xref: /linux/drivers/crypto/ccree/cc_aead.c (revision a44e4f3ab16bc808590763a543a93b6fbf3abcc4)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2012-2019 ARM Limited (or its affiliates). */
3 
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <crypto/algapi.h>
7 #include <crypto/internal/aead.h>
8 #include <crypto/authenc.h>
9 #include <crypto/internal/des.h>
10 #include <linux/rtnetlink.h>
11 #include "cc_driver.h"
12 #include "cc_buffer_mgr.h"
13 #include "cc_aead.h"
14 #include "cc_request_mgr.h"
15 #include "cc_hash.h"
16 #include "cc_sram_mgr.h"
17 
18 #define template_aead	template_u.aead
19 
20 #define MAX_AEAD_SETKEY_SEQ 12
21 #define MAX_AEAD_PROCESS_SEQ 23
22 
23 #define MAX_HMAC_DIGEST_SIZE (SHA256_DIGEST_SIZE)
24 #define MAX_HMAC_BLOCK_SIZE (SHA256_BLOCK_SIZE)
25 
26 #define MAX_NONCE_SIZE CTR_RFC3686_NONCE_SIZE
27 
28 struct cc_aead_handle {
29 	cc_sram_addr_t sram_workspace_addr;
30 	struct list_head aead_list;
31 };
32 
33 struct cc_hmac_s {
34 	u8 *padded_authkey;
35 	u8 *ipad_opad; /* IPAD, OPAD*/
36 	dma_addr_t padded_authkey_dma_addr;
37 	dma_addr_t ipad_opad_dma_addr;
38 };
39 
40 struct cc_xcbc_s {
41 	u8 *xcbc_keys; /* K1,K2,K3 */
42 	dma_addr_t xcbc_keys_dma_addr;
43 };
44 
45 struct cc_aead_ctx {
46 	struct cc_drvdata *drvdata;
47 	u8 ctr_nonce[MAX_NONCE_SIZE]; /* used for ctr3686 iv and aes ccm */
48 	u8 *enckey;
49 	dma_addr_t enckey_dma_addr;
50 	union {
51 		struct cc_hmac_s hmac;
52 		struct cc_xcbc_s xcbc;
53 	} auth_state;
54 	unsigned int enc_keylen;
55 	unsigned int auth_keylen;
56 	unsigned int authsize; /* Actual (reduced?) size of the MAC/ICv */
57 	unsigned int hash_len;
58 	enum drv_cipher_mode cipher_mode;
59 	enum cc_flow_mode flow_mode;
60 	enum drv_hash_mode auth_mode;
61 };
62 
63 static inline bool valid_assoclen(struct aead_request *req)
64 {
65 	return ((req->assoclen == 16) || (req->assoclen == 20));
66 }
67 
68 static void cc_aead_exit(struct crypto_aead *tfm)
69 {
70 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
71 	struct device *dev = drvdata_to_dev(ctx->drvdata);
72 
73 	dev_dbg(dev, "Clearing context @%p for %s\n", crypto_aead_ctx(tfm),
74 		crypto_tfm_alg_name(&tfm->base));
75 
76 	/* Unmap enckey buffer */
77 	if (ctx->enckey) {
78 		dma_free_coherent(dev, AES_MAX_KEY_SIZE, ctx->enckey,
79 				  ctx->enckey_dma_addr);
80 		dev_dbg(dev, "Freed enckey DMA buffer enckey_dma_addr=%pad\n",
81 			&ctx->enckey_dma_addr);
82 		ctx->enckey_dma_addr = 0;
83 		ctx->enckey = NULL;
84 	}
85 
86 	if (ctx->auth_mode == DRV_HASH_XCBC_MAC) { /* XCBC authetication */
87 		struct cc_xcbc_s *xcbc = &ctx->auth_state.xcbc;
88 
89 		if (xcbc->xcbc_keys) {
90 			dma_free_coherent(dev, CC_AES_128_BIT_KEY_SIZE * 3,
91 					  xcbc->xcbc_keys,
92 					  xcbc->xcbc_keys_dma_addr);
93 		}
94 		dev_dbg(dev, "Freed xcbc_keys DMA buffer xcbc_keys_dma_addr=%pad\n",
95 			&xcbc->xcbc_keys_dma_addr);
96 		xcbc->xcbc_keys_dma_addr = 0;
97 		xcbc->xcbc_keys = NULL;
98 	} else if (ctx->auth_mode != DRV_HASH_NULL) { /* HMAC auth. */
99 		struct cc_hmac_s *hmac = &ctx->auth_state.hmac;
100 
101 		if (hmac->ipad_opad) {
102 			dma_free_coherent(dev, 2 * MAX_HMAC_DIGEST_SIZE,
103 					  hmac->ipad_opad,
104 					  hmac->ipad_opad_dma_addr);
105 			dev_dbg(dev, "Freed ipad_opad DMA buffer ipad_opad_dma_addr=%pad\n",
106 				&hmac->ipad_opad_dma_addr);
107 			hmac->ipad_opad_dma_addr = 0;
108 			hmac->ipad_opad = NULL;
109 		}
110 		if (hmac->padded_authkey) {
111 			dma_free_coherent(dev, MAX_HMAC_BLOCK_SIZE,
112 					  hmac->padded_authkey,
113 					  hmac->padded_authkey_dma_addr);
114 			dev_dbg(dev, "Freed padded_authkey DMA buffer padded_authkey_dma_addr=%pad\n",
115 				&hmac->padded_authkey_dma_addr);
116 			hmac->padded_authkey_dma_addr = 0;
117 			hmac->padded_authkey = NULL;
118 		}
119 	}
120 }
121 
122 static unsigned int cc_get_aead_hash_len(struct crypto_aead *tfm)
123 {
124 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
125 
126 	return cc_get_default_hash_len(ctx->drvdata);
127 }
128 
129 static int cc_aead_init(struct crypto_aead *tfm)
130 {
131 	struct aead_alg *alg = crypto_aead_alg(tfm);
132 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
133 	struct cc_crypto_alg *cc_alg =
134 			container_of(alg, struct cc_crypto_alg, aead_alg);
135 	struct device *dev = drvdata_to_dev(cc_alg->drvdata);
136 
137 	dev_dbg(dev, "Initializing context @%p for %s\n", ctx,
138 		crypto_tfm_alg_name(&tfm->base));
139 
140 	/* Initialize modes in instance */
141 	ctx->cipher_mode = cc_alg->cipher_mode;
142 	ctx->flow_mode = cc_alg->flow_mode;
143 	ctx->auth_mode = cc_alg->auth_mode;
144 	ctx->drvdata = cc_alg->drvdata;
145 	crypto_aead_set_reqsize(tfm, sizeof(struct aead_req_ctx));
146 
147 	/* Allocate key buffer, cache line aligned */
148 	ctx->enckey = dma_alloc_coherent(dev, AES_MAX_KEY_SIZE,
149 					 &ctx->enckey_dma_addr, GFP_KERNEL);
150 	if (!ctx->enckey) {
151 		dev_err(dev, "Failed allocating key buffer\n");
152 		goto init_failed;
153 	}
154 	dev_dbg(dev, "Allocated enckey buffer in context ctx->enckey=@%p\n",
155 		ctx->enckey);
156 
157 	/* Set default authlen value */
158 
159 	if (ctx->auth_mode == DRV_HASH_XCBC_MAC) { /* XCBC authetication */
160 		struct cc_xcbc_s *xcbc = &ctx->auth_state.xcbc;
161 		const unsigned int key_size = CC_AES_128_BIT_KEY_SIZE * 3;
162 
163 		/* Allocate dma-coherent buffer for XCBC's K1+K2+K3 */
164 		/* (and temporary for user key - up to 256b) */
165 		xcbc->xcbc_keys = dma_alloc_coherent(dev, key_size,
166 						     &xcbc->xcbc_keys_dma_addr,
167 						     GFP_KERNEL);
168 		if (!xcbc->xcbc_keys) {
169 			dev_err(dev, "Failed allocating buffer for XCBC keys\n");
170 			goto init_failed;
171 		}
172 	} else if (ctx->auth_mode != DRV_HASH_NULL) { /* HMAC authentication */
173 		struct cc_hmac_s *hmac = &ctx->auth_state.hmac;
174 		const unsigned int digest_size = 2 * MAX_HMAC_DIGEST_SIZE;
175 		dma_addr_t *pkey_dma = &hmac->padded_authkey_dma_addr;
176 
177 		/* Allocate dma-coherent buffer for IPAD + OPAD */
178 		hmac->ipad_opad = dma_alloc_coherent(dev, digest_size,
179 						     &hmac->ipad_opad_dma_addr,
180 						     GFP_KERNEL);
181 
182 		if (!hmac->ipad_opad) {
183 			dev_err(dev, "Failed allocating IPAD/OPAD buffer\n");
184 			goto init_failed;
185 		}
186 
187 		dev_dbg(dev, "Allocated authkey buffer in context ctx->authkey=@%p\n",
188 			hmac->ipad_opad);
189 
190 		hmac->padded_authkey = dma_alloc_coherent(dev,
191 							  MAX_HMAC_BLOCK_SIZE,
192 							  pkey_dma,
193 							  GFP_KERNEL);
194 
195 		if (!hmac->padded_authkey) {
196 			dev_err(dev, "failed to allocate padded_authkey\n");
197 			goto init_failed;
198 		}
199 	} else {
200 		ctx->auth_state.hmac.ipad_opad = NULL;
201 		ctx->auth_state.hmac.padded_authkey = NULL;
202 	}
203 	ctx->hash_len = cc_get_aead_hash_len(tfm);
204 
205 	return 0;
206 
207 init_failed:
208 	cc_aead_exit(tfm);
209 	return -ENOMEM;
210 }
211 
212 static void cc_aead_complete(struct device *dev, void *cc_req, int err)
213 {
214 	struct aead_request *areq = (struct aead_request *)cc_req;
215 	struct aead_req_ctx *areq_ctx = aead_request_ctx(areq);
216 	struct crypto_aead *tfm = crypto_aead_reqtfm(cc_req);
217 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
218 
219 	/* BACKLOG notification */
220 	if (err == -EINPROGRESS)
221 		goto done;
222 
223 	cc_unmap_aead_request(dev, areq);
224 
225 	/* Restore ordinary iv pointer */
226 	areq->iv = areq_ctx->backup_iv;
227 
228 	if (err)
229 		goto done;
230 
231 	if (areq_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
232 		if (memcmp(areq_ctx->mac_buf, areq_ctx->icv_virt_addr,
233 			   ctx->authsize) != 0) {
234 			dev_dbg(dev, "Payload authentication failure, (auth-size=%d, cipher=%d)\n",
235 				ctx->authsize, ctx->cipher_mode);
236 			/* In case of payload authentication failure, MUST NOT
237 			 * revealed the decrypted message --> zero its memory.
238 			 */
239 			sg_zero_buffer(areq->dst, sg_nents(areq->dst),
240 				       areq->cryptlen, 0);
241 			err = -EBADMSG;
242 		}
243 	/*ENCRYPT*/
244 	} else if (areq_ctx->is_icv_fragmented) {
245 		u32 skip = areq->cryptlen + areq_ctx->dst_offset;
246 
247 		cc_copy_sg_portion(dev, areq_ctx->mac_buf, areq_ctx->dst_sgl,
248 				   skip, (skip + ctx->authsize),
249 				   CC_SG_FROM_BUF);
250 	}
251 done:
252 	aead_request_complete(areq, err);
253 }
254 
255 static unsigned int xcbc_setkey(struct cc_hw_desc *desc,
256 				struct cc_aead_ctx *ctx)
257 {
258 	/* Load the AES key */
259 	hw_desc_init(&desc[0]);
260 	/* We are using for the source/user key the same buffer
261 	 * as for the output keys, * because after this key loading it
262 	 * is not needed anymore
263 	 */
264 	set_din_type(&desc[0], DMA_DLLI,
265 		     ctx->auth_state.xcbc.xcbc_keys_dma_addr, ctx->auth_keylen,
266 		     NS_BIT);
267 	set_cipher_mode(&desc[0], DRV_CIPHER_ECB);
268 	set_cipher_config0(&desc[0], DRV_CRYPTO_DIRECTION_ENCRYPT);
269 	set_key_size_aes(&desc[0], ctx->auth_keylen);
270 	set_flow_mode(&desc[0], S_DIN_to_AES);
271 	set_setup_mode(&desc[0], SETUP_LOAD_KEY0);
272 
273 	hw_desc_init(&desc[1]);
274 	set_din_const(&desc[1], 0x01010101, CC_AES_128_BIT_KEY_SIZE);
275 	set_flow_mode(&desc[1], DIN_AES_DOUT);
276 	set_dout_dlli(&desc[1], ctx->auth_state.xcbc.xcbc_keys_dma_addr,
277 		      AES_KEYSIZE_128, NS_BIT, 0);
278 
279 	hw_desc_init(&desc[2]);
280 	set_din_const(&desc[2], 0x02020202, CC_AES_128_BIT_KEY_SIZE);
281 	set_flow_mode(&desc[2], DIN_AES_DOUT);
282 	set_dout_dlli(&desc[2], (ctx->auth_state.xcbc.xcbc_keys_dma_addr
283 					 + AES_KEYSIZE_128),
284 			      AES_KEYSIZE_128, NS_BIT, 0);
285 
286 	hw_desc_init(&desc[3]);
287 	set_din_const(&desc[3], 0x03030303, CC_AES_128_BIT_KEY_SIZE);
288 	set_flow_mode(&desc[3], DIN_AES_DOUT);
289 	set_dout_dlli(&desc[3], (ctx->auth_state.xcbc.xcbc_keys_dma_addr
290 					  + 2 * AES_KEYSIZE_128),
291 			      AES_KEYSIZE_128, NS_BIT, 0);
292 
293 	return 4;
294 }
295 
296 static int hmac_setkey(struct cc_hw_desc *desc, struct cc_aead_ctx *ctx)
297 {
298 	unsigned int hmac_pad_const[2] = { HMAC_IPAD_CONST, HMAC_OPAD_CONST };
299 	unsigned int digest_ofs = 0;
300 	unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
301 			DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
302 	unsigned int digest_size = (ctx->auth_mode == DRV_HASH_SHA1) ?
