xref: /linux/drivers/crypto/ccree/cc_cipher.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2012-2019 ARM Limited (or its affiliates). */
3 
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <crypto/algapi.h>
7 #include <crypto/internal/skcipher.h>
8 #include <crypto/internal/des.h>
9 #include <crypto/xts.h>
10 #include <crypto/sm4.h>
11 #include <crypto/scatterwalk.h>
12 
13 #include "cc_driver.h"
14 #include "cc_lli_defs.h"
15 #include "cc_buffer_mgr.h"
16 #include "cc_cipher.h"
17 #include "cc_request_mgr.h"
18 
19 #define MAX_SKCIPHER_SEQ_LEN 6
20 
21 #define template_skcipher	template_u.skcipher
22 
23 struct cc_user_key_info {
24 	u8 *key;
25 	dma_addr_t key_dma_addr;
26 };
27 
28 struct cc_hw_key_info {
29 	enum cc_hw_crypto_key key1_slot;
30 	enum cc_hw_crypto_key key2_slot;
31 };
32 
33 struct cc_cpp_key_info {
34 	u8 slot;
35 	enum cc_cpp_alg alg;
36 };
37 
38 enum cc_key_type {
39 	CC_UNPROTECTED_KEY,		/* User key */
40 	CC_HW_PROTECTED_KEY,		/* HW (FDE) key */
41 	CC_POLICY_PROTECTED_KEY,	/* CPP key */
42 	CC_INVALID_PROTECTED_KEY	/* Invalid key */
43 };
44 
45 struct cc_cipher_ctx {
46 	struct cc_drvdata *drvdata;
47 	int keylen;
48 	int cipher_mode;
49 	int flow_mode;
50 	unsigned int flags;
51 	enum cc_key_type key_type;
52 	struct cc_user_key_info user;
53 	union {
54 		struct cc_hw_key_info hw;
55 		struct cc_cpp_key_info cpp;
56 	};
57 	struct crypto_shash *shash_tfm;
58 	struct crypto_skcipher *fallback_tfm;
59 	bool fallback_on;
60 };
61 
62 static void cc_cipher_complete(struct device *dev, void *cc_req, int err);
63 
64 static inline enum cc_key_type cc_key_type(struct crypto_tfm *tfm)
65 {
66 	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
67 
68 	return ctx_p->key_type;
69 }
70 
71 static int validate_keys_sizes(struct cc_cipher_ctx *ctx_p, u32 size)
72 {
73 	switch (ctx_p->flow_mode) {
74 	case S_DIN_to_AES:
75 		switch (size) {
76 		case CC_AES_128_BIT_KEY_SIZE:
77 		case CC_AES_192_BIT_KEY_SIZE:
78 			if (ctx_p->cipher_mode != DRV_CIPHER_XTS)
79 				return 0;
80 			break;
81 		case CC_AES_256_BIT_KEY_SIZE:
82 			return 0;
83 		case (CC_AES_192_BIT_KEY_SIZE * 2):
84 		case (CC_AES_256_BIT_KEY_SIZE * 2):
85 			if (ctx_p->cipher_mode == DRV_CIPHER_XTS ||
86 			    ctx_p->cipher_mode == DRV_CIPHER_ESSIV)
87 				return 0;
88 			break;
89 		default:
90 			break;
91 		}
92 		break;
93 	case S_DIN_to_DES:
94 		if (size == DES3_EDE_KEY_SIZE || size == DES_KEY_SIZE)
95 			return 0;
96 		break;
97 	case S_DIN_to_SM4:
98 		if (size == SM4_KEY_SIZE)
99 			return 0;
100 		break;
101 	default:
102 		break;
103 	}
104 	return -EINVAL;
105 }
106 
107 static int validate_data_size(struct cc_cipher_ctx *ctx_p,
108 			      unsigned int size)
109 {
110 	switch (ctx_p->flow_mode) {
111 	case S_DIN_to_AES:
112 		switch (ctx_p->cipher_mode) {
113 		case DRV_CIPHER_XTS:
114 		case DRV_CIPHER_CBC_CTS:
115 			if (size >= AES_BLOCK_SIZE)
116 				return 0;
117 			break;
118 		case DRV_CIPHER_OFB:
119 		case DRV_CIPHER_CTR:
120 				return 0;
121 		case DRV_CIPHER_ECB:
122 		case DRV_CIPHER_CBC:
123 		case DRV_CIPHER_ESSIV:
124 			if (IS_ALIGNED(size, AES_BLOCK_SIZE))
125 				return 0;
126 			break;
127 		default:
128 			break;
129 		}
130 		break;
131 	case S_DIN_to_DES:
132 		if (IS_ALIGNED(size, DES_BLOCK_SIZE))
133 			return 0;
134 		break;
135 	case S_DIN_to_SM4:
136 		switch (ctx_p->cipher_mode) {
137 		case DRV_CIPHER_CTR:
138 			return 0;
139 		case DRV_CIPHER_ECB:
140 		case DRV_CIPHER_CBC:
141 			if (IS_ALIGNED(size, SM4_BLOCK_SIZE))
142 				return 0;
143 			break;
144 		default:
145 			break;
146 		}
147 		break;
148 	default:
149 		break;
150 	}
151 	return -EINVAL;
152 }
153 
154 static int cc_cipher_init(struct crypto_tfm *tfm)
155 {
156 	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
157 	struct cc_crypto_alg *cc_alg =
158 			container_of(tfm->__crt_alg, struct cc_crypto_alg,
159 				     skcipher_alg.base);
160 	struct device *dev = drvdata_to_dev(cc_alg->drvdata);
161 	unsigned int max_key_buf_size = cc_alg->skcipher_alg.max_keysize;
162 	unsigned int fallback_req_size = 0;
163 
164 	dev_dbg(dev, "Initializing context @%p for %s\n", ctx_p,
165 		crypto_tfm_alg_name(tfm));
166 
167 	ctx_p->cipher_mode = cc_alg->cipher_mode;
168 	ctx_p->flow_mode = cc_alg->flow_mode;
169 	ctx_p->drvdata = cc_alg->drvdata;
170 
171 	if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
172 		const char *name = crypto_tfm_alg_name(tfm);
173 
174 		/* Alloc hash tfm for essiv */
175 		ctx_p->shash_tfm = crypto_alloc_shash("sha256", 0, 0);
176 		if (IS_ERR(ctx_p->shash_tfm)) {
177 			dev_err(dev, "Error allocating hash tfm for ESSIV.\n");
178 			return PTR_ERR(ctx_p->shash_tfm);
179 		}
180 		max_key_buf_size <<= 1;
181 
182 		/* Alloc fallback tfm or essiv when key size != 256 bit */
183 		ctx_p->fallback_tfm =
184 			crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC);
185 
186 		if (IS_ERR(ctx_p->fallback_tfm)) {
187 			/* Note we're still allowing registration with no fallback since it's
188 			 * better to have most modes supported than none at all.
