1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru>
4 * All rights reserved.
5 */
6
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/moduleparam.h>
10 #include <linux/mod_devicetable.h>
11 #include <linux/interrupt.h>
12 #include <linux/pci.h>
13 #include <linux/slab.h>
14 #include <linux/delay.h>
15 #include <linux/mm.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/scatterlist.h>
18 #include <linux/highmem.h>
19 #include <linux/crypto.h>
20 #include <linux/hw_random.h>
21 #include <linux/ktime.h>
22
23 #include <crypto/algapi.h>
24 #include <crypto/internal/des.h>
25 #include <crypto/internal/skcipher.h>
26
27 static char hifn_pll_ref[sizeof("extNNN")] = "ext";
28 module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444);
29 MODULE_PARM_DESC(hifn_pll_ref,
30 "PLL reference clock (pci[freq] or ext[freq], default ext)");
31
32 static atomic_t hifn_dev_number;
33
34 #define ACRYPTO_OP_DECRYPT 0
35 #define ACRYPTO_OP_ENCRYPT 1
36 #define ACRYPTO_OP_HMAC 2
37 #define ACRYPTO_OP_RNG 3
38
39 #define ACRYPTO_MODE_ECB 0
40 #define ACRYPTO_MODE_CBC 1
41 #define ACRYPTO_MODE_CFB 2
42 #define ACRYPTO_MODE_OFB 3
43
44 #define ACRYPTO_TYPE_AES_128 0
45 #define ACRYPTO_TYPE_AES_192 1
46 #define ACRYPTO_TYPE_AES_256 2
47 #define ACRYPTO_TYPE_3DES 3
48 #define ACRYPTO_TYPE_DES 4
49
50 #define PCI_VENDOR_ID_HIFN 0x13A3
51 #define PCI_DEVICE_ID_HIFN_7955 0x0020
52 #define PCI_DEVICE_ID_HIFN_7956 0x001d
53
54 /* I/O region sizes */
55
56 #define HIFN_BAR0_SIZE 0x1000
57 #define HIFN_BAR1_SIZE 0x2000
58 #define HIFN_BAR2_SIZE 0x8000
59
60 /* DMA registres */
61
62 #define HIFN_DMA_CRA 0x0C /* DMA Command Ring Address */
63 #define HIFN_DMA_SDRA 0x1C /* DMA Source Data Ring Address */
64 #define HIFN_DMA_RRA 0x2C /* DMA Result Ring Address */
65 #define HIFN_DMA_DDRA 0x3C /* DMA Destination Data Ring Address */
66 #define HIFN_DMA_STCTL 0x40 /* DMA Status and Control */
67 #define HIFN_DMA_INTREN 0x44 /* DMA Interrupt Enable */
68 #define HIFN_DMA_CFG1 0x48 /* DMA Configuration #1 */
69 #define HIFN_DMA_CFG2 0x6C /* DMA Configuration #2 */
70 #define HIFN_CHIP_ID 0x98 /* Chip ID */
71
72 /*
73 * Processing Unit Registers (offset from BASEREG0)
74 */
75 #define HIFN_0_PUDATA 0x00 /* Processing Unit Data */
76 #define HIFN_0_PUCTRL 0x04 /* Processing Unit Control */
77 #define HIFN_0_PUISR 0x08 /* Processing Unit Interrupt Status */
78 #define HIFN_0_PUCNFG 0x0c /* Processing Unit Configuration */
79 #define HIFN_0_PUIER 0x10 /* Processing Unit Interrupt Enable */
80 #define HIFN_0_PUSTAT 0x14 /* Processing Unit Status/Chip ID */
81 #define HIFN_0_FIFOSTAT 0x18 /* FIFO Status */
82 #define HIFN_0_FIFOCNFG 0x1c /* FIFO Configuration */
83 #define HIFN_0_SPACESIZE 0x20 /* Register space size */
84
85 /* Processing Unit Control Register (HIFN_0_PUCTRL) */
86 #define HIFN_PUCTRL_CLRSRCFIFO 0x0010 /* clear source fifo */
87 #define HIFN_PUCTRL_STOP 0x0008 /* stop pu */
88 #define HIFN_PUCTRL_LOCKRAM 0x0004 /* lock ram */
89 #define HIFN_PUCTRL_DMAENA 0x0002 /* enable dma */
90 #define HIFN_PUCTRL_RESET 0x0001 /* Reset processing unit */
91
92 /* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */
93 #define HIFN_PUISR_CMDINVAL 0x8000 /* Invalid command interrupt */
94 #define HIFN_PUISR_DATAERR 0x4000 /* Data error interrupt */
95 #define HIFN_PUISR_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
96 #define HIFN_PUISR_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
97 #define HIFN_PUISR_DSTOVER 0x0200 /* Destination overrun interrupt */
98 #define HIFN_PUISR_SRCCMD 0x0080 /* Source command interrupt */
99 #define HIFN_PUISR_SRCCTX 0x0040 /* Source context interrupt */
100 #define HIFN_PUISR_SRCDATA 0x0020 /* Source data interrupt */
101 #define HIFN_PUISR_DSTDATA 0x0010 /* Destination data interrupt */
102 #define HIFN_PUISR_DSTRESULT 0x0004 /* Destination result interrupt */
103
104 /* Processing Unit Configuration Register (HIFN_0_PUCNFG) */
105 #define HIFN_PUCNFG_DRAMMASK 0xe000 /* DRAM size mask */
106 #define HIFN_PUCNFG_DSZ_256K 0x0000 /* 256k dram */
107 #define HIFN_PUCNFG_DSZ_512K 0x2000 /* 512k dram */
108 #define HIFN_PUCNFG_DSZ_1M 0x4000 /* 1m dram */
109 #define HIFN_PUCNFG_DSZ_2M 0x6000 /* 2m dram */
110 #define HIFN_PUCNFG_DSZ_4M 0x8000 /* 4m dram */
111 #define HIFN_PUCNFG_DSZ_8M 0xa000 /* 8m dram */
112 #define HIFN_PUNCFG_DSZ_16M 0xc000 /* 16m dram */
113 #define HIFN_PUCNFG_DSZ_32M 0xe000 /* 32m dram */
114 #define HIFN_PUCNFG_DRAMREFRESH 0x1800 /* DRAM refresh rate mask */
115 #define HIFN_PUCNFG_DRFR_512 0x0000 /* 512 divisor of ECLK */
116 #define HIFN_PUCNFG_DRFR_256 0x0800 /* 256 divisor of ECLK */
117 #define HIFN_PUCNFG_DRFR_128 0x1000 /* 128 divisor of ECLK */
118 #define HIFN_PUCNFG_TCALLPHASES 0x0200 /* your guess is as good as mine... */
119 #define HIFN_PUCNFG_TCDRVTOTEM 0x0100 /* your guess is as good as mine... */
120 #define HIFN_PUCNFG_BIGENDIAN 0x0080 /* DMA big endian mode */
121 #define HIFN_PUCNFG_BUS32 0x0040 /* Bus width 32bits */
122 #define HIFN_PUCNFG_BUS16 0x0000 /* Bus width 16 bits */
123 #define HIFN_PUCNFG_CHIPID 0x0020 /* Allow chipid from PUSTAT */
124 #define HIFN_PUCNFG_DRAM 0x0010 /* Context RAM is DRAM */
125 #define HIFN_PUCNFG_SRAM 0x0000 /* Context RAM is SRAM */
126 #define HIFN_PUCNFG_COMPSING 0x0004 /* Enable single compression context */
127 #define HIFN_PUCNFG_ENCCNFG 0x0002 /* Encryption configuration */
128
129 /* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */
130 #define HIFN_PUIER_CMDINVAL 0x8000 /* Invalid command interrupt */
131 #define HIFN_PUIER_DATAERR 0x4000 /* Data error interrupt */
132 #define HIFN_PUIER_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
133 #define HIFN_PUIER_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
134 #define HIFN_PUIER_DSTOVER 0x0200 /* Destination overrun interrupt */
135 #define HIFN_PUIER_SRCCMD 0x0080 /* Source command interrupt */
136 #define HIFN_PUIER_SRCCTX 0x0040 /* Source context interrupt */
137 #define HIFN_PUIER_SRCDATA 0x0020 /* Source data interrupt */
138 #define HIFN_PUIER_DSTDATA 0x0010 /* Destination data interrupt */
139 #define HIFN_PUIER_DSTRESULT 0x0004 /* Destination result interrupt */
140
141 /* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */
142 #define HIFN_PUSTAT_CMDINVAL 0x8000 /* Invalid command interrupt */
143 #define HIFN_PUSTAT_DATAERR 0x4000 /* Data error interrupt */
144 #define HIFN_PUSTAT_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
145 #define HIFN_PUSTAT_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
146 #define HIFN_PUSTAT_DSTOVER 0x0200 /* Destination overrun interrupt */
147 #define HIFN_PUSTAT_SRCCMD 0x0080 /* Source command interrupt */
148 #define HIFN_PUSTAT_SRCCTX 0x0040 /* Source context interrupt */
149 #define HIFN_PUSTAT_SRCDATA 0x0020 /* Source data interrupt */
150 #define HIFN_PUSTAT_DSTDATA 0x0010 /* Destination data interrupt */
151 #define HIFN_PUSTAT_DSTRESULT 0x0004 /* Destination result interrupt */
152 #define HIFN_PUSTAT_CHIPREV 0x00ff /* Chip revision mask */
153 #define HIFN_PUSTAT_CHIPENA 0xff00 /* Chip enabled mask */
154 #define HIFN_PUSTAT_ENA_2 0x1100 /* Level 2 enabled */
155 #define HIFN_PUSTAT_ENA_1 0x1000 /* Level 1 enabled */
156 #define HIFN_PUSTAT_ENA_0 0x3000 /* Level 0 enabled */
157 #define HIFN_PUSTAT_REV_2 0x0020 /* 7751 PT6/2 */
158 #define HIFN_PUSTAT_REV_3 0x0030 /* 7751 PT6/3 */
159
160 /* FIFO Status Register (HIFN_0_FIFOSTAT) */
161 #define HIFN_FIFOSTAT_SRC 0x7f00 /* Source FIFO available */
162 #define HIFN_FIFOSTAT_DST 0x007f /* Destination FIFO available */
163
164 /* FIFO Configuration Register (HIFN_0_FIFOCNFG) */
165 #define HIFN_FIFOCNFG_THRESHOLD 0x0400 /* must be written as 1 */
166
167 /*
168 * DMA Interface Registers (offset from BASEREG1)
169 */
170 #define HIFN_1_DMA_CRAR 0x0c /* DMA Command Ring Address */
171 #define HIFN_1_DMA_SRAR 0x1c /* DMA Source Ring Address */
172 #define HIFN_1_DMA_RRAR 0x2c /* DMA Result Ring Address */
173 #define HIFN_1_DMA_DRAR 0x3c /* DMA Destination Ring Address */
174 #define HIFN_1_DMA_CSR 0x40 /* DMA Status and Control */
175 #define HIFN_1_DMA_IER 0x44 /* DMA Interrupt Enable */
176 #define HIFN_1_DMA_CNFG 0x48 /* DMA Configuration */
177 #define HIFN_1_PLL 0x4c /* 795x: PLL config */
178 #define HIFN_1_7811_RNGENA 0x60 /* 7811: rng enable */
179 #define HIFN_1_7811_RNGCFG 0x64 /* 7811: rng config */
180 #define HIFN_1_7811_RNGDAT 0x68 /* 7811: rng data */
181 #define HIFN_1_7811_RNGSTS 0x6c /* 7811: rng status */
182 #define HIFN_1_7811_MIPSRST 0x94 /* 7811: MIPS reset */
183 #define HIFN_1_REVID 0x98 /* Revision ID */
184 #define HIFN_1_UNLOCK_SECRET1 0xf4
185 #define HIFN_1_UNLOCK_SECRET2 0xfc
186 #define HIFN_1_PUB_RESET 0x204 /* Public/RNG Reset */
187 #define HIFN_1_PUB_BASE 0x300 /* Public Base Address */
188 #define HIFN_1_PUB_OPLEN 0x304 /* Public Operand Length */
189 #define HIFN_1_PUB_OP 0x308 /* Public Operand */
190 #define HIFN_1_PUB_STATUS 0x30c /* Public Status */
191 #define HIFN_1_PUB_IEN 0x310 /* Public Interrupt enable */
192 #define HIFN_1_RNG_CONFIG 0x314 /* RNG config */
193 #define HIFN_1_RNG_DATA 0x318 /* RNG data */
194 #define HIFN_1_PUB_MEM 0x400 /* start of Public key memory */
195 #define HIFN_1_PUB_MEMEND 0xbff /* end of Public key memory */
196
197 /* DMA Status and Control Register (HIFN_1_DMA_CSR) */
198 #define HIFN_DMACSR_D_CTRLMASK 0xc0000000 /* Destinition Ring Control */
199 #define HIFN_DMACSR_D_CTRL_NOP 0x00000000 /* Dest. Control: no-op */
200 #define HIFN_DMACSR_D_CTRL_DIS 0x40000000 /* Dest. Control: disable */
201 #define HIFN_DMACSR_D_CTRL_ENA 0x80000000 /* Dest. Control: enable */
