1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (C) 2012-2019 ARM Limited (or its affiliates). */ 3 4 #include <linux/kernel.h> 5 #include <linux/module.h> 6 #include <crypto/algapi.h> 7 #include <crypto/internal/skcipher.h> 8 #include <crypto/internal/des.h> 9 #include <crypto/xts.h> 10 #include <crypto/sm4.h> 11 #include <crypto/scatterwalk.h> 12 13 #include "cc_driver.h" 14 #include "cc_lli_defs.h" 15 #include "cc_buffer_mgr.h" 16 #include "cc_cipher.h" 17 #include "cc_request_mgr.h" 18 19 #define MAX_SKCIPHER_SEQ_LEN 6 20 21 #define template_skcipher template_u.skcipher 22 23 struct cc_user_key_info { 24 u8 *key; 25 dma_addr_t key_dma_addr; 26 }; 27 28 struct cc_hw_key_info { 29 enum cc_hw_crypto_key key1_slot; 30 enum cc_hw_crypto_key key2_slot; 31 }; 32 33 struct cc_cpp_key_info { 34 u8 slot; 35 enum cc_cpp_alg alg; 36 }; 37 38 enum cc_key_type { 39 CC_UNPROTECTED_KEY, /* User key */ 40 CC_HW_PROTECTED_KEY, /* HW (FDE) key */ 41 CC_POLICY_PROTECTED_KEY, /* CPP key */ 42 CC_INVALID_PROTECTED_KEY /* Invalid key */ 43 }; 44 45 struct cc_cipher_ctx { 46 struct cc_drvdata *drvdata; 47 int keylen; 48 int cipher_mode; 49 int flow_mode; 50 unsigned int flags; 51 enum cc_key_type key_type; 52 struct cc_user_key_info user; 53 union { 54 struct cc_hw_key_info hw; 55 struct cc_cpp_key_info cpp; 56 }; 57 struct crypto_shash *shash_tfm; 58 struct crypto_skcipher *fallback_tfm; 59 bool fallback_on; 60 }; 61 62 static void cc_cipher_complete(struct device *dev, void *cc_req, int err); 63 64 static inline enum cc_key_type cc_key_type(struct crypto_tfm *tfm) 65 { 66 struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm); 67 68 return ctx_p->key_type; 69 } 70 71 static int validate_keys_sizes(struct cc_cipher_ctx *ctx_p, u32 size) 72 { 73 switch (ctx_p->flow_mode) { 74 case S_DIN_to_AES: 75 switch (size) { 76 case CC_AES_128_BIT_KEY_SIZE: 77 case CC_AES_192_BIT_KEY_SIZE: 78 if (ctx_p->cipher_mode != DRV_CIPHER_XTS) 79 return 0; 80 break; 81 case CC_AES_256_BIT_KEY_SIZE: 82 return 0; 83 case (CC_AES_192_BIT_KEY_SIZE * 2): 84 case (CC_AES_256_BIT_KEY_SIZE * 2): 85 if (ctx_p->cipher_mode == DRV_CIPHER_XTS || 86 ctx_p->cipher_mode == DRV_CIPHER_ESSIV) 87 return 0; 88 break; 89 default: 90 break; 91 } 92 break; 93 case S_DIN_to_DES: 94 if (size == DES3_EDE_KEY_SIZE || size == DES_KEY_SIZE) 95 return 0; 96 break; 97 case S_DIN_to_SM4: 98 if (size == SM4_KEY_SIZE) 99 return 0; 100 break; 101 default: 102 break; 103 } 104 return -EINVAL; 105 } 106 107 static int validate_data_size(struct cc_cipher_ctx *ctx_p, 108 unsigned int size) 109 { 110 switch (ctx_p->flow_mode) { 111 case S_DIN_to_AES: 112 switch (ctx_p->cipher_mode) { 113 case DRV_CIPHER_XTS: 114 case DRV_CIPHER_CBC_CTS: 115 if (size >= AES_BLOCK_SIZE) 116 return 0; 117 break; 118 case DRV_CIPHER_OFB: 119 case DRV_CIPHER_CTR: 120 return 0; 121 case DRV_CIPHER_ECB: 122 case DRV_CIPHER_CBC: 123 case DRV_CIPHER_ESSIV: 124 if (IS_ALIGNED(size, AES_BLOCK_SIZE)) 125 return 0; 126 break; 127 default: 128 break; 129 } 130 break; 131 case S_DIN_to_DES: 132 if (IS_ALIGNED(size, DES_BLOCK_SIZE)) 133 return 0; 134 break; 135 case S_DIN_to_SM4: 136 switch (ctx_p->cipher_mode) { 137 case DRV_CIPHER_CTR: 138 return 0; 139 case DRV_CIPHER_ECB: 140 case DRV_CIPHER_CBC: 141 if (IS_ALIGNED(size, SM4_BLOCK_SIZE)) 142 return 0; 143 break; 144 default: 145 break; 146 } 147 break; 148 default: 149 break; 150 } 151 return -EINVAL; 152 } 153 154 static int cc_cipher_init(struct crypto_tfm *tfm) 155 { 156 struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm); 157 struct cc_crypto_alg *cc_alg = 158 container_of(tfm->__crt_alg, struct cc_crypto_alg, 159 skcipher_alg.base); 160 struct device *dev = drvdata_to_dev(cc_alg->drvdata); 161 unsigned int max_key_buf_size = cc_alg->skcipher_alg.max_keysize; 162 unsigned int fallback_req_size = 0; 163 164 dev_dbg(dev, "Initializing context @%p for %s\n", ctx_p, 165 crypto_tfm_alg_name(tfm)); 166 167 ctx_p->cipher_mode = cc_alg->cipher_mode; 168 ctx_p->flow_mode = cc_alg->flow_mode; 169 ctx_p->drvdata = cc_alg->drvdata; 170 171 if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) { 172 const char *name = crypto_tfm_alg_name(tfm); 173 174 /* Alloc hash tfm for essiv */ 175 ctx_p->shash_tfm = crypto_alloc_shash("sha256", 0, 0); 176 if (IS_ERR(ctx_p->shash_tfm)) { 177 dev_err(dev, "Error allocating hash tfm for ESSIV.\n"); 178 return PTR_ERR(ctx_p->shash_tfm); 179 } 180 max_key_buf_size <<= 1; 181 182 /* Alloc fallback tfm or essiv when key size != 256 bit */ 183 ctx_p->fallback_tfm = 184 crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC); 185 186 if (IS_ERR(ctx_p->fallback_tfm)) { 187 /* Note we're still allowing registration with no fallback since it's 188 * better to have most modes supported than none at all. 189 */ 190 dev_warn(dev, "Error allocating fallback algo %s. Some modes may be available.