xref: /linux/drivers/crypto/ccree/cc_aead.c (revision 724ecd3c0eb7040d423b22332a60d097e2666820)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2012-2019 ARM Limited (or its affiliates). */
3 
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <crypto/algapi.h>
7 #include <crypto/internal/aead.h>
8 #include <crypto/authenc.h>
9 #include <crypto/des.h>
10 #include <linux/rtnetlink.h>
11 #include "cc_driver.h"
12 #include "cc_buffer_mgr.h"
13 #include "cc_aead.h"
14 #include "cc_request_mgr.h"
15 #include "cc_hash.h"
16 #include "cc_sram_mgr.h"
17 
18 #define template_aead	template_u.aead
19 
20 #define MAX_AEAD_SETKEY_SEQ 12
21 #define MAX_AEAD_PROCESS_SEQ 23
22 
23 #define MAX_HMAC_DIGEST_SIZE (SHA256_DIGEST_SIZE)
24 #define MAX_HMAC_BLOCK_SIZE (SHA256_BLOCK_SIZE)
25 
26 #define MAX_NONCE_SIZE CTR_RFC3686_NONCE_SIZE
27 
28 struct cc_aead_handle {
29 	cc_sram_addr_t sram_workspace_addr;
30 	struct list_head aead_list;
31 };
32 
33 struct cc_hmac_s {
34 	u8 *padded_authkey;
35 	u8 *ipad_opad; /* IPAD, OPAD*/
36 	dma_addr_t padded_authkey_dma_addr;
37 	dma_addr_t ipad_opad_dma_addr;
38 };
39 
40 struct cc_xcbc_s {
41 	u8 *xcbc_keys; /* K1,K2,K3 */
42 	dma_addr_t xcbc_keys_dma_addr;
43 };
44 
45 struct cc_aead_ctx {
46 	struct cc_drvdata *drvdata;
47 	u8 ctr_nonce[MAX_NONCE_SIZE]; /* used for ctr3686 iv and aes ccm */
48 	u8 *enckey;
49 	dma_addr_t enckey_dma_addr;
50 	union {
51 		struct cc_hmac_s hmac;
52 		struct cc_xcbc_s xcbc;
53 	} auth_state;
54 	unsigned int enc_keylen;
55 	unsigned int auth_keylen;
56 	unsigned int authsize; /* Actual (reduced?) size of the MAC/ICv */
57 	unsigned int hash_len;
58 	enum drv_cipher_mode cipher_mode;
59 	enum cc_flow_mode flow_mode;
60 	enum drv_hash_mode auth_mode;
61 };
62 
63 static inline bool valid_assoclen(struct aead_request *req)
64 {
65 	return ((req->assoclen == 16) || (req->assoclen == 20));
66 }
67 
68 static void cc_aead_exit(struct crypto_aead *tfm)
69 {
70 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
71 	struct device *dev = drvdata_to_dev(ctx->drvdata);
72 
73 	dev_dbg(dev, "Clearing context @%p for %s\n", crypto_aead_ctx(tfm),
74 		crypto_tfm_alg_name(&tfm->base));
75 
76 	/* Unmap enckey buffer */
77 	if (ctx->enckey) {
78 		dma_free_coherent(dev, AES_MAX_KEY_SIZE, ctx->enckey,
79 				  ctx->enckey_dma_addr);
80 		dev_dbg(dev, "Freed enckey DMA buffer enckey_dma_addr=%pad\n",
81 			&ctx->enckey_dma_addr);
82 		ctx->enckey_dma_addr = 0;
83 		ctx->enckey = NULL;
84 	}
85 
86 	if (ctx->auth_mode == DRV_HASH_XCBC_MAC) { /* XCBC authetication */
87 		struct cc_xcbc_s *xcbc = &ctx->auth_state.xcbc;
88 
89 		if (xcbc->xcbc_keys) {
90 			dma_free_coherent(dev, CC_AES_128_BIT_KEY_SIZE * 3,
91 					  xcbc->xcbc_keys,
92 					  xcbc->xcbc_keys_dma_addr);
93 		}
94 		dev_dbg(dev, "Freed xcbc_keys DMA buffer xcbc_keys_dma_addr=%pad\n",
95 			&xcbc->xcbc_keys_dma_addr);
96 		xcbc->xcbc_keys_dma_addr = 0;
97 		xcbc->xcbc_keys = NULL;
98 	} else if (ctx->auth_mode != DRV_HASH_NULL) { /* HMAC auth. */
99 		struct cc_hmac_s *hmac = &ctx->auth_state.hmac;
100 
101 		if (hmac->ipad_opad) {
102 			dma_free_coherent(dev, 2 * MAX_HMAC_DIGEST_SIZE,
103 					  hmac->ipad_opad,
104 					  hmac->ipad_opad_dma_addr);
105 			dev_dbg(dev, "Freed ipad_opad DMA buffer ipad_opad_dma_addr=%pad\n",
106 				&hmac->ipad_opad_dma_addr);
107 			hmac->ipad_opad_dma_addr = 0;
108 			hmac->ipad_opad = NULL;
109 		}
110 		if (hmac->padded_authkey) {
111 			dma_free_coherent(dev, MAX_HMAC_BLOCK_SIZE,
112 					  hmac->padded_authkey,
113 					  hmac->padded_authkey_dma_addr);
114 			dev_dbg(dev, "Freed padded_authkey DMA buffer padded_authkey_dma_addr=%pad\n",
115 				&hmac->padded_authkey_dma_addr);
116 			hmac->padded_authkey_dma_addr = 0;
117 			hmac->padded_authkey = NULL;
118 		}
119 	}
120 }
121 
122 static unsigned int cc_get_aead_hash_len(struct crypto_aead *tfm)
123 {
124 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
125 
126 	return cc_get_default_hash_len(ctx->drvdata);
127 }
128 
129 static int cc_aead_init(struct crypto_aead *tfm)
130 {
131 	struct aead_alg *alg = crypto_aead_alg(tfm);
132 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
133 	struct cc_crypto_alg *cc_alg =
134 			container_of(alg, struct cc_crypto_alg, aead_alg);
135 	struct device *dev = drvdata_to_dev(cc_alg->drvdata);
136 
137 	dev_dbg(dev, "Initializing context @%p for %s\n", ctx,
138 		crypto_tfm_alg_name(&tfm->base));
139 
140 	/* Initialize modes in instance */
141 	ctx->cipher_mode = cc_alg->cipher_mode;
142 	ctx->flow_mode = cc_alg->flow_mode;
143 	ctx->auth_mode = cc_alg->auth_mode;
144 	ctx->drvdata = cc_alg->drvdata;
145 	crypto_aead_set_reqsize(tfm, sizeof(struct aead_req_ctx));
146 
147 	/* Allocate key buffer, cache line aligned */
148 	ctx->enckey = dma_alloc_coherent(dev, AES_MAX_KEY_SIZE,
149 					 &ctx->enckey_dma_addr, GFP_KERNEL);
150 	if (!ctx->enckey) {
151 		dev_err(dev, "Failed allocating key buffer\n");
152 		goto init_failed;
153 	}
154 	dev_dbg(dev, "Allocated enckey buffer in context ctx->enckey=@%p\n",
155 		ctx->enckey);
156 
157 	/* Set default authlen value */
158 
159 	if (ctx->auth_mode == DRV_HASH_XCBC_MAC) { /* XCBC authetication */
160 		struct cc_xcbc_s *xcbc = &ctx->auth_state.xcbc;
161 		const unsigned int key_size = CC_AES_128_BIT_KEY_SIZE * 3;
162 
163 		/* Allocate dma-coherent buffer for XCBC's K1+K2+K3 */
164 		/* (and temporary for user key - up to 256b) */
165 		xcbc->xcbc_keys = dma_alloc_coherent(dev, key_size,
166 						     &xcbc->xcbc_keys_dma_addr,
167 						     GFP_KERNEL);
168 		if (!xcbc->xcbc_keys) {
169 			dev_err(dev, "Failed allocating buffer for XCBC keys\n");
170 			goto init_failed;
171 		}
172 	} else if (ctx->auth_mode != DRV_HASH_NULL) { /* HMAC authentication */
173 		struct cc_hmac_s *hmac = &ctx->auth_state.hmac;
174 		const unsigned int digest_size = 2 * MAX_HMAC_DIGEST_SIZE;
175 		dma_addr_t *pkey_dma = &hmac->padded_authkey_dma_addr;
176 
177 		/* Allocate dma-coherent buffer for IPAD + OPAD */
178 		hmac->ipad_opad = dma_alloc_coherent(dev, digest_size,
179 						     &hmac->ipad_opad_dma_addr,
180 						     GFP_KERNEL);
181 
182 		if (!hmac->ipad_opad) {
183 			dev_err(dev, "Failed allocating IPAD/OPAD buffer\n");
184 			goto init_failed;
185 		}
186 
187 		dev_dbg(dev, "Allocated authkey buffer in context ctx->authkey=@%p\n",
188 			hmac->ipad_opad);
189 
190 		hmac->padded_authkey = dma_alloc_coherent(dev,
191 							  MAX_HMAC_BLOCK_SIZE,
192 							  pkey_dma,
193 							  GFP_KERNEL);
194 
195 		if (!hmac->padded_authkey) {
196 			dev_err(dev, "failed to allocate padded_authkey\n");
197 			goto init_failed;
198 		}
199 	} else {
200 		ctx->auth_state.hmac.ipad_opad = NULL;
201 		ctx->auth_state.hmac.padded_authkey = NULL;
202 	}
203 	ctx->hash_len = cc_get_aead_hash_len(tfm);
204 
205 	return 0;
206 
207 init_failed:
208 	cc_aead_exit(tfm);
209 	return -ENOMEM;
210 }
211 
212 static void cc_aead_complete(struct device *dev, void *cc_req, int err)
213 {
214 	struct aead_request *areq = (struct aead_request *)cc_req;
215 	struct aead_req_ctx *areq_ctx = aead_request_ctx(areq);
216 	struct crypto_aead *tfm = crypto_aead_reqtfm(cc_req);
217 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
218 
219 	/* BACKLOG notification */
220 	if (err == -EINPROGRESS)
221 		goto done;
222 
223 	cc_unmap_aead_request(dev, areq);
224 
225 	/* Restore ordinary iv pointer */
226 	areq->iv = areq_ctx->backup_iv;
227 
228 	if (err)
229 		goto done;
230 
231 	if (areq_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
232 		if (memcmp(areq_ctx->mac_buf, areq_ctx->icv_virt_addr,
233 			   ctx->authsize) != 0) {
234 			dev_dbg(dev, "Payload authentication failure, (auth-size=%d, cipher=%d)\n",
235 				ctx->authsize, ctx->cipher_mode);
236 			/* In case of payload authentication failure, MUST NOT
237 			 * revealed the decrypted message --> zero its memory.
238 			 */
239 			cc_zero_sgl(areq->dst, areq_ctx->cryptlen);
240 			err = -EBADMSG;
241 		}
242 	/*ENCRYPT*/
243 	} else if (areq_ctx->is_icv_fragmented) {
244 		u32 skip = areq->cryptlen + areq_ctx->dst_offset;
245 
246 		cc_copy_sg_portion(dev, areq_ctx->mac_buf, areq_ctx->dst_sgl,
247 				   skip, (skip + ctx->authsize),
248 				   CC_SG_FROM_BUF);
249 	}
250 done:
251 	aead_request_complete(areq, err);
252 }
253 
254 static unsigned int xcbc_setkey(struct cc_hw_desc *desc,
255 				struct cc_aead_ctx *ctx)
256 {
257 	/* Load the AES key */
258 	hw_desc_init(&desc[0]);
259 	/* We are using for the source/user key the same buffer
260 	 * as for the output keys, * because after this key loading it
261 	 * is not needed anymore
262 	 */
263 	set_din_type(&desc[0], DMA_DLLI,
264 		     ctx->auth_state.xcbc.xcbc_keys_dma_addr, ctx->auth_keylen,
265 		     NS_BIT);
266 	set_cipher_mode(&desc[0], DRV_CIPHER_ECB);
267 	set_cipher_config0(&desc[0], DRV_CRYPTO_DIRECTION_ENCRYPT);
268 	set_key_size_aes(&desc[0], ctx->auth_keylen);
269 	set_flow_mode(&desc[0], S_DIN_to_AES);
270 	set_setup_mode(&desc[0], SETUP_LOAD_KEY0);
271 
272 	hw_desc_init(&desc[1]);
273 	set_din_const(&desc[1], 0x01010101, CC_AES_128_BIT_KEY_SIZE);
274 	set_flow_mode(&desc[1], DIN_AES_DOUT);
275 	set_dout_dlli(&desc[1], ctx->auth_state.xcbc.xcbc_keys_dma_addr,
276 		      AES_KEYSIZE_128, NS_BIT, 0);
277 
278 	hw_desc_init(&desc[2]);
279 	set_din_const(&desc[2], 0x02020202, CC_AES_128_BIT_KEY_SIZE);
280 	set_flow_mode(&desc[2], DIN_AES_DOUT);
281 	set_dout_dlli(&desc[2], (ctx->auth_state.xcbc.xcbc_keys_dma_addr
282 					 + AES_KEYSIZE_128),
283 			      AES_KEYSIZE_128, NS_BIT, 0);
284 
285 	hw_desc_init(&desc[3]);
286 	set_din_const(&desc[3], 0x03030303, CC_AES_128_BIT_KEY_SIZE);
287 	set_flow_mode(&desc[3], DIN_AES_DOUT);
288 	set_dout_dlli(&desc[3], (ctx->auth_state.xcbc.xcbc_keys_dma_addr
289 					  + 2 * AES_KEYSIZE_128),
290 			      AES_KEYSIZE_128, NS_BIT, 0);
291 
292 	return 4;
293 }
294 
295 static int hmac_setkey(struct cc_hw_desc *desc, struct cc_aead_ctx *ctx)
296 {
297 	unsigned int hmac_pad_const[2] = { HMAC_IPAD_CONST, HMAC_OPAD_CONST };
298 	unsigned int digest_ofs = 0;
299 	unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
300 			DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
301 	unsigned int digest_size = (ctx->auth_mode == DRV_HASH_SHA1) ?