202 #define HIFN_DMACSR_D_ABORT 0x20000000 /* Destinition Ring PCIAbort */
203 #define HIFN_DMACSR_D_DONE 0x10000000 /* Destinition Ring Done */
204 #define HIFN_DMACSR_D_LAST 0x08000000 /* Destinition Ring Last */
205 #define HIFN_DMACSR_D_WAIT 0x04000000 /* Destinition Ring Waiting */
206 #define HIFN_DMACSR_D_OVER 0x02000000 /* Destinition Ring Overflow */
207 #define HIFN_DMACSR_R_CTRL 0x00c00000 /* Result Ring Control */
208 #define HIFN_DMACSR_R_CTRL_NOP 0x00000000 /* Result Control: no-op */
209 #define HIFN_DMACSR_R_CTRL_DIS 0x00400000 /* Result Control: disable */
210 #define HIFN_DMACSR_R_CTRL_ENA 0x00800000 /* Result Control: enable */
211 #define HIFN_DMACSR_R_ABORT 0x00200000 /* Result Ring PCI Abort */
212 #define HIFN_DMACSR_R_DONE 0x00100000 /* Result Ring Done */
213 #define HIFN_DMACSR_R_LAST 0x00080000 /* Result Ring Last */
214 #define HIFN_DMACSR_R_WAIT 0x00040000 /* Result Ring Waiting */
215 #define HIFN_DMACSR_R_OVER 0x00020000 /* Result Ring Overflow */
216 #define HIFN_DMACSR_S_CTRL 0x0000c000 /* Source Ring Control */
217 #define HIFN_DMACSR_S_CTRL_NOP 0x00000000 /* Source Control: no-op */
218 #define HIFN_DMACSR_S_CTRL_DIS 0x00004000 /* Source Control: disable */
219 #define HIFN_DMACSR_S_CTRL_ENA 0x00008000 /* Source Control: enable */
220 #define HIFN_DMACSR_S_ABORT 0x00002000 /* Source Ring PCI Abort */
221 #define HIFN_DMACSR_S_DONE 0x00001000 /* Source Ring Done */
222 #define HIFN_DMACSR_S_LAST 0x00000800 /* Source Ring Last */
223 #define HIFN_DMACSR_S_WAIT 0x00000400 /* Source Ring Waiting */
224 #define HIFN_DMACSR_ILLW 0x00000200 /* Illegal write (7811 only) */
225 #define HIFN_DMACSR_ILLR 0x00000100 /* Illegal read (7811 only) */
226 #define HIFN_DMACSR_C_CTRL 0x000000c0 /* Command Ring Control */
227 #define HIFN_DMACSR_C_CTRL_NOP 0x00000000 /* Command Control: no-op */
228 #define HIFN_DMACSR_C_CTRL_DIS 0x00000040 /* Command Control: disable */
229 #define HIFN_DMACSR_C_CTRL_ENA 0x00000080 /* Command Control: enable */
230 #define HIFN_DMACSR_C_ABORT 0x00000020 /* Command Ring PCI Abort */
231 #define HIFN_DMACSR_C_DONE 0x00000010 /* Command Ring Done */
232 #define HIFN_DMACSR_C_LAST 0x00000008 /* Command Ring Last */
233 #define HIFN_DMACSR_C_WAIT 0x00000004 /* Command Ring Waiting */
234 #define HIFN_DMACSR_PUBDONE 0x00000002 /* Public op done (7951 only) */
235 #define HIFN_DMACSR_ENGINE 0x00000001 /* Command Ring Engine IRQ */
236
237 /* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */
238 #define HIFN_DMAIER_D_ABORT 0x20000000 /* Destination Ring PCIAbort */
239 #define HIFN_DMAIER_D_DONE 0x10000000 /* Destination Ring Done */
240 #define HIFN_DMAIER_D_LAST 0x08000000 /* Destination Ring Last */
241 #define HIFN_DMAIER_D_WAIT 0x04000000 /* Destination Ring Waiting */
242 #define HIFN_DMAIER_D_OVER 0x02000000 /* Destination Ring Overflow */
243 #define HIFN_DMAIER_R_ABORT 0x00200000 /* Result Ring PCI Abort */
244 #define HIFN_DMAIER_R_DONE 0x00100000 /* Result Ring Done */
245 #define HIFN_DMAIER_R_LAST 0x00080000 /* Result Ring Last */
246 #define HIFN_DMAIER_R_WAIT 0x00040000 /* Result Ring Waiting */
247 #define HIFN_DMAIER_R_OVER 0x00020000 /* Result Ring Overflow */
248 #define HIFN_DMAIER_S_ABORT 0x00002000 /* Source Ring PCI Abort */
249 #define HIFN_DMAIER_S_DONE 0x00001000 /* Source Ring Done */
250 #define HIFN_DMAIER_S_LAST 0x00000800 /* Source Ring Last */
251 #define HIFN_DMAIER_S_WAIT 0x00000400 /* Source Ring Waiting */
252 #define HIFN_DMAIER_ILLW 0x00000200 /* Illegal write (7811 only) */
253 #define HIFN_DMAIER_ILLR 0x00000100 /* Illegal read (7811 only) */
254 #define HIFN_DMAIER_C_ABORT 0x00000020 /* Command Ring PCI Abort */
255 #define HIFN_DMAIER_C_DONE 0x00000010 /* Command Ring Done */
256 #define HIFN_DMAIER_C_LAST 0x00000008 /* Command Ring Last */
257 #define HIFN_DMAIER_C_WAIT 0x00000004 /* Command Ring Waiting */
258 #define HIFN_DMAIER_PUBDONE 0x00000002 /* public op done (7951 only) */
259 #define HIFN_DMAIER_ENGINE 0x00000001 /* Engine IRQ */
260
261 /* DMA Configuration Register (HIFN_1_DMA_CNFG) */
262 #define HIFN_DMACNFG_BIGENDIAN 0x10000000 /* big endian mode */
263 #define HIFN_DMACNFG_POLLFREQ 0x00ff0000 /* Poll frequency mask */
264 #define HIFN_DMACNFG_UNLOCK 0x00000800
265 #define HIFN_DMACNFG_POLLINVAL 0x00000700 /* Invalid Poll Scalar */
266 #define HIFN_DMACNFG_LAST 0x00000010 /* Host control LAST bit */
267 #define HIFN_DMACNFG_MODE 0x00000004 /* DMA mode */
268 #define HIFN_DMACNFG_DMARESET 0x00000002 /* DMA Reset # */
269 #define HIFN_DMACNFG_MSTRESET 0x00000001 /* Master Reset # */
270
271 /* PLL configuration register */
272 #define HIFN_PLL_REF_CLK_HBI 0x00000000 /* HBI reference clock */
273 #define HIFN_PLL_REF_CLK_PLL 0x00000001 /* PLL reference clock */
274 #define HIFN_PLL_BP 0x00000002 /* Reference clock bypass */
275 #define HIFN_PLL_PK_CLK_HBI 0x00000000 /* PK engine HBI clock */
276 #define HIFN_PLL_PK_CLK_PLL 0x00000008 /* PK engine PLL clock */
277 #define HIFN_PLL_PE_CLK_HBI 0x00000000 /* PE engine HBI clock */
278 #define HIFN_PLL_PE_CLK_PLL 0x00000010 /* PE engine PLL clock */
279 #define HIFN_PLL_RESERVED_1 0x00000400 /* Reserved bit, must be 1 */
280 #define HIFN_PLL_ND_SHIFT 11 /* Clock multiplier shift */
281 #define HIFN_PLL_ND_MULT_2 0x00000000 /* PLL clock multiplier 2 */
282 #define HIFN_PLL_ND_MULT_4 0x00000800 /* PLL clock multiplier 4 */
283 #define HIFN_PLL_ND_MULT_6 0x00001000 /* PLL clock multiplier 6 */
284 #define HIFN_PLL_ND_MULT_8 0x00001800 /* PLL clock multiplier 8 */
285 #define HIFN_PLL_ND_MULT_10 0x00002000 /* PLL clock multiplier 10 */
286 #define HIFN_PLL_ND_MULT_12 0x00002800 /* PLL clock multiplier 12 */
287 #define HIFN_PLL_IS_1_8 0x00000000 /* charge pump (mult. 1-8) */
288 #define HIFN_PLL_IS_9_12 0x00010000 /* charge pump (mult. 9-12) */
289
290 #define HIFN_PLL_FCK_MAX 266 /* Maximum PLL frequency */
291
292 /* Public key reset register (HIFN_1_PUB_RESET) */
293 #define HIFN_PUBRST_RESET 0x00000001 /* reset public/rng unit */
294
295 /* Public base address register (HIFN_1_PUB_BASE) */
296 #define HIFN_PUBBASE_ADDR 0x00003fff /* base address */
297
298 /* Public operand length register (HIFN_1_PUB_OPLEN) */
299 #define HIFN_PUBOPLEN_MOD_M 0x0000007f /* modulus length mask */
300 #define HIFN_PUBOPLEN_MOD_S 0 /* modulus length shift */
301 #define HIFN_PUBOPLEN_EXP_M 0x0003ff80 /* exponent length mask */
302 #define HIFN_PUBOPLEN_EXP_S 7 /* exponent length shift */
303 #define HIFN_PUBOPLEN_RED_M 0x003c0000 /* reducend length mask */
304 #define HIFN_PUBOPLEN_RED_S 18 /* reducend length shift */
305
306 /* Public operation register (HIFN_1_PUB_OP) */
307 #define HIFN_PUBOP_AOFFSET_M 0x0000007f /* A offset mask */
308 #define HIFN_PUBOP_AOFFSET_S 0 /* A offset shift */
309 #define HIFN_PUBOP_BOFFSET_M 0x00000f80 /* B offset mask */
310 #define HIFN_PUBOP_BOFFSET_S 7 /* B offset shift */
311 #define HIFN_PUBOP_MOFFSET_M 0x0003f000 /* M offset mask */
312 #define HIFN_PUBOP_MOFFSET_S 12 /* M offset shift */
313 #define HIFN_PUBOP_OP_MASK 0x003c0000 /* Opcode: */
314 #define HIFN_PUBOP_OP_NOP 0x00000000 /* NOP */
315 #define HIFN_PUBOP_OP_ADD 0x00040000 /* ADD */
316 #define HIFN_PUBOP_OP_ADDC 0x00080000 /* ADD w/carry */
317 #define HIFN_PUBOP_OP_SUB 0x000c0000 /* SUB */
318 #define HIFN_PUBOP_OP_SUBC 0x00100000 /* SUB w/carry */
319 #define HIFN_PUBOP_OP_MODADD 0x00140000 /* Modular ADD */
320 #define HIFN_PUBOP_OP_MODSUB 0x00180000 /* Modular SUB */
321 #define HIFN_PUBOP_OP_INCA 0x001c0000 /* INC A */
322 #define HIFN_PUBOP_OP_DECA 0x00200000 /* DEC A */
323 #define HIFN_PUBOP_OP_MULT 0x00240000 /* MULT */
324 #define HIFN_PUBOP_OP_MODMULT 0x00280000 /* Modular MULT */
325 #define HIFN_PUBOP_OP_MODRED 0x002c0000 /* Modular RED */
326 #define HIFN_PUBOP_OP_MODEXP 0x00300000 /* Modular EXP */
327
328 /* Public status register (HIFN_1_PUB_STATUS) */
329 #define HIFN_PUBSTS_DONE 0x00000001 /* operation done */
330 #define HIFN_PUBSTS_CARRY 0x00000002 /* carry */
331
332 /* Public interrupt enable register (HIFN_1_PUB_IEN) */
333 #define HIFN_PUBIEN_DONE 0x00000001 /* operation done interrupt */
334
335 /* Random number generator config register (HIFN_1_RNG_CONFIG) */
336 #define HIFN_RNGCFG_ENA 0x00000001 /* enable rng */
337
338 #define HIFN_NAMESIZE 32
339 #define HIFN_MAX_RESULT_ORDER 5
340
341 #define HIFN_D_CMD_RSIZE (24 * 1)
342 #define HIFN_D_SRC_RSIZE (80 * 1)
343 #define HIFN_D_DST_RSIZE (80 * 1)
344 #define HIFN_D_RES_RSIZE (24 * 1)
345
346 #define HIFN_D_DST_DALIGN 4
347
348 #define HIFN_QUEUE_LENGTH (HIFN_D_CMD_RSIZE - 1)
349
350 #define AES_MIN_KEY_SIZE 16
351 #define AES_MAX_KEY_SIZE 32
352
353 #define HIFN_DES_KEY_LENGTH 8
354 #define HIFN_3DES_KEY_LENGTH 24
355 #define HIFN_MAX_CRYPT_KEY_LENGTH AES_MAX_KEY_SIZE
356 #define HIFN_IV_LENGTH 8
357 #define HIFN_AES_IV_LENGTH 16
358 #define HIFN_MAX_IV_LENGTH HIFN_AES_IV_LENGTH
359
360 #define HIFN_MAC_KEY_LENGTH 64
361 #define HIFN_MD5_LENGTH 16
362 #define HIFN_SHA1_LENGTH 20
363 #define HIFN_MAC_TRUNC_LENGTH 12
364
365 #define HIFN_MAX_COMMAND (8 + 8 + 8 + 64 + 260)
366 #define HIFN_MAX_RESULT (8 + 4 + 4 + 20 + 4)
367 #define HIFN_USED_RESULT 12
368
369 struct hifn_desc {
370 volatile __le32 l;
371 volatile __le32 p;
372 };
373
374 struct hifn_dma {
375 struct hifn_desc cmdr[HIFN_D_CMD_RSIZE + 1];
376 struct hifn_desc srcr[HIFN_D_SRC_RSIZE + 1];
377 struct hifn_desc dstr[HIFN_D_DST_RSIZE + 1];
378 struct hifn_desc resr[HIFN_D_RES_RSIZE + 1];
379
380 u8 command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND];
381 u8 result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT];
382
383 /*
384 * Our current positions for insertion and removal from the descriptor
385 * rings.