\n", 191 name); 192 ctx_p->fallback_tfm = NULL; 193 } else { 194 fallback_req_size = crypto_skcipher_reqsize(ctx_p->fallback_tfm); 195 } 196 } 197 198 crypto_skcipher_set_reqsize(__crypto_skcipher_cast(tfm), 199 sizeof(struct cipher_req_ctx) + fallback_req_size); 200 201 /* Allocate key buffer, cache line aligned */ 202 ctx_p->user.key = kzalloc(max_key_buf_size, GFP_KERNEL); 203 if (!ctx_p->user.key) 204 goto free_fallback; 205 206 dev_dbg(dev, "Allocated key buffer in context. key=@%p\n", 207 ctx_p->user.key); 208 209 /* Map key buffer */ 210 ctx_p->user.key_dma_addr = dma_map_single(dev, ctx_p->user.key, 211 max_key_buf_size, 212 DMA_TO_DEVICE); 213 if (dma_mapping_error(dev, ctx_p->user.key_dma_addr)) { 214 dev_err(dev, "Mapping Key %u B at va=%pK for DMA failed\n", 215 max_key_buf_size, ctx_p->user.key); 216 goto free_key; 217 } 218 dev_dbg(dev, "Mapped key %u B at va=%pK to dma=%pad\n", 219 max_key_buf_size, ctx_p->user.key, &ctx_p->user.key_dma_addr); 220 221 return 0; 222 223 free_key: 224 kfree(ctx_p->user.key); 225 free_fallback: 226 crypto_free_skcipher(ctx_p->fallback_tfm); 227 crypto_free_shash(ctx_p->shash_tfm); 228 229 return -ENOMEM; 230 } 231 232 static void cc_cipher_exit(struct crypto_tfm *tfm) 233 { 234 struct crypto_alg *alg = tfm->__crt_alg; 235 struct cc_crypto_alg *cc_alg = 236 container_of(alg, struct cc_crypto_alg, 237 skcipher_alg.base); 238 unsigned int max_key_buf_size = cc_alg->skcipher_alg.max_keysize; 239 struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm); 240 struct device *dev = drvdata_to_dev(ctx_p->drvdata); 241 242 dev_dbg(dev, "Clearing context @%p for %s\n", 243 crypto_tfm_ctx(tfm), crypto_tfm_alg_name(tfm)); 244 245 if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) { 246 /* Free hash tfm for essiv */ 247 crypto_free_shash(ctx_p->shash_tfm); 248 ctx_p->shash_tfm = NULL; 249 crypto_free_skcipher(ctx_p->fallback_tfm); 250 ctx_p->fallback_tfm = NULL; 251 } 252 253 /* Unmap key buffer */ 254 dma_unmap_single(dev, ctx_p->user.key_dma_addr, max_key_buf_size, 255 DMA_TO_DEVICE); 256 dev_dbg(dev, "Unmapped key buffer key_dma_addr=%pad\n", 257 &ctx_p->user.key_dma_addr); 258 259 /* Free key buffer in context */ 260 dev_dbg(dev, "Free key buffer in context. key=@%p\n", ctx_p->user.key); 261 kfree_sensitive(ctx_p->user.key); 262 } 263 264 static enum cc_hw_crypto_key cc_slot_to_hw_key(u8 slot_num) 265 { 266 switch (slot_num) { 267 case 0: 268 return KFDE0_KEY; 269 case 1: 270 return KFDE1_KEY; 271 case 2: 272 return KFDE2_KEY; 273 case 3: 274 return KFDE3_KEY; 275 } 276 return END_OF_KEYS; 277 } 278 279 static u8 cc_slot_to_cpp_key(u8 slot_num) 280 { 281 return (slot_num - CC_FIRST_CPP_KEY_SLOT); 282 } 283 284 static inline enum cc_key_type cc_slot_to_key_type(u8 slot_num) 285 { 286 if (slot_num >= CC_FIRST_HW_KEY_SLOT && slot_num <= CC_LAST_HW_KEY_SLOT) 287 return CC_HW_PROTECTED_KEY; 288 else if (slot_num >= CC_FIRST_CPP_KEY_SLOT && 289 slot_num <= CC_LAST_CPP_KEY_SLOT) 290 return CC_POLICY_PROTECTED_KEY; 291 else 292 return CC_INVALID_PROTECTED_KEY; 293 } 294 295 static int cc_cipher_sethkey(struct crypto_skcipher *sktfm, const u8 *key, 296 unsigned int keylen) 297 { 298 struct crypto_tfm *tfm = crypto_skcipher_tfm(sktfm); 299 struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm); 300 struct device *dev = drvdata_to_dev(ctx_p->drvdata); 301 struct cc_hkey_info hki; 302 303 dev_dbg(dev, "Setting HW key in context @%p for %s. keylen=%u\n", 304 ctx_p, crypto_tfm_alg_name(tfm), keylen); 305 dump_byte_array("key", key, keylen); 306 307 /* STAT_PHASE_0: Init and sanity checks */ 308 309 /* This check the size of the protected key token */ 310 if (keylen != sizeof(hki)) { 311 dev_err(dev, "Unsupported protected key size %d.\n", keylen); 312 return -EINVAL; 313 } 314 315 memcpy(&hki, key, keylen); 316 317 /* The real key len for crypto op is the size of the HW key 318 * referenced by the HW key slot, not the hardware key token 319 */ 320 keylen = hki.keylen; 321 322 if (validate_keys_sizes(ctx_p, keylen)) { 323 dev_dbg(dev, "Unsupported key size %d.\n", keylen); 324 return -EINVAL; 325 } 326 327 ctx_p->keylen = keylen; 328 ctx_p->fallback_on = false; 329 330 switch (cc_slot_to_key_type(hki.hw_key1)) { 331 case CC_HW_PROTECTED_KEY: 332 if (ctx_p->flow_mode == S_DIN_to_SM4) { 333 dev_err(dev, "Only AES HW protected keys are supported\n"); 334 return -EINVAL; 335 } 336 337 ctx_p->hw.key1_slot = cc_slot_to_hw_key(hki.hw_key1); 338 if (ctx_p->hw.key1_slot == END_OF_KEYS) { 339 dev_err(dev, "Unsupported hw key1 number (%d)\n", 340 hki.hw_key1); 341 return -EINVAL; 342 } 343 344 if (ctx_p->cipher_mode == DRV_CIPHER_XTS || 345 ctx_p->cipher_mode == DRV_CIPHER_ESSIV) { 346 if (hki.hw_key1 == hki.hw_key2) { 347 dev_err(dev, "Illegal hw key numbers (%d,%d)\n", 348 hki.hw_key1, hki.hw_key2); 349 return -EINVAL; 350 } 351 352 ctx_p->hw.key2_slot = cc_slot_to_hw_key(hki.hw_key2); 353 if (ctx_p->hw.key2_slot == END_OF_KEYS) { 354 dev_err(dev, "Unsupported hw key2 number (%d)\n", 355 hki.hw_key2); 356 return -EINVAL; 357 } 358 } 359 360 ctx_p->key_type = CC_HW_PROTECTED_KEY; 361 dev_dbg(dev, "HW protected key %d/%d set\n.", 362 ctx_p->hw.key1_slot, ctx_p->hw.key2_slot); 363 break; 364 365 case CC_POLICY_PROTECTED_KEY: 366 if (ctx_p->drvdata->hw_rev < CC_HW_REV_713) { 367 dev_err(dev, "CPP keys not supported in this hardware revision.\n"); 368 return -EINVAL; 369 } 370 371 if (ctx_p->cipher_mode != DRV_CIPHER_CBC && 372 ctx_p->cipher_mode != DRV_CIPHER_CTR) { 373 dev_err(dev, "CPP keys only supported in CBC or CTR modes.\n"); 374 return -EINVAL; 375 } 376 377 ctx_p->cpp.slot = cc_slot_to_cpp_key(hki.hw_key1); 378 if (ctx_p->flow_mode == S_DIN_to_AES) 379 ctx_p->cpp.alg = CC_CPP_AES; 380 else /* Must be SM4 since due to sethkey registration */ 381 ctx_p->cpp.alg = CC_CPP_SM4; 382 ctx_p->key_type = CC_POLICY_PROTECTED_KEY; 383 dev_dbg(dev, "policy protected key alg: %d slot: %d.