302 			CC_SHA1_DIGEST_SIZE : CC_SHA256_DIGEST_SIZE;
303 	struct cc_hmac_s *hmac = &ctx->auth_state.hmac;
304 
305 	unsigned int idx = 0;
306 	int i;
307 
308 	/* calc derived HMAC key */
309 	for (i = 0; i < 2; i++) {
310 		/* Load hash initial state */
311 		hw_desc_init(&desc[idx]);
312 		set_cipher_mode(&desc[idx], hash_mode);
313 		set_din_sram(&desc[idx],
314 			     cc_larval_digest_addr(ctx->drvdata,
315 						   ctx->auth_mode),
316 			     digest_size);
317 		set_flow_mode(&desc[idx], S_DIN_to_HASH);
318 		set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
319 		idx++;
320 
321 		/* Load the hash current length*/
322 		hw_desc_init(&desc[idx]);
323 		set_cipher_mode(&desc[idx], hash_mode);
324 		set_din_const(&desc[idx], 0, ctx->hash_len);
325 		set_flow_mode(&desc[idx], S_DIN_to_HASH);
326 		set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
327 		idx++;
328 
329 		/* Prepare ipad key */
330 		hw_desc_init(&desc[idx]);
331 		set_xor_val(&desc[idx], hmac_pad_const[i]);
332 		set_cipher_mode(&desc[idx], hash_mode);
333 		set_flow_mode(&desc[idx], S_DIN_to_HASH);
334 		set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
335 		idx++;
336 
337 		/* Perform HASH update */
338 		hw_desc_init(&desc[idx]);
339 		set_din_type(&desc[idx], DMA_DLLI,
340 			     hmac->padded_authkey_dma_addr,
341 			     SHA256_BLOCK_SIZE, NS_BIT);
342 		set_cipher_mode(&desc[idx], hash_mode);
343 		set_xor_active(&desc[idx]);
344 		set_flow_mode(&desc[idx], DIN_HASH);
345 		idx++;
346 
347 		/* Get the digset */
348 		hw_desc_init(&desc[idx]);
349 		set_cipher_mode(&desc[idx], hash_mode);
350 		set_dout_dlli(&desc[idx],
351 			      (hmac->ipad_opad_dma_addr + digest_ofs),
352 			      digest_size, NS_BIT, 0);
353 		set_flow_mode(&desc[idx], S_HASH_to_DOUT);
354 		set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
355 		set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
356 		idx++;
357 
358 		digest_ofs += digest_size;
359 	}
360 
361 	return idx;
362 }
363 
364 static int validate_keys_sizes(struct cc_aead_ctx *ctx)
365 {
366 	struct device *dev = drvdata_to_dev(ctx->drvdata);
367 
368 	dev_dbg(dev, "enc_keylen=%u  authkeylen=%u\n",
369 		ctx->enc_keylen, ctx->auth_keylen);
370 
371 	switch (ctx->auth_mode) {
372 	case DRV_HASH_SHA1:
373 	case DRV_HASH_SHA256:
374 		break;
375 	case DRV_HASH_XCBC_MAC:
376 		if (ctx->auth_keylen != AES_KEYSIZE_128 &&
377 		    ctx->auth_keylen != AES_KEYSIZE_192 &&
378 		    ctx->auth_keylen != AES_KEYSIZE_256)
379 			return -ENOTSUPP;
380 		break;
381 	case DRV_HASH_NULL: /* Not authenc (e.g., CCM) - no auth_key) */
382 		if (ctx->auth_keylen > 0)
383 			return -EINVAL;
384 		break;
385 	default:
386 		dev_err(dev, "Invalid auth_mode=%d\n", ctx->auth_mode);
387 		return -EINVAL;
388 	}
389 	/* Check cipher key size */
390 	if (ctx->flow_mode == S_DIN_to_DES) {
391 		if (ctx->enc_keylen != DES3_EDE_KEY_SIZE) {
392 			dev_err(dev, "Invalid cipher(3DES) key size: %u\n",
393 				ctx->enc_keylen);
394 			return -EINVAL;
395 		}
396 	} else { /* Default assumed to be AES ciphers */
397 		if (ctx->enc_keylen != AES_KEYSIZE_128 &&
398 		    ctx->enc_keylen != AES_KEYSIZE_192 &&
399 		    ctx->enc_keylen != AES_KEYSIZE_256) {
400 			dev_err(dev, "Invalid cipher(AES) key size: %u\n",
401 				ctx->enc_keylen);
402 			return -EINVAL;
403 		}
404 	}
405 
406 	return 0; /* All tests of keys sizes passed */
407 }
408 
409 /* This function prepers the user key so it can pass to the hmac processing
410  * (copy to intenral buffer or hash in case of key longer than block
411  */
412 static int cc_get_plain_hmac_key(struct crypto_aead *tfm, const u8 *authkey,
413 				 unsigned int keylen)
414 {
415 	dma_addr_t key_dma_addr = 0;
416 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
417 	struct device *dev = drvdata_to_dev(ctx->drvdata);
418 	u32 larval_addr = cc_larval_digest_addr(ctx->drvdata, ctx->auth_mode);
419 	struct cc_crypto_req cc_req = {};
420 	unsigned int blocksize;
421 	unsigned int digestsize;
422 	unsigned int hashmode;
423 	unsigned int idx = 0;
424 	int rc = 0;
425 	u8 *key = NULL;
426 	struct cc_hw_desc desc[MAX_AEAD_SETKEY_SEQ];
427 	dma_addr_t padded_authkey_dma_addr =
428 		ctx->auth_state.hmac.padded_authkey_dma_addr;
429 
430 	switch (ctx->auth_mode) { /* auth_key required and >0 */
431 	case DRV_HASH_SHA1:
432 		blocksize = SHA1_BLOCK_SIZE;
433 		digestsize = SHA1_DIGEST_SIZE;
434 		hashmode = DRV_HASH_HW_SHA1;
435 		break;
436 	case DRV_HASH_SHA256:
437 	default:
438 		blocksize = SHA256_BLOCK_SIZE;
439 		digestsize = SHA256_DIGEST_SIZE;
440 		hashmode = DRV_HASH_HW_SHA256;
441 	}
442 
443 	if (keylen != 0) {
444 
445 		key = kmemdup(authkey, keylen, GFP_KERNEL);
446 		if (!key)
447 			return -ENOMEM;
448 
449 		key_dma_addr = dma_map_single(dev, (void *)key, keylen,
450 					      DMA_TO_DEVICE);
451 		if (dma_mapping_error(dev, key_dma_addr)) {
452 			dev_err(dev, "Mapping key va=0x%p len=%u for DMA failed\n",
453 				key, keylen);
454 			kzfree(key);
455 			return -ENOMEM;
456 		}
457 		if (keylen > blocksize) {
458 			/* Load hash initial state */
459 			hw_desc_init(&desc[idx]);
460 			set_cipher_mode(&desc[idx], hashmode);
461 			set_din_sram(&desc[idx], larval_addr, digestsize);
462 			set_flow_mode(&desc[idx], S_DIN_to_HASH);
463 			set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
464 			idx++;
465 
466 			/* Load the hash current length*/
467 			hw_desc_init(&desc[idx]);
468 			set_cipher_mode(&desc[idx], hashmode);
469 			set_din_const(&desc[idx], 0, ctx->hash_len);
470 			set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
471 			set_flow_mode(&desc[idx], S_DIN_to_HASH);
472 			set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
473 			idx++;
474 
475 			hw_desc_init(&desc[idx]);
476 			set_din_type(&desc[idx], DMA_DLLI,
477 				     key_dma_addr, keylen, NS_BIT);
478 			set_flow_mode(&desc[idx], DIN_HASH);
479 			idx++;
480 
481 			/* Get hashed key */
482 			hw_desc_init(&desc[idx]);
483 			set_cipher_mode(&desc[idx], hashmode);
484 			set_dout_dlli(&desc[idx], padded_authkey_dma_addr,
485 				      digestsize, NS_BIT, 0);
486 			set_flow_mode(&desc[idx], S_HASH_to_DOUT);
487 			set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
488 			set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
489 			set_cipher_config0(&desc[idx],
490 					   HASH_DIGEST_RESULT_LITTLE_ENDIAN);
491 			idx++;
492 
493 			hw_desc_init(&desc[idx]);
494 			set_din_const(&desc[idx], 0, (blocksize - digestsize));
495 			set_flow_mode(&desc[idx], BYPASS);
496 			set_dout_dlli(&desc[idx], (padded_authkey_dma_addr +
497 				      digestsize), (blocksize - digestsize),
498 				      NS_BIT, 0);
499 			idx++;
500 		} else {
501 			hw_desc_init(&desc[idx]);
502 			set_din_type(&desc[idx], DMA_DLLI, key_dma_addr,
503 				     keylen, NS_BIT);
504 			set_flow_mode(&desc[idx], BYPASS);
505 			set_dout_dlli(&desc[idx], padded_authkey_dma_addr,
506 				      keylen, NS_BIT, 0);
507 			idx++;
508 
509 			if ((blocksize - keylen) != 0) {
510 				hw_desc_init(&desc[idx]);
511 				set_din_const(&desc[idx], 0,
512 					      (blocksize - keylen));
513 				set_flow_mode(&desc[idx], BYPASS);
514 				set_dout_dlli(&desc[idx],
515 					      (padded_authkey_dma_addr +
516 					       keylen),
517 					      (blocksize - keylen), NS_BIT, 0);
518 				idx++;
519 			}
520 		}
521 	} else {
522 		hw_desc_init(&desc[idx]);
523 		set_din_const(&desc[idx], 0, (blocksize - keylen));
524 		set_flow_mode(&desc[idx], BYPASS);
525 		set_dout_dlli(&desc[idx], padded_authkey_dma_addr,
526 			      blocksize, NS_BIT, 0);
527 		idx++;
528 	}
529 
530 	rc = cc_send_sync_request(ctx->drvdata, &cc_req, desc, idx);
531 	if (rc)
532 		dev_err(dev, "send_request() failed (rc=%d)\n", rc);
533 
534 	if (key_dma_addr)
535 		dma_unmap_single(dev, key_dma_addr, keylen, DMA_TO_DEVICE);
536 
537 	kzfree(key);
538 
539 	return rc;
540 }
541 
542 static int cc_aead_setkey(struct crypto_aead *tfm, const u8 *key,
543 			  unsigned int keylen)
544 {
545 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
546 	struct cc_crypto_req cc_req = {};
547 	struct cc_hw_desc desc[MAX_AEAD_SETKEY_SEQ];
548 	unsigned int seq_len = 0;
549 	struct device *dev = drvdata_to_dev(ctx->drvdata);
550 	const u8 *enckey, *authkey;
551 	int rc;
552 
553 	dev_dbg(dev, "Setting key in context @%p for %s. key=%p keylen=%u\n",
554 		ctx, crypto_tfm_alg_name(crypto_aead_tfm(tfm)), key, keylen);
555 
556 	/* STAT_PHASE_0: Init and sanity checks */
557 
558 	if (ctx->auth_mode != DRV_HASH_NULL) { /* authenc() alg. */
559 		struct crypto_authenc_keys keys;
560 
561 		rc = crypto_authenc_extractkeys(&keys, key, keylen);
562 		if (rc)
563 			goto badkey;
564 		enckey = keys.enckey;
565 		authkey = keys.authkey;
566 		ctx->enc_keylen = keys.enckeylen;
567 		ctx->auth_keylen = keys.authkeylen;
568 
569 		if (ctx->cipher_mode == DRV_CIPHER_CTR) {
570 			/* the nonce is stored in bytes at end of key */
571 			rc = -EINVAL;
572 			if (ctx->enc_keylen <
573 			    (AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE))
574 				goto badkey;
575 			/* Copy nonce from last 4 bytes in CTR key to
576 			 *  first 4 bytes in CTR IV
577 			 */
578 			memcpy(ctx->ctr_nonce, enckey + ctx->enc_keylen -
579 			       CTR_RFC3686_NONCE_SIZE, CTR_RFC3686_NONCE_SIZE);
580 			/* Set CTR key size */
581 			ctx->enc_keylen -= CTR_RFC3686_NONCE_SIZE;
582 		}
583 	} else { /* non-authenc - has just one key */
584 		enckey = key;
585 		authkey = NULL;
586 		ctx->enc_keylen = keylen;
587 		ctx->auth_keylen = 0;
588 	}
589 
590 	rc = validate_keys_sizes(ctx);
591 	if (rc)
592 		goto badkey;
593 
594 	/* STAT_PHASE_1: Copy key to ctx */
595 
596 	/* Get key material */
597 	memcpy(ctx->enckey, enckey, ctx->enc_keylen);
598 	if (ctx->enc_keylen == 24)
599 		memset(ctx->enckey + 24, 0, CC_AES_KEY_SIZE_MAX - 24);
600 	if (ctx->auth_mode == DRV_HASH_XCBC_MAC) {
601 		memcpy(ctx->auth_state.xcbc.xcbc_keys, authkey,
602 		       ctx->auth_keylen);
603 	} else if (ctx->auth_mode != DRV_HASH_NULL) { /* HMAC */
604 		rc = cc_get_plain_hmac_key(tfm, authkey, ctx->auth_keylen);
605 		if (rc)
606 			goto badkey;
607 	}
608 
609 	/* STAT_PHASE_2: Create sequence */
610 
611 	switch (ctx->auth_mode) {
612 	case DRV_HASH_SHA1:
613 	case DRV_HASH_SHA256:
614 		seq_len = hmac_setkey(desc, ctx);
615 		break;
616 	case DRV_HASH_XCBC_MAC:
617 		seq_len = xcbc_setkey(desc, ctx);
618 		break;
619 	case DRV_HASH_NULL: /* non-authenc modes, e.g., CCM */
620 		break; /* No auth. key setup */
621 	default:
622 		dev_err(dev, "Unsupported authenc (%d)\n", ctx->auth_mode);
623 		rc = -ENOTSUPP;
624 		goto badkey;
625 	}
626 
627 	/* STAT_PHASE_3: Submit sequence to HW */
628 
629 	if (seq_len > 0) { /* For CCM there is no sequence to setup the key */
630 		rc = cc_send_sync_request(ctx->drvdata, &cc_req, desc, seq_len);
631 		if (rc) {
632 			dev_err(dev, "send_request() failed (rc=%d)\n", rc);
633 			goto setkey_error;
634 		}
635 	}
636 
637 	/* Update STAT_PHASE_3 */
638 	return rc;
639 
640 badkey:
641 	crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
642 
643 setkey_error:
644 	return rc;
645 }
646 
647 static int cc_des3_aead_setkey(struct crypto_aead *aead, const u8 *key,
648 			       unsigned int keylen)
649 {
650 	struct crypto_authenc_keys keys;
651 	u32 flags;
652 	int err;
653 
654 	err = crypto_authenc_extractkeys(&keys, key, keylen);
655 	if (unlikely(err))
656 		goto badkey;
657 
658 	err = -EINVAL;
659 	if (keys.enckeylen != DES3_EDE_KEY_SIZE)
660 		goto badkey;
661 
662 	flags = crypto_aead_get_flags(aead);
663 	err = __des3_verify_key(&flags, keys.enckey);
664 	if (unlikely(err)) {
665 		crypto_aead_set_flags(aead, flags);
666 		goto out;
667 	}
668 
669 	err = cc_aead_setkey(aead, key, keylen);
670 
671 out:
672 	memzero_explicit(&keys, sizeof(keys));
673 	return err;