386 */
387 volatile int cmdi, srci, dsti, resi;
388 volatile int cmdu, srcu, dstu, resu;
389 int cmdk, srck, dstk, resk;
390 };
391
392 #define HIFN_FLAG_CMD_BUSY (1 << 0)
393 #define HIFN_FLAG_SRC_BUSY (1 << 1)
394 #define HIFN_FLAG_DST_BUSY (1 << 2)
395 #define HIFN_FLAG_RES_BUSY (1 << 3)
396 #define HIFN_FLAG_OLD_KEY (1 << 4)
397
398 #define HIFN_DEFAULT_ACTIVE_NUM 5
399
400 struct hifn_device {
401 char name[HIFN_NAMESIZE];
402
403 int irq;
404
405 struct pci_dev *pdev;
406 void __iomem *bar[3];
407
408 void *desc_virt;
409 dma_addr_t desc_dma;
410
411 u32 dmareg;
412
413 void *sa[HIFN_D_RES_RSIZE];
414
415 spinlock_t lock;
416
417 u32 flags;
418 int active, started;
419 struct delayed_work work;
420 unsigned long reset;
421 unsigned long success;
422 unsigned long prev_success;
423
424 u8 snum;
425
426 struct tasklet_struct tasklet;
427
428 struct crypto_queue queue;
429 struct list_head alg_list;
430
431 unsigned int pk_clk_freq;
432
433 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
434 unsigned int rng_wait_time;
435 ktime_t rngtime;
436 struct hwrng rng;
437 #endif
438 };
439
440 #define HIFN_D_LENGTH 0x0000ffff
441 #define HIFN_D_NOINVALID 0x01000000
442 #define HIFN_D_MASKDONEIRQ 0x02000000
443 #define HIFN_D_DESTOVER 0x04000000
444 #define HIFN_D_OVER 0x08000000
445 #define HIFN_D_LAST 0x20000000
446 #define HIFN_D_JUMP 0x40000000
447 #define HIFN_D_VALID 0x80000000
448
449 struct hifn_base_command {
450 volatile __le16 masks;
451 volatile __le16 session_num;
452 volatile __le16 total_source_count;
453 volatile __le16 total_dest_count;
454 };
455
456 #define HIFN_BASE_CMD_COMP 0x0100 /* enable compression engine */
457 #define HIFN_BASE_CMD_PAD 0x0200 /* enable padding engine */
458 #define HIFN_BASE_CMD_MAC 0x0400 /* enable MAC engine */
459 #define HIFN_BASE_CMD_CRYPT 0x0800 /* enable crypt engine */
460 #define HIFN_BASE_CMD_DECODE 0x2000
461 #define HIFN_BASE_CMD_SRCLEN_M 0xc000
462 #define HIFN_BASE_CMD_SRCLEN_S 14
463 #define HIFN_BASE_CMD_DSTLEN_M 0x3000
464 #define HIFN_BASE_CMD_DSTLEN_S 12
465 #define HIFN_BASE_CMD_LENMASK_HI 0x30000
466 #define HIFN_BASE_CMD_LENMASK_LO 0x0ffff
467
468 /*
469 * Structure to help build up the command data structure.
470 */
471 struct hifn_crypt_command {
472 volatile __le16 masks;
473 volatile __le16 header_skip;
474 volatile __le16 source_count;
475 volatile __le16 reserved;
476 };
477
478 #define HIFN_CRYPT_CMD_ALG_MASK 0x0003 /* algorithm: */
479 #define HIFN_CRYPT_CMD_ALG_DES 0x0000 /* DES */
480 #define HIFN_CRYPT_CMD_ALG_3DES 0x0001 /* 3DES */
481 #define HIFN_CRYPT_CMD_ALG_RC4 0x0002 /* RC4 */
482 #define HIFN_CRYPT_CMD_ALG_AES 0x0003 /* AES */
483 #define HIFN_CRYPT_CMD_MODE_MASK 0x0018 /* Encrypt mode: */
484 #define HIFN_CRYPT_CMD_MODE_ECB 0x0000 /* ECB */
485 #define HIFN_CRYPT_CMD_MODE_CBC 0x0008 /* CBC */
486 #define HIFN_CRYPT_CMD_MODE_CFB 0x0010 /* CFB */
487 #define HIFN_CRYPT_CMD_MODE_OFB 0x0018 /* OFB */
488 #define HIFN_CRYPT_CMD_CLR_CTX 0x0040 /* clear context */
489 #define HIFN_CRYPT_CMD_KSZ_MASK 0x0600 /* AES key size: */
490 #define HIFN_CRYPT_CMD_KSZ_128 0x0000 /* 128 bit */
491 #define HIFN_CRYPT_CMD_KSZ_192 0x0200 /* 192 bit */
492 #define HIFN_CRYPT_CMD_KSZ_256 0x0400 /* 256 bit */
493 #define HIFN_CRYPT_CMD_NEW_KEY 0x0800 /* expect new key */
494 #define HIFN_CRYPT_CMD_NEW_IV 0x1000 /* expect new iv */
495 #define HIFN_CRYPT_CMD_SRCLEN_M 0xc000
496 #define HIFN_CRYPT_CMD_SRCLEN_S 14
497
498 #define HIFN_MAC_CMD_ALG_MASK 0x0001
499 #define HIFN_MAC_CMD_ALG_SHA1 0x0000
500 #define HIFN_MAC_CMD_ALG_MD5 0x0001
501 #define HIFN_MAC_CMD_MODE_MASK 0x000c
502 #define HIFN_MAC_CMD_MODE_HMAC 0x0000
503 #define HIFN_MAC_CMD_MODE_SSL_MAC 0x0004
504 #define HIFN_MAC_CMD_MODE_HASH 0x0008
505 #define HIFN_MAC_CMD_MODE_FULL 0x0004
506 #define HIFN_MAC_CMD_TRUNC 0x0010
507 #define HIFN_MAC_CMD_RESULT 0x0020
508 #define HIFN_MAC_CMD_APPEND 0x0040
509 #define HIFN_MAC_CMD_SRCLEN_M 0xc000
510 #define HIFN_MAC_CMD_SRCLEN_S 14
511
512 /*
513 * MAC POS IPsec initiates authentication after encryption on encodes
514 * and before decryption on decodes.
515 */
516 #define HIFN_MAC_CMD_POS_IPSEC 0x0200
517 #define HIFN_MAC_CMD_NEW_KEY 0x0800
518
519 #define HIFN_COMP_CMD_SRCLEN_M 0xc000
520 #define HIFN_COMP_CMD_SRCLEN_S 14
521 #define HIFN_COMP_CMD_ONE 0x0100 /* must be one */
522 #define HIFN_COMP_CMD_CLEARHIST 0x0010 /* clear history */
523 #define HIFN_COMP_CMD_UPDATEHIST 0x0008 /* update history */
524 #define HIFN_COMP_CMD_LZS_STRIP0 0x0004 /* LZS: strip zero */
525 #define HIFN_COMP_CMD_MPPC_RESTART 0x0004 /* MPPC: restart */
526 #define HIFN_COMP_CMD_ALG_MASK 0x0001 /* compression mode: */
527 #define HIFN_COMP_CMD_ALG_MPPC 0x0001 /* MPPC */
528 #define HIFN_COMP_CMD_ALG_LZS 0x0000 /* LZS */
529
530 struct hifn_base_result {
531 volatile __le16 flags;
532 volatile __le16 session;
533 volatile __le16 src_cnt; /* 15:0 of source count */
534 volatile __le16 dst_cnt; /* 15:0 of dest count */
535 };
536
537 #define HIFN_BASE_RES_DSTOVERRUN 0x0200 /* destination overrun */
538 #define HIFN_BASE_RES_SRCLEN_M 0xc000 /* 17:16 of source count */
539 #define HIFN_BASE_RES_SRCLEN_S 14
540 #define HIFN_BASE_RES_DSTLEN_M 0x3000 /* 17:16 of dest count */
541 #define HIFN_BASE_RES_DSTLEN_S 12
542
543 struct hifn_comp_result {
544 volatile __le16 flags;
545 volatile __le16 crc;
546 };
547
548 #define HIFN_COMP_RES_LCB_M 0xff00 /* longitudinal check byte */
549 #define HIFN_COMP_RES_LCB_S 8
550 #define HIFN_COMP_RES_RESTART 0x0004 /* MPPC: restart */
551 #define HIFN_COMP_RES_ENDMARKER 0x0002 /* LZS: end marker seen */
552 #define HIFN_COMP_RES_SRC_NOTZERO 0x0001 /* source expired */
553
554 struct hifn_mac_result {
555 volatile __le16 flags;
556 volatile __le16 reserved;
557 /* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */
558 };
559
560 #define HIFN_MAC_RES_MISCOMPARE 0x0002 /* compare failed */
561 #define HIFN_MAC_RES_SRC_NOTZERO 0x0001 /* source expired */
562
563 struct hifn_crypt_result {
564 volatile __le16 flags;
565 volatile __le16 reserved;
566 };
567
568 #define HIFN_CRYPT_RES_SRC_NOTZERO 0x0001 /* source expired */
569
570 #ifndef HIFN_POLL_FREQUENCY
571 #define HIFN_POLL_FREQUENCY 0x1
572 #endif
573
574 #ifndef HIFN_POLL_SCALAR
575 #define HIFN_POLL_SCALAR 0x0
576 #endif
577
578 #define HIFN_MAX_SEGLEN 0xffff /* maximum dma segment len */
579 #define HIFN_MAX_DMALEN 0x3ffff /* maximum dma length */
580
581 struct hifn_crypto_alg {
582 struct list_head entry;
583 struct skcipher_alg alg;
584 struct hifn_device *dev;
585 };
586
587 #define ASYNC_SCATTERLIST_CACHE 16
588
589 #define ASYNC_FLAGS_MISALIGNED (1 << 0)
590
591 struct hifn_cipher_walk {
592 struct scatterlist cache[ASYNC_SCATTERLIST_CACHE];
593 u32 flags;
594 int num;
595 };
596
597 struct hifn_context {
598 u8 key[HIFN_MAX_CRYPT_KEY_LENGTH];
599 struct hifn_device *dev;
600 unsigned int keysize;
601 };
602
603 struct hifn_request_context {
604 u8 *iv;
605 unsigned int ivsize;
606 u8 op, type, mode, unused;
607 struct hifn_cipher_walk walk;
608 };
609
610 #define crypto_alg_to_hifn(a) container_of(a, struct hifn_crypto_alg, alg)
611
hifn_read_0(struct hifn_device * dev,u32 reg)612 static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg)
613 {
614 return readl(dev->bar[0] + reg);
615 }
616
hifn_read_1(struct hifn_device * dev,u32 reg)617 static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg)
618 {
619 return readl(dev->bar[1] + reg);
620 }
621
hifn_write_0(struct hifn_device * dev,u32 reg,u32 val)622 static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val)
623 {
624 writel((__force u32)cpu_to_le32(val), dev->bar[0] + reg);
625 }
626
hifn_write_1(struct hifn_device * dev,u32 reg,u32 val)627 static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val)
628 {
629 writel((__force u32)cpu_to_le32(val), dev->bar[1] + reg);
630 }
631
hifn_wait_puc(struct hifn_device * dev)632 static void hifn_wait_puc(struct hifn_device *dev)
633 {
634 int i;
635 u32 ret;
636
637 for (i = 10000; i > 0; --i) {
638 ret = hifn_read_0(dev, HIFN_0_PUCTRL);
639 if (!(ret & HIFN_PUCTRL_RESET))
640 break;
641
642 udelay(1);
643 }
644
645 if (!i)
646 dev_err(&dev->pdev->dev, "Failed to reset PUC unit.\n");
647 }
648
hifn_reset_puc(struct hifn_device * dev)649 static void hifn_reset_puc(struct hifn_device *dev)
650 {
651 hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
652 hifn_wait_puc(dev);
653 }
654
hifn_stop_device(struct hifn_device * dev)655 static void hifn_stop_device(struct hifn_device *dev)
656 {
657 hifn_write_1(dev, HIFN_1_DMA_CSR,
658 HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
659 HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS);
660 hifn_write_0(dev, HIFN_0_PUIER, 0);
661 hifn_write_1(dev, HIFN_1_DMA_IER, 0);
662 }
663
hifn_reset_dma(struct hifn_device * dev,int full)664 static void hifn_reset_dma(struct hifn_device *dev, int full)
665 {
666 hifn_stop_device(dev);
667
668 /*
669 * Setting poll frequency and others to 0.
670 */
671 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
672 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
673 mdelay(1);
674
675 /*
676 * Reset DMA.