303 			CC_SHA1_DIGEST_SIZE : CC_SHA256_DIGEST_SIZE;
304 	struct cc_hmac_s *hmac = &ctx->auth_state.hmac;
305 
306 	unsigned int idx = 0;
307 	int i;
308 
309 	/* calc derived HMAC key */
310 	for (i = 0; i < 2; i++) {
311 		/* Load hash initial state */
312 		hw_desc_init(&desc[idx]);
313 		set_cipher_mode(&desc[idx], hash_mode);
314 		set_din_sram(&desc[idx],
315 			     cc_larval_digest_addr(ctx->drvdata,
316 						   ctx->auth_mode),
317 			     digest_size);
318 		set_flow_mode(&desc[idx], S_DIN_to_HASH);
319 		set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
320 		idx++;
321 
322 		/* Load the hash current length*/
323 		hw_desc_init(&desc[idx]);
324 		set_cipher_mode(&desc[idx], hash_mode);
325 		set_din_const(&desc[idx], 0, ctx->hash_len);
326 		set_flow_mode(&desc[idx], S_DIN_to_HASH);
327 		set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
328 		idx++;
329 
330 		/* Prepare ipad key */
331 		hw_desc_init(&desc[idx]);
332 		set_xor_val(&desc[idx], hmac_pad_const[i]);
333 		set_cipher_mode(&desc[idx], hash_mode);
334 		set_flow_mode(&desc[idx], S_DIN_to_HASH);
335 		set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
336 		idx++;
337 
338 		/* Perform HASH update */
339 		hw_desc_init(&desc[idx]);
340 		set_din_type(&desc[idx], DMA_DLLI,
341 			     hmac->padded_authkey_dma_addr,
342 			     SHA256_BLOCK_SIZE, NS_BIT);
343 		set_cipher_mode(&desc[idx], hash_mode);
344 		set_xor_active(&desc[idx]);
345 		set_flow_mode(&desc[idx], DIN_HASH);
346 		idx++;
347 
348 		/* Get the digset */
349 		hw_desc_init(&desc[idx]);
350 		set_cipher_mode(&desc[idx], hash_mode);
351 		set_dout_dlli(&desc[idx],
352 			      (hmac->ipad_opad_dma_addr + digest_ofs),
353 			      digest_size, NS_BIT, 0);
354 		set_flow_mode(&desc[idx], S_HASH_to_DOUT);
355 		set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
356 		set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
357 		idx++;
358 
359 		digest_ofs += digest_size;
360 	}
361 
362 	return idx;
363 }
364 
365 static int validate_keys_sizes(struct cc_aead_ctx *ctx)
366 {
367 	struct device *dev = drvdata_to_dev(ctx->drvdata);
368 
369 	dev_dbg(dev, "enc_keylen=%u  authkeylen=%u\n",
370 		ctx->enc_keylen, ctx->auth_keylen);
371 
372 	switch (ctx->auth_mode) {
373 	case DRV_HASH_SHA1:
374 	case DRV_HASH_SHA256:
375 		break;
376 	case DRV_HASH_XCBC_MAC:
377 		if (ctx->auth_keylen != AES_KEYSIZE_128 &&
378 		    ctx->auth_keylen != AES_KEYSIZE_192 &&
379 		    ctx->auth_keylen != AES_KEYSIZE_256)
380 			return -ENOTSUPP;
381 		break;
382 	case DRV_HASH_NULL: /* Not authenc (e.g., CCM) - no auth_key) */
383 		if (ctx->auth_keylen > 0)
384 			return -EINVAL;
385 		break;
386 	default:
387 		dev_err(dev, "Invalid auth_mode=%d\n", ctx->auth_mode);
388 		return -EINVAL;
389 	}
390 	/* Check cipher key size */
391 	if (ctx->flow_mode == S_DIN_to_DES) {
392 		if (ctx->enc_keylen != DES3_EDE_KEY_SIZE) {
393 			dev_err(dev, "Invalid cipher(3DES) key size: %u\n",
394 				ctx->enc_keylen);
395 			return -EINVAL;
396 		}
397 	} else { /* Default assumed to be AES ciphers */
398 		if (ctx->enc_keylen != AES_KEYSIZE_128 &&
399 		    ctx->enc_keylen != AES_KEYSIZE_192 &&
400 		    ctx->enc_keylen != AES_KEYSIZE_256) {
401 			dev_err(dev, "Invalid cipher(AES) key size: %u\n",
402 				ctx->enc_keylen);
403 			return -EINVAL;
404 		}
405 	}
406 
407 	return 0; /* All tests of keys sizes passed */
408 }
409 
410 /* This function prepers the user key so it can pass to the hmac processing
411  * (copy to intenral buffer or hash in case of key longer than block
412  */
413 static int cc_get_plain_hmac_key(struct crypto_aead *tfm, const u8 *authkey,
414 				 unsigned int keylen)
415 {
416 	dma_addr_t key_dma_addr = 0;
417 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
418 	struct device *dev = drvdata_to_dev(ctx->drvdata);
419 	u32 larval_addr = cc_larval_digest_addr(ctx->drvdata, ctx->auth_mode);
420 	struct cc_crypto_req cc_req = {};
421 	unsigned int blocksize;
422 	unsigned int digestsize;
423 	unsigned int hashmode;
424 	unsigned int idx = 0;
425 	int rc = 0;
426 	u8 *key = NULL;
427 	struct cc_hw_desc desc[MAX_AEAD_SETKEY_SEQ];
428 	dma_addr_t padded_authkey_dma_addr =
429 		ctx->auth_state.hmac.padded_authkey_dma_addr;
430 
431 	switch (ctx->auth_mode) { /* auth_key required and >0 */
432 	case DRV_HASH_SHA1:
433 		blocksize = SHA1_BLOCK_SIZE;
434 		digestsize = SHA1_DIGEST_SIZE;
435 		hashmode = DRV_HASH_HW_SHA1;
436 		break;
437 	case DRV_HASH_SHA256:
438 	default:
439 		blocksize = SHA256_BLOCK_SIZE;
440 		digestsize = SHA256_DIGEST_SIZE;
441 		hashmode = DRV_HASH_HW_SHA256;
442 	}
443 
444 	if (keylen != 0) {
445 
446 		key = kmemdup(authkey, keylen, GFP_KERNEL);
447 		if (!key)
448 			return -ENOMEM;
449 
450 		key_dma_addr = dma_map_single(dev, (void *)key, keylen,
451 					      DMA_TO_DEVICE);
452 		if (dma_mapping_error(dev, key_dma_addr)) {
453 			dev_err(dev, "Mapping key va=0x%p len=%u for DMA failed\n",
454 				key, keylen);
455 			kzfree(key);
456 			return -ENOMEM;
457 		}
458 		if (keylen > blocksize) {
459 			/* Load hash initial state */
460 			hw_desc_init(&desc[idx]);
461 			set_cipher_mode(&desc[idx], hashmode);
462 			set_din_sram(&desc[idx], larval_addr, digestsize);
463 			set_flow_mode(&desc[idx], S_DIN_to_HASH);
464 			set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
465 			idx++;
466 
467 			/* Load the hash current length*/
468 			hw_desc_init(&desc[idx]);
469 			set_cipher_mode(&desc[idx], hashmode);
470 			set_din_const(&desc[idx], 0, ctx->hash_len);
471 			set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
472 			set_flow_mode(&desc[idx], S_DIN_to_HASH);
473 			set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
474 			idx++;
475 
476 			hw_desc_init(&desc[idx]);
477 			set_din_type(&desc[idx], DMA_DLLI,
478 				     key_dma_addr, keylen, NS_BIT);
479 			set_flow_mode(&desc[idx], DIN_HASH);
480 			idx++;
481 
482 			/* Get hashed key */
483 			hw_desc_init(&desc[idx]);
484 			set_cipher_mode(&desc[idx], hashmode);
485 			set_dout_dlli(&desc[idx], padded_authkey_dma_addr,
486 				      digestsize, NS_BIT, 0);
487 			set_flow_mode(&desc[idx], S_HASH_to_DOUT);
488 			set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
489 			set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
490 			set_cipher_config0(&desc[idx],
491 					   HASH_DIGEST_RESULT_LITTLE_ENDIAN);
492 			idx++;
493 
494 			hw_desc_init(&desc[idx]);
495 			set_din_const(&desc[idx], 0, (blocksize - digestsize));
496 			set_flow_mode(&desc[idx], BYPASS);
497 			set_dout_dlli(&desc[idx], (padded_authkey_dma_addr +
498 				      digestsize), (blocksize - digestsize),
499 				      NS_BIT, 0);
500 			idx++;
501 		} else {
502 			hw_desc_init(&desc[idx]);
503 			set_din_type(&desc[idx], DMA_DLLI, key_dma_addr,
504 				     keylen, NS_BIT);
505 			set_flow_mode(&desc[idx], BYPASS);
506 			set_dout_dlli(&desc[idx], padded_authkey_dma_addr,
507 				      keylen, NS_BIT, 0);
508 			idx++;
509 
510 			if ((blocksize - keylen) != 0) {
511 				hw_desc_init(&desc[idx]);
512 				set_din_const(&desc[idx], 0,
513 					      (blocksize - keylen));
514 				set_flow_mode(&desc[idx], BYPASS);
515 				set_dout_dlli(&desc[idx],
516 					      (padded_authkey_dma_addr +
517 					       keylen),
518 					      (blocksize - keylen), NS_BIT, 0);
519 				idx++;
520 			}
521 		}
522 	} else {
523 		hw_desc_init(&desc[idx]);
524 		set_din_const(&desc[idx], 0, (blocksize - keylen));
525 		set_flow_mode(&desc[idx], BYPASS);
526 		set_dout_dlli(&desc[idx], padded_authkey_dma_addr,
527 			      blocksize, NS_BIT, 0);
528 		idx++;
529 	}
530 
531 	rc = cc_send_sync_request(ctx->drvdata, &cc_req, desc, idx);
532 	if (rc)
533 		dev_err(dev, "send_request() failed (rc=%d)\n", rc);
534 
535 	if (key_dma_addr)
536 		dma_unmap_single(dev, key_dma_addr, keylen, DMA_TO_DEVICE);
537 
538 	kzfree(key);
539 
540 	return rc;
541 }
542 
543 static int cc_aead_setkey(struct crypto_aead *tfm, const u8 *key,
544 			  unsigned int keylen)
545 {
546 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
547 	struct cc_crypto_req cc_req = {};
548 	struct cc_hw_desc desc[MAX_AEAD_SETKEY_SEQ];
549 	unsigned int seq_len = 0;
550 	struct device *dev = drvdata_to_dev(ctx->drvdata);
551 	const u8 *enckey, *authkey;
552 	int rc;
553 
554 	dev_dbg(dev, "Setting key in context @%p for %s. key=%p keylen=%u\n",
555 		ctx, crypto_tfm_alg_name(crypto_aead_tfm(tfm)), key, keylen);
556 
557 	/* STAT_PHASE_0: Init and sanity checks */
558 
559 	if (ctx->auth_mode != DRV_HASH_NULL) { /* authenc() alg. */
560 		struct crypto_authenc_keys keys;
561 
562 		rc = crypto_authenc_extractkeys(&keys, key, keylen);
563 		if (rc)
564 			goto badkey;
565 		enckey = keys.enckey;
566 		authkey = keys.authkey;
567 		ctx->enc_keylen = keys.enckeylen;
568 		ctx->auth_keylen = keys.authkeylen;
569 
570 		if (ctx->cipher_mode == DRV_CIPHER_CTR) {
571 			/* the nonce is stored in bytes at end of key */
572 			rc = -EINVAL;
573 			if (ctx->enc_keylen <
574 			    (AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE))
575 				goto badkey;
576 			/* Copy nonce from last 4 bytes in CTR key to
577 			 *  first 4 bytes in CTR IV
578 			 */
579 			memcpy(ctx->ctr_nonce, enckey + ctx->enc_keylen -
580 			       CTR_RFC3686_NONCE_SIZE, CTR_RFC3686_NONCE_SIZE);
581 			/* Set CTR key size */
582 			ctx->enc_keylen -= CTR_RFC3686_NONCE_SIZE;
583 		}
584 	} else { /* non-authenc - has just one key */
585 		enckey = key;
586 		authkey = NULL;
587 		ctx->enc_keylen = keylen;
588 		ctx->auth_keylen = 0;
589 	}
590 
591 	rc = validate_keys_sizes(ctx);
592 	if (rc)
593 		goto badkey;
594 
595 	/* STAT_PHASE_1: Copy key to ctx */
596 
597 	/* Get key material */
598 	memcpy(ctx->enckey, enckey, ctx->enc_keylen);
599 	if (ctx->enc_keylen == 24)
600 		memset(ctx->enckey + 24, 0, CC_AES_KEY_SIZE_MAX - 24);
601 	if (ctx->auth_mode == DRV_HASH_XCBC_MAC) {
602 		memcpy(ctx->auth_state.xcbc.xcbc_keys, authkey,
603 		       ctx->auth_keylen);
604 	} else if (ctx->auth_mode != DRV_HASH_NULL) { /* HMAC */
605 		rc = cc_get_plain_hmac_key(tfm, authkey, ctx->auth_keylen);
606 		if (rc)
607 			goto badkey;
608 	}
609 
610 	/* STAT_PHASE_2: Create sequence */
611 
612 	switch (ctx->auth_mode) {
613 	case DRV_HASH_SHA1:
614 	case DRV_HASH_SHA256:
615 		seq_len = hmac_setkey(desc, ctx);
616 		break;
617 	case DRV_HASH_XCBC_MAC:
618 		seq_len = xcbc_setkey(desc, ctx);
619 		break;
620 	case DRV_HASH_NULL: /* non-authenc modes, e.g., CCM */
621 		break; /* No auth. key setup */
622 	default:
623 		dev_err(dev, "Unsupported authenc (%d)\n", ctx->auth_mode);
624 		rc = -ENOTSUPP;
625 		goto badkey;
626 	}
627 
628 	/* STAT_PHASE_3: Submit sequence to HW */
629 
630 	if (seq_len > 0) { /* For CCM there is no sequence to setup the key */
631 		rc = cc_send_sync_request(ctx->drvdata, &cc_req, desc, seq_len);
632 		if (rc) {
633 			dev_err(dev, "send_request() failed (rc=%d)\n", rc);
634 			goto setkey_error;
635 		}
636 	}
637 
638 	/* Update STAT_PHASE_3 */
639 	return rc;
640 
641 badkey:
642 	crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
643 
644 setkey_error:
645 	return rc;
646 }
647 
648 static int cc_des3_aead_setkey(struct crypto_aead *aead, const u8 *key,
649 			       unsigned int keylen)
650 {
651 	struct crypto_authenc_keys keys;
652 	int err;
653 
654 	err = crypto_authenc_extractkeys(&keys, key, keylen);
655 	if (unlikely(err))
656 		return err;
657 
658 	err = verify_aead_des3_key(aead, keys.enckey, keys.enckeylen) ?:
659 	      cc_aead_setkey(aead, key, keylen);
660 
661 	memzero_explicit(&keys, sizeof(keys));
662 	return err;
663 }
664 
665 static int cc_rfc4309_ccm_setkey(struct crypto_aead *tfm, const u8 *key,