189 			 */
190 			dev_warn(dev, "Error allocating fallback algo %s. Some modes may be available.\n",
191 			       name);
192 			ctx_p->fallback_tfm = NULL;
193 		} else {
194 			fallback_req_size = crypto_skcipher_reqsize(ctx_p->fallback_tfm);
195 		}
196 	}
197 
198 	crypto_skcipher_set_reqsize(__crypto_skcipher_cast(tfm),
199 				    sizeof(struct cipher_req_ctx) + fallback_req_size);
200 
201 	/* Allocate key buffer, cache line aligned */
202 	ctx_p->user.key = kzalloc(max_key_buf_size, GFP_KERNEL);
203 	if (!ctx_p->user.key)
204 		goto free_fallback;
205 
206 	dev_dbg(dev, "Allocated key buffer in context. key=@%p\n",
207 		ctx_p->user.key);
208 
209 	/* Map key buffer */
210 	ctx_p->user.key_dma_addr = dma_map_single(dev, ctx_p->user.key,
211 						  max_key_buf_size,
212 						  DMA_TO_DEVICE);
213 	if (dma_mapping_error(dev, ctx_p->user.key_dma_addr)) {
214 		dev_err(dev, "Mapping Key %u B at va=%pK for DMA failed\n",
215 			max_key_buf_size, ctx_p->user.key);
216 		goto free_key;
217 	}
218 	dev_dbg(dev, "Mapped key %u B at va=%pK to dma=%pad\n",
219 		max_key_buf_size, ctx_p->user.key, &ctx_p->user.key_dma_addr);
220 
221 	return 0;
222 
223 free_key:
224 	kfree(ctx_p->user.key);
225 free_fallback:
226 	crypto_free_skcipher(ctx_p->fallback_tfm);
227 	crypto_free_shash(ctx_p->shash_tfm);
228 
229 	return -ENOMEM;
230 }
231 
232 static void cc_cipher_exit(struct crypto_tfm *tfm)
233 {
234 	struct crypto_alg *alg = tfm->__crt_alg;
235 	struct cc_crypto_alg *cc_alg =
236 			container_of(alg, struct cc_crypto_alg,
237 				     skcipher_alg.base);
238 	unsigned int max_key_buf_size = cc_alg->skcipher_alg.max_keysize;
239 	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
240 	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
241 
242 	dev_dbg(dev, "Clearing context @%p for %s\n",
243 		crypto_tfm_ctx(tfm), crypto_tfm_alg_name(tfm));
244 
245 	if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
246 		/* Free hash tfm for essiv */
247 		crypto_free_shash(ctx_p->shash_tfm);
248 		ctx_p->shash_tfm = NULL;
249 		crypto_free_skcipher(ctx_p->fallback_tfm);
250 		ctx_p->fallback_tfm = NULL;
251 	}
252 
253 	/* Unmap key buffer */
254 	dma_unmap_single(dev, ctx_p->user.key_dma_addr, max_key_buf_size,
255 			 DMA_TO_DEVICE);
256 	dev_dbg(dev, "Unmapped key buffer key_dma_addr=%pad\n",
257 		&ctx_p->user.key_dma_addr);
258 
259 	/* Free key buffer in context */
260 	dev_dbg(dev, "Free key buffer in context. key=@%p\n", ctx_p->user.key);
261 	kfree_sensitive(ctx_p->user.key);
262 }
263 
264 static enum cc_hw_crypto_key cc_slot_to_hw_key(u8 slot_num)
265 {
266 	switch (slot_num) {
267 	case 0:
268 		return KFDE0_KEY;
269 	case 1:
270 		return KFDE1_KEY;
271 	case 2:
272 		return KFDE2_KEY;
273 	case 3:
274 		return KFDE3_KEY;
275 	}
276 	return END_OF_KEYS;
277 }
278 
279 static u8 cc_slot_to_cpp_key(u8 slot_num)
280 {
281 	return (slot_num - CC_FIRST_CPP_KEY_SLOT);
282 }
283 
284 static inline enum cc_key_type cc_slot_to_key_type(u8 slot_num)
285 {
286 	if (slot_num >= CC_FIRST_HW_KEY_SLOT && slot_num <= CC_LAST_HW_KEY_SLOT)
287 		return CC_HW_PROTECTED_KEY;
288 	else if (slot_num >=  CC_FIRST_CPP_KEY_SLOT &&
289 		 slot_num <=  CC_LAST_CPP_KEY_SLOT)
290 		return CC_POLICY_PROTECTED_KEY;
291 	else
292 		return CC_INVALID_PROTECTED_KEY;
293 }
294 
295 static int cc_cipher_sethkey(struct crypto_skcipher *sktfm, const u8 *key,
296 			     unsigned int keylen)
297 {
298 	struct crypto_tfm *tfm = crypto_skcipher_tfm(sktfm);
299 	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
300 	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
301 	struct cc_hkey_info hki;
302 
303 	dev_dbg(dev, "Setting HW key in context @%p for %s. keylen=%u\n",
304 		ctx_p, crypto_tfm_alg_name(tfm), keylen);
305 	dump_byte_array("key", key, keylen);
306 
307 	/* STAT_PHASE_0: Init and sanity checks */
308 
309 	/* This check the size of the protected key token */
310 	if (keylen != sizeof(hki)) {
311 		dev_err(dev, "Unsupported protected key size %d.\n", keylen);
312 		return -EINVAL;
313 	}
314 
315 	memcpy(&hki, key, keylen);
316 
317 	/* The real key len for crypto op is the size of the HW key
318 	 * referenced by the HW key slot, not the hardware key token
319 	 */
320 	keylen = hki.keylen;
321 
322 	if (validate_keys_sizes(ctx_p, keylen)) {
323 		dev_dbg(dev, "Unsupported key size %d.\n", keylen);
324 		return -EINVAL;
325 	}
326 
327 	ctx_p->keylen = keylen;
328 	ctx_p->fallback_on = false;
329 
330 	switch (cc_slot_to_key_type(hki.hw_key1)) {
331 	case CC_HW_PROTECTED_KEY:
332 		if (ctx_p->flow_mode == S_DIN_to_SM4) {
333 			dev_err(dev, "Only AES HW protected keys are supported\n");
334 			return -EINVAL;
335 		}
336 
337 		ctx_p->hw.key1_slot = cc_slot_to_hw_key(hki.hw_key1);
338 		if (ctx_p->hw.key1_slot == END_OF_KEYS) {
339 			dev_err(dev, "Unsupported hw key1 number (%d)\n",
340 				hki.hw_key1);
341 			return -EINVAL;
342 		}
343 
344 		if (ctx_p->cipher_mode == DRV_CIPHER_XTS ||
345 		    ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
346 			if (hki.hw_key1 == hki.hw_key2) {
347 				dev_err(dev, "Illegal hw key numbers (%d,%d)\n",
348 					hki.hw_key1, hki.hw_key2);
349 				return -EINVAL;
350 			}
351 
352 			ctx_p->hw.key2_slot = cc_slot_to_hw_key(hki.hw_key2);
353 			if (ctx_p->hw.key2_slot == END_OF_KEYS) {
354 				dev_err(dev, "Unsupported hw key2 number (%d)\n",
355 					hki.hw_key2);
356 				return -EINVAL;
357 			}
358 		}
359 
360 		ctx_p->key_type = CC_HW_PROTECTED_KEY;
361 		dev_dbg(dev, "HW protected key  %d/%d set\n.",
362 			ctx_p->hw.key1_slot, ctx_p->hw.key2_slot);
363 		break;
364 
365 	case CC_POLICY_PROTECTED_KEY:
366 		if (ctx_p->drvdata->hw_rev < CC_HW_REV_713) {
367 			dev_err(dev, "CPP keys not supported in this hardware revision.\n");
368 			return -EINVAL;
369 		}
370 
371 		if (ctx_p->cipher_mode != DRV_CIPHER_CBC &&
372 		    ctx_p->cipher_mode != DRV_CIPHER_CTR) {
373 			dev_err(dev, "CPP keys only supported in CBC or CTR modes.\n");
374 			return -EINVAL;
375 		}
376 
377 		ctx_p->cpp.slot = cc_slot_to_cpp_key(hki.hw_key1);
378 		if (ctx_p->flow_mode == S_DIN_to_AES)
379 			ctx_p->cpp.alg = CC_CPP_AES;
380 		else /* Must be SM4 since due to sethkey registration */
381 			ctx_p->cpp.alg = CC_CPP_SM4;
382 		ctx_p->key_type = CC_POLICY_PROTECTED_KEY;
383 		dev_dbg(dev, "policy protected key alg: %d slot: %d.\n",
384 			ctx_p->cpp.alg, ctx_p->cpp.slot);
385 		break;
386 
387 	default:
388 		dev_err(dev, "Unsupported protected key (%d)\n", hki.hw_key1);
389 		return -EINVAL;
390 	}
391 
392 	return 0;
393 }
394 
395 static int cc_cipher_setkey(struct crypto_skcipher *sktfm, const u8 *key,
396 			    unsigned int keylen)
397 {
398 	struct crypto_tfm *tfm = crypto_skcipher_tfm(sktfm);
399 	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
400 	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
401 	struct cc_crypto_alg *cc_alg =
402 			container_of(tfm->__crt_alg, struct cc_crypto_alg,
403 				     skcipher_alg.base);
404 	unsigned int max_key_buf_size = cc_alg->skcipher_alg.max_keysize;
405 
406 	dev_dbg(dev, "Setting key in context @%p for %s. keylen=%u\n",
407 		ctx_p, crypto_tfm_alg_name(tfm), keylen);
408 	dump_byte_array("key", key, keylen);
409 
410 	/* STAT_PHASE_0: Init and sanity checks */
411 
412 	if (validate_keys_sizes(ctx_p, keylen)) {
413 		dev_dbg(dev, "Invalid key size %d.\n", keylen);
414 		return -EINVAL;
415 	}
416 
417 	if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
418 
419 		/* We only support 256 bit ESSIV-CBC-AES keys */
420 		if (keylen != AES_KEYSIZE_256)  {
421 			unsigned int flags = crypto_tfm_get_flags(tfm) & CRYPTO_TFM_REQ_MASK;
422 
423 			if (likely(ctx_p->fallback_tfm)) {
424 				ctx_p->fallback_on = true;
425 				crypto_skcipher_clear_flags(ctx_p->fallback_tfm,
426 							    CRYPTO_TFM_REQ_MASK);
427 				crypto_skcipher_clear_flags(ctx_p->fallback_tfm, flags);
428 				return crypto_skcipher_setkey(ctx_p->fallback_tfm, key, keylen);
429 			}
430 
431 			dev_dbg(dev, "Unsupported key size %d and no fallback.\n", keylen);
432 			return -EINVAL;
433 		}
434 
435 		/* Internal ESSIV key buffer is double sized */
436 		max_key_buf_size <<= 1;
437 	}
438 
439 	ctx_p->fallback_on = false;
440 	ctx_p->key_type = CC_UNPROTECTED_KEY;
441 
442 	/*
443 	 * Verify DES weak keys
444 	 * Note that we're dropping the expanded key since the
445 	 * HW does the expansion on its own.
