xref: /linux/drivers/crypto/ccree/cc_cipher.c (revision c01044cc819160323f3ca4acd44fca487c4432e6)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2012-2019 ARM Limited (or its affiliates). */
3 
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <crypto/algapi.h>
7 #include <crypto/internal/skcipher.h>
8 #include <crypto/internal/des.h>
9 #include <crypto/xts.h>
10 #include <crypto/sm4.h>
11 #include <crypto/scatterwalk.h>
12 
13 #include "cc_driver.h"
14 #include "cc_lli_defs.h"
15 #include "cc_buffer_mgr.h"
16 #include "cc_cipher.h"
17 #include "cc_request_mgr.h"
18 
19 #define MAX_SKCIPHER_SEQ_LEN 6
20 
21 #define template_skcipher	template_u.skcipher
22 
23 struct cc_user_key_info {
24 	u8 *key;
25 	dma_addr_t key_dma_addr;
26 };
27 
28 struct cc_hw_key_info {
29 	enum cc_hw_crypto_key key1_slot;
30 	enum cc_hw_crypto_key key2_slot;
31 };
32 
33 struct cc_cpp_key_info {
34 	u8 slot;
35 	enum cc_cpp_alg alg;
36 };
37 
38 enum cc_key_type {
39 	CC_UNPROTECTED_KEY,		/* User key */
40 	CC_HW_PROTECTED_KEY,		/* HW (FDE) key */
41 	CC_POLICY_PROTECTED_KEY,	/* CPP key */
42 	CC_INVALID_PROTECTED_KEY	/* Invalid key */
43 };
44 
45 struct cc_cipher_ctx {
46 	struct cc_drvdata *drvdata;
47 	int keylen;
48 	int cipher_mode;
49 	int flow_mode;
50 	unsigned int flags;
51 	enum cc_key_type key_type;
52 	struct cc_user_key_info user;
53 	union {
54 		struct cc_hw_key_info hw;
55 		struct cc_cpp_key_info cpp;
56 	};
57 	struct crypto_shash *shash_tfm;
58 	struct crypto_skcipher *fallback_tfm;
59 	bool fallback_on;
60 };
61 
62 static void cc_cipher_complete(struct device *dev, void *cc_req, int err);
63 
64 static inline enum cc_key_type cc_key_type(struct crypto_tfm *tfm)
65 {
66 	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
67 
68 	return ctx_p->key_type;
69 }
70 
71 static int validate_keys_sizes(struct cc_cipher_ctx *ctx_p, u32 size)
72 {
73 	switch (ctx_p->flow_mode) {
74 	case S_DIN_to_AES:
75 		switch (size) {
76 		case CC_AES_128_BIT_KEY_SIZE:
77 		case CC_AES_192_BIT_KEY_SIZE:
78 			if (ctx_p->cipher_mode != DRV_CIPHER_XTS)
79 				return 0;
80 			break;
81 		case CC_AES_256_BIT_KEY_SIZE:
82 			return 0;
83 		case (CC_AES_192_BIT_KEY_SIZE * 2):
84 		case (CC_AES_256_BIT_KEY_SIZE * 2):
85 			if (ctx_p->cipher_mode == DRV_CIPHER_XTS ||
86 			    ctx_p->cipher_mode == DRV_CIPHER_ESSIV)
87 				return 0;
88 			break;
89 		default:
90 			break;
91 		}
92 		break;
93 	case S_DIN_to_DES:
94 		if (size == DES3_EDE_KEY_SIZE || size == DES_KEY_SIZE)
95 			return 0;
96 		break;
97 	case S_DIN_to_SM4:
98 		if (size == SM4_KEY_SIZE)
99 			return 0;
100 	default:
101 		break;
102 	}
103 	return -EINVAL;
104 }
105 
106 static int validate_data_size(struct cc_cipher_ctx *ctx_p,
107 			      unsigned int size)
108 {
109 	switch (ctx_p->flow_mode) {
110 	case S_DIN_to_AES:
111 		switch (ctx_p->cipher_mode) {
112 		case DRV_CIPHER_XTS:
113 		case DRV_CIPHER_CBC_CTS:
114 			if (size >= AES_BLOCK_SIZE)
115 				return 0;
116 			break;
117 		case DRV_CIPHER_OFB:
118 		case DRV_CIPHER_CTR:
119 				return 0;
120 		case DRV_CIPHER_ECB:
121 		case DRV_CIPHER_CBC:
122 		case DRV_CIPHER_ESSIV:
123 			if (IS_ALIGNED(size, AES_BLOCK_SIZE))
124 				return 0;
125 			break;
126 		default:
127 			break;
128 		}
129 		break;
130 	case S_DIN_to_DES:
131 		if (IS_ALIGNED(size, DES_BLOCK_SIZE))
132 			return 0;
133 		break;
134 	case S_DIN_to_SM4:
135 		switch (ctx_p->cipher_mode) {
136 		case DRV_CIPHER_CTR:
137 			return 0;
138 		case DRV_CIPHER_ECB:
139 		case DRV_CIPHER_CBC:
140 			if (IS_ALIGNED(size, SM4_BLOCK_SIZE))
141 				return 0;
142 		default:
143 			break;
144 		}
145 	default:
146 		break;
147 	}
148 	return -EINVAL;
149 }
150 
151 static int cc_cipher_init(struct crypto_tfm *tfm)
152 {
153 	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
154 	struct cc_crypto_alg *cc_alg =
155 			container_of(tfm->__crt_alg, struct cc_crypto_alg,
156 				     skcipher_alg.base);
157 	struct device *dev = drvdata_to_dev(cc_alg->drvdata);
158 	unsigned int max_key_buf_size = cc_alg->skcipher_alg.max_keysize;
159 	unsigned int fallback_req_size = 0;
160 
161 	dev_dbg(dev, "Initializing context @%p for %s\n", ctx_p,
162 		crypto_tfm_alg_name(tfm));
163 
164 	ctx_p->cipher_mode = cc_alg->cipher_mode;
165 	ctx_p->flow_mode = cc_alg->flow_mode;
166 	ctx_p->drvdata = cc_alg->drvdata;
167 
168 	if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
169 		const char *name = crypto_tfm_alg_name(tfm);
170 
171 		/* Alloc hash tfm for essiv */
172 		ctx_p->shash_tfm = crypto_alloc_shash("sha256", 0, 0);
173 		if (IS_ERR(ctx_p->shash_tfm)) {
174 			dev_err(dev, "Error allocating hash tfm for ESSIV.\n");
175 			return PTR_ERR(ctx_p->shash_tfm);
176 		}
177 		max_key_buf_size <<= 1;
178 
179 		/* Alloc fallabck tfm or essiv when key size != 256 bit */
180 		ctx_p->fallback_tfm =
181 			crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC);
182 
183 		if (IS_ERR(ctx_p->fallback_tfm)) {
184 			/* Note we're still allowing registration with no fallback since it's
185 			 * better to have most modes supported than none at all.