674 
675 badkey:
676 	crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN);
677 	goto out;
678 }
679 
680 static int cc_rfc4309_ccm_setkey(struct crypto_aead *tfm, const u8 *key,
681 				 unsigned int keylen)
682 {
683 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
684 
685 	if (keylen < 3)
686 		return -EINVAL;
687 
688 	keylen -= 3;
689 	memcpy(ctx->ctr_nonce, key + keylen, 3);
690 
691 	return cc_aead_setkey(tfm, key, keylen);
692 }
693 
694 static int cc_aead_setauthsize(struct crypto_aead *authenc,
695 			       unsigned int authsize)
696 {
697 	struct cc_aead_ctx *ctx = crypto_aead_ctx(authenc);
698 	struct device *dev = drvdata_to_dev(ctx->drvdata);
699 
700 	/* Unsupported auth. sizes */
701 	if (authsize == 0 ||
702 	    authsize > crypto_aead_maxauthsize(authenc)) {
703 		return -ENOTSUPP;
704 	}
705 
706 	ctx->authsize = authsize;
707 	dev_dbg(dev, "authlen=%d\n", ctx->authsize);
708 
709 	return 0;
710 }
711 
712 static int cc_rfc4309_ccm_setauthsize(struct crypto_aead *authenc,
713 				      unsigned int authsize)
714 {
715 	switch (authsize) {
716 	case 8:
717 	case 12:
718 	case 16:
719 		break;
720 	default:
721 		return -EINVAL;
722 	}
723 
724 	return cc_aead_setauthsize(authenc, authsize);
725 }
726 
727 static int cc_ccm_setauthsize(struct crypto_aead *authenc,
728 			      unsigned int authsize)
729 {
730 	switch (authsize) {
731 	case 4:
732 	case 6:
733 	case 8:
734 	case 10:
735 	case 12:
736 	case 14:
737 	case 16:
738 		break;
739 	default:
740 		return -EINVAL;
741 	}
742 
743 	return cc_aead_setauthsize(authenc, authsize);
744 }
745 
746 static void cc_set_assoc_desc(struct aead_request *areq, unsigned int flow_mode,
747 			      struct cc_hw_desc desc[], unsigned int *seq_size)
748 {
749 	struct crypto_aead *tfm = crypto_aead_reqtfm(areq);
750 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
751 	struct aead_req_ctx *areq_ctx = aead_request_ctx(areq);
752 	enum cc_req_dma_buf_type assoc_dma_type = areq_ctx->assoc_buff_type;
753 	unsigned int idx = *seq_size;
754 	struct device *dev = drvdata_to_dev(ctx->drvdata);
755 
756 	switch (assoc_dma_type) {
757 	case CC_DMA_BUF_DLLI:
758 		dev_dbg(dev, "ASSOC buffer type DLLI\n");
759 		hw_desc_init(&desc[idx]);
760 		set_din_type(&desc[idx], DMA_DLLI, sg_dma_address(areq->src),
761 			     areq_ctx->assoclen, NS_BIT);
762 		set_flow_mode(&desc[idx], flow_mode);
763 		if (ctx->auth_mode == DRV_HASH_XCBC_MAC &&
764 		    areq_ctx->cryptlen > 0)
765 			set_din_not_last_indication(&desc[idx]);
766 		break;
767 	case CC_DMA_BUF_MLLI:
768 		dev_dbg(dev, "ASSOC buffer type MLLI\n");
769 		hw_desc_init(&desc[idx]);
770 		set_din_type(&desc[idx], DMA_MLLI, areq_ctx->assoc.sram_addr,
771 			     areq_ctx->assoc.mlli_nents, NS_BIT);
772 		set_flow_mode(&desc[idx], flow_mode);
773 		if (ctx->auth_mode == DRV_HASH_XCBC_MAC &&
774 		    areq_ctx->cryptlen > 0)
775 			set_din_not_last_indication(&desc[idx]);
776 		break;
777 	case CC_DMA_BUF_NULL:
778 	default:
779 		dev_err(dev, "Invalid ASSOC buffer type\n");
780 	}
781 
782 	*seq_size = (++idx);
783 }
784 
785 static void cc_proc_authen_desc(struct aead_request *areq,
786 				unsigned int flow_mode,
787 				struct cc_hw_desc desc[],
788 				unsigned int *seq_size, int direct)
789 {
790 	struct aead_req_ctx *areq_ctx = aead_request_ctx(areq);
791 	enum cc_req_dma_buf_type data_dma_type = areq_ctx->data_buff_type;
792 	unsigned int idx = *seq_size;
793 	struct crypto_aead *tfm = crypto_aead_reqtfm(areq);
794 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
795 	struct device *dev = drvdata_to_dev(ctx->drvdata);
796 
797 	switch (data_dma_type) {
798 	case CC_DMA_BUF_DLLI:
799 	{
800 		struct scatterlist *cipher =
801 			(direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ?
802 			areq_ctx->dst_sgl : areq_ctx->src_sgl;
803 
804 		unsigned int offset =
805 			(direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ?
806 			areq_ctx->dst_offset : areq_ctx->src_offset;
807 		dev_dbg(dev, "AUTHENC: SRC/DST buffer type DLLI\n");
808 		hw_desc_init(&desc[idx]);
809 		set_din_type(&desc[idx], DMA_DLLI,
810 			     (sg_dma_address(cipher) + offset),
811 			     areq_ctx->cryptlen, NS_BIT);
812 		set_flow_mode(&desc[idx], flow_mode);
813 		break;
814 	}
815 	case CC_DMA_BUF_MLLI:
816 	{
817 		/* DOUBLE-PASS flow (as default)
818 		 * assoc. + iv + data -compact in one table
819 		 * if assoclen is ZERO only IV perform
820 		 */
821 		cc_sram_addr_t mlli_addr = areq_ctx->assoc.sram_addr;
822 		u32 mlli_nents = areq_ctx->assoc.mlli_nents;
823 
824 		if (areq_ctx->is_single_pass) {
825 			if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
826 				mlli_addr = areq_ctx->dst.sram_addr;
827 				mlli_nents = areq_ctx->dst.mlli_nents;
828 			} else {
829 				mlli_addr = areq_ctx->src.sram_addr;
830 				mlli_nents = areq_ctx->src.mlli_nents;
831 			}
832 		}
833 
834 		dev_dbg(dev, "AUTHENC: SRC/DST buffer type MLLI\n");
835 		hw_desc_init(&desc[idx]);
836 		set_din_type(&desc[idx], DMA_MLLI, mlli_addr, mlli_nents,
837 			     NS_BIT);
838 		set_flow_mode(&desc[idx], flow_mode);
839 		break;
840 	}
841 	case CC_DMA_BUF_NULL:
842 	default:
843 		dev_err(dev, "AUTHENC: Invalid SRC/DST buffer type\n");
844 	}
845 
846 	*seq_size = (++idx);
847 }
848 
849 static void cc_proc_cipher_desc(struct aead_request *areq,
850 				unsigned int flow_mode,
851 				struct cc_hw_desc desc[],
852 				unsigned int *seq_size)
853 {
854 	unsigned int idx = *seq_size;
855 	struct aead_req_ctx *areq_ctx = aead_request_ctx(areq);
856 	enum cc_req_dma_buf_type data_dma_type = areq_ctx->data_buff_type;
857 	struct crypto_aead *tfm = crypto_aead_reqtfm(areq);
858 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
859 	struct device *dev = drvdata_to_dev(ctx->drvdata);
860 
861 	if (areq_ctx->cryptlen == 0)
862 		return; /*null processing*/
863 
864 	switch (data_dma_type) {
865 	case CC_DMA_BUF_DLLI:
866 		dev_dbg(dev, "CIPHER: SRC/DST buffer type DLLI\n");
867 		hw_desc_init(&desc[idx]);
868 		set_din_type(&desc[idx], DMA_DLLI,
869 			     (sg_dma_address(areq_ctx->src_sgl) +
870 			      areq_ctx->src_offset), areq_ctx->cryptlen,
871 			      NS_BIT);
872 		set_dout_dlli(&desc[idx],
873 			      (sg_dma_address(areq_ctx->dst_sgl) +
874 			       areq_ctx->dst_offset),
875 			      areq_ctx->cryptlen, NS_BIT, 0);
876 		set_flow_mode(&desc[idx], flow_mode);
877 		break;
878 	case CC_DMA_BUF_MLLI:
879 		dev_dbg(dev, "CIPHER: SRC/DST buffer type MLLI\n");
880 		hw_desc_init(&desc[idx]);
881 		set_din_type(&desc[idx], DMA_MLLI, areq_ctx->src.sram_addr,
882 			     areq_ctx->src.mlli_nents, NS_BIT);
883 		set_dout_mlli(&desc[idx], areq_ctx->dst.sram_addr,
884 			      areq_ctx->dst.mlli_nents, NS_BIT, 0);
885 		set_flow_mode(&desc[idx], flow_mode);
886 		break;
887 	case CC_DMA_BUF_NULL:
888 	default:
889 		dev_err(dev, "CIPHER: Invalid SRC/DST buffer type\n");
890 	}
891 
892 	*seq_size = (++idx);
893 }
894 
895 static void cc_proc_digest_desc(struct aead_request *req,
896 				struct cc_hw_desc desc[],
897 				unsigned int *seq_size)
898 {
899 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
900 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
901 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
902 	unsigned int idx = *seq_size;
903 	unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
904 				DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
905 	int direct = req_ctx->gen_ctx.op_type;
906 
907 	/* Get final ICV result */
908 	if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
909 		hw_desc_init(&desc[idx]);
910 		set_flow_mode(&desc[idx], S_HASH_to_DOUT);
911 		set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
912 		set_dout_dlli(&desc[idx], req_ctx->icv_dma_addr, ctx->authsize,
913 			      NS_BIT, 1);
914 		set_queue_last_ind(ctx->drvdata, &desc[idx]);
915 		if (ctx->auth_mode == DRV_HASH_XCBC_MAC) {
916 			set_aes_not_hash_mode(&desc[idx]);
917 			set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
918 		} else {
919 			set_cipher_config0(&desc[idx],
920 					   HASH_DIGEST_RESULT_LITTLE_ENDIAN);
921 			set_cipher_mode(&desc[idx], hash_mode);
922 		}
923 	} else { /*Decrypt*/
924 		/* Get ICV out from hardware */
925 		hw_desc_init(&desc[idx]);
926 		set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
927 		set_flow_mode(&desc[idx], S_HASH_to_DOUT);
928 		set_dout_dlli(&desc[idx], req_ctx->mac_buf_dma_addr,
929 			      ctx->authsize, NS_BIT, 1);
930 		set_queue_last_ind(ctx->drvdata, &desc[idx]);
931 		set_cipher_config0(&desc[idx],
932 				   HASH_DIGEST_RESULT_LITTLE_ENDIAN);
933 		set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
934 		if (ctx->auth_mode == DRV_HASH_XCBC_MAC) {
935 			set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
936 			set_aes_not_hash_mode(&desc[idx]);
937 		} else {
938 			set_cipher_mode(&desc[idx], hash_mode);
939 		}
940 	}
941 
942 	*seq_size = (++idx);
943 }
944 
945 static void cc_set_cipher_desc(struct aead_request *req,
946 			       struct cc_hw_desc desc[],
947 			       unsigned int *seq_size)
948 {
949 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
950 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
951 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
952 	unsigned int hw_iv_size = req_ctx->hw_iv_size;
953 	unsigned int idx = *seq_size;
954 	int direct = req_ctx->gen_ctx.op_type;
955 
956 	/* Setup cipher state */
957 	hw_desc_init(&desc[idx]);
958 	set_cipher_config0(&desc[idx], direct);
959 	set_flow_mode(&desc[idx], ctx->flow_mode);
960 	set_din_type(&desc[idx], DMA_DLLI, req_ctx->gen_ctx.iv_dma_addr,
961 		     hw_iv_size, NS_BIT);
962 	if (ctx->cipher_mode == DRV_CIPHER_CTR)
963 		set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
964 	else
965 		set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
966 	set_cipher_mode(&desc[idx], ctx->cipher_mode);
967 	idx++;
968 
969 	/* Setup enc. key */
970 	hw_desc_init(&desc[idx]);
971 	set_cipher_config0(&desc[idx], direct);
972 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
973 	set_flow_mode(&desc[idx], ctx->flow_mode);
974 	if (ctx->flow_mode == S_DIN_to_AES) {
975 		set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
976 			     ((ctx->enc_keylen == 24) ? CC_AES_KEY_SIZE_MAX :
977 			      ctx->enc_keylen), NS_BIT);
978 		set_key_size_aes(&desc[idx], ctx->enc_keylen);
979 	} else {
980 		set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
981 			     ctx->enc_keylen, NS_BIT);
982 		set_key_size_des(&desc[idx], ctx->enc_keylen);
983 	}
984 	set_cipher_mode(&desc[idx], ctx->cipher_mode);
985 	idx++;
986 
987 	*seq_size = idx;
988 }
989 
990 static void cc_proc_cipher(struct aead_request *req, struct cc_hw_desc desc[],
991 			   unsigned int *seq_size, unsigned int data_flow_mode)
992 {
993 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
994 	int direct = req_ctx->gen_ctx.op_type;
995 	unsigned int idx = *seq_size;
996 
997 	if (req_ctx->cryptlen == 0)
998 		return; /*null processing*/
999 
1000 	cc_set_cipher_desc(req, desc, &idx);
1001 	cc_proc_cipher_desc(req, data_flow_mode, desc, &idx);
1002 	if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
1003 		/* We must wait for DMA to write all cipher */
1004 		hw_desc_init(&desc[idx]);
1005 		set_din_no_dma(&desc[idx], 0, 0xfffff0);
1006 		set_dout_no_dma(&desc[idx], 0, 0, 1);
1007 		idx++;
1008 	}
1009 
1010 	*seq_size = idx;
1011 }
1012 
1013 static void cc_set_hmac_desc(struct aead_request *req, struct cc_hw_desc desc[],
1014 			     unsigned int *seq_size)
1015 {
1016 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1017 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1018 	unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
1019 				DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
1020 	unsigned int digest_size = (ctx->auth_mode == DRV_HASH_SHA1) ?