677 */
678 if (full) {
679 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE);
680 mdelay(1);
681 } else {
682 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE |
683 HIFN_DMACNFG_MSTRESET);
684 hifn_reset_puc(dev);
685 }
686
687 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
688 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
689
690 hifn_reset_puc(dev);
691 }
692
hifn_next_signature(u32 a,u_int cnt)693 static u32 hifn_next_signature(u32 a, u_int cnt)
694 {
695 int i;
696 u32 v;
697
698 for (i = 0; i < cnt; i++) {
699 /* get the parity */
700 v = a & 0x80080125;
701 v ^= v >> 16;
702 v ^= v >> 8;
703 v ^= v >> 4;
704 v ^= v >> 2;
705 v ^= v >> 1;
706
707 a = (v & 1) ^ (a << 1);
708 }
709
710 return a;
711 }
712
713 static struct pci2id {
714 u_short pci_vendor;
715 u_short pci_prod;
716 char card_id[13];
717 } pci2id[] = {
718 {
719 PCI_VENDOR_ID_HIFN,
720 PCI_DEVICE_ID_HIFN_7955,
721 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
722 0x00, 0x00, 0x00, 0x00, 0x00 }
723 },
724 {
725 PCI_VENDOR_ID_HIFN,
726 PCI_DEVICE_ID_HIFN_7956,
727 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
728 0x00, 0x00, 0x00, 0x00, 0x00 }
729 }
730 };
731
732 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
hifn_rng_data_present(struct hwrng * rng,int wait)733 static int hifn_rng_data_present(struct hwrng *rng, int wait)
734 {
735 struct hifn_device *dev = (struct hifn_device *)rng->priv;
736 s64 nsec;
737
738 nsec = ktime_to_ns(ktime_sub(ktime_get(), dev->rngtime));
739 nsec -= dev->rng_wait_time;
740 if (nsec <= 0)
741 return 1;
742 if (!wait)
743 return 0;
744 ndelay(nsec);
745 return 1;
746 }
747
hifn_rng_data_read(struct hwrng * rng,u32 * data)748 static int hifn_rng_data_read(struct hwrng *rng, u32 *data)
749 {
750 struct hifn_device *dev = (struct hifn_device *)rng->priv;
751
752 *data = hifn_read_1(dev, HIFN_1_RNG_DATA);
753 dev->rngtime = ktime_get();
754 return 4;
755 }
756
hifn_register_rng(struct hifn_device * dev)757 static int hifn_register_rng(struct hifn_device *dev)
758 {
759 /*
760 * We must wait at least 256 Pk_clk cycles between two reads of the rng.
761 */
762 dev->rng_wait_time = DIV_ROUND_UP_ULL(NSEC_PER_SEC,
763 dev->pk_clk_freq) * 256;
764
765 dev->rng.name = dev->name;
766 dev->rng.data_present = hifn_rng_data_present;
767 dev->rng.data_read = hifn_rng_data_read;
768 dev->rng.priv = (unsigned long)dev;
769
770 return hwrng_register(&dev->rng);
771 }
772
hifn_unregister_rng(struct hifn_device * dev)773 static void hifn_unregister_rng(struct hifn_device *dev)
774 {
775 hwrng_unregister(&dev->rng);
776 }
777 #else
778 #define hifn_register_rng(dev) 0
779 #define hifn_unregister_rng(dev)
780 #endif
781
hifn_init_pubrng(struct hifn_device * dev)782 static int hifn_init_pubrng(struct hifn_device *dev)
783 {
784 int i;
785
786 hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) |
787 HIFN_PUBRST_RESET);
788
789 for (i = 100; i > 0; --i) {
790 mdelay(1);
791
792 if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0)
793 break;
794 }
795
796 if (!i) {
797 dev_err(&dev->pdev->dev, "Failed to initialise public key engine.\n");
798 } else {
799 hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE);
800 dev->dmareg |= HIFN_DMAIER_PUBDONE;
801 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
802
803 dev_dbg(&dev->pdev->dev, "Public key engine has been successfully initialised.\n");
804 }
805
806 /* Enable RNG engine. */
807
808 hifn_write_1(dev, HIFN_1_RNG_CONFIG,
809 hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA);
810 dev_dbg(&dev->pdev->dev, "RNG engine has been successfully initialised.\n");
811
812 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
813 /* First value must be discarded */
814 hifn_read_1(dev, HIFN_1_RNG_DATA);
815 dev->rngtime = ktime_get();
816 #endif
817 return 0;
818 }
819
hifn_enable_crypto(struct hifn_device * dev)820 static int hifn_enable_crypto(struct hifn_device *dev)
821 {
822 u32 dmacfg, addr;
823 char *offtbl = NULL;
824 int i;
825
826 for (i = 0; i < ARRAY_SIZE(pci2id); i++) {
827 if (pci2id[i].pci_vendor == dev->pdev->vendor &&
828 pci2id[i].pci_prod == dev->pdev->device) {
829 offtbl = pci2id[i].card_id;
830 break;
831 }
832 }
833
834 if (!offtbl) {
835 dev_err(&dev->pdev->dev, "Unknown card!\n");
836 return -ENODEV;
837 }
838
839 dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG);
840
841 hifn_write_1(dev, HIFN_1_DMA_CNFG,
842 HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET |
843 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
844 mdelay(1);
845 addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1);
846 mdelay(1);
847 hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0);
848 mdelay(1);
849
850 for (i = 0; i < 12; ++i) {
851 addr = hifn_next_signature(addr, offtbl[i] + 0x101);
852 hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr);
853
854 mdelay(1);
855 }
856 hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg);
857
858 dev_dbg(&dev->pdev->dev, "%s %s.\n", dev->name, pci_name(dev->pdev));
859
860 return 0;
861 }
862
hifn_init_dma(struct hifn_device * dev)863 static void hifn_init_dma(struct hifn_device *dev)
864 {
865 struct hifn_dma *dma = dev->desc_virt;
866 u32 dptr = dev->desc_dma;
867 int i;
868
869 for (i = 0; i < HIFN_D_CMD_RSIZE; ++i)
870 dma->cmdr[i].p = __cpu_to_le32(dptr +
871 offsetof(struct hifn_dma, command_bufs[i][0]));
872 for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
873 dma->resr[i].p = __cpu_to_le32(dptr +
874 offsetof(struct hifn_dma, result_bufs[i][0]));
875
876 /* Setup LAST descriptors. */
877 dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr +
878 offsetof(struct hifn_dma, cmdr[0]));
879 dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr +
880 offsetof(struct hifn_dma, srcr[0]));
881 dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr +
882 offsetof(struct hifn_dma, dstr[0]));
883 dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr +
884 offsetof(struct hifn_dma, resr[0]));
885
886 dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0;
887 dma->cmdi = dma->srci = dma->dsti = dma->resi = 0;
888 dma->cmdk = dma->srck = dma->dstk = dma->resk = 0;
889 }
890
891 /*
892 * Initialize the PLL. We need to know the frequency of the reference clock
893 * to calculate the optimal multiplier. For PCI we assume 66MHz, since that
894 * allows us to operate without the risk of overclocking the chip. If it
895 * actually uses 33MHz, the chip will operate at half the speed, this can be
896 * overridden by specifying the frequency as module parameter (pci33).
897 *
898 * Unfortunately the PCI clock is not very suitable since the HIFN needs a
899 * stable clock and the PCI clock frequency may vary, so the default is the
900 * external clock. There is no way to find out its frequency, we default to
901 * 66MHz since according to Mike Ham of HiFn, almost every board in existence
902 * has an external crystal populated at 66MHz.
903 */
hifn_init_pll(struct hifn_device * dev)904 static void hifn_init_pll(struct hifn_device *dev)
905 {
906 unsigned int freq, m;
907 u32 pllcfg;
908
909 pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1;
910
911 if (strncmp(hifn_pll_ref, "ext", 3) == 0)
912 pllcfg |= HIFN_PLL_REF_CLK_PLL;
913 else
914 pllcfg |= HIFN_PLL_REF_CLK_HBI;
915
916 if (hifn_pll_ref[3] != '\0')
917 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
918 else {
919 freq = 66;
920 dev_info(&dev->pdev->dev, "assuming %uMHz clock speed, override with hifn_pll_ref=%.3s<frequency>\n",
921 freq, hifn_pll_ref);
922 }
923
924 m = HIFN_PLL_FCK_MAX / freq;
925
926 pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT;
927 if (m <= 8)
928 pllcfg |= HIFN_PLL_IS_1_8;
929 else
930 pllcfg |= HIFN_PLL_IS_9_12;
931
932 /* Select clock source and enable clock bypass */
933 hifn_write_1(dev, HIFN_1_PLL, pllcfg |
934 HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI | HIFN_PLL_BP);
935
936 /* Let the chip lock to the input clock */
937 mdelay(10);
938
939 /* Disable clock bypass */
940 hifn_write_1(dev, HIFN_1_PLL, pllcfg |
941 HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI);
942
943 /* Switch the engines to the PLL */
944 hifn_write_1(dev, HIFN_1_PLL, pllcfg |
945 HIFN_PLL_PK_CLK_PLL | HIFN_PLL_PE_CLK_PLL);
946
947 /*
948 * The Fpk_clk runs at half the total speed. Its frequency is needed to
949 * calculate the minimum time between two reads of the rng. Since 33MHz
950 * is actually 33.333... we overestimate the frequency here, resulting
951 * in slightly larger intervals.