186 			 */
187 			dev_warn(dev, "Error allocating fallback algo %s. Some modes may be available.\n",
188 			       name);
189 			ctx_p->fallback_tfm = NULL;
190 		} else {
191 			fallback_req_size = crypto_skcipher_reqsize(ctx_p->fallback_tfm);
192 		}
193 	}
194 
195 	crypto_skcipher_set_reqsize(__crypto_skcipher_cast(tfm),
196 				    sizeof(struct cipher_req_ctx) + fallback_req_size);
197 
198 	/* Allocate key buffer, cache line aligned */
199 	ctx_p->user.key = kzalloc(max_key_buf_size, GFP_KERNEL);
200 	if (!ctx_p->user.key)
201 		goto free_fallback;
202 
203 	dev_dbg(dev, "Allocated key buffer in context. key=@%p\n",
204 		ctx_p->user.key);
205 
206 	/* Map key buffer */
207 	ctx_p->user.key_dma_addr = dma_map_single(dev, ctx_p->user.key,
208 						  max_key_buf_size,
209 						  DMA_TO_DEVICE);
210 	if (dma_mapping_error(dev, ctx_p->user.key_dma_addr)) {
211 		dev_err(dev, "Mapping Key %u B at va=%pK for DMA failed\n",
212 			max_key_buf_size, ctx_p->user.key);
213 		goto free_key;
214 	}
215 	dev_dbg(dev, "Mapped key %u B at va=%pK to dma=%pad\n",
216 		max_key_buf_size, ctx_p->user.key, &ctx_p->user.key_dma_addr);
217 
218 	return 0;
219 
220 free_key:
221 	kfree(ctx_p->user.key);
222 free_fallback:
223 	crypto_free_skcipher(ctx_p->fallback_tfm);
224 	crypto_free_shash(ctx_p->shash_tfm);
225 
226 	return -ENOMEM;
227 }
228 
229 static void cc_cipher_exit(struct crypto_tfm *tfm)
230 {
231 	struct crypto_alg *alg = tfm->__crt_alg;
232 	struct cc_crypto_alg *cc_alg =
233 			container_of(alg, struct cc_crypto_alg,
234 				     skcipher_alg.base);
235 	unsigned int max_key_buf_size = cc_alg->skcipher_alg.max_keysize;
236 	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
237 	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
238 
239 	dev_dbg(dev, "Clearing context @%p for %s\n",
240 		crypto_tfm_ctx(tfm), crypto_tfm_alg_name(tfm));
241 
242 	if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
243 		/* Free hash tfm for essiv */
244 		crypto_free_shash(ctx_p->shash_tfm);
245 		ctx_p->shash_tfm = NULL;
246 		crypto_free_skcipher(ctx_p->fallback_tfm);
247 		ctx_p->fallback_tfm = NULL;
248 	}
249 
250 	/* Unmap key buffer */
251 	dma_unmap_single(dev, ctx_p->user.key_dma_addr, max_key_buf_size,
252 			 DMA_TO_DEVICE);
253 	dev_dbg(dev, "Unmapped key buffer key_dma_addr=%pad\n",
254 		&ctx_p->user.key_dma_addr);
255 
256 	/* Free key buffer in context */
257 	kfree_sensitive(ctx_p->user.key);
258 	dev_dbg(dev, "Free key buffer in context. key=@%p\n", ctx_p->user.key);
259 }
260 
261 struct tdes_keys {
262 	u8	key1[DES_KEY_SIZE];
263 	u8	key2[DES_KEY_SIZE];
264 	u8	key3[DES_KEY_SIZE];
265 };
266 
267 static enum cc_hw_crypto_key cc_slot_to_hw_key(u8 slot_num)
268 {
269 	switch (slot_num) {
270 	case 0:
271 		return KFDE0_KEY;
272 	case 1:
273 		return KFDE1_KEY;
274 	case 2:
275 		return KFDE2_KEY;
276 	case 3:
277 		return KFDE3_KEY;
278 	}
279 	return END_OF_KEYS;
280 }
281 
282 static u8 cc_slot_to_cpp_key(u8 slot_num)
283 {
284 	return (slot_num - CC_FIRST_CPP_KEY_SLOT);
285 }
286 
287 static inline enum cc_key_type cc_slot_to_key_type(u8 slot_num)
288 {
289 	if (slot_num >= CC_FIRST_HW_KEY_SLOT && slot_num <= CC_LAST_HW_KEY_SLOT)
290 		return CC_HW_PROTECTED_KEY;
291 	else if (slot_num >=  CC_FIRST_CPP_KEY_SLOT &&
292 		 slot_num <=  CC_LAST_CPP_KEY_SLOT)
293 		return CC_POLICY_PROTECTED_KEY;
294 	else
295 		return CC_INVALID_PROTECTED_KEY;
296 }
297 
298 static int cc_cipher_sethkey(struct crypto_skcipher *sktfm, const u8 *key,
299 			     unsigned int keylen)
300 {
301 	struct crypto_tfm *tfm = crypto_skcipher_tfm(sktfm);
302 	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
303 	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
304 	struct cc_hkey_info hki;
305 
306 	dev_dbg(dev, "Setting HW key in context @%p for %s. keylen=%u\n",
307 		ctx_p, crypto_tfm_alg_name(tfm), keylen);
308 	dump_byte_array("key", key, keylen);
309 
310 	/* STAT_PHASE_0: Init and sanity checks */
311 
312 	/* This check the size of the protected key token */
313 	if (keylen != sizeof(hki)) {
314 		dev_err(dev, "Unsupported protected key size %d.\n", keylen);
315 		return -EINVAL;
316 	}
317 
318 	memcpy(&hki, key, keylen);
319 
320 	/* The real key len for crypto op is the size of the HW key
321 	 * referenced by the HW key slot, not the hardware key token
322 	 */
323 	keylen = hki.keylen;
324 
325 	if (validate_keys_sizes(ctx_p, keylen)) {
326 		dev_dbg(dev, "Unsupported key size %d.\n", keylen);
327 		return -EINVAL;
328 	}
329 
330 	ctx_p->keylen = keylen;
331 	ctx_p->fallback_on = false;
332 
333 	switch (cc_slot_to_key_type(hki.hw_key1)) {
334 	case CC_HW_PROTECTED_KEY:
335 		if (ctx_p->flow_mode == S_DIN_to_SM4) {
336 			dev_err(dev, "Only AES HW protected keys are supported\n");
337 			return -EINVAL;
338 		}
339 
340 		ctx_p->hw.key1_slot = cc_slot_to_hw_key(hki.hw_key1);
341 		if (ctx_p->hw.key1_slot == END_OF_KEYS) {
342 			dev_err(dev, "Unsupported hw key1 number (%d)\n",
343 				hki.hw_key1);
344 			return -EINVAL;
345 		}
346 
347 		if (ctx_p->cipher_mode == DRV_CIPHER_XTS ||
348 		    ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
349 			if (hki.hw_key1 == hki.hw_key2) {
350 				dev_err(dev, "Illegal hw key numbers (%d,%d)\n",
351 					hki.hw_key1, hki.hw_key2);
352 				return -EINVAL;
353 			}
354 
355 			ctx_p->hw.key2_slot = cc_slot_to_hw_key(hki.hw_key2);
356 			if (ctx_p->hw.key2_slot == END_OF_KEYS) {
357 				dev_err(dev, "Unsupported hw key2 number (%d)\n",
358 					hki.hw_key2);
359 				return -EINVAL;
360 			}
361 		}
362 
363 		ctx_p->key_type = CC_HW_PROTECTED_KEY;
364 		dev_dbg(dev, "HW protected key  %d/%d set\n.",
365 			ctx_p->hw.key1_slot, ctx_p->hw.key2_slot);
366 		break;
367 
368 	case CC_POLICY_PROTECTED_KEY:
369 		if (ctx_p->drvdata->hw_rev < CC_HW_REV_713) {
370 			dev_err(dev, "CPP keys not supported in this hardware revision.\n");
371 			return -EINVAL;
372 		}
373 
374 		if (ctx_p->cipher_mode != DRV_CIPHER_CBC &&
375 		    ctx_p->cipher_mode != DRV_CIPHER_CTR) {
376 			dev_err(dev, "CPP keys only supported in CBC or CTR modes.\n");
377 			return -EINVAL;
378 		}
379 
380 		ctx_p->cpp.slot = cc_slot_to_cpp_key(hki.hw_key1);
381 		if (ctx_p->flow_mode == S_DIN_to_AES)
382 			ctx_p->cpp.alg = CC_CPP_AES;
383 		else /* Must be SM4 since due to sethkey registration */
384 			ctx_p->cpp.alg = CC_CPP_SM4;
385 		ctx_p->key_type = CC_POLICY_PROTECTED_KEY;
386 		dev_dbg(dev, "policy protected key alg: %d slot: %d.\n",
387 			ctx_p->cpp.alg, ctx_p->cpp.slot);
388 		break;
389 
390 	default:
391 		dev_err(dev, "Unsupported protected key (%d)\n", hki.hw_key1);
392 		return -EINVAL;
393 	}
394 
395 	return 0;
396 }
397 
398 static int cc_cipher_setkey(struct crypto_skcipher *sktfm, const u8 *key,
399 			    unsigned int keylen)
400 {
401 	struct crypto_tfm *tfm = crypto_skcipher_tfm(sktfm);
402 	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
403 	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
404 	struct cc_crypto_alg *cc_alg =
405 			container_of(tfm->__crt_alg, struct cc_crypto_alg,
406 				     skcipher_alg.base);
407 	unsigned int max_key_buf_size = cc_alg->skcipher_alg.max_keysize;
408 
409 	dev_dbg(dev, "Setting key in context @%p for %s. keylen=%u\n",
410 		ctx_p, crypto_tfm_alg_name(tfm), keylen);
411 	dump_byte_array("key", key, keylen);
412 
413 	/* STAT_PHASE_0: Init and sanity checks */
414 
415 	if (validate_keys_sizes(ctx_p, keylen)) {
416 		dev_dbg(dev, "Invalid key size %d.\n", keylen);
417 		return -EINVAL;
418 	}
419 
420 	if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
421 
422 		/* We only support 256 bit ESSIV-CBC-AES keys */
423 		if (keylen != AES_KEYSIZE_256)  {
424 			unsigned int flags = crypto_tfm_get_flags(tfm) & CRYPTO_TFM_REQ_MASK;
425 
426 			if (likely(ctx_p->fallback_tfm)) {
427 				ctx_p->fallback_on = true;
428 				crypto_skcipher_clear_flags(ctx_p->fallback_tfm,
429 							    CRYPTO_TFM_REQ_MASK);
430 				crypto_skcipher_clear_flags(ctx_p->fallback_tfm, flags);
431 				return crypto_skcipher_setkey(ctx_p->fallback_tfm, key, keylen);
432 			}
433 
434 			dev_dbg(dev, "Unsupported key size %d and no fallback.\n", keylen);
435 			return -EINVAL;
436 		}
437 
438 		/* Internal ESSIV key buffer is double sized */
439 		max_key_buf_size <<= 1;
440 	}
441 
442 	ctx_p->fallback_on = false;
443 	ctx_p->key_type = CC_UNPROTECTED_KEY;
444 
445 	/*
446 	 * Verify DES weak keys
447 	 * Note that we're dropping the expanded key since the
448 	 * HW does the expansion on its own.