1021 				CC_SHA1_DIGEST_SIZE : CC_SHA256_DIGEST_SIZE;
1022 	unsigned int idx = *seq_size;
1023 
1024 	/* Loading hash ipad xor key state */
1025 	hw_desc_init(&desc[idx]);
1026 	set_cipher_mode(&desc[idx], hash_mode);
1027 	set_din_type(&desc[idx], DMA_DLLI,
1028 		     ctx->auth_state.hmac.ipad_opad_dma_addr, digest_size,
1029 		     NS_BIT);
1030 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1031 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1032 	idx++;
1033 
1034 	/* Load init. digest len (64 bytes) */
1035 	hw_desc_init(&desc[idx]);
1036 	set_cipher_mode(&desc[idx], hash_mode);
1037 	set_din_sram(&desc[idx], cc_digest_len_addr(ctx->drvdata, hash_mode),
1038 		     ctx->hash_len);
1039 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1040 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1041 	idx++;
1042 
1043 	*seq_size = idx;
1044 }
1045 
1046 static void cc_set_xcbc_desc(struct aead_request *req, struct cc_hw_desc desc[],
1047 			     unsigned int *seq_size)
1048 {
1049 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1050 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1051 	unsigned int idx = *seq_size;
1052 
1053 	/* Loading MAC state */
1054 	hw_desc_init(&desc[idx]);
1055 	set_din_const(&desc[idx], 0, CC_AES_BLOCK_SIZE);
1056 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1057 	set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
1058 	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1059 	set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
1060 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1061 	set_aes_not_hash_mode(&desc[idx]);
1062 	idx++;
1063 
1064 	/* Setup XCBC MAC K1 */
1065 	hw_desc_init(&desc[idx]);
1066 	set_din_type(&desc[idx], DMA_DLLI,
1067 		     ctx->auth_state.xcbc.xcbc_keys_dma_addr,
1068 		     AES_KEYSIZE_128, NS_BIT);
1069 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1070 	set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
1071 	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1072 	set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
1073 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1074 	set_aes_not_hash_mode(&desc[idx]);
1075 	idx++;
1076 
1077 	/* Setup XCBC MAC K2 */
1078 	hw_desc_init(&desc[idx]);
1079 	set_din_type(&desc[idx], DMA_DLLI,
1080 		     (ctx->auth_state.xcbc.xcbc_keys_dma_addr +
1081 		      AES_KEYSIZE_128), AES_KEYSIZE_128, NS_BIT);
1082 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1083 	set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
1084 	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1085 	set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
1086 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1087 	set_aes_not_hash_mode(&desc[idx]);
1088 	idx++;
1089 
1090 	/* Setup XCBC MAC K3 */
1091 	hw_desc_init(&desc[idx]);
1092 	set_din_type(&desc[idx], DMA_DLLI,
1093 		     (ctx->auth_state.xcbc.xcbc_keys_dma_addr +
1094 		      2 * AES_KEYSIZE_128), AES_KEYSIZE_128, NS_BIT);
1095 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE2);
1096 	set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
1097 	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1098 	set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
1099 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1100 	set_aes_not_hash_mode(&desc[idx]);
1101 	idx++;
1102 
1103 	*seq_size = idx;
1104 }
1105 
1106 static void cc_proc_header_desc(struct aead_request *req,
1107 				struct cc_hw_desc desc[],
1108 				unsigned int *seq_size)
1109 {
1110 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
1111 	unsigned int idx = *seq_size;
1112 
1113 	/* Hash associated data */
1114 	if (areq_ctx->assoclen > 0)
1115 		cc_set_assoc_desc(req, DIN_HASH, desc, &idx);
1116 
1117 	/* Hash IV */
1118 	*seq_size = idx;
1119 }
1120 
1121 static void cc_proc_scheme_desc(struct aead_request *req,
1122 				struct cc_hw_desc desc[],
1123 				unsigned int *seq_size)
1124 {
1125 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1126 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1127 	struct cc_aead_handle *aead_handle = ctx->drvdata->aead_handle;
1128 	unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
1129 				DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
1130 	unsigned int digest_size = (ctx->auth_mode == DRV_HASH_SHA1) ?
1131 				CC_SHA1_DIGEST_SIZE : CC_SHA256_DIGEST_SIZE;
1132 	unsigned int idx = *seq_size;
1133 
1134 	hw_desc_init(&desc[idx]);
1135 	set_cipher_mode(&desc[idx], hash_mode);
1136 	set_dout_sram(&desc[idx], aead_handle->sram_workspace_addr,
1137 		      ctx->hash_len);
1138 	set_flow_mode(&desc[idx], S_HASH_to_DOUT);
1139 	set_setup_mode(&desc[idx], SETUP_WRITE_STATE1);
1140 	set_cipher_do(&desc[idx], DO_PAD);
1141 	idx++;
1142 
1143 	/* Get final ICV result */
1144 	hw_desc_init(&desc[idx]);
1145 	set_dout_sram(&desc[idx], aead_handle->sram_workspace_addr,
1146 		      digest_size);
1147 	set_flow_mode(&desc[idx], S_HASH_to_DOUT);
1148 	set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
1149 	set_cipher_config0(&desc[idx], HASH_DIGEST_RESULT_LITTLE_ENDIAN);
1150 	set_cipher_mode(&desc[idx], hash_mode);
1151 	idx++;
1152 
1153 	/* Loading hash opad xor key state */
1154 	hw_desc_init(&desc[idx]);
1155 	set_cipher_mode(&desc[idx], hash_mode);
1156 	set_din_type(&desc[idx], DMA_DLLI,
1157 		     (ctx->auth_state.hmac.ipad_opad_dma_addr + digest_size),
1158 		     digest_size, NS_BIT);
1159 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1160 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1161 	idx++;
1162 
1163 	/* Load init. digest len (64 bytes) */
1164 	hw_desc_init(&desc[idx]);
1165 	set_cipher_mode(&desc[idx], hash_mode);
1166 	set_din_sram(&desc[idx], cc_digest_len_addr(ctx->drvdata, hash_mode),
1167 		     ctx->hash_len);
1168 	set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
1169 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1170 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1171 	idx++;
1172 
1173 	/* Perform HASH update */
1174 	hw_desc_init(&desc[idx]);
1175 	set_din_sram(&desc[idx], aead_handle->sram_workspace_addr,
1176 		     digest_size);
1177 	set_flow_mode(&desc[idx], DIN_HASH);
1178 	idx++;
1179 
1180 	*seq_size = idx;
1181 }
1182 
1183 static void cc_mlli_to_sram(struct aead_request *req,
1184 			    struct cc_hw_desc desc[], unsigned int *seq_size)
1185 {
1186 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1187 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1188 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1189 	struct device *dev = drvdata_to_dev(ctx->drvdata);
1190 
1191 	if ((req_ctx->assoc_buff_type == CC_DMA_BUF_MLLI ||
1192 	    req_ctx->data_buff_type == CC_DMA_BUF_MLLI ||
1193 	    !req_ctx->is_single_pass) && req_ctx->mlli_params.mlli_len) {
1194 		dev_dbg(dev, "Copy-to-sram: mlli_dma=%08x, mlli_size=%u\n",
1195 			(unsigned int)ctx->drvdata->mlli_sram_addr,
1196 			req_ctx->mlli_params.mlli_len);
1197 		/* Copy MLLI table host-to-sram */
1198 		hw_desc_init(&desc[*seq_size]);
1199 		set_din_type(&desc[*seq_size], DMA_DLLI,
1200 			     req_ctx->mlli_params.mlli_dma_addr,
1201 			     req_ctx->mlli_params.mlli_len, NS_BIT);
1202 		set_dout_sram(&desc[*seq_size],
1203 			      ctx->drvdata->mlli_sram_addr,
1204 			      req_ctx->mlli_params.mlli_len);
1205 		set_flow_mode(&desc[*seq_size], BYPASS);
1206 		(*seq_size)++;
1207 	}
1208 }
1209 
1210 static enum cc_flow_mode cc_get_data_flow(enum drv_crypto_direction direct,
1211 					  enum cc_flow_mode setup_flow_mode,
1212 					  bool is_single_pass)
1213 {
1214 	enum cc_flow_mode data_flow_mode;
1215 
1216 	if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
1217 		if (setup_flow_mode == S_DIN_to_AES)
1218 			data_flow_mode = is_single_pass ?
1219 				AES_to_HASH_and_DOUT : DIN_AES_DOUT;
1220 		else
1221 			data_flow_mode = is_single_pass ?
1222 				DES_to_HASH_and_DOUT : DIN_DES_DOUT;
1223 	} else { /* Decrypt */
1224 		if (setup_flow_mode == S_DIN_to_AES)
1225 			data_flow_mode = is_single_pass ?
1226 				AES_and_HASH : DIN_AES_DOUT;
1227 		else
1228 			data_flow_mode = is_single_pass ?
1229 				DES_and_HASH : DIN_DES_DOUT;
1230 	}
1231 
1232 	return data_flow_mode;
1233 }
1234 
1235 static void cc_hmac_authenc(struct aead_request *req, struct cc_hw_desc desc[],
1236 			    unsigned int *seq_size)
1237 {
1238 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1239 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1240 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1241 	int direct = req_ctx->gen_ctx.op_type;
1242 	unsigned int data_flow_mode =
1243 		cc_get_data_flow(direct, ctx->flow_mode,
1244 				 req_ctx->is_single_pass);
1245 
1246 	if (req_ctx->is_single_pass) {
1247 		/**
1248 		 * Single-pass flow
1249 		 */
1250 		cc_set_hmac_desc(req, desc, seq_size);
1251 		cc_set_cipher_desc(req, desc, seq_size);
1252 		cc_proc_header_desc(req, desc, seq_size);
1253 		cc_proc_cipher_desc(req, data_flow_mode, desc, seq_size);
1254 		cc_proc_scheme_desc(req, desc, seq_size);
1255 		cc_proc_digest_desc(req, desc, seq_size);
1256 		return;
1257 	}
1258 
1259 	/**
1260 	 * Double-pass flow
1261 	 * Fallback for unsupported single-pass modes,
1262 	 * i.e. using assoc. data of non-word-multiple
1263 	 */
1264 	if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
1265 		/* encrypt first.. */
1266 		cc_proc_cipher(req, desc, seq_size, data_flow_mode);
1267 		/* authenc after..*/
1268 		cc_set_hmac_desc(req, desc, seq_size);
1269 		cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
1270 		cc_proc_scheme_desc(req, desc, seq_size);
1271 		cc_proc_digest_desc(req, desc, seq_size);
1272 
1273 	} else { /*DECRYPT*/
1274 		/* authenc first..*/
1275 		cc_set_hmac_desc(req, desc, seq_size);
1276 		cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
1277 		cc_proc_scheme_desc(req, desc, seq_size);
1278 		/* decrypt after.. */
1279 		cc_proc_cipher(req, desc, seq_size, data_flow_mode);
1280 		/* read the digest result with setting the completion bit
1281 		 * must be after the cipher operation
1282 		 */
1283 		cc_proc_digest_desc(req, desc, seq_size);
1284 	}
1285 }
1286 
1287 static void
1288 cc_xcbc_authenc(struct aead_request *req, struct cc_hw_desc desc[],
1289 		unsigned int *seq_size)
1290 {
1291 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1292 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1293 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1294 	int direct = req_ctx->gen_ctx.op_type;
1295 	unsigned int data_flow_mode =
1296 		cc_get_data_flow(direct, ctx->flow_mode,
1297 				 req_ctx->is_single_pass);
1298 
1299 	if (req_ctx->is_single_pass) {
1300 		/**
1301 		 * Single-pass flow
1302 		 */
1303 		cc_set_xcbc_desc(req, desc, seq_size);
1304 		cc_set_cipher_desc(req, desc, seq_size);
1305 		cc_proc_header_desc(req, desc, seq_size);
1306 		cc_proc_cipher_desc(req, data_flow_mode, desc, seq_size);
1307 		cc_proc_digest_desc(req, desc, seq_size);
1308 		return;
1309 	}
1310 
1311 	/**
1312 	 * Double-pass flow
1313 	 * Fallback for unsupported single-pass modes,
1314 	 * i.e. using assoc. data of non-word-multiple
1315 	 */
1316 	if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
1317 		/* encrypt first.. */
1318 		cc_proc_cipher(req, desc, seq_size, data_flow_mode);
1319 		/* authenc after.. */
1320 		cc_set_xcbc_desc(req, desc, seq_size);
1321 		cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
1322 		cc_proc_digest_desc(req, desc, seq_size);
1323 	} else { /*DECRYPT*/
1324 		/* authenc first.. */
1325 		cc_set_xcbc_desc(req, desc, seq_size);
1326 		cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
1327 		/* decrypt after..*/
1328 		cc_proc_cipher(req, desc, seq_size, data_flow_mode);
1329 		/* read the digest result with setting the completion bit
1330 		 * must be after the cipher operation
1331 		 */
1332 		cc_proc_digest_desc(req, desc, seq_size);
1333 	}
1334 }
1335 
1336 static int validate_data_size(struct cc_aead_ctx *ctx,
1337 			      enum drv_crypto_direction direct,
1338 			      struct aead_request *req)
1339 {
1340 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
1341 	struct device *dev = drvdata_to_dev(ctx->drvdata);
1342 	unsigned int assoclen = areq_ctx->assoclen;
1343 	unsigned int cipherlen = (direct == DRV_CRYPTO_DIRECTION_DECRYPT) ?