446 	 */
447 	if (ctx_p->flow_mode == S_DIN_to_DES) {
448 		if ((keylen == DES3_EDE_KEY_SIZE &&
449 		     verify_skcipher_des3_key(sktfm, key)) ||
450 		    verify_skcipher_des_key(sktfm, key)) {
451 			dev_dbg(dev, "weak DES key");
452 			return -EINVAL;
453 		}
454 	}
455 
456 	if (ctx_p->cipher_mode == DRV_CIPHER_XTS &&
457 	    xts_verify_key(sktfm, key, keylen)) {
458 		dev_dbg(dev, "weak XTS key");
459 		return -EINVAL;
460 	}
461 
462 	/* STAT_PHASE_1: Copy key to ctx */
463 	dma_sync_single_for_cpu(dev, ctx_p->user.key_dma_addr,
464 				max_key_buf_size, DMA_TO_DEVICE);
465 
466 	memcpy(ctx_p->user.key, key, keylen);
467 
468 	if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
469 		/* sha256 for key2 - use sw implementation */
470 		int err;
471 
472 		err = crypto_shash_tfm_digest(ctx_p->shash_tfm,
473 					      ctx_p->user.key, keylen,
474 					      ctx_p->user.key + keylen);
475 		if (err) {
476 			dev_err(dev, "Failed to hash ESSIV key.\n");
477 			return err;
478 		}
479 
480 		keylen <<= 1;
481 	}
482 	dma_sync_single_for_device(dev, ctx_p->user.key_dma_addr,
483 				   max_key_buf_size, DMA_TO_DEVICE);
484 	ctx_p->keylen = keylen;
485 
486 	dev_dbg(dev, "return safely");
487 	return 0;
488 }
489 
490 static int cc_out_setup_mode(struct cc_cipher_ctx *ctx_p)
491 {
492 	switch (ctx_p->flow_mode) {
493 	case S_DIN_to_AES:
494 		return S_AES_to_DOUT;
495 	case S_DIN_to_DES:
496 		return S_DES_to_DOUT;
497 	case S_DIN_to_SM4:
498 		return S_SM4_to_DOUT;
499 	default:
500 		return ctx_p->flow_mode;
501 	}
502 }
503 
504 static void cc_setup_readiv_desc(struct crypto_tfm *tfm,
505 				 struct cipher_req_ctx *req_ctx,
506 				 unsigned int ivsize, struct cc_hw_desc desc[],
507 				 unsigned int *seq_size)
508 {
509 	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
510 	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
511 	int cipher_mode = ctx_p->cipher_mode;
512 	int flow_mode = cc_out_setup_mode(ctx_p);
513 	int direction = req_ctx->gen_ctx.op_type;
514 	dma_addr_t iv_dma_addr = req_ctx->gen_ctx.iv_dma_addr;
515 
516 	if (ctx_p->key_type == CC_POLICY_PROTECTED_KEY)
517 		return;
518 
519 	switch (cipher_mode) {
520 	case DRV_CIPHER_ECB:
521 		break;
522 	case DRV_CIPHER_CBC:
523 	case DRV_CIPHER_CBC_CTS:
524 	case DRV_CIPHER_CTR:
525 	case DRV_CIPHER_OFB:
526 		/* Read next IV */
527 		hw_desc_init(&desc[*seq_size]);
528 		set_dout_dlli(&desc[*seq_size], iv_dma_addr, ivsize, NS_BIT, 1);
529 		set_cipher_config0(&desc[*seq_size], direction);
530 		set_flow_mode(&desc[*seq_size], flow_mode);
531 		set_cipher_mode(&desc[*seq_size], cipher_mode);
532 		if (cipher_mode == DRV_CIPHER_CTR ||
533 		    cipher_mode == DRV_CIPHER_OFB) {
534 			set_setup_mode(&desc[*seq_size], SETUP_WRITE_STATE1);
535 		} else {
536 			set_setup_mode(&desc[*seq_size], SETUP_WRITE_STATE0);
537 		}
538 		set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]);
539 		(*seq_size)++;
540 		break;
541 	case DRV_CIPHER_XTS:
542 	case DRV_CIPHER_ESSIV:
543 		/*  IV */
544 		hw_desc_init(&desc[*seq_size]);
545 		set_setup_mode(&desc[*seq_size], SETUP_WRITE_STATE1);
546 		set_cipher_mode(&desc[*seq_size], cipher_mode);
547 		set_cipher_config0(&desc[*seq_size], direction);
548 		set_flow_mode(&desc[*seq_size], flow_mode);
549 		set_dout_dlli(&desc[*seq_size], iv_dma_addr, CC_AES_BLOCK_SIZE,
550 			     NS_BIT, 1);
551 		set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]);
552 		(*seq_size)++;
553 		break;
554 	default:
555 		dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode);
556 	}
557 }
558 
559 
560 static void cc_setup_state_desc(struct crypto_tfm *tfm,
561 				 struct cipher_req_ctx *req_ctx,
562 				 unsigned int ivsize, unsigned int nbytes,
563 				 struct cc_hw_desc desc[],
564 				 unsigned int *seq_size)
565 {
566 	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
567 	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
568 	int cipher_mode = ctx_p->cipher_mode;
569 	int flow_mode = ctx_p->flow_mode;
570 	int direction = req_ctx->gen_ctx.op_type;
571 	dma_addr_t iv_dma_addr = req_ctx->gen_ctx.iv_dma_addr;
572 
573 	switch (cipher_mode) {
574 	case DRV_CIPHER_ECB:
575 		break;
576 	case DRV_CIPHER_CBC:
577 	case DRV_CIPHER_CBC_CTS:
578 	case DRV_CIPHER_CTR:
579 	case DRV_CIPHER_OFB:
580 		/* Load IV */
581 		hw_desc_init(&desc[*seq_size]);
582 		set_din_type(&desc[*seq_size], DMA_DLLI, iv_dma_addr, ivsize,
583 			     NS_BIT);
584 		set_cipher_config0(&desc[*seq_size], direction);
585 		set_flow_mode(&desc[*seq_size], flow_mode);
586 		set_cipher_mode(&desc[*seq_size], cipher_mode);
587 		if (cipher_mode == DRV_CIPHER_CTR ||
588 		    cipher_mode == DRV_CIPHER_OFB) {
589 			set_setup_mode(&desc[*seq_size], SETUP_LOAD_STATE1);
590 		} else {
591 			set_setup_mode(&desc[*seq_size], SETUP_LOAD_STATE0);
592 		}
593 		(*seq_size)++;
594 		break;
595 	case DRV_CIPHER_XTS:
596 	case DRV_CIPHER_ESSIV:
597 		break;
598 	default:
599 		dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode);
600 	}
601 }
602 
603 
604 static void cc_setup_xex_state_desc(struct crypto_tfm *tfm,
605 				 struct cipher_req_ctx *req_ctx,
606 				 unsigned int ivsize, unsigned int nbytes,
607 				 struct cc_hw_desc desc[],
608 				 unsigned int *seq_size)
609 {
610 	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
611 	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
612 	int cipher_mode = ctx_p->cipher_mode;
613 	int flow_mode = ctx_p->flow_mode;
614 	int direction = req_ctx->gen_ctx.op_type;