449 	 */
450 	if (ctx_p->flow_mode == S_DIN_to_DES) {
451 		if ((keylen == DES3_EDE_KEY_SIZE &&
452 		     verify_skcipher_des3_key(sktfm, key)) ||
453 		    verify_skcipher_des_key(sktfm, key)) {
454 			dev_dbg(dev, "weak DES key");
455 			return -EINVAL;
456 		}
457 	}
458 
459 	if (ctx_p->cipher_mode == DRV_CIPHER_XTS &&
460 	    xts_check_key(tfm, key, keylen)) {
461 		dev_dbg(dev, "weak XTS key");
462 		return -EINVAL;
463 	}
464 
465 	/* STAT_PHASE_1: Copy key to ctx */
466 	dma_sync_single_for_cpu(dev, ctx_p->user.key_dma_addr,
467 				max_key_buf_size, DMA_TO_DEVICE);
468 
469 	memcpy(ctx_p->user.key, key, keylen);
470 
471 	if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
472 		/* sha256 for key2 - use sw implementation */
473 		int err;
474 
475 		err = crypto_shash_tfm_digest(ctx_p->shash_tfm,
476 					      ctx_p->user.key, keylen,
477 					      ctx_p->user.key + keylen);
478 		if (err) {
479 			dev_err(dev, "Failed to hash ESSIV key.\n");
480 			return err;
481 		}
482 
483 		keylen <<= 1;
484 	}
485 	dma_sync_single_for_device(dev, ctx_p->user.key_dma_addr,
486 				   max_key_buf_size, DMA_TO_DEVICE);
487 	ctx_p->keylen = keylen;
488 
489 	dev_dbg(dev, "return safely");
490 	return 0;
491 }
492 
493 static int cc_out_setup_mode(struct cc_cipher_ctx *ctx_p)
494 {
495 	switch (ctx_p->flow_mode) {
496 	case S_DIN_to_AES:
497 		return S_AES_to_DOUT;
498 	case S_DIN_to_DES:
499 		return S_DES_to_DOUT;
500 	case S_DIN_to_SM4:
501 		return S_SM4_to_DOUT;
502 	default:
503 		return ctx_p->flow_mode;
504 	}
505 }
506 
507 static void cc_setup_readiv_desc(struct crypto_tfm *tfm,
508 				 struct cipher_req_ctx *req_ctx,
509 				 unsigned int ivsize, struct cc_hw_desc desc[],
510 				 unsigned int *seq_size)
511 {
512 	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
513 	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
514 	int cipher_mode = ctx_p->cipher_mode;
515 	int flow_mode = cc_out_setup_mode(ctx_p);
516 	int direction = req_ctx->gen_ctx.op_type;
517 	dma_addr_t iv_dma_addr = req_ctx->gen_ctx.iv_dma_addr;
518 
519 	if (ctx_p->key_type == CC_POLICY_PROTECTED_KEY)
520 		return;
521 
522 	switch (cipher_mode) {
523 	case DRV_CIPHER_ECB:
524 		break;
525 	case DRV_CIPHER_CBC:
526 	case DRV_CIPHER_CBC_CTS:
527 	case DRV_CIPHER_CTR:
528 	case DRV_CIPHER_OFB:
529 		/* Read next IV */
530 		hw_desc_init(&desc[*seq_size]);
531 		set_dout_dlli(&desc[*seq_size], iv_dma_addr, ivsize, NS_BIT, 1);
532 		set_cipher_config0(&desc[*seq_size], direction);
533 		set_flow_mode(&desc[*seq_size], flow_mode);
534 		set_cipher_mode(&desc[*seq_size], cipher_mode);
535 		if (cipher_mode == DRV_CIPHER_CTR ||
536 		    cipher_mode == DRV_CIPHER_OFB) {
537 			set_setup_mode(&desc[*seq_size], SETUP_WRITE_STATE1);
538 		} else {
539 			set_setup_mode(&desc[*seq_size], SETUP_WRITE_STATE0);
540 		}
541 		set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]);
542 		(*seq_size)++;
543 		break;
544 	case DRV_CIPHER_XTS:
545 	case DRV_CIPHER_ESSIV:
546 		/*  IV */
547 		hw_desc_init(&desc[*seq_size]);
548 		set_setup_mode(&desc[*seq_size], SETUP_WRITE_STATE1);
549 		set_cipher_mode(&desc[*seq_size], cipher_mode);
550 		set_cipher_config0(&desc[*seq_size], direction);
551 		set_flow_mode(&desc[*seq_size], flow_mode);
552 		set_dout_dlli(&desc[*seq_size], iv_dma_addr, CC_AES_BLOCK_SIZE,
553 			     NS_BIT, 1);
554 		set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]);
555 		(*seq_size)++;
556 		break;
557 	default:
558 		dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode);
559 	}
560 }
561 
562 
563 static void cc_setup_state_desc(struct crypto_tfm *tfm,
564 				 struct cipher_req_ctx *req_ctx,
565 				 unsigned int ivsize, unsigned int nbytes,
566 				 struct cc_hw_desc desc[],
567 				 unsigned int *seq_size)
568 {
569 	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
570 	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
571 	int cipher_mode = ctx_p->cipher_mode;
572 	int flow_mode = ctx_p->flow_mode;
573 	int direction = req_ctx->gen_ctx.op_type;
574 	dma_addr_t iv_dma_addr = req_ctx->gen_ctx.iv_dma_addr;
575 
576 	switch (cipher_mode) {
577 	case DRV_CIPHER_ECB:
578 		break;
579 	case DRV_CIPHER_CBC:
580 	case DRV_CIPHER_CBC_CTS:
581 	case DRV_CIPHER_CTR:
582 	case DRV_CIPHER_OFB:
583 		/* Load IV */
584 		hw_desc_init(&desc[*seq_size]);
585 		set_din_type(&desc[*seq_size], DMA_DLLI, iv_dma_addr, ivsize,
586 			     NS_BIT);
587 		set_cipher_config0(&desc[*seq_size], direction);
588 		set_flow_mode(&desc[*seq_size], flow_mode);
589 		set_cipher_mode(&desc[*seq_size], cipher_mode);
590 		if (cipher_mode == DRV_CIPHER_CTR ||
591 		    cipher_mode == DRV_CIPHER_OFB) {
592 			set_setup_mode(&desc[*seq_size], SETUP_LOAD_STATE1);
593 		} else {
594 			set_setup_mode(&desc[*seq_size], SETUP_LOAD_STATE0);
595 		}
596 		(*seq_size)++;
597 		break;
598 	case DRV_CIPHER_XTS:
599 	case DRV_CIPHER_ESSIV:
600 		break;
601 	default:
602 		dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode);
603 	}
604 }
605 
606 
607 static void cc_setup_xex_state_desc(struct crypto_tfm *tfm,
608 				 struct cipher_req_ctx *req_ctx,
609 				 unsigned int ivsize, unsigned int nbytes,
610 				 struct cc_hw_desc desc[],
611 				 unsigned int *seq_size)
612 {
613 	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
614 	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
615 	int cipher_mode = ctx_p->cipher_mode;
616 	int flow_mode = ctx_p->flow_mode;
617 	int direction = req_ctx->gen_ctx.op_type;