666 				 unsigned int keylen)
667 {
668 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
669 
670 	if (keylen < 3)
671 		return -EINVAL;
672 
673 	keylen -= 3;
674 	memcpy(ctx->ctr_nonce, key + keylen, 3);
675 
676 	return cc_aead_setkey(tfm, key, keylen);
677 }
678 
679 static int cc_aead_setauthsize(struct crypto_aead *authenc,
680 			       unsigned int authsize)
681 {
682 	struct cc_aead_ctx *ctx = crypto_aead_ctx(authenc);
683 	struct device *dev = drvdata_to_dev(ctx->drvdata);
684 
685 	/* Unsupported auth. sizes */
686 	if (authsize == 0 ||
687 	    authsize > crypto_aead_maxauthsize(authenc)) {
688 		return -ENOTSUPP;
689 	}
690 
691 	ctx->authsize = authsize;
692 	dev_dbg(dev, "authlen=%d\n", ctx->authsize);
693 
694 	return 0;
695 }
696 
697 static int cc_rfc4309_ccm_setauthsize(struct crypto_aead *authenc,
698 				      unsigned int authsize)
699 {
700 	switch (authsize) {
701 	case 8:
702 	case 12:
703 	case 16:
704 		break;
705 	default:
706 		return -EINVAL;
707 	}
708 
709 	return cc_aead_setauthsize(authenc, authsize);
710 }
711 
712 static int cc_ccm_setauthsize(struct crypto_aead *authenc,
713 			      unsigned int authsize)
714 {
715 	switch (authsize) {
716 	case 4:
717 	case 6:
718 	case 8:
719 	case 10:
720 	case 12:
721 	case 14:
722 	case 16:
723 		break;
724 	default:
725 		return -EINVAL;
726 	}
727 
728 	return cc_aead_setauthsize(authenc, authsize);
729 }
730 
731 static void cc_set_assoc_desc(struct aead_request *areq, unsigned int flow_mode,
732 			      struct cc_hw_desc desc[], unsigned int *seq_size)
733 {
734 	struct crypto_aead *tfm = crypto_aead_reqtfm(areq);
735 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
736 	struct aead_req_ctx *areq_ctx = aead_request_ctx(areq);
737 	enum cc_req_dma_buf_type assoc_dma_type = areq_ctx->assoc_buff_type;
738 	unsigned int idx = *seq_size;
739 	struct device *dev = drvdata_to_dev(ctx->drvdata);
740 
741 	switch (assoc_dma_type) {
742 	case CC_DMA_BUF_DLLI:
743 		dev_dbg(dev, "ASSOC buffer type DLLI\n");
744 		hw_desc_init(&desc[idx]);
745 		set_din_type(&desc[idx], DMA_DLLI, sg_dma_address(areq->src),
746 			     areq_ctx->assoclen, NS_BIT);
747 		set_flow_mode(&desc[idx], flow_mode);
748 		if (ctx->auth_mode == DRV_HASH_XCBC_MAC &&
749 		    areq_ctx->cryptlen > 0)
750 			set_din_not_last_indication(&desc[idx]);
751 		break;
752 	case CC_DMA_BUF_MLLI:
753 		dev_dbg(dev, "ASSOC buffer type MLLI\n");
754 		hw_desc_init(&desc[idx]);
755 		set_din_type(&desc[idx], DMA_MLLI, areq_ctx->assoc.sram_addr,
756 			     areq_ctx->assoc.mlli_nents, NS_BIT);
757 		set_flow_mode(&desc[idx], flow_mode);
758 		if (ctx->auth_mode == DRV_HASH_XCBC_MAC &&
759 		    areq_ctx->cryptlen > 0)
760 			set_din_not_last_indication(&desc[idx]);
761 		break;
762 	case CC_DMA_BUF_NULL:
763 	default:
764 		dev_err(dev, "Invalid ASSOC buffer type\n");
765 	}
766 
767 	*seq_size = (++idx);
768 }
769 
770 static void cc_proc_authen_desc(struct aead_request *areq,
771 				unsigned int flow_mode,
772 				struct cc_hw_desc desc[],
773 				unsigned int *seq_size, int direct)
774 {
775 	struct aead_req_ctx *areq_ctx = aead_request_ctx(areq);
776 	enum cc_req_dma_buf_type data_dma_type = areq_ctx->data_buff_type;
777 	unsigned int idx = *seq_size;
778 	struct crypto_aead *tfm = crypto_aead_reqtfm(areq);
779 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
780 	struct device *dev = drvdata_to_dev(ctx->drvdata);
781 
782 	switch (data_dma_type) {
783 	case CC_DMA_BUF_DLLI:
784 	{
785 		struct scatterlist *cipher =
786 			(direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ?
787 			areq_ctx->dst_sgl : areq_ctx->src_sgl;
788 
789 		unsigned int offset =
790 			(direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ?
791 			areq_ctx->dst_offset : areq_ctx->src_offset;
792 		dev_dbg(dev, "AUTHENC: SRC/DST buffer type DLLI\n");
793 		hw_desc_init(&desc[idx]);
794 		set_din_type(&desc[idx], DMA_DLLI,
795 			     (sg_dma_address(cipher) + offset),
796 			     areq_ctx->cryptlen, NS_BIT);
797 		set_flow_mode(&desc[idx], flow_mode);
798 		break;
799 	}
800 	case CC_DMA_BUF_MLLI:
801 	{
802 		/* DOUBLE-PASS flow (as default)
803 		 * assoc. + iv + data -compact in one table
804 		 * if assoclen is ZERO only IV perform
805 		 */
806 		cc_sram_addr_t mlli_addr = areq_ctx->assoc.sram_addr;
807 		u32 mlli_nents = areq_ctx->assoc.mlli_nents;
808 
809 		if (areq_ctx->is_single_pass) {
810 			if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
811 				mlli_addr = areq_ctx->dst.sram_addr;
812 				mlli_nents = areq_ctx->dst.mlli_nents;
813 			} else {
814 				mlli_addr = areq_ctx->src.sram_addr;
815 				mlli_nents = areq_ctx->src.mlli_nents;
816 			}
817 		}
818 
819 		dev_dbg(dev, "AUTHENC: SRC/DST buffer type MLLI\n");
820 		hw_desc_init(&desc[idx]);
821 		set_din_type(&desc[idx], DMA_MLLI, mlli_addr, mlli_nents,
822 			     NS_BIT);
823 		set_flow_mode(&desc[idx], flow_mode);
824 		break;
825 	}
826 	case CC_DMA_BUF_NULL:
827 	default:
828 		dev_err(dev, "AUTHENC: Invalid SRC/DST buffer type\n");
829 	}
830 
831 	*seq_size = (++idx);
832 }
833 
834 static void cc_proc_cipher_desc(struct aead_request *areq,
835 				unsigned int flow_mode,
836 				struct cc_hw_desc desc[],
837 				unsigned int *seq_size)
838 {
839 	unsigned int idx = *seq_size;
840 	struct aead_req_ctx *areq_ctx = aead_request_ctx(areq);
841 	enum cc_req_dma_buf_type data_dma_type = areq_ctx->data_buff_type;
842 	struct crypto_aead *tfm = crypto_aead_reqtfm(areq);
843 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
844 	struct device *dev = drvdata_to_dev(ctx->drvdata);
845 
846 	if (areq_ctx->cryptlen == 0)
847 		return; /*null processing*/
848 
849 	switch (data_dma_type) {
850 	case CC_DMA_BUF_DLLI:
851 		dev_dbg(dev, "CIPHER: SRC/DST buffer type DLLI\n");
852 		hw_desc_init(&desc[idx]);
853 		set_din_type(&desc[idx], DMA_DLLI,
854 			     (sg_dma_address(areq_ctx->src_sgl) +
855 			      areq_ctx->src_offset), areq_ctx->cryptlen,
856 			      NS_BIT);
857 		set_dout_dlli(&desc[idx],
858 			      (sg_dma_address(areq_ctx->dst_sgl) +
859 			       areq_ctx->dst_offset),
860 			      areq_ctx->cryptlen, NS_BIT, 0);
861 		set_flow_mode(&desc[idx], flow_mode);
862 		break;
863 	case CC_DMA_BUF_MLLI:
864 		dev_dbg(dev, "CIPHER: SRC/DST buffer type MLLI\n");
865 		hw_desc_init(&desc[idx]);
866 		set_din_type(&desc[idx], DMA_MLLI, areq_ctx->src.sram_addr,
867 			     areq_ctx->src.mlli_nents, NS_BIT);
868 		set_dout_mlli(&desc[idx], areq_ctx->dst.sram_addr,
869 			      areq_ctx->dst.mlli_nents, NS_BIT, 0);
870 		set_flow_mode(&desc[idx], flow_mode);
871 		break;
872 	case CC_DMA_BUF_NULL:
873 	default:
874 		dev_err(dev, "CIPHER: Invalid SRC/DST buffer type\n");
875 	}
876 
877 	*seq_size = (++idx);
878 }
879 
880 static void cc_proc_digest_desc(struct aead_request *req,
881 				struct cc_hw_desc desc[],
882 				unsigned int *seq_size)
883 {
884 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
885 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
886 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
887 	unsigned int idx = *seq_size;
888 	unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
889 				DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
890 	int direct = req_ctx->gen_ctx.op_type;
891 
892 	/* Get final ICV result */
893 	if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
894 		hw_desc_init(&desc[idx]);
895 		set_flow_mode(&desc[idx], S_HASH_to_DOUT);
896 		set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
897 		set_dout_dlli(&desc[idx], req_ctx->icv_dma_addr, ctx->authsize,
898 			      NS_BIT, 1);
899 		set_queue_last_ind(ctx->drvdata, &desc[idx]);
900 		if (ctx->auth_mode == DRV_HASH_XCBC_MAC) {
901 			set_aes_not_hash_mode(&desc[idx]);
902 			set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
903 		} else {
904 			set_cipher_config0(&desc[idx],
905 					   HASH_DIGEST_RESULT_LITTLE_ENDIAN);
906 			set_cipher_mode(&desc[idx], hash_mode);
907 		}
908 	} else { /*Decrypt*/
909 		/* Get ICV out from hardware */
910 		hw_desc_init(&desc[idx]);
911 		set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
912 		set_flow_mode(&desc[idx], S_HASH_to_DOUT);
913 		set_dout_dlli(&desc[idx], req_ctx->mac_buf_dma_addr,
914 			      ctx->authsize, NS_BIT, 1);
915 		set_queue_last_ind(ctx->drvdata, &desc[idx]);
916 		set_cipher_config0(&desc[idx],
917 				   HASH_DIGEST_RESULT_LITTLE_ENDIAN);
918 		set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
919 		if (ctx->auth_mode == DRV_HASH_XCBC_MAC) {
920 			set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
921 			set_aes_not_hash_mode(&desc[idx]);
922 		} else {
923 			set_cipher_mode(&desc[idx], hash_mode);
924 		}
925 	}
926 
927 	*seq_size = (++idx);
928 }
929 
930 static void cc_set_cipher_desc(struct aead_request *req,
931 			       struct cc_hw_desc desc[],
932 			       unsigned int *seq_size)
933 {
934 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
935 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
936 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
937 	unsigned int hw_iv_size = req_ctx->hw_iv_size;
938 	unsigned int idx = *seq_size;
939 	int direct = req_ctx->gen_ctx.op_type;
940 
941 	/* Setup cipher state */
942 	hw_desc_init(&desc[idx]);
943 	set_cipher_config0(&desc[idx], direct);
944 	set_flow_mode(&desc[idx], ctx->flow_mode);
945 	set_din_type(&desc[idx], DMA_DLLI, req_ctx->gen_ctx.iv_dma_addr,
946 		     hw_iv_size, NS_BIT);
947 	if (ctx->cipher_mode == DRV_CIPHER_CTR)
948 		set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
949 	else
950 		set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
951 	set_cipher_mode(&desc[idx], ctx->cipher_mode);
952 	idx++;
953 
954 	/* Setup enc. key */
955 	hw_desc_init(&desc[idx]);
956 	set_cipher_config0(&desc[idx], direct);
957 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
958 	set_flow_mode(&desc[idx], ctx->flow_mode);
959 	if (ctx->flow_mode == S_DIN_to_AES) {
960 		set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
961 			     ((ctx->enc_keylen == 24) ? CC_AES_KEY_SIZE_MAX :
962 			      ctx->enc_keylen), NS_BIT);
963 		set_key_size_aes(&desc[idx], ctx->enc_keylen);
964 	} else {
965 		set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
966 			     ctx->enc_keylen, NS_BIT);
967 		set_key_size_des(&desc[idx], ctx->enc_keylen);
968 	}
969 	set_cipher_mode(&desc[idx], ctx->cipher_mode);
970 	idx++;
971 
972 	*seq_size = idx;
973 }
974 
975 static void cc_proc_cipher(struct aead_request *req, struct cc_hw_desc desc[],
976 			   unsigned int *seq_size, unsigned int data_flow_mode)
977 {
978 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
979 	int direct = req_ctx->gen_ctx.op_type;
980 	unsigned int idx = *seq_size;
981 
982 	if (req_ctx->cryptlen == 0)
983 		return; /*null processing*/
984 
985 	cc_set_cipher_desc(req, desc, &idx);
986 	cc_proc_cipher_desc(req, data_flow_mode, desc, &idx);
987 	if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
988 		/* We must wait for DMA to write all cipher */
989 		hw_desc_init(&desc[idx]);
990 		set_din_no_dma(&desc[idx], 0, 0xfffff0);
991 		set_dout_no_dma(&desc[idx], 0, 0, 1);
992 		idx++;
993 	}
994 
995 	*seq_size = idx;
996 }
997 
998 static void cc_set_hmac_desc(struct aead_request *req, struct cc_hw_desc desc[],
999 			     unsigned int *seq_size)
1000 {
1001 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1002 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1003 	unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
1004 				DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
1005 	unsigned int digest_size = (ctx->auth_mode == DRV_HASH_SHA1) ?