615 	dma_addr_t key_dma_addr = ctx_p->user.key_dma_addr;
616 	unsigned int key_len = (ctx_p->keylen / 2);
617 	dma_addr_t iv_dma_addr = req_ctx->gen_ctx.iv_dma_addr;
618 	unsigned int key_offset = key_len;
619 
620 	switch (cipher_mode) {
621 	case DRV_CIPHER_ECB:
622 		break;
623 	case DRV_CIPHER_CBC:
624 	case DRV_CIPHER_CBC_CTS:
625 	case DRV_CIPHER_CTR:
626 	case DRV_CIPHER_OFB:
627 		break;
628 	case DRV_CIPHER_XTS:
629 	case DRV_CIPHER_ESSIV:
630 
631 		if (cipher_mode == DRV_CIPHER_ESSIV)
632 			key_len = SHA256_DIGEST_SIZE;
633 
634 		/* load XEX key */
635 		hw_desc_init(&desc[*seq_size]);
636 		set_cipher_mode(&desc[*seq_size], cipher_mode);
637 		set_cipher_config0(&desc[*seq_size], direction);
638 		if (cc_key_type(tfm) == CC_HW_PROTECTED_KEY) {
639 			set_hw_crypto_key(&desc[*seq_size],
640 					  ctx_p->hw.key2_slot);
641 		} else {
642 			set_din_type(&desc[*seq_size], DMA_DLLI,
643 				     (key_dma_addr + key_offset),
644 				     key_len, NS_BIT);
645 		}
646 		set_xex_data_unit_size(&desc[*seq_size], nbytes);
647 		set_flow_mode(&desc[*seq_size], S_DIN_to_AES2);
648 		set_key_size_aes(&desc[*seq_size], key_len);
649 		set_setup_mode(&desc[*seq_size], SETUP_LOAD_XEX_KEY);
650 		(*seq_size)++;
651 
652 		/* Load IV */
653 		hw_desc_init(&desc[*seq_size]);
654 		set_setup_mode(&desc[*seq_size], SETUP_LOAD_STATE1);
655 		set_cipher_mode(&desc[*seq_size], cipher_mode);
656 		set_cipher_config0(&desc[*seq_size], direction);
657 		set_key_size_aes(&desc[*seq_size], key_len);
658 		set_flow_mode(&desc[*seq_size], flow_mode);
659 		set_din_type(&desc[*seq_size], DMA_DLLI, iv_dma_addr,
660 			     CC_AES_BLOCK_SIZE, NS_BIT);
661 		(*seq_size)++;
662 		break;
663 	default:
664 		dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode);
665 	}
666 }
667 
668 static int cc_out_flow_mode(struct cc_cipher_ctx *ctx_p)
669 {
670 	switch (ctx_p->flow_mode) {
671 	case S_DIN_to_AES:
672 		return DIN_AES_DOUT;
673 	case S_DIN_to_DES:
674 		return DIN_DES_DOUT;
675 	case S_DIN_to_SM4:
676 		return DIN_SM4_DOUT;
677 	default:
678 		return ctx_p->flow_mode;
679 	}
680 }
681 
682 static void cc_setup_key_desc(struct crypto_tfm *tfm,
683 			      struct cipher_req_ctx *req_ctx,
684 			      unsigned int nbytes, struct cc_hw_desc desc[],
685 			      unsigned int *seq_size)
686 {
687 	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
688 	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
689 	int cipher_mode = ctx_p->cipher_mode;
690 	int flow_mode = ctx_p->flow_mode;
691 	int direction = req_ctx->gen_ctx.op_type;
692 	dma_addr_t key_dma_addr = ctx_p->user.key_dma_addr;
693 	unsigned int key_len = ctx_p->keylen;
694 	unsigned int din_size;
695 
696 	switch (cipher_mode) {
697 	case DRV_CIPHER_CBC:
698 	case DRV_CIPHER_CBC_CTS:
699 	case DRV_CIPHER_CTR:
700 	case DRV_CIPHER_OFB:
701 	case DRV_CIPHER_ECB:
702 		/* Load key */
703 		hw_desc_init(&desc[*seq_size]);
704 		set_cipher_mode(&desc[*seq_size], cipher_mode);
705 		set_cipher_config0(&desc[*seq_size], direction);
706 
707 		if (cc_key_type(tfm) == CC_POLICY_PROTECTED_KEY) {
708 			/* We use the AES key size coding for all CPP algs */
709 			set_key_size_aes(&desc[*seq_size], key_len);
710 			set_cpp_crypto_key(&desc[*seq_size], ctx_p->cpp.slot);
711 			flow_mode = cc_out_flow_mode(ctx_p);
712 		} else {
713 			if (flow_mode == S_DIN_to_AES) {
714 				if (cc_key_type(tfm) == CC_HW_PROTECTED_KEY) {
715 					set_hw_crypto_key(&desc[*seq_size],
716 							  ctx_p->hw.key1_slot);
717 				} else {
718 					/* CC_POLICY_UNPROTECTED_KEY
719 					 * Invalid keys are filtered out in
720 					 * sethkey()
721 					 */
722 					din_size = (key_len == 24) ?
723 						AES_MAX_KEY_SIZE : key_len;
724 
725 					set_din_type(&desc[*seq_size], DMA_DLLI,
726 						     key_dma_addr, din_size,
727 						     NS_BIT);
728 				}
729 				set_key_size_aes(&desc[*seq_size], key_len);
730 			} else {
731 				/*des*/
732 				set_din_type(&desc[*seq_size], DMA_DLLI,
733 					     key_dma_addr, key_len, NS_BIT);
734 				set_key_size_des(&desc[*seq_size], key_len);
735 			}
736 			set_setup_mode(&desc[*seq_size], SETUP_LOAD_KEY0);
737 		}
738 		set_flow_mode(&desc[*seq_size], flow_mode);
739 		(*seq_size)++;
740 		break;
741 	case DRV_CIPHER_XTS:
742 	case DRV_CIPHER_ESSIV:
743 		/* Load AES key */
744 		hw_desc_init(&desc[*seq_size]);
745 		set_cipher_mode(&desc[*seq_size], cipher_mode);
746 		set_cipher_config0(&desc[*seq_size], direction);
747 		if (cc_key_type(tfm) == CC_HW_PROTECTED_KEY) {
748 			set_hw_crypto_key(&desc[*seq_size],
749 					  ctx_p->hw.key1_slot);
750 		} else {
751 			set_din_type(&desc[*seq_size], DMA_DLLI, key_dma_addr,
752 				     (key_len / 2), NS_BIT);
753 		}
754 		set_key_size_aes(&desc[*seq_size], (key_len / 2));
755 		set_flow_mode(&desc[*seq_size], flow_mode);
756 		set_setup_mode(&desc[*seq_size], SETUP_LOAD_KEY0);
757 		(*seq_size)++;
758 		break;
759 	default:
760 		dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode);
761 	}
762 }
763 
764 static void cc_setup_mlli_desc(struct crypto_tfm *tfm,
765 			       struct cipher_req_ctx *req_ctx,
766 			       struct scatterlist *dst, struct scatterlist *src,
767 			       unsigned int nbytes, void *areq,
768 			       struct cc_hw_desc desc[], unsigned int *seq_size)
769 {
770 	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
771 	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
772 
773 	if (req_ctx->dma_buf_type == CC_DMA_BUF_MLLI) {
774 		/* bypass */