618 	dma_addr_t key_dma_addr = ctx_p->user.key_dma_addr;
619 	unsigned int key_len = (ctx_p->keylen / 2);
620 	dma_addr_t iv_dma_addr = req_ctx->gen_ctx.iv_dma_addr;
621 	unsigned int key_offset = key_len;
622 
623 	switch (cipher_mode) {
624 	case DRV_CIPHER_ECB:
625 		break;
626 	case DRV_CIPHER_CBC:
627 	case DRV_CIPHER_CBC_CTS:
628 	case DRV_CIPHER_CTR:
629 	case DRV_CIPHER_OFB:
630 		break;
631 	case DRV_CIPHER_XTS:
632 	case DRV_CIPHER_ESSIV:
633 
634 		if (cipher_mode == DRV_CIPHER_ESSIV)
635 			key_len = SHA256_DIGEST_SIZE;
636 
637 		/* load XEX key */
638 		hw_desc_init(&desc[*seq_size]);
639 		set_cipher_mode(&desc[*seq_size], cipher_mode);
640 		set_cipher_config0(&desc[*seq_size], direction);
641 		if (cc_key_type(tfm) == CC_HW_PROTECTED_KEY) {
642 			set_hw_crypto_key(&desc[*seq_size],
643 					  ctx_p->hw.key2_slot);
644 		} else {
645 			set_din_type(&desc[*seq_size], DMA_DLLI,
646 				     (key_dma_addr + key_offset),
647 				     key_len, NS_BIT);
648 		}
649 		set_xex_data_unit_size(&desc[*seq_size], nbytes);
650 		set_flow_mode(&desc[*seq_size], S_DIN_to_AES2);
651 		set_key_size_aes(&desc[*seq_size], key_len);
652 		set_setup_mode(&desc[*seq_size], SETUP_LOAD_XEX_KEY);
653 		(*seq_size)++;
654 
655 		/* Load IV */
656 		hw_desc_init(&desc[*seq_size]);
657 		set_setup_mode(&desc[*seq_size], SETUP_LOAD_STATE1);
658 		set_cipher_mode(&desc[*seq_size], cipher_mode);
659 		set_cipher_config0(&desc[*seq_size], direction);
660 		set_key_size_aes(&desc[*seq_size], key_len);
661 		set_flow_mode(&desc[*seq_size], flow_mode);
662 		set_din_type(&desc[*seq_size], DMA_DLLI, iv_dma_addr,
663 			     CC_AES_BLOCK_SIZE, NS_BIT);
664 		(*seq_size)++;
665 		break;
666 	default:
667 		dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode);
668 	}
669 }
670 
671 static int cc_out_flow_mode(struct cc_cipher_ctx *ctx_p)
672 {
673 	switch (ctx_p->flow_mode) {
674 	case S_DIN_to_AES:
675 		return DIN_AES_DOUT;
676 	case S_DIN_to_DES:
677 		return DIN_DES_DOUT;
678 	case S_DIN_to_SM4:
679 		return DIN_SM4_DOUT;
680 	default:
681 		return ctx_p->flow_mode;
682 	}
683 }
684 
685 static void cc_setup_key_desc(struct crypto_tfm *tfm,
686 			      struct cipher_req_ctx *req_ctx,
687 			      unsigned int nbytes, struct cc_hw_desc desc[],
688 			      unsigned int *seq_size)
689 {
690 	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
691 	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
692 	int cipher_mode = ctx_p->cipher_mode;
693 	int flow_mode = ctx_p->flow_mode;
694 	int direction = req_ctx->gen_ctx.op_type;
695 	dma_addr_t key_dma_addr = ctx_p->user.key_dma_addr;
696 	unsigned int key_len = ctx_p->keylen;
697 	unsigned int din_size;
698 
699 	switch (cipher_mode) {
700 	case DRV_CIPHER_CBC:
701 	case DRV_CIPHER_CBC_CTS:
702 	case DRV_CIPHER_CTR:
703 	case DRV_CIPHER_OFB:
704 	case DRV_CIPHER_ECB:
705 		/* Load key */
706 		hw_desc_init(&desc[*seq_size]);
707 		set_cipher_mode(&desc[*seq_size], cipher_mode);
708 		set_cipher_config0(&desc[*seq_size], direction);
709 
710 		if (cc_key_type(tfm) == CC_POLICY_PROTECTED_KEY) {
711 			/* We use the AES key size coding for all CPP algs */
712 			set_key_size_aes(&desc[*seq_size], key_len);
713 			set_cpp_crypto_key(&desc[*seq_size], ctx_p->cpp.slot);
714 			flow_mode = cc_out_flow_mode(ctx_p);
715 		} else {
716 			if (flow_mode == S_DIN_to_AES) {
717 				if (cc_key_type(tfm) == CC_HW_PROTECTED_KEY) {
718 					set_hw_crypto_key(&desc[*seq_size],
719 							  ctx_p->hw.key1_slot);
720 				} else {
721 					/* CC_POLICY_UNPROTECTED_KEY
722 					 * Invalid keys are filtered out in
723 					 * sethkey()
724 					 */
725 					din_size = (key_len == 24) ?
726 						AES_MAX_KEY_SIZE : key_len;
727 
728 					set_din_type(&desc[*seq_size], DMA_DLLI,
729 						     key_dma_addr, din_size,
730 						     NS_BIT);
731 				}
732 				set_key_size_aes(&desc[*seq_size], key_len);
733 			} else {
734 				/*des*/
735 				set_din_type(&desc[*seq_size], DMA_DLLI,
736 					     key_dma_addr, key_len, NS_BIT);
737 				set_key_size_des(&desc[*seq_size], key_len);
738 			}
739 			set_setup_mode(&desc[*seq_size], SETUP_LOAD_KEY0);
740 		}
741 		set_flow_mode(&desc[*seq_size], flow_mode);
742 		(*seq_size)++;
743 		break;
744 	case DRV_CIPHER_XTS:
745 	case DRV_CIPHER_ESSIV:
746 		/* Load AES key */
747 		hw_desc_init(&desc[*seq_size]);
748 		set_cipher_mode(&desc[*seq_size], cipher_mode);
749 		set_cipher_config0(&desc[*seq_size], direction);
750 		if (cc_key_type(tfm) == CC_HW_PROTECTED_KEY) {
751 			set_hw_crypto_key(&desc[*seq_size],
752 					  ctx_p->hw.key1_slot);
753 		} else {
754 			set_din_type(&desc[*seq_size], DMA_DLLI, key_dma_addr,
755 				     (key_len / 2), NS_BIT);
756 		}
757 		set_key_size_aes(&desc[*seq_size], (key_len / 2));
758 		set_flow_mode(&desc[*seq_size], flow_mode);
759 		set_setup_mode(&desc[*seq_size], SETUP_LOAD_KEY0);
760 		(*seq_size)++;
761 		break;
762 	default:
763 		dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode);
764 	}
765 }
766 
767 static void cc_setup_mlli_desc(struct crypto_tfm *tfm,
768 			       struct cipher_req_ctx *req_ctx,
769 			       struct scatterlist *dst, struct scatterlist *src,
770 			       unsigned int nbytes, void *areq,
771 			       struct cc_hw_desc desc[], unsigned int *seq_size)
772 {
773 	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
774 	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
775 
776 	if (req_ctx->dma_buf_type == CC_DMA_BUF_MLLI) {
777 		/* bypass */