\n", 384 ctx_p->cpp.alg, ctx_p->cpp.slot); 385 break; 386 387 default: 388 dev_err(dev, "Unsupported protected key (%d)\n", hki.hw_key1); 389 return -EINVAL; 390 } 391 392 return 0; 393 } 394 395 static int cc_cipher_setkey(struct crypto_skcipher *sktfm, const u8 *key, 396 unsigned int keylen) 397 { 398 struct crypto_tfm *tfm = crypto_skcipher_tfm(sktfm); 399 struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm); 400 struct device *dev = drvdata_to_dev(ctx_p->drvdata); 401 struct cc_crypto_alg *cc_alg = 402 container_of(tfm->__crt_alg, struct cc_crypto_alg, 403 skcipher_alg.base); 404 unsigned int max_key_buf_size = cc_alg->skcipher_alg.max_keysize; 405 406 dev_dbg(dev, "Setting key in context @%p for %s. keylen=%u\n", 407 ctx_p, crypto_tfm_alg_name(tfm), keylen); 408 dump_byte_array("key", key, keylen); 409 410 /* STAT_PHASE_0: Init and sanity checks */ 411 412 if (validate_keys_sizes(ctx_p, keylen)) { 413 dev_dbg(dev, "Invalid key size %d.\n", keylen); 414 return -EINVAL; 415 } 416 417 if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) { 418 419 /* We only support 256 bit ESSIV-CBC-AES keys */ 420 if (keylen != AES_KEYSIZE_256) { 421 unsigned int flags = crypto_tfm_get_flags(tfm) & CRYPTO_TFM_REQ_MASK; 422 423 if (likely(ctx_p->fallback_tfm)) { 424 ctx_p->fallback_on = true; 425 crypto_skcipher_clear_flags(ctx_p->fallback_tfm, 426 CRYPTO_TFM_REQ_MASK); 427 crypto_skcipher_clear_flags(ctx_p->fallback_tfm, flags); 428 return crypto_skcipher_setkey(ctx_p->fallback_tfm, key, keylen); 429 } 430 431 dev_dbg(dev, "Unsupported key size %d and no fallback.\n", keylen); 432 return -EINVAL; 433 } 434 435 /* Internal ESSIV key buffer is double sized */ 436 max_key_buf_size <<= 1; 437 } 438 439 ctx_p->fallback_on = false; 440 ctx_p->key_type = CC_UNPROTECTED_KEY; 441 442 /* 443 * Verify DES weak keys 444 * Note that we're dropping the expanded key since the 445 * HW does the expansion on its own. 446 */ 447 if (ctx_p->flow_mode == S_DIN_to_DES) { 448 if ((keylen == DES3_EDE_KEY_SIZE && 449 verify_skcipher_des3_key(sktfm, key)) || 450 verify_skcipher_des_key(sktfm, key)) { 451 dev_dbg(dev, "weak DES key"); 452 return -EINVAL; 453 } 454 } 455 456 if (ctx_p->cipher_mode == DRV_CIPHER_XTS && 457 xts_verify_key(sktfm, key, keylen)) { 458 dev_dbg(dev, "weak XTS key"); 459 return -EINVAL; 460 } 461 462 /* STAT_PHASE_1: Copy key to ctx */ 463 dma_sync_single_for_cpu(dev, ctx_p->user.key_dma_addr, 464 max_key_buf_size, DMA_TO_DEVICE); 465 466 memcpy(ctx_p->user.key, key, keylen); 467 468 if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) { 469 /* sha256 for key2 - use sw implementation */ 470 int err; 471 472 err = crypto_shash_tfm_digest(ctx_p->shash_tfm, 473 ctx_p->user.key, keylen, 474 ctx_p->user.key + keylen); 475 if (err) { 476 dev_err(dev, "Failed to hash ESSIV key.\n"); 477 return err; 478 } 479 480 keylen <<= 1; 481 } 482 dma_sync_single_for_device(dev, ctx_p->user.key_dma_addr, 483 max_key_buf_size, DMA_TO_DEVICE); 484 ctx_p->keylen = keylen; 485 486 dev_dbg(dev, "return safely"); 487 return 0; 488 } 489 490 static int cc_out_setup_mode(struct cc_cipher_ctx *ctx_p) 491 { 492 switch (ctx_p->flow_mode) { 493 case S_DIN_to_AES: 494 return S_AES_to_DOUT; 495 case S_DIN_to_DES: 496 return S_DES_to_DOUT; 497 case S_DIN_to_SM4: 498 return S_SM4_to_DOUT; 499 default: 500 return ctx_p->flow_mode; 501 } 502 } 503 504 static void cc_setup_readiv_desc(struct crypto_tfm *tfm, 505 struct cipher_req_ctx *req_ctx, 506 unsigned int ivsize, struct cc_hw_desc desc[], 507 unsigned int *seq_size) 508 { 509 struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm); 510 struct device *dev = drvdata_to_dev(ctx_p->drvdata); 511 int cipher_mode = ctx_p->cipher_mode; 512 int flow_mode = cc_out_setup_mode(ctx_p); 513 int direction = req_ctx->gen_ctx.op_type; 514 dma_addr_t iv_dma_addr = req_ctx->gen_ctx.iv_dma_addr; 515 516 if (ctx_p->key_type == CC_POLICY_PROTECTED_KEY) 517 return; 518 519 switch (cipher_mode) { 520 case DRV_CIPHER_ECB: 521 break; 522 case DRV_CIPHER_CBC: 523 case DRV_CIPHER_CBC_CTS: 524 case DRV_CIPHER_CTR: 525 case DRV_CIPHER_OFB: 526 /* Read next IV */ 527 hw_desc_init(&desc[*seq_size]); 528 set_dout_dlli(&desc[*seq_size], iv_dma_addr, ivsize, NS_BIT, 1); 529 set_cipher_config0(&desc[*seq_size], direction); 530 set_flow_mode(&desc[*seq_size], flow_mode); 531 set_cipher_mode(&desc[*seq_size], cipher_mode); 532 if (cipher_mode == DRV_CIPHER_CTR || 533 cipher_mode == DRV_CIPHER_OFB) { 534 set_setup_mode(&desc[*seq_size], SETUP_WRITE_STATE1); 535 } else { 536 set_setup_mode(&desc[*seq_size], SETUP_WRITE_STATE0); 537 } 538 set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]); 539 (*seq_size)++; 540 break; 541 case DRV_CIPHER_XTS: 542 case DRV_CIPHER_ESSIV: 543 /* IV */ 544 hw_desc_init(&desc[*seq_size]); 545 set_setup_mode(&desc[*seq_size], SETUP_WRITE_STATE1); 546 set_cipher_mode(&desc[*seq_size], cipher_mode); 547 set_cipher_config0(&desc[*seq_size], direction); 548 set_flow_mode(&desc[*seq_size], flow_mode); 549 set_dout_dlli(&desc[*seq_size], iv_dma_addr, CC_AES_BLOCK_SIZE, 550 NS_BIT, 1); 551 set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]); 552 (*seq_size)++; 553 break; 554 default: 555 dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode); 556 } 557 } 558 559 560 static void cc_setup_state_desc(struct crypto_tfm *tfm, 561 struct cipher_req_ctx *req_ctx, 562 unsigned int ivsize, unsigned int nbytes, 563 struct cc_hw_desc desc[], 564 unsigned int *seq_size) 565 { 566 struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm); 567 struct device *dev = drvdata_to_dev(ctx_p->drvdata); 568 int cipher_mode = ctx_p->cipher_mode; 569 int flow_mode = ctx_p->flow_mode; 570 int direction = req_ctx->gen_ctx.op_type; 571 dma_addr_t iv_dma_addr = req_ctx->gen_ctx.iv_dma_addr; 