775 		dev_dbg(dev, " bypass params addr %pad length 0x%X addr 0x%08X\n",
776 			&req_ctx->mlli_params.mlli_dma_addr,
777 			req_ctx->mlli_params.mlli_len,
778 			ctx_p->drvdata->mlli_sram_addr);
779 		hw_desc_init(&desc[*seq_size]);
780 		set_din_type(&desc[*seq_size], DMA_DLLI,
781 			     req_ctx->mlli_params.mlli_dma_addr,
782 			     req_ctx->mlli_params.mlli_len, NS_BIT);
783 		set_dout_sram(&desc[*seq_size],
784 			      ctx_p->drvdata->mlli_sram_addr,
785 			      req_ctx->mlli_params.mlli_len);
786 		set_flow_mode(&desc[*seq_size], BYPASS);
787 		(*seq_size)++;
788 	}
789 }
790 
791 static void cc_setup_flow_desc(struct crypto_tfm *tfm,
792 			       struct cipher_req_ctx *req_ctx,
793 			       struct scatterlist *dst, struct scatterlist *src,
794 			       unsigned int nbytes, struct cc_hw_desc desc[],
795 			       unsigned int *seq_size)
796 {
797 	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
798 	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
799 	unsigned int flow_mode = cc_out_flow_mode(ctx_p);
800 	bool last_desc = (ctx_p->key_type == CC_POLICY_PROTECTED_KEY ||
801 			  ctx_p->cipher_mode == DRV_CIPHER_ECB);
802 
803 	/* Process */
804 	if (req_ctx->dma_buf_type == CC_DMA_BUF_DLLI) {
805 		dev_dbg(dev, " data params addr %pad length 0x%X\n",
806 			&sg_dma_address(src), nbytes);
807 		dev_dbg(dev, " data params addr %pad length 0x%X\n",
808 			&sg_dma_address(dst), nbytes);
809 		hw_desc_init(&desc[*seq_size]);
810 		set_din_type(&desc[*seq_size], DMA_DLLI, sg_dma_address(src),
811 			     nbytes, NS_BIT);
812 		set_dout_dlli(&desc[*seq_size], sg_dma_address(dst),
813 			      nbytes, NS_BIT, (!last_desc ? 0 : 1));
814 		if (last_desc)
815 			set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]);
816 
817 		set_flow_mode(&desc[*seq_size], flow_mode);
818 		(*seq_size)++;
819 	} else {
820 		hw_desc_init(&desc[*seq_size]);
821 		set_din_type(&desc[*seq_size], DMA_MLLI,
822 			     ctx_p->drvdata->mlli_sram_addr,
823 			     req_ctx->in_mlli_nents, NS_BIT);
824 		if (req_ctx->out_nents == 0) {
825 			dev_dbg(dev, " din/dout params addr 0x%08X addr 0x%08X\n",
826 				ctx_p->drvdata->mlli_sram_addr,
827 				ctx_p->drvdata->mlli_sram_addr);
828 			set_dout_mlli(&desc[*seq_size],
829 				      ctx_p->drvdata->mlli_sram_addr,
830 				      req_ctx->in_mlli_nents, NS_BIT,
831 				      (!last_desc ? 0 : 1));
832 		} else {
833 			dev_dbg(dev, " din/dout params addr 0x%08X addr 0x%08X\n",
834 				ctx_p->drvdata->mlli_sram_addr,
835 				ctx_p->drvdata->mlli_sram_addr +
836 				(u32)LLI_ENTRY_BYTE_SIZE * req_ctx->in_nents);
837 			set_dout_mlli(&desc[*seq_size],
838 				      (ctx_p->drvdata->mlli_sram_addr +
839 				       (LLI_ENTRY_BYTE_SIZE *
840 					req_ctx->in_mlli_nents)),
841 				      req_ctx->out_mlli_nents, NS_BIT,
842 				      (!last_desc ? 0 : 1));
843 		}
844 		if (last_desc)
845 			set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]);
846 
847 		set_flow_mode(&desc[*seq_size], flow_mode);
848 		(*seq_size)++;
849 	}
850 }
851 
852 static void cc_cipher_complete(struct device *dev, void *cc_req, int err)
853 {
854 	struct skcipher_request *req = (struct skcipher_request *)cc_req;
855 	struct scatterlist *dst = req->dst;
856 	struct scatterlist *src = req->src;
857 	struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
858 	struct crypto_skcipher *sk_tfm = crypto_skcipher_reqtfm(req);
859 	unsigned int ivsize = crypto_skcipher_ivsize(sk_tfm);
860 
861 	if (err != -EINPROGRESS) {
862 		/* Not a BACKLOG notification */
863 		cc_unmap_cipher_request(dev, req_ctx, ivsize, src, dst);
864 		memcpy(req->iv, req_ctx->iv, ivsize);
865 		kfree_sensitive(req_ctx->iv);
866 	}
867 
868 	skcipher_request_complete(req, err);
869 }
870 
871 static int cc_cipher_process(struct skcipher_request *req,
872 			     enum drv_crypto_direction direction)
873 {
874 	struct crypto_skcipher *sk_tfm = crypto_skcipher_reqtfm(req);
875 	struct crypto_tfm *tfm = crypto_skcipher_tfm(sk_tfm);
876 	struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
877 	unsigned int ivsize = crypto_skcipher_ivsize(sk_tfm);
878 	struct scatterlist *dst = req->dst;
879 	struct scatterlist *src = req->src;
880 	unsigned int nbytes = req->cryptlen;
881 	void *iv = req->iv;
882 	struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
883 	struct device *dev = drvdata_to_dev(ctx_p->drvdata);
884 	struct cc_hw_desc desc[MAX_SKCIPHER_SEQ_LEN];
885 	struct cc_crypto_req cc_req = {};
886 	int rc;
887 	unsigned int seq_len = 0;
888 	gfp_t flags = cc_gfp_flags(&req->base);
889 
890 	dev_dbg(dev, "%s req=%p iv=%p nbytes=%d\n",
891 		((direction == DRV_CRYPTO_DIRECTION_ENCRYPT) ?
892 		"Encrypt" : "Decrypt"), req, iv, nbytes);
893 
894 	/* STAT_PHASE_0: Init and sanity checks */
895 
896 	if (validate_data_size(ctx_p, nbytes)) {
897 		dev_dbg(dev, "Unsupported data size %d.\n", nbytes);
898 		rc = -EINVAL;
899 		goto exit_process;
900 	}
901 	if (nbytes == 0) {
902 		/* No data to process is valid */
903 		rc = 0;
904 		goto exit_process;
905 	}
906 
907 	if (ctx_p->fallback_on) {
908 		struct skcipher_request *subreq = skcipher_request_ctx(req);
909 
910 		*subreq = *req;
911 		skcipher_request_set_tfm(subreq, ctx_p->fallback_tfm);
912 		if (direction == DRV_CRYPTO_DIRECTION_ENCRYPT)
913 			return crypto_skcipher_encrypt(subreq);
914 		else
915 			return crypto_skcipher_decrypt(subreq);
916 	}
917 
918 	/* The IV we are handed may be allocated from the stack so
919 	 * we must copy it to a DMAable buffer before use.
