev, "%s: res: ", __func__); 1834 for (i = 0; i < HIFN_D_RES_RSIZE; ++i) { 1835 pr_info("%x.%p ", dma->resr[i].l, dev->sa[i]); 1836 if (dev->sa[i]) { 1837 hifn_process_ready(dev->sa[i], -ENODEV); 1838 hifn_complete_sa(dev, i); 1839 } 1840 } 1841 pr_info("\n"); 1842 1843 hifn_reset_dma(dev, 1); 1844 hifn_stop_device(dev); 1845 hifn_start_device(dev); 1846 dev->reset = 0; 1847 } 1848 1849 tasklet_schedule(&dev->tasklet); 1850 } 1851 1852 schedule_delayed_work(&dev->work, HZ); 1853 } 1854 1855 static irqreturn_t hifn_interrupt(int irq, void *data) 1856 { 1857 struct hifn_device *dev = (struct hifn_device *)data; 1858 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1859 u32 dmacsr, restart; 1860 1861 dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR); 1862 1863 dev_dbg(&dev->pdev->dev, "1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], " 1864 "i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n", 1865 dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi, 1866 dma->cmdi, dma->srci, dma->dsti, dma->resi, 1867 dma->cmdu, dma->srcu, dma->dstu, dma->resu); 1868 1869 if ((dmacsr & dev->dmareg) == 0) 1870 return IRQ_NONE; 1871 1872 hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg); 1873 1874 if (dmacsr & HIFN_DMACSR_ENGINE) 1875 hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR)); 1876 if (dmacsr & HIFN_DMACSR_PUBDONE) 1877 hifn_write_1(dev, HIFN_1_PUB_STATUS, 1878 hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE); 1879 1880 restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER); 1881 if (restart) { 1882 u32 puisr = hifn_read_0(dev, HIFN_0_PUISR); 1883 1884 dev_warn(&dev->pdev->dev, "overflow: r: %d, d: %d, puisr: %08x, d: %u.\n", 1885 !!(dmacsr & HIFN_DMACSR_R_OVER), 1886 !!(dmacsr & HIFN_DMACSR_D_OVER), 1887 puisr, !!(puisr & HIFN_PUISR_DSTOVER)); 1888 if (!!(puisr & HIFN_PUISR_DSTOVER)) 1889 hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER); 1890 hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER | 1891 HIFN_DMACSR_D_OVER)); 1892 } 1893 1894 restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT | 1895 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT); 1896 if (restart) { 1897 dev_warn(&dev->pdev->dev, "abort: c: %d, s: %d, d: %d, r: %d.\n", 1898 !!(dmacsr & HIFN_DMACSR_C_ABORT), 1899 !!(dmacsr & HIFN_DMACSR_S_ABORT), 1900 !!(dmacsr & HIFN_DMACSR_D_ABORT), 1901 !!(dmacsr & HIFN_DMACSR_R_ABORT)); 1902 hifn_reset_dma(dev, 1); 1903 hifn_init_dma(dev); 1904 hifn_init_registers(dev); 1905 } 1906 1907 if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) { 1908 dev_dbg(&dev->pdev->dev, "wait on command.\n"); 1909 dev->dmareg &= ~(HIFN_DMAIER_C_WAIT); 1910 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg); 1911 } 1912 1913 tasklet_schedule(&dev->tasklet); 1914 1915 return IRQ_HANDLED; 1916 } 1917 1918 static void hifn_flush(struct hifn_device *dev) 1919 { 1920 unsigned long flags; 1921 struct crypto_async_request *async_req; 1922 struct ablkcipher_request *req; 1923 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt; 1924 int i; 1925 1926 for (i = 0; i < HIFN_D_RES_RSIZE; ++i) { 1927 struct hifn_desc *d = &dma->resr[i]; 1928 1929 if (dev->sa[i]) { 1930 hifn_process_ready(dev->sa[i], 