572 573 switch (cipher_mode) { 574 case DRV_CIPHER_ECB: 575 break; 576 case DRV_CIPHER_CBC: 577 case DRV_CIPHER_CBC_CTS: 578 case DRV_CIPHER_CTR: 579 case DRV_CIPHER_OFB: 580 /* Load IV */ 581 hw_desc_init(&desc[*seq_size]); 582 set_din_type(&desc[*seq_size], DMA_DLLI, iv_dma_addr, ivsize, 583 NS_BIT); 584 set_cipher_config0(&desc[*seq_size], direction); 585 set_flow_mode(&desc[*seq_size], flow_mode); 586 set_cipher_mode(&desc[*seq_size], cipher_mode); 587 if (cipher_mode == DRV_CIPHER_CTR || 588 cipher_mode == DRV_CIPHER_OFB) { 589 set_setup_mode(&desc[*seq_size], SETUP_LOAD_STATE1); 590 } else { 591 set_setup_mode(&desc[*seq_size], SETUP_LOAD_STATE0); 592 } 593 (*seq_size)++; 594 break; 595 case DRV_CIPHER_XTS: 596 case DRV_CIPHER_ESSIV: 597 break; 598 default: 599 dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode); 600 } 601 } 602 603 604 static void cc_setup_xex_state_desc(struct crypto_tfm *tfm, 605 struct cipher_req_ctx *req_ctx, 606 unsigned int ivsize, unsigned int nbytes, 607 struct cc_hw_desc desc[], 608 unsigned int *seq_size) 609 { 610 struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm); 611 struct device *dev = drvdata_to_dev(ctx_p->drvdata); 612 int cipher_mode = ctx_p->cipher_mode; 613 int flow_mode = ctx_p->flow_mode; 614 int direction = req_ctx->gen_ctx.op_type; 615 dma_addr_t key_dma_addr = ctx_p->user.key_dma_addr; 616 unsigned int key_len = (ctx_p->keylen / 2); 617 dma_addr_t iv_dma_addr = req_ctx->gen_ctx.iv_dma_addr; 618 unsigned int key_offset = key_len; 619 620 switch (cipher_mode) { 621 case DRV_CIPHER_ECB: 622 break; 623 case DRV_CIPHER_CBC: 624 case DRV_CIPHER_CBC_CTS: 625 case DRV_CIPHER_CTR: 626 case DRV_CIPHER_OFB: 627 break; 628 case DRV_CIPHER_XTS: 629 case DRV_CIPHER_ESSIV: 630 631 if (cipher_mode == DRV_CIPHER_ESSIV) 632 key_len = SHA256_DIGEST_SIZE; 633 634 /* load XEX key */ 635 hw_desc_init(&desc[*seq_size]); 636 set_cipher_mode(&desc[*seq_size], cipher_mode); 637 set_cipher_config0(&desc[*seq_size], direction); 638 if (cc_key_type(tfm) == CC_HW_PROTECTED_KEY) { 639 set_hw_crypto_key(&desc[*seq_size], 640 ctx_p->hw.key2_slot); 641 } else { 642 set_din_type(&desc[*seq_size], DMA_DLLI, 643 (key_dma_addr + key_offset), 644 key_len, NS_BIT); 645 } 646 set_xex_data_unit_size(&desc[*seq_size], nbytes); 647 set_flow_mode(&desc[*seq_size], S_DIN_to_AES2); 648 set_key_size_aes(&desc[*seq_size], key_len); 649 set_setup_mode(&desc[*seq_size], SETUP_LOAD_XEX_KEY); 650 (*seq_size)++; 651 652 /* Load IV */ 653 hw_desc_init(&desc[*seq_size]); 654 set_setup_mode(&desc[*seq_size], SETUP_LOAD_STATE1); 655 set_cipher_mode(&desc[*seq_size], cipher_mode); 656 set_cipher_config0(&desc[*seq_size], direction); 657 set_key_size_aes(&desc[*seq_size], key_len); 658 set_flow_mode(&desc[*seq_size], flow_mode); 659 set_din_type(&desc[*seq_size], DMA_DLLI, iv_dma_addr, 660 CC_AES_BLOCK_SIZE, NS_BIT); 661 (*seq_size)++; 662 break; 663 default: 664 dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode); 665 } 666 } 667 668 static int cc_out_flow_mode(struct cc_cipher_ctx *ctx_p) 669 { 670 switch (ctx_p->flow_mode) { 671 case S_DIN_to_AES: 672 return DIN_AES_DOUT; 673 case S_DIN_to_DES: 674 return DIN_DES_DOUT; 675 case S_DIN_to_SM4: 676 return DIN_SM4_DOUT; 677 default: 678 return ctx_p->flow_mode; 679 } 680 } 681 682 static void cc_setup_key_desc(struct crypto_tfm *tfm, 683 struct cipher_req_ctx *req_ctx, 684 unsigned int nbytes, struct cc_hw_desc desc[], 685 unsigned int *seq_size) 686 { 687 struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm); 688 struct device *dev = drvdata_to_dev(ctx_p->drvdata); 689 int cipher_mode = ctx_p->cipher_mode; 690 int flow_mode = ctx_p->flow_mode; 691 int direction = req_ctx->gen_ctx.op_type; 692 dma_addr_t key_dma_addr = ctx_p->user.key_dma_addr; 693 unsigned int key_len = ctx_p->keylen; 694 unsigned int din_size; 695 696 switch (cipher_mode) { 697 case DRV_CIPHER_CBC: 698 case DRV_CIPHER_CBC_CTS: 699 case DRV_CIPHER_CTR: 700 case DRV_CIPHER_OFB: 701 case DRV_CIPHER_ECB: 702 /* Load key */ 703 hw_desc_init(&desc[*seq_size]); 704 set_cipher_mode(&desc[*seq_size], cipher_mode); 705 set_cipher_config0(&desc[*seq_size], direction); 706 707 if (cc_key_type(tfm) == CC_POLICY_PROTECTED_KEY) { 708 /* We use the AES key size coding for all CPP algs */ 709 set_key_size_aes(&desc[*seq_size], key_len); 710 set_cpp_crypto_key(&desc[*seq_size], ctx_p->cpp.slot); 711 flow_mode = cc_out_flow_mode(ctx_p); 712 } else { 713 if (flow_mode == S_DIN_to_AES) { 714 if (cc_key_type(tfm) == CC_HW_PROTECTED_KEY) { 715 set_hw_crypto_key(&desc[*seq_size], 716 ctx_p->hw.key1_slot); 717 } else { 718 /* CC_POLICY_UNPROTECTED_KEY 719 * Invalid keys are filtered out in 720 * sethkey() 721 */ 722 din_size = (key_len == 24) ? 