920 	 */
921 	req_ctx->iv = kmemdup(iv, ivsize, flags);
922 	if (!req_ctx->iv) {
923 		rc = -ENOMEM;
924 		goto exit_process;
925 	}
926 
927 	/* Setup request structure */
928 	cc_req.user_cb = cc_cipher_complete;
929 	cc_req.user_arg = req;
930 
931 	/* Setup CPP operation details */
932 	if (ctx_p->key_type == CC_POLICY_PROTECTED_KEY) {
933 		cc_req.cpp.is_cpp = true;
934 		cc_req.cpp.alg = ctx_p->cpp.alg;
935 		cc_req.cpp.slot = ctx_p->cpp.slot;
936 	}
937 
938 	/* Setup request context */
939 	req_ctx->gen_ctx.op_type = direction;
940 
941 	/* STAT_PHASE_1: Map buffers */
942 
943 	rc = cc_map_cipher_request(ctx_p->drvdata, req_ctx, ivsize, nbytes,
944 				      req_ctx->iv, src, dst, flags);
945 	if (rc) {
946 		dev_err(dev, "map_request() failed\n");
947 		goto exit_process;
948 	}
949 
950 	/* STAT_PHASE_2: Create sequence */
951 
952 	/* Setup state (IV)  */
953 	cc_setup_state_desc(tfm, req_ctx, ivsize, nbytes, desc, &seq_len);
954 	/* Setup MLLI line, if needed */
955 	cc_setup_mlli_desc(tfm, req_ctx, dst, src, nbytes, req, desc, &seq_len);
956 	/* Setup key */
957 	cc_setup_key_desc(tfm, req_ctx, nbytes, desc, &seq_len);
958 	/* Setup state (IV and XEX key)  */
959 	cc_setup_xex_state_desc(tfm, req_ctx, ivsize, nbytes, desc, &seq_len);
960 	/* Data processing */
961 	cc_setup_flow_desc(tfm, req_ctx, dst, src, nbytes, desc, &seq_len);
962 	/* Read next IV */
963 	cc_setup_readiv_desc(tfm, req_ctx, ivsize, desc, &seq_len);
964 
965 	/* STAT_PHASE_3: Lock HW and push sequence */
966 
967 	rc = cc_send_request(ctx_p->drvdata, &cc_req, desc, seq_len,
968 			     &req->base);
969 	if (rc != -EINPROGRESS && rc != -EBUSY) {
970 		/* Failed to send the request or request completed
971 		 * synchronously
972 		 */
973 		cc_unmap_cipher_request(dev, req_ctx, ivsize, src, dst);
974 	}
975 
976 exit_process:
977 	if (rc != -EINPROGRESS && rc != -EBUSY) {
978 		kfree_sensitive(req_ctx->iv);
979 	}
980 
981 	return rc;
982 }
983 
984 static int cc_cipher_encrypt(struct skcipher_request *req)
985 {
986 	struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
987 
988 	memset(req_ctx, 0, sizeof(*req_ctx));
989 
990 	return cc_cipher_process(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
991 }
992 
993 static int cc_cipher_decrypt(struct skcipher_request *req)
994 {
995 	struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
996 
997 	memset(req_ctx, 0, sizeof(*req_ctx));
998 
999 	return cc_cipher_process(req, DRV_CRYPTO_DIRECTION_DECRYPT);
1000 }
1001 
1002 /* Block cipher alg */
1003 static const struct cc_alg_template skcipher_algs[] = {
1004 	{
1005 		.name = "xts(paes)",
1006 		.driver_name = "xts-paes-ccree",
1007 		.blocksize = 1,
1008 		.template_skcipher = {
1009 			.setkey = cc_cipher_sethkey,
1010 			.encrypt = cc_cipher_encrypt,
1011 			.decrypt = cc_cipher_decrypt,
1012 			.min_keysize = CC_HW_KEY_SIZE,
1013 			.max_keysize = CC_HW_KEY_SIZE,
1014 			.ivsize = AES_BLOCK_SIZE,
1015 			},
1016 		.cipher_mode = DRV_CIPHER_XTS,
1017 		.flow_mode = S_DIN_to_AES,
1018 		.min_hw_rev = CC_HW_REV_630,
1019 		.std_body = CC_STD_NIST,
1020 		.sec_func = true,
1021 	},
1022 	{
1023 		.name = "essiv(cbc(paes),sha256)",
1024 		.driver_name = "essiv-paes-ccree",
1025 		.blocksize = AES_BLOCK_SIZE,
1026 		.template_skcipher = {
1027 			.setkey = cc_cipher_sethkey,
1028 			.encrypt = cc_cipher_encrypt,
1029 			.decrypt = cc_cipher_decrypt,
1030 			.min_keysize = CC_HW_KEY_SIZE,
1031 			.max_keysize = CC_HW_KEY_SIZE,
1032 			.ivsize = AES_BLOCK_SIZE,
1033 			},
1034 		.cipher_mode = DRV_CIPHER_ESSIV,
1035 		.flow_mode = S_DIN_to_AES,
1036 		.min_hw_rev = CC_HW_REV_712,
1037 		.std_body = CC_STD_NIST,
1038 		.sec_func = true,
1039 	},
1040 	{
1041 		.name = "ecb(paes)",
1042 		.driver_name = "ecb-paes-ccree",
1043 		.blocksize = AES_BLOCK_SIZE,
1044 		.template_skcipher = {
1045 			.setkey = cc_cipher_sethkey,
1046 			.encrypt = cc_cipher_encrypt,
1047 			.decrypt = cc_cipher_decrypt,
1048 			.min_keysize = CC_HW_KEY_SIZE,
1049 			.max_keysize = CC_HW_KEY_SIZE,
1050 			.ivsize = 0,
1051 			},
1052 		.cipher_mode = DRV_CIPHER_ECB,
1053 		.flow_mode = S_DIN_to_AES,
1054 		.min_hw_rev = CC_HW_REV_712,
1055 		.std_body = CC_STD_NIST,
1056 		.sec_func = true,
1057 	},
1058 	{
1059 		.name = "cbc(paes)",
1060 		.driver_name = "cbc-paes-ccree",
1061 		.blocksize = AES_BLOCK_SIZE,
1062 		.template_skcipher = {
1063 			.setkey = cc_cipher_sethkey,
1064 			.encrypt = cc_cipher_encrypt,
1065 			.decrypt = cc_cipher_decrypt,
1066 			.min_keysize = CC_HW_KEY_SIZE,
1067 			.max_keysize = CC_HW_KEY_SIZE,
1068 			.ivsize = AES_BLOCK_SIZE,
1069 		},
1070 		.cipher_mode = DRV_CIPHER_CBC,
1071 		.flow_mode = S_DIN_to_AES,
1072 		.min_hw_rev = CC_HW_REV_712,
1073 		.std_body = CC_STD_NIST,
1074 		.sec_func = true,
1075 	},
1076 	{
1077 		.name = "cts(cbc(paes))",
1078 		.driver_name = "cts-cbc-paes-ccree",
1079 		.blocksize = AES_BLOCK_SIZE,
1080 		.template_skcipher = {
1081 			.setkey = cc_cipher_sethkey,
1082 			.encrypt = cc_cipher_encrypt,
1083 			.decrypt = cc_cipher_decrypt,
1084 			.min_keysize = CC_HW_KEY_SIZE,
1085 			.max_keysize = CC_HW_KEY_SIZE,
1086 			.ivsize = AES_BLOCK_SIZE,
1087 			},
1088 		.cipher_mode = DRV_CIPHER_CBC_CTS,
1089 		.flow_mode = S_DIN_to_AES,
1090 		.min_hw_rev = CC_HW_REV_712,
1091 		.std_body = CC_STD_NIST,
1092 		.sec_func = true,
1093 	},
1094 	{
1095 		.name = "ctr(paes)",
1096 		.driver_name = "ctr-paes-ccree",
1097 		.blocksize = 1,
1098 		.template_skcipher = {
1099 			.setkey = cc_cipher_sethkey,
1100 			.encrypt = cc_cipher_encrypt,
1101 			.decrypt = cc_cipher_decrypt,
1102 			.min_keysize = CC_HW_KEY_SIZE,
1103 			.max_keysize = CC_HW_KEY_SIZE,
1104 			.ivsize = AES_BLOCK_SIZE,
1105 			},
1106 		.cipher_mode = DRV_CIPHER_CTR,
1107 		.flow_mode = S_DIN_to_AES,
1108 		.min_hw_rev = CC_HW_REV_712,
1109 		.std_body = CC_STD_NIST,
1110 		.sec_func = true,
1111 	},
1112 	{
1113 		/* See https://www.mail-archive.com/linux-crypto@vger.kernel.org/msg40576.html
1114 		 * for the reason why this differs from the generic
1115 		 * implementation.