1006 				CC_SHA1_DIGEST_SIZE : CC_SHA256_DIGEST_SIZE;
1007 	unsigned int idx = *seq_size;
1008 
1009 	/* Loading hash ipad xor key state */
1010 	hw_desc_init(&desc[idx]);
1011 	set_cipher_mode(&desc[idx], hash_mode);
1012 	set_din_type(&desc[idx], DMA_DLLI,
1013 		     ctx->auth_state.hmac.ipad_opad_dma_addr, digest_size,
1014 		     NS_BIT);
1015 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1016 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1017 	idx++;
1018 
1019 	/* Load init. digest len (64 bytes) */
1020 	hw_desc_init(&desc[idx]);
1021 	set_cipher_mode(&desc[idx], hash_mode);
1022 	set_din_sram(&desc[idx], cc_digest_len_addr(ctx->drvdata, hash_mode),
1023 		     ctx->hash_len);
1024 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1025 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1026 	idx++;
1027 
1028 	*seq_size = idx;
1029 }
1030 
1031 static void cc_set_xcbc_desc(struct aead_request *req, struct cc_hw_desc desc[],
1032 			     unsigned int *seq_size)
1033 {
1034 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1035 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1036 	unsigned int idx = *seq_size;
1037 
1038 	/* Loading MAC state */
1039 	hw_desc_init(&desc[idx]);
1040 	set_din_const(&desc[idx], 0, CC_AES_BLOCK_SIZE);
1041 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1042 	set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
1043 	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1044 	set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
1045 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1046 	set_aes_not_hash_mode(&desc[idx]);
1047 	idx++;
1048 
1049 	/* Setup XCBC MAC K1 */
1050 	hw_desc_init(&desc[idx]);
1051 	set_din_type(&desc[idx], DMA_DLLI,
1052 		     ctx->auth_state.xcbc.xcbc_keys_dma_addr,
1053 		     AES_KEYSIZE_128, NS_BIT);
1054 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1055 	set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
1056 	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1057 	set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
1058 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1059 	set_aes_not_hash_mode(&desc[idx]);
1060 	idx++;
1061 
1062 	/* Setup XCBC MAC K2 */
1063 	hw_desc_init(&desc[idx]);
1064 	set_din_type(&desc[idx], DMA_DLLI,
1065 		     (ctx->auth_state.xcbc.xcbc_keys_dma_addr +
1066 		      AES_KEYSIZE_128), AES_KEYSIZE_128, NS_BIT);
1067 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1068 	set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
1069 	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1070 	set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
1071 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1072 	set_aes_not_hash_mode(&desc[idx]);
1073 	idx++;
1074 
1075 	/* Setup XCBC MAC K3 */
1076 	hw_desc_init(&desc[idx]);
1077 	set_din_type(&desc[idx], DMA_DLLI,
1078 		     (ctx->auth_state.xcbc.xcbc_keys_dma_addr +
1079 		      2 * AES_KEYSIZE_128), AES_KEYSIZE_128, NS_BIT);
1080 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE2);
1081 	set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
1082 	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1083 	set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
1084 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1085 	set_aes_not_hash_mode(&desc[idx]);
1086 	idx++;
1087 
1088 	*seq_size = idx;
1089 }
1090 
1091 static void cc_proc_header_desc(struct aead_request *req,
1092 				struct cc_hw_desc desc[],
1093 				unsigned int *seq_size)
1094 {
1095 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
1096 	unsigned int idx = *seq_size;
1097 
1098 	/* Hash associated data */
1099 	if (areq_ctx->assoclen > 0)
1100 		cc_set_assoc_desc(req, DIN_HASH, desc, &idx);
1101 
1102 	/* Hash IV */
1103 	*seq_size = idx;
1104 }
1105 
1106 static void cc_proc_scheme_desc(struct aead_request *req,
1107 				struct cc_hw_desc desc[],
1108 				unsigned int *seq_size)
1109 {
1110 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1111 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1112 	struct cc_aead_handle *aead_handle = ctx->drvdata->aead_handle;
1113 	unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
1114 				DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
1115 	unsigned int digest_size = (ctx->auth_mode == DRV_HASH_SHA1) ?
1116 				CC_SHA1_DIGEST_SIZE : CC_SHA256_DIGEST_SIZE;
1117 	unsigned int idx = *seq_size;
1118 
1119 	hw_desc_init(&desc[idx]);
1120 	set_cipher_mode(&desc[idx], hash_mode);
1121 	set_dout_sram(&desc[idx], aead_handle->sram_workspace_addr,
1122 		      ctx->hash_len);
1123 	set_flow_mode(&desc[idx], S_HASH_to_DOUT);
1124 	set_setup_mode(&desc[idx], SETUP_WRITE_STATE1);
1125 	set_cipher_do(&desc[idx], DO_PAD);
1126 	idx++;
1127 
1128 	/* Get final ICV result */
1129 	hw_desc_init(&desc[idx]);
1130 	set_dout_sram(&desc[idx], aead_handle->sram_workspace_addr,
1131 		      digest_size);
1132 	set_flow_mode(&desc[idx], S_HASH_to_DOUT);
1133 	set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
1134 	set_cipher_config0(&desc[idx], HASH_DIGEST_RESULT_LITTLE_ENDIAN);
1135 	set_cipher_mode(&desc[idx], hash_mode);
1136 	idx++;
1137 
1138 	/* Loading hash opad xor key state */
1139 	hw_desc_init(&desc[idx]);
1140 	set_cipher_mode(&desc[idx], hash_mode);
1141 	set_din_type(&desc[idx], DMA_DLLI,
1142 		     (ctx->auth_state.hmac.ipad_opad_dma_addr + digest_size),
1143 		     digest_size, NS_BIT);
1144 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1145 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1146 	idx++;
1147 
1148 	/* Load init. digest len (64 bytes) */
1149 	hw_desc_init(&desc[idx]);
1150 	set_cipher_mode(&desc[idx], hash_mode);
1151 	set_din_sram(&desc[idx], cc_digest_len_addr(ctx->drvdata, hash_mode),
1152 		     ctx->hash_len);
1153 	set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
1154 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1155 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1156 	idx++;
1157 
1158 	/* Perform HASH update */
1159 	hw_desc_init(&desc[idx]);
1160 	set_din_sram(&desc[idx], aead_handle->sram_workspace_addr,
1161 		     digest_size);
1162 	set_flow_mode(&desc[idx], DIN_HASH);
1163 	idx++;
1164 
1165 	*seq_size = idx;
1166 }
1167 
1168 static void cc_mlli_to_sram(struct aead_request *req,
1169 			    struct cc_hw_desc desc[], unsigned int *seq_size)
1170 {
1171 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1172 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1173 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1174 	struct device *dev = drvdata_to_dev(ctx->drvdata);
1175 
1176 	if ((req_ctx->assoc_buff_type == CC_DMA_BUF_MLLI ||
1177 	    req_ctx->data_buff_type == CC_DMA_BUF_MLLI ||
1178 	    !req_ctx->is_single_pass) && req_ctx->mlli_params.mlli_len) {
1179 		dev_dbg(dev, "Copy-to-sram: mlli_dma=%08x, mlli_size=%u\n",
1180 			(unsigned int)ctx->drvdata->mlli_sram_addr,
1181 			req_ctx->mlli_params.mlli_len);
1182 		/* Copy MLLI table host-to-sram */
1183 		hw_desc_init(&desc[*seq_size]);
1184 		set_din_type(&desc[*seq_size], DMA_DLLI,
1185 			     req_ctx->mlli_params.mlli_dma_addr,
1186 			     req_ctx->mlli_params.mlli_len, NS_BIT);
1187 		set_dout_sram(&desc[*seq_size],
1188 			      ctx->drvdata->mlli_sram_addr,
1189 			      req_ctx->mlli_params.mlli_len);
1190 		set_flow_mode(&desc[*seq_size], BYPASS);
1191 		(*seq_size)++;
1192 	}
1193 }
1194 
1195 static enum cc_flow_mode cc_get_data_flow(enum drv_crypto_direction direct,
1196 					  enum cc_flow_mode setup_flow_mode,
1197 					  bool is_single_pass)
1198 {
1199 	enum cc_flow_mode data_flow_mode;
1200 
1201 	if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
1202 		if (setup_flow_mode == S_DIN_to_AES)
1203 			data_flow_mode = is_single_pass ?
1204 				AES_to_HASH_and_DOUT : DIN_AES_DOUT;
1205 		else
1206 			data_flow_mode = is_single_pass ?
1207 				DES_to_HASH_and_DOUT : DIN_DES_DOUT;
1208 	} else { /* Decrypt */
1209 		if (setup_flow_mode == S_DIN_to_AES)
1210 			data_flow_mode = is_single_pass ?
1211 				AES_and_HASH : DIN_AES_DOUT;
1212 		else
1213 			data_flow_mode = is_single_pass ?
1214 				DES_and_HASH : DIN_DES_DOUT;
1215 	}
1216 
1217 	return data_flow_mode;
1218 }
1219 
1220 static void cc_hmac_authenc(struct aead_request *req, struct cc_hw_desc desc[],
1221 			    unsigned int *seq_size)
1222 {
1223 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1224 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1225 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1226 	int direct = req_ctx->gen_ctx.op_type;
1227 	unsigned int data_flow_mode =
1228 		cc_get_data_flow(direct, ctx->flow_mode,
1229 				 req_ctx->is_single_pass);
1230 
1231 	if (req_ctx->is_single_pass) {
1232 		/**
1233 		 * Single-pass flow
1234 		 */
1235 		cc_set_hmac_desc(req, desc, seq_size);
1236 		cc_set_cipher_desc(req, desc, seq_size);
1237 		cc_proc_header_desc(req, desc, seq_size);
1238 		cc_proc_cipher_desc(req, data_flow_mode, desc, seq_size);
1239 		cc_proc_scheme_desc(req, desc, seq_size);
1240 		cc_proc_digest_desc(req, desc, seq_size);
1241 		return;
1242 	}
1243 
1244 	/**
1245 	 * Double-pass flow
1246 	 * Fallback for unsupported single-pass modes,
1247 	 * i.e. using assoc. data of non-word-multiple
1248 	 */
1249 	if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
1250 		/* encrypt first.. */
1251 		cc_proc_cipher(req, desc, seq_size, data_flow_mode);
1252 		/* authenc after..*/
1253 		cc_set_hmac_desc(req, desc, seq_size);
1254 		cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
1255 		cc_proc_scheme_desc(req, desc, seq_size);
1256 		cc_proc_digest_desc(req, desc, seq_size);
1257 
1258 	} else { /*DECRYPT*/
1259 		/* authenc first..*/
1260 		cc_set_hmac_desc(req, desc, seq_size);
1261 		cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
1262 		cc_proc_scheme_desc(req, desc, seq_size);
1263 		/* decrypt after.. */
1264 		cc_proc_cipher(req, desc, seq_size, data_flow_mode);
1265 		/* read the digest result with setting the completion bit
1266 		 * must be after the cipher operation
1267 		 */
1268 		cc_proc_digest_desc(req, desc, seq_size);
1269 	}
1270 }
1271 
1272 static void
1273 cc_xcbc_authenc(struct aead_request *req, struct cc_hw_desc desc[],
1274 		unsigned int *seq_size)
1275 {
1276 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1277 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1278 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1279 	int direct = req_ctx->gen_ctx.op_type;
1280 	unsigned int data_flow_mode =
1281 		cc_get_data_flow(direct, ctx->flow_mode,
1282 				 req_ctx->is_single_pass);
1283 
1284 	if (req_ctx->is_single_pass) {
1285 		/**
1286 		 * Single-pass flow
1287 		 */
1288 		cc_set_xcbc_desc(req, desc, seq_size);
1289 		cc_set_cipher_desc(req, desc, seq_size);
1290 		cc_proc_header_desc(req, desc, seq_size);
1291 		cc_proc_cipher_desc(req, data_flow_mode, desc, seq_size);
1292 		cc_proc_digest_desc(req, desc, seq_size);
1293 		return;
1294 	}
1295 
1296 	/**
1297 	 * Double-pass flow
1298 	 * Fallback for unsupported single-pass modes,
1299 	 * i.e. using assoc. data of non-word-multiple
1300 	 */
1301 	if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
1302 		/* encrypt first.. */
1303 		cc_proc_cipher(req, desc, seq_size, data_flow_mode);
1304 		/* authenc after.. */
1305 		cc_set_xcbc_desc(req, desc, seq_size);
1306 		cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
1307 		cc_proc_digest_desc(req, desc, seq_size);
1308 	} else { /*DECRYPT*/
1309 		/* authenc first.. */
1310 		cc_set_xcbc_desc(req, desc, seq_size);
1311 		cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
1312 		/* decrypt after..*/
1313 		cc_proc_cipher(req, desc, seq_size, data_flow_mode);
1314 		/* read the digest result with setting the completion bit
1315 		 * must be after the cipher operation
1316 		 */
1317 		cc_proc_digest_desc(req, desc, seq_size);
1318 	}
1319 }
1320 
1321 static int validate_data_size(struct cc_aead_ctx *ctx,
1322 			      enum drv_crypto_direction direct,
1323 			      struct aead_request *req)
1324 {
1325 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
1326 	struct device *dev = drvdata_to_dev(ctx->drvdata);
1327 	unsigned int assoclen = areq_ctx->assoclen;
1328 	unsigned int cipherlen = (direct == DRV_CRYPTO_DIRECTION_DECRYPT) ?