723 AES_MAX_KEY_SIZE : key_len; 724 725 set_din_type(&desc[*seq_size], DMA_DLLI, 726 key_dma_addr, din_size, 727 NS_BIT); 728 } 729 set_key_size_aes(&desc[*seq_size], key_len); 730 } else { 731 /*des*/ 732 set_din_type(&desc[*seq_size], DMA_DLLI, 733 key_dma_addr, key_len, NS_BIT); 734 set_key_size_des(&desc[*seq_size], key_len); 735 } 736 set_setup_mode(&desc[*seq_size], SETUP_LOAD_KEY0); 737 } 738 set_flow_mode(&desc[*seq_size], flow_mode); 739 (*seq_size)++; 740 break; 741 case DRV_CIPHER_XTS: 742 case DRV_CIPHER_ESSIV: 743 /* Load AES key */ 744 hw_desc_init(&desc[*seq_size]); 745 set_cipher_mode(&desc[*seq_size], cipher_mode); 746 set_cipher_config0(&desc[*seq_size], direction); 747 if (cc_key_type(tfm) == CC_HW_PROTECTED_KEY) { 748 set_hw_crypto_key(&desc[*seq_size], 749 ctx_p->hw.key1_slot); 750 } else { 751 set_din_type(&desc[*seq_size], DMA_DLLI, key_dma_addr, 752 (key_len / 2), NS_BIT); 753 } 754 set_key_size_aes(&desc[*seq_size], (key_len / 2)); 755 set_flow_mode(&desc[*seq_size], flow_mode); 756 set_setup_mode(&desc[*seq_size], SETUP_LOAD_KEY0); 757 (*seq_size)++; 758 break; 759 default: 760 dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode); 761 } 762 } 763 764 static void cc_setup_mlli_desc(struct crypto_tfm *tfm, 765 struct cipher_req_ctx *req_ctx, 766 struct scatterlist *dst, struct scatterlist *src, 767 unsigned int nbytes, void *areq, 768 struct cc_hw_desc desc[], unsigned int *seq_size) 769 { 770 struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm); 771 struct device *dev = drvdata_to_dev(ctx_p->drvdata); 772 773 if (req_ctx->dma_buf_type == CC_DMA_BUF_MLLI) { 774 /* bypass */ 775 dev_dbg(dev, " bypass params addr %pad length 0x%X addr 0x%08X\n", 776 &req_ctx->mlli_params.mlli_dma_addr, 777 req_ctx->mlli_params.mlli_len, 778 ctx_p->drvdata->mlli_sram_addr); 779 hw_desc_init(&desc[*seq_size]); 780 set_din_type(&desc[*seq_size], DMA_DLLI, 781 req_ctx->mlli_params.mlli_dma_addr, 782 req_ctx->mlli_params.mlli_len, NS_BIT); 783 set_dout_sram(&desc[*seq_size], 784 ctx_p->drvdata->mlli_sram_addr, 785 req_ctx->mlli_params.mlli_len); 786 set_flow_mode(&desc[*seq_size], BYPASS); 787 (*seq_size)++; 788 } 789 } 790 791 static void cc_setup_flow_desc(struct crypto_tfm *tfm, 792 struct cipher_req_ctx *req_ctx, 793 struct scatterlist *dst, struct scatterlist *src, 794 unsigned int nbytes, struct cc_hw_desc desc[], 795 unsigned int *seq_size) 796 { 797 struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm); 798 struct device *dev = drvdata_to_dev(ctx_p->drvdata); 799 unsigned int flow_mode = cc_out_flow_mode(ctx_p); 800 bool last_desc = (ctx_p->key_type == CC_POLICY_PROTECTED_KEY || 801 ctx_p->cipher_mode == DRV_CIPHER_ECB); 802 803 /* Process */ 804 if (req_ctx->dma_buf_type == CC_DMA_BUF_DLLI) { 805 dev_dbg(dev, " data params addr %pad length 0x%X\n", 806 &sg_dma_address(src), nbytes); 807 dev_dbg(dev, " data params addr %pad length 0x%X\n", 808 &sg_dma_address(dst), nbytes); 809 hw_desc_init(&desc[*seq_size]); 810 set_din_type(&desc[*seq_size], DMA_DLLI, sg_dma_address(src), 811 nbytes, NS_BIT); 812 set_dout_dlli(&desc[*seq_size], sg_dma_address(dst), 813 nbytes, NS_BIT, (!last_desc ? 0 : 1)); 814 if (last_desc) 815 set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]); 816 817 set_flow_mode(&desc[*seq_size], flow_mode); 818 (*seq_size)++; 819 } else { 820 hw_desc_init(&desc[*seq_size]); 821 set_din_type(&desc[*seq_size], DMA_MLLI, 822 ctx_p->drvdata->mlli_sram_addr, 823 req_ctx->in_mlli_nents, NS_BIT); 824 if (req_ctx->out_nents == 0) { 825 dev_dbg(dev, " din/dout params addr 0x%08X addr 0x%08X\n", 826 ctx_p->drvdata->mlli_sram_addr, 827 ctx_p->drvdata->mlli_sram_addr); 828 set_dout_mlli(&desc[*seq_size], 829 ctx_p->drvdata->mlli_sram_addr, 830 req_ctx->in_mlli_nents, NS_BIT, 831 (!last_desc ? 0 : 1)); 832 } else { 833 dev_dbg(dev, " din/dout params addr 0x%08X addr 0x%08X\n", 834 ctx_p->drvdata->mlli_sram_addr, 835 ctx_p->drvdata->mlli_sram_addr + 836 (u32)LLI_ENTRY_BYTE_SIZE * req_ctx->in_nents); 837 set_dout_mlli(&desc[*seq_size], 838 (ctx_p->drvdata->mlli_sram_addr + 839 (LLI_ENTRY_BYTE_SIZE * 840 req_ctx->in_mlli_nents)), 841 req_ctx->out_mlli_nents, NS_BIT, 842 (!last_desc ? 0 : 1)); 843 } 844 if (last_desc) 845 set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]); 846 847 set_flow_mode(&desc[*seq_size], flow_mode); 848 (*seq_size)++; 849 } 850 } 851 852 static void cc_cipher_complete(struct device *dev, void *cc_req, int err) 853 { 854 struct skcipher_request *req = (struct skcipher_request *)cc_req; 855 struct scatterlist *dst = req->dst; 856 struct scatterlist *src = req->src; 857 struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req); 858 struct crypto_skcipher *sk_tfm = crypto_skcipher_reqtfm(req); 859 unsigned int ivsize = crypto_skcipher_ivsize(sk_tfm); 860 861 if (err != -EINPROGRESS) { 862 /* Not a BACKLOG notification */ 863 cc_unmap_cipher_request(dev, req_ctx, ivsize, src, dst); 864 memcpy(req->iv, req_ctx->iv, ivsize); 865 kfree_sensitive(req_ctx->iv); 866 } 867 868 skcipher_request_complete(req, err); 869 } 870 871 static int cc_cipher_process(struct skcipher_request *req, 872 enum drv_crypto_direction direction) 873 { 874 struct crypto_skcipher *sk_tfm = crypto_skcipher_reqtfm(req); 875 struct crypto_tfm *tfm = crypto_skcipher_tfm(sk_tfm); 876 struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req); 877 unsigned int ivsize = crypto_skcipher_ivsize(sk_tfm); 878 struct scatterlist *dst = req->dst; 879 struct scatterlist *src = req->src; 880 unsigned int nbytes = req->cryptlen; 881 void *iv = req->iv; 882 struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm); 883 struct device *dev = drvdata_to_dev(ctx_p->drvdata); 884 struct cc_hw_desc desc[MAX_SKCIPHER_SEQ_LEN]; 885 struct cc_crypto_req cc_req = {}; 886 int rc; 887 unsigned int seq_len = 0; 888 gfp_t flags = cc_gfp_flags(&req->base); 889 890 dev_dbg(dev, "%s req=%p iv=%p nbytes=%d\n", 891 ((direction == DRV_CRYPTO_DIRECTION_ENCRYPT) ? 892 "Encrypt" : "Decrypt"), req, iv, nbytes); 893 894 /* STAT_PHASE_0: Init and sanity checks */ 895 896 if (validate_data_size(ctx_p, nbytes)) { 897 dev_dbg(dev, "Unsupported data size %d.