1116 		 */
1117 		.name = "xts(aes)",
1118 		.driver_name = "xts-aes-ccree",
1119 		.blocksize = 1,
1120 		.template_skcipher = {
1121 			.setkey = cc_cipher_setkey,
1122 			.encrypt = cc_cipher_encrypt,
1123 			.decrypt = cc_cipher_decrypt,
1124 			.min_keysize = AES_MIN_KEY_SIZE * 2,
1125 			.max_keysize = AES_MAX_KEY_SIZE * 2,
1126 			.ivsize = AES_BLOCK_SIZE,
1127 			},
1128 		.cipher_mode = DRV_CIPHER_XTS,
1129 		.flow_mode = S_DIN_to_AES,
1130 		.min_hw_rev = CC_HW_REV_630,
1131 		.std_body = CC_STD_NIST,
1132 	},
1133 	{
1134 		.name = "essiv(cbc(aes),sha256)",
1135 		.driver_name = "essiv-aes-ccree",
1136 		.blocksize = AES_BLOCK_SIZE,
1137 		.template_skcipher = {
1138 			.setkey = cc_cipher_setkey,
1139 			.encrypt = cc_cipher_encrypt,
1140 			.decrypt = cc_cipher_decrypt,
1141 			.min_keysize = AES_MIN_KEY_SIZE,
1142 			.max_keysize = AES_MAX_KEY_SIZE,
1143 			.ivsize = AES_BLOCK_SIZE,
1144 			},
1145 		.cipher_mode = DRV_CIPHER_ESSIV,
1146 		.flow_mode = S_DIN_to_AES,
1147 		.min_hw_rev = CC_HW_REV_712,
1148 		.std_body = CC_STD_NIST,
1149 	},
1150 	{
1151 		.name = "ecb(aes)",
1152 		.driver_name = "ecb-aes-ccree",
1153 		.blocksize = AES_BLOCK_SIZE,
1154 		.template_skcipher = {
1155 			.setkey = cc_cipher_setkey,
1156 			.encrypt = cc_cipher_encrypt,
1157 			.decrypt = cc_cipher_decrypt,
1158 			.min_keysize = AES_MIN_KEY_SIZE,
1159 			.max_keysize = AES_MAX_KEY_SIZE,
1160 			.ivsize = 0,
1161 			},
1162 		.cipher_mode = DRV_CIPHER_ECB,
1163 		.flow_mode = S_DIN_to_AES,
1164 		.min_hw_rev = CC_HW_REV_630,
1165 		.std_body = CC_STD_NIST,
1166 	},
1167 	{
1168 		.name = "cbc(aes)",
1169 		.driver_name = "cbc-aes-ccree",
1170 		.blocksize = AES_BLOCK_SIZE,
1171 		.template_skcipher = {
1172 			.setkey = cc_cipher_setkey,
1173 			.encrypt = cc_cipher_encrypt,
1174 			.decrypt = cc_cipher_decrypt,
1175 			.min_keysize = AES_MIN_KEY_SIZE,
1176 			.max_keysize = AES_MAX_KEY_SIZE,
1177 			.ivsize = AES_BLOCK_SIZE,
1178 		},
1179 		.cipher_mode = DRV_CIPHER_CBC,
1180 		.flow_mode = S_DIN_to_AES,
1181 		.min_hw_rev = CC_HW_REV_630,
1182 		.std_body = CC_STD_NIST,
1183 	},
1184 	{
1185 		.name = "cts(cbc(aes))",
1186 		.driver_name = "cts-cbc-aes-ccree",
1187 		.blocksize = AES_BLOCK_SIZE,
1188 		.template_skcipher = {
1189 			.setkey = cc_cipher_setkey,
1190 			.encrypt = cc_cipher_encrypt,
1191 			.decrypt = cc_cipher_decrypt,
1192 			.min_keysize = AES_MIN_KEY_SIZE,
1193 			.max_keysize = AES_MAX_KEY_SIZE,
1194 			.ivsize = AES_BLOCK_SIZE,
1195 			},
1196 		.cipher_mode = DRV_CIPHER_CBC_CTS,
1197 		.flow_mode = S_DIN_to_AES,
1198 		.min_hw_rev = CC_HW_REV_630,
1199 		.std_body = CC_STD_NIST,
1200 	},
1201 	{
1202 		.name = "ctr(aes)",
1203 		.driver_name = "ctr-aes-ccree",
1204 		.blocksize = 1,
1205 		.template_skcipher = {
1206 			.setkey = cc_cipher_setkey,
1207 			.encrypt = cc_cipher_encrypt,
1208 			.decrypt = cc_cipher_decrypt,
1209 			.min_keysize = AES_MIN_KEY_SIZE,
1210 			.max_keysize = AES_MAX_KEY_SIZE,
1211 			.ivsize = AES_BLOCK_SIZE,
1212 			},
1213 		.cipher_mode = DRV_CIPHER_CTR,
1214 		.flow_mode = S_DIN_to_AES,
1215 		.min_hw_rev = CC_HW_REV_630,
1216 		.std_body = CC_STD_NIST,
1217 	},
1218 	{
1219 		.name = "cbc(des3_ede)",
1220 		.driver_name = "cbc-3des-ccree",
1221 		.blocksize = DES3_EDE_BLOCK_SIZE,
1222 		.template_skcipher = {
1223 			.setkey = cc_cipher_setkey,
1224 			.encrypt = cc_cipher_encrypt,
1225 			.decrypt = cc_cipher_decrypt,
1226 			.min_keysize = DES3_EDE_KEY_SIZE,
1227 			.max_keysize = DES3_EDE_KEY_SIZE,
1228 			.ivsize = DES3_EDE_BLOCK_SIZE,
1229 			},
1230 		.cipher_mode = DRV_CIPHER_CBC,
1231 		.flow_mode = S_DIN_to_DES,
1232 		.min_hw_rev = CC_HW_REV_630,
1233 		.std_body = CC_STD_NIST,
1234 	},
1235 	{
1236 		.name = "ecb(des3_ede)",
1237 		.driver_name = "ecb-3des-ccree",
1238 		.blocksize = DES3_EDE_BLOCK_SIZE,
1239 		.template_skcipher = {
1240 			.setkey = cc_cipher_setkey,
1241 			.encrypt = cc_cipher_encrypt,
1242 			.decrypt = cc_cipher_decrypt,
1243 			.min_keysize = DES3_EDE_KEY_SIZE,
1244 			.max_keysize = DES3_EDE_KEY_SIZE,
1245 			.ivsize = 0,
1246 			},
1247 		.cipher_mode = DRV_CIPHER_ECB,
1248 		.flow_mode = S_DIN_to_DES,
1249 		.min_hw_rev = CC_HW_REV_630,
1250 		.std_body = CC_STD_NIST,
1251 	},
1252 	{
1253 		.name = "cbc(des)",
1254 		.driver_name = "cbc-des-ccree",
1255 		.blocksize = DES_BLOCK_SIZE,
1256 		.template_skcipher = {
1257 			.setkey = cc_cipher_setkey,
1258 			.encrypt = cc_cipher_encrypt,
1259 			.decrypt = cc_cipher_decrypt,
1260 			.min_keysize = DES_KEY_SIZE,
1261 			.max_keysize = DES_KEY_SIZE,
1262 			.ivsize = DES_BLOCK_SIZE,
1263 			},
1264 		.cipher_mode = DRV_CIPHER_CBC,
1265 		.flow_mode = S_DIN_to_DES,
1266 		.min_hw_rev = CC_HW_REV_630,
1267 		.std_body = CC_STD_NIST,
1268 	},
1269 	{
1270 		.name = "ecb(des)",
1271 		.driver_name = "ecb-des-ccree",
1272 		.blocksize = DES_BLOCK_SIZE,
1273 		.template_skcipher = {
1274 			.setkey = cc_cipher_setkey,
1275 			.encrypt = cc_cipher_encrypt,
1276 			.decrypt = cc_cipher_decrypt,
1277 			.min_keysize = DES_KEY_SIZE,
1278 			.max_keysize = DES_KEY_SIZE,
1279 			.ivsize = 0,
1280 			},
1281 		.cipher_mode = DRV_CIPHER_ECB,
1282 		.flow_mode = S_DIN_to_DES,
1283 		.min_hw_rev = CC_HW_REV_630,
1284 		.std_body = CC_STD_NIST,
1285 	},
1286 	{
1287 		.name = "cbc(sm4)",
1288 		.driver_name = "cbc-sm4-ccree",
1289 		.blocksize = SM4_BLOCK_SIZE,
1290 		.template_skcipher = {
1291 			.setkey = cc_cipher_setkey,
1292 			.encrypt = cc_cipher_encrypt,
1293 			.decrypt = cc_cipher_decrypt,
1294 			.min_keysize = SM4_KEY_SIZE,