1329 			(req->cryptlen - ctx->authsize) : req->cryptlen;
1330 
1331 	if (direct == DRV_CRYPTO_DIRECTION_DECRYPT &&
1332 	    req->cryptlen < ctx->authsize)
1333 		goto data_size_err;
1334 
1335 	areq_ctx->is_single_pass = true; /*defaulted to fast flow*/
1336 
1337 	switch (ctx->flow_mode) {
1338 	case S_DIN_to_AES:
1339 		if (ctx->cipher_mode == DRV_CIPHER_CBC &&
1340 		    !IS_ALIGNED(cipherlen, AES_BLOCK_SIZE))
1341 			goto data_size_err;
1342 		if (ctx->cipher_mode == DRV_CIPHER_CCM)
1343 			break;
1344 		if (ctx->cipher_mode == DRV_CIPHER_GCTR) {
1345 			if (areq_ctx->plaintext_authenticate_only)
1346 				areq_ctx->is_single_pass = false;
1347 			break;
1348 		}
1349 
1350 		if (!IS_ALIGNED(assoclen, sizeof(u32)))
1351 			areq_ctx->is_single_pass = false;
1352 
1353 		if (ctx->cipher_mode == DRV_CIPHER_CTR &&
1354 		    !IS_ALIGNED(cipherlen, sizeof(u32)))
1355 			areq_ctx->is_single_pass = false;
1356 
1357 		break;
1358 	case S_DIN_to_DES:
1359 		if (!IS_ALIGNED(cipherlen, DES_BLOCK_SIZE))
1360 			goto data_size_err;
1361 		if (!IS_ALIGNED(assoclen, DES_BLOCK_SIZE))
1362 			areq_ctx->is_single_pass = false;
1363 		break;
1364 	default:
1365 		dev_err(dev, "Unexpected flow mode (%d)\n", ctx->flow_mode);
1366 		goto data_size_err;
1367 	}
1368 
1369 	return 0;
1370 
1371 data_size_err:
1372 	return -EINVAL;
1373 }
1374 
1375 static unsigned int format_ccm_a0(u8 *pa0_buff, u32 header_size)
1376 {
1377 	unsigned int len = 0;
1378 
1379 	if (header_size == 0)
1380 		return 0;
1381 
1382 	if (header_size < ((1UL << 16) - (1UL << 8))) {
1383 		len = 2;
1384 
1385 		pa0_buff[0] = (header_size >> 8) & 0xFF;
1386 		pa0_buff[1] = header_size & 0xFF;
1387 	} else {
1388 		len = 6;
1389 
1390 		pa0_buff[0] = 0xFF;
1391 		pa0_buff[1] = 0xFE;
1392 		pa0_buff[2] = (header_size >> 24) & 0xFF;
1393 		pa0_buff[3] = (header_size >> 16) & 0xFF;
1394 		pa0_buff[4] = (header_size >> 8) & 0xFF;
1395 		pa0_buff[5] = header_size & 0xFF;
1396 	}
1397 
1398 	return len;
1399 }
1400 
1401 static int set_msg_len(u8 *block, unsigned int msglen, unsigned int csize)
1402 {
1403 	__be32 data;
1404 
1405 	memset(block, 0, csize);
1406 	block += csize;
1407 
1408 	if (csize >= 4)
1409 		csize = 4;
1410 	else if (msglen > (1 << (8 * csize)))
1411 		return -EOVERFLOW;
1412 
1413 	data = cpu_to_be32(msglen);
1414 	memcpy(block - csize, (u8 *)&data + 4 - csize, csize);
1415 
1416 	return 0;
1417 }
1418 
1419 static int cc_ccm(struct aead_request *req, struct cc_hw_desc desc[],
1420 		  unsigned int *seq_size)
1421 {
1422 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1423 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1424 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1425 	unsigned int idx = *seq_size;
1426 	unsigned int cipher_flow_mode;
1427 	dma_addr_t mac_result;
1428 
1429 	if (req_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
1430 		cipher_flow_mode = AES_to_HASH_and_DOUT;
1431 		mac_result = req_ctx->mac_buf_dma_addr;
1432 	} else { /* Encrypt */
1433 		cipher_flow_mode = AES_and_HASH;
1434 		mac_result = req_ctx->icv_dma_addr;
1435 	}
1436 
1437 	/* load key */
1438 	hw_desc_init(&desc[idx]);
1439 	set_cipher_mode(&desc[idx], DRV_CIPHER_CTR);
1440 	set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
1441 		     ((ctx->enc_keylen == 24) ?  CC_AES_KEY_SIZE_MAX :
1442 		      ctx->enc_keylen), NS_BIT);
1443 	set_key_size_aes(&desc[idx], ctx->enc_keylen);
1444 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1445 	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1446 	set_flow_mode(&desc[idx], S_DIN_to_AES);
1447 	idx++;
1448 
1449 	/* load ctr state */
1450 	hw_desc_init(&desc[idx]);
1451 	set_cipher_mode(&desc[idx], DRV_CIPHER_CTR);
1452 	set_key_size_aes(&desc[idx], ctx->enc_keylen);
1453 	set_din_type(&desc[idx], DMA_DLLI,
1454 		     req_ctx->gen_ctx.iv_dma_addr, AES_BLOCK_SIZE, NS_BIT);
1455 	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1456 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1457 	set_flow_mode(&desc[idx], S_DIN_to_AES);
1458 	idx++;
1459 
1460 	/* load MAC key */
1461 	hw_desc_init(&desc[idx]);
1462 	set_cipher_mode(&desc[idx], DRV_CIPHER_CBC_MAC);
1463 	set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
1464 		     ((ctx->enc_keylen == 24) ?  CC_AES_KEY_SIZE_MAX :
1465 		      ctx->enc_keylen), NS_BIT);
1466 	set_key_size_aes(&desc[idx], ctx->enc_keylen);
1467 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1468 	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1469 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1470 	set_aes_not_hash_mode(&desc[idx]);
1471 	idx++;
1472 
1473 	/* load MAC state */
1474 	hw_desc_init(&desc[idx]);
1475 	set_cipher_mode(&desc[idx], DRV_CIPHER_CBC_MAC);
1476 	set_key_size_aes(&desc[idx], ctx->enc_keylen);
1477 	set_din_type(&desc[idx], DMA_DLLI, req_ctx->mac_buf_dma_addr,
1478 		     AES_BLOCK_SIZE, NS_BIT);
1479 	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1480 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1481 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1482 	set_aes_not_hash_mode(&desc[idx]);
1483 	idx++;
1484 
1485 	/* process assoc data */
1486 	if (req_ctx->assoclen > 0) {
1487 		cc_set_assoc_desc(req, DIN_HASH, desc, &idx);
1488 	} else {
1489 		hw_desc_init(&desc[idx]);
1490 		set_din_type(&desc[idx], DMA_DLLI,
1491 			     sg_dma_address(&req_ctx->ccm_adata_sg),
1492 			     AES_BLOCK_SIZE + req_ctx->ccm_hdr_size, NS_BIT);
1493 		set_flow_mode(&desc[idx], DIN_HASH);
1494 		idx++;
1495 	}
1496 
1497 	/* process the cipher */
1498 	if (req_ctx->cryptlen)
1499 		cc_proc_cipher_desc(req, cipher_flow_mode, desc, &idx);
1500 
1501 	/* Read temporal MAC */
1502 	hw_desc_init(&desc[idx]);
1503 	set_cipher_mode(&desc[idx], DRV_CIPHER_CBC_MAC);
1504 	set_dout_dlli(&desc[idx], req_ctx->mac_buf_dma_addr, ctx->authsize,
1505 		      NS_BIT, 0);
1506 	set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
1507 	set_cipher_config0(&desc[idx], HASH_DIGEST_RESULT_LITTLE_ENDIAN);
1508 	set_flow_mode(&desc[idx], S_HASH_to_DOUT);
1509 	set_aes_not_hash_mode(&desc[idx]);
1510 	idx++;
1511 
1512 	/* load AES-CTR state (for last MAC calculation)*/
1513 	hw_desc_init(&desc[idx]);
1514 	set_cipher_mode(&desc[idx], DRV_CIPHER_CTR);
1515 	set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1516 	set_din_type(&desc[idx], DMA_DLLI, req_ctx->ccm_iv0_dma_addr,
1517 		     AES_BLOCK_SIZE, NS_BIT);
1518 	set_key_size_aes(&desc[idx], ctx->enc_keylen);
1519 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1520 	set_flow_mode(&desc[idx], S_DIN_to_AES);
1521 	idx++;
1522 
1523 	hw_desc_init(&desc[idx]);
1524 	set_din_no_dma(&desc[idx], 0, 0xfffff0);
1525 	set_dout_no_dma(&desc[idx], 0, 0, 1);
1526 	idx++;
1527 
1528 	/* encrypt the "T" value and store MAC in mac_state */
1529 	hw_desc_init(&desc[idx]);
1530 	set_din_type(&desc[idx], DMA_DLLI, req_ctx->mac_buf_dma_addr,
1531 		     ctx->authsize, NS_BIT);
1532 	set_dout_dlli(&desc[idx], mac_result, ctx->authsize, NS_BIT, 1);
1533 	set_queue_last_ind(ctx->drvdata, &desc[idx]);
1534 	set_flow_mode(&desc[idx], DIN_AES_DOUT);
1535 	idx++;
1536 
1537 	*seq_size = idx;
1538 	return 0;
1539 }
1540 
1541 static int config_ccm_adata(struct aead_request *req)
1542 {
1543 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1544 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1545 	struct device *dev = drvdata_to_dev(ctx->drvdata);
1546 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1547 	//unsigned int size_of_a = 0, rem_a_size = 0;
1548 	unsigned int lp = req->iv[0];
1549 	/* Note: The code assume that req->iv[0] already contains the value
1550 	 * of L' of RFC3610
1551 	 */
1552 	unsigned int l = lp + 1;  /* This is L' of RFC 3610. */
1553 	unsigned int m = ctx->authsize;  /* This is M' of RFC 3610. */
1554 	u8 *b0 = req_ctx->ccm_config + CCM_B0_OFFSET;
1555 	u8 *a0 = req_ctx->ccm_config + CCM_A0_OFFSET;
1556 	u8 *ctr_count_0 = req_ctx->ccm_config + CCM_CTR_COUNT_0_OFFSET;
1557 	unsigned int cryptlen = (req_ctx->gen_ctx.op_type ==
1558 				 DRV_CRYPTO_DIRECTION_ENCRYPT) ?
1559 				req->cryptlen :
1560 				(req->cryptlen - ctx->authsize);
1561 	int rc;
1562 
1563 	memset(req_ctx->mac_buf, 0, AES_BLOCK_SIZE);
1564 	memset(req_ctx->ccm_config, 0, AES_BLOCK_SIZE * 3);
1565 
1566 	/* taken from crypto/ccm.c */
1567 	/* 2 <= L <= 8, so 1 <= L' <= 7. */
1568 	if (l < 2 || l > 8) {
1569 		dev_err(dev, "illegal iv value %X\n", req->iv[0]);
1570 		return -EINVAL;
1571 	}
1572 	memcpy(b0, req->iv, AES_BLOCK_SIZE);
1573 
1574 	/* format control info per RFC 3610 and
1575 	 * NIST Special Publication 800-38C
1576 	 */
1577 	*b0 |= (8 * ((m - 2) / 2));
1578 	if (req_ctx->assoclen > 0)
1579 		*b0 |= 64;  /* Enable bit 6 if Adata exists. */
1580 
1581 	rc = set_msg_len(b0 + 16 - l, cryptlen, l);  /* Write L'. */
1582 	if (rc) {
1583 		dev_err(dev, "message len overflow detected");
1584 		return rc;
1585 	}
1586 	 /* END of "taken from crypto/ccm.c" */
1587 
1588 	/* l(a) - size of associated data. */
1589 	req_ctx->ccm_hdr_size = format_ccm_a0(a0, req_ctx->assoclen);
1590 
1591 	memset(req->iv + 15 - req->iv[0], 0, req->iv[0] + 1);
1592 	req->iv[15] = 1;
1593 
1594 	memcpy(ctr_count_0, req->iv, AES_BLOCK_SIZE);
1595 	ctr_count_0[15] = 0;
1596 
1597 	return 0;
1598 }
1599 
1600 static void cc_proc_rfc4309_ccm(struct aead_request *req)
1601 {
1602 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1603 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1604 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
1605 
1606 	/* L' */
1607 	memset(areq_ctx->ctr_iv, 0, AES_BLOCK_SIZE);
1608 	/* For RFC 4309, always use 4 bytes for message length
1609 	 * (at most 2^32-1 bytes).
1610 	 */
1611 	areq_ctx->ctr_iv[0] = 3;
1612 
1613 	/* In RFC 4309 there is an 11-bytes nonce+IV part,
1614 	 * that we build here.
1615 	 */
1616 	memcpy(areq_ctx->ctr_iv + CCM_BLOCK_NONCE_OFFSET, ctx->ctr_nonce,
1617 	       CCM_BLOCK_NONCE_SIZE);
1618 	memcpy(areq_ctx->ctr_iv + CCM_BLOCK_IV_OFFSET, req->iv,
1619 	       CCM_BLOCK_IV_SIZE);
1620 	req->iv = areq_ctx->ctr_iv;
1621 	areq_ctx->assoclen -= CCM_BLOCK_IV_SIZE;
1622 }
1623 
1624 static void cc_set_ghash_desc(struct aead_request *req,
1625 			      struct cc_hw_desc desc[], unsigned int *seq_size)
1626 {
1627 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1628 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1629 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1630 	unsigned int idx = *seq_size;
1631 
1632 	/* load key to AES*/
1633 	hw_desc_init(&desc[idx]);
1634 	set_cipher_mode(&desc[idx], DRV_CIPHER_ECB);
1635 	set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1636 	set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
1637 		     ctx->enc_keylen, NS_BIT);
1638 	set_key_size_aes(&desc[idx], ctx->enc_keylen);
1639 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1640 	set_flow_mode(&desc[idx], S_DIN_to_AES);
1641 	idx++;
1642 
1643 	/* process one zero block to generate hkey */
1644 	hw_desc_init(&desc[idx]);
1645 	set_din_const(&desc[idx], 0x0, AES_BLOCK_SIZE);
1646 	set_dout_dlli(&desc[idx], req_ctx->hkey_dma_addr, AES_BLOCK_SIZE,
1647 		      NS_BIT, 0);
1648 	set_flow_mode(&desc[idx], DIN_AES_DOUT);
1649 	idx++;
1650 
1651 	/* Memory Barrier */
1652 	hw_desc_init(&desc[idx]);
1653 	set_din_no_dma(&desc[idx], 0, 0xfffff0);
1654 	set_dout_no_dma(&desc[idx], 0, 0, 1);
1655 	idx++;
1656 
1657 	/* Load GHASH subkey */
1658 	hw_desc_init(&desc[idx]);
1659 	set_din_type(&desc[idx], DMA_DLLI, req_ctx->hkey_dma_addr,
1660 		     AES_BLOCK_SIZE, NS_BIT);
1661 	set_dout_no_dma(&desc[idx], 0, 0, 1);
1662 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1663 	set_aes_not_hash_mode(&desc[idx]);
1664 	set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
1665 	set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
1666 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1667 	idx++;
1668 
1669 	/* Configure Hash Engine to work with GHASH.