1344 			(req->cryptlen - ctx->authsize) : req->cryptlen;
1345 
1346 	if (direct == DRV_CRYPTO_DIRECTION_DECRYPT &&
1347 	    req->cryptlen < ctx->authsize)
1348 		goto data_size_err;
1349 
1350 	areq_ctx->is_single_pass = true; /*defaulted to fast flow*/
1351 
1352 	switch (ctx->flow_mode) {
1353 	case S_DIN_to_AES:
1354 		if (ctx->cipher_mode == DRV_CIPHER_CBC &&
1355 		    !IS_ALIGNED(cipherlen, AES_BLOCK_SIZE))
1356 			goto data_size_err;
1357 		if (ctx->cipher_mode == DRV_CIPHER_CCM)
1358 			break;
1359 		if (ctx->cipher_mode == DRV_CIPHER_GCTR) {
1360 			if (areq_ctx->plaintext_authenticate_only)
1361 				areq_ctx->is_single_pass = false;
1362 			break;
1363 		}
1364 
1365 		if (!IS_ALIGNED(assoclen, sizeof(u32)))
1366 			areq_ctx->is_single_pass = false;
1367 
1368 		if (ctx->cipher_mode == DRV_CIPHER_CTR &&
1369 		    !IS_ALIGNED(cipherlen, sizeof(u32)))
1370 			areq_ctx->is_single_pass = false;
1371 
1372 		break;
1373 	case S_DIN_to_DES:
1374 		if (!IS_ALIGNED(cipherlen, DES_BLOCK_SIZE))
1375 			goto data_size_err;
1376 		if (!IS_ALIGNED(assoclen, DES_BLOCK_SIZE))
1377 			areq_ctx->is_single_pass = false;
1378 		break;
1379 	default:
1380 		dev_err(dev, "Unexpected flow mode (%d)\n", ctx->flow_mode);
1381 		goto data_size_err;
1382 	}
1383 
1384 	return 0;
1385 
1386 data_size_err:
1387 	return -EINVAL;
1388 }
1389 
1390 static unsigned int format_ccm_a0(u8 *pa0_buff, u32 header_size)
1391 {
1392 	unsigned int len = 0;
1393 
1394 	if (header_size == 0)
1395 		return 0;
1396 
1397 	if (header_size < ((1UL << 16) - (1UL << 8))) {
1398 		len = 2;
1399 
1400 		pa0_buff[0] = (header_size >> 8) & 0xFF;
1401 		pa0_buff[1] = header_size & 0xFF;
1402 	} else {
1403 		len = 6;
1404 
1405 		pa0_buff[0] = 0xFF;
1406 		pa0_buff[1] = 0xFE;
1407 		pa0_buff[2] = (header_size >> 24) & 0xFF;
1408 		pa0_buff[3] = (header_size >> 16) & 0xFF;
1409 		pa0_buff[4] = (header_size >> 8) & 0xFF;
1410 		pa0_buff[5] = header_size & 0xFF;
1411 	}
1412 
1413 	return len;
1414 }
1415 
1416 static int set_msg_len(u8 *block, unsigned int msglen, unsigned int csize)
1417 {
1418 	__be32 data;
1419 
1420 	memset(block, 0, csize);
1421 	block += csize;
1422 
1423 	if (csize >= 4)
1424 		csize = 4;
1425 	else if (msglen > (1 << (8 * csize)))
1426 		return -EOVERFLOW;
1427 
1428 	data = cpu_to_be32(msglen);
1429 	memcpy(block - csize, (u8 *)&data + 4 - csize, csize);
1430 
1431 	return 0;
1432 }
1433 
1434 static int cc_ccm(struct aead_request *req, struct cc_hw_desc desc[],
1435 		  unsigned int *seq_size)
1436 {
1437 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1438 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1439 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1440 	unsigned int idx = *seq_size;
1441 	unsigned int cipher_flow_mode;
1442 	dma_addr_t mac_result;
1443 
1444 	if (req_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
1445 		cipher_flow_mode = AES_to_HASH_and_DOUT;
1446 		mac_result = req_ctx->mac_buf_dma_addr;
1447 	} else { /* Encrypt */
1448 		cipher_flow_mode = AES_and_HASH;
1449 		mac_result = req_ctx->icv_dma_addr;
1450 	}
1451 
1452 	/* load key */
1453 	hw_desc_init(&desc[idx]);
1454 	set_cipher_mode(&desc[idx], DRV_CIPHER_CTR);
1455 	set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
1456 		     ((ctx->enc_keylen == 24) ?  CC_AES_KEY_SIZE_MAX :
1457 		      ctx->enc_keylen), NS_BIT);
1458 	set_key_size_aes(&desc[idx], ctx->enc_keylen);
1459 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1460 	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1461 	set_flow_mode(&desc[idx], S_DIN_to_AES);
1462 	idx++;
1463 
1464 	/* load ctr state */
1465 	hw_desc_init(&desc[idx]);
1466 	set_cipher_mode(&desc[idx], DRV_CIPHER_CTR);
1467 	set_key_size_aes(&desc[idx], ctx->enc_keylen);
1468 	set_din_type(&desc[idx], DMA_DLLI,
1469 		     req_ctx->gen_ctx.iv_dma_addr, AES_BLOCK_SIZE, NS_BIT);
1470 	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1471 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1472 	set_flow_mode(&desc[idx], S_DIN_to_AES);
1473 	idx++;
1474 
1475 	/* load MAC key */
1476 	hw_desc_init(&desc[idx]);
1477 	set_cipher_mode(&desc[idx], DRV_CIPHER_CBC_MAC);
1478 	set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
1479 		     ((ctx->enc_keylen == 24) ?  CC_AES_KEY_SIZE_MAX :
1480 		      ctx->enc_keylen), NS_BIT);
1481 	set_key_size_aes(&desc[idx], ctx->enc_keylen);
1482 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1483 	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1484 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1485 	set_aes_not_hash_mode(&desc[idx]);
1486 	idx++;
1487 
1488 	/* load MAC state */
1489 	hw_desc_init(&desc[idx]);
1490 	set_cipher_mode(&desc[idx], DRV_CIPHER_CBC_MAC);
1491 	set_key_size_aes(&desc[idx], ctx->enc_keylen);
1492 	set_din_type(&desc[idx], DMA_DLLI, req_ctx->mac_buf_dma_addr,
1493 		     AES_BLOCK_SIZE, NS_BIT);
1494 	set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1495 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1496 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1497 	set_aes_not_hash_mode(&desc[idx]);
1498 	idx++;
1499 
1500 	/* process assoc data */
1501 	if (req_ctx->assoclen > 0) {
1502 		cc_set_assoc_desc(req, DIN_HASH, desc, &idx);
1503 	} else {
1504 		hw_desc_init(&desc[idx]);
1505 		set_din_type(&desc[idx], DMA_DLLI,
1506 			     sg_dma_address(&req_ctx->ccm_adata_sg),
1507 			     AES_BLOCK_SIZE + req_ctx->ccm_hdr_size, NS_BIT);
1508 		set_flow_mode(&desc[idx], DIN_HASH);
1509 		idx++;
1510 	}
1511 
1512 	/* process the cipher */
1513 	if (req_ctx->cryptlen)
1514 		cc_proc_cipher_desc(req, cipher_flow_mode, desc, &idx);
1515 
1516 	/* Read temporal MAC */
1517 	hw_desc_init(&desc[idx]);
1518 	set_cipher_mode(&desc[idx], DRV_CIPHER_CBC_MAC);
1519 	set_dout_dlli(&desc[idx], req_ctx->mac_buf_dma_addr, ctx->authsize,
1520 		      NS_BIT, 0);
1521 	set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
1522 	set_cipher_config0(&desc[idx], HASH_DIGEST_RESULT_LITTLE_ENDIAN);
1523 	set_flow_mode(&desc[idx], S_HASH_to_DOUT);
1524 	set_aes_not_hash_mode(&desc[idx]);
1525 	idx++;
1526 
1527 	/* load AES-CTR state (for last MAC calculation)*/
1528 	hw_desc_init(&desc[idx]);
1529 	set_cipher_mode(&desc[idx], DRV_CIPHER_CTR);
1530 	set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1531 	set_din_type(&desc[idx], DMA_DLLI, req_ctx->ccm_iv0_dma_addr,
1532 		     AES_BLOCK_SIZE, NS_BIT);
1533 	set_key_size_aes(&desc[idx], ctx->enc_keylen);
1534 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1535 	set_flow_mode(&desc[idx], S_DIN_to_AES);
1536 	idx++;
1537 
1538 	hw_desc_init(&desc[idx]);
1539 	set_din_no_dma(&desc[idx], 0, 0xfffff0);
1540 	set_dout_no_dma(&desc[idx], 0, 0, 1);
1541 	idx++;
1542 
1543 	/* encrypt the "T" value and store MAC in mac_state */
1544 	hw_desc_init(&desc[idx]);
1545 	set_din_type(&desc[idx], DMA_DLLI, req_ctx->mac_buf_dma_addr,
1546 		     ctx->authsize, NS_BIT);
1547 	set_dout_dlli(&desc[idx], mac_result, ctx->authsize, NS_BIT, 1);
1548 	set_queue_last_ind(ctx->drvdata, &desc[idx]);
1549 	set_flow_mode(&desc[idx], DIN_AES_DOUT);
1550 	idx++;
1551 
1552 	*seq_size = idx;
1553 	return 0;
1554 }
1555 
1556 static int config_ccm_adata(struct aead_request *req)
1557 {
1558 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1559 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1560 	struct device *dev = drvdata_to_dev(ctx->drvdata);
1561 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1562 	//unsigned int size_of_a = 0, rem_a_size = 0;
1563 	unsigned int lp = req->iv[0];
1564 	/* Note: The code assume that req->iv[0] already contains the value
1565 	 * of L' of RFC3610
1566 	 */
1567 	unsigned int l = lp + 1;  /* This is L' of RFC 3610. */
1568 	unsigned int m = ctx->authsize;  /* This is M' of RFC 3610. */
1569 	u8 *b0 = req_ctx->ccm_config + CCM_B0_OFFSET;
1570 	u8 *a0 = req_ctx->ccm_config + CCM_A0_OFFSET;
1571 	u8 *ctr_count_0 = req_ctx->ccm_config + CCM_CTR_COUNT_0_OFFSET;
1572 	unsigned int cryptlen = (req_ctx->gen_ctx.op_type ==
1573 				 DRV_CRYPTO_DIRECTION_ENCRYPT) ?
1574 				req->cryptlen :
1575 				(req->cryptlen - ctx->authsize);
1576 	int rc;
1577 
1578 	memset(req_ctx->mac_buf, 0, AES_BLOCK_SIZE);
1579 	memset(req_ctx->ccm_config, 0, AES_BLOCK_SIZE * 3);
1580 
1581 	/* taken from crypto/ccm.c */
1582 	/* 2 <= L <= 8, so 1 <= L' <= 7. */
1583 	if (l < 2 || l > 8) {
1584 		dev_err(dev, "illegal iv value %X\n", req->iv[0]);
1585 		return -EINVAL;
1586 	}
1587 	memcpy(b0, req->iv, AES_BLOCK_SIZE);
1588 
1589 	/* format control info per RFC 3610 and
1590 	 * NIST Special Publication 800-38C
1591 	 */
1592 	*b0 |= (8 * ((m - 2) / 2));
1593 	if (req_ctx->assoclen > 0)
1594 		*b0 |= 64;  /* Enable bit 6 if Adata exists. */
1595 
1596 	rc = set_msg_len(b0 + 16 - l, cryptlen, l);  /* Write L'. */
1597 	if (rc) {
1598 		dev_err(dev, "message len overflow detected");
1599 		return rc;
1600 	}
1601 	 /* END of "taken from crypto/ccm.c" */
1602 
1603 	/* l(a) - size of associated data. */
1604 	req_ctx->ccm_hdr_size = format_ccm_a0(a0, req_ctx->assoclen);
1605 
1606 	memset(req->iv + 15 - req->iv[0], 0, req->iv[0] + 1);
1607 	req->iv[15] = 1;
1608 
1609 	memcpy(ctr_count_0, req->iv, AES_BLOCK_SIZE);
1610 	ctr_count_0[15] = 0;
1611 
1612 	return 0;
1613 }
1614 
1615 static void cc_proc_rfc4309_ccm(struct aead_request *req)
1616 {
1617 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1618 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1619 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
1620 
1621 	/* L' */
1622 	memset(areq_ctx->ctr_iv, 0, AES_BLOCK_SIZE);
1623 	/* For RFC 4309, always use 4 bytes for message length
1624 	 * (at most 2^32-1 bytes).
1625 	 */
1626 	areq_ctx->ctr_iv[0] = 3;
1627 
1628 	/* In RFC 4309 there is an 11-bytes nonce+IV part,
1629 	 * that we build here.
1630 	 */
1631 	memcpy(areq_ctx->ctr_iv + CCM_BLOCK_NONCE_OFFSET, ctx->ctr_nonce,
1632 	       CCM_BLOCK_NONCE_SIZE);
1633 	memcpy(areq_ctx->ctr_iv + CCM_BLOCK_IV_OFFSET, req->iv,
1634 	       CCM_BLOCK_IV_SIZE);
1635 	req->iv = areq_ctx->ctr_iv;
1636 	areq_ctx->assoclen -= CCM_BLOCK_IV_SIZE;
1637 }
1638 
1639 static void cc_set_ghash_desc(struct aead_request *req,
1640 			      struct cc_hw_desc desc[], unsigned int *seq_size)
1641 {
1642 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1643 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1644 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1645 	unsigned int idx = *seq_size;
1646 
1647 	/* load key to AES*/
1648 	hw_desc_init(&desc[idx]);
1649 	set_cipher_mode(&desc[idx], DRV_CIPHER_ECB);
1650 	set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1651 	set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
1652 		     ctx->enc_keylen, NS_BIT);
1653 	set_key_size_aes(&desc[idx], ctx->enc_keylen);
1654 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1655 	set_flow_mode(&desc[idx], S_DIN_to_AES);
1656 	idx++;
1657 
1658 	/* process one zero block to generate hkey */
1659 	hw_desc_init(&desc[idx]);
1660 	set_din_const(&desc[idx], 0x0, AES_BLOCK_SIZE);
1661 	set_dout_dlli(&desc[idx], req_ctx->hkey_dma_addr, AES_BLOCK_SIZE,
1662 		      NS_BIT, 0);
1663 	set_flow_mode(&desc[idx], DIN_AES_DOUT);
1664 	idx++;
1665 
1666 	/* Memory Barrier */
1667 	hw_desc_init(&desc[idx]);
1668 	set_din_no_dma(&desc[idx], 0, 0xfffff0);
1669 	set_dout_no_dma(&desc[idx], 0, 0, 1);
1670 	idx++;
1671 
1672 	/* Load GHASH subkey */
1673 	hw_desc_init(&desc[idx]);
1674 	set_din_type(&desc[idx], DMA_DLLI, req_ctx->hkey_dma_addr,
1675 		     AES_BLOCK_SIZE, NS_BIT);
1676 	set_dout_no_dma(&desc[idx], 0, 0, 1);
1677 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1678 	set_aes_not_hash_mode(&desc[idx]);
1679 	set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
1680 	set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
1681 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1682 	idx++;
1683 
1684 	/* Configure Hash Engine to work with GHASH.