1295 			.max_keysize = SM4_KEY_SIZE,
1296 			.ivsize = SM4_BLOCK_SIZE,
1297 			},
1298 		.cipher_mode = DRV_CIPHER_CBC,
1299 		.flow_mode = S_DIN_to_SM4,
1300 		.min_hw_rev = CC_HW_REV_713,
1301 		.std_body = CC_STD_OSCCA,
1302 	},
1303 	{
1304 		.name = "ecb(sm4)",
1305 		.driver_name = "ecb-sm4-ccree",
1306 		.blocksize = SM4_BLOCK_SIZE,
1307 		.template_skcipher = {
1308 			.setkey = cc_cipher_setkey,
1309 			.encrypt = cc_cipher_encrypt,
1310 			.decrypt = cc_cipher_decrypt,
1311 			.min_keysize = SM4_KEY_SIZE,
1312 			.max_keysize = SM4_KEY_SIZE,
1313 			.ivsize = 0,
1314 			},
1315 		.cipher_mode = DRV_CIPHER_ECB,
1316 		.flow_mode = S_DIN_to_SM4,
1317 		.min_hw_rev = CC_HW_REV_713,
1318 		.std_body = CC_STD_OSCCA,
1319 	},
1320 	{
1321 		.name = "ctr(sm4)",
1322 		.driver_name = "ctr-sm4-ccree",
1323 		.blocksize = 1,
1324 		.template_skcipher = {
1325 			.setkey = cc_cipher_setkey,
1326 			.encrypt = cc_cipher_encrypt,
1327 			.decrypt = cc_cipher_decrypt,
1328 			.min_keysize = SM4_KEY_SIZE,
1329 			.max_keysize = SM4_KEY_SIZE,
1330 			.ivsize = SM4_BLOCK_SIZE,
1331 			},
1332 		.cipher_mode = DRV_CIPHER_CTR,
1333 		.flow_mode = S_DIN_to_SM4,
1334 		.min_hw_rev = CC_HW_REV_713,
1335 		.std_body = CC_STD_OSCCA,
1336 	},
1337 	{
1338 		.name = "cbc(psm4)",
1339 		.driver_name = "cbc-psm4-ccree",
1340 		.blocksize = SM4_BLOCK_SIZE,
1341 		.template_skcipher = {
1342 			.setkey = cc_cipher_sethkey,
1343 			.encrypt = cc_cipher_encrypt,
1344 			.decrypt = cc_cipher_decrypt,
1345 			.min_keysize = CC_HW_KEY_SIZE,
1346 			.max_keysize = CC_HW_KEY_SIZE,
1347 			.ivsize = SM4_BLOCK_SIZE,
1348 			},
1349 		.cipher_mode = DRV_CIPHER_CBC,
1350 		.flow_mode = S_DIN_to_SM4,
1351 		.min_hw_rev = CC_HW_REV_713,
1352 		.std_body = CC_STD_OSCCA,
1353 		.sec_func = true,
1354 	},
1355 	{
1356 		.name = "ctr(psm4)",
1357 		.driver_name = "ctr-psm4-ccree",
1358 		.blocksize = SM4_BLOCK_SIZE,
1359 		.template_skcipher = {
1360 			.setkey = cc_cipher_sethkey,
1361 			.encrypt = cc_cipher_encrypt,
1362 			.decrypt = cc_cipher_decrypt,
1363 			.min_keysize = CC_HW_KEY_SIZE,
1364 			.max_keysize = CC_HW_KEY_SIZE,
1365 			.ivsize = SM4_BLOCK_SIZE,
1366 			},
1367 		.cipher_mode = DRV_CIPHER_CTR,
1368 		.flow_mode = S_DIN_to_SM4,
1369 		.min_hw_rev = CC_HW_REV_713,
1370 		.std_body = CC_STD_OSCCA,
1371 		.sec_func = true,
1372 	},
1373 };
1374 
1375 static struct cc_crypto_alg *cc_create_alg(const struct cc_alg_template *tmpl,
1376 					   struct device *dev)
1377 {
1378 	struct cc_crypto_alg *t_alg;
1379 	struct skcipher_alg *alg;
1380 
1381 	t_alg = devm_kzalloc(dev, sizeof(*t_alg), GFP_KERNEL);
1382 	if (!t_alg)
1383 		return ERR_PTR(-ENOMEM);
1384 
1385 	alg = &t_alg->skcipher_alg;
1386 
1387 	memcpy(alg, &tmpl->template_skcipher, sizeof(*alg));
1388 
1389 	if (snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s",
1390 		     tmpl->name) >= CRYPTO_MAX_ALG_NAME)
1391 		return ERR_PTR(-EINVAL);
1392 	if (snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
1393 		     tmpl->driver_name) >= CRYPTO_MAX_ALG_NAME)
1394 		return ERR_PTR(-EINVAL);
1395 
1396 	alg->base.cra_module = THIS_MODULE;
1397 	alg->base.cra_priority = CC_CRA_PRIO;
1398 	alg->base.cra_blocksize = tmpl->blocksize;
1399 	alg->base.cra_alignmask = 0;
1400 	alg->base.cra_ctxsize = sizeof(struct cc_cipher_ctx);
1401 
1402 	alg->base.cra_init = cc_cipher_init;
1403 	alg->base.cra_exit = cc_cipher_exit;
1404 	alg->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
1405 
1406 	t_alg->cipher_mode = tmpl->cipher_mode;
1407 	t_alg->flow_mode = tmpl->flow_mode;
1408 
1409 	return t_alg;
1410 }
1411 
1412 int cc_cipher_free(struct cc_drvdata *drvdata)
1413 {
1414 	struct cc_crypto_alg *t_alg, *n;
1415 
1416 	/* Remove registered algs */
1417 	list_for_each_entry_safe(t_alg, n, &drvdata->alg_list, entry) {
1418 		crypto_unregister_skcipher(&t_alg->skcipher_alg);
1419 		list_del(&t_alg->entry);
1420 	}
1421 	return 0;
1422 }
1423 
1424 int cc_cipher_alloc(struct cc_drvdata *drvdata)
1425 {
1426 	struct cc_crypto_alg *t_alg;
1427 	struct device *dev = drvdata_to_dev(drvdata);
1428 	int rc = -ENOMEM;
1429 	int alg;
1430 
1431 	INIT_LIST_HEAD(&drvdata->alg_list);
1432 
1433 	/* Linux crypto */
1434 	dev_dbg(dev, "Number of algorithms = %zu\n",
1435 		ARRAY_SIZE(skcipher_algs));
1436 	for (alg = 0; alg < ARRAY_SIZE(skcipher_algs); alg++) {
1437 		if ((skcipher_algs[alg].min_hw_rev > drvdata->hw_rev) ||
1438 		    !(drvdata->std_bodies & skcipher_algs[alg].std_body) ||
1439 		    (drvdata->sec_disabled && skcipher_algs[alg].sec_func))
1440 			continue;
1441 
1442 		dev_dbg(dev, "creating %s\n", skcipher_algs[alg].driver_name);
1443 		t_alg = cc_create_alg(&skcipher_algs[alg], dev);
1444 		if (IS_ERR(t_alg)) {
1445 			rc = PTR_ERR(t_alg);
1446 			dev_err(dev, "%s alg allocation failed\n",
1447 				skcipher_algs[alg].driver_name);
1448 			goto fail0;
1449 		}
1450 		t_alg->drvdata = drvdata;
1451 
1452 		dev_dbg(dev, "registering %s\n",
1453 			skcipher_algs[alg].driver_name);
1454 		rc = crypto_register_skcipher(&t_alg->skcipher_alg);
1455 		dev_dbg(dev, "%s alg registration rc = %x\n",
1456 			t_alg->skcipher_alg.base.cra_driver_name, rc);
1457 		if (rc) {
1458 			dev_err(dev, "%s alg registration failed\n",
1459 				t_alg->skcipher_alg.base.cra_driver_name);
1460 			goto fail0;
1461 		}
1462 
1463 		list_add_tail(&t_alg->entry, &drvdata->alg_list);
1464 		dev_dbg(dev, "Registered %s\n",
1465 			t_alg->skcipher_alg.base.cra_driver_name);
1466 	}
1467 	return 0;
1468 
1469 fail0:
1470 	cc_cipher_free(drvdata);
1471 	return rc;
1472 }
1473