1670 	 * Since it was not possible to extend HASH submodes to add GHASH,
1671 	 * The following command is necessary in order to
1672 	 * select GHASH (according to HW designers)
1673 	 */
1674 	hw_desc_init(&desc[idx]);
1675 	set_din_no_dma(&desc[idx], 0, 0xfffff0);
1676 	set_dout_no_dma(&desc[idx], 0, 0, 1);
1677 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1678 	set_aes_not_hash_mode(&desc[idx]);
1679 	set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
1680 	set_cipher_do(&desc[idx], 1); //1=AES_SK RKEK
1681 	set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1682 	set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
1683 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1684 	idx++;
1685 
1686 	/* Load GHASH initial STATE (which is 0). (for any hash there is an
1687 	 * initial state)
1688 	 */
1689 	hw_desc_init(&desc[idx]);
1690 	set_din_const(&desc[idx], 0x0, AES_BLOCK_SIZE);
1691 	set_dout_no_dma(&desc[idx], 0, 0, 1);
1692 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1693 	set_aes_not_hash_mode(&desc[idx]);
1694 	set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
1695 	set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
1696 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1697 	idx++;
1698 
1699 	*seq_size = idx;
1700 }
1701 
1702 static void cc_set_gctr_desc(struct aead_request *req, struct cc_hw_desc desc[],
1703 			     unsigned int *seq_size)
1704 {
1705 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1706 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1707 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1708 	unsigned int idx = *seq_size;
1709 
1710 	/* load key to AES*/
1711 	hw_desc_init(&desc[idx]);
1712 	set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
1713 	set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1714 	set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
1715 		     ctx->enc_keylen, NS_BIT);
1716 	set_key_size_aes(&desc[idx], ctx->enc_keylen);
1717 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1718 	set_flow_mode(&desc[idx], S_DIN_to_AES);
1719 	idx++;
1720 
1721 	if (req_ctx->cryptlen && !req_ctx->plaintext_authenticate_only) {
1722 		/* load AES/CTR initial CTR value inc by 2*/
1723 		hw_desc_init(&desc[idx]);
1724 		set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
1725 		set_key_size_aes(&desc[idx], ctx->enc_keylen);
1726 		set_din_type(&desc[idx], DMA_DLLI,
1727 			     req_ctx->gcm_iv_inc2_dma_addr, AES_BLOCK_SIZE,
1728 			     NS_BIT);
1729 		set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1730 		set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1731 		set_flow_mode(&desc[idx], S_DIN_to_AES);
1732 		idx++;
1733 	}
1734 
1735 	*seq_size = idx;
1736 }
1737 
1738 static void cc_proc_gcm_result(struct aead_request *req,
1739 			       struct cc_hw_desc desc[],
1740 			       unsigned int *seq_size)
1741 {
1742 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1743 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1744 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1745 	dma_addr_t mac_result;
1746 	unsigned int idx = *seq_size;
1747 
1748 	if (req_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
1749 		mac_result = req_ctx->mac_buf_dma_addr;
1750 	} else { /* Encrypt */
1751 		mac_result = req_ctx->icv_dma_addr;
1752 	}
1753 
1754 	/* process(ghash) gcm_block_len */
1755 	hw_desc_init(&desc[idx]);
1756 	set_din_type(&desc[idx], DMA_DLLI, req_ctx->gcm_block_len_dma_addr,
1757 		     AES_BLOCK_SIZE, NS_BIT);
1758 	set_flow_mode(&desc[idx], DIN_HASH);
1759 	idx++;
1760 
1761 	/* Store GHASH state after GHASH(Associated Data + Cipher +LenBlock) */
1762 	hw_desc_init(&desc[idx]);
1763 	set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
1764 	set_din_no_dma(&desc[idx], 0, 0xfffff0);
1765 	set_dout_dlli(&desc[idx], req_ctx->mac_buf_dma_addr, AES_BLOCK_SIZE,
1766 		      NS_BIT, 0);
1767 	set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
1768 	set_flow_mode(&desc[idx], S_HASH_to_DOUT);
1769 	set_aes_not_hash_mode(&desc[idx]);
1770 
1771 	idx++;
1772 
1773 	/* load AES/CTR initial CTR value inc by 1*/
1774 	hw_desc_init(&desc[idx]);
1775 	set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
1776 	set_key_size_aes(&desc[idx], ctx->enc_keylen);
1777 	set_din_type(&desc[idx], DMA_DLLI, req_ctx->gcm_iv_inc1_dma_addr,
1778 		     AES_BLOCK_SIZE, NS_BIT);
1779 	set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1780 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1781 	set_flow_mode(&desc[idx], S_DIN_to_AES);
1782 	idx++;
1783 
1784 	/* Memory Barrier */
1785 	hw_desc_init(&desc[idx]);
1786 	set_din_no_dma(&desc[idx], 0, 0xfffff0);
1787 	set_dout_no_dma(&desc[idx], 0, 0, 1);
1788 	idx++;
1789 
1790 	/* process GCTR on stored GHASH and store MAC in mac_state*/
1791 	hw_desc_init(&desc[idx]);
1792 	set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
1793 	set_din_type(&desc[idx], DMA_DLLI, req_ctx->mac_buf_dma_addr,
1794 		     AES_BLOCK_SIZE, NS_BIT);
1795 	set_dout_dlli(&desc[idx], mac_result, ctx->authsize, NS_BIT, 1);
1796 	set_queue_last_ind(ctx->drvdata, &desc[idx]);
1797 	set_flow_mode(&desc[idx], DIN_AES_DOUT);
1798 	idx++;
1799 
1800 	*seq_size = idx;
1801 }
1802 
1803 static int cc_gcm(struct aead_request *req, struct cc_hw_desc desc[],
1804 		  unsigned int *seq_size)
1805 {
1806 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1807 	unsigned int cipher_flow_mode;
1808 
1809 	if (req_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
1810 		cipher_flow_mode = AES_and_HASH;
1811 	} else { /* Encrypt */
1812 		cipher_flow_mode = AES_to_HASH_and_DOUT;
1813 	}
1814 
1815 	//in RFC4543 no data to encrypt. just copy data from src to dest.
1816 	if (req_ctx->plaintext_authenticate_only) {
1817 		cc_proc_cipher_desc(req, BYPASS, desc, seq_size);
1818 		cc_set_ghash_desc(req, desc, seq_size);
1819 		/* process(ghash) assoc data */
1820 		cc_set_assoc_desc(req, DIN_HASH, desc, seq_size);
1821 		cc_set_gctr_desc(req, desc, seq_size);
1822 		cc_proc_gcm_result(req, desc, seq_size);
1823 		return 0;
1824 	}
1825 
1826 	// for gcm and rfc4106.
1827 	cc_set_ghash_desc(req, desc, seq_size);
1828 	/* process(ghash) assoc data */
1829 	if (req_ctx->assoclen > 0)
1830 		cc_set_assoc_desc(req, DIN_HASH, desc, seq_size);
1831 	cc_set_gctr_desc(req, desc, seq_size);
1832 	/* process(gctr+ghash) */
1833 	if (req_ctx->cryptlen)
1834 		cc_proc_cipher_desc(req, cipher_flow_mode, desc, seq_size);
1835 	cc_proc_gcm_result(req, desc, seq_size);
1836 
1837 	return 0;
1838 }
1839 
1840 static int config_gcm_context(struct aead_request *req)
1841 {
1842 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1843 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1844 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1845 	struct device *dev = drvdata_to_dev(ctx->drvdata);
1846 
1847 	unsigned int cryptlen = (req_ctx->gen_ctx.op_type ==
1848 				 DRV_CRYPTO_DIRECTION_ENCRYPT) ?
1849 				req->cryptlen :
1850 				(req->cryptlen - ctx->authsize);
1851 	__be32 counter = cpu_to_be32(2);
1852 
1853 	dev_dbg(dev, "%s() cryptlen = %d, req_ctx->assoclen = %d ctx->authsize = %d\n",
1854 		__func__, cryptlen, req_ctx->assoclen, ctx->authsize);
1855 
1856 	memset(req_ctx->hkey, 0, AES_BLOCK_SIZE);
1857 
1858 	memset(req_ctx->mac_buf, 0, AES_BLOCK_SIZE);
1859 
1860 	memcpy(req->iv + 12, &counter, 4);
1861 	memcpy(req_ctx->gcm_iv_inc2, req->iv, 16);
1862 
1863 	counter = cpu_to_be32(1);
1864 	memcpy(req->iv + 12, &counter, 4);
1865 	memcpy(req_ctx->gcm_iv_inc1, req->iv, 16);
1866 
1867 	if (!req_ctx->plaintext_authenticate_only) {
1868 		__be64 temp64;
1869 
1870 		temp64 = cpu_to_be64(req_ctx->assoclen * 8);
1871 		memcpy(&req_ctx->gcm_len_block.len_a, &temp64, sizeof(temp64));
1872 		temp64 = cpu_to_be64(cryptlen * 8);
1873 		memcpy(&req_ctx->gcm_len_block.len_c, &temp64, 8);
1874 	} else {
1875 		/* rfc4543=>  all data(AAD,IV,Plain) are considered additional
1876 		 * data that is nothing is encrypted.
1877 		 */
1878 		__be64 temp64;
1879 
1880 		temp64 = cpu_to_be64((req_ctx->assoclen +
1881 				      GCM_BLOCK_RFC4_IV_SIZE + cryptlen) * 8);
1882 		memcpy(&req_ctx->gcm_len_block.len_a, &temp64, sizeof(temp64));
1883 		temp64 = 0;
1884 		memcpy(&req_ctx->gcm_len_block.len_c, &temp64, 8);
1885 	}
1886 
1887 	return 0;
1888 }
1889 
1890 static void cc_proc_rfc4_gcm(struct aead_request *req)
1891 {
1892 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1893 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1894 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
1895 
1896 	memcpy(areq_ctx->ctr_iv + GCM_BLOCK_RFC4_NONCE_OFFSET,
1897 	       ctx->ctr_nonce, GCM_BLOCK_RFC4_NONCE_SIZE);
1898 	memcpy(areq_ctx->ctr_iv + GCM_BLOCK_RFC4_IV_OFFSET, req->iv,
1899 	       GCM_BLOCK_RFC4_IV_SIZE);
1900 	req->iv = areq_ctx->ctr_iv;
1901 	areq_ctx->assoclen -= GCM_BLOCK_RFC4_IV_SIZE;
1902 }
1903 
1904 static int cc_proc_aead(struct aead_request *req,
1905 			enum drv_crypto_direction direct)
1906 {
1907 	int rc = 0;
1908 	int seq_len = 0;
1909 	struct cc_hw_desc desc[MAX_AEAD_PROCESS_SEQ];
1910 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1911 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1912 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
1913 	struct device *dev = drvdata_to_dev(ctx->drvdata);
1914 	struct cc_crypto_req cc_req = {};
1915 
1916 	dev_dbg(dev, "%s context=%p req=%p iv=%p src=%p src_ofs=%d dst=%p dst_ofs=%d cryptolen=%d\n",
1917 		((direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ? "Enc" : "Dec"),
1918 		ctx, req, req->iv, sg_virt(req->src), req->src->offset,
1919 		sg_virt(req->dst), req->dst->offset, req->cryptlen);
1920 
1921 	/* STAT_PHASE_0: Init and sanity checks */
1922 
1923 	/* Check data length according to mode */
1924 	if (validate_data_size(ctx, direct, req)) {
1925 		dev_err(dev, "Unsupported crypt/assoc len %d/%d.\n",
1926 			req->cryptlen, areq_ctx->assoclen);
1927 		crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_BLOCK_LEN);
1928 		return -EINVAL;
1929 	}
1930 
1931 	/* Setup request structure */
1932 	cc_req.user_cb = (void *)cc_aead_complete;
1933 	cc_req.user_arg = (void *)req;
1934 
1935 	/* Setup request context */
1936 	areq_ctx->gen_ctx.op_type = direct;
1937 	areq_ctx->req_authsize = ctx->authsize;
1938 	areq_ctx->cipher_mode = ctx->cipher_mode;
1939 
1940 	/* STAT_PHASE_1: Map buffers */
1941 
1942 	if (ctx->cipher_mode == DRV_CIPHER_CTR) {
1943 		/* Build CTR IV - Copy nonce from last 4 bytes in
1944 		 * CTR key to first 4 bytes in CTR IV
1945 		 */
1946 		memcpy(areq_ctx->ctr_iv, ctx->ctr_nonce,
1947 		       CTR_RFC3686_NONCE_SIZE);
1948 		memcpy(areq_ctx->ctr_iv + CTR_RFC3686_NONCE_SIZE, req->iv,
1949 		       CTR_RFC3686_IV_SIZE);
1950 		/* Initialize counter portion of counter block */
1951 		*(__be32 *)(areq_ctx->ctr_iv + CTR_RFC3686_NONCE_SIZE +
1952 			    CTR_RFC3686_IV_SIZE) = cpu_to_be32(1);
1953 
1954 		/* Replace with counter iv */
1955 		req->iv = areq_ctx->ctr_iv;
1956 		areq_ctx->hw_iv_size = CTR_RFC3686_BLOCK_SIZE;
1957 	} else if ((ctx->cipher_mode == DRV_CIPHER_CCM) ||
1958 		   (ctx->cipher_mode == DRV_CIPHER_GCTR)) {
1959 		areq_ctx->hw_iv_size = AES_BLOCK_SIZE;
1960 		if (areq_ctx->ctr_iv != req->iv) {
1961 			memcpy(areq_ctx->ctr_iv, req->iv,
1962 			       crypto_aead_ivsize(tfm));
1963 			req->iv = areq_ctx->ctr_iv;
1964 		}
1965 	}  else {
1966 		areq_ctx->hw_iv_size = crypto_aead_ivsize(tfm);
1967 	}
1968 
1969 	if (ctx->cipher_mode == DRV_CIPHER_CCM) {