952 */
953 dev->pk_clk_freq = 1000000 * (freq + 1) * m / 2;
954 }
955
hifn_init_registers(struct hifn_device * dev)956 static void hifn_init_registers(struct hifn_device *dev)
957 {
958 u32 dptr = dev->desc_dma;
959
960 /* Initialization magic... */
961 hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
962 hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD);
963 hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);
964
965 /* write all 4 ring address registers */
966 hifn_write_1(dev, HIFN_1_DMA_CRAR, dptr +
967 offsetof(struct hifn_dma, cmdr[0]));
968 hifn_write_1(dev, HIFN_1_DMA_SRAR, dptr +
969 offsetof(struct hifn_dma, srcr[0]));
970 hifn_write_1(dev, HIFN_1_DMA_DRAR, dptr +
971 offsetof(struct hifn_dma, dstr[0]));
972 hifn_write_1(dev, HIFN_1_DMA_RRAR, dptr +
973 offsetof(struct hifn_dma, resr[0]));
974
975 mdelay(2);
976 #if 0
977 hifn_write_1(dev, HIFN_1_DMA_CSR,
978 HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
979 HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS |
980 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
981 HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
982 HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
983 HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
984 HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
985 HIFN_DMACSR_S_WAIT |
986 HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
987 HIFN_DMACSR_C_WAIT |
988 HIFN_DMACSR_ENGINE |
989 HIFN_DMACSR_PUBDONE);
990 #else
991 hifn_write_1(dev, HIFN_1_DMA_CSR,
992 HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
993 HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA |
994 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
995 HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
996 HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
997 HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
998 HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
999 HIFN_DMACSR_S_WAIT |
1000 HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1001 HIFN_DMACSR_C_WAIT |
1002 HIFN_DMACSR_ENGINE |
1003 HIFN_DMACSR_PUBDONE);
1004 #endif
1005 hifn_read_1(dev, HIFN_1_DMA_CSR);
1006
1007 dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT |
1008 HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER |
1009 HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT |
1010 HIFN_DMAIER_ENGINE;
1011 dev->dmareg &= ~HIFN_DMAIER_C_WAIT;
1012
1013 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1014 hifn_read_1(dev, HIFN_1_DMA_IER);
1015 #if 0
1016 hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG |
1017 HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES |
1018 HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 |
1019 HIFN_PUCNFG_DRAM);
1020 #else
1021 hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342);
1022 #endif
1023 hifn_init_pll(dev);
1024
1025 hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1026 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
1027 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST |
1028 ((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) |
1029 ((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL));
1030 }
1031
hifn_setup_base_command(struct hifn_device * dev,u8 * buf,unsigned dlen,unsigned slen,u16 mask,u8 snum)1032 static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf,
1033 unsigned dlen, unsigned slen, u16 mask, u8 snum)
1034 {
1035 struct hifn_base_command *base_cmd;
1036 u8 *buf_pos = buf;
1037
1038 base_cmd = (struct hifn_base_command *)buf_pos;
1039 base_cmd->masks = __cpu_to_le16(mask);
1040 base_cmd->total_source_count =
1041 __cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO);
1042 base_cmd->total_dest_count =
1043 __cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO);
1044
1045 dlen >>= 16;
1046 slen >>= 16;
1047 base_cmd->session_num = __cpu_to_le16(snum |
1048 ((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) |
1049 ((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M));
1050
1051 return sizeof(struct hifn_base_command);
1052 }
1053
hifn_setup_crypto_command(struct hifn_device * dev,u8 * buf,unsigned dlen,unsigned slen,u8 * key,int keylen,u8 * iv,int ivsize,u16 mode)1054 static int hifn_setup_crypto_command(struct hifn_device *dev,
1055 u8 *buf, unsigned dlen, unsigned slen,
1056 u8 *key, int keylen, u8 *iv, int ivsize, u16 mode)
1057 {
1058 struct hifn_dma *dma = dev->desc_virt;
1059 struct hifn_crypt_command *cry_cmd;
1060 u8 *buf_pos = buf;
1061 u16 cmd_len;
1062
1063 cry_cmd = (struct hifn_crypt_command *)buf_pos;
1064
1065 cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff);
1066 dlen >>= 16;
1067 cry_cmd->masks = __cpu_to_le16(mode |
1068 ((dlen << HIFN_CRYPT_CMD_SRCLEN_S) &
1069 HIFN_CRYPT_CMD_SRCLEN_M));
1070 cry_cmd->header_skip = 0;
1071 cry_cmd->reserved = 0;
1072
1073 buf_pos += sizeof(struct hifn_crypt_command);
1074
1075 dma->cmdu++;
1076 if (dma->cmdu > 1) {
1077 dev->dmareg |= HIFN_DMAIER_C_WAIT;
1078 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1079 }
1080
1081 if (keylen) {
1082 memcpy(buf_pos, key, keylen);
1083 buf_pos += keylen;
1084 }
1085 if (ivsize) {
1086 memcpy(buf_pos, iv, ivsize);
1087 buf_pos += ivsize;
1088 }
1089
1090 cmd_len = buf_pos - buf;
1091
1092 return cmd_len;
1093 }
1094
hifn_setup_cmd_desc(struct hifn_device * dev,struct hifn_context * ctx,struct hifn_request_context * rctx,void * priv,unsigned int nbytes)1095 static int hifn_setup_cmd_desc(struct hifn_device *dev,
1096 struct hifn_context *ctx, struct hifn_request_context *rctx,
1097 void *priv, unsigned int nbytes)
1098 {
1099 struct hifn_dma *dma = dev->desc_virt;
1100 int cmd_len, sa_idx;
1101 u8 *buf, *buf_pos;
1102 u16 mask;
1103
1104 sa_idx = dma->cmdi;
1105 buf_pos = buf = dma->command_bufs[dma->cmdi];
1106
1107 mask = 0;
1108 switch (rctx->op) {
1109 case ACRYPTO_OP_DECRYPT:
1110 mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE;
1111 break;
1112 case ACRYPTO_OP_ENCRYPT:
1113 mask = HIFN_BASE_CMD_CRYPT;
1114 break;
1115 case ACRYPTO_OP_HMAC:
1116 mask = HIFN_BASE_CMD_MAC;
1117 break;
1118 default:
1119 goto err_out;
1120 }
1121
1122 buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes,
1123 nbytes, mask, dev->snum);
1124
1125 if (rctx->op == ACRYPTO_OP_ENCRYPT || rctx->op == ACRYPTO_OP_DECRYPT) {
1126 u16 md = 0;
1127
1128 if (ctx->keysize)
1129 md |= HIFN_CRYPT_CMD_NEW_KEY;
1130 if (rctx->iv && rctx->mode != ACRYPTO_MODE_ECB)
1131 md |= HIFN_CRYPT_CMD_NEW_IV;
1132
1133 switch (rctx->mode) {
1134 case ACRYPTO_MODE_ECB:
1135 md |= HIFN_CRYPT_CMD_MODE_ECB;
1136 break;
1137 case ACRYPTO_MODE_CBC:
1138 md |= HIFN_CRYPT_CMD_MODE_CBC;
1139 break;
1140 case ACRYPTO_MODE_CFB:
1141 md |= HIFN_CRYPT_CMD_MODE_CFB;
1142 break;
1143 case ACRYPTO_MODE_OFB:
1144 md |= HIFN_CRYPT_CMD_MODE_OFB;
1145 break;
1146 default:
1147 goto err_out;
1148 }
1149
1150 switch (rctx->type) {
1151 case ACRYPTO_TYPE_AES_128:
1152 if (ctx->keysize != 16)
1153 goto err_out;
1154 md |= HIFN_CRYPT_CMD_KSZ_128 |
1155 HIFN_CRYPT_CMD_ALG_AES;
1156 break;
1157 case ACRYPTO_TYPE_AES_192:
1158 if (ctx->keysize != 24)
1159 goto err_out;
1160 md |= HIFN_CRYPT_CMD_KSZ_192 |
1161 HIFN_CRYPT_CMD_ALG_AES;
1162 break;
1163 case ACRYPTO_TYPE_AES_256:
1164 if (ctx->keysize != 32)
1165 goto err_out;
1166 md |= HIFN_CRYPT_CMD_KSZ_256 |
1167 HIFN_CRYPT_CMD_ALG_AES;
1168 break;
1169 case ACRYPTO_TYPE_3DES:
1170 if (ctx->keysize != 24)
1171 goto err_out;
1172 md |= HIFN_CRYPT_CMD_ALG_3DES;
1173 break;
1174 case ACRYPTO_TYPE_DES:
1175 if (ctx->keysize != 8)
1176 goto err_out;
1177 md |= HIFN_CRYPT_CMD_ALG_DES;
1178 break;
1179 default:
1180 goto err_out;
1181 }
1182
1183 buf_pos += hifn_setup_crypto_command(dev, buf_pos,
1184 nbytes, nbytes, ctx->key, ctx->keysize,
1185 rctx->iv, rctx->ivsize, md);
1186 }
1187
1188 dev->sa[sa_idx] = priv;
1189 dev->started++;
1190
1191 cmd_len = buf_pos - buf;
1192 dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID |
1193 HIFN_D_LAST | HIFN_D_MASKDONEIRQ);
1194
1195 if (++dma->cmdi == HIFN_D_CMD_RSIZE) {
1196 dma->cmdr[dma->cmdi].l = __cpu_to_le32(
1197 HIFN_D_VALID | HIFN_D_LAST |
1198 HIFN_D_MASKDONEIRQ | HIFN_D_JUMP);
1199 dma->cmdi = 0;
1200 } else {
1201 dma->cmdr[dma->cmdi - 1].l |= __cpu_to_le32(HIFN_D_VALID);
1202 }
1203
1204 if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) {
1205 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA);
1206 dev->flags |= HIFN_FLAG_CMD_BUSY;
1207 }
1208 return 0;
1209
1210 err_out:
1211 return -EINVAL;
1212 }
1213
hifn_setup_src_desc(struct hifn_device * dev,struct page * page,unsigned int offset,unsigned int size,int last)1214 static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page,
1215 unsigned int offset, unsigned int size, int last)
1216 {
1217 struct hifn_dma *dma = dev->desc_virt;
1218 int idx;
1219 dma_addr_t addr;
1220
1221 addr = dma_map_page(&dev->pdev->dev, page, offset, size,
1222 DMA_TO_DEVICE);
1223
1224 idx = dma->srci;
1225
1226 dma->srcr[idx].p = __cpu_to_le32(addr);
1227 dma->srcr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1228 HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1229
1230 if (++idx == HIFN_D_SRC_RSIZE) {
1231 dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1232 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1233 (last ? HIFN_D_LAST : 0));
1234 idx = 0;
1235 }
1236
1237 dma->srci = idx;
1238 dma->srcu++;
1239
1240 if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) {
1241 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA);
1242 dev->flags |= HIFN_FLAG_SRC_BUSY;
1243 }
1244
1245 return size;
1246 }
1247
hifn_setup_res_desc(struct hifn_device * dev)1248 static void hifn_setup_res_desc(struct hifn_device *dev)
1249 {
1250 struct hifn_dma *dma = dev->desc_virt;
1251
1252 dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT |
1253 HIFN_D_VALID | HIFN_D_LAST);
1254 /*
1255 * dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID |
1256 * HIFN_D_LAST);
1257 */
1258
1259 if (++dma->resi == HIFN_D_RES_RSIZE) {
1260 dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID |
1261 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
1262 dma->resi = 0;
1263 }
1264
1265 dma->resu++;
1266
1267 if (!(dev->flags & HIFN_FLAG_RES_BUSY)) {
1268 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA);
1269 dev->flags |= HIFN_FLAG_RES_BUSY;
1270 }
1271 }
1272
hifn_setup_dst_desc(struct hifn_device * dev,struct page * page,unsigned offset,unsigned size,int last)1273 static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page,
1274 unsigned offset, unsigned size, int last)
1275 {
1276 struct hifn_dma *dma = dev->desc_virt;
1277 int idx;
1278 dma_addr_t addr;
1279
1280 addr = dma_map_page(&dev->pdev->dev, page, offset, size,
1281 DMA_FROM_DEVICE);
1282
1283 idx = dma->dsti;
1284 dma->dstr[idx].p = __cpu_to_le32(addr);
1285 dma->dstr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1286 HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1287
1288 if (++idx == HIFN_D_DST_RSIZE) {
1289 dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1290 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1291 (last ? HIFN_D_LAST : 0));
1292 idx = 0;
1293 }
1294 dma->dsti = idx;
1295 dma->dstu++;
1296
1297 if (!(dev->flags & HIFN_FLAG_DST_BUSY)) {
1298 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA);
1299 dev->flags |= HIFN_FLAG_DST_BUSY;
1300 }
1301 }
1302
hifn_setup_dma(struct hifn_device * dev,struct hifn_context * ctx,struct hifn_request_context * rctx,struct scatterlist * src,struct scatterlist * dst,unsigned int nbytes,void * priv)1303 static int hifn_setup_dma(struct hifn_device *dev,
1304 struct hifn_context *ctx, struct hifn_request_context *rctx,
1305 struct scatterlist *src, struct scatterlist *dst,
1306 unsigned int nbytes, void *priv)
1307 {
1308 struct scatterlist *t;
1309 struct page *spage, *dpage;
1310 unsigned int soff, doff;
1311 unsigned int n, len;
1312
1313 n = nbytes;
1314 while (n) {
1315 spage = sg_page(src);
1316 soff = src->offset;
1317 len = min(src->length, n);
1318
1319 hifn_setup_src_desc(dev, spage, soff, len, n - len == 0);
1320
1321 src++;
1322 n -= len;
1323 }
1324
1325 t = &rctx->walk.cache[0];
1326 n = nbytes;
1327 while (n) {
1328 if (t->length && rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1329 BUG_ON(!sg_page(t));
1330 dpage = sg_page(t);
1331 doff = 0;
1332 len = t->length;
1333 } else {
1334 BUG_ON(!sg_page(dst));
1335 dpage = sg_page(dst);
1336 doff = dst->offset;
1337 len = dst->length;
1338 }
1339 len = min(len, n);
1340
1341 hifn_setup_dst_desc(dev, dpage, doff, len, n - len == 0);
1342
1343 dst++;
1344 t++;
1345 n -= len;
1346 }
1347
1348 hifn_setup_cmd_desc(dev, ctx, rctx, priv, nbytes);
1349 hifn_setup_res_desc(dev);
1350 return 0;
1351 }
1352
hifn_cipher_walk_init(struct hifn_cipher_walk * w,int num,gfp_t gfp_flags)1353 static int hifn_cipher_walk_init(struct hifn_cipher_walk *w,
1354 int num, gfp_t gfp_flags)
1355 {
1356 int i;
1357
1358 num = min(ASYNC_SCATTERLIST_CACHE, num);
1359 sg_init_table(w->cache, num);
1360
1361 w->num = 0;
1362 for (i = 0; i < num; ++i) {
1363 struct page *page = alloc_page(gfp_flags);
1364 struct scatterlist *s;
1365
1366 if (!page)
1367 break;
1368
1369 s = &w->cache[i];
1370
1371 sg_set_page(s, page, PAGE_SIZE, 0);
1372 w->num++;
1373 }
1374
1375 return i;
1376 }
1377
hifn_cipher_walk_exit(struct hifn_cipher_walk * w)1378 static void hifn_cipher_walk_exit(struct hifn_cipher_walk *w)
1379 {
1380 int i;
1381
1382 for (i = 0; i < w->num; ++i) {
1383 struct scatterlist *s = &w->cache[i];
1384
1385 __free_page(sg_page(s));
1386
1387 s->length = 0;
1388 }
1389
1390 w->num = 0;
1391 }
1392
skcipher_add(unsigned int * drestp,struct scatterlist * dst,unsigned int size,unsigned int * nbytesp)1393 static int skcipher_add(unsigned int *drestp, struct scatterlist *dst,
1394 unsigned int size, unsigned int *nbytesp)
1395 {
1396 unsigned int copy, drest = *drestp, nbytes = *nbytesp;
1397 int idx = 0;
1398
1399 if (drest < size || size > nbytes)
1400 return -EINVAL;
1401
1402 while (size) {
1403 copy = min3(drest, size, dst->length);
1404
1405 size -= copy;
1406 drest -= copy;
1407 nbytes -= copy;
1408
1409 pr_debug("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n",
1410 __func__, copy, size, drest, nbytes);
1411
1412 dst++;
1413 idx++;
1414 }
1415
1416 *nbytesp = nbytes;
1417 *drestp = drest;
1418
1419 return idx;
1420 }
1421
hifn_cipher_walk(struct skcipher_request * req,struct hifn_cipher_walk * w)1422 static int hifn_cipher_walk(struct skcipher_request *req,
1423 struct hifn_cipher_walk *w)
1424 {
1425 struct scatterlist *dst, *t;
1426 unsigned int nbytes = req->cryptlen, offset, copy, diff;
1427 int idx, tidx, err;
1428
1429 tidx = idx = 0;
1430 offset = 0;
1431 while (nbytes) {
1432 if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED))
1433 return -EINVAL;
1434
1435 dst = &req->dst[idx];
1436
1437 pr_debug("\n%s: dlen: %u, doff: %u, offset: %u, nbytes: %u.\n",
1438 __func__, dst->length, dst->offset, offset, nbytes);
1439
1440 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1441 !IS_ALIGNED(dst->length, HIFN_D_DST_DALIGN) ||
1442 offset) {
1443 unsigned slen = min(dst->length - offset, nbytes);
1444 unsigned dlen = PAGE_SIZE;
1445
1446 t = &w->cache[idx];
1447
1448 err = skcipher_add(&dlen, dst, slen, &nbytes);
1449 if (err < 0)
1450 return err;
1451
1452 idx += err;
1453
1454 copy = slen & ~(HIFN_D_DST_DALIGN - 1);
1455 diff = slen & (HIFN_D_DST_DALIGN - 1);
1456
1457 if (dlen < nbytes) {
1458 /*
1459 * Destination page does not have enough space
1460 * to put there additional blocksized chunk,
1461 * so we mark that page as containing only
1462 * blocksize aligned chunks:
1463 * t->length = (slen & ~(HIFN_D_DST_DALIGN - 1));
1464 * and increase number of bytes to be processed
1465 * in next chunk:
1466 * nbytes += diff;
1467 */
1468 nbytes += diff;
1469
1470 /*
1471 * Temporary of course...