1931 (d->l & __cpu_to_le32(HIFN_D_VALID)) ? -ENODEV : 0); 1932 hifn_complete_sa(dev, i); 1933 } 1934 } 1935 1936 spin_lock_irqsave(&dev->lock, flags); 1937 while ((async_req = crypto_dequeue_request(&dev->queue))) { 1938 req = ablkcipher_request_cast(async_req); 1939 spin_unlock_irqrestore(&dev->lock, flags); 1940 1941 hifn_process_ready(req, -ENODEV); 1942 1943 spin_lock_irqsave(&dev->lock, flags); 1944 } 1945 spin_unlock_irqrestore(&dev->lock, flags); 1946 } 1947 1948 static int hifn_setkey(struct crypto_ablkcipher *cipher, const u8 *key, 1949 unsigned int len) 1950 { 1951 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); 1952 struct hifn_context *ctx = crypto_tfm_ctx(tfm); 1953 struct hifn_device *dev = ctx->dev; 1954 1955 if (len > HIFN_MAX_CRYPT_KEY_LENGTH) { 1956 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); 1957 return -1; 1958 } 1959 1960 if (len == HIFN_DES_KEY_LENGTH) { 1961 u32 tmp[DES_EXPKEY_WORDS]; 1962 int ret = des_ekey(tmp, key); 1963 1964 if (unlikely(ret == 0) && 1965 (tfm->crt_flags & CRYPTO_TFM_REQ_FORBID_WEAK_KEYS)) { 1966 tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY; 1967 return -EINVAL; 1968 } 1969 } 1970 1971 dev->flags &= ~HIFN_FLAG_OLD_KEY; 1972 1973 memcpy(ctx->key, key, len); 1974 ctx->keysize = len; 1975 1976 return 0; 1977 } 1978 1979 static int hifn_handle_req(struct ablkcipher_request *req) 1980 { 1981 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm); 1982 struct hifn_device *dev = ctx->dev; 1983 int err = -EAGAIN; 1984 1985 if (dev->started + DIV_ROUND_UP(req->nbytes, PAGE_SIZE) <= HIFN_QUEUE_LENGTH) 1986 err = hifn_setup_session(req); 1987 1988 if (err == -EAGAIN) { 1989 unsigned long flags; 1990 1991 spin_lock_irqsave(&dev->lock, flags); 1992 err = ablkcipher_enqueue_request(&dev->queue, req); 1993 spin_unlock_irqrestore(&dev->lock, flags); 1994 } 1995 1996 return err; 1997 } 1998 1999 static int hifn_setup_crypto_req(struct ablkcipher_request *req, u8 op, 2000 u8 type, u8 mode) 2001 { 2002 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm); 2003 struct hifn_request_context *rctx = ablkcipher_request_ctx(req); 2004 unsigned ivsize; 2005 2006 ivsize = crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req)); 2007 2008 if (req->info && mode != ACRYPTO_MODE_ECB) { 2009 if (type == ACRYPTO_TYPE_AES_128) 2010 ivsize = HIFN_AES_IV_LENGTH; 2011 else if (type == ACRYPTO_TYPE_DES) 2012 ivsize = HIFN_DES_KEY_LENGTH; 2013 else if (type == ACRYPTO_TYPE_3DES) 2014 ivsize = HIFN_3DES_KEY_LENGTH; 2015 } 2016 2017 if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) { 2018 if (ctx->keysize == 24) 2019 type = ACRYPTO_TYPE_AES_192; 2020 else if (ctx->keysize == 32) 2021 type = ACRYPTO_TYPE_AES_256; 2022 } 2023 2024 rctx->op = op; 2025 rctx->mode = mode; 2026 rctx->type = type; 2027 rctx->iv = req->info; 2028 rctx->ivsize = ivsize; 2029 2030 /* 2031 * HEAVY TODO: needs to kick Herbert XU to write documentation. 2032 * HEAVY TODO: needs to kick Herbert XU to write documentation. 2033 * HEAVY TODO: needs to kick Herbert XU to write documentation. 