778 		dev_dbg(dev, " bypass params addr %pad length 0x%X addr 0x%08X\n",
779 			&req_ctx->mlli_params.mlli_dma_addr,
780 			req_ctx->mlli_params.mlli_len,
781 			ctx_p->drvdata->mlli_sram_addr);
782 		hw_desc_init(&desc[*seq_size]);
783 		set_din_type(&desc[*seq_size], DMA_DLLI,
784 			     req_ctx->mlli_params.mlli_dma_addr,
785 			     req_ctx->mlli_params.mlli_len, NS_BIT);
786 		set_dout_sram(&desc[*seq_size],
787 			      ctx_p->drvdata->mlli_sram_addr,
788 			      req_ctx->mlli_params.mlli_len);
789 		set_flow_mode(&desc[*seq_size], BYPASS);
790 		(*seq_size)++;
791 	}
792 }
793 
794 static void cc_setup_flow_desc(struct crypto_tfm *tfm,
795 			       struct cipher_req_ctx *req_ctx,
796 			       struct scatterlist *dst, struct scatterlist *src,
797 			       unsigned int nbytes, struct cc_hw_desc desc[],
798 			       unsigned int *seq_size)
799 {
800 	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
801 	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
802 	unsigned int flow_mode = cc_out_flow_mode(ctx_p);
803 	bool last_desc = (ctx_p->key_type == CC_POLICY_PROTECTED_KEY ||
804 			  ctx_p->cipher_mode == DRV_CIPHER_ECB);
805 
806 	/* Process */
807 	if (req_ctx->dma_buf_type == CC_DMA_BUF_DLLI) {
808 		dev_dbg(dev, " data params addr %pad length 0x%X\n",
809 			&sg_dma_address(src), nbytes);
810 		dev_dbg(dev, " data params addr %pad length 0x%X\n",
811 			&sg_dma_address(dst), nbytes);
812 		hw_desc_init(&desc[*seq_size]);
813 		set_din_type(&desc[*seq_size], DMA_DLLI, sg_dma_address(src),
814 			     nbytes, NS_BIT);
815 		set_dout_dlli(&desc[*seq_size], sg_dma_address(dst),
816 			      nbytes, NS_BIT, (!last_desc ? 0 : 1));
817 		if (last_desc)
818 			set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]);
819 
820 		set_flow_mode(&desc[*seq_size], flow_mode);
821 		(*seq_size)++;
822 	} else {
823 		hw_desc_init(&desc[*seq_size]);
824 		set_din_type(&desc[*seq_size], DMA_MLLI,
825 			     ctx_p->drvdata->mlli_sram_addr,
826 			     req_ctx->in_mlli_nents, NS_BIT);
827 		if (req_ctx->out_nents == 0) {
828 			dev_dbg(dev, " din/dout params addr 0x%08X addr 0x%08X\n",
829 				ctx_p->drvdata->mlli_sram_addr,
830 				ctx_p->drvdata->mlli_sram_addr);
831 			set_dout_mlli(&desc[*seq_size],
832 				      ctx_p->drvdata->mlli_sram_addr,
833 				      req_ctx->in_mlli_nents, NS_BIT,
834 				      (!last_desc ? 0 : 1));
835 		} else {
836 			dev_dbg(dev, " din/dout params addr 0x%08X addr 0x%08X\n",
837 				ctx_p->drvdata->mlli_sram_addr,
838 				ctx_p->drvdata->mlli_sram_addr +
839 				(u32)LLI_ENTRY_BYTE_SIZE * req_ctx->in_nents);
840 			set_dout_mlli(&desc[*seq_size],
841 				      (ctx_p->drvdata->mlli_sram_addr +
842 				       (LLI_ENTRY_BYTE_SIZE *
843 					req_ctx->in_mlli_nents)),
844 				      req_ctx->out_mlli_nents, NS_BIT,
845 				      (!last_desc ? 0 : 1));
846 		}
847 		if (last_desc)
848 			set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]);
849 
850 		set_flow_mode(&desc[*seq_size], flow_mode);
851 		(*seq_size)++;
852 	}
853 }
854 
855 static void cc_cipher_complete(struct device *dev, void *cc_req, int err)
856 {
857 	struct skcipher_request *req = (struct skcipher_request *)cc_req;
858 	struct scatterlist *dst = req->dst;
859 	struct scatterlist *src = req->src;
860 	struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
861 	struct crypto_skcipher *sk_tfm = crypto_skcipher_reqtfm(req);
862 	unsigned int ivsize = crypto_skcipher_ivsize(sk_tfm);
863 
864 	if (err != -EINPROGRESS) {
865 		/* Not a BACKLOG notification */
866 		cc_unmap_cipher_request(dev, req_ctx, ivsize, src, dst);
867 		memcpy(req->iv, req_ctx->iv, ivsize);
868 		kfree_sensitive(req_ctx->iv);
869 	}
870 
871 	skcipher_request_complete(req, err);
872 }
873 
874 static int cc_cipher_process(struct skcipher_request *req,
875 			     enum drv_crypto_direction direction)
876 {
877 	struct crypto_skcipher *sk_tfm = crypto_skcipher_reqtfm(req);
878 	struct crypto_tfm *tfm = crypto_skcipher_tfm(sk_tfm);
879 	struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
880 	unsigned int ivsize = crypto_skcipher_ivsize(sk_tfm);
881 	struct scatterlist *dst = req->dst;
882 	struct scatterlist *src = req->src;
883 	unsigned int nbytes = req->cryptlen;
884 	void *iv = req->iv;
885 	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
886 	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
887 	struct cc_hw_desc desc[MAX_SKCIPHER_SEQ_LEN];
888 	struct cc_crypto_req cc_req = {};
889 	int rc;
890 	unsigned int seq_len = 0;
891 	gfp_t flags = cc_gfp_flags(&req->base);
892 
893 	dev_dbg(dev, "%s req=%p iv=%p nbytes=%d\n",
894 		((direction == DRV_CRYPTO_DIRECTION_ENCRYPT) ?
895 		"Encrypt" : "Decrypt"), req, iv, nbytes);
896 
897 	/* STAT_PHASE_0: Init and sanity checks */
898 
899 	if (validate_data_size(ctx_p, nbytes)) {
900 		dev_dbg(dev, "Unsupported data size %d.\n", nbytes);
901 		rc = -EINVAL;
902 		goto exit_process;
903 	}
904 	if (nbytes == 0) {
905 		/* No data to process is valid */
906 		rc = 0;
907 		goto exit_process;
908 	}
909 
910 	if (ctx_p->fallback_on) {
911 		struct skcipher_request *subreq = skcipher_request_ctx(req);
912 
913 		*subreq = *req;
914 		skcipher_request_set_tfm(subreq, ctx_p->fallback_tfm);
915 		if (direction == DRV_CRYPTO_DIRECTION_ENCRYPT)
916 			return crypto_skcipher_encrypt(subreq);
917 		else
918 			return crypto_skcipher_decrypt(subreq);
919 	}
920 
921 	/* The IV we are handed may be allocted from the stack so
922 	 * we must copy it to a DMAable buffer before use.