1472 * Kick author if you will catch this one.
1473 */
1474 pr_err("%s: dlen: %u, nbytes: %u, slen: %u, offset: %u.\n",
1475 __func__, dlen, nbytes, slen, offset);
1476 pr_err("%s: please contact author to fix this "
1477 "issue, generally you should not catch "
1478 "this path under any condition but who "
1479 "knows how did you use crypto code.\n"
1480 "Thank you.\n", __func__);
1481 BUG();
1482 } else {
1483 copy += diff + nbytes;
1484
1485 dst = &req->dst[idx];
1486
1487 err = skcipher_add(&dlen, dst, nbytes, &nbytes);
1488 if (err < 0)
1489 return err;
1490
1491 idx += err;
1492 }
1493
1494 t->length = copy;
1495 t->offset = offset;
1496 } else {
1497 nbytes -= min(dst->length, nbytes);
1498 idx++;
1499 }
1500
1501 tidx++;
1502 }
1503
1504 return tidx;
1505 }
1506
hifn_setup_session(struct skcipher_request * req)1507 static int hifn_setup_session(struct skcipher_request *req)
1508 {
1509 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1510 struct hifn_request_context *rctx = skcipher_request_ctx(req);
1511 struct hifn_device *dev = ctx->dev;
1512 unsigned long dlen, flags;
1513 unsigned int nbytes = req->cryptlen, idx = 0;
1514 int err = -EINVAL, sg_num;
1515 struct scatterlist *dst;
1516
1517 if (rctx->iv && !rctx->ivsize && rctx->mode != ACRYPTO_MODE_ECB)
1518 goto err_out_exit;
1519
1520 rctx->walk.flags = 0;
1521
1522 while (nbytes) {
1523 dst = &req->dst[idx];
1524 dlen = min(dst->length, nbytes);
1525
1526 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1527 !IS_ALIGNED(dlen, HIFN_D_DST_DALIGN))
1528 rctx->walk.flags |= ASYNC_FLAGS_MISALIGNED;
1529
1530 nbytes -= dlen;
1531 idx++;
1532 }
1533
1534 if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1535 err = hifn_cipher_walk_init(&rctx->walk, idx, GFP_ATOMIC);
1536 if (err < 0)
1537 return err;
1538 }
1539
1540 sg_num = hifn_cipher_walk(req, &rctx->walk);
1541 if (sg_num < 0) {
1542 err = sg_num;
1543 goto err_out_exit;
1544 }
1545
1546 spin_lock_irqsave(&dev->lock, flags);
1547 if (dev->started + sg_num > HIFN_QUEUE_LENGTH) {
1548 err = -EAGAIN;
1549 goto err_out;
1550 }
1551
1552 err = hifn_setup_dma(dev, ctx, rctx, req->src, req->dst, req->cryptlen, req);
1553 if (err)
1554 goto err_out;
1555
1556 dev->snum++;
1557
1558 dev->active = HIFN_DEFAULT_ACTIVE_NUM;
1559 spin_unlock_irqrestore(&dev->lock, flags);
1560
1561 return 0;
1562
1563 err_out:
1564 spin_unlock_irqrestore(&dev->lock, flags);
1565 err_out_exit:
1566 if (err) {
1567 dev_info(&dev->pdev->dev, "iv: %p [%d], key: %p [%d], mode: %u, op: %u, "
1568 "type: %u, err: %d.\n",
1569 rctx->iv, rctx->ivsize,
1570 ctx->key, ctx->keysize,
1571 rctx->mode, rctx->op, rctx->type, err);
1572 }
1573
1574 return err;
1575 }
1576
hifn_start_device(struct hifn_device * dev)1577 static int hifn_start_device(struct hifn_device *dev)
1578 {
1579 int err;
1580
1581 dev->started = dev->active = 0;
1582 hifn_reset_dma(dev, 1);
1583
1584 err = hifn_enable_crypto(dev);
1585 if (err)
1586 return err;
1587
1588 hifn_reset_puc(dev);
1589
1590 hifn_init_dma(dev);
1591
1592 hifn_init_registers(dev);
1593
1594 hifn_init_pubrng(dev);
1595
1596 return 0;
1597 }
1598
skcipher_get(void * saddr,unsigned int * srestp,unsigned int offset,struct scatterlist * dst,unsigned int size,unsigned int * nbytesp)1599 static int skcipher_get(void *saddr, unsigned int *srestp, unsigned int offset,
1600 struct scatterlist *dst, unsigned int size, unsigned int *nbytesp)
1601 {
1602 unsigned int srest = *srestp, nbytes = *nbytesp, copy;
1603 void *daddr;
1604 int idx = 0;
1605
1606 if (srest < size || size > nbytes)
1607 return -EINVAL;
1608
1609 while (size) {
1610 copy = min3(srest, dst->length, size);
1611
1612 daddr = kmap_atomic(sg_page(dst));
1613 memcpy(daddr + dst->offset + offset, saddr, copy);
1614 kunmap_atomic(daddr);
1615
1616 nbytes -= copy;
1617 size -= copy;
1618 srest -= copy;
1619 saddr += copy;
1620 offset = 0;
1621
1622 pr_debug("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n",
1623 __func__, copy, size, srest, nbytes);
1624
1625 dst++;
1626 idx++;
1627 }
1628
1629 *nbytesp = nbytes;
1630 *srestp = srest;
1631
1632 return idx;
1633 }
1634
hifn_complete_sa(struct hifn_device * dev,int i)1635 static inline void hifn_complete_sa(struct hifn_device *dev, int i)
1636 {
1637 unsigned long flags;
1638
1639 spin_lock_irqsave(&dev->lock, flags);
1640 dev->sa[i] = NULL;
1641 dev->started--;
1642 if (dev->started < 0)
1643 dev_info(&dev->pdev->dev, "%s: started: %d.\n", __func__,
1644 dev->started);
1645 spin_unlock_irqrestore(&dev->lock, flags);
1646 BUG_ON(dev->started < 0);
1647 }
1648
hifn_process_ready(struct skcipher_request * req,int error)1649 static void hifn_process_ready(struct skcipher_request *req, int error)
1650 {
1651 struct hifn_request_context *rctx = skcipher_request_ctx(req);
1652
1653 if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1654 unsigned int nbytes = req->cryptlen;
1655 int idx = 0, err;
1656 struct scatterlist *dst, *t;
1657 void *saddr;
1658
1659 while (nbytes) {
1660 t = &rctx->walk.cache[idx];
1661 dst = &req->dst[idx];
1662
1663 pr_debug("\n%s: sg_page(t): %p, t->length: %u, "
1664 "sg_page(dst): %p, dst->length: %u, "
1665 "nbytes: %u.\n",
1666 __func__, sg_page(t), t->length,
1667 sg_page(dst), dst->length, nbytes);
1668
1669 if (!t->length) {
1670 nbytes -= min(dst->length, nbytes);
1671 idx++;
1672 continue;
1673 }
1674
1675 saddr = kmap_atomic(sg_page(t));
1676
1677 err = skcipher_get(saddr, &t->length, t->offset,
1678 dst, nbytes, &nbytes);
1679 if (err < 0) {
1680 kunmap_atomic(saddr);
1681 break;
1682 }
1683
1684 idx += err;
1685 kunmap_atomic(saddr);
1686 }
1687
1688 hifn_cipher_walk_exit(&rctx->walk);
1689 }
1690
1691 skcipher_request_complete(req, error);
1692 }
1693
hifn_clear_rings(struct hifn_device * dev,int error)1694 static void hifn_clear_rings(struct hifn_device *dev, int error)
1695 {
1696 struct hifn_dma *dma = dev->desc_virt;
1697 int i, u;
1698
1699 dev_dbg(&dev->pdev->dev, "ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1700 "k: %d.%d.%d.%d.\n",
1701 dma->cmdi, dma->srci, dma->dsti, dma->resi,
1702 dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1703 dma->cmdk, dma->srck, dma->dstk, dma->resk);
1704
1705 i = dma->resk; u = dma->resu;
1706 while (u != 0) {
1707 if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID))
1708 break;
1709
1710 if (dev->sa[i]) {
1711 dev->success++;
1712 dev->reset = 0;
1713 hifn_process_ready(dev->sa[i], error);
1714 hifn_complete_sa(dev, i);
1715 }
1716
1717 if (++i == HIFN_D_RES_RSIZE)
1718 i = 0;
1719 u--;
1720 }
1721 dma->resk = i; dma->resu = u;
1722
1723 i = dma->srck; u = dma->srcu;
1724 while (u != 0) {
1725 if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID))
1726 break;
1727 if (++i == HIFN_D_SRC_RSIZE)
1728 i = 0;
1729 u--;
1730 }
1731 dma->srck = i; dma->srcu = u;
1732
1733 i = dma->cmdk; u = dma->cmdu;
1734 while (u != 0) {
1735 if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID))
1736 break;
1737 if (++i == HIFN_D_CMD_RSIZE)
1738 i = 0;
1739 u--;
1740 }
1741 dma->cmdk = i; dma->cmdu = u;
1742
1743 i = dma->dstk; u = dma->dstu;
1744 while (u != 0) {
1745 if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID))
1746 break;
1747 if (++i == HIFN_D_DST_RSIZE)
1748 i = 0;
1749 u--;
1750 }
1751 dma->dstk = i; dma->dstu = u;
1752
1753 dev_dbg(&dev->pdev->dev, "ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1754 "k: %d.%d.%d.%d.\n",
1755 dma->cmdi, dma->srci, dma->dsti, dma->resi,
1756 dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1757 dma->cmdk, dma->srck, dma->dstk, dma->resk);
1758 }
1759
hifn_work(struct work_struct * work)1760 static void hifn_work(struct work_struct *work)
1761 {
1762 struct delayed_work *dw = to_delayed_work(work);
1763 struct hifn_device *dev = container_of(dw, struct hifn_device, work);
1764 unsigned long flags;
1765 int reset = 0;
1766 u32 r = 0;
1767
1768 spin_lock_irqsave(&dev->lock, flags);
1769 if (dev->active == 0) {
1770 struct hifn_dma *dma = dev->desc_virt;
1771
1772 if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) {
1773 dev->flags &= ~HIFN_FLAG_CMD_BUSY;
1774 r |= HIFN_DMACSR_C_CTRL_DIS;
1775 }
1776 if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) {
1777 dev->flags &= ~HIFN_FLAG_SRC_BUSY;
1778 r |= HIFN_DMACSR_S_CTRL_DIS;
1779 }
1780 if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) {
1781 dev->flags &= ~HIFN_FLAG_DST_BUSY;
1782 r |= HIFN_DMACSR_D_CTRL_DIS;
1783 }
1784 if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) {
1785 dev->flags &= ~HIFN_FLAG_RES_BUSY;
1786 r |= HIFN_DMACSR_R_CTRL_DIS;
1787 }
1788 if (r)
1789 hifn_write_1(dev, HIFN_1_DMA_CSR, r);
1790 } else
1791 dev->active--;
1792
1793 if ((dev->prev_success == dev->success) && dev->started)
1794 reset = 1;
1795 dev->prev_success = dev->success;
1796 spin_unlock_irqrestore(&dev->lock, flags);
1797
1798 if (reset) {
1799 if (++dev->reset >= 5) {
1800 int i;
1801 struct hifn_dma *dma = dev->desc_virt;
1802
1803 dev_info(&dev->pdev->dev,
1804 "r: %08x, active: %d, started: %d, "
1805 "success: %lu: qlen: %u/%u, reset: %d.\n",
1806 r, dev->active, dev->started,
1807 dev->success, dev->queue.qlen, dev->queue.max_qlen,
1808 reset);
1809
1810 dev_info(&dev->pdev->dev, "%s: res: ", __func__);
1811 for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1812 pr_info("%x.%p ", dma->resr[i].l, dev->sa[i]);
1813 if (dev->sa[i]) {
1814 hifn_process_ready(dev->sa[i], -ENODEV);
1815 hifn_complete_sa(dev, i);
1816 }
1817 }
1818 pr_info("\n");
1819
1820 hifn_reset_dma(dev, 1);
1821 hifn_stop_device(dev);
1822 hifn_start_device(dev);
1823 dev->reset = 0;
1824 }
1825
1826 tasklet_schedule(&dev->tasklet);
1827 }
1828
1829 schedule_delayed_work(&dev->work, HZ);
1830 }
1831
hifn_interrupt(int irq,void * data)1832 static irqreturn_t hifn_interrupt(int irq, void *data)
1833 {
1834 struct hifn_device *dev = data;
1835 struct hifn_dma *dma = dev->desc_virt;
1836 u32 dmacsr, restart;
1837
1838 dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR);
1839
1840 dev_dbg(&dev->pdev->dev, "1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], "
1841 "i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n",
1842 dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi,
1843 dma->cmdi, dma->srci, dma->dsti, dma->resi,
1844 dma->cmdu, dma->srcu, dma->dstu, dma->resu);
1845
1846 if ((dmacsr & dev->dmareg) == 0)
1847 return IRQ_NONE;
1848
1849 hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg);
1850
1851 if (dmacsr & HIFN_DMACSR_ENGINE)
1852 hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR));
1853 if (dmacsr & HIFN_DMACSR_PUBDONE)
1854 hifn_write_1(dev, HIFN_1_PUB_STATUS,
1855 hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE);
1856
1857 restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER);