2034 */ 2035 2036 return hifn_handle_req(req); 2037 } 2038 2039 static int hifn_process_queue(struct hifn_device *dev) 2040 { 2041 struct crypto_async_request *async_req, *backlog; 2042 struct ablkcipher_request *req; 2043 unsigned long flags; 2044 int err = 0; 2045 2046 while (dev->started < HIFN_QUEUE_LENGTH) { 2047 spin_lock_irqsave(&dev->lock, flags); 2048 backlog = crypto_get_backlog(&dev->queue); 2049 async_req = crypto_dequeue_request(&dev->queue); 2050 spin_unlock_irqrestore(&dev->lock, flags); 2051 2052 if (!async_req) 2053 break; 2054 2055 if (backlog) 2056 backlog->complete(backlog, -EINPROGRESS); 2057 2058 req = ablkcipher_request_cast(async_req); 2059 2060 err = hifn_handle_req(req); 2061 if (err) 2062 break; 2063 } 2064 2065 return err; 2066 } 2067 2068 static int hifn_setup_crypto(struct ablkcipher_request *req, u8 op, 2069 u8 type, u8 mode) 2070 { 2071 int err; 2072 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm); 2073 struct hifn_device *dev = ctx->dev; 2074 2075 err = hifn_setup_crypto_req(req, op, type, mode); 2076 if (err) 2077 return err; 2078 2079 if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen) 2080 hifn_process_queue(dev); 2081 2082 return -EINPROGRESS; 2083 } 2084 2085 /* 2086 * AES ecryption functions. 2087 */ 2088 static inline int hifn_encrypt_aes_ecb(struct ablkcipher_request *req) 2089 { 2090 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2091 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB); 2092 } 2093 static inline int hifn_encrypt_aes_cbc(struct ablkcipher_request *req) 2094 { 2095 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2096 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC); 2097 } 2098 static inline int hifn_encrypt_aes_cfb(struct ablkcipher_request *req) 2099 { 2100 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2101 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB); 2102 } 2103 static inline int hifn_encrypt_aes_ofb(struct ablkcipher_request *req) 2104 { 2105 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2106 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB); 2107 } 2108 2109 /* 2110 * AES decryption functions. 2111 */ 2112 static inline int hifn_decrypt_aes_ecb(struct ablkcipher_request *req) 2113 { 2114 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2115 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB); 2116 } 2117 static inline int hifn_decrypt_aes_cbc(struct ablkcipher_request *req) 2118 { 2119 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2120 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC); 2121 } 2122 static inline int hifn_decrypt_aes_cfb(struct ablkcipher_request *req) 2123 { 2124 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2125 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB); 2126 } 2127 static inline int hifn_decrypt_aes_ofb(struct ablkcipher_request *req) 2128 { 2129 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2130 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB); 2131 } 2132 2133 /* 2134 * DES ecryption functions. 