1970 		rc = config_ccm_adata(req);
1971 		if (rc) {
1972 			dev_dbg(dev, "config_ccm_adata() returned with a failure %d!",
1973 				rc);
1974 			goto exit;
1975 		}
1976 	} else {
1977 		areq_ctx->ccm_hdr_size = ccm_header_size_null;
1978 	}
1979 
1980 	if (ctx->cipher_mode == DRV_CIPHER_GCTR) {
1981 		rc = config_gcm_context(req);
1982 		if (rc) {
1983 			dev_dbg(dev, "config_gcm_context() returned with a failure %d!",
1984 				rc);
1985 			goto exit;
1986 		}
1987 	}
1988 
1989 	rc = cc_map_aead_request(ctx->drvdata, req);
1990 	if (rc) {
1991 		dev_err(dev, "map_request() failed\n");
1992 		goto exit;
1993 	}
1994 
1995 	/* STAT_PHASE_2: Create sequence */
1996 
1997 	/* Load MLLI tables to SRAM if necessary */
1998 	cc_mlli_to_sram(req, desc, &seq_len);
1999 
2000 	/*TODO: move seq len by reference */
2001 	switch (ctx->auth_mode) {
2002 	case DRV_HASH_SHA1:
2003 	case DRV_HASH_SHA256:
2004 		cc_hmac_authenc(req, desc, &seq_len);
2005 		break;
2006 	case DRV_HASH_XCBC_MAC:
2007 		cc_xcbc_authenc(req, desc, &seq_len);
2008 		break;
2009 	case DRV_HASH_NULL:
2010 		if (ctx->cipher_mode == DRV_CIPHER_CCM)
2011 			cc_ccm(req, desc, &seq_len);
2012 		if (ctx->cipher_mode == DRV_CIPHER_GCTR)
2013 			cc_gcm(req, desc, &seq_len);
2014 		break;
2015 	default:
2016 		dev_err(dev, "Unsupported authenc (%d)\n", ctx->auth_mode);
2017 		cc_unmap_aead_request(dev, req);
2018 		rc = -ENOTSUPP;
2019 		goto exit;
2020 	}
2021 
2022 	/* STAT_PHASE_3: Lock HW and push sequence */
2023 
2024 	rc = cc_send_request(ctx->drvdata, &cc_req, desc, seq_len, &req->base);
2025 
2026 	if (rc != -EINPROGRESS && rc != -EBUSY) {
2027 		dev_err(dev, "send_request() failed (rc=%d)\n", rc);
2028 		cc_unmap_aead_request(dev, req);
2029 	}
2030 
2031 exit:
2032 	return rc;
2033 }
2034 
2035 static int cc_aead_encrypt(struct aead_request *req)
2036 {
2037 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2038 	int rc;
2039 
2040 	memset(areq_ctx, 0, sizeof(*areq_ctx));
2041 
2042 	/* No generated IV required */
2043 	areq_ctx->backup_iv = req->iv;
2044 	areq_ctx->assoclen = req->assoclen;
2045 	areq_ctx->is_gcm4543 = false;
2046 
2047 	areq_ctx->plaintext_authenticate_only = false;
2048 
2049 	rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
2050 	if (rc != -EINPROGRESS && rc != -EBUSY)
2051 		req->iv = areq_ctx->backup_iv;
2052 
2053 	return rc;
2054 }
2055 
2056 static int cc_rfc4309_ccm_encrypt(struct aead_request *req)
2057 {
2058 	/* Very similar to cc_aead_encrypt() above. */
2059 
2060 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2061 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2062 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2063 	struct device *dev = drvdata_to_dev(ctx->drvdata);
2064 	int rc = -EINVAL;
2065 
2066 	if (!valid_assoclen(req)) {
2067 		dev_err(dev, "invalid Assoclen:%u\n", req->assoclen);
2068 		goto out;
2069 	}
2070 
2071 	memset(areq_ctx, 0, sizeof(*areq_ctx));
2072 
2073 	/* No generated IV required */
2074 	areq_ctx->backup_iv = req->iv;
2075 	areq_ctx->assoclen = req->assoclen;
2076 	areq_ctx->is_gcm4543 = true;
2077 
2078 	cc_proc_rfc4309_ccm(req);
2079 
2080 	rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
2081 	if (rc != -EINPROGRESS && rc != -EBUSY)
2082 		req->iv = areq_ctx->backup_iv;
2083 out:
2084 	return rc;
2085 }
2086 
2087 static int cc_aead_decrypt(struct aead_request *req)
2088 {
2089 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2090 	int rc;
2091 
2092 	memset(areq_ctx, 0, sizeof(*areq_ctx));
2093 
2094 	/* No generated IV required */
2095 	areq_ctx->backup_iv = req->iv;
2096 	areq_ctx->assoclen = req->assoclen;
2097 	areq_ctx->is_gcm4543 = false;
2098 
2099 	areq_ctx->plaintext_authenticate_only = false;
2100 
2101 	rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
2102 	if (rc != -EINPROGRESS && rc != -EBUSY)
2103 		req->iv = areq_ctx->backup_iv;
2104 
2105 	return rc;
2106 }
2107 
2108 static int cc_rfc4309_ccm_decrypt(struct aead_request *req)
2109 {
2110 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2111 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2112 	struct device *dev = drvdata_to_dev(ctx->drvdata);
2113 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2114 	int rc = -EINVAL;
2115 
2116 	if (!valid_assoclen(req)) {
2117 		dev_err(dev, "invalid Assoclen:%u\n", req->assoclen);
2118 		goto out;
2119 	}
2120 
2121 	memset(areq_ctx, 0, sizeof(*areq_ctx));
2122 
2123 	/* No generated IV required */
2124 	areq_ctx->backup_iv = req->iv;
2125 	areq_ctx->assoclen = req->assoclen;
2126 
2127 	areq_ctx->is_gcm4543 = true;
2128 	cc_proc_rfc4309_ccm(req);
2129 
2130 	rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
2131 	if (rc != -EINPROGRESS && rc != -EBUSY)
2132 		req->iv = areq_ctx->backup_iv;
2133 
2134 out:
2135 	return rc;
2136 }
2137 
2138 static int cc_rfc4106_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
2139 				 unsigned int keylen)
2140 {
2141 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2142 	struct device *dev = drvdata_to_dev(ctx->drvdata);
2143 
2144 	dev_dbg(dev, "%s()  keylen %d, key %p\n", __func__, keylen, key);
2145 
2146 	if (keylen < 4)
2147 		return -EINVAL;
2148 
2149 	keylen -= 4;
2150 	memcpy(ctx->ctr_nonce, key + keylen, 4);
2151 
2152 	return cc_aead_setkey(tfm, key, keylen);
2153 }
2154 
2155 static int cc_rfc4543_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
2156 				 unsigned int keylen)
2157 {
2158 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2159 	struct device *dev = drvdata_to_dev(ctx->drvdata);
2160 
2161 	dev_dbg(dev, "%s()  keylen %d, key %p\n", __func__, keylen, key);
2162 
2163 	if (keylen < 4)
2164 		return -EINVAL;
2165 
2166 	keylen -= 4;
2167 	memcpy(ctx->ctr_nonce, key + keylen, 4);
2168 
2169 	return cc_aead_setkey(tfm, key, keylen);
2170 }
2171 
2172 static int cc_gcm_setauthsize(struct crypto_aead *authenc,
2173 			      unsigned int authsize)
2174 {
2175 	switch (authsize) {
2176 	case 4:
2177 	case 8:
2178 	case 12:
2179 	case 13:
2180 	case 14:
2181 	case 15:
2182 	case 16:
2183 		break;
2184 	default:
2185 		return -EINVAL;
2186 	}
2187 
2188 	return cc_aead_setauthsize(authenc, authsize);
2189 }
2190 
2191 static int cc_rfc4106_gcm_setauthsize(struct crypto_aead *authenc,
2192 				      unsigned int authsize)
2193 {
2194 	struct cc_aead_ctx *ctx = crypto_aead_ctx(authenc);
2195 	struct device *dev = drvdata_to_dev(ctx->drvdata);
2196 
2197 	dev_dbg(dev, "authsize %d\n", authsize);
2198 
2199 	switch (authsize) {
2200 	case 8:
2201 	case 12:
2202 	case 16:
2203 		break;
2204 	default:
2205 		return -EINVAL;
2206 	}
2207 
2208 	return cc_aead_setauthsize(authenc, authsize);
2209 }
2210 
2211 static int cc_rfc4543_gcm_setauthsize(struct crypto_aead *authenc,
2212 				      unsigned int authsize)
2213 {
2214 	struct cc_aead_ctx *ctx = crypto_aead_ctx(authenc);
2215 	struct device *dev = drvdata_to_dev(ctx->drvdata);
2216 
2217 	dev_dbg(dev, "authsize %d\n", authsize);
2218 
2219 	if (authsize != 16)
2220 		return -EINVAL;
2221 
2222 	return cc_aead_setauthsize(authenc, authsize);
2223 }
2224 
2225 static int cc_rfc4106_gcm_encrypt(struct aead_request *req)
2226 {
2227 	/* Very similar to cc_aead_encrypt() above. */
2228 
2229 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2230 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2231 	struct device *dev = drvdata_to_dev(ctx->drvdata);
2232 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2233 	int rc = -EINVAL;
2234 
2235 	if (!valid_assoclen(req)) {
2236 		dev_err(dev, "invalid Assoclen:%u\n", req->assoclen);
2237 		goto out;
2238 	}
2239 
2240 	memset(areq_ctx, 0, sizeof(*areq_ctx));
2241 
2242 	/* No generated IV required */
2243 	areq_ctx->backup_iv = req->iv;
2244 	areq_ctx->assoclen = req->assoclen;
2245 	areq_ctx->plaintext_authenticate_only = false;
2246 
2247 	cc_proc_rfc4_gcm(req);
2248 	areq_ctx->is_gcm4543 = true;
2249 
2250 	rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
2251 	if (rc != -EINPROGRESS && rc != -EBUSY)
2252 		req->iv = areq_ctx->backup_iv;
2253 out:
2254 	return rc;
2255 }
2256 
2257 static int cc_rfc4543_gcm_encrypt(struct aead_request *req)
2258 {
2259 	/* Very similar to cc_aead_encrypt() above. */
2260 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2261 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2262 	struct device *dev = drvdata_to_dev(ctx->drvdata);
2263 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2264 	int rc = -EINVAL;
2265 
2266 	if (!valid_assoclen(req)) {
2267 		dev_err(dev, "invalid Assoclen:%u\n", req->assoclen);
2268 		goto out;
2269 	}
2270 
2271 	memset(areq_ctx, 0, sizeof(*areq_ctx));
2272 
2273 	//plaintext is not encryped with rfc4543
2274 	areq_ctx->plaintext_authenticate_only = true;
2275 
2276 	/* No generated IV required */
2277 	areq_ctx->backup_iv = req->iv;
2278 	areq_ctx->assoclen = req->assoclen;
2279 
2280 	cc_proc_rfc4_gcm(req);
2281 	areq_ctx->is_gcm4543 = true;
2282 
2283 	rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
2284 	if (rc != -EINPROGRESS && rc != -EBUSY)
2285 		req->iv = areq_ctx->backup_iv;
2286 out:
2287 	return rc;
2288 }
2289 
2290 static int cc_rfc4106_gcm_decrypt(struct aead_request *req)
2291 {
2292 	/* Very similar to cc_aead_decrypt() above. */
2293 
2294 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2295 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2296 	struct device *dev = drvdata_to_dev(ctx->drvdata);
2297 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2298 	int rc = -EINVAL;
2299 
2300 	if (!valid_assoclen(req)) {
2301 		dev_err(dev, "invalid Assoclen:%u\n", req->assoclen);
2302 		goto out;
2303 	}
2304 
2305 	memset(areq_ctx, 0, sizeof(*areq_ctx));
2306 
2307 	/* No generated IV required */
2308 	areq_ctx->backup_iv = req->iv;
2309 	areq_ctx->assoclen = req->assoclen;
2310 	areq_ctx->plaintext_authenticate_only = false;
2311 
2312 	cc_proc_rfc4_gcm(req);
2313 	areq_ctx->is_gcm4543 = true;
2314 
2315 	rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
2316 	if (rc != -EINPROGRESS && rc != -EBUSY)
2317 		req->iv = areq_ctx->backup_iv;
2318 out:
2319 	return rc;
2320 }
2321 
2322 static int cc_rfc4543_gcm_decrypt(struct aead_request *req)
2323 {
2324 	/* Very similar to cc_aead_decrypt() above. */
2325 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2326 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2327 	struct device *dev = drvdata_to_dev(ctx->drvdata);
2328 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2329 	int rc = -EINVAL;
2330 
2331 	if (!valid_assoclen(req)) {
2332 		dev_err(dev, "invalid Assoclen:%u\n", req->assoclen);
2333 		goto out;
2334 	}
2335 
2336 	memset(areq_ctx, 0, sizeof(*areq_ctx));
2337 
2338 	//plaintext is not decryped with rfc4543
2339 	areq_ctx->plaintext_authenticate_only = true;
2340 
2341 	/* No generated IV required */
2342 	areq_ctx->backup_iv = req->iv;
2343 	areq_ctx->assoclen = req->assoclen;
2344 
2345 	cc_proc_rfc4_gcm(req);
2346 	areq_ctx->is_gcm4543 = true;
2347 
2348 	rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
2349 	if (rc != -EINPROGRESS && rc != -EBUSY)
2350 		req->iv = areq_ctx->backup_iv;
2351 out:
2352 	return rc;
2353 }
2354 
2355 /* aead alg */
2356 static struct cc_alg_template aead_algs[] = {
2357 	{
2358 		.name = "authenc(hmac(sha1),cbc(aes))",
2359 		.driver_name = "authenc-hmac-sha1-cbc-aes-ccree",
2360 		.blocksize = AES_BLOCK_SIZE,
2361 		.template_aead = {
2362 			.setkey = cc_aead_setkey,
2363 			.setauthsize = cc_aead_setauthsize,