1685 	 * Since it was not possible to extend HASH submodes to add GHASH,
1686 	 * The following command is necessary in order to
1687 	 * select GHASH (according to HW designers)
1688 	 */
1689 	hw_desc_init(&desc[idx]);
1690 	set_din_no_dma(&desc[idx], 0, 0xfffff0);
1691 	set_dout_no_dma(&desc[idx], 0, 0, 1);
1692 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1693 	set_aes_not_hash_mode(&desc[idx]);
1694 	set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
1695 	set_cipher_do(&desc[idx], 1); //1=AES_SK RKEK
1696 	set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1697 	set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
1698 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1699 	idx++;
1700 
1701 	/* Load GHASH initial STATE (which is 0). (for any hash there is an
1702 	 * initial state)
1703 	 */
1704 	hw_desc_init(&desc[idx]);
1705 	set_din_const(&desc[idx], 0x0, AES_BLOCK_SIZE);
1706 	set_dout_no_dma(&desc[idx], 0, 0, 1);
1707 	set_flow_mode(&desc[idx], S_DIN_to_HASH);
1708 	set_aes_not_hash_mode(&desc[idx]);
1709 	set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
1710 	set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
1711 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1712 	idx++;
1713 
1714 	*seq_size = idx;
1715 }
1716 
1717 static void cc_set_gctr_desc(struct aead_request *req, struct cc_hw_desc desc[],
1718 			     unsigned int *seq_size)
1719 {
1720 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1721 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1722 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1723 	unsigned int idx = *seq_size;
1724 
1725 	/* load key to AES*/
1726 	hw_desc_init(&desc[idx]);
1727 	set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
1728 	set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1729 	set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
1730 		     ctx->enc_keylen, NS_BIT);
1731 	set_key_size_aes(&desc[idx], ctx->enc_keylen);
1732 	set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1733 	set_flow_mode(&desc[idx], S_DIN_to_AES);
1734 	idx++;
1735 
1736 	if (req_ctx->cryptlen && !req_ctx->plaintext_authenticate_only) {
1737 		/* load AES/CTR initial CTR value inc by 2*/
1738 		hw_desc_init(&desc[idx]);
1739 		set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
1740 		set_key_size_aes(&desc[idx], ctx->enc_keylen);
1741 		set_din_type(&desc[idx], DMA_DLLI,
1742 			     req_ctx->gcm_iv_inc2_dma_addr, AES_BLOCK_SIZE,
1743 			     NS_BIT);
1744 		set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1745 		set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1746 		set_flow_mode(&desc[idx], S_DIN_to_AES);
1747 		idx++;
1748 	}
1749 
1750 	*seq_size = idx;
1751 }
1752 
1753 static void cc_proc_gcm_result(struct aead_request *req,
1754 			       struct cc_hw_desc desc[],
1755 			       unsigned int *seq_size)
1756 {
1757 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1758 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1759 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1760 	dma_addr_t mac_result;
1761 	unsigned int idx = *seq_size;
1762 
1763 	if (req_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
1764 		mac_result = req_ctx->mac_buf_dma_addr;
1765 	} else { /* Encrypt */
1766 		mac_result = req_ctx->icv_dma_addr;
1767 	}
1768 
1769 	/* process(ghash) gcm_block_len */
1770 	hw_desc_init(&desc[idx]);
1771 	set_din_type(&desc[idx], DMA_DLLI, req_ctx->gcm_block_len_dma_addr,
1772 		     AES_BLOCK_SIZE, NS_BIT);
1773 	set_flow_mode(&desc[idx], DIN_HASH);
1774 	idx++;
1775 
1776 	/* Store GHASH state after GHASH(Associated Data + Cipher +LenBlock) */
1777 	hw_desc_init(&desc[idx]);
1778 	set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
1779 	set_din_no_dma(&desc[idx], 0, 0xfffff0);
1780 	set_dout_dlli(&desc[idx], req_ctx->mac_buf_dma_addr, AES_BLOCK_SIZE,
1781 		      NS_BIT, 0);
1782 	set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
1783 	set_flow_mode(&desc[idx], S_HASH_to_DOUT);
1784 	set_aes_not_hash_mode(&desc[idx]);
1785 
1786 	idx++;
1787 
1788 	/* load AES/CTR initial CTR value inc by 1*/
1789 	hw_desc_init(&desc[idx]);
1790 	set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
1791 	set_key_size_aes(&desc[idx], ctx->enc_keylen);
1792 	set_din_type(&desc[idx], DMA_DLLI, req_ctx->gcm_iv_inc1_dma_addr,
1793 		     AES_BLOCK_SIZE, NS_BIT);
1794 	set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1795 	set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1796 	set_flow_mode(&desc[idx], S_DIN_to_AES);
1797 	idx++;
1798 
1799 	/* Memory Barrier */
1800 	hw_desc_init(&desc[idx]);
1801 	set_din_no_dma(&desc[idx], 0, 0xfffff0);
1802 	set_dout_no_dma(&desc[idx], 0, 0, 1);
1803 	idx++;
1804 
1805 	/* process GCTR on stored GHASH and store MAC in mac_state*/
1806 	hw_desc_init(&desc[idx]);
1807 	set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
1808 	set_din_type(&desc[idx], DMA_DLLI, req_ctx->mac_buf_dma_addr,
1809 		     AES_BLOCK_SIZE, NS_BIT);
1810 	set_dout_dlli(&desc[idx], mac_result, ctx->authsize, NS_BIT, 1);
1811 	set_queue_last_ind(ctx->drvdata, &desc[idx]);
1812 	set_flow_mode(&desc[idx], DIN_AES_DOUT);
1813 	idx++;
1814 
1815 	*seq_size = idx;
1816 }
1817 
1818 static int cc_gcm(struct aead_request *req, struct cc_hw_desc desc[],
1819 		  unsigned int *seq_size)
1820 {
1821 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1822 	unsigned int cipher_flow_mode;
1823 
1824 	if (req_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
1825 		cipher_flow_mode = AES_and_HASH;
1826 	} else { /* Encrypt */
1827 		cipher_flow_mode = AES_to_HASH_and_DOUT;
1828 	}
1829 
1830 	//in RFC4543 no data to encrypt. just copy data from src to dest.
1831 	if (req_ctx->plaintext_authenticate_only) {
1832 		cc_proc_cipher_desc(req, BYPASS, desc, seq_size);
1833 		cc_set_ghash_desc(req, desc, seq_size);
1834 		/* process(ghash) assoc data */
1835 		cc_set_assoc_desc(req, DIN_HASH, desc, seq_size);
1836 		cc_set_gctr_desc(req, desc, seq_size);
1837 		cc_proc_gcm_result(req, desc, seq_size);
1838 		return 0;
1839 	}
1840 
1841 	// for gcm and rfc4106.
1842 	cc_set_ghash_desc(req, desc, seq_size);
1843 	/* process(ghash) assoc data */
1844 	if (req_ctx->assoclen > 0)
1845 		cc_set_assoc_desc(req, DIN_HASH, desc, seq_size);
1846 	cc_set_gctr_desc(req, desc, seq_size);
1847 	/* process(gctr+ghash) */
1848 	if (req_ctx->cryptlen)
1849 		cc_proc_cipher_desc(req, cipher_flow_mode, desc, seq_size);
1850 	cc_proc_gcm_result(req, desc, seq_size);
1851 
1852 	return 0;
1853 }
1854 
1855 static int config_gcm_context(struct aead_request *req)
1856 {
1857 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1858 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1859 	struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1860 	struct device *dev = drvdata_to_dev(ctx->drvdata);
1861 
1862 	unsigned int cryptlen = (req_ctx->gen_ctx.op_type ==
1863 				 DRV_CRYPTO_DIRECTION_ENCRYPT) ?
1864 				req->cryptlen :
1865 				(req->cryptlen - ctx->authsize);
1866 	__be32 counter = cpu_to_be32(2);
1867 
1868 	dev_dbg(dev, "%s() cryptlen = %d, req_ctx->assoclen = %d ctx->authsize = %d\n",
1869 		__func__, cryptlen, req_ctx->assoclen, ctx->authsize);
1870 
1871 	memset(req_ctx->hkey, 0, AES_BLOCK_SIZE);
1872 
1873 	memset(req_ctx->mac_buf, 0, AES_BLOCK_SIZE);
1874 
1875 	memcpy(req->iv + 12, &counter, 4);
1876 	memcpy(req_ctx->gcm_iv_inc2, req->iv, 16);
1877 
1878 	counter = cpu_to_be32(1);
1879 	memcpy(req->iv + 12, &counter, 4);
1880 	memcpy(req_ctx->gcm_iv_inc1, req->iv, 16);
1881 
1882 	if (!req_ctx->plaintext_authenticate_only) {
1883 		__be64 temp64;
1884 
1885 		temp64 = cpu_to_be64(req_ctx->assoclen * 8);
1886 		memcpy(&req_ctx->gcm_len_block.len_a, &temp64, sizeof(temp64));
1887 		temp64 = cpu_to_be64(cryptlen * 8);
1888 		memcpy(&req_ctx->gcm_len_block.len_c, &temp64, 8);
1889 	} else {
1890 		/* rfc4543=>  all data(AAD,IV,Plain) are considered additional
1891 		 * data that is nothing is encrypted.
1892 		 */
1893 		__be64 temp64;
1894 
1895 		temp64 = cpu_to_be64((req_ctx->assoclen +
1896 				      GCM_BLOCK_RFC4_IV_SIZE + cryptlen) * 8);
1897 		memcpy(&req_ctx->gcm_len_block.len_a, &temp64, sizeof(temp64));
1898 		temp64 = 0;
1899 		memcpy(&req_ctx->gcm_len_block.len_c, &temp64, 8);
1900 	}
1901 
1902 	return 0;
1903 }
1904 
1905 static void cc_proc_rfc4_gcm(struct aead_request *req)
1906 {
1907 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1908 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1909 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
1910 
1911 	memcpy(areq_ctx->ctr_iv + GCM_BLOCK_RFC4_NONCE_OFFSET,
1912 	       ctx->ctr_nonce, GCM_BLOCK_RFC4_NONCE_SIZE);
1913 	memcpy(areq_ctx->ctr_iv + GCM_BLOCK_RFC4_IV_OFFSET, req->iv,
1914 	       GCM_BLOCK_RFC4_IV_SIZE);
1915 	req->iv = areq_ctx->ctr_iv;
1916 	areq_ctx->assoclen -= GCM_BLOCK_RFC4_IV_SIZE;
1917 }
1918 
1919 static int cc_proc_aead(struct aead_request *req,
1920 			enum drv_crypto_direction direct)
1921 {
1922 	int rc = 0;
1923 	int seq_len = 0;
1924 	struct cc_hw_desc desc[MAX_AEAD_PROCESS_SEQ];
1925 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1926 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1927 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
1928 	struct device *dev = drvdata_to_dev(ctx->drvdata);
1929 	struct cc_crypto_req cc_req = {};
1930 
1931 	dev_dbg(dev, "%s context=%p req=%p iv=%p src=%p src_ofs=%d dst=%p dst_ofs=%d cryptolen=%d\n",
1932 		((direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ? "Enc" : "Dec"),
1933 		ctx, req, req->iv, sg_virt(req->src), req->src->offset,
1934 		sg_virt(req->dst), req->dst->offset, req->cryptlen);
1935 
1936 	/* STAT_PHASE_0: Init and sanity checks */
1937 
1938 	/* Check data length according to mode */
1939 	if (validate_data_size(ctx, direct, req)) {
1940 		dev_err(dev, "Unsupported crypt/assoc len %d/%d.\n",
1941 			req->cryptlen, areq_ctx->assoclen);
1942 		crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_BLOCK_LEN);
1943 		return -EINVAL;
1944 	}
1945 
1946 	/* Setup request structure */
1947 	cc_req.user_cb = (void *)cc_aead_complete;
1948 	cc_req.user_arg = (void *)req;
1949 
1950 	/* Setup request context */
1951 	areq_ctx->gen_ctx.op_type = direct;
1952 	areq_ctx->req_authsize = ctx->authsize;
1953 	areq_ctx->cipher_mode = ctx->cipher_mode;
1954 
1955 	/* STAT_PHASE_1: Map buffers */
1956 
1957 	if (ctx->cipher_mode == DRV_CIPHER_CTR) {
1958 		/* Build CTR IV - Copy nonce from last 4 bytes in
1959 		 * CTR key to first 4 bytes in CTR IV
1960 		 */
1961 		memcpy(areq_ctx->ctr_iv, ctx->ctr_nonce,
1962 		       CTR_RFC3686_NONCE_SIZE);
1963 		memcpy(areq_ctx->ctr_iv + CTR_RFC3686_NONCE_SIZE, req->iv,
1964 		       CTR_RFC3686_IV_SIZE);
1965 		/* Initialize counter portion of counter block */
1966 		*(__be32 *)(areq_ctx->ctr_iv + CTR_RFC3686_NONCE_SIZE +
1967 			    CTR_RFC3686_IV_SIZE) = cpu_to_be32(1);
1968 
1969 		/* Replace with counter iv */
1970 		req->iv = areq_ctx->ctr_iv;
1971 		areq_ctx->hw_iv_size = CTR_RFC3686_BLOCK_SIZE;
1972 	} else if ((ctx->cipher_mode == DRV_CIPHER_CCM) ||
1973 		   (ctx->cipher_mode == DRV_CIPHER_GCTR)) {
1974 		areq_ctx->hw_iv_size = AES_BLOCK_SIZE;
1975 		if (areq_ctx->ctr_iv != req->iv) {
1976 			memcpy(areq_ctx->ctr_iv, req->iv,