2135 */ 2136 static inline int hifn_encrypt_des_ecb(struct ablkcipher_request *req) 2137 { 2138 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2139 ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB); 2140 } 2141 static inline int hifn_encrypt_des_cbc(struct ablkcipher_request *req) 2142 { 2143 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2144 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC); 2145 } 2146 static inline int hifn_encrypt_des_cfb(struct ablkcipher_request *req) 2147 { 2148 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2149 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB); 2150 } 2151 static inline int hifn_encrypt_des_ofb(struct ablkcipher_request *req) 2152 { 2153 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2154 ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB); 2155 } 2156 2157 /* 2158 * DES decryption functions. 2159 */ 2160 static inline int hifn_decrypt_des_ecb(struct ablkcipher_request *req) 2161 { 2162 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2163 ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB); 2164 } 2165 static inline int hifn_decrypt_des_cbc(struct ablkcipher_request *req) 2166 { 2167 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2168 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC); 2169 } 2170 static inline int hifn_decrypt_des_cfb(struct ablkcipher_request *req) 2171 { 2172 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2173 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB); 2174 } 2175 static inline int hifn_decrypt_des_ofb(struct ablkcipher_request *req) 2176 { 2177 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2178 ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB); 2179 } 2180 2181 /* 2182 * 3DES ecryption functions. 2183 */ 2184 static inline int hifn_encrypt_3des_ecb(struct ablkcipher_request *req) 2185 { 2186 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2187 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB); 2188 } 2189 static inline int hifn_encrypt_3des_cbc(struct ablkcipher_request *req) 2190 { 2191 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2192 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC); 2193 } 2194 static inline int hifn_encrypt_3des_cfb(struct ablkcipher_request *req) 2195 { 2196 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2197 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB); 2198 } 2199 static inline int hifn_encrypt_3des_ofb(struct ablkcipher_request *req) 2200 { 2201 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT, 2202 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB); 2203 } 2204 2205 /* 3DES decryption functions. */ 2206 static inline int hifn_decrypt_3des_ecb(struct ablkcipher_request *req) 2207 { 2208 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2209 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB); 2210 } 2211 static inline int hifn_decrypt_3des_cbc(struct ablkcipher_request *req) 2212 { 2213 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2214 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC); 2215 } 2216 static inline int hifn_decrypt_3des_cfb(struct ablkcipher_request *req) 2217 { 2218 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2219 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB); 2220 } 2221 static inline int hifn_decrypt_3des_ofb(struct ablkcipher_request *req) 2222 { 2223 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT, 2224 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB); 2225 } 2226 2227 struct hifn_alg_template { 2228 char name[CRYPTO_MAX_ALG_NAME]; 2229 char drv_name[CRYPTO_MAX_ALG_NAME]; 2230 unsigned int bsize; 2231 struct ablkcipher_alg ablkcipher; 2232 }; 2233 2234 static struct hifn_alg_template hifn_alg_templates[] = { 2235 /* 2236 * 3DES ECB, CBC, CFB and OFB modes. 