2364 			.encrypt = cc_aead_encrypt,
2365 			.decrypt = cc_aead_decrypt,
2366 			.init = cc_aead_init,
2367 			.exit = cc_aead_exit,
2368 			.ivsize = AES_BLOCK_SIZE,
2369 			.maxauthsize = SHA1_DIGEST_SIZE,
2370 		},
2371 		.cipher_mode = DRV_CIPHER_CBC,
2372 		.flow_mode = S_DIN_to_AES,
2373 		.auth_mode = DRV_HASH_SHA1,
2374 		.min_hw_rev = CC_HW_REV_630,
2375 		.std_body = CC_STD_NIST,
2376 	},
2377 	{
2378 		.name = "authenc(hmac(sha1),cbc(des3_ede))",
2379 		.driver_name = "authenc-hmac-sha1-cbc-des3-ccree",
2380 		.blocksize = DES3_EDE_BLOCK_SIZE,
2381 		.template_aead = {
2382 			.setkey = cc_des3_aead_setkey,
2383 			.setauthsize = cc_aead_setauthsize,
2384 			.encrypt = cc_aead_encrypt,
2385 			.decrypt = cc_aead_decrypt,
2386 			.init = cc_aead_init,
2387 			.exit = cc_aead_exit,
2388 			.ivsize = DES3_EDE_BLOCK_SIZE,
2389 			.maxauthsize = SHA1_DIGEST_SIZE,
2390 		},
2391 		.cipher_mode = DRV_CIPHER_CBC,
2392 		.flow_mode = S_DIN_to_DES,
2393 		.auth_mode = DRV_HASH_SHA1,
2394 		.min_hw_rev = CC_HW_REV_630,
2395 		.std_body = CC_STD_NIST,
2396 	},
2397 	{
2398 		.name = "authenc(hmac(sha256),cbc(aes))",
2399 		.driver_name = "authenc-hmac-sha256-cbc-aes-ccree",
2400 		.blocksize = AES_BLOCK_SIZE,
2401 		.template_aead = {
2402 			.setkey = cc_aead_setkey,
2403 			.setauthsize = cc_aead_setauthsize,
2404 			.encrypt = cc_aead_encrypt,
2405 			.decrypt = cc_aead_decrypt,
2406 			.init = cc_aead_init,
2407 			.exit = cc_aead_exit,
2408 			.ivsize = AES_BLOCK_SIZE,
2409 			.maxauthsize = SHA256_DIGEST_SIZE,
2410 		},
2411 		.cipher_mode = DRV_CIPHER_CBC,
2412 		.flow_mode = S_DIN_to_AES,
2413 		.auth_mode = DRV_HASH_SHA256,
2414 		.min_hw_rev = CC_HW_REV_630,
2415 		.std_body = CC_STD_NIST,
2416 	},
2417 	{
2418 		.name = "authenc(hmac(sha256),cbc(des3_ede))",
2419 		.driver_name = "authenc-hmac-sha256-cbc-des3-ccree",
2420 		.blocksize = DES3_EDE_BLOCK_SIZE,
2421 		.template_aead = {
2422 			.setkey = cc_des3_aead_setkey,
2423 			.setauthsize = cc_aead_setauthsize,
2424 			.encrypt = cc_aead_encrypt,
2425 			.decrypt = cc_aead_decrypt,
2426 			.init = cc_aead_init,
2427 			.exit = cc_aead_exit,
2428 			.ivsize = DES3_EDE_BLOCK_SIZE,
2429 			.maxauthsize = SHA256_DIGEST_SIZE,
2430 		},
2431 		.cipher_mode = DRV_CIPHER_CBC,
2432 		.flow_mode = S_DIN_to_DES,
2433 		.auth_mode = DRV_HASH_SHA256,
2434 		.min_hw_rev = CC_HW_REV_630,
2435 		.std_body = CC_STD_NIST,
2436 	},
2437 	{
2438 		.name = "authenc(xcbc(aes),cbc(aes))",
2439 		.driver_name = "authenc-xcbc-aes-cbc-aes-ccree",
2440 		.blocksize = AES_BLOCK_SIZE,
2441 		.template_aead = {
2442 			.setkey = cc_aead_setkey,
2443 			.setauthsize = cc_aead_setauthsize,
2444 			.encrypt = cc_aead_encrypt,
2445 			.decrypt = cc_aead_decrypt,
2446 			.init = cc_aead_init,
2447 			.exit = cc_aead_exit,
2448 			.ivsize = AES_BLOCK_SIZE,
2449 			.maxauthsize = AES_BLOCK_SIZE,
2450 		},
2451 		.cipher_mode = DRV_CIPHER_CBC,
2452 		.flow_mode = S_DIN_to_AES,
2453 		.auth_mode = DRV_HASH_XCBC_MAC,
2454 		.min_hw_rev = CC_HW_REV_630,
2455 		.std_body = CC_STD_NIST,
2456 	},
2457 	{
2458 		.name = "authenc(hmac(sha1),rfc3686(ctr(aes)))",
2459 		.driver_name = "authenc-hmac-sha1-rfc3686-ctr-aes-ccree",
2460 		.blocksize = 1,
2461 		.template_aead = {
2462 			.setkey = cc_aead_setkey,
2463 			.setauthsize = cc_aead_setauthsize,
2464 			.encrypt = cc_aead_encrypt,
2465 			.decrypt = cc_aead_decrypt,
2466 			.init = cc_aead_init,
2467 			.exit = cc_aead_exit,
2468 			.ivsize = CTR_RFC3686_IV_SIZE,
2469 			.maxauthsize = SHA1_DIGEST_SIZE,
2470 		},
2471 		.cipher_mode = DRV_CIPHER_CTR,
2472 		.flow_mode = S_DIN_to_AES,
2473 		.auth_mode = DRV_HASH_SHA1,
2474 		.min_hw_rev = CC_HW_REV_630,
2475 		.std_body = CC_STD_NIST,
2476 	},
2477 	{
2478 		.name = "authenc(hmac(sha256),rfc3686(ctr(aes)))",
2479 		.driver_name = "authenc-hmac-sha256-rfc3686-ctr-aes-ccree",
2480 		.blocksize = 1,
2481 		.template_aead = {
2482 			.setkey = cc_aead_setkey,
2483 			.setauthsize = cc_aead_setauthsize,
2484 			.encrypt = cc_aead_encrypt,
2485 			.decrypt = cc_aead_decrypt,
2486 			.init = cc_aead_init,
2487 			.exit = cc_aead_exit,
2488 			.ivsize = CTR_RFC3686_IV_SIZE,
2489 			.maxauthsize = SHA256_DIGEST_SIZE,
2490 		},
2491 		.cipher_mode = DRV_CIPHER_CTR,
2492 		.flow_mode = S_DIN_to_AES,
2493 		.auth_mode = DRV_HASH_SHA256,
2494 		.min_hw_rev = CC_HW_REV_630,
2495 		.std_body = CC_STD_NIST,
2496 	},
2497 	{
2498 		.name = "authenc(xcbc(aes),rfc3686(ctr(aes)))",
2499 		.driver_name = "authenc-xcbc-aes-rfc3686-ctr-aes-ccree",
2500 		.blocksize = 1,
2501 		.template_aead = {
2502 			.setkey = cc_aead_setkey,
2503 			.setauthsize = cc_aead_setauthsize,
2504 			.encrypt = cc_aead_encrypt,
2505 			.decrypt = cc_aead_decrypt,
2506 			.init = cc_aead_init,
2507 			.exit = cc_aead_exit,
2508 			.ivsize = CTR_RFC3686_IV_SIZE,
2509 			.maxauthsize = AES_BLOCK_SIZE,
2510 		},
2511 		.cipher_mode = DRV_CIPHER_CTR,
2512 		.flow_mode = S_DIN_to_AES,
2513 		.auth_mode = DRV_HASH_XCBC_MAC,
2514 		.min_hw_rev = CC_HW_REV_630,
2515 		.std_body = CC_STD_NIST,
2516 	},
2517 	{
2518 		.name = "ccm(aes)",
2519 		.driver_name = "ccm-aes-ccree",
2520 		.blocksize = 1,
2521 		.template_aead = {
2522 			.setkey = cc_aead_setkey,
2523 			.setauthsize = cc_ccm_setauthsize,
2524 			.encrypt = cc_aead_encrypt,
2525 			.decrypt = cc_aead_decrypt,
2526 			.init = cc_aead_init,
2527 			.exit = cc_aead_exit,
2528 			.ivsize = AES_BLOCK_SIZE,
2529 			.maxauthsize = AES_BLOCK_SIZE,
2530 		},
2531 		.cipher_mode = DRV_CIPHER_CCM,
2532 		.flow_mode = S_DIN_to_AES,
2533 		.auth_mode = DRV_HASH_NULL,
2534 		.min_hw_rev = CC_HW_REV_630,
2535 		.std_body = CC_STD_NIST,
2536 	},
2537 	{
2538 		.name = "rfc4309(ccm(aes))",
2539 		.driver_name = "rfc4309-ccm-aes-ccree",
2540 		.blocksize = 1,
2541 		.template_aead = {
2542 			.setkey = cc_rfc4309_ccm_setkey,
2543 			.setauthsize = cc_rfc4309_ccm_setauthsize,
2544 			.encrypt = cc_rfc4309_ccm_encrypt,
2545 			.decrypt = cc_rfc4309_ccm_decrypt,
2546 			.init = cc_aead_init,
2547 			.exit = cc_aead_exit,
2548 			.ivsize = CCM_BLOCK_IV_SIZE,
2549 			.maxauthsize = AES_BLOCK_SIZE,
2550 		},
2551 		.cipher_mode = DRV_CIPHER_CCM,
2552 		.flow_mode = S_DIN_to_AES,
2553 		.auth_mode = DRV_HASH_NULL,
2554 		.min_hw_rev = CC_HW_REV_630,
2555 		.std_body = CC_STD_NIST,
2556 	},
2557 	{
2558 		.name = "gcm(aes)",
2559 		.driver_name = "gcm-aes-ccree",
2560 		.blocksize = 1,
2561 		.template_aead = {
2562 			.setkey = cc_aead_setkey,
2563 			.setauthsize = cc_gcm_setauthsize,
2564 			.encrypt = cc_aead_encrypt,
2565 			.decrypt = cc_aead_decrypt,
2566 			.init = cc_aead_init,
2567 			.exit = cc_aead_exit,
2568 			.ivsize = 12,
2569 			.maxauthsize = AES_BLOCK_SIZE,
2570 		},
2571 		.cipher_mode = DRV_CIPHER_GCTR,
2572 		.flow_mode = S_DIN_to_AES,
2573 		.auth_mode = DRV_HASH_NULL,
2574 		.min_hw_rev = CC_HW_REV_630,
2575 		.std_body = CC_STD_NIST,
2576 	},
2577 	{
2578 		.name = "rfc4106(gcm(aes))",
2579 		.driver_name = "rfc4106-gcm-aes-ccree",
2580 		.blocksize = 1,
2581 		.template_aead = {
2582 			.setkey = cc_rfc4106_gcm_setkey,
2583 			.setauthsize = cc_rfc4106_gcm_setauthsize,
2584 			.encrypt = cc_rfc4106_gcm_encrypt,
2585 			.decrypt = cc_rfc4106_gcm_decrypt,
2586 			.init = cc_aead_init,
2587 			.exit = cc_aead_exit,
2588 			.ivsize = GCM_BLOCK_RFC4_IV_SIZE,
2589 			.maxauthsize = AES_BLOCK_SIZE,
2590 		},
2591 		.cipher_mode = DRV_CIPHER_GCTR,
2592 		.flow_mode = S_DIN_to_AES,
2593 		.auth_mode = DRV_HASH_NULL,
2594 		.min_hw_rev = CC_HW_REV_630,
2595 		.std_body = CC_STD_NIST,
2596 	},
2597 	{
2598 		.name = "rfc4543(gcm(aes))",
2599 		.driver_name = "rfc4543-gcm-aes-ccree",
2600 		.blocksize = 1,
2601 		.template_aead = {
2602 			.setkey = cc_rfc4543_gcm_setkey,
2603 			.setauthsize = cc_rfc4543_gcm_setauthsize,
2604 			.encrypt = cc_rfc4543_gcm_encrypt,
2605 			.decrypt = cc_rfc4543_gcm_decrypt,
2606 			.init = cc_aead_init,
2607 			.exit = cc_aead_exit,
2608 			.ivsize = GCM_BLOCK_RFC4_IV_SIZE,
2609 			.maxauthsize = AES_BLOCK_SIZE,
2610 		},
2611 		.cipher_mode = DRV_CIPHER_GCTR,
2612 		.flow_mode = S_DIN_to_AES,
2613 		.auth_mode = DRV_HASH_NULL,
2614 		.min_hw_rev = CC_HW_REV_630,
2615 		.std_body = CC_STD_NIST,
2616 	},
2617 };
2618 
2619 static struct cc_crypto_alg *cc_create_aead_alg(struct cc_alg_template *tmpl,
2620 						struct device *dev)
2621 {
2622 	struct cc_crypto_alg *t_alg;
2623 	struct aead_alg *alg;
2624 
2625 	t_alg = kzalloc(sizeof(*t_alg), GFP_KERNEL);
2626 	if (!t_alg)
2627 		return ERR_PTR(-ENOMEM);
2628 
2629 	alg = &tmpl->template_aead;
2630 
2631 	snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
2632 	snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
2633 		 tmpl->driver_name);
2634 	alg->base.cra_module = THIS_MODULE;
2635 	alg->base.cra_priority = CC_CRA_PRIO;
2636 
2637 	alg->base.cra_ctxsize = sizeof(struct cc_aead_ctx);
2638 	alg->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
2639 	alg->init = cc_aead_init;
2640 	alg->exit = cc_aead_exit;
2641 
2642 	t_alg->aead_alg = *alg;
2643 
2644 	t_alg->cipher_mode = tmpl->cipher_mode;
2645 	t_alg->flow_mode = tmpl->flow_mode;
2646 	t_alg->auth_mode = tmpl->auth_mode;
2647 
2648 	return t_alg;
2649 }
2650 
2651 int cc_aead_free(struct cc_drvdata *drvdata)
2652 {
2653 	struct cc_crypto_alg *t_alg, *n;
2654 	struct cc_aead_handle *aead_handle =
2655 		(struct cc_aead_handle *)drvdata->aead_handle;
2656 
2657 	if (aead_handle) {
2658 		/* Remove registered algs */
2659 		list_for_each_entry_safe(t_alg, n, &aead_handle->aead_list,
2660 					 entry) {
2661 			crypto_unregister_aead(&t_alg->aead_alg);
2662 			list_del(&t_alg->entry);
2663 			kfree(t_alg);
2664 		}
2665 		kfree(aead_handle);
2666 		drvdata->aead_handle = NULL;
2667 	}
2668 
2669 	return 0;
2670 }
2671 
2672 int cc_aead_alloc(struct cc_drvdata *drvdata)
2673 {
2674 	struct cc_aead_handle *aead_handle;
2675 	struct cc_crypto_alg *t_alg;
2676 	int rc = -ENOMEM;
2677 	int alg;
2678 	struct device *dev = drvdata_to_dev(drvdata);
2679 
2680 	aead_handle = kmalloc(sizeof(*aead_handle), GFP_KERNEL);
2681 	if (!aead_handle) {
2682 		rc = -ENOMEM;
2683 		goto fail0;
2684 	}
2685 
2686 	INIT_LIST_HEAD(&aead_handle->aead_list);
2687 	drvdata->aead_handle = aead_handle;
2688 
2689 	aead_handle->sram_workspace_addr = cc_sram_alloc(drvdata,
2690 							 MAX_HMAC_DIGEST_SIZE);
2691 
2692 	if (aead_handle->sram_workspace_addr == NULL_SRAM_ADDR) {
2693 		dev_err(dev, "SRAM pool exhausted\n");
2694 		rc = -ENOMEM;
2695 		goto fail1;
2696 	}
2697 
2698 	/* Linux crypto */
2699 	for (alg = 0; alg < ARRAY_SIZE(aead_algs); alg++) {
2700 		if ((aead_algs[alg].min_hw_rev > drvdata->hw_rev) ||
2701 		    !(drvdata->std_bodies & aead_algs[alg].std_body))
2702 			continue;
2703 
2704 		t_alg = cc_create_aead_alg(&aead_algs[alg], dev);
2705 		if (IS_ERR(t_alg)) {
2706 			rc = PTR_ERR(t_alg);
2707 			dev_err(dev, "%s alg allocation failed\n",
2708 				aead_algs[alg].driver_name);
2709 			goto fail1;
2710 		}
2711 		t_alg->drvdata = drvdata;
2712 		rc = crypto_register_aead(&t_alg->aead_alg);
2713 		if (rc) {
2714 			dev_err(dev, "%s alg registration failed\n",
2715 				t_alg->aead_alg.base.cra_driver_name);
2716 			goto fail2;
2717 		} else {
2718 			list_add_tail(&t_alg->entry, &aead_handle->aead_list);
2719 			dev_dbg(dev, "Registered %s\n",
2720 				t_alg->aead_alg.base.cra_driver_name);
2721 		}
2722 	}
2723 
2724 	return 0;
2725 
2726 fail2:
2727 	kfree(t_alg);
2728 fail1:
2729 	cc_aead_free(drvdata);
2730 fail0:
2731 	return rc;
2732 }
2733