1977 			       crypto_aead_ivsize(tfm));
1978 			req->iv = areq_ctx->ctr_iv;
1979 		}
1980 	}  else {
1981 		areq_ctx->hw_iv_size = crypto_aead_ivsize(tfm);
1982 	}
1983 
1984 	if (ctx->cipher_mode == DRV_CIPHER_CCM) {
1985 		rc = config_ccm_adata(req);
1986 		if (rc) {
1987 			dev_dbg(dev, "config_ccm_adata() returned with a failure %d!",
1988 				rc);
1989 			goto exit;
1990 		}
1991 	} else {
1992 		areq_ctx->ccm_hdr_size = ccm_header_size_null;
1993 	}
1994 
1995 	if (ctx->cipher_mode == DRV_CIPHER_GCTR) {
1996 		rc = config_gcm_context(req);
1997 		if (rc) {
1998 			dev_dbg(dev, "config_gcm_context() returned with a failure %d!",
1999 				rc);
2000 			goto exit;
2001 		}
2002 	}
2003 
2004 	rc = cc_map_aead_request(ctx->drvdata, req);
2005 	if (rc) {
2006 		dev_err(dev, "map_request() failed\n");
2007 		goto exit;
2008 	}
2009 
2010 	/* STAT_PHASE_2: Create sequence */
2011 
2012 	/* Load MLLI tables to SRAM if necessary */
2013 	cc_mlli_to_sram(req, desc, &seq_len);
2014 
2015 	/*TODO: move seq len by reference */
2016 	switch (ctx->auth_mode) {
2017 	case DRV_HASH_SHA1:
2018 	case DRV_HASH_SHA256:
2019 		cc_hmac_authenc(req, desc, &seq_len);
2020 		break;
2021 	case DRV_HASH_XCBC_MAC:
2022 		cc_xcbc_authenc(req, desc, &seq_len);
2023 		break;
2024 	case DRV_HASH_NULL:
2025 		if (ctx->cipher_mode == DRV_CIPHER_CCM)
2026 			cc_ccm(req, desc, &seq_len);
2027 		if (ctx->cipher_mode == DRV_CIPHER_GCTR)
2028 			cc_gcm(req, desc, &seq_len);
2029 		break;
2030 	default:
2031 		dev_err(dev, "Unsupported authenc (%d)\n", ctx->auth_mode);
2032 		cc_unmap_aead_request(dev, req);
2033 		rc = -ENOTSUPP;
2034 		goto exit;
2035 	}
2036 
2037 	/* STAT_PHASE_3: Lock HW and push sequence */
2038 
2039 	rc = cc_send_request(ctx->drvdata, &cc_req, desc, seq_len, &req->base);
2040 
2041 	if (rc != -EINPROGRESS && rc != -EBUSY) {
2042 		dev_err(dev, "send_request() failed (rc=%d)\n", rc);
2043 		cc_unmap_aead_request(dev, req);
2044 	}
2045 
2046 exit:
2047 	return rc;
2048 }
2049 
2050 static int cc_aead_encrypt(struct aead_request *req)
2051 {
2052 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2053 	int rc;
2054 
2055 	memset(areq_ctx, 0, sizeof(*areq_ctx));
2056 
2057 	/* No generated IV required */
2058 	areq_ctx->backup_iv = req->iv;
2059 	areq_ctx->assoclen = req->assoclen;
2060 	areq_ctx->is_gcm4543 = false;
2061 
2062 	areq_ctx->plaintext_authenticate_only = false;
2063 
2064 	rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
2065 	if (rc != -EINPROGRESS && rc != -EBUSY)
2066 		req->iv = areq_ctx->backup_iv;
2067 
2068 	return rc;
2069 }
2070 
2071 static int cc_rfc4309_ccm_encrypt(struct aead_request *req)
2072 {
2073 	/* Very similar to cc_aead_encrypt() above. */
2074 
2075 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2076 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2077 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2078 	struct device *dev = drvdata_to_dev(ctx->drvdata);
2079 	int rc = -EINVAL;
2080 
2081 	if (!valid_assoclen(req)) {
2082 		dev_err(dev, "invalid Assoclen:%u\n", req->assoclen);
2083 		goto out;
2084 	}
2085 
2086 	memset(areq_ctx, 0, sizeof(*areq_ctx));
2087 
2088 	/* No generated IV required */
2089 	areq_ctx->backup_iv = req->iv;
2090 	areq_ctx->assoclen = req->assoclen;
2091 	areq_ctx->is_gcm4543 = true;
2092 
2093 	cc_proc_rfc4309_ccm(req);
2094 
2095 	rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
2096 	if (rc != -EINPROGRESS && rc != -EBUSY)
2097 		req->iv = areq_ctx->backup_iv;
2098 out:
2099 	return rc;
2100 }
2101 
2102 static int cc_aead_decrypt(struct aead_request *req)
2103 {
2104 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2105 	int rc;
2106 
2107 	memset(areq_ctx, 0, sizeof(*areq_ctx));
2108 
2109 	/* No generated IV required */
2110 	areq_ctx->backup_iv = req->iv;
2111 	areq_ctx->assoclen = req->assoclen;
2112 	areq_ctx->is_gcm4543 = false;
2113 
2114 	areq_ctx->plaintext_authenticate_only = false;
2115 
2116 	rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
2117 	if (rc != -EINPROGRESS && rc != -EBUSY)
2118 		req->iv = areq_ctx->backup_iv;
2119 
2120 	return rc;
2121 }
2122 
2123 static int cc_rfc4309_ccm_decrypt(struct aead_request *req)
2124 {
2125 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2126 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2127 	struct device *dev = drvdata_to_dev(ctx->drvdata);
2128 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2129 	int rc = -EINVAL;
2130 
2131 	if (!valid_assoclen(req)) {
2132 		dev_err(dev, "invalid Assoclen:%u\n", req->assoclen);
2133 		goto out;
2134 	}
2135 
2136 	memset(areq_ctx, 0, sizeof(*areq_ctx));
2137 
2138 	/* No generated IV required */
2139 	areq_ctx->backup_iv = req->iv;
2140 	areq_ctx->assoclen = req->assoclen;
2141 
2142 	areq_ctx->is_gcm4543 = true;
2143 	cc_proc_rfc4309_ccm(req);
2144 
2145 	rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
2146 	if (rc != -EINPROGRESS && rc != -EBUSY)
2147 		req->iv = areq_ctx->backup_iv;
2148 
2149 out:
2150 	return rc;
2151 }
2152 
2153 static int cc_rfc4106_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
2154 				 unsigned int keylen)
2155 {
2156 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2157 	struct device *dev = drvdata_to_dev(ctx->drvdata);
2158 
2159 	dev_dbg(dev, "%s()  keylen %d, key %p\n", __func__, keylen, key);
2160 
2161 	if (keylen < 4)
2162 		return -EINVAL;
2163 
2164 	keylen -= 4;
2165 	memcpy(ctx->ctr_nonce, key + keylen, 4);
2166 
2167 	return cc_aead_setkey(tfm, key, keylen);
2168 }
2169 
2170 static int cc_rfc4543_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
2171 				 unsigned int keylen)
2172 {
2173 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2174 	struct device *dev = drvdata_to_dev(ctx->drvdata);
2175 
2176 	dev_dbg(dev, "%s()  keylen %d, key %p\n", __func__, keylen, key);
2177 
2178 	if (keylen < 4)
2179 		return -EINVAL;
2180 
2181 	keylen -= 4;
2182 	memcpy(ctx->ctr_nonce, key + keylen, 4);
2183 
2184 	return cc_aead_setkey(tfm, key, keylen);
2185 }
2186 
2187 static int cc_gcm_setauthsize(struct crypto_aead *authenc,
2188 			      unsigned int authsize)
2189 {
2190 	switch (authsize) {
2191 	case 4:
2192 	case 8:
2193 	case 12:
2194 	case 13:
2195 	case 14:
2196 	case 15:
2197 	case 16:
2198 		break;
2199 	default:
2200 		return -EINVAL;
2201 	}
2202 
2203 	return cc_aead_setauthsize(authenc, authsize);
2204 }
2205 
2206 static int cc_rfc4106_gcm_setauthsize(struct crypto_aead *authenc,
2207 				      unsigned int authsize)
2208 {
2209 	struct cc_aead_ctx *ctx = crypto_aead_ctx(authenc);
2210 	struct device *dev = drvdata_to_dev(ctx->drvdata);
2211 
2212 	dev_dbg(dev, "authsize %d\n", authsize);
2213 
2214 	switch (authsize) {
2215 	case 8:
2216 	case 12:
2217 	case 16:
2218 		break;
2219 	default:
2220 		return -EINVAL;
2221 	}
2222 
2223 	return cc_aead_setauthsize(authenc, authsize);
2224 }
2225 
2226 static int cc_rfc4543_gcm_setauthsize(struct crypto_aead *authenc,
2227 				      unsigned int authsize)
2228 {
2229 	struct cc_aead_ctx *ctx = crypto_aead_ctx(authenc);
2230 	struct device *dev = drvdata_to_dev(ctx->drvdata);
2231 
2232 	dev_dbg(dev, "authsize %d\n", authsize);
2233 
2234 	if (authsize != 16)
2235 		return -EINVAL;
2236 
2237 	return cc_aead_setauthsize(authenc, authsize);
2238 }
2239 
2240 static int cc_rfc4106_gcm_encrypt(struct aead_request *req)
2241 {
2242 	/* Very similar to cc_aead_encrypt() above. */
2243 
2244 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2245 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2246 	struct device *dev = drvdata_to_dev(ctx->drvdata);
2247 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2248 	int rc = -EINVAL;
2249 
2250 	if (!valid_assoclen(req)) {
2251 		dev_err(dev, "invalid Assoclen:%u\n", req->assoclen);
2252 		goto out;
2253 	}
2254 
2255 	memset(areq_ctx, 0, sizeof(*areq_ctx));
2256 
2257 	/* No generated IV required */
2258 	areq_ctx->backup_iv = req->iv;
2259 	areq_ctx->assoclen = req->assoclen;
2260 	areq_ctx->plaintext_authenticate_only = false;
2261 
2262 	cc_proc_rfc4_gcm(req);
2263 	areq_ctx->is_gcm4543 = true;
2264 
2265 	rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
2266 	if (rc != -EINPROGRESS && rc != -EBUSY)
2267 		req->iv = areq_ctx->backup_iv;
2268 out:
2269 	return rc;
2270 }
2271 
2272 static int cc_rfc4543_gcm_encrypt(struct aead_request *req)
2273 {
2274 	/* Very similar to cc_aead_encrypt() above. */
2275 
2276 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2277 	int rc;
2278 
2279 	memset(areq_ctx, 0, sizeof(*areq_ctx));
2280 
2281 	//plaintext is not encryped with rfc4543
2282 	areq_ctx->plaintext_authenticate_only = true;
2283 
2284 	/* No generated IV required */
2285 	areq_ctx->backup_iv = req->iv;
2286 	areq_ctx->assoclen = req->assoclen;
2287 
2288 	cc_proc_rfc4_gcm(req);
2289 	areq_ctx->is_gcm4543 = true;
2290 
2291 	rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
2292 	if (rc != -EINPROGRESS && rc != -EBUSY)
2293 		req->iv = areq_ctx->backup_iv;
2294 
2295 	return rc;
2296 }
2297 
2298 static int cc_rfc4106_gcm_decrypt(struct aead_request *req)
2299 {
2300 	/* Very similar to cc_aead_decrypt() above. */
2301 
2302 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2303 	struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2304 	struct device *dev = drvdata_to_dev(ctx->drvdata);
2305 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2306 	int rc = -EINVAL;
2307 
2308 	if (!valid_assoclen(req)) {
2309 		dev_err(dev, "invalid Assoclen:%u\n", req->assoclen);
2310 		goto out;
2311 	}
2312 
2313 	memset(areq_ctx, 0, sizeof(*areq_ctx));
2314 
2315 	/* No generated IV required */
2316 	areq_ctx->backup_iv = req->iv;
2317 	areq_ctx->assoclen = req->assoclen;
2318 	areq_ctx->plaintext_authenticate_only = false;
2319 
2320 	cc_proc_rfc4_gcm(req);
2321 	areq_ctx->is_gcm4543 = true;
2322 
2323 	rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
2324 	if (rc != -EINPROGRESS && rc != -EBUSY)
2325 		req->iv = areq_ctx->backup_iv;
2326 out:
2327 	return rc;
2328 }
2329 
2330 static int cc_rfc4543_gcm_decrypt(struct aead_request *req)
2331 {
2332 	/* Very similar to cc_aead_decrypt() above. */
2333 
2334 	struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2335 	int rc;
2336 
2337 	memset(areq_ctx, 0, sizeof(*areq_ctx));
2338 
2339 	//plaintext is not decryped with rfc4543
2340 	areq_ctx->plaintext_authenticate_only = true;
2341 
2342 	/* No generated IV required */
2343 	areq_ctx->backup_iv = req->iv;
2344 	areq_ctx->assoclen = req->assoclen;
2345 
2346 	cc_proc_rfc4_gcm(req);
2347 	areq_ctx->is_gcm4543 = true;
2348 
2349 	rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
2350 	if (rc != -EINPROGRESS && rc != -EBUSY)
2351 		req->iv = areq_ctx->backup_iv;
2352 
2353 	return rc;
2354 }
2355 
2356 /* aead alg */
2357 static struct cc_alg_template aead_algs[] = {
2358 	{
2359 		.name = "authenc(hmac(sha1),cbc(aes))",
2360 		.driver_name = "authenc-hmac-sha1-cbc-aes-ccree",
2361 		.blocksize = AES_BLOCK_SIZE,
2362 		.template_aead = {
2363 			.setkey = cc_aead_setkey,
2364 			.setauthsize = cc_aead_setauthsize,
2365 			.encrypt = cc_aead_encrypt,
2366 			.decrypt = cc_aead_decrypt,
2367 			.init = cc_aead_init,
2368 			.exit = cc_aead_exit,
2369 			.ivsize = AES_BLOCK_SIZE,
2370 			.maxauthsize = SHA1_DIGEST_SIZE,