2237 */ 2238 { 2239 .name = "cfb(des3_ede)", .drv_name = "cfb-3des", .bsize = 8, 2240 .ablkcipher = { 2241 .min_keysize = HIFN_3DES_KEY_LENGTH, 2242 .max_keysize = HIFN_3DES_KEY_LENGTH, 2243 .setkey = hifn_setkey, 2244 .encrypt = hifn_encrypt_3des_cfb, 2245 .decrypt = hifn_decrypt_3des_cfb, 2246 }, 2247 }, 2248 { 2249 .name = "ofb(des3_ede)", .drv_name = "ofb-3des", .bsize = 8, 2250 .ablkcipher = { 2251 .min_keysize = HIFN_3DES_KEY_LENGTH, 2252 .max_keysize = HIFN_3DES_KEY_LENGTH, 2253 .setkey = hifn_setkey, 2254 .encrypt = hifn_encrypt_3des_ofb, 2255 .decrypt = hifn_decrypt_3des_ofb, 2256 }, 2257 }, 2258 { 2259 .name = "cbc(des3_ede)", .drv_name = "cbc-3des", .bsize = 8, 2260 .ablkcipher = { 2261 .ivsize = HIFN_IV_LENGTH, 2262 .min_keysize = HIFN_3DES_KEY_LENGTH, 2263 .max_keysize = HIFN_3DES_KEY_LENGTH, 2264 .setkey = hifn_setkey, 2265 .encrypt = hifn_encrypt_3des_cbc, 2266 .decrypt = hifn_decrypt_3des_cbc, 2267 }, 2268 }, 2269 { 2270 .name = "ecb(des3_ede)", .drv_name = "ecb-3des", .bsize = 8, 2271 .ablkcipher = { 2272 .min_keysize = HIFN_3DES_KEY_LENGTH, 2273 .max_keysize = HIFN_3DES_KEY_LENGTH, 2274 .setkey = hifn_setkey, 2275 .encrypt = hifn_encrypt_3des_ecb, 2276 .decrypt = hifn_decrypt_3des_ecb, 2277 }, 2278 }, 2279 2280 /* 2281 * DES ECB, CBC, CFB and OFB modes. 2282 */ 2283 { 2284 .name = "cfb(des)", .drv_name = "cfb-des", .bsize = 8, 2285 .ablkcipher = { 2286 .min_keysize = HIFN_DES_KEY_LENGTH, 2287 .max_keysize = HIFN_DES_KEY_LENGTH, 2288 .setkey = hifn_setkey, 2289 .encrypt = hifn_encrypt_des_cfb, 2290 .decrypt = hifn_decrypt_des_cfb, 2291 }, 2292 }, 2293 { 2294 .name = "ofb(des)", .drv_name = "ofb-des", .bsize = 8, 2295 .ablkcipher = { 2296 .min_keysize = HIFN_DES_KEY_LENGTH, 2297 .max_keysize = HIFN_DES_KEY_LENGTH, 2298 .setkey = hifn_setkey, 2299 .encrypt = hifn_encrypt_des_ofb, 2300 .decrypt = hifn_decrypt_des_ofb, 2301 }, 2302 }, 2303 { 2304 .name = "cbc(des)", .drv_name = "cbc-des", .bsize = 8, 2305 .ablkcipher = { 2306 .ivsize = HIFN_IV_LENGTH, 2307 .min_keysize = HIFN_DES_KEY_LENGTH, 2308 .max_keysize = HIFN_DES_KEY_LENGTH, 2309 .setkey = hifn_setkey, 2310 .encrypt = hifn_encrypt_des_cbc, 2311 .decrypt = hifn_decrypt_des_cbc, 2312 }, 2313 }, 2314 { 2315 .name = "ecb(des)", .drv_name = "ecb-des", .bsize = 8, 2316 .ablkcipher = { 2317 .min_keysize = HIFN_DES_KEY_LENGTH, 2318 .max_keysize = HIFN_DES_KEY_LENGTH, 2319 .setkey = hifn_setkey, 2320 .encrypt = hifn_encrypt_des_ecb, 2321 .decrypt = hifn_decrypt_des_ecb, 2322 }, 2323 }, 2324 2325 /* 2326 * AES ECB, CBC, CFB and OFB modes. 