1858 if (restart) {
1859 u32 puisr = hifn_read_0(dev, HIFN_0_PUISR);
1860
1861 dev_warn(&dev->pdev->dev, "overflow: r: %d, d: %d, puisr: %08x, d: %u.\n",
1862 !!(dmacsr & HIFN_DMACSR_R_OVER),
1863 !!(dmacsr & HIFN_DMACSR_D_OVER),
1864 puisr, !!(puisr & HIFN_PUISR_DSTOVER));
1865 if (!!(puisr & HIFN_PUISR_DSTOVER))
1866 hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1867 hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER |
1868 HIFN_DMACSR_D_OVER));
1869 }
1870
1871 restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT |
1872 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT);
1873 if (restart) {
1874 dev_warn(&dev->pdev->dev, "abort: c: %d, s: %d, d: %d, r: %d.\n",
1875 !!(dmacsr & HIFN_DMACSR_C_ABORT),
1876 !!(dmacsr & HIFN_DMACSR_S_ABORT),
1877 !!(dmacsr & HIFN_DMACSR_D_ABORT),
1878 !!(dmacsr & HIFN_DMACSR_R_ABORT));
1879 hifn_reset_dma(dev, 1);
1880 hifn_init_dma(dev);
1881 hifn_init_registers(dev);
1882 }
1883
1884 if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) {
1885 dev_dbg(&dev->pdev->dev, "wait on command.\n");
1886 dev->dmareg &= ~(HIFN_DMAIER_C_WAIT);
1887 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1888 }
1889
1890 tasklet_schedule(&dev->tasklet);
1891
1892 return IRQ_HANDLED;
1893 }
1894
hifn_flush(struct hifn_device * dev)1895 static void hifn_flush(struct hifn_device *dev)
1896 {
1897 unsigned long flags;
1898 struct crypto_async_request *async_req;
1899 struct skcipher_request *req;
1900 struct hifn_dma *dma = dev->desc_virt;
1901 int i;
1902
1903 for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1904 struct hifn_desc *d = &dma->resr[i];
1905
1906 if (dev->sa[i]) {
1907 hifn_process_ready(dev->sa[i],
1908 (d->l & __cpu_to_le32(HIFN_D_VALID)) ? -ENODEV : 0);
1909 hifn_complete_sa(dev, i);
1910 }
1911 }
1912
1913 spin_lock_irqsave(&dev->lock, flags);
1914 while ((async_req = crypto_dequeue_request(&dev->queue))) {
1915 req = skcipher_request_cast(async_req);
1916 spin_unlock_irqrestore(&dev->lock, flags);
1917
1918 hifn_process_ready(req, -ENODEV);
1919
1920 spin_lock_irqsave(&dev->lock, flags);
1921 }
1922 spin_unlock_irqrestore(&dev->lock, flags);
1923 }
1924
hifn_setkey(struct crypto_skcipher * cipher,const u8 * key,unsigned int len)1925 static int hifn_setkey(struct crypto_skcipher *cipher, const u8 *key,
1926 unsigned int len)
1927 {
1928 struct hifn_context *ctx = crypto_skcipher_ctx(cipher);
1929 struct hifn_device *dev = ctx->dev;
1930 int err;
1931
1932 err = verify_skcipher_des_key(cipher, key);
1933 if (err)
1934 return err;
1935
1936 dev->flags &= ~HIFN_FLAG_OLD_KEY;
1937
1938 memcpy(ctx->key, key, len);
1939 ctx->keysize = len;
1940
1941 return 0;
1942 }
1943
hifn_des3_setkey(struct crypto_skcipher * cipher,const u8 * key,unsigned int len)1944 static int hifn_des3_setkey(struct crypto_skcipher *cipher, const u8 *key,
1945 unsigned int len)
1946 {
1947 struct hifn_context *ctx = crypto_skcipher_ctx(cipher);
1948 struct hifn_device *dev = ctx->dev;
1949 int err;
1950
1951 err = verify_skcipher_des3_key(cipher, key);
1952 if (err)
1953 return err;
1954
1955 dev->flags &= ~HIFN_FLAG_OLD_KEY;
1956
1957 memcpy(ctx->key, key, len);
1958 ctx->keysize = len;
1959
1960 return 0;
1961 }
1962
hifn_handle_req(struct skcipher_request * req)1963 static int hifn_handle_req(struct skcipher_request *req)
1964 {
1965 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1966 struct hifn_device *dev = ctx->dev;
1967 int err = -EAGAIN;
1968
1969 if (dev->started + DIV_ROUND_UP(req->cryptlen, PAGE_SIZE) <= HIFN_QUEUE_LENGTH)
1970 err = hifn_setup_session(req);
1971
1972 if (err == -EAGAIN) {
1973 unsigned long flags;
1974
1975 spin_lock_irqsave(&dev->lock, flags);
1976 err = crypto_enqueue_request(&dev->queue, &req->base);
1977 spin_unlock_irqrestore(&dev->lock, flags);
1978 }
1979
1980 return err;
1981 }
1982
hifn_setup_crypto_req(struct skcipher_request * req,u8 op,u8 type,u8 mode)1983 static int hifn_setup_crypto_req(struct skcipher_request *req, u8 op,
1984 u8 type, u8 mode)
1985 {
1986 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1987 struct hifn_request_context *rctx = skcipher_request_ctx(req);
1988 unsigned ivsize;
1989
1990 ivsize = crypto_skcipher_ivsize(crypto_skcipher_reqtfm(req));
1991
1992 if (req->iv && mode != ACRYPTO_MODE_ECB) {
1993 if (type == ACRYPTO_TYPE_AES_128)
1994 ivsize = HIFN_AES_IV_LENGTH;
1995 else if (type == ACRYPTO_TYPE_DES)
1996 ivsize = HIFN_DES_KEY_LENGTH;
1997 else if (type == ACRYPTO_TYPE_3DES)
1998 ivsize = HIFN_3DES_KEY_LENGTH;
1999 }
2000
2001 if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) {
2002 if (ctx->keysize == 24)
2003 type = ACRYPTO_TYPE_AES_192;
2004 else if (ctx->keysize == 32)
2005 type = ACRYPTO_TYPE_AES_256;
2006 }
2007
2008 rctx->op = op;
2009 rctx->mode = mode;
2010 rctx->type = type;
2011 rctx->iv = req->iv;
2012 rctx->ivsize = ivsize;
2013
2014 /*
2015 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2016 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2017 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2018 */
2019
2020 return hifn_handle_req(req);
2021 }
2022
hifn_process_queue(struct hifn_device * dev)2023 static int hifn_process_queue(struct hifn_device *dev)
2024 {
2025 struct crypto_async_request *async_req, *backlog;
2026 struct skcipher_request *req;
2027 unsigned long flags;
2028 int err = 0;
2029
2030 while (dev->started < HIFN_QUEUE_LENGTH) {
2031 spin_lock_irqsave(&dev->lock, flags);
2032 backlog = crypto_get_backlog(&dev->queue);
2033 async_req = crypto_dequeue_request(&dev->queue);
2034 spin_unlock_irqrestore(&dev->lock, flags);
2035
2036 if (!async_req)
2037 break;
2038
2039 if (backlog)
2040 crypto_request_complete(backlog, -EINPROGRESS);
2041
2042 req = skcipher_request_cast(async_req);
2043
2044 err = hifn_handle_req(req);
2045 if (err)
2046 break;
2047 }
2048
2049 return err;
2050 }
2051
hifn_setup_crypto(struct skcipher_request * req,u8 op,u8 type,u8 mode)2052 static int hifn_setup_crypto(struct skcipher_request *req, u8 op,
2053 u8 type, u8 mode)
2054 {
2055 int err;
2056 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2057 struct hifn_device *dev = ctx->dev;
2058
2059 err = hifn_setup_crypto_req(req, op, type, mode);
2060 if (err)
2061 return err;
2062
2063 if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
2064 hifn_process_queue(dev);
2065
2066 return -EINPROGRESS;
2067 }
2068
2069 /*
2070 * AES ecryption functions.
2071 */
hifn_encrypt_aes_ecb(struct skcipher_request * req)2072 static inline int hifn_encrypt_aes_ecb(struct skcipher_request *req)
2073 {
2074 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2075 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2076 }
hifn_encrypt_aes_cbc(struct skcipher_request * req)2077 static inline int hifn_encrypt_aes_cbc(struct skcipher_request *req)
2078 {
2079 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2080 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2081 }
2082
2083 /*
2084 * AES decryption functions.
2085 */
hifn_decrypt_aes_ecb(struct skcipher_request * req)2086 static inline int hifn_decrypt_aes_ecb(struct skcipher_request *req)
2087 {
2088 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2089 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2090 }
hifn_decrypt_aes_cbc(struct skcipher_request * req)2091 static inline int hifn_decrypt_aes_cbc(struct skcipher_request *req)
2092 {
2093 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2094 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2095 }
2096
2097 /*
2098 * DES ecryption functions.
2099 */
hifn_encrypt_des_ecb(struct skcipher_request * req)2100 static inline int hifn_encrypt_des_ecb(struct skcipher_request *req)
2101 {
2102 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2103 ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2104 }
hifn_encrypt_des_cbc(struct skcipher_request * req)2105 static inline int hifn_encrypt_des_cbc(struct skcipher_request *req)
2106 {
2107 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2108 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2109 }
2110
2111 /*
2112 * DES decryption functions.
2113 */
hifn_decrypt_des_ecb(struct skcipher_request * req)2114 static inline int hifn_decrypt_des_ecb(struct skcipher_request *req)
2115 {
2116 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2117 ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2118 }
hifn_decrypt_des_cbc(struct skcipher_request * req)2119 static inline int hifn_decrypt_des_cbc(struct skcipher_request *req)
2120 {
2121 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2122 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2123 }
2124
2125 /*
2126 * 3DES ecryption functions.
2127 */
hifn_encrypt_3des_ecb(struct skcipher_request * req)2128 static inline int hifn_encrypt_3des_ecb(struct skcipher_request *req)
2129 {
2130 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2131 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2132 }
hifn_encrypt_3des_cbc(struct skcipher_request * req)2133 static inline int hifn_encrypt_3des_cbc(struct skcipher_request *req)
2134 {
2135 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2136 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2137 }
2138
2139 /* 3DES decryption functions. */
hifn_decrypt_3des_ecb(struct skcipher_request * req)2140 static inline int hifn_decrypt_3des_ecb(struct skcipher_request *req)
2141 {
2142 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2143 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2144 }
hifn_decrypt_3des_cbc(struct skcipher_request * req)2145 static inline int hifn_decrypt_3des_cbc(struct skcipher_request *req)
2146 {
2147 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2148 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2149 }
2150
2151 struct hifn_alg_template {
2152 char name[CRYPTO_MAX_ALG_NAME];
2153 char drv_name[CRYPTO_MAX_ALG_NAME];
2154 unsigned int bsize;
2155 struct skcipher_alg skcipher;
2156 };
2157
2158 static const struct hifn_alg_template hifn_alg_templates[] = {
2159 /*
2160 * 3DES ECB and CBC modes.
2161 */
2162 {
2163 .name = "cbc(des3_ede)", .drv_name = "cbc-3des", .bsize = 8,
2164 .skcipher = {
2165 .ivsize = HIFN_IV_LENGTH,
2166 .min_keysize = HIFN_3DES_KEY_LENGTH,
2167 .max_keysize = HIFN_3DES_KEY_LENGTH,
2168 .setkey = hifn_des3_setkey,
2169 .encrypt = hifn_encrypt_3des_cbc,
2170 .decrypt = hifn_decrypt_3des_cbc,
2171 },
2172 },
2173 {
2174 .name = "ecb(des3_ede)", .drv_name = "ecb-3des", .bsize = 8,
2175 .skcipher = {
2176 .min_keysize = HIFN_3DES_KEY_LENGTH,
2177 .max_keysize = HIFN_3DES_KEY_LENGTH,
2178 .setkey = hifn_des3_setkey,
2179 .encrypt = hifn_encrypt_3des_ecb,
2180 .decrypt = hifn_decrypt_3des_ecb,
2181 },
2182 },
2183
2184 /*
2185 * DES ECB and CBC modes.