\n", nbytes); 898 rc = -EINVAL; 899 goto exit_process; 900 } 901 if (nbytes == 0) { 902 /* No data to process is valid */ 903 rc = 0; 904 goto exit_process; 905 } 906 907 if (ctx_p->fallback_on) { 908 struct skcipher_request *subreq = skcipher_request_ctx(req); 909 910 *subreq = *req; 911 skcipher_request_set_tfm(subreq, ctx_p->fallback_tfm); 912 if (direction == DRV_CRYPTO_DIRECTION_ENCRYPT) 913 return crypto_skcipher_encrypt(subreq); 914 else 915 return crypto_skcipher_decrypt(subreq); 916 } 917 918 /* The IV we are handed may be allocated from the stack so 919 * we must copy it to a DMAable buffer before use. 920 */ 921 req_ctx->iv = kmemdup(iv, ivsize, flags); 922 if (!req_ctx->iv) { 923 rc = -ENOMEM; 924 goto exit_process; 925 } 926 927 /* Setup request structure */ 928 cc_req.user_cb = cc_cipher_complete; 929 cc_req.user_arg = req; 930 931 /* Setup CPP operation details */ 932 if (ctx_p->key_type == CC_POLICY_PROTECTED_KEY) { 933 cc_req.cpp.is_cpp = true; 934 cc_req.cpp.alg = ctx_p->cpp.alg; 935 cc_req.cpp.slot = ctx_p->cpp.slot; 936 } 937 938 /* Setup request context */ 939 req_ctx->gen_ctx.op_type = direction; 940 941 /* STAT_PHASE_1: Map buffers */ 942 943 rc = cc_map_cipher_request(ctx_p->drvdata, req_ctx, ivsize, nbytes, 944 req_ctx->iv, src, dst, flags); 945 if (rc) { 946 dev_err(dev, "map_request() failed\n"); 947 goto exit_process; 948 } 949 950 /* STAT_PHASE_2: Create sequence */ 951 952 /* Setup state (IV) */ 953 cc_setup_state_desc(tfm, req_ctx, ivsize, nbytes, desc, &seq_len); 954 /* Setup MLLI line, if needed */ 955 cc_setup_mlli_desc(tfm, req_ctx, dst, src, nbytes, req, desc, &seq_len); 956 /* Setup key */ 957 cc_setup_key_desc(tfm, req_ctx, nbytes, desc, &seq_len); 958 /* Setup state (IV and XEX key) */ 959 cc_setup_xex_state_desc(tfm, req_ctx, ivsize, nbytes, desc, &seq_len); 960 /* Data processing */ 961 cc_setup_flow_desc(tfm, req_ctx, dst, src, nbytes, desc, &seq_len); 962 /* Read next IV */ 963 cc_setup_readiv_desc(tfm, req_ctx, ivsize, desc, &seq_len); 964 965 /* STAT_PHASE_3: Lock HW and push sequence */ 966 967 rc = cc_send_request(ctx_p->drvdata, &cc_req, desc, seq_len, 968 &req->base); 969 if (rc != -EINPROGRESS && rc != -EBUSY) { 970 /* Failed to send the request or request completed 971 * synchronously 972 */ 973 cc_unmap_cipher_request(dev, req_ctx, ivsize, src, dst); 974 } 975 976 exit_process: 977 if (rc != -EINPROGRESS && rc != -EBUSY) { 978 kfree_sensitive(req_ctx->iv); 979 } 980 981 return rc; 982 } 983 984 static int cc_cipher_encrypt(struct skcipher_request *req) 985 { 986 struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req); 987 988 memset(req_ctx, 0, sizeof(*req_ctx)); 989 990 return cc_cipher_process(req, DRV_CRYPTO_DIRECTION_ENCRYPT); 991 } 992 993 static int cc_cipher_decrypt(struct skcipher_request *req) 994 { 995 struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req); 996 997 memset(req_ctx, 0, sizeof(*req_ctx)); 998 999 return cc_cipher_process(req, DRV_CRYPTO_DIRECTION_DECRYPT); 1000 } 1001 1002 /* Block cipher alg */ 1003 static const struct cc_alg_template skcipher_algs[] = { 1004 { 1005 .name = "xts(paes)", 1006 .driver_name = "xts-paes-ccree", 1007 .blocksize = 1, 1008 .template_skcipher = { 1009 .setkey = cc_cipher_sethkey, 1010 .encrypt = cc_cipher_encrypt, 1011 .decrypt = cc_cipher_decrypt, 1012 .min_keysize = CC_HW_KEY_SIZE, 1013 .max_keysize = CC_HW_KEY_SIZE, 1014 .ivsize = AES_BLOCK_SIZE, 1015 }, 1016 .cipher_mode = DRV_CIPHER_XTS, 1017 .flow_mode = S_DIN_to_AES, 1018 .min_hw_rev = CC_HW_REV_630, 1019 .std_body = CC_STD_NIST, 1020 .sec_func = true, 1021 }, 1022 { 1023 .name = "essiv(cbc(paes),sha256)", 1024 .driver_name = "essiv-paes-ccree", 1025 .blocksize = AES_BLOCK_SIZE, 1026 .template_skcipher = { 1027 .setkey = cc_cipher_sethkey, 1028 .encrypt = cc_cipher_encrypt, 1029 .decrypt = cc_cipher_decrypt, 1030 .min_keysize = CC_HW_KEY_SIZE, 1031 .max_keysize = CC_HW_KEY_SIZE, 1032 .ivsize = AES_BLOCK_SIZE, 1033 }, 1034 .cipher_mode = DRV_CIPHER_ESSIV, 1035 .flow_mode = S_DIN_to_AES, 1036 .min_hw_rev = CC_HW_REV_712, 1037 .std_body = CC_STD_NIST, 1038 .sec_func = true, 1039 }, 1040 { 1041 .name = "ecb(paes)", 1042 .driver_name = "ecb-paes-ccree", 1043 .blocksize = AES_BLOCK_SIZE, 1044 .template_skcipher = { 1045 .setkey = cc_cipher_sethkey, 1046 .encrypt = cc_cipher_encrypt, 1047 .decrypt = cc_cipher_decrypt, 1048 .min_keysize = CC_HW_KEY_SIZE, 1049 .max_keysize = CC_HW_KEY_SIZE, 1050 .ivsize = 0, 1051 }, 1052 .cipher_mode = DRV_CIPHER_ECB, 1053 .flow_mode = S_DIN_to_AES, 1054 .min_hw_rev = CC_HW_REV_712, 1055 .std_body = CC_STD_NIST, 1056 .sec_func = true, 1057 }, 1058 { 1059 .name = "cbc(paes)", 1060 .driver_name = "cbc-paes-ccree", 1061 .blocksize = AES_BLOCK_SIZE, 1062 .template_skcipher = { 1063 .setkey = cc_cipher_sethkey, 1064 .encrypt = cc_cipher_encrypt, 1065 .decrypt = cc_cipher_decrypt, 1066 .min_keysize = CC_HW_KEY_SIZE, 1067 .max_keysize = CC_HW_KEY_SIZE, 1068 .ivsize = AES_BLOCK_SIZE, 1069 }, 1070 .cipher_mode = DRV_CIPHER_CBC, 1071 .flow_mode = S_DIN_to_AES, 1072 .min_hw_rev = CC_HW_REV_712, 1073 .std_body = CC_STD_NIST, 1074 .sec_func = true, 1075 }, 1076 { 1077 .name = "cts(cbc(paes))", 1078 .driver_name = "cts-cbc-paes-ccree", 1079 .blocksize = AES_BLOCK_SIZE, 1080 .template_skcipher = { 1081 .setkey = cc_cipher_sethkey, 1082 .encrypt = cc_cipher_encrypt, 1083 .decrypt = cc_cipher_decrypt, 1084 .min_keysize = CC_HW_KEY_SIZE, 1085 .max_keysize = CC_HW_KEY_SIZE, 1086 .ivsize = AES_BLOCK_SIZE, 1087 }, 1088 .cipher_mode = DRV_CIPHER_CBC_CTS, 1089 .flow_mode = S_DIN_to_AES, 1090 .min_hw_rev = CC_HW_REV_712, 1091 .std_body = CC_STD_NIST, 1092 .sec_func = true, 1093 }, 1094 { 1095 .name = "ctr(paes)", 1096 .driver_name = "ctr-paes-ccree", 1097 .blocksize = 1, 1098 .template_skcipher = { 1099 .setkey = cc_cipher_sethkey, 1100 .encrypt = cc_cipher_encrypt, 1101 .decrypt = cc_cipher_decrypt, 1102 .min_keysize = CC_HW_KEY_SIZE, 1103 .max_keysize = CC_HW_KEY_SIZE, 1104 .ivsize = AES_BLOCK_SIZE, 1105 }, 1106 .cipher_mode = DRV_CIPHER_CTR, 1107 .flow_mode = S_DIN_to_AES, 1108 .min_hw_rev = CC_HW_REV_712, 1109 .std_body = CC_STD_NIST, 1110 .sec_func = true, 1111 }, 1112 { 1113 /* See https://www.mail-archive.com/linux-crypto@vger.kernel.org/msg40576.html 1114 * for the reason why this differs from the generic 1115 * implementation. 