2327 */ 2328 { 2329 .name = "ecb(aes)", .drv_name = "ecb-aes", .bsize = 16, 2330 .ablkcipher = { 2331 .min_keysize = AES_MIN_KEY_SIZE, 2332 .max_keysize = AES_MAX_KEY_SIZE, 2333 .setkey = hifn_setkey, 2334 .encrypt = hifn_encrypt_aes_ecb, 2335 .decrypt = hifn_decrypt_aes_ecb, 2336 }, 2337 }, 2338 { 2339 .name = "cbc(aes)", .drv_name = "cbc-aes", .bsize = 16, 2340 .ablkcipher = { 2341 .ivsize = HIFN_AES_IV_LENGTH, 2342 .min_keysize = AES_MIN_KEY_SIZE, 2343 .max_keysize = AES_MAX_KEY_SIZE, 2344 .setkey = hifn_setkey, 2345 .encrypt = hifn_encrypt_aes_cbc, 2346 .decrypt = hifn_decrypt_aes_cbc, 2347 }, 2348 }, 2349 { 2350 .name = "cfb(aes)", .drv_name = "cfb-aes", .bsize = 16, 2351 .ablkcipher = { 2352 .min_keysize = AES_MIN_KEY_SIZE, 2353 .max_keysize = AES_MAX_KEY_SIZE, 2354 .setkey = hifn_setkey, 2355 .encrypt = hifn_encrypt_aes_cfb, 2356 .decrypt = hifn_decrypt_aes_cfb, 2357 }, 2358 }, 2359 { 2360 .name = "ofb(aes)", .drv_name = "ofb-aes", .bsize = 16, 2361 .ablkcipher = { 2362 .min_keysize = AES_MIN_KEY_SIZE, 2363 .max_keysize = AES_MAX_KEY_SIZE, 2364 .setkey = hifn_setkey, 2365 .encrypt = hifn_encrypt_aes_ofb, 2366 .decrypt = hifn_decrypt_aes_ofb, 2367 }, 2368 }, 2369 }; 2370 2371 static int hifn_cra_init(struct crypto_tfm *tfm) 2372 { 2373 struct crypto_alg *alg = tfm->__crt_alg; 2374 struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg); 2375 struct hifn_context *ctx = crypto_tfm_ctx(tfm); 2376 2377 ctx->dev = ha->dev; 2378 tfm->crt_ablkcipher.reqsize = sizeof(struct hifn_request_context); 2379 return 0; 2380 } 2381 2382 static int hifn_alg_alloc(struct hifn_device *dev, struct hifn_alg_template *t) 2383 { 2384 struct hifn_crypto_alg *alg; 2385 int err; 2386 2387 alg = kzalloc(sizeof(*alg), GFP_KERNEL); 2388 if (!alg) 2389 return -ENOMEM; 2390 2391 snprintf(alg->alg.cra_name, CRYPTO_MAX_ALG_NAME, "%s", t->name); 2392 snprintf(alg->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-%s", 2393 t->drv_name, dev->name); 2394 2395 alg->alg.cra_priority = 300; 2396 alg->alg.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | 2397 CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC; 2398 alg->alg.cra_blocksize = t->bsize; 2399 alg->alg.cra_ctxsize = sizeof(struct hifn_context); 2400 alg->alg.cra_alignmask = 0; 2401 alg->alg.cra_type = &crypto_ablkcipher_type; 2402 alg->alg.cra_module = THIS_MODULE; 2403 alg->alg.cra_u.ablkcipher = t->ablkcipher; 2404 alg->alg.cra_init = hifn_cra_init; 2405 2406 alg->dev = dev; 2407 2408 list_add_tail(&alg->entry, &dev->alg_list); 2409 2410 err = crypto_register_alg(&alg->alg); 2411 if (err) { 2412 list_del(&alg->entry); 2413 kfree(alg); 2414 } 2415 2416 return err; 2417 } 2418 2419 static void hifn_unregister_alg(struct hifn_device *dev) 2420 { 2421 struct hifn_crypto_alg *a, *n; 2422 2423 list_for_each_entry_safe(a, n, &dev->alg_list, entry) { 2424 list_del(&a->entry); 2425 crypto_unregister_alg(&a->alg); 2426 kfree(a); 2427 } 2428 } 2429 2430 static int hifn_register_alg(struct hifn_device *dev) 2431 { 2432 int i, err; 2433 2434 for (i = 0; i < ARRAY_SIZE(hifn_alg_templates); ++i) { 2435 err = hifn_alg_alloc(dev, &hifn_alg_templates[i]); 2436 if (err) 2437 goto err_out_exit; 2438 } 2439 2440 return 0; 2441 2442 err_out_exit: 2443 hifn_unregister_alg(dev); 2444 return err; 2445 } 2446 2447 static void hifn_tasklet_callback(unsigned long data) 2448 { 2449 struct hifn_device *dev = (struct hifn_device *)data; 2450 2451 /* 2452 * This is ok to call this without lock being held, 2453 * althogh it modifies some parameters used in parallel, 2454 * (like dev->success), but they are used in process 2455 * context or update is atomic (like setting dev->sa[i] to NULL). 