923 	 */
924 	req_ctx->iv = kmemdup(iv, ivsize, flags);
925 	if (!req_ctx->iv) {
926 		rc = -ENOMEM;
927 		goto exit_process;
928 	}
929 
930 	/* Setup request structure */
931 	cc_req.user_cb = cc_cipher_complete;
932 	cc_req.user_arg = req;
933 
934 	/* Setup CPP operation details */
935 	if (ctx_p->key_type == CC_POLICY_PROTECTED_KEY) {
936 		cc_req.cpp.is_cpp = true;
937 		cc_req.cpp.alg = ctx_p->cpp.alg;
938 		cc_req.cpp.slot = ctx_p->cpp.slot;
939 	}
940 
941 	/* Setup request context */
942 	req_ctx->gen_ctx.op_type = direction;
943 
944 	/* STAT_PHASE_1: Map buffers */
945 
946 	rc = cc_map_cipher_request(ctx_p->drvdata, req_ctx, ivsize, nbytes,
947 				      req_ctx->iv, src, dst, flags);
948 	if (rc) {
949 		dev_err(dev, "map_request() failed\n");
950 		goto exit_process;
951 	}
952 
953 	/* STAT_PHASE_2: Create sequence */
954 
955 	/* Setup state (IV)  */
956 	cc_setup_state_desc(tfm, req_ctx, ivsize, nbytes, desc, &seq_len);
957 	/* Setup MLLI line, if needed */
958 	cc_setup_mlli_desc(tfm, req_ctx, dst, src, nbytes, req, desc, &seq_len);
959 	/* Setup key */
960 	cc_setup_key_desc(tfm, req_ctx, nbytes, desc, &seq_len);
961 	/* Setup state (IV and XEX key)  */
962 	cc_setup_xex_state_desc(tfm, req_ctx, ivsize, nbytes, desc, &seq_len);
963 	/* Data processing */
964 	cc_setup_flow_desc(tfm, req_ctx, dst, src, nbytes, desc, &seq_len);
965 	/* Read next IV */
966 	cc_setup_readiv_desc(tfm, req_ctx, ivsize, desc, &seq_len);
967 
968 	/* STAT_PHASE_3: Lock HW and push sequence */
969 
970 	rc = cc_send_request(ctx_p->drvdata, &cc_req, desc, seq_len,
971 			     &req->base);
972 	if (rc != -EINPROGRESS && rc != -EBUSY) {
973 		/* Failed to send the request or request completed
974 		 * synchronously
975 		 */
976 		cc_unmap_cipher_request(dev, req_ctx, ivsize, src, dst);
977 	}
978 
979 exit_process:
980 	if (rc != -EINPROGRESS && rc != -EBUSY) {
981 		kfree_sensitive(req_ctx->iv);
982 	}
983 
984 	return rc;
985 }
986 
987 static int cc_cipher_encrypt(struct skcipher_request *req)
988 {
989 	struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
990 
991 	memset(req_ctx, 0, sizeof(*req_ctx));
992 
993 	return cc_cipher_process(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
994 }
995 
996 static int cc_cipher_decrypt(struct skcipher_request *req)
997 {
998 	struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
999 
1000 	memset(req_ctx, 0, sizeof(*req_ctx));
1001 
1002 	return cc_cipher_process(req, DRV_CRYPTO_DIRECTION_DECRYPT);
1003 }
1004 
1005 /* Block cipher alg */
1006 static const struct cc_alg_template skcipher_algs[] = {
1007 	{
1008 		.name = "xts(paes)",
1009 		.driver_name = "xts-paes-ccree",
1010 		.blocksize = 1,
1011 		.template_skcipher = {
1012 			.setkey = cc_cipher_sethkey,
1013 			.encrypt = cc_cipher_encrypt,
1014 			.decrypt = cc_cipher_decrypt,
1015 			.min_keysize = CC_HW_KEY_SIZE,
1016 			.max_keysize = CC_HW_KEY_SIZE,
1017 			.ivsize = AES_BLOCK_SIZE,
1018 			},
1019 		.cipher_mode = DRV_CIPHER_XTS,
1020 		.flow_mode = S_DIN_to_AES,
1021 		.min_hw_rev = CC_HW_REV_630,
1022 		.std_body = CC_STD_NIST,
1023 		.sec_func = true,
1024 	},
1025 	{
1026 		.name = "essiv(cbc(paes),sha256)",
1027 		.driver_name = "essiv-paes-ccree",
1028 		.blocksize = AES_BLOCK_SIZE,
1029 		.template_skcipher = {
1030 			.setkey = cc_cipher_sethkey,
1031 			.encrypt = cc_cipher_encrypt,
1032 			.decrypt = cc_cipher_decrypt,
1033 			.min_keysize = CC_HW_KEY_SIZE,
1034 			.max_keysize = CC_HW_KEY_SIZE,
1035 			.ivsize = AES_BLOCK_SIZE,
1036 			},
1037 		.cipher_mode = DRV_CIPHER_ESSIV,
1038 		.flow_mode = S_DIN_to_AES,
1039 		.min_hw_rev = CC_HW_REV_712,
1040 		.std_body = CC_STD_NIST,
1041 		.sec_func = true,
1042 	},
1043 	{
1044 		.name = "ecb(paes)",
1045 		.driver_name = "ecb-paes-ccree",
1046 		.blocksize = AES_BLOCK_SIZE,
1047 		.template_skcipher = {
1048 			.setkey = cc_cipher_sethkey,
1049 			.encrypt = cc_cipher_encrypt,
1050 			.decrypt = cc_cipher_decrypt,
1051 			.min_keysize = CC_HW_KEY_SIZE,
1052 			.max_keysize = CC_HW_KEY_SIZE,
1053 			.ivsize = 0,
1054 			},
1055 		.cipher_mode = DRV_CIPHER_ECB,
1056 		.flow_mode = S_DIN_to_AES,
1057 		.min_hw_rev = CC_HW_REV_712,
1058 		.std_body = CC_STD_NIST,
1059 		.sec_func = true,
1060 	},
1061 	{
1062 		.name = "cbc(paes)",
1063 		.driver_name = "cbc-paes-ccree",
1064 		.blocksize = AES_BLOCK_SIZE,
1065 		.template_skcipher = {
1066 			.setkey = cc_cipher_sethkey,
1067 			.encrypt = cc_cipher_encrypt,
1068 			.decrypt = cc_cipher_decrypt,
1069 			.min_keysize = CC_HW_KEY_SIZE,
1070 			.max_keysize = CC_HW_KEY_SIZE,
1071 			.ivsize = AES_BLOCK_SIZE,
1072 		},
1073 		.cipher_mode = DRV_CIPHER_CBC,
1074 		.flow_mode = S_DIN_to_AES,
1075 		.min_hw_rev = CC_HW_REV_712,
1076 		.std_body = CC_STD_NIST,
1077 		.sec_func = true,
1078 	},
1079 	{
1080 		.name = "ofb(paes)",
1081 		.driver_name = "ofb-paes-ccree",
1082 		.blocksize = AES_BLOCK_SIZE,
1083 		.template_skcipher = {
1084 			.setkey = cc_cipher_sethkey,
1085 			.encrypt = cc_cipher_encrypt,
1086 			.decrypt = cc_cipher_decrypt,
1087 			.min_keysize = CC_HW_KEY_SIZE,
1088 			.max_keysize = CC_HW_KEY_SIZE,
1089 			.ivsize = AES_BLOCK_SIZE,
1090 			},
1091 		.cipher_mode = DRV_CIPHER_OFB,
1092 		.flow_mode = S_DIN_to_AES,
1093 		.min_hw_rev = CC_HW_REV_712,
1094 		.std_body = CC_STD_NIST,
1095 		.sec_func = true,
1096 	},
1097 	{
1098 		.name = "cts(cbc(paes))",
1099 		.driver_name = "cts-cbc-paes-ccree",
1100 		.blocksize = AES_BLOCK_SIZE,
1101 		.template_skcipher = {
1102 			.setkey = cc_cipher_sethkey,
1103 			.encrypt = cc_cipher_encrypt,
1104 			.decrypt = cc_cipher_decrypt,
1105 			.min_keysize = CC_HW_KEY_SIZE,
1106 			.max_keysize = CC_HW_KEY_SIZE,
1107 			.ivsize = AES_BLOCK_SIZE,
1108 			},
1109 		.cipher_mode = DRV_CIPHER_CBC_CTS,
1110 		.flow_mode = S_DIN_to_AES,
1111 		.min_hw_rev = CC_HW_REV_712,
1112 		.std_body = CC_STD_NIST,
1113 		.sec_func = true,
1114 	},
1115 	{
1116 		.name = "ctr(paes)",
1117 		.driver_name = "ctr-paes-ccree",
1118 		.blocksize = 1,
1119 		.template_skcipher = {
1120 			.setkey = cc_cipher_sethkey,
1121 			.encrypt = cc_cipher_encrypt,
1122 			.decrypt = cc_cipher_decrypt,
1123 			.min_keysize = CC_HW_KEY_SIZE,
1124 			.max_keysize = CC_HW_KEY_SIZE,
1125 			.ivsize = AES_BLOCK_SIZE,
1126 			},
1127 		.cipher_mode = DRV_CIPHER_CTR,
1128 		.flow_mode = S_DIN_to_AES,
1129 		.min_hw_rev = CC_HW_REV_712,
1130 		.std_body = CC_STD_NIST,
1131 		.sec_func = true,
1132 	},
1133 	{
1134 		/* See https://www.mail-archive.com/linux-crypto@vger.kernel.org/msg40576.html
1135 		 * for the reason why this differs from the generic
1136 		 * implementation.