1116 */ 1117 .name = "xts(aes)", 1118 .driver_name = "xts-aes-ccree", 1119 .blocksize = 1, 1120 .template_skcipher = { 1121 .setkey = cc_cipher_setkey, 1122 .encrypt = cc_cipher_encrypt, 1123 .decrypt = cc_cipher_decrypt, 1124 .min_keysize = AES_MIN_KEY_SIZE * 2, 1125 .max_keysize = AES_MAX_KEY_SIZE * 2, 1126 .ivsize = AES_BLOCK_SIZE, 1127 }, 1128 .cipher_mode = DRV_CIPHER_XTS, 1129 .flow_mode = S_DIN_to_AES, 1130 .min_hw_rev = CC_HW_REV_630, 1131 .std_body = CC_STD_NIST, 1132 }, 1133 { 1134 .name = "essiv(cbc(aes),sha256)", 1135 .driver_name = "essiv-aes-ccree", 1136 .blocksize = AES_BLOCK_SIZE, 1137 .template_skcipher = { 1138 .setkey = cc_cipher_setkey, 1139 .encrypt = cc_cipher_encrypt, 1140 .decrypt = cc_cipher_decrypt, 1141 .min_keysize = AES_MIN_KEY_SIZE, 1142 .max_keysize = AES_MAX_KEY_SIZE, 1143 .ivsize = AES_BLOCK_SIZE, 1144 }, 1145 .cipher_mode = DRV_CIPHER_ESSIV, 1146 .flow_mode = S_DIN_to_AES, 1147 .min_hw_rev = CC_HW_REV_712, 1148 .std_body = CC_STD_NIST, 1149 }, 1150 { 1151 .name = "ecb(aes)", 1152 .driver_name = "ecb-aes-ccree", 1153 .blocksize = AES_BLOCK_SIZE, 1154 .template_skcipher = { 1155 .setkey = cc_cipher_setkey, 1156 .encrypt = cc_cipher_encrypt, 1157 .decrypt = cc_cipher_decrypt, 1158 .min_keysize = AES_MIN_KEY_SIZE, 1159 .max_keysize = AES_MAX_KEY_SIZE, 1160 .ivsize = 0, 1161 }, 1162 .cipher_mode = DRV_CIPHER_ECB, 1163 .flow_mode = S_DIN_to_AES, 1164 .min_hw_rev = CC_HW_REV_630, 1165 .std_body = CC_STD_NIST, 1166 }, 1167 { 1168 .name = "cbc(aes)", 1169 .driver_name = "cbc-aes-ccree", 1170 .blocksize = AES_BLOCK_SIZE, 1171 .template_skcipher = { 1172 .setkey = cc_cipher_setkey, 1173 .encrypt = cc_cipher_encrypt, 1174 .decrypt = cc_cipher_decrypt, 1175 .min_keysize = AES_MIN_KEY_SIZE, 1176 .max_keysize = AES_MAX_KEY_SIZE, 1177 .ivsize = AES_BLOCK_SIZE, 1178 }, 1179 .cipher_mode = DRV_CIPHER_CBC, 1180 .flow_mode = S_DIN_to_AES, 1181 .min_hw_rev = CC_HW_REV_630, 1182 .std_body = CC_STD_NIST, 1183 }, 1184 { 1185 .name = "cts(cbc(aes))", 1186 .driver_name = "cts-cbc-aes-ccree", 1187 .blocksize = AES_BLOCK_SIZE, 1188 .template_skcipher = { 1189 .setkey = cc_cipher_setkey, 1190 .encrypt = cc_cipher_encrypt, 1191 .decrypt = cc_cipher_decrypt, 1192 .min_keysize = AES_MIN_KEY_SIZE, 1193 .max_keysize = AES_MAX_KEY_SIZE, 1194 .ivsize = AES_BLOCK_SIZE, 1195 }, 1196 .cipher_mode = DRV_CIPHER_CBC_CTS, 1197 .flow_mode = S_DIN_to_AES, 1198 .min_hw_rev = CC_HW_REV_630, 1199 .std_body = CC_STD_NIST, 1200 }, 1201 { 1202 .name = "ctr(aes)", 1203 .driver_name = "ctr-aes-ccree", 1204 .blocksize = 1, 1205 .template_skcipher = { 1206 .setkey = cc_cipher_setkey, 1207 .encrypt = cc_cipher_encrypt, 1208 .decrypt = cc_cipher_decrypt, 1209 .min_keysize = AES_MIN_KEY_SIZE, 1210 .max_keysize = AES_MAX_KEY_SIZE, 1211 .ivsize = AES_BLOCK_SIZE, 1212 }, 1213 .cipher_mode = DRV_CIPHER_CTR, 1214 .flow_mode = S_DIN_to_AES, 1215 .min_hw_rev = CC_HW_REV_630, 1216 .std_body = CC_STD_NIST, 1217 }, 1218 { 1219 .name = "cbc(des3_ede)", 1220 .driver_name = "cbc-3des-ccree", 1221 .blocksize = DES3_EDE_BLOCK_SIZE, 1222 .template_skcipher = { 1223 .setkey = cc_cipher_setkey, 1224 .encrypt = cc_cipher_encrypt, 1225 .decrypt = cc_cipher_decrypt, 1226 .min_keysize = DES3_EDE_KEY_SIZE, 1227 .max_keysize = DES3_EDE_KEY_SIZE, 1228 .ivsize = DES3_EDE_BLOCK_SIZE, 1229 }, 1230 .cipher_mode = DRV_CIPHER_CBC, 1231 .flow_mode = S_DIN_to_DES, 1232 .min_hw_rev = CC_HW_REV_630, 1233 .std_body = CC_STD_NIST, 1234 }, 1235 { 1236 .name = "ecb(des3_ede)", 1237 .driver_name = "ecb-3des-ccree", 1238 .blocksize = DES3_EDE_BLOCK_SIZE, 1239 .template_skcipher = { 1240 .setkey = cc_cipher_setkey, 1241 .encrypt = cc_cipher_encrypt, 1242 .decrypt = cc_cipher_decrypt, 1243 .min_keysize = DES3_EDE_KEY_SIZE, 1244 .max_keysize = DES3_EDE_KEY_SIZE, 1245 .ivsize = 0, 1246 }, 1247 .cipher_mode = DRV_CIPHER_ECB, 1248 .flow_mode = S_DIN_to_DES, 1249 .min_hw_rev = CC_HW_REV_630, 1250 .std_body = CC_STD_NIST, 1251 }, 1252 { 1253 .name = "cbc(des)", 1254 .driver_name = "cbc-des-ccree", 1255 .blocksize = DES_BLOCK_SIZE, 1256 .template_skcipher = { 1257 .setkey = cc_cipher_setkey, 1258 .encrypt = cc_cipher_encrypt, 1259 .decrypt = cc_cipher_decrypt, 1260 .min_keysize = DES_KEY_SIZE, 1261 .max_keysize = DES_KEY_SIZE, 1262 .ivsize = DES_BLOCK_SIZE, 1263 }, 1264 .cipher_mode = DRV_CIPHER_CBC, 1265 .flow_mode = S_DIN_to_DES, 1266 .min_hw_rev = CC_HW_REV_630, 1267 .std_body = CC_STD_NIST, 1268 }, 1269 { 1270 .name = "ecb(des)", 1271 .driver_name = "ecb-des-ccree", 1272 .blocksize = DES_BLOCK_SIZE, 1273 .template_skcipher = { 1274 .setkey = cc_cipher_setkey, 1275 .encrypt = cc_cipher_encrypt, 1276 .decrypt = cc_cipher_decrypt, 1277 .min_keysize = DES_KEY_SIZE, 1278 .max_keysize = DES_KEY_SIZE, 1279 .ivsize = 0, 1280 }, 1281 .cipher_mode = DRV_CIPHER_ECB, 1282 .flow_mode = S_DIN_to_DES, 1283 .min_hw_rev = CC_HW_REV_630, 1284 .std_body = CC_STD_NIST, 