2456 */ 2457 hifn_clear_rings(dev, 0); 2458 2459 if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen) 2460 hifn_process_queue(dev); 2461 } 2462 2463 static int hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id) 2464 { 2465 int err, i; 2466 struct hifn_device *dev; 2467 char name[8]; 2468 2469 err = pci_enable_device(pdev); 2470 if (err) 2471 return err; 2472 pci_set_master(pdev); 2473 2474 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 2475 if (err) 2476 goto err_out_disable_pci_device; 2477 2478 snprintf(name, sizeof(name), "hifn%d", 2479 atomic_inc_return(&hifn_dev_number) - 1); 2480 2481 err = pci_request_regions(pdev, name); 2482 if (err) 2483 goto err_out_disable_pci_device; 2484 2485 if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE || 2486 pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE || 2487 pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) { 2488 dev_err(&pdev->dev, "Broken hardware - I/O regions are too small.\n"); 2489 err = -ENODEV; 2490 goto err_out_free_regions; 2491 } 2492 2493 dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg), 2494 GFP_KERNEL); 2495 if (!dev) { 2496 err = -ENOMEM; 2497 goto err_out_free_regions; 2498 } 2499 2500 INIT_LIST_HEAD(&dev->alg_list); 2501 2502 snprintf(dev->name, sizeof(dev->name), "%s", name); 2503 spin_lock_init(&dev->lock); 2504 2505 for (i = 0; i < 3; ++i) { 2506 unsigned long addr, size; 2507 2508 addr = pci_resource_start(pdev, i); 2509 size = pci_resource_len(pdev, i); 2510 2511 dev->bar[i] = ioremap_nocache(addr, size); 2512 if (!dev->bar[i]) { 2513 err = -ENOMEM; 2514 goto err_out_unmap_bars; 2515 } 2516 } 2517 2518 dev->desc_virt = pci_zalloc_consistent(pdev, sizeof(struct hifn_dma), 2519 &dev->desc_dma); 2520 if (!dev->desc_virt) { 2521 dev_err(&pdev->dev, "Failed to allocate descriptor rings.\n"); 2522 err = -ENOMEM; 2523 goto err_out_unmap_bars; 2524 } 2525 2526 dev->pdev = pdev; 2527 dev->irq = pdev->irq; 2528 2529 for (i = 0; i < HIFN_D_RES_RSIZE; ++i) 2530 dev->sa[i] = NULL; 2531 2532 pci_set_drvdata(pdev, dev); 2533 2534 tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev); 2535 2536 crypto_init_queue(&dev->queue, 1); 2537 2538 err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev); 2539 if (err) { 2540 dev_err(&pdev->dev, "Failed to request IRQ%d: err: %d.\n", 2541 dev->irq, err); 2542 dev->irq = 0; 2543 goto err_out_free_desc; 2544 } 2545 2546 err = hifn_start_device(dev); 2547 if (err) 2548 goto err_out_free_irq; 2549 2550 err = hifn_register_rng(dev); 2551 if (err) 2552 goto err_out_stop_device; 2553 2554 err = hifn_register_alg(dev); 2555 if (err) 2556 goto err_out_unregister_rng; 2557 2558 INIT_DELAYED_WORK(&dev->work, hifn_work); 2559 schedule_delayed_work(&dev->work, HZ); 2560 2561 dev_dbg(&pdev->dev, "HIFN crypto accelerator card at %s has been " 2562 "successfully registered as %s.