1137 		 */
1138 		.name = "xts(aes)",
1139 		.driver_name = "xts-aes-ccree",
1140 		.blocksize = 1,
1141 		.template_skcipher = {
1142 			.setkey = cc_cipher_setkey,
1143 			.encrypt = cc_cipher_encrypt,
1144 			.decrypt = cc_cipher_decrypt,
1145 			.min_keysize = AES_MIN_KEY_SIZE * 2,
1146 			.max_keysize = AES_MAX_KEY_SIZE * 2,
1147 			.ivsize = AES_BLOCK_SIZE,
1148 			},
1149 		.cipher_mode = DRV_CIPHER_XTS,
1150 		.flow_mode = S_DIN_to_AES,
1151 		.min_hw_rev = CC_HW_REV_630,
1152 		.std_body = CC_STD_NIST,
1153 	},
1154 	{
1155 		.name = "essiv(cbc(aes),sha256)",
1156 		.driver_name = "essiv-aes-ccree",
1157 		.blocksize = AES_BLOCK_SIZE,
1158 		.template_skcipher = {
1159 			.setkey = cc_cipher_setkey,
1160 			.encrypt = cc_cipher_encrypt,
1161 			.decrypt = cc_cipher_decrypt,
1162 			.min_keysize = AES_MIN_KEY_SIZE,
1163 			.max_keysize = AES_MAX_KEY_SIZE,
1164 			.ivsize = AES_BLOCK_SIZE,
1165 			},
1166 		.cipher_mode = DRV_CIPHER_ESSIV,
1167 		.flow_mode = S_DIN_to_AES,
1168 		.min_hw_rev = CC_HW_REV_712,
1169 		.std_body = CC_STD_NIST,
1170 	},
1171 	{
1172 		.name = "ecb(aes)",
1173 		.driver_name = "ecb-aes-ccree",
1174 		.blocksize = AES_BLOCK_SIZE,
1175 		.template_skcipher = {
1176 			.setkey = cc_cipher_setkey,
1177 			.encrypt = cc_cipher_encrypt,
1178 			.decrypt = cc_cipher_decrypt,
1179 			.min_keysize = AES_MIN_KEY_SIZE,
1180 			.max_keysize = AES_MAX_KEY_SIZE,
1181 			.ivsize = 0,
1182 			},
1183 		.cipher_mode = DRV_CIPHER_ECB,
1184 		.flow_mode = S_DIN_to_AES,
1185 		.min_hw_rev = CC_HW_REV_630,
1186 		.std_body = CC_STD_NIST,
1187 	},
1188 	{
1189 		.name = "cbc(aes)",
1190 		.driver_name = "cbc-aes-ccree",
1191 		.blocksize = AES_BLOCK_SIZE,
1192 		.template_skcipher = {
1193 			.setkey = cc_cipher_setkey,
1194 			.encrypt = cc_cipher_encrypt,
1195 			.decrypt = cc_cipher_decrypt,
1196 			.min_keysize = AES_MIN_KEY_SIZE,
1197 			.max_keysize = AES_MAX_KEY_SIZE,
1198 			.ivsize = AES_BLOCK_SIZE,
1199 		},
1200 		.cipher_mode = DRV_CIPHER_CBC,
1201 		.flow_mode = S_DIN_to_AES,
1202 		.min_hw_rev = CC_HW_REV_630,
1203 		.std_body = CC_STD_NIST,
1204 	},
1205 	{
1206 		.name = "ofb(aes)",
1207 		.driver_name = "ofb-aes-ccree",
1208 		.blocksize = 1,
1209 		.template_skcipher = {
1210 			.setkey = cc_cipher_setkey,
1211 			.encrypt = cc_cipher_encrypt,
1212 			.decrypt = cc_cipher_decrypt,
1213 			.min_keysize = AES_MIN_KEY_SIZE,
1214 			.max_keysize = AES_MAX_KEY_SIZE,
1215 			.ivsize = AES_BLOCK_SIZE,
1216 			},
1217 		.cipher_mode = DRV_CIPHER_OFB,
1218 		.flow_mode = S_DIN_to_AES,
1219 		.min_hw_rev = CC_HW_REV_630,
1220 		.std_body = CC_STD_NIST,
1221 	},
1222 	{
1223 		.name = "cts(cbc(aes))",
1224 		.driver_name = "cts-cbc-aes-ccree",
1225 		.blocksize = AES_BLOCK_SIZE,
1226 		.template_skcipher = {
1227 			.setkey = cc_cipher_setkey,
1228 			.encrypt = cc_cipher_encrypt,
1229 			.decrypt = cc_cipher_decrypt,
1230 			.min_keysize = AES_MIN_KEY_SIZE,
1231 			.max_keysize = AES_MAX_KEY_SIZE,
1232 			.ivsize = AES_BLOCK_SIZE,
1233 			},
1234 		.cipher_mode = DRV_CIPHER_CBC_CTS,
1235 		.flow_mode = S_DIN_to_AES,
1236 		.min_hw_rev = CC_HW_REV_630,
1237 		.std_body = CC_STD_NIST,
1238 	},
1239 	{
1240 		.name = "ctr(aes)",
1241 		.driver_name = "ctr-aes-ccree",
1242 		.blocksize = 1,
1243 		.template_skcipher = {
1244 			.setkey = cc_cipher_setkey,
1245 			.encrypt = cc_cipher_encrypt,
1246 			.decrypt = cc_cipher_decrypt,
1247 			.min_keysize = AES_MIN_KEY_SIZE,
1248 			.max_keysize = AES_MAX_KEY_SIZE,
1249 			.ivsize = AES_BLOCK_SIZE,
1250 			},
1251 		.cipher_mode = DRV_CIPHER_CTR,
1252 		.flow_mode = S_DIN_to_AES,
1253 		.min_hw_rev = CC_HW_REV_630,
1254 		.std_body = CC_STD_NIST,
1255 	},
1256 	{
1257 		.name = "cbc(des3_ede)",
1258 		.driver_name = "cbc-3des-ccree",
1259 		.blocksize = DES3_EDE_BLOCK_SIZE,
1260 		.template_skcipher = {
1261 			.setkey = cc_cipher_setkey,
1262 			.encrypt = cc_cipher_encrypt,
1263 			.decrypt = cc_cipher_decrypt,
1264 			.min_keysize = DES3_EDE_KEY_SIZE,
1265 			.max_keysize = DES3_EDE_KEY_SIZE,
1266 			.ivsize = DES3_EDE_BLOCK_SIZE,
1267 			},
1268 		.cipher_mode = DRV_CIPHER_CBC,
1269 		.flow_mode = S_DIN_to_DES,
1270 		.min_hw_rev = CC_HW_REV_630,
1271 		.std_body = CC_STD_NIST,
1272 	},
1273 	{
1274 		.name = "ecb(des3_ede)",
1275 		.driver_name = "ecb-3des-ccree",
1276 		.blocksize = DES3_EDE_BLOCK_SIZE,
1277 		.template_skcipher = {
1278 			.setkey = cc_cipher_setkey,
1279 			.encrypt = cc_cipher_encrypt,
1280 			.decrypt = cc_cipher_decrypt,
1281 			.min_keysize = DES3_EDE_KEY_SIZE,
1282 			.max_keysize = DES3_EDE_KEY_SIZE,
1283 			.ivsize = 0,
1284 			},
1285 		.cipher_mode = DRV_CIPHER_ECB,
1286 		.flow_mode = S_DIN_to_DES,
1287 		.min_hw_rev = CC_HW_REV_630,
1288 		.std_body = CC_STD_NIST,
1289 	},
1290 	{
1291 		.name = "cbc(des)",
1292 		.driver_name = "cbc-des-ccree",
1293 		.blocksize = DES_BLOCK_SIZE,
1294 		.template_skcipher = {
1295 			.setkey = cc_cipher_setkey,
1296 			.encrypt = cc_cipher_encrypt,
1297 			.decrypt = cc_cipher_decrypt,
1298 			.min_keysize = DES_KEY_SIZE,
1299 			.max_keysize = DES_KEY_SIZE,
1300 			.ivsize = DES_BLOCK_SIZE,
1301 			},
1302 		.cipher_mode = DRV_CIPHER_CBC,
1303 		.flow_mode = S_DIN_to_DES,
1304 		.min_hw_rev = CC_HW_REV_630,
1305 		.std_body = CC_STD_NIST,
1306 	},
1307 	{
1308 		.name = "ecb(des)",
1309 		.driver_name = "ecb-des-ccree",
1310 		.blocksize = DES_BLOCK_SIZE,
1311 		.template_skcipher = {
1312 			.setkey = cc_cipher_setkey,
1313 			.encrypt = cc_cipher_encrypt,
1314 			.decrypt = cc_cipher_decrypt,
1315 			.min_keysize = DES_KEY_SIZE,
1316 			.max_keysize = DES_KEY_SIZE,
1317 			.ivsize = 0,
1318 			},
1319 		.cipher_mode = DRV_CIPHER_ECB,
1320 		.flow_mode = S_DIN_to_DES,
1321 		.min_hw_rev = CC_HW_REV_630,