1285 }, 1286 { 1287 .name = "cbc(sm4)", 1288 .driver_name = "cbc-sm4-ccree", 1289 .blocksize = SM4_BLOCK_SIZE, 1290 .template_skcipher = { 1291 .setkey = cc_cipher_setkey, 1292 .encrypt = cc_cipher_encrypt, 1293 .decrypt = cc_cipher_decrypt, 1294 .min_keysize = SM4_KEY_SIZE, 1295 .max_keysize = SM4_KEY_SIZE, 1296 .ivsize = SM4_BLOCK_SIZE, 1297 }, 1298 .cipher_mode = DRV_CIPHER_CBC, 1299 .flow_mode = S_DIN_to_SM4, 1300 .min_hw_rev = CC_HW_REV_713, 1301 .std_body = CC_STD_OSCCA, 1302 }, 1303 { 1304 .name = "ecb(sm4)", 1305 .driver_name = "ecb-sm4-ccree", 1306 .blocksize = SM4_BLOCK_SIZE, 1307 .template_skcipher = { 1308 .setkey = cc_cipher_setkey, 1309 .encrypt = cc_cipher_encrypt, 1310 .decrypt = cc_cipher_decrypt, 1311 .min_keysize = SM4_KEY_SIZE, 1312 .max_keysize = SM4_KEY_SIZE, 1313 .ivsize = 0, 1314 }, 1315 .cipher_mode = DRV_CIPHER_ECB, 1316 .flow_mode = S_DIN_to_SM4, 1317 .min_hw_rev = CC_HW_REV_713, 1318 .std_body = CC_STD_OSCCA, 1319 }, 1320 { 1321 .name = "ctr(sm4)", 1322 .driver_name = "ctr-sm4-ccree", 1323 .blocksize = 1, 1324 .template_skcipher = { 1325 .setkey = cc_cipher_setkey, 1326 .encrypt = cc_cipher_encrypt, 1327 .decrypt = cc_cipher_decrypt, 1328 .min_keysize = SM4_KEY_SIZE, 1329 .max_keysize = SM4_KEY_SIZE, 1330 .ivsize = SM4_BLOCK_SIZE, 1331 }, 1332 .cipher_mode = DRV_CIPHER_CTR, 1333 .flow_mode = S_DIN_to_SM4, 1334 .min_hw_rev = CC_HW_REV_713, 1335 .std_body = CC_STD_OSCCA, 1336 }, 1337 { 1338 .name = "cbc(psm4)", 1339 .driver_name = "cbc-psm4-ccree", 1340 .blocksize = SM4_BLOCK_SIZE, 1341 .template_skcipher = { 1342 .setkey = cc_cipher_sethkey, 1343 .encrypt = cc_cipher_encrypt, 1344 .decrypt = cc_cipher_decrypt, 1345 .min_keysize = CC_HW_KEY_SIZE, 1346 .max_keysize = CC_HW_KEY_SIZE, 1347 .ivsize = SM4_BLOCK_SIZE, 1348 }, 1349 .cipher_mode = DRV_CIPHER_CBC, 1350 .flow_mode = S_DIN_to_SM4, 1351 .min_hw_rev = CC_HW_REV_713, 1352 .std_body = CC_STD_OSCCA, 1353 .sec_func = true, 1354 }, 1355 { 1356 .name = "ctr(psm4)", 1357 .driver_name = "ctr-psm4-ccree", 1358 .blocksize = SM4_BLOCK_SIZE, 1359 .template_skcipher = { 1360 .setkey = cc_cipher_sethkey, 1361 .encrypt = cc_cipher_encrypt, 1362 .decrypt = cc_cipher_decrypt, 1363 .min_keysize = CC_HW_KEY_SIZE, 1364 .max_keysize = CC_HW_KEY_SIZE, 1365 .ivsize = SM4_BLOCK_SIZE, 1366 }, 1367 .cipher_mode = DRV_CIPHER_CTR, 1368 .flow_mode = S_DIN_to_SM4, 1369 .min_hw_rev = CC_HW_REV_713, 1370 .std_body = CC_STD_OSCCA, 1371 .sec_func = true, 1372 }, 1373 }; 1374 1375 static struct cc_crypto_alg *cc_create_alg(const struct cc_alg_template *tmpl, 1376 struct device *dev) 1377 { 1378 struct cc_crypto_alg *t_alg; 1379 struct skcipher_alg *alg; 1380 1381 t_alg = devm_kzalloc(dev, sizeof(*t_alg), GFP_KERNEL); 1382 if (!t_alg) 1383 return ERR_PTR(-ENOMEM); 1384 1385 alg = &t_alg->skcipher_alg; 1386 1387 memcpy(alg, &tmpl->template_skcipher, sizeof(*alg)); 1388 1389 if (snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", 1390 tmpl->name) >= CRYPTO_MAX_ALG_NAME) 1391 return ERR_PTR(-EINVAL); 1392 if (snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s", 1393 tmpl->driver_name) >= CRYPTO_MAX_ALG_NAME) 1394 return ERR_PTR(-EINVAL); 1395 1396 alg->base.cra_module = THIS_MODULE; 1397 alg->base.cra_priority = CC_CRA_PRIO; 1398 alg->base.cra_blocksize = tmpl->blocksize; 1399 alg->base.cra_alignmask = 0; 1400 alg->base.cra_ctxsize = sizeof(struct cc_cipher_ctx); 1401 1402 alg->base.cra_init = cc_cipher_init; 1403 alg->base.cra_exit = cc_cipher_exit; 1404 alg->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY; 1405 1406 t_alg->cipher_mode = tmpl->cipher_mode; 1407 t_alg->flow_mode = tmpl->flow_mode; 1408 1409 return t_alg; 1410 } 1411 1412 int cc_cipher_free(struct cc_drvdata *drvdata) 1413 { 1414 struct cc_crypto_alg *t_alg, *n; 1415 1416 /* Remove registered algs */ 1417 list_for_each_entry_safe(t_alg, n, &drvdata->alg_list, entry) { 1418 crypto_unregister_skcipher(&t_alg->skcipher_alg); 1419 list_del(&t_alg->entry); 1420 } 1421 return 0; 1422 } 1423 1424 int cc_cipher_alloc(struct cc_drvdata *drvdata) 1425 { 1426 struct cc_crypto_alg *t_alg; 1427 struct device *dev = drvdata_to_dev(drvdata); 1428 int rc = -ENOMEM; 1429 int alg; 1430 1431 INIT_LIST_HEAD(&drvdata->alg_list); 1432 1433 /* Linux crypto */ 1434 dev_dbg(dev, "Number of algorithms = %zu\n", 1435 ARRAY_SIZE(skcipher_algs)); 1436 for (alg = 0; alg < ARRAY_SIZE(skcipher_algs); alg++) { 1437 if ((skcipher_algs[alg].min_hw_rev > drvdata->hw_rev) || 1438 !(drvdata->std_bodies & skcipher_algs[alg].std_body) || 1439 (drvdata->sec_disabled && skcipher_algs[alg].sec_func)) 1440 continue; 1441 1442 dev_dbg(dev, "creating %s\n", skcipher_algs[alg].driver_name); 1443 t_alg = cc_create_alg(&skcipher_algs[alg], dev); 1444 if (IS_ERR(t_alg)) { 1445 rc = PTR_ERR(t_alg); 1446 dev_err(dev, "%s alg allocation failed\n", 1447 skcipher_algs[alg].driver_name); 1448 goto fail0; 1449 } 1450 t_alg->drvdata = drvdata; 1451 1452 dev_dbg(dev, "registering %s\n", 1453 skcipher_algs[alg].driver_name); 1454 rc = crypto_register_skcipher(&t_alg->skcipher_alg); 1455 dev_dbg(dev, "%s alg registration rc = %x\n", 1456 t_alg->skcipher_alg.base.cra_driver_name, rc); 1457 if (rc) { 1458 dev_err(dev, "%s alg registration failed\n", 1459 t_alg->skcipher_alg.base.cra_driver_name); 1460 goto fail0; 1461 } 1462 1463 list_add_tail(&t_alg->entry, &drvdata->alg_list); 1464 dev_dbg(dev, "Registered %s\n", 1465 t_alg->skcipher_alg.base.cra_driver_name); 1466 } 1467 return 0; 1468 1469 fail0: 1470 cc_cipher_free(drvdata); 1471 return rc; 1472 } 1473