2371 		},
2372 		.cipher_mode = DRV_CIPHER_CBC,
2373 		.flow_mode = S_DIN_to_AES,
2374 		.auth_mode = DRV_HASH_SHA1,
2375 		.min_hw_rev = CC_HW_REV_630,
2376 		.std_body = CC_STD_NIST,
2377 	},
2378 	{
2379 		.name = "authenc(hmac(sha1),cbc(des3_ede))",
2380 		.driver_name = "authenc-hmac-sha1-cbc-des3-ccree",
2381 		.blocksize = DES3_EDE_BLOCK_SIZE,
2382 		.template_aead = {
2383 			.setkey = cc_des3_aead_setkey,
2384 			.setauthsize = cc_aead_setauthsize,
2385 			.encrypt = cc_aead_encrypt,
2386 			.decrypt = cc_aead_decrypt,
2387 			.init = cc_aead_init,
2388 			.exit = cc_aead_exit,
2389 			.ivsize = DES3_EDE_BLOCK_SIZE,
2390 			.maxauthsize = SHA1_DIGEST_SIZE,
2391 		},
2392 		.cipher_mode = DRV_CIPHER_CBC,
2393 		.flow_mode = S_DIN_to_DES,
2394 		.auth_mode = DRV_HASH_SHA1,
2395 		.min_hw_rev = CC_HW_REV_630,
2396 		.std_body = CC_STD_NIST,
2397 	},
2398 	{
2399 		.name = "authenc(hmac(sha256),cbc(aes))",
2400 		.driver_name = "authenc-hmac-sha256-cbc-aes-ccree",
2401 		.blocksize = AES_BLOCK_SIZE,
2402 		.template_aead = {
2403 			.setkey = cc_aead_setkey,
2404 			.setauthsize = cc_aead_setauthsize,
2405 			.encrypt = cc_aead_encrypt,
2406 			.decrypt = cc_aead_decrypt,
2407 			.init = cc_aead_init,
2408 			.exit = cc_aead_exit,
2409 			.ivsize = AES_BLOCK_SIZE,
2410 			.maxauthsize = SHA256_DIGEST_SIZE,
2411 		},
2412 		.cipher_mode = DRV_CIPHER_CBC,
2413 		.flow_mode = S_DIN_to_AES,
2414 		.auth_mode = DRV_HASH_SHA256,
2415 		.min_hw_rev = CC_HW_REV_630,
2416 		.std_body = CC_STD_NIST,
2417 	},
2418 	{
2419 		.name = "authenc(hmac(sha256),cbc(des3_ede))",
2420 		.driver_name = "authenc-hmac-sha256-cbc-des3-ccree",
2421 		.blocksize = DES3_EDE_BLOCK_SIZE,
2422 		.template_aead = {
2423 			.setkey = cc_des3_aead_setkey,
2424 			.setauthsize = cc_aead_setauthsize,
2425 			.encrypt = cc_aead_encrypt,
2426 			.decrypt = cc_aead_decrypt,
2427 			.init = cc_aead_init,
2428 			.exit = cc_aead_exit,
2429 			.ivsize = DES3_EDE_BLOCK_SIZE,
2430 			.maxauthsize = SHA256_DIGEST_SIZE,
2431 		},
2432 		.cipher_mode = DRV_CIPHER_CBC,
2433 		.flow_mode = S_DIN_to_DES,
2434 		.auth_mode = DRV_HASH_SHA256,
2435 		.min_hw_rev = CC_HW_REV_630,
2436 		.std_body = CC_STD_NIST,
2437 	},
2438 	{
2439 		.name = "authenc(xcbc(aes),cbc(aes))",
2440 		.driver_name = "authenc-xcbc-aes-cbc-aes-ccree",
2441 		.blocksize = AES_BLOCK_SIZE,
2442 		.template_aead = {
2443 			.setkey = cc_aead_setkey,
2444 			.setauthsize = cc_aead_setauthsize,
2445 			.encrypt = cc_aead_encrypt,
2446 			.decrypt = cc_aead_decrypt,
2447 			.init = cc_aead_init,
2448 			.exit = cc_aead_exit,
2449 			.ivsize = AES_BLOCK_SIZE,
2450 			.maxauthsize = AES_BLOCK_SIZE,
2451 		},
2452 		.cipher_mode = DRV_CIPHER_CBC,
2453 		.flow_mode = S_DIN_to_AES,
2454 		.auth_mode = DRV_HASH_XCBC_MAC,
2455 		.min_hw_rev = CC_HW_REV_630,
2456 		.std_body = CC_STD_NIST,
2457 	},
2458 	{
2459 		.name = "authenc(hmac(sha1),rfc3686(ctr(aes)))",
2460 		.driver_name = "authenc-hmac-sha1-rfc3686-ctr-aes-ccree",
2461 		.blocksize = 1,
2462 		.template_aead = {
2463 			.setkey = cc_aead_setkey,
2464 			.setauthsize = cc_aead_setauthsize,
2465 			.encrypt = cc_aead_encrypt,
2466 			.decrypt = cc_aead_decrypt,
2467 			.init = cc_aead_init,
2468 			.exit = cc_aead_exit,
2469 			.ivsize = CTR_RFC3686_IV_SIZE,
2470 			.maxauthsize = SHA1_DIGEST_SIZE,
2471 		},
2472 		.cipher_mode = DRV_CIPHER_CTR,
2473 		.flow_mode = S_DIN_to_AES,
2474 		.auth_mode = DRV_HASH_SHA1,
2475 		.min_hw_rev = CC_HW_REV_630,
2476 		.std_body = CC_STD_NIST,
2477 	},
2478 	{
2479 		.name = "authenc(hmac(sha256),rfc3686(ctr(aes)))",
2480 		.driver_name = "authenc-hmac-sha256-rfc3686-ctr-aes-ccree",
2481 		.blocksize = 1,
2482 		.template_aead = {
2483 			.setkey = cc_aead_setkey,
2484 			.setauthsize = cc_aead_setauthsize,
2485 			.encrypt = cc_aead_encrypt,
2486 			.decrypt = cc_aead_decrypt,
2487 			.init = cc_aead_init,
2488 			.exit = cc_aead_exit,
2489 			.ivsize = CTR_RFC3686_IV_SIZE,
2490 			.maxauthsize = SHA256_DIGEST_SIZE,
2491 		},
2492 		.cipher_mode = DRV_CIPHER_CTR,
2493 		.flow_mode = S_DIN_to_AES,
2494 		.auth_mode = DRV_HASH_SHA256,
2495 		.min_hw_rev = CC_HW_REV_630,
2496 		.std_body = CC_STD_NIST,
2497 	},
2498 	{
2499 		.name = "authenc(xcbc(aes),rfc3686(ctr(aes)))",
2500 		.driver_name = "authenc-xcbc-aes-rfc3686-ctr-aes-ccree",
2501 		.blocksize = 1,
2502 		.template_aead = {
2503 			.setkey = cc_aead_setkey,
2504 			.setauthsize = cc_aead_setauthsize,
2505 			.encrypt = cc_aead_encrypt,
2506 			.decrypt = cc_aead_decrypt,
2507 			.init = cc_aead_init,
2508 			.exit = cc_aead_exit,
2509 			.ivsize = CTR_RFC3686_IV_SIZE,
2510 			.maxauthsize = AES_BLOCK_SIZE,
2511 		},
2512 		.cipher_mode = DRV_CIPHER_CTR,
2513 		.flow_mode = S_DIN_to_AES,
2514 		.auth_mode = DRV_HASH_XCBC_MAC,
2515 		.min_hw_rev = CC_HW_REV_630,
2516 		.std_body = CC_STD_NIST,
2517 	},
2518 	{
2519 		.name = "ccm(aes)",
2520 		.driver_name = "ccm-aes-ccree",
2521 		.blocksize = 1,
2522 		.template_aead = {
2523 			.setkey = cc_aead_setkey,
2524 			.setauthsize = cc_ccm_setauthsize,
2525 			.encrypt = cc_aead_encrypt,
2526 			.decrypt = cc_aead_decrypt,
2527 			.init = cc_aead_init,
2528 			.exit = cc_aead_exit,
2529 			.ivsize = AES_BLOCK_SIZE,
2530 			.maxauthsize = AES_BLOCK_SIZE,
2531 		},
2532 		.cipher_mode = DRV_CIPHER_CCM,
2533 		.flow_mode = S_DIN_to_AES,
2534 		.auth_mode = DRV_HASH_NULL,
2535 		.min_hw_rev = CC_HW_REV_630,
2536 		.std_body = CC_STD_NIST,
2537 	},
2538 	{
2539 		.name = "rfc4309(ccm(aes))",
2540 		.driver_name = "rfc4309-ccm-aes-ccree",
2541 		.blocksize = 1,
2542 		.template_aead = {
2543 			.setkey = cc_rfc4309_ccm_setkey,
2544 			.setauthsize = cc_rfc4309_ccm_setauthsize,
2545 			.encrypt = cc_rfc4309_ccm_encrypt,
2546 			.decrypt = cc_rfc4309_ccm_decrypt,
2547 			.init = cc_aead_init,
2548 			.exit = cc_aead_exit,
2549 			.ivsize = CCM_BLOCK_IV_SIZE,
2550 			.maxauthsize = AES_BLOCK_SIZE,
2551 		},
2552 		.cipher_mode = DRV_CIPHER_CCM,
2553 		.flow_mode = S_DIN_to_AES,
2554 		.auth_mode = DRV_HASH_NULL,
2555 		.min_hw_rev = CC_HW_REV_630,
2556 		.std_body = CC_STD_NIST,
2557 	},
2558 	{
2559 		.name = "gcm(aes)",
2560 		.driver_name = "gcm-aes-ccree",
2561 		.blocksize = 1,
2562 		.template_aead = {
2563 			.setkey = cc_aead_setkey,
2564 			.setauthsize = cc_gcm_setauthsize,
2565 			.encrypt = cc_aead_encrypt,
2566 			.decrypt = cc_aead_decrypt,
2567 			.init = cc_aead_init,
2568 			.exit = cc_aead_exit,
2569 			.ivsize = 12,
2570 			.maxauthsize = AES_BLOCK_SIZE,
2571 		},
2572 		.cipher_mode = DRV_CIPHER_GCTR,
2573 		.flow_mode = S_DIN_to_AES,
2574 		.auth_mode = DRV_HASH_NULL,
2575 		.min_hw_rev = CC_HW_REV_630,
2576 		.std_body = CC_STD_NIST,
2577 	},
2578 	{
2579 		.name = "rfc4106(gcm(aes))",
2580 		.driver_name = "rfc4106-gcm-aes-ccree",
2581 		.blocksize = 1,
2582 		.template_aead = {
2583 			.setkey = cc_rfc4106_gcm_setkey,
2584 			.setauthsize = cc_rfc4106_gcm_setauthsize,
2585 			.encrypt = cc_rfc4106_gcm_encrypt,
2586 			.decrypt = cc_rfc4106_gcm_decrypt,
2587 			.init = cc_aead_init,
2588 			.exit = cc_aead_exit,
2589 			.ivsize = GCM_BLOCK_RFC4_IV_SIZE,
2590 			.maxauthsize = AES_BLOCK_SIZE,
2591 		},
2592 		.cipher_mode = DRV_CIPHER_GCTR,
2593 		.flow_mode = S_DIN_to_AES,
2594 		.auth_mode = DRV_HASH_NULL,
2595 		.min_hw_rev = CC_HW_REV_630,
2596 		.std_body = CC_STD_NIST,
2597 	},
2598 	{
2599 		.name = "rfc4543(gcm(aes))",
2600 		.driver_name = "rfc4543-gcm-aes-ccree",
2601 		.blocksize = 1,
2602 		.template_aead = {
2603 			.setkey = cc_rfc4543_gcm_setkey,
2604 			.setauthsize = cc_rfc4543_gcm_setauthsize,
2605 			.encrypt = cc_rfc4543_gcm_encrypt,
2606 			.decrypt = cc_rfc4543_gcm_decrypt,
2607 			.init = cc_aead_init,
2608 			.exit = cc_aead_exit,
2609 			.ivsize = GCM_BLOCK_RFC4_IV_SIZE,
2610 			.maxauthsize = AES_BLOCK_SIZE,
2611 		},
2612 		.cipher_mode = DRV_CIPHER_GCTR,
2613 		.flow_mode = S_DIN_to_AES,
2614 		.auth_mode = DRV_HASH_NULL,
2615 		.min_hw_rev = CC_HW_REV_630,
2616 		.std_body = CC_STD_NIST,
2617 	},
2618 };
2619 
2620 static struct cc_crypto_alg *cc_create_aead_alg(struct cc_alg_template *tmpl,
2621 						struct device *dev)
2622 {
2623 	struct cc_crypto_alg *t_alg;
2624 	struct aead_alg *alg;
2625 
2626 	t_alg = kzalloc(sizeof(*t_alg), GFP_KERNEL);
2627 	if (!t_alg)
2628 		return ERR_PTR(-ENOMEM);
2629 
2630 	alg = &tmpl->template_aead;
2631 
2632 	snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
2633 	snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
2634 		 tmpl->driver_name);
2635 	alg->base.cra_module = THIS_MODULE;
2636 	alg->base.cra_priority = CC_CRA_PRIO;
2637 
2638 	alg->base.cra_ctxsize = sizeof(struct cc_aead_ctx);
2639 	alg->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
2640 	alg->init = cc_aead_init;
2641 	alg->exit = cc_aead_exit;
2642 
2643 	t_alg->aead_alg = *alg;
2644 
2645 	t_alg->cipher_mode = tmpl->cipher_mode;
2646 	t_alg->flow_mode = tmpl->flow_mode;
2647 	t_alg->auth_mode = tmpl->auth_mode;
2648 
2649 	return t_alg;
2650 }
2651 
2652 int cc_aead_free(struct cc_drvdata *drvdata)
2653 {
2654 	struct cc_crypto_alg *t_alg, *n;
2655 	struct cc_aead_handle *aead_handle =
2656 		(struct cc_aead_handle *)drvdata->aead_handle;
2657 
2658 	if (aead_handle) {
2659 		/* Remove registered algs */
2660 		list_for_each_entry_safe(t_alg, n, &aead_handle->aead_list,
2661 					 entry) {
2662 			crypto_unregister_aead(&t_alg->aead_alg);
2663 			list_del(&t_alg->entry);
2664 			kfree(t_alg);
2665 		}
2666 		kfree(aead_handle);
2667 		drvdata->aead_handle = NULL;
2668 	}
2669 
2670 	return 0;
2671 }
2672 
2673 int cc_aead_alloc(struct cc_drvdata *drvdata)
2674 {
2675 	struct cc_aead_handle *aead_handle;
2676 	struct cc_crypto_alg *t_alg;
2677 	int rc = -ENOMEM;
2678 	int alg;
2679 	struct device *dev = drvdata_to_dev(drvdata);
2680 
2681 	aead_handle = kmalloc(sizeof(*aead_handle), GFP_KERNEL);
2682 	if (!aead_handle) {
2683 		rc = -ENOMEM;
2684 		goto fail0;
2685 	}
2686 
2687 	INIT_LIST_HEAD(&aead_handle->aead_list);
2688 	drvdata->aead_handle = aead_handle;
2689 
2690 	aead_handle->sram_workspace_addr = cc_sram_alloc(drvdata,
2691 							 MAX_HMAC_DIGEST_SIZE);
2692 
2693 	if (aead_handle->sram_workspace_addr == NULL_SRAM_ADDR) {
2694 		dev_err(dev, "SRAM pool exhausted\n");
2695 		rc = -ENOMEM;
2696 		goto fail1;
2697 	}
2698 
2699 	/* Linux crypto */
2700 	for (alg = 0; alg < ARRAY_SIZE(aead_algs); alg++) {
2701 		if ((aead_algs[alg].min_hw_rev > drvdata->hw_rev) ||
2702 		    !(drvdata->std_bodies & aead_algs[alg].std_body))
2703 			continue;
2704 
2705 		t_alg = cc_create_aead_alg(&aead_algs[alg], dev);
2706 		if (IS_ERR(t_alg)) {
2707 			rc = PTR_ERR(t_alg);
2708 			dev_err(dev, "%s alg allocation failed\n",
2709 				aead_algs[alg].driver_name);
2710 			goto fail1;
2711 		}
2712 		t_alg->drvdata = drvdata;
2713 		rc = crypto_register_aead(&t_alg->aead_alg);
2714 		if (rc) {
2715 			dev_err(dev, "%s alg registration failed\n",
2716 				t_alg->aead_alg.base.cra_driver_name);
2717 			goto fail2;
2718 		} else {
2719 			list_add_tail(&t_alg->entry, &aead_handle->aead_list);
2720 			dev_dbg(dev, "Registered %s\n",
2721 				t_alg->aead_alg.base.cra_driver_name);
2722 		}
2723 	}
2724 
2725 	return 0;
2726 
2727 fail2:
2728 	kfree(t_alg);
2729 fail1:
2730 	cc_aead_free(drvdata);
2731 fail0:
2732 	return rc;
2733 }
2734