1322 		.std_body = CC_STD_NIST,
1323 	},
1324 	{
1325 		.name = "cbc(sm4)",
1326 		.driver_name = "cbc-sm4-ccree",
1327 		.blocksize = SM4_BLOCK_SIZE,
1328 		.template_skcipher = {
1329 			.setkey = cc_cipher_setkey,
1330 			.encrypt = cc_cipher_encrypt,
1331 			.decrypt = cc_cipher_decrypt,
1332 			.min_keysize = SM4_KEY_SIZE,
1333 			.max_keysize = SM4_KEY_SIZE,
1334 			.ivsize = SM4_BLOCK_SIZE,
1335 			},
1336 		.cipher_mode = DRV_CIPHER_CBC,
1337 		.flow_mode = S_DIN_to_SM4,
1338 		.min_hw_rev = CC_HW_REV_713,
1339 		.std_body = CC_STD_OSCCA,
1340 	},
1341 	{
1342 		.name = "ecb(sm4)",
1343 		.driver_name = "ecb-sm4-ccree",
1344 		.blocksize = SM4_BLOCK_SIZE,
1345 		.template_skcipher = {
1346 			.setkey = cc_cipher_setkey,
1347 			.encrypt = cc_cipher_encrypt,
1348 			.decrypt = cc_cipher_decrypt,
1349 			.min_keysize = SM4_KEY_SIZE,
1350 			.max_keysize = SM4_KEY_SIZE,
1351 			.ivsize = 0,
1352 			},
1353 		.cipher_mode = DRV_CIPHER_ECB,
1354 		.flow_mode = S_DIN_to_SM4,
1355 		.min_hw_rev = CC_HW_REV_713,
1356 		.std_body = CC_STD_OSCCA,
1357 	},
1358 	{
1359 		.name = "ctr(sm4)",
1360 		.driver_name = "ctr-sm4-ccree",
1361 		.blocksize = 1,
1362 		.template_skcipher = {
1363 			.setkey = cc_cipher_setkey,
1364 			.encrypt = cc_cipher_encrypt,
1365 			.decrypt = cc_cipher_decrypt,
1366 			.min_keysize = SM4_KEY_SIZE,
1367 			.max_keysize = SM4_KEY_SIZE,
1368 			.ivsize = SM4_BLOCK_SIZE,
1369 			},
1370 		.cipher_mode = DRV_CIPHER_CTR,
1371 		.flow_mode = S_DIN_to_SM4,
1372 		.min_hw_rev = CC_HW_REV_713,
1373 		.std_body = CC_STD_OSCCA,
1374 	},
1375 	{
1376 		.name = "cbc(psm4)",
1377 		.driver_name = "cbc-psm4-ccree",
1378 		.blocksize = SM4_BLOCK_SIZE,
1379 		.template_skcipher = {
1380 			.setkey = cc_cipher_sethkey,
1381 			.encrypt = cc_cipher_encrypt,
1382 			.decrypt = cc_cipher_decrypt,
1383 			.min_keysize = CC_HW_KEY_SIZE,
1384 			.max_keysize = CC_HW_KEY_SIZE,
1385 			.ivsize = SM4_BLOCK_SIZE,
1386 			},
1387 		.cipher_mode = DRV_CIPHER_CBC,
1388 		.flow_mode = S_DIN_to_SM4,
1389 		.min_hw_rev = CC_HW_REV_713,
1390 		.std_body = CC_STD_OSCCA,
1391 		.sec_func = true,
1392 	},
1393 	{
1394 		.name = "ctr(psm4)",
1395 		.driver_name = "ctr-psm4-ccree",
1396 		.blocksize = SM4_BLOCK_SIZE,
1397 		.template_skcipher = {
1398 			.setkey = cc_cipher_sethkey,
1399 			.encrypt = cc_cipher_encrypt,
1400 			.decrypt = cc_cipher_decrypt,
1401 			.min_keysize = CC_HW_KEY_SIZE,
1402 			.max_keysize = CC_HW_KEY_SIZE,
1403 			.ivsize = SM4_BLOCK_SIZE,
1404 			},
1405 		.cipher_mode = DRV_CIPHER_CTR,
1406 		.flow_mode = S_DIN_to_SM4,
1407 		.min_hw_rev = CC_HW_REV_713,
1408 		.std_body = CC_STD_OSCCA,
1409 		.sec_func = true,
1410 	},
1411 };
1412 
1413 static struct cc_crypto_alg *cc_create_alg(const struct cc_alg_template *tmpl,
1414 					   struct device *dev)
1415 {
1416 	struct cc_crypto_alg *t_alg;
1417 	struct skcipher_alg *alg;
1418 
1419 	t_alg = devm_kzalloc(dev, sizeof(*t_alg), GFP_KERNEL);
1420 	if (!t_alg)
1421 		return ERR_PTR(-ENOMEM);
1422 
1423 	alg = &t_alg->skcipher_alg;
1424 
1425 	memcpy(alg, &tmpl->template_skcipher, sizeof(*alg));
1426 
1427 	snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1428 	snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
1429 		 tmpl->driver_name);
1430 	alg->base.cra_module = THIS_MODULE;
1431 	alg->base.cra_priority = CC_CRA_PRIO;
1432 	alg->base.cra_blocksize = tmpl->blocksize;
1433 	alg->base.cra_alignmask = 0;
1434 	alg->base.cra_ctxsize = sizeof(struct cc_cipher_ctx);
1435 
1436 	alg->base.cra_init = cc_cipher_init;
1437 	alg->base.cra_exit = cc_cipher_exit;
1438 	alg->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
1439 
1440 	t_alg->cipher_mode = tmpl->cipher_mode;
1441 	t_alg->flow_mode = tmpl->flow_mode;
1442 
1443 	return t_alg;
1444 }
1445 
1446 int cc_cipher_free(struct cc_drvdata *drvdata)
1447 {
1448 	struct cc_crypto_alg *t_alg, *n;
1449 
1450 	/* Remove registered algs */
1451 	list_for_each_entry_safe(t_alg, n, &drvdata->alg_list, entry) {
1452 		crypto_unregister_skcipher(&t_alg->skcipher_alg);
1453 		list_del(&t_alg->entry);
1454 	}
1455 	return 0;
1456 }
1457 
1458 int cc_cipher_alloc(struct cc_drvdata *drvdata)
1459 {
1460 	struct cc_crypto_alg *t_alg;
1461 	struct device *dev = drvdata_to_dev(drvdata);
1462 	int rc = -ENOMEM;
1463 	int alg;
1464 
1465 	INIT_LIST_HEAD(&drvdata->alg_list);
1466 
1467 	/* Linux crypto */
1468 	dev_dbg(dev, "Number of algorithms = %zu\n",
1469 		ARRAY_SIZE(skcipher_algs));
1470 	for (alg = 0; alg < ARRAY_SIZE(skcipher_algs); alg++) {
1471 		if ((skcipher_algs[alg].min_hw_rev > drvdata->hw_rev) ||
1472 		    !(drvdata->std_bodies & skcipher_algs[alg].std_body) ||
1473 		    (drvdata->sec_disabled && skcipher_algs[alg].sec_func))
1474 			continue;
1475 
1476 		dev_dbg(dev, "creating %s\n", skcipher_algs[alg].driver_name);
1477 		t_alg = cc_create_alg(&skcipher_algs[alg], dev);
1478 		if (IS_ERR(t_alg)) {
1479 			rc = PTR_ERR(t_alg);
1480 			dev_err(dev, "%s alg allocation failed\n",
1481 				skcipher_algs[alg].driver_name);
1482 			goto fail0;
1483 		}
1484 		t_alg->drvdata = drvdata;
1485 
1486 		dev_dbg(dev, "registering %s\n",
1487 			skcipher_algs[alg].driver_name);
1488 		rc = crypto_register_skcipher(&t_alg->skcipher_alg);
1489 		dev_dbg(dev, "%s alg registration rc = %x\n",
1490 			t_alg->skcipher_alg.base.cra_driver_name, rc);
1491 		if (rc) {
1492 			dev_err(dev, "%s alg registration failed\n",
1493 				t_alg->skcipher_alg.base.cra_driver_name);
1494 			goto fail0;
1495 		}
1496 
1497 		list_add_tail(&t_alg->entry, &drvdata->alg_list);
1498 		dev_dbg(dev, "Registered %s\n",
1499 			t_alg->skcipher_alg.base.cra_driver_name);
1500 	}
1501 	return 0;
1502 
1503 fail0:
1504 	cc_cipher_free(drvdata);
1505 	return rc;
1506 }
1507