\n", 2563 pci_name(pdev), dev->name); 2564 2565 return 0; 2566 2567 err_out_unregister_rng: 2568 hifn_unregister_rng(dev); 2569 err_out_stop_device: 2570 hifn_reset_dma(dev, 1); 2571 hifn_stop_device(dev); 2572 err_out_free_irq: 2573 free_irq(dev->irq, dev); 2574 tasklet_kill(&dev->tasklet); 2575 err_out_free_desc: 2576 pci_free_consistent(pdev, sizeof(struct hifn_dma), 2577 dev->desc_virt, dev->desc_dma); 2578 2579 err_out_unmap_bars: 2580 for (i = 0; i < 3; ++i) 2581 if (dev->bar[i]) 2582 iounmap(dev->bar[i]); 2583 kfree(dev); 2584 2585 err_out_free_regions: 2586 pci_release_regions(pdev); 2587 2588 err_out_disable_pci_device: 2589 pci_disable_device(pdev); 2590 2591 return err; 2592 } 2593 2594 static void hifn_remove(struct pci_dev *pdev) 2595 { 2596 int i; 2597 struct hifn_device *dev; 2598 2599 dev = pci_get_drvdata(pdev); 2600 2601 if (dev) { 2602 cancel_delayed_work_sync(&dev->work); 2603 2604 hifn_unregister_rng(dev); 2605 hifn_unregister_alg(dev); 2606 hifn_reset_dma(dev, 1); 2607 hifn_stop_device(dev); 2608 2609 free_irq(dev->irq, dev); 2610 tasklet_kill(&dev->tasklet); 2611 2612 hifn_flush(dev); 2613 2614 pci_free_consistent(pdev, sizeof(struct hifn_dma), 2615 dev->desc_virt, dev->desc_dma); 2616 for (i = 0; i < 3; ++i) 2617 if (dev->bar[i]) 2618 iounmap(dev->bar[i]); 2619 2620 kfree(dev); 2621 } 2622 2623 pci_release_regions(pdev); 2624 pci_disable_device(pdev); 2625 } 2626 2627 static struct pci_device_id hifn_pci_tbl[] = { 2628 { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) }, 2629 { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) }, 2630 { 0 } 2631 }; 2632 MODULE_DEVICE_TABLE(pci, hifn_pci_tbl); 2633 2634 static struct pci_driver hifn_pci_driver = { 2635 .name = "hifn795x", 2636 .id_table = hifn_pci_tbl, 2637 .probe = hifn_probe, 2638 .remove = hifn_remove, 2639 }; 2640 2641 static int __init hifn_init(void) 2642 { 2643 unsigned int freq; 2644 int err; 2645 2646 /* HIFN supports only 32-bit addresses */ 2647 BUILD_BUG_ON(sizeof(dma_addr_t) != 4); 2648 2649 if (strncmp(hifn_pll_ref, "ext", 3) && 2650 strncmp(hifn_pll_ref, "pci", 3)) { 2651 pr_err("hifn795x: invalid hifn_pll_ref clock, must be pci or ext"); 2652 return -EINVAL; 2653 } 2654 2655 /* 2656 * For the 7955/7956 the reference clock frequency must be in the 2657 * range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz, 2658 * but this chip is currently not supported. 2659 */ 2660 if (hifn_pll_ref[3] != '\0') { 2661 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10); 2662 if (freq < 20 || freq > 100) { 2663 pr_err("hifn795x: invalid hifn_pll_ref frequency, must" 2664 "be in the range of 20-100"); 2665 return -EINVAL; 2666 } 2667 } 2668 2669 err = pci_register_driver(&hifn_pci_driver); 2670 if (err < 0) { 2671 pr_err("Failed to register PCI driver for %s device.\n", 2672 hifn_pci_driver.name); 2673 return -ENODEV; 2674 } 2675 2676 pr_info("Driver for HIFN 795x crypto accelerator chip " 2677 "has been successfully registered.\n"); 2678 2679 return 0; 2680 } 2681 2682 static void __exit hifn_fini(void) 2683 { 2684 pci_unregister_driver(&hifn_pci_driver); 2685 2686 pr_info("Driver for HIFN 795x crypto accelerator chip " 2687 "has been successfully unregistered.\n"); 2688 } 2689 2690 module_init(hifn_init); 2691 module_exit(hifn_fini); 2692 2693 MODULE_LICENSE("GPL"); 2694 MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>"); 2695 MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip."); 2696