2186 */
2187 {
2188 .name = "cbc(des)", .drv_name = "cbc-des", .bsize = 8,
2189 .skcipher = {
2190 .ivsize = HIFN_IV_LENGTH,
2191 .min_keysize = HIFN_DES_KEY_LENGTH,
2192 .max_keysize = HIFN_DES_KEY_LENGTH,
2193 .setkey = hifn_setkey,
2194 .encrypt = hifn_encrypt_des_cbc,
2195 .decrypt = hifn_decrypt_des_cbc,
2196 },
2197 },
2198 {
2199 .name = "ecb(des)", .drv_name = "ecb-des", .bsize = 8,
2200 .skcipher = {
2201 .min_keysize = HIFN_DES_KEY_LENGTH,
2202 .max_keysize = HIFN_DES_KEY_LENGTH,
2203 .setkey = hifn_setkey,
2204 .encrypt = hifn_encrypt_des_ecb,
2205 .decrypt = hifn_decrypt_des_ecb,
2206 },
2207 },
2208
2209 /*
2210 * AES ECB and CBC modes.
2211 */
2212 {
2213 .name = "ecb(aes)", .drv_name = "ecb-aes", .bsize = 16,
2214 .skcipher = {
2215 .min_keysize = AES_MIN_KEY_SIZE,
2216 .max_keysize = AES_MAX_KEY_SIZE,
2217 .setkey = hifn_setkey,
2218 .encrypt = hifn_encrypt_aes_ecb,
2219 .decrypt = hifn_decrypt_aes_ecb,
2220 },
2221 },
2222 {
2223 .name = "cbc(aes)", .drv_name = "cbc-aes", .bsize = 16,
2224 .skcipher = {
2225 .ivsize = HIFN_AES_IV_LENGTH,
2226 .min_keysize = AES_MIN_KEY_SIZE,
2227 .max_keysize = AES_MAX_KEY_SIZE,
2228 .setkey = hifn_setkey,
2229 .encrypt = hifn_encrypt_aes_cbc,
2230 .decrypt = hifn_decrypt_aes_cbc,
2231 },
2232 },
2233 };
2234
hifn_init_tfm(struct crypto_skcipher * tfm)2235 static int hifn_init_tfm(struct crypto_skcipher *tfm)
2236 {
2237 struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
2238 struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg);
2239 struct hifn_context *ctx = crypto_skcipher_ctx(tfm);
2240
2241 ctx->dev = ha->dev;
2242 crypto_skcipher_set_reqsize(tfm, sizeof(struct hifn_request_context));
2243
2244 return 0;
2245 }
2246
hifn_alg_alloc(struct hifn_device * dev,const struct hifn_alg_template * t)2247 static int hifn_alg_alloc(struct hifn_device *dev, const struct hifn_alg_template *t)
2248 {
2249 struct hifn_crypto_alg *alg;
2250 int err;
2251
2252 alg = kzalloc(sizeof(*alg), GFP_KERNEL);
2253 if (!alg)
2254 return -ENOMEM;
2255
2256 alg->alg = t->skcipher;
2257 alg->alg.init = hifn_init_tfm;
2258
2259 err = -EINVAL;
2260 if (snprintf(alg->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
2261 "%s", t->name) >= CRYPTO_MAX_ALG_NAME)
2262 goto out_free_alg;
2263 if (snprintf(alg->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
2264 "%s-%s", t->drv_name, dev->name) >= CRYPTO_MAX_ALG_NAME)
2265 goto out_free_alg;
2266
2267 alg->alg.base.cra_priority = 300;
2268 alg->alg.base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
2269 alg->alg.base.cra_blocksize = t->bsize;
2270 alg->alg.base.cra_ctxsize = sizeof(struct hifn_context);
2271 alg->alg.base.cra_alignmask = 0;
2272 alg->alg.base.cra_module = THIS_MODULE;
2273
2274 alg->dev = dev;
2275
2276 list_add_tail(&alg->entry, &dev->alg_list);
2277
2278 err = crypto_register_skcipher(&alg->alg);
2279 if (err) {
2280 list_del(&alg->entry);
2281 out_free_alg:
2282 kfree(alg);
2283 }
2284
2285 return err;
2286 }
2287
hifn_unregister_alg(struct hifn_device * dev)2288 static void hifn_unregister_alg(struct hifn_device *dev)
2289 {
2290 struct hifn_crypto_alg *a, *n;
2291
2292 list_for_each_entry_safe(a, n, &dev->alg_list, entry) {
2293 list_del(&a->entry);
2294 crypto_unregister_skcipher(&a->alg);
2295 kfree(a);
2296 }
2297 }
2298
hifn_register_alg(struct hifn_device * dev)2299 static int hifn_register_alg(struct hifn_device *dev)
2300 {
2301 int i, err;
2302
2303 for (i = 0; i < ARRAY_SIZE(hifn_alg_templates); ++i) {
2304 err = hifn_alg_alloc(dev, &hifn_alg_templates[i]);
2305 if (err)
2306 goto err_out_exit;
2307 }
2308
2309 return 0;
2310
2311 err_out_exit:
2312 hifn_unregister_alg(dev);
2313 return err;
2314 }
2315
hifn_tasklet_callback(unsigned long data)2316 static void hifn_tasklet_callback(unsigned long data)
2317 {
2318 struct hifn_device *dev = (struct hifn_device *)data;
2319
2320 /*
2321 * This is ok to call this without lock being held,
2322 * althogh it modifies some parameters used in parallel,
2323 * (like dev->success), but they are used in process
2324 * context or update is atomic (like setting dev->sa[i] to NULL).
2325 */
2326 hifn_clear_rings(dev, 0);
2327
2328 if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
2329 hifn_process_queue(dev);
2330 }
2331
hifn_probe(struct pci_dev * pdev,const struct pci_device_id * id)2332 static int hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2333 {
2334 int err, i;
2335 struct hifn_device *dev;
2336 char name[8];
2337
2338 err = pci_enable_device(pdev);
2339 if (err)
2340 return err;
2341 pci_set_master(pdev);
2342
2343 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2344 if (err)
2345 goto err_out_disable_pci_device;
2346
2347 snprintf(name, sizeof(name), "hifn%d",
2348 atomic_inc_return(&hifn_dev_number) - 1);
2349
2350 err = pci_request_regions(pdev, name);
2351 if (err)
2352 goto err_out_disable_pci_device;
2353
2354 if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE ||
2355 pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE ||
2356 pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) {
2357 dev_err(&pdev->dev, "Broken hardware - I/O regions are too small.\n");
2358 err = -ENODEV;
2359 goto err_out_free_regions;
2360 }
2361
2362 dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg),
2363 GFP_KERNEL);
2364 if (!dev) {
2365 err = -ENOMEM;
2366 goto err_out_free_regions;
2367 }
2368
2369 INIT_LIST_HEAD(&dev->alg_list);
2370
2371 snprintf(dev->name, sizeof(dev->name), "%s", name);
2372 spin_lock_init(&dev->lock);
2373
2374 for (i = 0; i < 3; ++i) {
2375 unsigned long addr, size;
2376
2377 addr = pci_resource_start(pdev, i);
2378 size = pci_resource_len(pdev, i);
2379
2380 dev->bar[i] = ioremap(addr, size);
2381 if (!dev->bar[i]) {
2382 err = -ENOMEM;
2383 goto err_out_unmap_bars;
2384 }
2385 }
2386
2387 dev->desc_virt = dma_alloc_coherent(&pdev->dev,
2388 sizeof(struct hifn_dma),
2389 &dev->desc_dma, GFP_KERNEL);
2390 if (!dev->desc_virt) {
2391 dev_err(&pdev->dev, "Failed to allocate descriptor rings.\n");
2392 err = -ENOMEM;
2393 goto err_out_unmap_bars;
2394 }
2395
2396 dev->pdev = pdev;
2397 dev->irq = pdev->irq;
2398
2399 for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
2400 dev->sa[i] = NULL;
2401
2402 pci_set_drvdata(pdev, dev);
2403
2404 tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev);
2405
2406 crypto_init_queue(&dev->queue, 1);
2407
2408 err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev);
2409 if (err) {
2410 dev_err(&pdev->dev, "Failed to request IRQ%d: err: %d.\n",
2411 dev->irq, err);
2412 dev->irq = 0;
2413 goto err_out_free_desc;
2414 }
2415
2416 err = hifn_start_device(dev);
2417 if (err)
2418 goto err_out_free_irq;
2419
2420 err = hifn_register_rng(dev);
2421 if (err)
2422 goto err_out_stop_device;
2423
2424 err = hifn_register_alg(dev);
2425 if (err)
2426 goto err_out_unregister_rng;
2427
2428 INIT_DELAYED_WORK(&dev->work, hifn_work);
2429 schedule_delayed_work(&dev->work, HZ);
2430
2431 dev_dbg(&pdev->dev, "HIFN crypto accelerator card at %s has been "
2432 "successfully registered as %s.\n",
2433 pci_name(pdev), dev->name);
2434
2435 return 0;
2436
2437 err_out_unregister_rng:
2438 hifn_unregister_rng(dev);
2439 err_out_stop_device:
2440 hifn_reset_dma(dev, 1);
2441 hifn_stop_device(dev);
2442 err_out_free_irq:
2443 free_irq(dev->irq, dev);
2444 tasklet_kill(&dev->tasklet);
2445 err_out_free_desc:
2446 dma_free_coherent(&pdev->dev, sizeof(struct hifn_dma), dev->desc_virt,
2447 dev->desc_dma);
2448
2449 err_out_unmap_bars:
2450 for (i = 0; i < 3; ++i)
2451 if (dev->bar[i])
2452 iounmap(dev->bar[i]);
2453 kfree(dev);
2454
2455 err_out_free_regions:
2456 pci_release_regions(pdev);
2457
2458 err_out_disable_pci_device:
2459 pci_disable_device(pdev);
2460
2461 return err;
2462 }
2463
hifn_remove(struct pci_dev * pdev)2464 static void hifn_remove(struct pci_dev *pdev)
2465 {
2466 int i;
2467 struct hifn_device *dev;
2468
2469 dev = pci_get_drvdata(pdev);
2470
2471 if (dev) {
2472 cancel_delayed_work_sync(&dev->work);
2473
2474 hifn_unregister_rng(dev);
2475 hifn_unregister_alg(dev);
2476 hifn_reset_dma(dev, 1);
2477 hifn_stop_device(dev);
2478
2479 free_irq(dev->irq, dev);
2480 tasklet_kill(&dev->tasklet);
2481
2482 hifn_flush(dev);
2483
2484 dma_free_coherent(&pdev->dev, sizeof(struct hifn_dma),
2485 dev->desc_virt, dev->desc_dma);
2486 for (i = 0; i < 3; ++i)
2487 if (dev->bar[i])
2488 iounmap(dev->bar[i]);
2489
2490 kfree(dev);
2491 }
2492
2493 pci_release_regions(pdev);
2494 pci_disable_device(pdev);
2495 }
2496
2497 static struct pci_device_id hifn_pci_tbl[] = {
2498 { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) },
2499 { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) },
2500 { 0 }
2501 };
2502 MODULE_DEVICE_TABLE(pci, hifn_pci_tbl);
2503
2504 static struct pci_driver hifn_pci_driver = {
2505 .name = "hifn795x",
2506 .id_table = hifn_pci_tbl,
2507 .probe = hifn_probe,
2508 .remove = hifn_remove,
2509 };
2510
hifn_init(void)2511 static int __init hifn_init(void)
2512 {
2513 unsigned int freq;
2514 int err;
2515
2516 if (strncmp(hifn_pll_ref, "ext", 3) &&
2517 strncmp(hifn_pll_ref, "pci", 3)) {
2518 pr_err("hifn795x: invalid hifn_pll_ref clock, must be pci or ext");
2519 return -EINVAL;
2520 }
2521
2522 /*
2523 * For the 7955/7956 the reference clock frequency must be in the
2524 * range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz,
2525 * but this chip is currently not supported.
2526 */
2527 if (hifn_pll_ref[3] != '\0') {
2528 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
2529 if (freq < 20 || freq > 100) {
2530 pr_err("hifn795x: invalid hifn_pll_ref frequency, must"
2531 "be in the range of 20-100");
2532 return -EINVAL;
2533 }
2534 }
2535
2536 err = pci_register_driver(&hifn_pci_driver);
2537 if (err < 0) {
2538 pr_err("Failed to register PCI driver for %s device.\n",
2539 hifn_pci_driver.name);
2540 return -ENODEV;
2541 }
2542
2543 pr_info("Driver for HIFN 795x crypto accelerator chip "
2544 "has been successfully registered.\n");
2545
2546 return 0;
2547 }
2548
hifn_fini(void)2549 static void __exit hifn_fini(void)
2550 {
2551 pci_unregister_driver(&hifn_pci_driver);
2552
2553 pr_info("Driver for HIFN 795x crypto accelerator chip "
2554 "has been successfully unregistered.\n");
2555 }
2556
2557 module_init(hifn_init);
2558 module_exit(hifn_fini);
2559
2560 MODULE_LICENSE("GPL");
2561 MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
2562 MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip.");
2563